
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Anthropocentric data analysis

Permalink
https://escholarship.org/uc/item/19f7g0h6

Author
Lewis, Joshua M.

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/19f7g0h6
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Anthropocentric Data Analysis

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Cognitive Science

by

Joshua M. Lewis

Committee in charge:

Professor Virginia R. de Sa, Chair
Professor Serge J. Belongie
Professor Gedeon O. Deák
Professor Jeffrey L. Elman
Professor Lawrence K. Saul

2011

Copyright

Joshua M. Lewis, 2011

All rights reserved.

The dissertation of Joshua M. Lewis is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2011

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vii

List of Tables . ix

Acknowledgements . x

Vita . xi

Abstract of the Dissertation . xii

1 Introduction . 1

2 Finding a Better k: A psychophysical investigation of clustering 3
2.1 Abstract . 3
2.2 Introduction . 3
2.3 Human Data . 6
2.4 Results . 8
2.5 Strategies . 11

2.5.1 Density Strategies . 11
2.5.2 Model Fitting Strategies . 12
2.5.3 Comparison with Human Data 13

2.6 New Density Strategies . 14
2.7 Conclusion . 15
2.8 Acknowledgments . 16

3 Human Cluster Evaluation and Formal Quality Measures:
A Comparative Study . 17
3.1 Abstract . 17
3.2 Introduction . 18
3.3 Clustering quality measures . 20
3.4 Methods . 21

3.4.1 Human subjects and stimuli 21
3.4.2 Analysis . 24

3.5 Results . 25
3.5.1 Correlation . 25
3.5.2 Consistency . 25

3.6 Discussion . 26
3.6.1 Comparing human evaluations with CQMs 26

iv

3.6.2 Comparing experts with novices 27
3.6.3 Consistency . 27

3.7 A Property-Based Taxonomy of CQMs 28
3.7.1 Normed clustering quality measures 30
3.7.2 Invariance and consistency properties 30
3.7.3 Domain and range properties 31

3.8 Conclusions . 31
3.9 Acknowledgments . 32

4 A Behavioral Investigation of
Dimensionality Reduction . 33
4.1 Abstract . 33
4.2 Introduction . 33
4.3 Dimensionality reduction techniques 35
4.4 Experimental setup . 37

4.4.1 Experiment 1 . 38
4.4.2 Experiment 2 . 41

4.5 Results . 41
4.5.1 Experiment 1 . 41
4.5.2 Experiment 2 . 43

4.6 Discussion . 45
4.7 Conclusion . 46
4.8 Acknowledgments . 47

5 Learning Cluster Analysis through Experience 48
5.1 Abstract . 48
5.2 Introduction . 48
5.3 Divvy . 50
5.4 Methods . 52
5.5 Results . 55
5.6 Discussion . 55
5.7 Acknowledgments . 57

6 Pairwise Distance Matrix Calculation: A Comparative Study 58
6.1 Abstract . 58
6.2 Introduction . 58

6.2.1 Performance Concerns in Parallelization 59
6.2.2 Previous Work . 60

6.3 Methods . 62
6.3.1 Hardware . 62
6.3.2 GPU Distance Matrix Computation 63
6.3.3 CPU Distance Matrix Computation 67

6.4 Results . 69

v

6.5 Discussion . 71
6.6 Conclusions . 73
6.7 Acknowledgments . 73

7 Conclusion . 74

Bibliography . 75

vi

LIST OF FIGURES

Figure 2.1: Are there 8, 7 or 2 groups? . 5
Figure 2.2: The stimuli. 8
Figure 2.3: Responses to uniform noise. Displays with few samples present

significant ambiguity. As sample size increases, entropy decreases. 9
Figure 2.4: A sample of displays that elicited bimodal responses from subjects. 10
Figure 2.5: Human responses are generally consistent for mixture of Gaussians

data sets. 10
Figure 2.6: Sample human (left) versus combined Eigengap and PG-means (right)

probability distributions over k. 13
Figure 2.7: The KL divergence scores for PG-means, Eigengap, their combina-

tion, and the enhanced version of Eigengap. (Note that the Y-axis is
scaled to make the distinctions more visible.) 14

Figure 3.1: All stimuli. Datasets are in rows; partitions are in columns. Col-
ors represent different clusters, and we asked subjects to provide a
ranking of the partitions across every row. 22

Figure 4.1: All stimuli from experiment 1. Methods are in rows; datasets are in
columns. 37

Figure 4.2: All stimuli from experiment 2. Parameter values are in rows; datasets
are in columns. 39

Figure 4.3: Human responses to the embeddings in experiment 1. Positive re-
sponses in the first row, negative in the second row. Experts (left),
novices (center) and informed novices (right) by column. 42

Figure 4.4: Human responses to the embeddings in experiment 2. Positive re-
sponses in the first row, negative in the second row. Experts (left),
novices (center) and informed novices (right) by column. 44

Figure 5.1: The Divvy UI used in this experiment. The tabs at the top right
select method A (k-means) or B (single linkage), and the sliders
below control the number of clusters and the relative weighting of
the horizontal and vertical axes. 49

Figure 5.2: Scatter plots of the three main variables. The points are colored
from dark blue to dark red based on percent correct. 51

Figure 5.3: Sample images to give subjects basic guidance on good groups (top)
versus bad groups (bottom). 53

Figure 6.1: A diagram of work group and thread allocation in Chang et al.’s
algorithm. Each block in the pairwise distance matrix is represented
by a work group, with each work group containing 256 (16 by 16)
threads. Each thread computes a single element of the result matrix. 61

Figure 6.2: A1 & A2 Flow diagram. 64

vii

Figure 6.3: The CPU algorithm calculates the diagonal blocks of the pairwise
distance matrix in Step 1. In Step 2, the algorithm dynamically
assigns off-diagonal blocks to each thread to fill out the rest of the
matrix. 68

Figure 6.4: A log-scale runtime comparison of A0, A1 and A2 on the C1060
and GTX460. 70

Figure 6.5: A speedup comparison of A1 and A2 to A0 on the C1060 and
GTX460. 70

viii

LIST OF TABLES

Table 3.1: Correlation coefficients between human responses and CQMs with
k factored out (except for the k column). Text in bold (excluding k
column) if p < .0025 after Bonferroni correction for n = 20 compar-
isons per subject group and α = .05. 23

Table 3.2: A summary of the number of partitions for which a high degree of
agreement was achieved by the raters. If a partition is classified as
negative or positive by 90% - 100% of raters, it would be added to
the top row, and similarly for the other buckets. 26

Table 3.3: Summary of comparison between CQMs and human evaluations.
The CQMs partition into three categories: high correlation with both
subject groups, high correlation only with experts, and low correla-
tion with both subject groups. See Table 5.2 for the correlation scores. 26

Table 3.4: A taxonomy of the seven quality measures used in the study. 29

Table 4.1: Correlation coefficients between human responses and dataset char-
acteristics. Text in bold if p < .0036 after Bonferroni correction for
n = 14 comparisons per subject group and α = .05. 43

Table 4.2: Correlation coefficients between human responses and dataset char-
acteristics. Text in bold if p < .0036 after Bonferroni correction for
n = 14 comparisons per subject group and α = .05. 45

Table 5.1: A summary of the concepts subjects learned. Subjects in bold chose
the correct method for over 70% of stimuli in the test block. 56

Table 6.1: Summary specifications of hardware used in the study. 63
Table 6.2: Pairwise distance matrix computation time in seconds across hard-

ware and algorithm implementations. In the last column we show
the CPU results (which use a different algorithm) from [1] for com-
parison. Fastest times are in bold. 71

ix

ACKNOWLEDGEMENTS

I would like to thank Virginia de Sa and Gedeon Deák for advising me and

guiding me through my graduate career from start to finish. I would also like to thank

the other members of my committee, Serge Belongie, Jeff Elman and Lawrence Saul

for being great teachers and giving valuable feedback. Finally, I would like to thank my

undergraduate advisors Jay Atlas and James Marshall for introducing me to cognitive

science research.

Chapter 2 is a reprint of material as it appears in J. M. Lewis, “Finding a bet-

ter k: A psychophysical investigation of clustering,” Proceedings of the 31st Annual

Conference of the Cognitive Science Society, pp. 315-320, 2009.

Chapter 3 is coauthored with Margareta Ackerman and Virginia R. de Sa, Chap-

ter 4 is coauthored with Laurens van der Maaten and Virginia R. de Sa, and Chapter 5

is coauthored with Virginia R. de Sa. The dissertation author is the primary author on

these three chapters. Chapter 6 is coauthored with Eric Weiss, Cindy Zhang and Virginia

de Sa. Eric Weiss is the primary author on this chapter, and the dissertation author is

responsible for the CPU experiments and much of the writing. Chapters 3 - 6 are being

prepared for submission.

During my graduate career the NSF supported my studies through NSF IGERT

Grant #DGE-0333451 to GW Cottrell/VR de Sa and NSF Grant #SES-0963071 to VR

de Sa.

x

VITA

2006 B. A. in Cognitive Science and B. A. in Philosophy cum laude,
Pomona College

2006-2009 Graduate Teaching Assistant, University of California, San Diego

2008 M. S. in Cognitive Science, University of California, San Diego

2011 Ph. D. in Cognitive Science, University of California, San Diego

PUBLICATIONS

Joshua M. Lewis, Gedeon O. Deák, Hector Jasso, Jochen Triesch, “Building a Model of
Infant Social Interaction,” Proceedings of the 32nd Annual Conference of the Cognitive
Science Society, pp. 278-283, 2010.

Joshua M. Lewis, Adam S. Fouse, Virginia R. de Sa, “Cross-Modal Influence on Binoc-
ular Rivalry,” Proceedings of the 32nd Annual Conference of the Cognitive Science So-
ciety, pp. 718-723, 2010.

Virginia R. de Sa, Patrick M. Gallagher, Joshua M. Lewis, Vicente L. Malave, “Multi-
View Kernel Construction,” Machine Learning, 47-71, 2009.

Joshua M. Lewis, “Finding a Better k: A psychophysical investigation of clustering,”
Proceedings of the 31st Annual Conference of the Cognitive Science Society, pp. 315-
320, 2009.

Joshua M. Lewis, Pincelli M. Hull, Kilian Q. Weinberger, Lawrence K. Saul, “Map-
ping Uncharted Waters: Exploratory Analysis, Visualization, and Clustering of Oceano-
graphic Data,” Proceedings of the Seventh International Conference on Machine Learn-
ing and Applications, pp. 388-395, 2008.

Douglas S. Blank, Joshua M. Lewis and James B. Marshall, “The multiple roles of
anticipation in developmental robotics,” Proceedings of the 2005 AAAI Fall Symposium
on Anticipatory Cognitive Embodied Systems, pp. 8-14, 2005.

xi

ABSTRACT OF THE DISSERTATION

Anthropocentric Data Analysis

by

Joshua M. Lewis

Doctor of Philosophy in Cognitive Science

University of California, San Diego, 2011

Professor Virginia R. de Sa, Chair

Machine learning techniques benefit science and industry primarily insofar as

they enable data analysts to better understand their data, make valid conclusions, and

gain insight into their domain of investigation. Studies in anthropocentric data analysis

seek to understand how human judgment is applied in the data analysis process and to

develop methods that provide explicit opportunities for human interaction and insight.

We present three studies of human visual reasoning exploring the extent to which novice

and expert subjects are able to judge the quality of and understand cluster analysis and

dimensionality reduction stimuli. We then investigate whether humans are able to learn

how cluster analysis algorithms function simply through interacting with them rapidly

across diverse data sets. Finally we show how multicore processing on CPUs and GPUs

can move human/algorithm interactions closer to real-time.

xii

1 Introduction

Machine learning techniques benefit science and industry primarily insofar as

they enable data analysts to better understand their data, make valid conclusions, and

gain insight into their domain of investigation. Studies in anthropocentric data analysis

seek to understand how human judgment is applied in the data analysis process and to

develop methods that provide explicit opportunities for human interaction and insight.

This thesis is composed of five papers that advance the anthropocentric data analysis

agenda.

Chapters 2 - 4 are psychophysical studies of how humans perceive and reason

about data analysis stimuli. If humans are able to make good visual judgments, such

as whether a 2D reduction of a data set is preserving important structure, or whether a

scatter plot contains five or seven clusters, then researchers should be able to leverage

those judgments during the data analysis process. If novices with no formal training

in data analysis and no knowledge of machine learning techniques can nevertheless

accurately gauge the quality of a clustering, then human computation resources such as

Mechanical Turk could be an aid to large scale data analysis. The papers in Chapters 2 -

4 investigate whether theses judgment capacities are present, and in which populations

(experts vs. novices). In addition, they compare human judgments with automated

quality measures and other algorithms to determine how much overlap there is between

the two.

Just as a baseball player does not need an explicit model of physics in his or

her head to field a ball on a short hop, researchers may not need an explicit mathemat-

ical understanding of how algorithms function in order to come to valid conclusions

about their use. In Chapter 5, we explore whether giving naïve undergraduates informa-

tive, self directed and real time experience with two clustering algorithms allows them

1

2

to understand how the algorithms function and in which contexts they might be most

profitably applied.

Finally, in Chapter 6 we describe research in parallel computation on graph-

ics processors and traditional processors that will support real time interaction between

researchers and algorithms for much larger data set sizes. These performance improve-

ments support the active learning-style interaction described in Chapter 5.

2 Finding a Better k: A

psychophysical investigation of

clustering

2.1 Abstract

Finding the number of groups in a data set, k, is an important problem in the field

of unsupervised machine learning with applications across many scientific domains. The

problem is difficult however, because it is ambiguous and hierarchical, and current tech-

niques for finding k often produce unsatisfying results. Humans are notoriously adept at

navigating ambiguous and hierarchical situations, and this paper measures human per-

formance on the problem of finding k across a wide variety of data sets. Two leading

algorithms are compared to the human results and their relationship to observed human

strategies is discussed. This paper also presents two new density based strategies to

simplify the k-choosing problem, Density Regimes and Density Erosion, along with a

means of integrating them into an existing algorithm.

2.2 Introduction

Within the field of unsupervised machine learning, clustering is a technique used

to separate an arbitrary collection of data points into groups (commonly called clusters).

Clustering is usually comprised of two steps. First, one must choose the number of

groups, represented by the variable k, for which to look. Second, one must assign each

3

4

data point to one or more groups while ensuring that there are no empty groups. This

second step has received the majority of attention from researchers, with techniques such

as the venerable k-means and spectral clustering [2] focusing exclusively on assignment

and leaving the task of choosing k up to other algorithms.

There are a few reasons why choosing k is a less attractive problem for re-

searchers as compared to the assignment problem. In some application domains for

clustering algorithms, researchers may approach their data with a particular value for k

already in mind. In this case, they can simply enter the desired number of clusters into

an algorithm like k-means and have a solution without bothering to find which values for

k have statistical support. Beyond this practical matter, choosing k has all the hallmarks

of a difficult computer science problem. For most data there is no one right answer for

what k should be. In fact there may be many answers, some more likely than others.

Thus k is an inherently ambiguous quantity, causing much algorithmic difficulty. Some

of this ambiguity comes from multiple possible hierarchical interpretations of the data.

For the data in Fig. 2.1, for example, the value of k depends on whether one wants to

focus on the details (that there are seven or eight small groups) versus the broad trend

(that there are two clear larger groups).

Beyond challenges with ambiguity and hierarchy, there is also the issue of profli-

gacy. Naïvely, one might want to represent the effectiveness of a certain k by calculating

an assignment based on that k and then measuring the sum squared distance between

each data point and the centroid of the cluster that it is assigned to. This seems like a

reasonable strategy, but imagine choosing a k equal to the number of points in one’s data.

In this situation, each cluster will have exactly one data point, which will be located at

the cluster centroid. Obviously the sum squared distance in this case will be zero, indi-

cating a good fit but providing an answer completely useless in terms of data analysis.

In general, k+1 will always fit data better than k based on this simple measure. A solu-

tion to this limitation is to design a more sophisticated statistical test to determine when

to stop increasing the number of clusters in order to better fit the data. Unfortunately,

statistical tests are based on assumptions about the underlying distribution of the data

and if these assumptions are incorrect the test will fail to provide a reasonable result.

The challenges presented in choosing k might lead one to wonder whether hu-

5

Figure 2.1: Are there 8, 7 or 2 groups?

mans are accomplished at the task. Humans are adept at navigating ambiguous and

hierarchical situations, and we generally cringe at the thought of laboriously counting

large numbers of objects, so perhaps we are k-choosing experts. There is a distinct

(and often implicit) trend in the clustering literature to use the human visual system as

a standard against which the performance of clustering algorithms should be judged. In

one prominent spectral clustering paper, the authors state, “The results are surprisingly

good... the algorithm reliably finds clusterings consistent with what a human would

have chosen [2].” Given that our visual system is an adept and powerful data processing

system (surprisingly resistant to myriad forms of algorithmic mimicry) it is reasonable

to solicit its judgments on a thorny problem for which it seems particularly well-suited.

This paper takes inspiration from a computer vision project undertaken at UC

Berkeley [3]. Faced with the challenging task of determining how to segment images

such that objects are separated from one another by outlines, researchers enlisted human

subjects to manually outline the objects in several hundred images of real-world scenes.

The problem of image segmentation is very similar to choosing k in that ambiguity and

hierarchy play a major role in determining reasonable answers. Detail oriented sub-

jects might outline the leaves on a tree whereas others might just outline the branches.

Through this effort researchers collected what is known as the Berkeley Segmentation

Dataset, a large collection of human image segmentation data. These data have moti-

vated and assisted several research projects and continue to be a valuable resource in the

computer vision field. Studies explicitly measuring human clustering judgements are

6

rare, but at least one study exists that focuses on the developmental changes in human

visual grouping of synthetic data sets [4].

This paper presents human judgements on a diverse set of clustering stimuli.

The motivation for this undertaking is twofold. First and foremost, we hope to gain

intuitions about the methods humans use to choose k and use those intuitions to develop

better k-choosing algorithms. The results of this endeavor will be discussed later on.

Second, we hope to create a comprehensive and detailed data set representing human

clustering behavior that can be used as a standard against which to measure algorithmic

performance, and to fuel innovation in this branch of machine learning.

2.3 Human Data

Eighteen undergraduate human subjects were recruited for this project, 11 fe-

male and 7 male, to determine the number of groups present in 50 distinct point light

displays. Each point light display was presented at two different scales and two different

rotations, for a total of four presentations per display and 200 trials per subject. Subjects

were asked to determine the number of groups in each display and were encouraged to

give more than one answer if appropriate. There was no time limit for response. Sub-

jects were told to ignore answers above 20 and to focus on “the bigger picture” to find a

reasonable answer less than 20. In addition to k judgments, response times and sequence

information were recorded. The sequence of trial presentations was structured into four

blocks of 50 randomly ordered trials each, with each block consisting of a unique per-

mutation of every point light display. After the subjects completed all 200 trials, they

were interviewed in order to gain insight into their techniques. The interview consisted

of two questions:

• What strategies did you use for this task?

• Were any of the displays harder than the others?

While there are likely many interesting phenomena to investigate in the human

data, such as consistency, reaction time, the relationship between reaction time and con-

sistency, the relationship between reaction time and k, etc., this paper is mostly con-

7

cerned with the overall gist of the human responses, their relationship to state-of-the-art

k-choosing algorithms, and the new k-choosing methods they inspire. To that end, the

human data were analyzed and will be presented collapsed across subjects, scales and

rotations. The results are presented in normalized bar plots meant to represent a proba-

bility distribution over k, based on the number of responses at each particular k. For each

display there are at least 72 responses represented, assuming one answer per subject per

trial. The actual number of responses might be larger if subjects were inclined to give

multiple answers.

The 50 point light displays used in this experiment were chosen to provide a

mixture of depth and breadth within the extremely large space of possible point light

displays. Sixteen of the displays consisted of various riffs on mixtures of Gaussians,

while another three were mixtures of Gaussians overlaid with uniformly distributed ran-

dom noise. Nine displays consisted solely of uniformly distributed random noise (with

differing number of samples between eight and 10,000). Three displays depicted two-

dimensional embeddings of real data. Eight displays contained lines, circles or a combi-

nation of the two. The final 11 displays consisted of other synthetic data transformed by

a variety of nonlinear distortions. See Fig. 2.2 for thumbnails of all the displays used.

Subjects always saw the displays as white points on a black background, but for the sake

of presentation the displays in this paper are black on white and the points have been

increased in size.

We focused heavily on mixture of Gaussian data sets due to the prominence of

the Gaussianity assumption in the machine learning literature [5][6][7]. We also used

several data sets with uniform noise in order to investigate how subject responses varied

with sample size and to what extent subjects saw patterns where none were justified

by the underlying distribution. Our shape-based and distorted displays were included

for breadth and represent a case where the data are drawn from no standard underlying

distribution.

Though all of the data sets are two-dimensional, we anticipate that insights

gained from this study will lead to algorithmic improvements even in high-dimensional

spaces. Certain algorithms (such as the Eigengap algorithm discussed below) operate

over affinity matrices that are insensitive to the underlying dimensionality of a data set.

8

Figure 2.2: The stimuli.

Thus, improvements in these algorithms as measured by similarity to human perfor-

mance in two dimensions will likely scale to high-dimensional data.

2.4 Results

Several interesting trends emerge in the human responses. In the interview sec-

tion of the study, subjects predominantly report two central strategies: looking for areas

of greatest density, perhaps separated by empty space (N = 13), and counting shapes or

blobs (N = 11). Many of those subjects report using both strategies (N = 9). The latter

strategy can be interpreted as a model fitting strategy, where subjects see a collection

(mixture) of objects (e.g. arcs or Gaussians) and then explicitly count the number of

those objects regardless of overlapping density. Rarer strategies include grouping by

shape orientation (N = 1), and grouping by shape type (if there are both circles and

lines in a display, there are two groups, N = 1). Finally, one subject explicitly mentions

a hierarchical strategy, where he or she searches for small clusters first, and then groups

9

Figure 2.3: Responses to uniform noise. Displays with few samples present significant
ambiguity. As sample size increases, entropy decreases.

them into larger clusters.

Subjects cite two main sources of difficulty: displays containing very few data

points (N = 9) and displays with lots of (often overlapping) shapes (N = 12). A few

subjects consider displays with random noise to be difficult (N = 3).

We find echoes of these subjective measures in the choices of k that humans

make. Insofar as the distribution over k is less peaked (has higher entropy) for a par-

ticular data set, one might interpret that data set as more difficult. Conforming with

interview responses indicating that small sample sizes cause difficulty, we can see in

Fig. 2.3 that entropy decreases as sample size increases for displays of uniform noise.

In concordance with interview responses indicating two primary strategies, we

find several examples of bimodal responses for displays where these two strategies

would diverge. Some examples are shown in Fig. 2.4.

In all of the mixture of Gaussian cases, humans perform very consistently. In

cases where the Gaussians have low variance and well separated means, almost all sub-

10

Figure 2.4: A sample of displays that elicited bimodal responses from subjects.

Figure 2.5: Human responses are generally consistent for mixture of Gaussians data
sets.

jects indicate the correct number of Gaussians. Where the Gaussians have high variance

and close means, humans generally agree on a tight range of values for k that corre-

sponds to the number of “blobs” in the display. See Fig 2.5 for some examples of these

results.

11

2.5 Strategies

Based on the observations discussed above, humans follow at least two broad

strategies when choosing k, density strategies and model fitting strategies. In this sec-

tion, two algorithms from recent work in the field that represent these two strategies will

be briefly described and their performance compared to the human data.

2.5.1 Density Strategies

Density strategies discover clusters by looking for regions of low density be-

tween groups of points, following density within groups to find all the points that belong

to them, and attempting to ignore low density noise. Several algorithms have endeavored

to formalize these strategies, notably [8].

A more recent algorithm [9], which this paper will refer to as the Eigengap

algorithm, brings similar strategies for finding k under the spectral clustering umbrella.

The Eigengap algorithm treats each data point as a node on a graph, and then performs a

random walk between the nodes, with the probability of transitioning between any two

nodes weighted by the distance between them. If two nodes are close together then the

probability of transitioning from one to the other will be high and if two nodes are far

apart then the probability of transitioning from one to the other will be low. Thus, if

a group of points is separated by a large distance from the rest of the data, a random

walk will be unlikely to transition across that gap. In this case, all the points within the

group will have a high probability of ending up on other points in the group and little

probability of ending up outside the group.

A matrix, P, representing the probability of any point ending up at any other

point in the data set will therefore be block diagonal if there are distinct groups within

the data set that are separated by sufficient distance. This block diagonal structure is

represented by the n largest eigenvalues of P, and eigenvalues greater than the nth will

generally be much smaller than the first n eigenvalues. By finding the largest difference

between neighboring eigenvalues sorted in descending order, one can find a useful es-

timate of the number of groups in the data. For example, if the difference between the

third and fourth eigenvalues is 0.4 and that distance is greater than the distance between

12

all other adjacent eigenvalues, then there are likely to be three groups in the data.

As the random walk progresses the Eigengap algorithm naturally finds groups of

coarser and coarser structure. Over an increasing number of steps, a random walk will

become more and more likely to cross over low density sections of the data set, and thus

two groups that initially might be separated will over time merge and lower values for k

will be discovered. In this way the Eigengap algorithm can respond well to hierarchical

data given a sufficiently long random walk.

The implementation of the Eigengap algorithm in this paper uses a small tweak

as compared to [9]. Given a data set with N points, the authors of [9] suggest searching

over N possible values for σ , a parameter used in generating the transition probability

matrix, between the minimum and maximum pairwise distances in the data set. The al-

gorithm used in this paper searched over 10 possible values for σ in order to drastically

reduce computation time while still investigating a reasonable range of values. Also,

given the large (over 10,000) number of points in some of the data sets, a sparse imple-

mentation of the Eigengap algorithm was used, with pairwise distances only calculated

between nearest neighbors (and the number of nearest neighbors equal to one percent of

the total number of points in the data set).

2.5.2 Model Fitting Strategies

Several model fitting strategies based on an assumption of mixture of Gaussian

distributed data have been proposed in the past [5] [6]. This section describes a recent

variant called PG-means [7]. PG-means searches for Gaussian clusters in a data set

using an iterative process. The algorithm is initialized with k = 1 and it attempts to find

an appropriate centroid and covariance matrix for a single Gaussian cluster given the

data using the Expectation-Maximization (EM) algorithm. PG-means then randomly

projects the data set and the Gaussian model down to one dimension n times (we used

n = 10). The Kolmogorov-Smirnov (KS) test is applied to each projection and if every

KS test indicates a sufficiently good fit (as measured by a parameter α that was set to

0.001) then the current value for k is accepted. Otherwise, k is incremented by one and

the entire process is repeated.

If PG-means did not find an answer less than k = 20, the algorithm was halted

13

Figure 2.6: Sample human (left) versus combined Eigengap and PG-means (right) prob-
ability distributions over k.

and its response considered to be k = 1. Note that unlike the Eigengap algorithm, PG-

means will only give one possible value for k.

2.5.3 Comparison with Human Data

To broadly compare Eigengap and PG-means performance with human perfor-

mance, both the human results and the algorithmic results are interpreted as probability

distributions over k. The sum Kullback-Leibler (KL) divergence is then calculated be-

tween the human results and both Eigengap and PG-means over all 50 data sets. The

human results are considered the true distribution and the algorithmic results are con-

sidered the model distributions for purposes of calculating KL.

Unsurprisingly, given its ability to return multiple values of k and discover hi-

erarchical organization, Eigengap outperforms PG-means with a sum KL divergence of

269.1 compared to 316.2 for PG-means. A simple unweighted combination of the two,

however, performs better than either algorithm on its own with a sum KL divergence of

245.8 (an improvement of 8.7 percent over the Eigengap algorithm). See Fig. 2.6 for

some sample comparisons of this combined result to human responses.

14

Figure 2.7: The KL divergence scores for PG-means, Eigengap, their combination,
and the enhanced version of Eigengap. (Note that the Y-axis is scaled to make the
distinctions more visible.)

2.6 New Density Strategies

While the Eigengap algorithm performs its function of following density well,

this paper proposes two novel strategies that use density in other ways. Both of the

techniques proposed are based on leveraging higher order density information than tra-

ditional pairwise distances or affinities.

First, we are developing an algorithm that intelligently culls uninformative sam-

ples from a dataset in order to increase the accuracy and decrease the computational

complexity of k-choosing algorithms. These uninformative samples should correspond

to the less dense or “bright” samples that humans tend to ignore. Consider a sample, ~xi,

and the set of its κ (kappa) nearest neighbors, νi. Define the neighborhood variance of

~xi as σ2
i = ∑n∈νi ||~xi−~xn||2/κ and define the normalized neighborhood variance of ~xi as

norm(σ2
i) = σ2

i /minn∈νi(σ
2
n). Remove all samples from the dataset whose norm(σ2

i)

measure is above threshold. Both this threshold and κ can be reasonably set based on

the number of samples in the dataset and the potential range of k. In a mixture of Gaus-

15

sians setting, samples with high norm(σ2
i) will be far from the mean of their underlying

distribution, and thus less prototypical than points with lower norm(σ2
i).

For an intuition on how this might help a density based approach to choosing

k, consider a simple mixture of two Gaussians whose means are well separated but

whose samples overlap in some part of the space. An Eigengap-style algorithm will be

able to traverse points across both Gaussians quite easily due to this overlap, leaving

little indication that there are two clear clusters. By culling all but a small number of

points with the lowest normalized neighborhood variance this “bridge” between the two

Gaussians is removed.

Second, we propose an extension to spectral clustering based on the observation

that human subjects consider samples with large differences in neighborhood variance

to be likely drawn from different clusters (though this is not the case when the variance

changes smoothly across space). σ2
i can be interpreted as the projection of~xi into a one-

dimensional space, and a new pairwise affinity matrix between samples can be created

based on distances in this space. By adding this new affinity matrix as a second view to

spectral clustering one might expect to obtain results more similar to human judgments.

Early data from applying this technique to the algorithm in [9] are promising and sup-

port this expectation. A version of this technique improves Eigengap performance as

compared to human performance by approximately 11 percent with a sum KL diver-

gence of 239.7 (compared to 269.1 for the standard Eigengap algorithm). Interestingly,

combining this modified version of Eigengap with PG-means nets only a 2.1 percent

improvement over the modified Eigengap alone (compared to the 8.7 percent improve-

ment when combining PG-means with standard Eigengap), indicating that sensitivity to

density changes might be part of what drives model fitting strategies in humans. See

Fig. 2.7 for a comparison across all algorithms.

2.7 Conclusion

Finding reasonable values for k is an important and difficult problem in unsuper-

vised machine learning. As one can see from the samples in Fig. 2.6, current algorithms

do well in certain situations and very poorly in others. By further investigating hu-

16

man performance and attempting to apply the insights garnered from such investigation,

substantial progress can be made in developing new algorithms to tackle this thorny

problem.

2.8 Acknowledgments

The author would like to thank Virginia de Sa, Gedeon Deák and Marta Kutas

for valuable feedback on this project. This work was supported by NSF IGERT Grant

#DGE-0333451 to GW Cottrell/VR de Sa. This chapter is a reprint of material as it

appears in J. M. Lewis, “Finding a better k: A psychophysical investigation of cluster-

ing,” Proceedings of the 31st Annual Conference of the Cognitive Science Society, pp.

315-320, 2009.

3 Human Cluster Evaluation and

Formal Quality Measures:

A Comparative Study

3.1 Abstract

Clustering quality evaluation is an essential component of cluster analysis. Given

the plethora of clustering techniques and their possible parameter settings, data analysts

require sound means of comparing alternate partitions of the same data. When propos-

ing a novel technique, researchers commonly apply two means of clustering quality

evaluation. First, they apply formal Clustering Quality Measures (CQMs) to compare

the results of the novel technique with those of previous algorithms. Second, they vi-

sually present the resultant partitions of the novel method and invite readers to see for

themselves that it uncovers the correct partition. These two approaches are viewed as

disjoint and complementary.

Our study compares formal CQMs with human evaluations. For this study, we

select a versatile set of measures based on a novel theoretical property-based taxonomy.

We find that some highly natural CQMs are in sharp contrast with human evaluations

while others correlate well.

Through the comparison of clustering experts and novices, as well as a consis-

tency analysis, we support the hypothesis that clustering evaluation skill is present in

the general population.

17

18

3.2 Introduction

Clustering is a fundamental data analysis tool that aims to group similar objects.

It has been applied to a wide range of disciplines such as astronomy, bioinformatics, psy-

chology, and marketing. Successful clustering often requires using a number of different

clustering techniques and then comparing their output. The evaluation of clusterings is

an integral part of the clustering process, needed not only to compare clusterings to

each other, but also to determine whether any of the clusterings obtained are sufficiently

good.1

Unfortunately, there is no consensus on a formal definition of clustering. As

a result, there are a wide variety of formal Clustering Quality Measures (CQMS), aka.

internal validity indices, that aim to evaluate the quality of clusterings. To compare clus-

terings, researchers often select a CQM, which assigns a numerical value to a partition

representing its quality.

Researches rarely rely on CQMs alone. There is a deep implicit assumption run-

ning through the clustering literature that human judgment of clustering quality is quite

good. Authors visually present the resultant partitions and invite the reader to see for

themselves that the new method performs well. To take one example, in their influential

paper on spectral clustering Ng, Jordan and Weiss write, “The results are surprisingly

good... the algorithm reliably finds clusterings consistent with what a human would have

chosen [2].” Up until now, clustering quality measures and human judgment were con-

sidered complementary approaches to clustering evaluation. Most papers that present

novel clustering algorithms include these two types of evaluations separately.

Our study compares formal CQMs with human evaluations to determine how of-

ten they agree, and whether certain CQMs correlate better with human judgments than

others. We also evaluate the consistency of human responses–if humans are very incon-

sistent, then it is unlikely that they are good judges of cluster quality (an ideal measure

is stable on the same partition). Further, we separate our human subjects into expert and

non-expert groups to determine whether clustering evaluation requires experience, and

1If no good clusterings have been found, it could either indicate that further exploration is necessary,
or that the underlying dataset has no good clustering (the data is not “clusterable”, see [10] for more on
clusterability).

19

identify divergent strategies between the groups.

In order to select a representative set of CQMs for our study, we construct a

property-based taxonomy of CQMs that distinguishes them on grounds beyond their

particular mathematical formulations. The CQMs selected for the study are versatile in

that they each satisfy a distinct set of these properties. The CQM properties are detailed

in Section 3.7.

Previous studies have investigated how humans choose the number of groups [11]

and partition data [4] in a clustering setting, but these approaches only show what hu-

mans think are the optimal partitions rather than how they judge partition quality in

general. Our study uses a set of non-optimal partitions that humans partially order by

quality, giving us more detailed quality judgments than in past work. Intuitively, in [11]

and [12] subjects took on the role of a k-choosing algorithm and a clustering algorithm

(respectively), whereas in this study subjects are in the role of clustering evaluators.

Our main findings are as follows. We find that some highly natural CQMs dis-

agree with human evaluations. CQMs with natural mathematical formalizations do not

always evaluate clusterings in ways that seem natural to humans. On the other hand, we

identify CQMs whose evaluations are well correlated with those of humans. In particu-

lar, we find that Silhouette [13] and Dunn’s index [14] are highly correlated with human

evaluations.

Our findings also indicate that there is sufficient similarity between the evalua-

tions of novices and experts to suggest that clustering evaluation is a task that does not

require specific training (though it may benefit from training). This opens the door for

using human computation [15] resources such as Amazon’s Mechanical Turk to quickly

solicit a large number of clustering quality judgments from novices as part of the data

analysis process.2. Nevertheless, experts show much less sensitivity to the number of

clusters and relate more closely to a greater range of clustering quality measures than

novices, indicating a nuanced approach to the evaluation problem. Regarding consis-

tency, we find that even novices are more consistent in their evaluations than our set of

CQMs.

The paper is organized as follows. In Section 3.3 we introduce the formal CQMs

2This tactic has been applied successfully in topic modeling [16] and image segmentation [3]

20

selected for our study, and in Section 3.4 we review our experimental methods. In Sec-

tion 4.5 we present our results, followed by a discussion in Section 4.6. Our theoretical

taxonomy of CQMs is in Section 3.7, and conclusions in Section 3.8.

3.3 Clustering quality measures

In this section we introduce the CQMs selected for our study. Each CQM satis-

fies a distinct set of properties in the taxonomy we present in Section 3.7.

Let X be a finite domain set. A distance function is a symmetric function d :

X ×X → R+, such that d(x,x) = 0 for all x ∈ X . A k-clustering C = {C1,C2, . . . ,Ck}
of dataset X is a partition of X into k disjoint subsets (so, ∪iCi = X). A clustering of

X is a k-clustering of X for some 1 ≤ k ≤ |X |. Let |C| denote the number of clusters

in clustering C. For x,y ∈ X and clustering C of X , we write x ∼C y if x and y belong

to the same cluster in C and x 6∼C y, otherwise. Finally, a CQM is a function that maps

clusterings to real numbers.

Gamma: This measure was proposed as a CQM by [17] and it is the best per-

forming measure in [18]. Let d+ denote the number of times that a pair of points that was

clustered together has distance smaller than two points that belong to different cluster,

whereas d− denotes the opposite result.

Formally, let d+(C) = |{{x,y,x′,y′} | x ∼C y,x′ 6∼C y′,d(x,y) ≤ d(x′,y′)}|, and

d−(C) = |{{x,y,x′,y′} | x∼C y,x′ 6∼C y′,d(x,y)≥ d(x′,y′)}|. The Gamma measure of C

is d+(C)−d−(C)
d+(C)+d−(C) .

Silhouette: The Silhouette measure was defined by [13]. The measure is useful

in that it enables graphical representation of clusterings on data that otherwise may

be difficult to visualize. Silhouette is also the default clustering quality measure in

MATLAB.

Let dist(x,Ci) = avgy∈Cid(x,y). The silhouette of a point x with respect to clus-

tering C is S(x,C) =
min j 6=i dist(x,C j)−dist(x,Ci)

max(min j 6=i dist(x,C j),dist(x,Ci))
where x ∈Ci. The silhouette of a clus-

tering C is sumx∈X S(x,C).

Dunn’s measure: Dunn’s measure [14] compares the maximum within-cluster

distance to the minimum between-cluster distances. Dunn’s measure of C is
minx 6∼Cy d(x,y)
maxx∼Cy d(x,y) .

21

Average Between and Average Within: The Average Between and Average

Within measures evaluate the between-cluster separation and within cluster homogene-

ity, respectively. The average between of C is avgx 6∼Cyd(x,y). The average within of C

is avgx∼Cyd(x,y).

Calinski-Harabasz: The Calinski-Harabasz measure [19] makes use of cluster

centers. Let ci =
1
|Ci|∑x∈Ci |x| denote the center-of-mass of cluster Ci, and x̄ the center-

of-mass of X . Let B(C) = ∑Ci |Ci||ci− x̄|2 and W (C) = ∑Ci ∑x∈Ci |x−ci|2. The Calinski-

Harabasz of C is n−k
k−1 ·

B(C)
W (C) .

Weighted inter-intra: The weighted inter-intra measure is proposed by [20]. It

compares the homogeneity of the data to its separation. Let intra(Ci) = avgx,y∈Cid(x,y)

and inter(Ci,C j) = avgx∈Ci,y∈Cid(x,y). The Weighted inter-intra of a clustering C is

(1− 2k
n) · (1−

∑i
1

n−|Ci|
∑ j 6=i inter(Ci,C j)

∑i
2

|Ci|−1 intra(Ci)
), where n is the number of points in the dataset.

3.4 Methods

We ran two groups of human subjects and a group of clustering quality measures

on a partition evaluation task. Our human subjects were divided into a novice group

with little or no knowledge of clustering methods and an expert group with detailed

knowledge of clustering methods. In this section we will first detail our human protocol

and stimuli, and then review the components of our analysis, the results of which are

presented in the next section.

3.4.1 Human subjects and stimuli

Twelve human subjects were recruited for this project as the novice group, 9

female and 3 male, with an average age of 20.3 years. The novice subjects have no

previous exposure to clustering. The expert group consists of 5 people and includes the

authors of this paper. All experts have studied clustering in an academic setting, and 4

have done research on the subject.

We used 19 different two dimensional datasets to generate our clustering stimuli,

drawn from [11], and chosen to represent a range of dataset types including mixtures of

Gaussians and datasets with hierarchical structure. In order to maintain responsiveness

22

Figure 3.1: All stimuli. Datasets are in rows; partitions are in columns. Colors represent
different clusters, and we asked subjects to provide a ranking of the partitions across
every row.

23

Table 3.1: Correlation coefficients between human responses and CQMs with k factored
out (except for the k column). Text in bold (excluding k column) if p < .0025 after
Bonferroni correction for n = 20 comparisons per subject group and α = .05.

ρ E
xp

er
tP

os
iti

ve

E
xp

er
tN

eg
at

iv
e

N
ov

ic
e

Po
si

tiv
e

N
ov

ic
e

N
eg

at
iv

e

G
am

m
a

Si
lh

ou
et

te

D
un

n

A
vg

W
ith

in

A
vg

B
tw

C
H

W
-I

nt
er

/I
nt

ra

k
Expert Pos 1 -.35 .56 -.19 -.15 .46 .40 -.39 .34 .44 .19 -.43
Expert Neg 1 -.13 .44 .09 -.27 -.12 .44 -.18 -.36 -.30 .32
Novice Pos 1 -.04 -.13 .39 .40 -.20 .23 .30 .04 -.73
Novice Neg 1 .08 -.27 .01 .30 -.07 -.25 -.27 .71

of the stimulus presentation interface, we subsampled 500 points randomly from each

dataset. We use synthetic datasets in order to better generate a wide range of stimuli,

and our datasets are 2D to facilitate visualization.

Each dataset is randomly clustered nine times in the following manner. For

each of the nine clusterings, we first draw the number of partitions, k, from a uniform

distribution over the integers 2 to 6. Second we choose cluster centroids using two

strategies: for four of the clusterings we randomly select k centroids from the original

dataset, and for five of the clusterings we select k centroids from a Laplacian Eigenmap

embedding of the data. Finally we color points based on the identity of their nearest

centroid in the appropriate space. The goal of this approach is to create stimuli with

varied clustering quality.

Each trial consisted of all nine different partitions of the same dataset randomly

arranged per trial in a 3 by 3 grid (see Figure 3.1 for a visualization of all the stimuli

and the supplementary material for a more detailed view). The datasets were shown

as scatter plots with colored points on a black background to reduce brightness-related

eye strain. For novice subjects, trials were organized into three blocks of 19, where

each dataset appeared once per block and the order of the datasets within each block

was randomized. Expert subjects were tested on one block of non-randomized datasets.

We instructed subjects to choose the two best partitioned displays and the one worst

partitioned display from the nine available on every trial.

24

3.4.2 Analysis

We analyzed our novice subjects for internal consistency of their positive and

negative ratings across blocks and found that even our least consistent subject performed

well above chance. We did not exclude any subjects due to inconsistency and we did

not analyze internal consistency for experts as they were only tested on one block.

To analyze consistency across subjects we use Fleiss’ κ [21] and include neu-

tral responses. Fleiss’ κ measures the deviation between observed agreement and the

agreement attributable to chance given the relative frequency of ratings and normalized

for the number of raters. Neutral ratings are twice as frequent as non-neutral, and pos-

itive ratings are twice as frequent as negative ratings, so the compensation for relative

frequency in Fleiss’ κ makes it well-suited to our data. In addition, we perform a con-

sistency analysis on the clustering quality measures by discretizing their ratings in a

manner similar to the human data.

We analyze the relationship between novice ratings, expert ratings and clustering

quality measures by calculating the Pearson’s correlation coefficient, ρ , between ratings.

To make the responses as comparable as possible we normalize response vectors to a

length of one within each dataset. Human subjects have to rank two positive and one

negative partition per dataset, even if every partition is quite bad, so by normalizing

within dataset we make the CQM responses similar in structure—partitions are judged

only relative to other partitions within a dataset.

Because cluster centroids are chosen randomly, increasing k is likely to increase

the chance of getting an undesirable partition (e.g. a partition with very few data points).

Additionally, partitions with higher k require more effort to interpret, and therefore we

might expect novice subjects to be biased towards a lower k (see Section 4.5 for more

details). For these reasons the correlations presented below control for k by partialing

out a vector of k values for each partition. Geometrically this is equivalent to projecting

each response vector onto the hyperplane orthogonal to the vector of k values.

25

3.5 Results

3.5.1 Correlation

Table 5.2 shows correlation coefficients between all measures for both expert

and novice responses, with k factored out. The correlation between expert and novice

human positive ratings is higher than the correlation between any CQM and either hu-

man positive rating. Similarly for the negative ratings (though the correlation is tied

with that between Avg Within and novice negative ratings). The absolute values of the

correlation coefficients between CQMs and expert ratings are strictly greater than or

equal to those between CQMs and novice ratings, indicating a closer relationship be-

tween expert strategies and the dataset characteristics summarized by the CQMs when

k is factored out. k itself correlates very strongly with the novices and less so with the

experts. Silhouette provides the best overall correlation with expert ratings, and Avg

Within provides the best overall correlation with novice ratings (save k).

3.5.2 Consistency

For our purposes the most disturbing form of inconsistency is a response to the

same stimulus in both the positive and negative columns. For experts, stimuli with a

number of positive responses 3 or higher never receive a negative rating, and only once

does this occur for stimuli with 2 positive responses. In contrast the CQMs exhibit much

more disagreement and novices seem to fall somewhere in between. The quantitative

measure κ bears this out: CQMs score 0.128, novices score 0.183 and experts score

0.213. κ ranges from −1 to 1, with −1 representing complete disagreement, 1 repre-

senting complete agreement and 0 representing the amount of agreement expected by

chance. While there is no standard significance test for differences in κ , the rating scale

suggested by Landis and Koch [22] would classify the CQM and novice rater groups

each as in slight agreement, and the expert raters as in fair agreement. To test whether

any one measure was significantly harming CQM consistency we left each out in turn

from the analysis and found values ranging from 0.098 to 0.172, which is in line with

the CQM consistency with no measure left out, and in every case less consistent than

the novice subjects.

26

Table 3.2: A summary of the number of partitions for which a high degree of agreement
was achieved by the raters. If a partition is classified as negative or positive by 90% -
100% of raters, it would be added to the top row, and similarly for the other buckets.

Percent Response for Majority Rating Experts Novices CQMs
90% - 100% 4 0 0
80% - 90% 15 3 1
70% - 80% 0 2 7
60% - 70% 20 9 0
50% - 60% 0 20 19

Sum >= 50% 39 34 27

Table 3.3: Summary of comparison between CQMs and human evaluations. The CQMs
partition into three categories: high correlation with both subject groups, high correla-
tion only with experts, and low correlation with both subject groups. See Table 5.2 for
the correlation scores.

High correlation with human evaluations Silhouette and Dunn
High correlation with expert evaluations only Avg Within and CH
Weak correlation with human evaluations Gamma, Avg Between, and W-Inter/Intra

In Table 3.2 we summarize the consistency of experts, novices and cluster quality

measures. It shows how often certain percentages of raters are able to agree on negative

or positive ratings for particular stimuli. Experts agree over 50% of the time on more

samples (39), than do novices (34) or CQMs (27).

3.6 Discussion

3.6.1 Comparing human evaluations with CQMs

Some natural quality measures have low correlation with human evaluations.

Most notably, gamma has low correlation with both positive and negative human ratings

for both novices and experts. W-Inter/Intra has low correlation with the positive ratings

of both subject groups. This shows that a natural mathematical formalization does not

suffice to guarantee that the evaluations of clusterings produced using the CQM will

seem natural to humans.

27

On the other hand, we identify CQMs that correlate well with human evaluations.

Of these the most notable are Dunn’s index and silhouette. These two popular measures

correlate well with both expert and novice evaluations, on both the positive and negative

ratings.

3.6.2 Comparing experts with novices

Evaluations of experts and novices have a correlation score of 0.56, higher than

the correlation of any CQM with any of the two subject groups. This suggests that a

cluster evaluation skill is present in the general population.

On the other hand, we observe some interesting differences between the two

groups of subjects. One of the most notable differences between experts and novices is

that, while both groups prefer clusterings with a fewer number of clusters, novices rely

much more heavily on this heuristic.

Experts seem to use more, and more complex strategies than novices. Positive

expert ratings correlate well with two more measures than positive novice ratings. No

measure considered correlates better with novice ratings than with expert ratings, and in

the great majority of cases the correlation is higher with expert ratings.

With a cover of at most six domain elements on any input dataset (see Sec-

tion 3.7.2, Definition 5), Dunn’s measure is (according to this measure of complexity)

the simplest measure that we explore. While positive expert evaluations correlate well

with five distinct measures, Dunn’s measure is one of three measures that correlate well

with novice evaluations. This further illustrates that novices rely on fewer simpler strate-

gies, which indicates that expert evaluations may be more sophisticated and reliable.

Since Dunn’s measure always has a constant cover, it is also highly susceptible to noise.

Indeed, manual examination of novice evaluations confirms that their evaluations are

noise sensitive.

3.6.3 Consistency

Given the difficulty of knowing whether humans or CQMs do a reasonable job

of evaluating clustering quality, one might hope that at least they are consistent across

28

individuals (or measures). Consistency indicates that some repeatable process is at work

and that its repeatability is minimally affected by changes in input. Of course CQMs

are perfectly consistent on a within measure basis—given the same partition they will

always report the same quality–and one is tempted to suggest that between measure

consistency is an unfair point of comparison; aren’t all the measures using quite different

evaluative procedures, and didn’t we select them to be distinct? We did, but CQMs

purport to evaluate clustering quality in general. Insofar as they evaluate this more

nebulous property they should be consistent, even if their methods differ. As it turns

out, they are somewhat consistent with each other, just not as consistent as humans.

Further, the consistency story did not vary when we tested all the leave-one-out subsets

of CQMs, indicating that CQM consistency is not being ruined by just one divergent

measure.

Human experts are the most consistent group in this study. This lends empirical

support to the common practice of seeking human visual evaluations of partition quality.

Novices are less consistent, and as discussed above there is evidence that the evaluations

they provide are less sophisticated. Despite the unfavorable comparison to experts, it is

notable that subjects with no formal knowledge of cluster analysis are able to respond

more consistently than a set of CQMs. This lends credence to the notion that our ability

to evaluate partitions is acquired in the natural course of visual development.

3.7 A Property-Based Taxonomy of CQMs

In the absence of formal guidelines for CQM selection3, in particular for select-

ing a versatile set of CQMs, we develop a property-based framework for distinguishing

CQMs based on such a framework for clustering algorithms discussed in [24] (also see

[25] and [26]). The framework consists of identifying natural properties of CQMs and

classifying measures based on the properties that they satisfy. For the purposes of our

study we use this framework to select meaningfully versatile CQMs. This taxonomy

may have independent interest for choosing CQMs in other settings.

We focus on a set of seven CQMs defined in Section 3.3. We drew our imple-

3Although there are no formal guidelines for CQM selection, some interesting heuristics haven been
proposed, see, for example, [23].

29

mentations from [27] save Gamma, which we implemented ourselves, and Silhouette,

which is included in Matlab. We tested a larger set of CQMs (including the Davies-

Boulid measure [28], Hartigan’s measure [29], and the Krzanowski-Lai measure [30]),

but some occupy the same branches of the taxonomy and therefore we focus on only the

measures that satisfy distinct sets of properties.4

Our taxonomy of CQMs follows a line of work on theoretical foundations of

clustering beginning with the famous impossibility result by [31], which showed that no

clustering function can simultaneously satisfy three specific properties. [32] reformulate

these properties in the setting of CQMs, and show that these properties are consistent

and satisfied by many CQMs. We follow up on [32] by studying natural properties that

can be used to distinguish between CQMs.

In Table 3.4, we present a taxonomy of our seven clustering quality measures.

Each of the properties aims to capture some fundamental feature that is satisfied by

some measures. In order to compare human evaluations against a versatile set of formal

CQMs, we chose CQMs that satisfy different sets of properties. The properties are

defined below. The proofs of the results presented in Table 3.4 are straightforward and

omitted for brevity.

Table 3.4: A taxonomy of the seven quality measures used in the study.

G
am

m
a

Si
lh

ou
et

te

D
un

n

A
vg

W
ith

in

A
vg

B
tw

C
H

W
-I

nt
er

/I
nt

ra

Order-consist. X X X X X X X
Sep-invariant X X X X X X X

Hom-invariant X X X X X X X
Bounded X X X X X X X

Constant Cover X X X X X X X
Norm-based X X X X X X X

4CQMs that satisfied the same properties performed similarly in our initial analysis.

30

3.7.1 Normed clustering quality measures

A clustering quality measure m takes a domain set X , a distance function d

over X , and a clustering C of X , and outputs a non-negative real number. Some quality

measures are defined over normed vector spaces. Normed CQMs take a quadruple of the

form (V,X ,C,‖ · ‖), where V is a vector space, X a finite subset of V , and ‖ · ‖ is a norm

over V . Normed CQMs can rely on centers-of-mass of clusters that are not necessarily

in X , but are part of the vector-space V . Observe that the centers-of-mass are not defined

for un-normed CQMs. We define the properties for CQMs in general, but one can apply

any property to a normed CQM by using the norm to define the distance function. That

is, set d(x,y) = ‖x− y‖ for all x,y ∈ X .

3.7.2 Invariance and consistency properties

Invariance properties describe changes to the underlying data that do not affect

the quality of a clustering. Consistency properties describe similarity conditions under

which clusterings have similar quality. We propose two new invariance properties.

Definition 1 (Separation Invariance). A CQM m is separation-invariant if for all X and

distance functions d and d′ over X where d(x,y) = d′(x,y) for all x ∼C y, m(C,X ,d) =

m(C,X ,d′).

A separation invariant CQM is not affected by changes to between-cluster dis-

tances. Conversely, homogeneity invariant CQMs depend only on between-cluster dis-

tances, and are invariant to changes to within-cluster distances.

Definition 2 (Homogeneity Invariance). A CQM m is homogeneity-invariant if for all X

and distance functions d and d′ over X where d(x,y) = d′(x,y) for all x 6∼C y, m(C,X ,d)

= m(C,X ,d′).

Observe that separation-invariance and homogeneity-invariance are consistency

properties. An additional consistency property, order consistency, is an adaptation of

an analogous property of clustering functions presented in [33]. Order consistency de-

scribes CQMs that depend only on the order of pairwise distances.

31

Definition 3. A CQM m is order consistent if for all d and d′ over X such that for all

p,q,r,s ∈ X, d(p,q)< d(r,s) if and only if d′(p,q)< d′(r,s), m(C,X ,d) = m(C,X ,d′).

3.7.3 Domain and range properties

A bounded range can aid in interpreting the results of a CQM, in particular if the

bounds are attainable by some clusterings.

Definition 4 (Bounded). A CQM m is bounded if there exist datasets X1 over d1 and

X2 over d2, and clusterings C1 of X1 and C2 of X2, so that m(C1,X1,d1)≤ m(C,X ,d)≤
m(C2,X2,d2) for all C,X, and d.

Our next property describes the quantity of domain elements that effect the

CQM. First, we introduce the notion of an m-cover of a clustering, a subset of the do-

main which has the same quality as the entire set. For clustering C of X , and X ′ ⊆ X , let

C/X ′ denote the clustering C′ of X ′ where for all x,y ∈ X ′, x∼C′ y if and only if x∼C y.

An m-cover of clustering C of X is any set R⊆ X , so that m(X ,k) = m(R,C/R).

We define clustering quality measures that have a constant size cover for all clusterings.

Definition 5 (Bounded Cover). A CQM m has bounded cover if there exists a constant

r so that for every data set X and clustering C of X, there exists an m-cover of C of size

at most r.

CQMs that have a bounded cover search the domain space for some local fea-

tures, ignoring most of the information in the dataset.

3.8 Conclusions

We perform an empirical study comparing human evaluations of clustering with

formal clustering quality measures. To select a versatile set of CQMs, we develop a

theoretical property-based taxonomy of CQMs. Our study shows that some CQMs with

seemingly natural mathematical formulations yield evaluations that disagree with hu-

man perception. On the other hand, we identify CQMs (Silhouette and Dunn’s index)

that have significant correlation with human evaluations.

32

Our consistency analysis reveals that even novices are at least as consistent a

broad set of CQMs, and perhaps more consistent. We also find significant correlations

between the evaluations of expert and novice subjects. This lends support to the common

practice of seeking human visual evaluations of partition quality. If one needs to evaluate

a very large number of partitions it may be reasonable to use human computation via

a service such as Mechanical Turk to rank partitions efficiently (or at least throw out

the really bad ones). Finally, experts appear to use more sophisticated strategies than

novices, indicating that training can improve human clustering evaluation performance.

3.9 Acknowledgments

This work is coauthored with Margareta Ackerman and Virginia R. de Sa, and is

currently being prepared for submission. The authors would like to thank Cindy Zhang

for her valuable assistance on this project.

4 A Behavioral Investigation of

Dimensionality Reduction

4.1 Abstract

A cornucopia of dimensionality reduction techniques have emerged over the past

decade, leaving data analysts with a wide variety of choices for reducing their data.

Means of evaluating and comparing low-dimensional embeddings useful for visualiza-

tion, however, are very limited. When proposing a new technique it is common to simply

show rival embeddings side-by-side and let human judgment determine which embed-

ding is superior. This study investigates whether such human embedding evaluations

are reliable, i.e., whether humans tend to agree on the quality of an embedding. We also

investigate what types of embedding structures humans appreciate a priori. Our results

reveal that, although experts are reasonably consistent in their evaluation of embeddings,

novices generally disagree on the quality of an embedding. We discuss the impact of

this result on the way dimensionality reduction researchers should present their results,

and on applicability of dimensionality reduction outside of machine learning.

4.2 Introduction

There is an evaluative vacuum in the dimensionality reduction literature. In many

other unsupervised machine learning fields, such as density modeling, evaluation may

be performed by measuring likelihoods of held-out test data. Alternatively, in domains

such as topic modeling, human computation [15] resources such as Amazon’s Mechan-

33

34

ical Turk may be employed to exploit the fact that humans are phenoms in evaluating

semantic structure [16]. Human evaluations have also been used to assess image seg-

mentation techniques [34]. The field of dimensionality reduction, however, lacks a stan-

dard evaluation measure [35], and is not as obvious a target for human intuition. Two or

three dimensional embeddings can be visualized as scatter plots, but on what intuitive

basis can we judge a 200 to 2-dimensional reduction to be good? In addition, Gestalt ef-

fects or simple rotations may bias human evaluations of scatter plots. Nevertheless, with

no broadly agreed upon embedding quality measure (though a few have been proposed,

see below), human judgment is often explicitly and implicitly solicited in the literature.

The most common form of this solicitation consists of placing a scatter plot of the pre-

ferred embedding next to those of rival embeddings and inviting the reader to conclude

that the preferred embedding is superior (e.g., [36]). If one is interested in applying a

dimensionality reduction algorithm to visualize a dataset, is this a valid way to select a

technique from the wide range of dimensionality techniques?1 To answer this question,

we need to evaluate whether humans are good at evaluating embeddings. As there is

no external authority we can appeal to, this is a daunting task. However, it is relatively

easy to find out whether human data analysts are at least consistent in their evaluations,

which is the first aim of this study. Consistency, across individuals and across a wide

range of inputs, is a reasonable prerequisite for evaluation.

Beyond investigating whether human data analysts are consistent when they

evaluate embeddings, the second aim of this study is to investigate what humans are

doing when they are evaluating embeddings. Such information could be useful for de-

termining whether humans are appropriate for an evaluation task with a known structure,

or for developing techniques that are tailored towards producing results that humans will

find helpful. Human strategies can be inferred to some extent from which algorithms

humans appreciate the output of, but can also be investigated by correlating embedding

characteristics with human evaluations.

Motivated by the two aims described above, we solicit embedding quality judg-

ments from both novice and expert subjects in an effort to determine whether they are

consistent in their ratings, and which embedding characteristics they find appealing. For

1Moreover, one should note that dimensionality reduction comprises only a small part of the “visual-
ization zoo” [37].

35

the novice subjects, we manipulate dataset knowledge—half read a description and see

samples from each dataset, and half do not. We hypothesize that providing dataset in-

formation will increase consistency, as it should if the evaluative process is principled.

The study consists of two experiments. The first presents subjects with a selection of

embeddings derived from nine distinct dimensionality reduction algorithms; the second

uses embeddings from a single algorithm with several different parameter settings for a

more controlled comparison between “clustered” and “gradual” embeddings.

This work falls under the broader umbrella of what we call anthropocentric data

analysis. Machine learning techniques benefit science and industry primarily insofar as

they enable data analysts to better understand their data, make valid conclusions, and

gain insight into their domain of investigation. Anthropocentric data analysis seeks to

understand how human judgment is applied in the data analysis process and to develop

methods that provide explicit opportunities for human interaction and insight. By better

understanding how those outside the machine learning field interpret and evaluate the

dimensionality reduction task, we move closer to providing a genuine service to other

scientific disciplines.

In Section 4.3 we review the dimensionality reduction techniques used in this

paper. In Section 4.4 we review the methodology used in our two experiments, the

results of which are presented in Section 4.5. Section 4.6 discusses our results and we

conclude with the prospects for human evaluation of low-dimensional embeddings in

Section 4.7.

4.3 Dimensionality reduction techniques

Dimensionality reduction techniques can be subdivided into several categories:

linear or non-linear, convex or non-convex, parametric or non-parametric, etc. [38].

Whilst many new techniques have been proposed over the last decade, data analysts

still often resort to a linear, convex, parametric techniques such as PCA to visualize

their data. Non-linear, convex, non-parametric manifold learners such as Isomap [39],

LLE [40], and MVU [41] are also frequently used for visualization purposes [42, 43, 44],

even though it is unclear whether these techniques produce superior results [36].

36

As described in the introduction, one of the key problems of dimensionality

reduction is that it lacks a widely agreed upon evaluation measure [35]. In fact, it is

very unlikely that there will ever be such an evaluation measure, as it would imply the

existence of a free lunch [45]: the “optimal” dimensionality reduction technique would

be the technique that optimizes the measure. Also, there is a lot of debate within the field

on what a good objective for dimensionality reduction is: for instance, a latent variable

model approach to dimensionality reduction suggests one should focus on preserving

global data structure [46], whereas a manifold learning viewpoint deems preservation

of local data structure more important [40]. The lack of an evaluation measure and the

ongoing debate within the field motivate the use of a more anthropocentric approach.

In our study, we investigated nine dimension reduction techniques: (1) PCA, (2)

projection pursuit, (3) random projection, (4) Sammon mapping, (5) Isomap, (6) MVU,

(7) LLE, (8) Laplacian Eigenmaps, and (9) t-SNE. The nine techniques were selected

based on their importance in the literature. All nine techniques are briefly described

below (we refer to points in the embedding as map points).

PCA and projection pursuit find a subspace of the original data space that has

some desired characteristic. For PCA, this subspace is the one that maximizes the

variance of the projected data. For projection pursuit [47], the subspace maximizes

the non-Gaussianity of the projected data. Random projections are linear mappings

that preserve pairwise distances in the data by exploiting the Johnson-Lindenstrauss

lemma [48]. Sammon mapping constructs an embedding that minimizes a weighted

sum of squared pairwise distance errors, in which the weights are inversely proportional

to the original distances between the data points [49]. Isomap constructs an embedding

by performing classical scaling on a geodesic distance matrix that is obtained by run-

ning a shortest-path algorithm on the nearest neighbor graph of the data [39]. MVU

learns an embedding that maximizes data variance, while preserving the pairwise dis-

tances between each data point and its k nearest neighbors, by solving a semidefinite

program [41]. LLE constructs an embedding that preserves local data structure by min-

imizing a sum of squared errors between each map point and its reconstruction from its

k nearest neighbors in the original data [40]. Laplacian Eigenmaps try to minimize the

squared Euclidean distances between each map point and the map points corresponding

37

MVU

Isomap

Lapl. Eig.

LLE

PCA

Proj. Pur.

Random

Sammon

t−SNE

COIL Faces Helix MNIST ORL Words Swiss roll

Figure 4.1: All stimuli from experiment 1. Methods are in rows; datasets are in
columns.

to its k nearest neighbors in the original data, while enforcing a covariance constraint

on the solution [50]. t-SNE embeds points by minimizing the divergence between two

distributions over pairs of points, in which the probability of picking a pair of points

decreases with their pairwise distance [36].

4.4 Experimental setup

We perform two experiments with our human subjects. The first experiment

uses stimuli generated from the dimensionality reduction algorithms described above to

determine whether humans are consistent in their evaluations when the embeddings are

fairly distinct (the first aim of the study). The second experiment uses stimuli that are all

generated by t-SNE, but with different parameter settings that affect how clustered the

38

resulting embedding appears. This helps us determine what type of structure humans

generally prefer in embeddings (the second aim of our study).

4.4.1 Experiment 1

In the first experiment, we divided subjects into (1) an expert group with detailed

knowledge of dimensionality reduction and information on the underlying datasets pre-

sented in written and pictorial form, (2) a novice group with no knowledge of dimen-

sionality reduction and no information on the visualized data, and (3) a group of similar

novices but with the same information on the underlying datasets given to the experts.

The dataset information we presented to groups 1 and 3 constituted a intuitive descrip-

tion of the data, as well as images revealing the underlying data (e.g., the Swiss roll, or

handwritten character images, see supplemental material).

Thirty one undergraduate human subjects were recruited for this study as the

novice group, 16 female and 15 male, with an average age of 19.1 years. None of

the novice subjects had any specific knowledge of dimensionality reduction techniques.

Our expert group consisted of five subjects—three graduate students and two faculty

members. The expert subjects were drawn from the same institution and represent two

different departments. Amongst the five expert subjects there are four distinct academic

backgrounds at the graduate level. The informed novice group had 15 subjects and

the uninformed novice group 16. We generated two-dimensional point-light stimuli

(see Figure 4.1 for a visualization of all the stimuli) by running the nine dimensional-

ity reduction techniques discussed in Section 4.3 on seven different high-dimensional

datasets, comprising a variety of domains. All techniques were run for a reasonable

range of parameter settings, and we selected the embedding that was best in terms of the

trustworthiness2 [51] for presentation to the subjects.

Each trial consisted of nine different embeddings of the same dataset arranged

randomly per trial in a 3× 3 grid. The datasets were shown as scatter plots with white

points on a black background to reduce brightness-related eye fatigue. For novice sub-

jects, trials were organized into three blocks of seven, where each dataset appeared once

2The trustworthiness measures the ratio of k nearest neighbors in the data that is still among the k
nearest neighbors in the maps.

39

t−SNE, v=0.5

t−SNE, v=0.8

t−SNE, v=1.0

t−SNE, v=1.2

t−SNE, v=1.5

t−SNE, v=2.0

t−SNE, v=2.5

t−SNE, v=3.0

t−SNE, v=4.0

COIL Faces Helix MNIST ORL Words Swiss roll

Figure 4.2: All stimuli from experiment 2. Parameter values are in rows; datasets are in
columns.

per block and the order of the datasets within each block was randomized. Expert sub-

jects were tested on one block. We instructed subjects to choose the two most useful

displays and the one least useful display from the nine available on every trial. From the

subject instructions, after describing what a scatter plot is and emphasizing that each set

of nine plots is a different perspective on the same dataset: For each trial, please exam-

ine all the scatter plots and choose the two that you find most useful and the one that

you find least useful. The task in the second part of this experiment will be much faster

and easier if you choose useful scatter plots. Do the best you can to choose useful plots

based on whatever criteria you deem appropriate. We intentionally left the task ambigu-

ous so as not to bias subjects towards particular evaluation criteria3, and the fictitious

3For instance, defining a classification task would bias subjects to embeddings that show separated
clusters.

40

“second part” of the experiment existed solely for increasing subject motivation.

We analyzed our novice subjects for internal consistency of their positive and

negative ratings across blocks and found that even our least consistent subject was more

consistent than expected by chance. Hence, we did not exclude any subjects due to

internal inconsistency. To analyze consistency across subjects (the first aim of this study)

we use Fleiss’ κ [21] and include neutral responses. Fleiss’ κ measures the deviation

between observed agreement and the agreement attributable to chance given the relative

frequency of ratings, and normalizes for the number of raters. Neutral ratings are twice

as frequent as non-neutral, and positive ratings are twice as frequent as negative ratings,

so the compensation for relative frequency in Fleiss’ κ makes it well-suited to our data.

We also measured the following six characteristics of our embedding stimuli: (1)

variance, (2) skewness, (3) kurtosis, (4) clusteredness, (5) visual span, and (6) Gaussian-

ity. The variance, skewness, and kurtosis were measured per dimension in a map that

was scale-normalized such that yi ∈ [0,1]d (preserving the aspect ratio of the maps), and

averaged over the d dimensions of the map. We measured clusteredness by constructing

k-nearest neighbor graphs in the map with k = 3, . . . ,12, and measuring the maximum

clustering coefficient of the resulting graphs [52]. The clustering coefficient computes

the ratio of connections between the adjacent vertices of map point i, averaged over all

map points. The visual span of each map was measured by fitting a Parzen kernel den-

sity estimator with Gaussian kernels on the map (the variance σ of the Gaussians was

optimized on a small validation set). Subsequently, we measure the ratio of the map

surface that has a density of at least 10% of the maximum density of the density esti-

mate. The Gaussianity of the maps was determined by averaging the results of Lilliefors

tests [53] performed on 5,000 one-dimensional random projections of the map4. We

analyze the relationships between novice informed ratings, novice uninformed ratings,

expert ratings, and the six quantitative measures by calculating the Pearson’s correlation

coefficient ρ between ratings and measures (after normalization within trial).

4Note that if the distribution of points in the embedding is Gaussian, the point distribution in each of
the random projections has to be Gaussian as well.

41

4.4.2 Experiment 2

The second experiment was run directly following experiment 1 on the same sub-

ject pool using the same methods, save stimulus design. In experiment 2, the nine stim-

uli in each trial are obtained by running t-SNE with nine different degrees of freedom

v (viz. v = 0.5, 0.8, 1.0, 1.2, 1.5, 2.0, 2.5, 3.0, 4.0) on the seven datasets. The degrees

of freedom in t-SNE determine to what extent the visualizations are “clustered” [54].

This allows us to investigate whether people appreciate “clusteredness” or “graduality”

in embeddings. All stimuli are shown in Figure 4.2.

4.5 Results

We present the results of our experiments separately below in Section 4.5.1 and 4.5.2.

4.5.1 Experiment 1

For the first experiment, the Fleiss’ kappa consistency measure κ for experts is

0.39, for uninformed novices is−0.28, and for informed novices is−0.40. Fleiss’ kappa

κ ranges from−1 to +1, with−1 representing complete disagreement, +1 representing

complete agreement and 0 representing the amount of agreement expected by chance.

Though there is no standard significance test for Fliess’ kappa, based on the Landis

and Koch scale [22], experts exhibited fair to moderate agreement, while both groups of

novices exhibited poor agreement. Hence, the consistency measures reveal that, whereas

experts tend to agree with each other on the quality of an embedding, novices strongly

disagree with each other in their evaluations (they disagree more than if the evaluation

was done randomly). Surprisingly, novices who received information on the underlying

data disagree more strongly with each other than novices who had no information about

the underlying data (counter to our hypothesis but interpretable, see below).

In Figure 4.3, we depict the raw ratings (averaged over each group) as a collec-

tion of Hinton diagrams. In the figure, a large square indicates that a relatively large

number of subjects gave a positive or negative evaluation of the embedding of the corre-

sponding dataset, constructed by the corresponding technique. The top row of diagrams

42

Figure 4.3: Human responses to the embeddings in experiment 1. Positive responses in
the first row, negative in the second row. Experts (left), novices (center) and informed
novices (right) by column.

represent positive responses and the bottom negative, so if subjects are in disagreement

about a stimulus, there will be a large box in its corresponding location in both rows. The

diagrams reveal that informed novices exploit dataset knowledge in specific instances to

differ significantly from uninformed novices. For example, the t-SNE embedding of

the Swiss roll dataset (a relatively clustered embedding) is rated much more negatively

by novices when they know that the data are gradual. Experts tend to rate t-SNE posi-

tively or negatively depending on the dataset and show a relatively consistent rating for

Isomap. Informed novices consistently rated Sammon mapping and projection pursuit

positively while generally rating manifold learners such as Isomap and LLE negatively.

Uninformed novices are all over the map with the exception of (like all other subjects)

rating MVU as not notable in either a positive or negative sense.

43

Table 4.1: Correlation coefficients between human responses and dataset characteris-
tics. Text in bold if p < .0036 after Bonferroni correction for n = 14 comparisons per
subject group and α = .05.

ρ L
ill

ie
fo

rs

Sk
ew

ne
ss

K
ur

to
si

s

V
ar

ia
nc

e

V
is

ua
lS

pa
n

C
lu

st
er

ed
ne

ss

Tr
us

tw
or

th
in

es
s

Expert Positive .26 -.01 -.19 .34 .17 .22 .41
Expert Negative -.08 .17 .19 -.14 -.17 .08 -.08
Novice Positive .07 -.03 .50 -.18 -.29 .01 -.08

Novice Negative .00 .17 -.10 .22 .10 -.03 .24
Informed Novice Positive -.02 -.16 -.10 -.11 .44 -.45 -.09

Informed Novice Negative .03 .31 .19 .10 -.19 .20 .19

Table 4.1 shows correlation coefficients between the six embedding character-

istics and the evaluations by the three human groups. We also present the correlation

between the evaluations and the trustworthiness, which gives an indication of the qual-

ity of the embedding (in terms of local neighborhood preservations). The significant

correlations are in bold type, after a Bonferroni correction for multiple comparisons

(14 comparisons per subject group, α = .05). Notably, expert positive ratings are the

only ratings that correlate significantly and in the correct direction with trustworthiness.

Another correlation that stands out is visual span: it appears to play a substantial role

in informed novice ratings (they apparently surmise an embedding should fill up the

available space), whereas it plays little role in expert ratings.

4.5.2 Experiment 2

For the second experiment, the consistency measure κ for experts is 0.35, for un-

informed novices is−0.32, and for informed novices is−0.26. The results of the second

experiment thus reveal a similar trend: experts have fair agreement on the quality of em-

beddings, whereas novices give ratings have poor agreement. In Figure 4.4, we present

the raw ratings obtained in experiment 2 as Hinton diagrams. The raw ratings reveal

that, whereas experts selectively rate more clustered or more continuous embeddings

44

Figure 4.4: Human responses to the embeddings in experiment 2. Positive responses in
the first row, negative in the second row. Experts (left), novices (center) and informed
novices (right) by column.

positively depending on the dataset, novices overwhelmingly rate the more clustered

embeddings as negative. On the other hand, for positive ratings the novices tend to

choose embeddings at either end of the spectrum while avoiding the moderate values of

v. Moderate values of v might be avoided since subjects want to classify displays closest

to the prototypical clustered or graded display [55].

Table 4.2 shows correlation coefficients between all embedding characteristics

and the human groups. The correlations show that experts ratings do not strongly cor-

relate with any of the characteristics (including trustworthiness), but both groups of

novices show a correlation between negative ratings and those stimuli with low kurtosis

and high clusteredness (as expected given Figure 4.4).

45

Table 4.2: Correlation coefficients between human responses and dataset characteris-
tics. Text in bold if p < .0036 after Bonferroni correction for n = 14 comparisons per
subject group and α = .05.

ρ L
ill

ie
fo

rs

Sk
ew

ne
ss

K
ur

to
si

s

V
ar

ia
nc

e

V
is

ua
lS

pa
n

C
lu

st
er

ed
ne

ss

Tr
us

tw
or

th
in

es
s

Expert Positive .10 .23 -.05 .11 -.03 .21 .07
Expert Negative -.10 -.10 -.27 .09 -.04 .13 -.01
Novice Positive .18 .05 -.04 -.16 .26 .02 0.17

Novice Negative .11 -.05 -.51 .39 -.32 .49 .09
Informed Novice Positive .14 .08 .00 -.13 .40 -.13 .20

Informed Novice Negative .17 -.04 -.49 .29 -.23 .47 .07

4.6 Discussion

In both experiments, experts show themselves to be more consistent than chance

and much more consistent than novices in either condition. This is reassuring, and indi-

cates that the idea of having experts evaluating embeddings is not flawed to begin with.

In the first experiment, novice subjects actually get less consistent with each other if

they are informed. While this seems troubling at first, it actually makes some sense after

closer consideration. Comparing the Hinton diagrams between novices and informed

novices, one can plainly see that informed novices are converging on a smaller selection

of techniques for both positive and negative ratings. The issue for the informed novices,

however, is that they are not sure whether these stimuli should be rated as positive or

negative. As a result, there is often energy for the same cell in both diagrams. Since

the base rate of positive and negative ratings is low compared to the neutral ratings,

the κ consistency measure interprets this as substantial disagreement and thus the neg-

ative numbers. Importantly, the informed novice κ is further from chance level than

the novice κ . In the t-SNE experiment, uninformed novices actually differ more from

chance but the effect is about half the size. Experts remain consistent in experiment 2.

Expert ratings are laudable in that they correlate in the correct direction with

trustworthiness and have a context-dependent appreciation of clusteredness. Both novice

46

groups rate clusteredness negatively regardless of context and are more influenced by

elementary characteristics such as visual span. The substantial difference in strategy

between novices and experts indicates that novices could really benefit from training

on the task of evaluating embeddings (unlike in evaluating results from topic modeling,

image segmentation, or object recognition).

4.7 Conclusion

With respect to the first aim of our study (determining whether humans are con-

sistent in rating embeddings), we conclude that dimensionality reduction experts are

indeed reasonably consistent judges of embedding quality. This supports the practice of

soliciting expert judgment for embedding evaluations, as nowadays is common in the

literature on dimensionality reduction. However, we also conclude that novices are very

inconsistent with one another in terms of their rating of an embedding, even when they

have detailed information on the dataset the embedding is visualizing. In fact, novices

even correlate negatively with a measure of embedding quality.

With respect to the second aim of our study (determining what types of struc-

ture humans appreciate in embeddings), we conclude that humans do not appear to have

overwhelmingly strong a priori preferences, although novices appear to appreciate grad-

ual embeddings that span a large portion of the space. Experts can adapt their preference

for gradual vs. clustered depending on the dataset.

Overall, our results discourage free-form solicitation of human computation ap-

proaches á la [16] and [34] to the evaluation of dimensionality reduction techniques.

Moreover, the novices’ lack of consistency lends worry to the prospect of naïve dimen-

sionality reduction-based analysis. Most data analysts seeking to apply dimensionality

reduction are not very familiar with the field. As a result, they are likely to be suscep-

tible to the favorable visualizations presented in many dimensionality reduction papers.

To ensure that dimensionality reduction techniques are applied wisely, authors should

strive to explicate the dataset characteristics that favor their algorithms (e.g., t-SNE is

useful if the data is expected to have cluster structure, Isomap if the data lie on a con-

vex manifold). Authors could also cover usage scenarios appropriate to their algorithm

47

(e.g., if a researcher is interested only in visualizing points that are most different then

PCA would suffice and other techniques would be overkill), including guidelines for

interpreting the relationship between the high and low dimensional spaces (sometimes

this relationship will be very clear, as in PCA; other times, as in MVU, there is not a

clear relationship). In addition, data analysts should be encouraged to use sanity checks

such as the trustworthiness measure in order to prevent them from basing analysis on

interesting, but flawed, embeddings.

4.8 Acknowledgments

This work is coauthored with Laurens van der Maaten and Virginia R. de Sa,

and is currently being prepared for submission. The authors would like to thank Cindy

Zhang for her valuable assistance on this project. Laurens van der Maaten is supported

by the Netherlands Organization for Scientific Research (NWO; grant 680.50.0908), and

by the EU-FP7 NoE on Social Signal Processing (SSPNet).

5 Learning Cluster Analysis through

Experience

5.1 Abstract

The field of machine learning is constantly developing useful new techniques for

data analysis, but they are often ignored by researchers outside the field due to unfamil-

iarity and the difficulty of keeping up with a large body of work. We propose a method-

ology for training researchers how algorithms work through experience, such that they

gain an implicit, rather than explicit, understanding of their function. This implicit

knowledge might still lead to good data analysis decisions. We find that undergradu-

ate subjects are generally able to learn machine learning concepts through experience,

though they have only partial success in applying them.

5.2 Introduction

Machine learning has a PR problem. The field has developed many techniques

that cluster, classify, or reduce the dimensionality of data, and most techniques could

be profitably applied to scientific data sets. Researchers that are not machine learning

experts face a daunting question, however—which techniques should I use to analyze

my data? Authors proposing a new technique will focus on its strengths over its weak-

nesses, and most researchers do not want to spend a year reading math papers and be-

coming a machine learning expert in order to best analyze their data. So too often the

analysis technique used is the convenient one (freely available online or as part of a soft-

48

49

ware package), or the traditional one. Researchers miss out on the advances in machine

learning, and the machine learning field is not as valuable as it could be to the broader

scientific community.

Figure 5.1: The Divvy UI used in this experiment. The tabs at the top right select
method A (k-means) or B (single linkage), and the sliders below control the number of
clusters and the relative weighting of the horizontal and vertical axes.

There are two fundamental problems: access and expertise. Access issues can

be ameliorated by author-provided reference implementations of new techniques, the

integration of techniques into data analysis platforms such as Matlab or R, or heroic

compilation efforts such as Laurens van der Maaten’s Dimensionality Reduction Tool-

box [56]. This paper is concerned with the second problem, expertise. If a researcher

wants to find the right technique for the job, but is unwilling to engage in the time-

consuming process of learning the details of every technique, how can they be trained

to apply the best one?

Baseball players have an excellent idea of how baseballs behave. A baseball’s

behavior is, of course, governed by the laws of physics and an explicit description of

50

that behavior might be quite complex when spin, deformation, wind and field texture

are taken into account. Nevertheless, through extensive experience baseball players ac-

quire an excellent pragmatic understanding of how baseballs behave, an understanding

that one might guess is founded on an implicit learned model of baseball behavior rather

than the explicit model a physicist would give. We believe that interactive experience

with machine learning techniques can give rise to a similar sort of practical and im-

plicit model of algorithm behavior, and that researchers can use such a model to make

informed decisions during data analysis.

Providing the right kind of interactive experience requires a software tool that is

both intuitive and extremely responsive. We are developing a tool called Divvy with the

goal of fulfilling those requirements, and it is the experimental platform for this study.

Divvy is described in detail in the next section.

In this paper we give subjects interactive experience with two clustering tech-

niques, k-means and single linkage [57], labeled simply as method A and method B and

without any explicit instruction as to their differences. We find that after training almost

every subject learns a few relevant facts about A or B or their parameters, and that some

subjects appear to be able to apply this knowledge to new analysis contexts.

5.3 Divvy

Data analysis is often a laborious process. A researcher collects data, and then

loads it into a software package such as Matlab or R. To apply an algorithm to his or

her data, the researcher has to write a command or fill out a dialog box and then wait

for processing to finish. Finally, the researcher will use other commands to visualize

the algorithm’s output. To change a parameter and see the impact it has, this process

must be repeated. Clever researchers might write a script that runs a set of different

parameters and visualizations, and then go out for a coffee and come back to see if the

whole endeavor bore any fruit.

This is a tenuous kind of interaction. A baseball, by virtue of being in the real

world, provides instantaneous feedback to those interacting with it. In the above process

the algorithm does not, and the goal of the Divvy project is to close that gap and provide

51

Figure 5.2: Scatter plots of the three main variables. The points are colored from dark
blue to dark red based on percent correct.

an interface where visualization happens instantaneously and researchers can tweak pa-

rameters and see their effect in real time. In a way, Divvy is providing the human analog

to active learning [58], where learning algorithms choose which training samples to get

based on what they predict to be the most informative. Divvy is similar in spirit to a

tool called GGobi [59], which brings cutting edge methods in high-dimensional data vi-

sualization to a user friendly graphical interface but without a strong machine learning

component.

Divvy achieves this feat through a combination of parallel computing and UI de-

sign. Many personal computers (and all Macs) ship with multi-core processors (CPUs),

as well as graphics processors (GPUs) that can be used for general purpose computa-

tion. High performance computing research has so far focused on how these hardware

resources can make very large problems tractable [60]. With Divvy, we are using these

52

technologies to make medium problems very fast—fast enough to feel real time, and

to invite the exploratory interaction that we believe leads to learning. Our UI design

puts a focus on visualization, using OpenGL to render up to millions of points quickly

in a large swath of the application window. Algorithm parameters are controlled with

standard UI elements (such as sliders or check boxes) rather than having to be specified

with time-consuming key strokes. See Figure 5.1 for the simplified version of the UI we

used in this experiment.

5.4 Methods

We recruited 22 undergraduate subjects for this experiment. Subjects received

course credit for participation. None of the subjects were familiar with cluster analysis.

One subject was excluded from the study after he indicated at the end during the inter-

view segment that he must not have understood the instructions, and so we analyzed the

data from a grand total of 21 subjects.

Each subject performed 36 trials, which were split into two 18 trial blocks, a

training block and a testing block. In both blocks, subjects use the sliders to change the

number of clusters, k, and the relative weighting of the horizontal and vertical axes in

order to best group the points in each stimulus (one stimulus per trial) and then indicate

their satisfaction with the result. In the training block, subjects use both A and B (k-

means and single linkage, respectively) to group the points, and are required to arrive at

a solution for each method. In the testing block, neither A nor B are initially selected

and subjects must choose which method they want to use for that trial. Once the choice

is made they cannot switch. We divided subjects into two groups of 10 and 11. One

group’s training set was the other’s testing set, and vice versa. At the end of the two

blocks, subjects filled out an interview form that assessed their knowledge. There were

eight interview questions were as follows:

1. What did you feel like method A was doing?

2. What organizations of circles was method A good for grouping?

3. What did you feel like method B was doing?

53

4. What organizations of circles was method B good for grouping?

5. Did you have a preference between A and B?

6. Why or why not?

7. What did the first (top) slider do?

8. What did the second (bottom) slider do?

We instructed subjects to do their best to learn what A, B and the sliders were

doing in the first half of the experiment, as they would need to use that knowledge during

the second half. We also made clear that not every stimulus could be ideally grouped

with both A and B, and that if they did not like a solution they could just indicate

dissatisfaction using the dropdown above the next trial button. We provided two helper

images along with the instructions. One showed a well-separated mixture of Gaussians

where each Gaussian had its own color. This was held up as a positive example. The

second showed two circular groups split in half with color, which was considered a

negative example. Beyond these very simple prompts (show in Figure 5.3) we did not

bias the subjects as to what a group should be.

Figure 5.3: Sample images to give subjects basic guidance on good groups (top) versus
bad groups (bottom).

54

The 36 stimuli fall into three categories, those where A is most effective (14),

those where B is most effective (15), and those where A and B are similarly effective

(7). We created all 36 stimuli by hand in order to ensure that the first two categories had

sufficient membership. Stimuli ranged from collections of non-convex lines, rings and

spirals to connected and disconnected blobs to uniform noise. While these are not real

data, so to speak, they provide us with a solid foundation on which to train and judge

our subjects that real data would not necessarily provide. Additionally, most meaningful

real data are more than two dimensional, and while the Divvy project proposes to use

dimensionality reduction techniques and multiple views to visualize such data, those

techniques raise additional issues that are outside the scope of this experiment.

Divvy records every method and parameter combination subjects try over the

course of the experiment, including their final grouping and satisfaction. We use these

data in concert with interview responses to determine what subjects were able to learn

from their experience. From the Divvy records we extract two variables per subject,

the total number of different algorithm and parameter settings queried in the training

period (the number of “moves”), and the percent of correct method choices in the testing

period. From the interviews we extract one variable, the number of concepts learned

and reported from a list of seven possible concepts. The seven possible concepts are as

follows:

1. The first slider controls the number of colors (i.e. clusters).

2. The second slider controls the orientation of the boundary between clusters.

3. k-means works well on blobs of points (convex regions).

4. Single linkage works well on shapes like lines or rings (non-convex regions).

5. k-means can work when there is no space separating clusters.

6. Single linkage works best when there is lots of space between clusters.

7. k-means tends to divide the points into evenly sized groups, whereas single link-

age can make large and small groups.

55

We measure correlations between these three variables with the hypothesis that

they should all be positive, and report in detail the concepts learned on a per-subject

basis. Finally, we compare subject satisfaction, ranging from 1 (Not Satisfied) to 7

(Satisfied), when using the correct method on a stimulus versus the incorrect method.

This test indicates whether subjects recognize when the partitions are not ideal.

5.5 Results

In Table 5.1 we summarize the contents of each subject’s interview, using the

seven concepts described above. Nineteen of the subjects learned at least one concept,

and 15 of the subjects learned at least one concept excluding the simplest one (the func-

tion of the first slider). On average subjects learned 2.4 concepts over the course of the

study.

The number of concepts learned correlates positively with both percent correct

(ρ = .29, p< .10) and number of moves (ρ = .34, p< .07). Surprisingly, percent correct

and number of moves are negatively correlated (ρ = −.22, p < .84). In Figure 5.2 we

show scatter plots of the pairwise comparisons between these variables.

For stimuli with a correct answer where the subject used the correct method,

we had 470 satisfaction ratings with µ = 5.88,std = 1.37. For stimuli with a correct

answer where the subject used the incorrect method, we had 444 satisfaction ratings

with µ = 4,94,std = 1.77. A t-test indicated a significant p < .01 effect of correct

versus incorrect method on satisfaction.

5.6 Discussion

While all but two subjects were able to learn something about cluster analysis

through their experience, and over half learned three concepts or more, some subjects

appeared to have difficulty using that knowledge to make good data analysis decisions.

In addition, though subjects might have explored quite a bit during the training phase

(an activity that showed a trending correlation with concept learning) they did not parlay

that experience into better data analysis decisions. So while we are pleased that subjects

56

Table 5.1: A summary of the concepts subjects learned. Subjects in bold chose the
correct method for over 70% of stimuli in the test block.

Subjects 1s
tS

lid
er

2n
d

Sl
id

er

k-
m

ea
ns

B
lo

bs

Si
ng

le
L

in
ka

ge
Sh

ap
es

k-
m

ea
ns

N
o

Se
pa

ra
tio

n

Si
ng

le
L

in
ka

ge
Se

pa
ra

tio
n

k
E

ve
n

vs
SL

U
ne

ve
n

Su
m

1 0
2 0
3 X X X X 4
4 X X X 3
5 X X 2
6 X X X 3
7 X X X 3
8 X X X 3
9 X 1

10 X X 2
11 X 1
12 X X X 3
13 X X X 3
14 X 1
15 X X 2
16 X X X X 4
17 X 1
18 X X X X X 5
19 X X X X 4
20 X X 2
21 X X X 3

Sum 17 3 5 9 5 4 7

learned concepts, we are curious why that knowledge did not translate into better per-

formance.

The subjects were overall less satisfied when using the incorrect method, which

indicates that there was not substantial confusion in evaluating the partitions.

We performed a quick follow up study with three graduate students (unfamiliar

57

with cluster analysis) in an attempt to determine whether motivation or understanding

of the experiment might have been a factor in performance.1 The graduate student data

did not seem to differ substantially in character; they all learned at least two concepts,

but only one was able to consistently choose the appropriate method for the test stimuli.

The process of crystallizing the implicit knowledge gained during the experiment

in the interview might help subjects make better decisions. To test this, the experiment

could be modified to place the interview between the training and test blocks. If this re-

sults in better concept application, it would indicate that having to articulate knowledge

assists application, and that the subjects are in a sense still learning when they fill out

the interview.

Beyond fiddling with the existing experiment, we would like to compare our

results with simply showing subjects a set of partitions and their associated methods

and parameter values. This approach would be similar to traditional machine learning

approaches where the training data are fixed (as opposed to the active learning paradigm

mentioned earlier). It would also correspond to writing a script to run through a set of

parameter settings and visualizations while one goes out for coffee, and then interpreting

when one returns.

These results provide compelling evidence that undergraduate subjects can learn

useful concepts about machine learning algorithms just by interacting with them. This

leads one to suspect that the target population for this work, practicing researchers, will

be able to do so as well. Unfortunately subjects do not reliably apply these concepts

when tested, and additional study is required to determine why this is, and how to better

support the effective application of algorithm knowledge.

5.7 Acknowledgments

This work is funded by NSF Grant #SES-0963071 (PI Virginia de Sa, who is also

a coauthor), and is currently being prepared for submission. Thanks to Cindy Zhang for

valuable code contributions.

1Anecdotally, some of the undergraduates seemed to just click through the second half of the experi-
ment without making much effort to find good groupings.

6 Pairwise Distance Matrix

Calculation: A Comparative Study

6.1 Abstract

Many data analysis techniques in bioinformatics and machine learning require

one to calculate a pairwise distance matrix as an initial step. This order n-squared proce-

dure is time consuming, but readily accelerated through parallel processing. In this pa-

per we propose two novel GPU implementations of pairwise distance matrix calculation

that both improve performance and flexibility compared to existing GPU implementa-

tions across two GPU architectures. In addition, we describe a parallel CPU algorithm

that is a better basis for comparison to GPU approaches than existing single-threaded

examples, and performs up to two orders of magnitude faster than previous efforts. Our

results represent both a substantial algorithmic innovation, and a useful guide for prac-

titioners looking to optimize a foundational part of the data analysis process.

6.2 Introduction

Pairwise distance matrices underlie many popular data analysis techniques, such

as linkage-based clustering, spectral clustering, nearest neighbor-based dimensionality

reduction, and multiple sequence alignment. Calculating these matrices is an order n-

squared problem, and thus can represent a substantial amount of the computation time

for each algorithm. Since the distance between any two points is independent from

58

59

the distance between any other two points1, the problem is naturally parallelizable, and

stands to gain substantial performance benefits from recent computer hardware trends,

such as multi-core central processing units (CPUs) and general purpose graphics pro-

cessing unit (GPU) computation.

GPUs, along with other high-performance computing platforms such as the Cell

microprocessor, have parallel architectures with many processing cores, allowing them

to perform many computations simultaneously. While traditionally CPUs have been

single core, they too now incorporate multiple cores. Nevertheless, GPUs maintain a

substantial advantage in core count, with cores numbering in the hundreds compared to

CPUs, which typically have fewer than ten. On problems that are readily parallelized,

GPUs can outperform CPUs operating at a much higher frequency. Hardware vendors

are encouraging GPU computation by developing general purpose GPU coding libraries

such as Nvidia’s CUDA [61] and the Khronos Group’s OpenCL [62].

In this paper we develop two new GPU algorithms for Euclidean pairwise dis-

tance matrix computation that provide improvements in execution time, memory foot-

print and memory access patterns compared to previous efforts [63, 1]. We also il-

lustrate the tradeoffs encountered in GPU algorithm design that have relevance to any

GPU computation practitioner. On the CPU side, we describe an optimized parallel

implementation of distance matrix computation that performs much better than a naïve

approach. Finally, we explore the performance characteristics of these algorithms across

a representative sample of hardware platforms, in order to give readers a useful set of

performance expectations for their own endeavors.

6.2.1 Performance Concerns in Parallelization

The performance improvements one can acheive by implementing an algorithm

on a parallel processor depend heavily on the structure of that algorithm. Algorithms

that contain a low degree of intra-data dependency, or that consist of a large number

of subroutines that may be executed in any order (e.g., finding the square root of each

number in an array) are ripe for parallelization—such problems are sometimes dubbed

“embarrassingly parallel.” On GPUs, where threads cannot easily be synchronized glob-

1Barring inferences one can make using, e.g., the triangle inequality.

60

ally within a function call, this level of parallelism is highly desirable. On the other hand,

it is often the case that an algorithm must complete a series of lengthy computations in

a very specific order, or access many different pieces of data in a complex way. This

kind of algorithm suffers two issues with parallel implementation. First, if some of the

sub-problems in the algorithm must receive a result from some prior computation before

running, then they must sit idle until that prior computation completes. If this takes a

long time, or occurs frequently, then much of the run time will be wasted and little will

be gained with a parallel implementation. Second, most parallel architectures suffer

from high data latency—that is, each processing unit owns only a very small piece of

fast-access memory, while most of the data resides in much larger, slow-access memory.

Code with frequent, erratic data access patterns will often have to halt while waiting for

the hardware to fetch data from slow memory, hampering performance. Because of this

memory limitation, one must design code that accesses data sparingly and efficiently,

performing as much computation between memory reads or writes as is possible. The

ratio of compute operations (such as add or multiply) to memory operations (such a read

or write) is called computational intensity, and maximizing this ratio is a core compo-

nent parallel design. As we will see computational intensity plays a critical role in our

improvements on existing GPU algorithms for computing pairwise distance matrices.

6.2.2 Previous Work

As mentioned above, memory access latency is the primary bottleneck in GPU

computation. Groups of processing cores on the GPU, called Streaming Multiproces-

sors (SMs), incur long delays while reading or writing to global memory. One way

to circumvent this issue involves the use of relatively small (16KB on Tesla, 48KB on

Fermi) caches that the SMs can access quickly, which we will refer to as local memory.

By loading all of the data relevant to a small subset of the problem into local mem-

ory, the SM can avoid making slow, repetitive reads from global memory. As long as

the data that have been loaded into local memory can be reused while computing the

sub-problem, this pre-loading scheme will give a performance boost.

Another way to improve performance is to hide memory latency by launching

hundreds of threads within a work group. While only a small number of threads can be

61

Figure 6.1: A diagram of work group and thread allocation in Chang et al.’s algorithm.
Each block in the pairwise distance matrix is represented by a work group, with each
work group containing 256 (16 by 16) threads. Each thread computes a single element
of the result matrix.

active on an SM at any given time, the GPU thread scheduler is able to rapidly swap

threads into and out of the processing cores. This makes it possible for some threads to

do computation while other threads are waiting for their memory requests to complete.

Once the SM fetches the necessary data, the idle threads begin executing again while the

others wait for their own memory transactions. In this way, the processing cores are kept

busy, leading to good performance. Thread swapping is performed automatically by the

GPU hardware, so the programmer must only ensure that there are enough threads in

the work group to take up the time in between memory accesses.

Chang et al.[63] devised a GPU algorithm that makes use of local memory and

a high thread count to speed up distance matrix computation (other similar efforts in-

clude [1, 64, 65], though Wirawan et al. are focused on multiple sequence alignment).

Their method divides the result matrix into a grid of blocks, each consisting of a 16 by

16 array of pairwise distances, and assigns one work group to compute each of those

blocks (see Figure 6.1). To compute each 16 by 16 block, the work group needs access

to two groups of 16 data vectors.2 The threads in each work group begin by loading two

2For blocks on the diagonal only one group is required.

62

such groups into local memory. One of the arrays is loaded in row major format, while

the other is loaded column major, to allow the hardware to perform very fast coalesced

memory accesses.3 Then, each of the 256 threads, having a unique i, j coordinate within

the block, computes the distance between a single pair of vectors according to its coor-

dinates, i.e., each thread computes the distance between vector i in group 1 and vector

j in group 2. Each thread then writes that distance to the appropriate location in global

memory.

Chang et al. describe an efficient approach, as it utilizes the speed of local mem-

ory and allows for coalesced memory access. However, there are a few aspects that

could be improved upon. First, it is evident that their algorithm is performing a large

amount of redundant global memory access. Consider that the ith sample is involved in

computing every element of the ith row of the distance matrix. Therefore, when com-

puting a block of rows in the distance matrix, one should be able to reuse one block of

data vectors while iterating over the columns. This saves (N/b)− 1 loads from global

memory, where N is the number of data vectors and b is the number of columns each

work group computes between memory loads. Second, their algorithm computes an

entire N by N result matrix, half of which is redundant, because any pairwise distance

matrix is symmetric. By storing only the upper-triangular region of the result matrix,

we halve the memory footprint, and can therefore tackle larger problem sizes for a given

global memory capacity. Third, due to its block size the algorithm is unable to realize

performance gains when reducing dimensionality below 16.

6.3 Methods

6.3.1 Hardware

We test our algorithms across a broad range of hardware, summarized in Ta-

ble 6.1. The three GPUs we test represent a good sample of the spectrum of GPU

hardware: the Tesla C1060 is a dedicated GPU compute card4 with a large amount of

3Coalesced memory operations are rapid blocked transfers that can take place when many threads
need to access a contiguous region of memory simultaneously. For more information, see [61].

4It does not drive a display and cannot be used for games.

63

Table 6.1: Summary specifications of hardware used in the study.
CPU/GPU Local Memory Global Memory Clock Cores

Tesla C1060 16KB/SM 4GB 602MHz 240
GeForce GTX460 (Fermi) 48KB/SM 1GB 675MHz 336

GeForce 8600M GT 16KB/SM 512MB 475MHz 32
2 x Intel X5650 12MB L3/processor 12GB 2.66GHz 2 x 6

Intel T9300 6MB L2 4GB 2.53GHz 2

RAM, the GTX460 is a mid-range consumer GPU, and the 8600M GT is a laptop GPU.

Similarly, we test our CPU algorithm on dual Intel X5650s, six core workstation-class

processors, and an Intel T9300, a standard dual core laptop processor. In general, CPUs

will have a substantial clock speed advantage (and at least on the desktop a substiantial

maximum allocatable RAM advantage) while the GPUs will have many more cores. We

also show the CPU times from [1]5 in the results as a point of comparison. The CPU

they used was a 3.0GHz Pentium D with 2GB of RAM, but since there were multiple

versions of the 3.0GHz Pentium D, we cannot be sure of its model.

6.3.2 GPU Distance Matrix Computation

In this section we describe two GPU algorithms, A1 and A2, that improve upon

Chang et al.’s (which we will call A0). The first algorithm reuses memory across mul-

tiple blocks and efficiently allocates memory for dimensions below 16, but suffers a

reduction in thread occupancy at high dimensionality. The second algorithm reuses

memory without a reduction in thread occupancy, but is not as efficient at low dimen-

sionalities. We implement A0, A1 and A2 using CUDA. We tested OpenCL implemen-

tations, including on AMD’s competing Radeon graphics cards, but found OpenCL to

be slower; we focus on CUDA for the remainder of the paper.

Both algorithms follow the same flow, shown in Figure 6.2. A work group is

assigned a row of blocks (at zero iterations all rows are unassigned) and loads the group

of data vectors that are involved in computing that row into local memory. This group of

vectors will be kept in local memory until the work group has computed the entire row of

blocks. Starting with the rightmost sub-section of the distance matrix, the work group

5Using their own algorithm, see Table 1 in their paper.

64

Figure 6.2: A1 & A2 Flow diagram.

65

loads one more group of vectors into local memory, and then computes the pairwise

distances between each vector in local memory, filling in every element of the sub-

section. Then the thread block moves to the next sub-section and repeats the process

(see second iteration), continuing until the entire row is complete (work group 1 has

completed its row by the fourth iteration). The work group then finds the next available

row and begins computing.

A1: Optimizing for Low Dimensionality

In A1, each thread represents one data vector, and is responsible for computing

the distance between that vector and every other vector in the data set with a greater

index.6 A work group represents a row of blocks in the distance matrix, and computes

b columns of the distance matrix at a time, so there are b threads in a work group. At

any given time, there are two sets of b data vectors stored in local memory. Because

there is a limited amount of local memory available to each work group, we set b to the

maximum possible value for each dimensionality, while staying within local memory

bounds. This both optimizes local memory usage and maximizes the number of threads

that occupy each work group. The threads are arranged in a one-dimensional list, each

thread having a unique index ranging from 0 to b, rather than a two-dimensional grid,

as is the case in A0 and A2. This helps us exercise greater control over coalesced mem-

ory transfers, which behave more erratically for two-dimensional thread grids. Further,

as dimensionality decreases we can increase the block size and thus increase memory

reuse.

This approach faces a significant challenge—each row of blocks in the upper

triangular distance matrix is of a different size. If we simply create a number of work

groups equal to the number of block rows the workload will be imbalanced between

work groups (one work group will get N/b blocks to compute while another will get

only one, and everything in between). To avoid this issue, we create a number of work

groups approximately equal to the number of SMs and use an integer stored in global

memory to assign block rows. It is initialized to zero. When a work group is free to

6A thread need not calculate the distance to a vector with a lower index because it will already have
been calculated by the other vector’s thread.

66

start computing a new row, a single thread in that work group reads and increments

the counter using atomic operations.7 In this way, we implicitly load balance the work

groups. Those assigned rows with shorter computation times will finish more rows,

while those with assigned rows with longer computation times will finish fewer.

The algorithm has as input an M×N data matrix (dimensions by samples) and

a number of blocks, b, and it outputs a upper triangular distance matrix, D. Each work

group repeats the following steps until all rows are complete:

1. Read the next available row index from global memory and increment it as an

atomic operation.

2. Load all samples in the current row block, i, into local memory.

3. Loop through every block of columns, j 6= i, in the result matrix.

(a) For each pair of samples, sk and sl , in blocks i and j, compute their distance

and write the result to global memory at Dk,l .

4. For each pair of samples, sk and sl , where l > k in block i, compute their distance

and write the result to global memory at Dk,l . (This step fills in the diagonal block

of D.)

In the above, k and l are assumed to be the global sample coordinates (not the

within-block coordinates).

A2: Optimizing Memory and Hiding Latency

In A2, we replicate the work group structure of A0, assigning 256 threads to

compute the 256 elements of each 16 by 16 block of the distance matrix at once. Unlike

A0, which stores in local memory only 16 elements of 32 (16+ 16) data vectors, A2

stores two sets of 16 entire data vectors (that is, two arrays of size 16∗D). If D is greater

than 16, A0 must initialize a series of separate blocked loads from global memory when

7When a thread accesses a variable atomically, other threads must wait until that thread finishes using
the variable before they can access it, and only one thread gets control over the variable at a time. This
prevents multiple work groups from simultaneously reading or incrementing the counter, which could
result in two work groups receiving the same row index, or in some rows being skipped.

67

computing each block of the distance matrix. In A2, those loads are grouped into one

big transfer, in which all the information needed to compute the block is fetched at

once. This reduces memory access overhead, but it is in fact required if the algorithm is

to reuse memory efficiently. If we wish to load only one group of vectors from global

memory before computing each block of one row of the distance matrix (instead of

loading two groups per block, as in A0), we keep one group of vectors in local memory

throughout the duration of the row calculation. Then, during each block calculation,

we assign one thread to compute each of the 256 pairwise distances defined by the 16

vectors in the persistent group and the 16 vectors in the transient group. A2 always has

256 threads per work group and is therefore able to hide memory latency quite well.

A2 uses the same load balancing technique as A1 to determine which work groups are

assigned which rows of blocks.

6.3.3 CPU Distance Matrix Computation

For the purposes of this problem, there are three key distinctions between the

CPU and the GPU. First, the CPU has an established high performance matrix/vector

operation library, the Basic Linear Algebra Subroutines [66] (BLAS), which we use for

low level arithmetic.8 Second, global synchronization of all CPU threads is possible

(whereas GPU threads can only synchronize within a thread group). Third, we do not

explicitly manage CPU caches, and therefore all reads and writes are to shared memory.

In previous studies touting GPU-based distance matrix calculation, authors re-

port performance improvements of over two orders of magnitude compared to CPU

implementations. We believe that these performance improvements are exaggerated due

to unoptimized CPU implementations, and here we seek to provide a fair and compre-

hensive comparison. Our CPU implementation uses OpenMP [68] to manage threads

across multiple cores, and the platform-optimized version of BLAS provided in Apple’s

Accelerate library.

The algorithm has as input an M×N data matrix (dimensions by samples) and a

number of blocks, b, and it outputs a upper triangular distance matrix, D. The algorithm

8Similar libraries to BLAS (and LAPACK), such as MAGMA [67], are available in non-final forms
for the GPU.

68

Figure 6.3: The CPU algorithm calculates the diagonal blocks of the pairwise distance
matrix in Step 1. In Step 2, the algorithm dynamically assigns off-diagonal blocks to
each thread to fill out the rest of the matrix.

follows a two-step process:

1. Loop through each M×N/b sample block of the data matrix.

(a) Multiply the block with its transpose using BLAS.

(b) For all samples i in the block, put the dot product of sample i, si · si, in the

diagonal term vector, d, at di.

(c) For all samples i, j in the block where j > i, put di + d j− 2 ∗ si · s j, in the

upper triangular distance matrix, D, at Di, j. (See Step 1 in Figure 6.3.)

2. Loop through each non-identical pair of blocks from the data matrix.

(a) Multiply the blocks together (transposing one) using BLAS.

(b) For all samples i, j in the product, put di +d j−2∗ si · s j, in the upper trian-

gular distance matrix, D, at Di, j. (See Step 2 in Figure 6.3.)

In the above, i and j are assumed to be the global sample coordinates (not the

within-block coordinates). Since each iteration of both loops is completely independent,

we use OpenMP with guided scheduling to farm out iterations to the number of simulta-

neously available threads in the system (24 for the X5650 machine, which can run two

threads per core, and 2 for the T9300). Guided scheduling is a form of load balanc-

ing where threads are at first assigned many iterations of a loop, then upon completion

assigned fewer and fewer. We perform a global thread sync after step one in order to

69

ensure that d is filled out in preparation for step two. Beyond the input/output memory,

our algorithm only allocates (b ∗ b ∗ numT hreads+N) ∗ 4 bytes of working memory.

For the X5650 machine we used a block size of b = 256 and for the T9300 machine we

used b = 128.

In our experiments, we tested all three GPU distance algorithms, A0, A1 and A2,

across our three pieces of GPU hardware. We tested the CPU algorithm above across

our two pieces of CPU hardware.

6.4 Results

Our results are presented in detail in Table 6.2. Every time in the table is de-

rived from ten runs, with the slowest and fastest run tossed out and the remaining eight

averaged. A2 on the GTX460 is the fastest algorithm across every sample size and di-

mensionality, with the exception of the large sample sizes in four dimensions, where A1

on the C1060 prevails. The Fermi architecture employed by the GTX460 is better able

to take advantage of coalesced reads and writes, and thus A2 outperforms A0 more con-

sistently on that hardware. A0 is not run at four dimensions, since its design makes 16

dimensions the practical lower limit.9 In addition, memory constraints prevent A0 from

running at 16,384 samples on the GTX460, an issue that A1 and A2 solve by storing

only the upper triangular distance matrix. Similarly, the 8600M is only able to run a

subset of the tests due to memory constraints.

In Figure 6.4 we show the running times of A0, A1 and A2 on a log-scale plot

for the C1060 and the GTX460. In Figure 6.5 we show speedup advantage of A1 and

A2 over A0 for the C1060 and the GTX460.

CPU times on the X5650 are at most only a few tenths of a second slower than

the fastest GPU times. This is in direct contrast to previous studies that report massive

performance improvements moving to the GPU. For a more pedestrian CPU like the

T9300 however, GPUs do offer an approximately 10x improvement. Still, the T9300 is

9To obtain a pairwise distance matrix from A0 with a 4D data matrix, one would pad the data matrix
to 16D.

70

Figure 6.4: A log-scale runtime comparison of A0, A1 and A2 on the C1060 and
GTX460.

Figure 6.5: A speedup comparison of A1 and A2 to A0 on the C1060 and GTX460.

71

Table 6.2: Pairwise distance matrix computation time in seconds across hardware and
algorithm implementations. In the last column we show the CPU results (which use a
different algorithm) from [1] for comparison. Fastest times are in bold.

N D C1060 GTX460 8600M X5650 T9300 CPU in
A0 A1 A2 A0 A1 A2 A0 A1 A2 [1]

4K 4 x 0.011 0.013 x 0.014 0.009 x 0.051 0.065 0.036 0.234 x
8K 4 x 0.035 0.058 x 0.036 0.034 x 0.202 0.265 0.161 1.041 x
12K 4 x 0.070 0.135 x 0.073 0.076 x x x 0.343 2.645 x
16K 4 x 0.121 0.250 x 0.140 0.140 x x x 0.536 4.726 x
4K 16 0.018 0.014 0.014 0.016 0.011 0.010 0.110 0.080 0.074 0.044 0.283 1.550
8K 16 0.068 0.042 0.059 0.066 0.045 0.040 0.430 0.304 0.294 0.173 1.133 6.153
12K 16 0.153 0.093 0.139 0.141 0.101 0.085 x x x 0.351 2.856 13.869
16K 16 0.269 0.165 0.253 x 0.168 0.148 x x x 0.565 4.591 24.642
4K 64 0.025 0.073 0.024 0.025 0.093 0.016 0.203 1.078 0.277 0.057 0.385 5.172
8K 64 0.098 0.279 0.095 0.094 0.355 0.063 0.802 4.266 1.108 0.235 1.540 20.747
12K 64 0.214 0.620 0.214 0.210 0.788 0.139 x x x 0.430 3.756 46.746
16K 64 0.379 1.096 0.379 x 1.389 0.249 x x x 0.733 6.032 83.223
4K 128 0.035 0.306 0.045 0.036 0.330 0.033 x x x 0.068 0.483 10.237
8K 128 0.134 1.209 0.181 0.145 1.303 0.126 x x x 0.280 1.943 41.009
12K 128 0.296 2.715 0.404 0.311 2.943 0.283 x x x 0.495 4.625 92.386
16K 128 0.521 4.820 0.723 x 5.219 0.508 x x x 0.842 7.454 164.363

substantially faster than the CPU results in [1].

6.5 Discussion

A1 performs very well for low dimensional data sets, particularly on the Tesla.

The Tesla architecture sometimes does a poor job orchestrating coalesced memory trans-

fers, so it is likely that A1’s one-dimensional thread layout overcomes this flaw. On the

Tesla, A1 outperforms both A0 and A2 until dimensionality reaches 64, and across

all hardware A1 outperforms A0 in the same range. When dimensionality is low, A1

achieves excellent memory reuse coupled with excellent thread occupancy. However,

performance quickly drops off as the dimensionality increases. Since A1 loads two

blocks of b data vectors into local memory, it requires that local memory can store at

least 2 ∗D ∗ b numbers. Since the total amount of local memory is a constant, when D

increases, b must decrease. As we previously explained, A1 only has b threads in each

work group, so the number of threads must also decrease with large dimensionality. On

both of the GPUs we used, this number becomes catastrophically small; for D = 128,

72

the Tesla’s 16KB of local memory only allows for 15 threads per work group, and only

about twice that on the Fermi. In general, a work group must contain at least 128 threads

in order to allow the GPU hardware to be effective in hiding memory latency. This is

why we see a performance drop in A1 for larger dimensionality.

A2 does not suffer from this issue, as it never stores more than 32 data vectors,

ensuring that each work group will always have 256 threads10. The Fermi architecture

does a better job ensuring that coalesced memory transfers occur when they should, so

A1 gains less of an advantage by controlling memory access patterns, and only outper-

forms A2 on the smallest dimensionality we tested.

It is evident that the efficient memory usage implemented in A2 leads to im-

proved performance on nearly every problem size, but the gains fall off as dimensional-

ity increases. With increased dimensionality, the amount of computation is large com-

pared to the number of trips to memory (even if the chunks retrieved from memory are

larger), so the gap between A0 and A2 shrinks as computation speed rather than memory

efficiency becomes the limiting factor in performance.

Both A1 and A2 will be able to run problems with larger N than A0, due to

their reduced memory footprint. This is critical because GPU global memory, while fast

compared to CPU RAM, is generally quite constrianed (particularly on less expensive

consumer hardware).

Compared to the numbers reported in [1] we see a substantial speedup in CPU

computation time. Hardware differences account for some of this discrepancy, but much

of it is likely due to our optimized code, including the addition of BLAS, parallelization

and block decomposition. Since the authors’ focus in [1] was on GPU implementations

we feel that this is understandable, but it could give practitioners an inaccurate con-

ception of the potential performance gains available from GPU computation. It bears

noting, however, that at the time of this writing Intel X5650s cost approximately $1,000

USD apiece. Though the current Nvidia Tesla C2050 costs about $2,400 USD, con-

sumer graphics hardware like the Nvidia GTX460 can deliver excellent perfomance at a

sub-$200 USD price point, albeit with much less global memory.

10Except in the case of the Tesla for D = 128, where 32 ∗ 128 floating point numbers could not fit in
local memory, so 30 vectors were stored instead, lowering the thread per work group count to 225.

73

6.6 Conclusions

Efficient algorithms for computing pairwise distance matrices can greatly speed

up crucial components of the data analysis process in many fields. We have introduced

two new GPU algorithms and a best-practices CPU implementation that improve upon

previous techniques across a range of problem sizes and hardware configurations. Our

results show the importance of memory access patterns and thread occupancy on the

GPU, and block decomposition, BLAS and OpenMP on the CPU. We hope these results

provide a useful point of reference for practitioners and inspire similar improvements to

other parallelizable algorithms.

6.7 Acknowledgments

This work is coauthored with Eric Weiss, Cindy Zhang and Virginia R. de Sa,

and is currently being prepared for submission. This work is supported by NSF Grant

#SES-0963071, Divvy: Robust and Interactive Cluster Analysis (PI Virginia de Sa).

Thanks to Patrick Gallagher for valuable assistance with this project.

7 Conclusion

In the preceding chapters we have seen that human visual judgment, even that

of novices, is often sound in the context of data analysis. The conclusions humans

reach are not identical to those of quality measures and algorithms with similar goals,

however. We believe that this additional source of insight should be actively nurtured by

software tools, such as the Divvy tool described in Chapter 5, that provide users with a

seamless and instantaneous parameterize-compute-visualize loop when interacting with

algorithms. By making data analysis techniques intuitive rather than mathematical and

opaque, we believe that we can bring state of the art machine learning into new territories

in science and industry. This expansion would be to the benefit of those fields, and would

secure a greater impact for innovative machine learning research.

74

Bibliography

[1] Darjen Chang, Mehmed M. Kantardzic, and Ming Ouyang. Hierarchical clustering
with CUDA/GPU. In James H. Graham and Anthony Skjellum, editors, ISCA
PDCCS, pages 7–12. ISCA, 2009.

[2] A. Y. Ng, M. Jordan, and Y. Weiss. On spectral clustering: analysis and an al-
gorithm. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances
in Neural Information Processing Systems 14, pages 849–856. MIT Press, Cam-
bridge, MA, 2002.

[3] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms and mea-
suring ecological statistics. In Proc. 8th Int’l Conf. Computer Vision, volume 2,
pages 416–423, July 2001.

[4] J.M. Santos and J. Marques de Sá. Human clustering on bi-dimensional data: An
assessment. Technical Report 1, INEB ÑInstituto de Engenharia Biomédica, Porto,
Portugal, 2005.

[5] Dan Pelleg and Andrew Moore. X-means: Extending K-means with efficient es-
timation of the number of clusters. In Proc. 17th International Conf. on Machine
Learning, pages 727–734. Morgan Kaufmann, San Francisco, CA, 2000.

[6] Greg Hamerly and Charles Elkan. Learning the k in k-means. In Advances in
Neural Information Processing Systems, volume 17, 2003.

[7] Yu Feng and Greg Hamerly. PG-means: learning the number of clusters in data.
In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information
Processing Systems 19, pages 393–400. MIT Press, Cambridge, MA, 2007.

[8] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Evan-
gelos Simoudis, Jiawei Han, and Usama Fayyad, editors, Second International
Conference on Knowledge Discovery and Data Mining, pages 226–231, Portland,
Oregon, 1996. AAAI Press.

75

76

[9] A. Azran and Z. Ghahramani. Spectral methods for automatic multiscale data clus-
tering. Computer Vision and Pattern Recognition, 2006 IEEE Computer Society
Conference on, 1:190–197, 17-22 June 2006.

[10] M. Ackerman and S. Ben-David. Clusterability: A theoretical study. Proceedings
of AISTATS-09, JMLR: W&CP, 5:1–8, 2009.

[11] J. M. Lewis. Finding a better k: A psychophysical investigation of clustering. In
N. A. Taatgen and H. van Rijn, editors, Proceedings of the 31st Annual Conference
of the Cognitive Science Society, pages 315–320, 2009.

[12] J.M. Santos and J. Marques de Sá. Human clustering on bi-dimensional data: An
assessment. Technical Report 1, INEB ÑInstituto de Engenharia Biomédica, Porto,
Portugal, 2005.

[13] P.J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. Journal of computational and applied mathematics, 20:53–65,
1987.

[14] JC Dunn. Well-separated clusters and optimal fuzzy partitions. Cybernetics and
Systems, 4(1):95–104, 1974.

[15] L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum. reCAPTCHA:
Human-Based Character Recognition via Web Security Measures. Science,
321(5895):1465–1468, 2008.

[16] J. Chang, J. Boyd-Graber, S. Gerrish, C. Wang, and D.M. Blei. Reading tea leaves:
How humans interpret topic models. In Advances in Neural Information Process-
ing Systems, volume 21, 2009.

[17] F.B. Baker and L.J. Hubert. Measuring the power of hierarchical cluster analysis.
Journal of the American Statistical Association, 70(349):31–38, 1975.

[18] G.W. Milligan. A Monte-Carlo study of 30 internal criterion measures for cluster-
analysis. Psychometrika, 46:187–195, 1981.

[19] T. Caliński and J. Harabasz. A dendrite method for cluster analysis. Communica-
tions in Statistics-Simulation and Computation, 3(1):1–27, 1974.

[20] A. Strehl. Relationship-based clustering and cluster ensembles for high-
dimensional data mining. 2002.

[21] J.L. Fleiss. Measuring nominal scale agreement among many raters. Psychological
Bulletin, 76(5):378–382, 1971.

[22] J. R. Landis and G. G. Koch. The measurement of observer agreement for categor-
ical data. Biometrics, 33(1):159–174, March 1977.

77

[23] L. Vendramin, R.J.G.B. Campello, and E.R. Hruschka. On the comparison of
relative clustering validity criteria, 2009.

[24] M. Ackerman, S. Ben-David, and D. Loker. Differentiating clustering paradigms: a
property-based approach. In Advances in Neural Information Processing Systems,
2010.

[25] B. Bosagh-Zadeh and S. Ben-David. A uniqueness theorem for clustering. In
Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, AUAI
Press. Citeseer, 2009.

[26] M. Ackerman, S. Ben-David, and D. Loker. Characterization of Linkage-based
Clustering. In Proceedings of COLT, 2010.

[27] K. Wang, B. Wang, and L. Peng. CVAP: Validation for Cluster Analyses. Data
Science Journal, 8(0):88–93, 2009.

[28] D.L. Davies and D.W. Bouldin. A cluster separation measure. Trees, 10, 1973.

[29] J.A. Hartigan. Clustering algorithms. Wiley New York, 1975.

[30] WJ Krzanowski and YT Lai. A criterion for determining the number of groups in
a data set using sum-of-squares clustering. Biometrics, 44(1):23–34, 1988.

[31] J. Kleinberg. An impossibility theorem for clustering. In Advances in Neural
Information Processing Systems 15: Proceedings of the 2002 Conference, page
463. The MIT Press, 2003.

[32] M. Ackerman and S. Ben-David. Measures of clustering quality: A working set
of axioms for clustering. In Advances in Neural Information Processing Systems.
Citeseer, 2008.

[33] N. Jardine and R. Sibson. Mathematical Taxonomy. John Wiley and Sons, Inc.,
New York, 1971.

[34] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms and mea-
suring ecological statistics. In Proceedings of the 8th International Conference on
Computer Vision, volume 2, pages 416–423, July 2001.

[35] J. Venna, J. Peltonen, K. Nybo, H. Aidos, and S. Kaski. Information retrieval
perspective to nonlinear dimensionality reduction for data visualization. Journal
of Machine Learning Research, 11(Feb):451–490, 2010.

[36] L.J.P. van der Maaten and G.E. Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(Nov):2431–2456, 2008.

78

[37] J. Heer, M. Bostock, and V. Ogievetsky. A tour through the visualization zoo. ACM
Queue, 8(5), 2010.

[38] J.A. Lee and M. Verleysen. Nonlinear dimensionality reduction. Springer, New
York, NY, USA, 2007.

[39] J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework
for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[40] S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by Locally Linear
Embedding. Science, 290(5500):2323–2326, 2000.

[41] K.Q. Weinberger, F. Sha, Q. Zhu, and L.K. Saul. Graph Laplacian regulariza-
tion for large-scale semidefinite programming. In Advances in Neural Information
Processing Systems, volume 19, 2007.

[42] V. Jain and L.K. Saul. Exploratory analysis and visualization of speech and music
by locally linear embedding. In Proceedings of the International Conference of
Speech, Acoustics, and Signal Processing, volume 3, pages 984–987, 2004.

[43] J.M. Lewis, P. M. Hull, K.Q. Weinberger, and L.K. Saul. Mapping uncharted wa-
ters: exploratory analysis, visualization, and clustering of oceanographic data. In
Proceedings of the International Conference on Machine Learning and Applica-
tions, pages 388–395, 2008.

[44] M.D. Mahecha, A. Martínez, G. Lischeid, and E. Beck. Nonlinear dimensionality
reduction: Alternative ordination approaches for extracting and visualizing biodi-
versity patterns in tropical montane forest vegetation data. Ecological Informatics,
2:138–149, 2007.

[45] D. Wolpert. The lack of a priori distinctions between learning algorithms. Neural
Computation, 8:1341–1390, 1996.

[46] N.D. Lawrence. Probabilistic non-linear principal component analysis with Gaus-
sian process latent variable models. Journal of Machine Learning Research,
6(Nov):1783–1816, 2005.

[47] J.H. Friedman and J.W. Tukey. A projection pursuit algorithm for exploratory data
analysis. IEEE Transactions on Computers, 23:881–890, 1974.

[48] E. Bingham and H. Mannila. Random projection in dimensionality reduction:
applications to image and text data. In Proceedings of the 7th ACM SIGKDD,
pages 245–250, 2001.

[49] J.W. Sammon. A nonlinear mapping for data structure analysis. IEEE Transactions
on Computers, 18(5):401–409, 1969.

79

[50] M. Belkin and P. Niyogi. Laplacian Eigenmaps and spectral techniques for em-
bedding and clustering. In Advances in Neural Information Processing Systems,
volume 14, pages 585–591, Cambridge, MA, USA, 2002. The MIT Press.

[51] J. Venna and S. Kaski. Visualizing gene interaction graphs with local multidi-
mensional scaling. In Proceedings of the 14th European Symposium on Artificial
Neural Networks, pages 557–562, 2006.

[52] D.J. Watts and S.H. Strogatz. Collective dynamics of small-world networks. Na-
ture, 393:440–442, 1998.

[53] H. Lilliefors. On the kolmogorov-smirnov test for normality with mean and vari-
ance unknown. Journal of the American Statistical Association, 62:399–402, 1967.

[54] L.J.P. van der Maaten. Learning a parametric embedding by preserving local struc-
ture. In Proceedings of the 12th International Conference on Artificial Intelligence
and Statistics, pages 384–391, 2009.

[55] Eleanor Rosch. Cognitive reference points. Cognitive Psychology, 7(4):532 – 547,
1975.

[56] L. J. P. van der Maaten, E. O. Postma, and H. J. van den Herik. Dimensionality
reduction: A comparative review. Technical Report TiCC-TR 2009-005, Tilburg
University, 2009.

[57] Stephen C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–
254, 1967.

[58] David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. Active learning with
statistical models. CoRR, cs.AI/9603104, 1996.

[59] GGobi data visualization system. http://www.ggobi.org.

[60] Rajat Raina, Anand Madhavan, and Andrew Y. Ng. Large-scale deep unsupervised
learning using graphics processors. In Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning, ICML ’09, pages 873–880, New York,
NY, USA, 2009. ACM.

[61] NVIDIA Corporation. NVIDIA CUDA Programming Guide Version 3.0.

[62] Aaftab Munshi. The OpenCL Specification Version: 1.0.

[63] Darjen Chang, Nathaniel A. Jones, Dazhuo Li, Ming Ouyang, and Rammohan K.
Ragade. Compute pairwise euclidean distances of data points with gpus. In Pro-
ceeding of the IASTED International Symposium, November 2008.

80

[64] Adrianto Wirawan, Bertil Schmidt, and Chee Kwoh. Pairwise distance matrix
computation for multiple sequence alignment on the cell broadband engine. In
Gabrielle Allen, Jaroslaw Nabrzyski, Edward Seidel, Geert van Albada, Jack Don-
garra, and Peter Sloot, editors, Computational Science Ð ICCS 2009, volume 5544
of Lecture Notes in Computer Science, pages 954–963. Springer Berlin / Heidel-
berg, 2009.

[65] Adrianto Wirawan, Chee Keong Kwoh, and Bertil Schmidt. Multi-threaded vec-
torized distance matrix computation on the CELL/BE and x86/SSE2 architectures.
Bioinformatics, 26(10):1368–1369, 2010.

[66] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry,
M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and
R. C. Whaley. An updated set of basic linear algebra subprograms (BLAS). ACM
Transactions on Mathematical Software, 28:135–151, 2001.

[67] Stanimire Tomov, Rajib Nath, Hatem Ltaief, and Jack Dongarra. Dense linear
algebra solvers for multicore with GPU accelerators. Proc. of IPDPS’10, 2010.

[68] L. Dagum and R. Menon. OpenMP: an industry standard API for shared-memory
programming. Computational Science Engineering, IEEE, 5(1):46 –55, 1998.

