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Abstract—Short-term load forecasting plays a critical role in
power system planning and operation. Along with the electrifica-
tion of various loads, electricity demands are becoming increas-
ingly hard to predict. Notably, the recent rise in electric vehicles
(EVs) has further contributed to this unpredictability. To address
this issue, this paper proposes a probabilistic load forecasting
strategy utilizing Gaussian process regression, structured in a
day-ahead manner. While many works focus on deterministic
prediction, probabilistic forecasting offers additional insights into
variability and uncertainty, enabling more flexible and reliable
operation for power systems. To enhance the accuracy of the
load forecasting model, the inputs include features related to EV
charging habits as well as commonly used weather information.
The load forecasting results are evaluated using various metrics,
including conventional ones that assess the accuracy of point
forecasts, as well as additional metrics that test the reliability
of prediction intervals. The proposed load forecasting method is
finally tested on real residential power consumption data and
EV charging data sampled from real-world sources. The results
prove that the new features can greatly improve the performance
of the load forecasting method.

Index Terms—load forecasting, electrical vehicle, Gaussian
process regression, probabilistic forecasting.

I. INTRODUCTION

Load forecasting has been a critical topic for power systems.
An accurate load forecast might lead to great savings for
utilities, while a larger forecasting error can cause a severe
increase in operation costs [1]. In particular, short-term load
forecasting (usually minutes, hours, or day-ahead) can provide
valuable insights to enhance system operations [2]. Typically,
load forecasting is conducted at aggregated levels, e.g., a
certain area, a given feeder, or under a distribution transformer
[3] to predict the electricity demand. It has always been a
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challenging task due to the complex temporal dependencies
and various exogenous factors, like the weather conditions [4].

Conventionally, utilities relied heavily on the expected val-
ues obtained from the load forecasting process for decision-
making. Thus, various methods have been investigated and
studied in pursuit of reducing prediction error. An ensemble
forecasting framework is introduced in [5] to improve the
prediction accuracy for aggregated loads. But load forecasting,
which deals with randomness, is fundamentally a stochastic
rather than a deterministic problem[6]. Therefore, it is more
reasonable to get the output of a load forecaster in a proba-
bilistic form, e.g., a probability density function or a prediction
interval (PI). In the past years, the growing market compe-
tition, aging of electrical devices, and high proliferation of
distributed energy resources have highlighted the importance
of probabilistic load forecasting [3]. As pointed out in [7],
some utilities have begun to adopt a probabilistic perspective
when considering potential demand levels, and a density
forecasting of long-term peak demand is then introduced. A
constrained quantile regression averaging method is developed
in [8] to combine several probabilistic forecasting models to
improve the performance.

Besides, the rapid growth of electrical vehicles (EVs) is
eventually altering users’ load profiles. Results in [9] indicate
that the integration of EVs into distribution networks may not
only raise the peak load demand but also shift the timing
of the peak. As claimed in [10], the integration of EVs can
bring a positive impact on power systems when operated
correctly, but meanwhile, EV charging loads may aggravate
load-side uncertainties. In order to enhance the power system
operation in response to the growing penetration of EVs,
some researchers have been concentrating on EV charging
load prediction. A hybrid forecasting model for EV’s charging
behavior is proposed in [11]. A reinforcement learning-based
EV charging load forecasting method is introduced in [12].
But [11] and [12] focus on the individual EV level or the
charging station level, with their outputs being deterministic.
However, due to the high uncertainties caused by EV charging,



the deterministic predictions are hard to ensure accuracy, thus
resulting in an inappropriate operation. Additionally, compared
to forecasters for the individual EV or charging station,
forecasting at aggregated levels (such as an entire feeder) can
be more valuable for power system operators.

To this end, we propose a probabilistic forecasting strategy
based on Gaussian Process Regression (GPR) [13] for short-
term load forecasting of a distribution feeder integrated with
EV charging demands. As a non-parametric method, GPR
shows great flexibility to adapt to complex relationships. With
the predicted values and the associated uncertainties as the
outputs, GPR also provides a measure of confidence of the
prediction. To track the pattern of the EV charging load and
improve the performance, extra features related to the EV
charging are included in the input data. The contributions of
the paper can be summarized as:

• A probabilistic forecasting model is adapted for day-
ahead load forecasting of a utility feeder with EV charg-
ing loads. Compared to deterministic forecasting, the
probabilistic model is more in line with the stochastic
nature of electricity usage, especially when EV charging
is integrated.

• The forecasting results are evaluated using not only
deterministic metrics. The obtained PIs are quantitatively
evaluated using metrics accounting for both interval
lengths and coverage probabilities to demonstrate their
reliability.

II. DATASET DESCRIPTION

The load forecasting is based on the real residential load
data of a utility feeder in the U.S. and the EV charging load
profiles collected from the nearby area. The dataset contains
historical load information for 3 years, with a resolution of
one hour. Based on the time stamps, corresponding weather
information is also collected as the input features for load
forecasting.

A. Residential load data

The utility feeder includes more than one hundred residen-
tial customers, all equipped with smart meters. By neglecting
the losses, we treat the sum of all the customers’ loads
recorded from the smart meters as the load of the whole feeder.
The total load of the feeder at time t can be denoted as PR(t).
Note that no EVs are connected to the utility feeder, which
means PR(t) here is the EV-free load.

B. EV charging load data

Unlike the customer-level smart meters for measuring elec-
trical consumption at the customer-level, the amount of meters
that measure the EV charging power alone is often limited.
Thus public driving behavior surveys are often used as source
information for modeling EV charging loads [14]. But in this
work, we incorporate the real EV charging load data in the
modeling process. The modeling process is outlined below.

Firstly, a kernel density estimation (KDE) is used for
fitting the probability density function of the starting charging

time. Assume that CT1, CT2, . . . , CTn are the samples of the
starting charging time (CT). The probability density of CT is:

f(CT ) =
1

nV

n∑
i=1

K

(
CT − CTi

h

)
(1)

where n is the number of samples, h is the bandwidth, which
is the parameter in KDE that controls the smoothing of the
resulting density curve. K(·) denotes the kernel function,
weighing the contributions of sample points to the estimation
of the density at CT. Here, the Gaussian kernel is utilized as
the kernel function due to its symmetrical characteristic.

The charging load of EVs is affected by temperature,
driving distance, and charging power. In this work, we select
Gamma distribution [15] for the battery capacity distribution
C0, as shown in (2), and assume the initial state of charge
SOC0 obeys a normal distribution SOC0 ∼ N(0.8, 0.12),
respectively.

G(C0) =
1

βαC

C Γ(αC)
CαC−1

0 e
− C0

βC (2)

Then, the initial energy of the EV i’s battery can be
expressed as:

Ei
0 = Ci

0 × SOCi
0 (3)

The influence of environmental factors such as ambient
temperature on the energy consumption of EVs during driving
is further adopted as a regression model (4) as suggested in
[16]:

e0 = b+ v1v + v2v
2 + cTe Pe + aA

+ heHe + t1T + t2T
2 + t3T

3
(4)

where e0 and v denote the energy consumption per kilometer
and the average travel speed, respectively. Pe are the vectors
representing the percentage of link length with a gradient. A
and He are the air conditioner and heater usage times per
kilometer, respectively. T is the ambient temperature, which
can be obtained from the regional weather information. Others
are coefficients. Therefore, the remaining battery level of the
EV can be obtained:

Ei = Ei
0 − ei0 × li (5)

where li is the traveling distance sampled from the log-
normal distribution. It is assumed in this work that users will
charge when the remaining battery is below a specific value
to deal with range anxiety. The charging power of vehicle
i can be randomly sampled from a uniform distribution:
P

i

char ∼ U(4.5, 5.5) (kW) [17]. Considering the range anxiety,
the charging power of the vehicle i is:

P i
char =

{
P

i

char(kW) if Ei < ai1 × Ci
0

0 otherwise
(6)

where ai1 is the range anxiety coefficient, which is randomly
chosen from 0.15 to 0.3.

Vehicle i’s charging time duration T i
C depends on the

electricity consumed and the charging power. Considering the



continuity of battery use, it can only be charged to 0.8 of its
full capacity:

T i
C =

0.8× Ci
0 − Ei

P
i

char

(7)

From the starting charging time CTi, the charging power
P i
char and charging time T i

C , we can get the time-series
charging load of EV i, denoted as P i(t). Then, the total
charging load PEV (t) can be calculated by adding the time-
series charging load of all the EVs:

PEV (t) =

NEV∑
i=1

P i(t) (8)

III. METHODOLOGY

A. Features for Load Forecasting

Based on the available dataset, the following features are
used for load forecasting:

• HD(t): Hour index of the day. HD(t) ∈ {1, 2, · · · , 24}.
• DW (t): Day index of the day. DW (t) ∈ {1, 2, · · · , 7}.
• DY (t): Day index of the year. DY (t) ∈ {1, 2, · · · , 365}.
• MY (t): Month index of the year. MY (t) ∈

{1, 2, · · · , 12}.
• TH(t): Temperature information of the past 24 hours.

TH(t) = {Tt−24, · · · , Tt−2, Tt−1}.
• T (t): Temperature at time t. To simulate the potential

errors of weather forecasting, Gaussian noise is added.
• PH(t): Historical load data of the past 24 hours. P (t) =

{pt−24, · · · , pt−2, pt−1}.
• CH(t): This feature is related to users’ charging prefer-

ence, representing the charging probability at time t. In
practice, this feature can be obtained through question-
naires about users’ charging habits or based on historical
EV charging information.

B. Gaussian Process Regression

Given the significance of incorporating uncertainty into load
forecasting, the GPR technique is utilized for its outstanding
capability of measuring uncertainties and excellent flexibility
in capturing nonlinearity. The fundamental idea of GPR is
to predict dependent variables based on the distances between
explanatory variables. Specifically, in our load forecasting task,
the explanatory variables X = [x1, x2, ..., xn] include the
input features for load forecasting, while the response variables
P (x) = [p(x1), p(x2), ..., p(xn)] are the hourly load of the
whole feeder. Different from the deterministic models, here
p(xt), t ∈ [1, ..., n] is not a single value but a random variable,
and the function p(·) is drawn from a Gaussian process:

p(x) ∼ GP(µ(xt), k(xt, x
′
t)), (9)

where µ(xt) reflects the expected value of the load, and
k(xt, x

′
t) is the covariance function to show the dependence

between data points. In this work, the Squared Exponential
Kernel function is selected as the covariance function:

k(xt, x
′
t) = σ2 exp

(
−
∥xt − x′

t∥
2
2

2λ2

)
(10)

The covariance function (10) is utilized to calculate the
covariance matrix of the data points in the training set. The
hyperparameters of (10) are determined by the training process
of GPR. From the training set, a joint Gaussian distribution in
n dimensions constructed on the training data points can be
written as follows:

P (x) ∼ N (µ,Σ), (11)

where

µ =

[
µ(x1)

...
µ(xn)

]
(12a)

Σ =

[
K(x1,x1) ··· K(x1,xn)

...
. . .

...
K(xn,x1) ··· K(xn,xn)

]
(12b)

After training, the GPR can predict the load at a certain
time t by conditioning the joint Gaussian distribution of the
training and test data: p(x1)

...
p(xn)
p(xt)

 ∼ N (
[ µ
µt

]
,
[

Σ ΣNt

ΣT
Nt Σtt

]
) (13)

where µt = µ(pt), ΣNt and ΣT
Nt are the training-test set

covariance and its transpose. Σtt is the test set covariance. Let
Px = [p1, ..., pn] denote the observation of [p(x1), ..., p(xn)].
From the Bayes’ theorem, we have:

p(xt)|Px ∼ N (µ(xt), σ(xt)) (14)

where µ(xt)=ΣT
NtΣ

−1Px,σ(xt) = Σtt −ΣT
NtΣ

−1ΣNt. The
prediction results are probabilistic for the test point t, pro-
viding not only the expected value but also a measure of
uncertainty.

C. Evaluation Methods

To evaluate the performance of the proposed probabilistic
load forecasting, two categories of metrics are used: the first
category consists of deterministic metrics, while the second
category assesses the reliability and representativeness of the
forecasted distributions.

The deterministic metrics include the standard mean abso-
lute percentage error (MAPE), and root mean squared error
(RMSE). The definition over the total number of N samples
are given as:

MAPE =
1

N

N∑
t=1

|p(xt)− p∗(t)|
p∗(t)

× 100% (15)

RMSE =

√√√√ 1

N

N∑
t=1

(p(xt)− p∗(t))2 (16)

where p(xt) denotes the expected value of the forecasting load
at time t, while p∗(t) represents the real load value at time
t. However, since these commonly used deterministic metrics
focus solely on the expected values of the forecasting, they



do not adequately evaluate the proposed probabilistic load
forecasting.

To this point, quantitative evaluation of prediction intervals
[18] are included to test the probabilistic performance. Two
important aspects of PIs: the length and coverage probabil-
ity, are both considered in the quantitative evaluation. It is
preferable to get shorter PIs, since too wide PIs might be
meaningless and hard to be applied in system operation. To
measure the relative lengths of PIs to the actual values, the
normalized mean PI length (NMPIL) is introduced:

NMPIL =
1

N

N∑
t=1

(
pU (xt)− pL(xt)

p∗(t)
) (17)

where pU (xt) and pL(xt), are the upper and lower bounds of
the PIs of time t. A larger NMPIL value indicates that the PIs
are longer in comparison to the actual values.

Another critical criterion for PIs is the coverage probability,
which monitors how frequently the actual data points would
lie within the constructed PIs. The PI coverage probability
(PICP) can be calculated as:

PICP =
1

N

N∑
t=1

ct

ct =

{
1 if p∗(t) ∈ [pU (xt), p

L(xt)]

0 otherwise

(18)

Ideally, the PICP should be close to the confidence level on
which the PIs are based. For example, if a variable follows the
normal distribution with mean value µ, standard deviation σ,
the ideal values of PICPs for PIs [µ− σ, µ+ σ], [µ− 2σ, µ+
2σ] and [µ − 3σ, µ + 3σ] should be 68%, 95% and 99.7%,
respectively, as shown in Fig. 1. But in practice, the PICP
may not perfectly match with the ideal values due to various
factors, e.g. data noise, model under- or over-fitting. Therefore,
the difference between the actual PICPs and the ideal values
should also be considered when judging the quality of PIs.

Sometimes PI lengths and PICP are interconnected: wider
PIs may contain more data points, leading to larger PICP and
vice versa. To account for both criteria, a coverage-length-
based criterion (CLC) is also introduced in [18]:

CLC =
NMPIL

S(PICP,CP ∗, η)

S(PICP,CP ∗, η) =
1

1 + e−η(PICP−CP∗)

(19)

S(·) is a sigmoidal function and CP* is the ideal value
of the coverage probability for the given PI. η is a positive
parameter. The further the PICP is below CP*, the more the
sigmoidal function’s value decreases; meanwhile, the value
of CLC will greatly increase. So the smaller value of CLC
indicates a better-constructed PI, with short PI length and great
coverage probability.

Fig. 1. Normal distribution with mean value µ, standard deviation σ.

IV. CASE STUDY

A. Overview

In this section, the proposed GPR-based probabilistic load
forecasting is applied on our dataset to explore its effective-
ness. The dataset includes the real load data of the whole
utility feeder and the charging load for 30 electric vehicles,
sampled from a model based on real EV charging load profiles.
The load information of 22 consecutive months is set as the
training set, and the following 2 months are used as the
testing set. After training and obtaining the joint Gaussian
distribution model, the load forecasting process is conducted
in day-ahead format, which means p(xt), the expected value
of the forecasting load at time t will be added to the input
feature to predict p(xt+1). This process is iteratively repeated
until the forecasting is conducted for every hour of the day.
Finally, the results are evaluated from both deterministic and
probabilistic perspectives.

B. Results Analysis and Performance Comparisons

The GPR-based load forecasting is performed under three
different settings for comparison:

Case 1: In this case, the historical data without EVs is used
to forecast the EV-free loads of the utility feeder. All the time
indices HD(t), DW (t), DY (t) and MY (t), historical load data
P (t), and the weather-related features T (t) and TH(t) are
included in the input features X . Note that the historical load
data includes only the residential loads, which means P (t) =
{PR(t − 24), · · · , PR(t − 2), PR(t − 1)}. The corresponding
output is the EV-free residential load of the feeder at time t,
which means p(xt) = PR(t).

Case 2: In this case, we use the historical data with EVs to
forecast the loads of the utility feeder including EV charging
loads. With the same input features with Case 1, the output
load data is replaced by the sum of the residential loads and
the EV charging loads. Then we have P (t) = {PR(t− 24) +
PEV (t−24), · · · , PR(t−2)+PEV (t−2), PR(t−1)+PEV (t−
1)}, and p(xt) = PR(t)+PEV (t). No extra feature is included
in the input feature set X .

Case 3: On the basis of Case 2, the user’s charging habit
feature CH(t) is included in the input feature set X . The



Fig. 2. The coverage of the PIs to the true value in Case 2 and Case 3.
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Fig. 3. Quantitative evaluation results of PIs.

output is also the sum of the residential load PR(t) and the
EV charging load PEV (t).

TABLE I
DETERMINISTIC METRICS

Case 1 2 3

MAPE 9.0714% 21.3612% 9.2057%

RMSE 12.0494 25.6835 12.5291

The deterministic performance of three different cases is
listed in Tab. I. In Case 1, the GPR-based method achieves
reliable accuracy with a MAPE of less than 10%. However,
after including EV charging loads, the performance signifi-
cantly deteriorates, with the MAPE increasing to over 20%.
It proves that the increase of EV charging loads in the
distribution systems can greatly heighten the unpredictability
in load forecasting, and the widely-used features like time
indices and weather information may no longer be adequate for

accuracy prediction. Then, in Case 3, by including the users’
charging habit feature CH(t), the accuracy can be significantly
improved.

Fig. 2 shows forecasting results of one week in the testing
set. The PIs from the GPR-based method from Case 2 and 3.
The red lines represent the PIs formed by plus and minus
two standard deviations, which means the ideal value of
coverage probability should be 95%. And the blue dots are
the real values. As can be seen, the lengths of PIs in Case
2 are obviously longer than that in Case 3. But the coverage
probability is actually lower. As highlighted by the rectangle,
some data points in Case 2 are difficult to include within
the PIs. Conversely, the majority of data points in Case 3
can be encompassed by the PIs. It is intuitively demonstrated
in Fig. 2 that incorporating the user charging habit feature
allows the GPR model to more accurately track the uncertain
characteristics of the load when integrated with EV charging
loads.

Additional quantitative evaluation results are presented in



Fig. 3. As can be seen in Case 1, without the integration
of EV charging loads, the proposed GPR-based method can
achieve close PICPs with the ideal values while maintaining
low NMPIL values. It indicates that the GPR-based method is
capable of capturing the complex relationships between the in-
put features and the electrical load. However, the performance
of Case 2 is getting worse: the larger NMPIL values indicate
that the output PIs are wider, but the PICPs are even worse. It
further proves that with the integration of more EV charging
loads, the load forecasting task becomes more complex. After
the introduction of the new feature, Case 3’s performance
greatly improved compared to Case 2. The NMPIL values
get slightly larger than Case 1, which is reasonable since the
integration of EV charging loads improves the uncertainty and
unpredictability. The PICP values are even closer to the ideal
values. The CLCs of Case 1 and Case 3 are much smaller
than Case 2, which means the PIs from Case 1 and Case 3
are much more reliable. The user’s charging habit feature can
significantly improve the PI quality of the GPR-based load
forecasting method.

V. CONCLUSION

This paper focuses on probabilistic short-term load fore-
casting. A GPR-based method is proposed and tested on a
real residential load data set. To adapt to the unpredictability
caused by the increasing penetration of EVs, the EV charging
loads are also considered. To increase the forecasting accuracy,
the users’ charging habit feature is also incorporated. Deter-
ministic and probabilistic metrics are then used for evaluating
the forecasting results in terms of the expected values and
quality of PIs, respectively. The performance gap between the
first two cases in the case study highlights the unpredictability
caused by the EV charging loads. Then, by considering the
users’ charging habit feature, the forecasting accuracy can be
greatly increased. The metrics indicate that the proposed GPR-
based method can provide not only accurate expected values,
but also reliable PIs with relatively short lengths and high
coverage probability. Given these favorable characteristics, the
proposed probabilistic load forecasting strategy can be applied
to enhance the distribution system operation in the future. The
predicted load values with PIs will provide valuable insights
for system operators amidst growing system uncertainty.
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