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Fear and the development of conditional fear are critical for survival.  However, 

mal-adaptations in the fear system lead to psychiatric disorders such as Post-Traumatic 

Stress Disorder and anxiety disorders, such as specific phobias.  Pavlovian fear 

conditioning in rodents allows for the study of the neural circuitry and biological 

mechanisms the underlie fear learning and memory.  

The basolateral amygdala complex, containing the lateral (LA) and basal (BA) 

nuclei, are critical for cued and contextual fear learning and memory formation through 
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mechanisms that include N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic 

plasticity.  However, the relative contribution of NMDAR-mediated plasticity in the BA 

and LA is unknown because the pharmacological techniques previously used to implicate 

NMDAR have limited anatomical specificity.  While lesion studies can be more 

anatomically precise, lesions affect far more than synaptic plasticity.  

My thesis work has been focused on the role of the NMDA receptors in learning 

and memory, with a principle focus on using cellular manipulations of the N-methyl-D-

aspartate receptor (NMDAR) on the BA and LA nuclei of the amygdala to measure the 

significance of NMDAR-mediated synaptic plasticity on auditory and contextual 

Pavlovian fear conditioning.  This was achieved through temporary inactivation, the use 

of an shRNA virus targeted at depleting the Grin1 gene, and the use to transgenic mice to 

specifically isolate and dissociate the LA and BA nuclei.  The behavioral effects of the 

manipulations were assessed with Pavlovian auditory and contextual fear conditioning.  

Specifically, Chapter 2 concerns the role of selective NMDA subunit GluN2B 

antagonist on fear learning and retention.  Chapter 3 utilizes the shRNA virus to look at 

NMDA-mediated plasticity in the lateral amygdala.  Chapter 4 uses transgenic mice to 

address the role of NMDAR-mediated synaptic plasticity in both the LA and BA nuclei.  

Chapter 4 also addresses specific analyses that utilize the data to extract more 

information from viral infusion studies.  Additionally, results from Chapter 4 suggest that 

the LA is a relay site for the convergence of the discrete CS and US to form an 

association, but that the information from the LA is projected to the BA and that is where 

NMDAR-mediated plasticity critical for auditory fear conditioning. The data that I 
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presented in Chapter 4, support the implication that the basal amygdala is important for 

contextual and auditory fear learning and memory in an intact animal.  Importantly, my 

results show that in normal functioning animals, the NMDAR-mediated synaptic 

plasticity in the BA, as compared to the LA, is what is critical for driving the fear 

response during auditory fear conditioning.  In Chapter 5 these findings will be 

synthesized into a model that can explain the role of NMDAR- mediated plasticity in fear 

learning and memory.  

This research reformats how the fear circuitry functions to create enduring 

memories.  Currently, most models of fear learning involve a serial circuit, emphasizing 

very few sites of synaptic plasticity.  Since the models involve a straightforward 

prediction, disruption of the circuit either prior to learning or after learning should disrupt 

the fear response equally.  My data suggests circuitry within the amygdala is adaptive.  

The neuro-architecture that creates fear memories should be a dynamic network, versus a 

serial circuit, in order to increase the chances of survival if damage occurs to the primary 

pathway.   
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Introduction 

 

A fear response is an adaptation that is required to stay alive. However, mal-

adaptations in the fear system lead to psychiatric disorders such as Post-Traumatic Stress 

disorder and anxiety disorders, such as specific phobias. Pavlovian fear conditioning in 

rodents allows for the study of the neural circuitry and cellular mechanisms the underlie 

fear learning and memory in mammals.  

My thesis work has been focused on the role of the NMDA receptors in fear 

learning and memory, with a principle focus on using cellular manipulations of the N-

methyl-D-aspartate receptor (NMDAR) on basolateral nuclei of the amygdala (BLA) to 

measure the significance of NMDAR-mediated synaptic plasticity on auditory and 

contextual Pavlovian fear conditioning. This was achieved through temporary 

inactivation, the use of a shRNA virus targeted at depleting the Grin1 gene, and the use to 

transgenic mice to specifically isolate and dissociate nuclei within the BLA, specifically 

the lateral nucleus (LA) and basal nucleus (BA). The behavioral effects of the 

manipulations were assessed with Pavlovian auditory and contextual fear conditioning.  

In the following section, I will review Pavlovian fear conditioning, the neural 

circuitry that supports fear learning and memory, and the NMDA receptor and function. 

In addition, a set of experiments designed manipulate the NMDAR- related synaptic 

plasticity in BLA nuclei during auditory and contextual Pavlovian fear conditioning and 

the implications for the primary neural pathway projecting auditory fear associations, as 
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well as the pathway projecting contextual fear associations, to produce a fear response 

will be presented.  

 

Behavioral Level: Pavlovian Fear Conditioning: 

Fear conditioning is a type of Pavlovian learning produced when an aversive 

unconditional stimulus (US) such as a shock, becomes associated with a previously 

neutral, or conditional, stimulus (CS). Learning is indicated by a conditional fear 

response (CR), for example freezing, to the CS. This robust type of learning can cause 

fear memory after just one trial (Fanselow, 1990) . An example of Pavlovian 

conditioning, a neutral stimulus, such as a tone, light or the environment that the subject 

is conditioned in, becomes paired with an aversive shock.  

When the CS is a tone, it is considered auditory fear conditioning, which is a type 

of cued fear conditioning.  Cued fear conditioning refers to a brief presentation of a 

discrete cue, followed contiguously with an aversive US presentation. As you pair a 

discrete CS with a US conditioning occurs to the discrete CS (e.g., tone, or light), but also 

to the context that the subject received the pairings. When the CS is the context, or 

environment that the subject was placed in during acquisition, it is called contextual fear 

conditioning. Manipulating the parameters of cued conditioning will enhance fear to the 

discrete cue and reduce fear to the context, or a discrete cue can be omitted, producing 

maximal fear to the context (Fanselow, 1980; Fanselow, 2010; Wiltgen et al., 2006).  In 

either case, the CS becomes to elicit fear after it  is  paired with shock. When a threat is 

presented, fear provokes a variety of species-specific defense reactions that enable the 
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subject to adaptively respond to the threat in order to increase chances of survival 

(Bolles, 1970; Bolles & Fanselow, 1980; Fanselow & Lester, 1988).  In rodents, a 

reliable and easily quantifiable reaction to threat is suppression of movement, or freezing 

(Bolles & Collier, 1976; Fanselow, 1980). 

 

Systems Level: Neural Circuitry 

The Amygdala 

The amygdala is an almond-shaped structure deep within the temporal lobe that 

was first identified by Burdach in the 19th century (Burdach, 1819). Since then, the 

examination of the amygdala has revealed increasingly structural differentiation, and the 

extent of its border and subdivision remain controversial.  For the purposes of my 

research, I will follow closely with the Swanson version of anatomical location based on 

embryological, connectional, and functional data (Swanson & Petrovich, 1998) using 

Paxinos neurotransmitter allocation for histological purposes (Emson et al., 1979; 

Watson, Paxinos, & Tokuno, 2010). 

The basolateral amygdala complex (BLA)  is clearly implicated in forming the 

association between a previously neutral stimulus (conditional stimulus; CS) and an 

aversive stimulus, such as a shock (unconditional stimulus; US). Lesions to the BLA, 

consisting of both the lateral nucleus (LA) and the basal nucleus (BA), have been shown 

to eliminate fear, including innate fear of cats and prior to Pavlovian fear conditioning 

learning in both humans and non-humans (Blanchard & Blanchard, 1972; Bechara et al., 

1995; Hitchcock & Davis, 1986; Gale et al., 2004; Lee et al., 1993; Phillips and LeDoux, 
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1992). Also, post training lesions or temporary inactivation of the BLA result in a 

pronounced deficit in fear (Maren, Aharonov, & Fanselow, 1996; Ponnusamy, Poulos, & 

Fanselow, 2007). Furthermore, temporarily inhibiting neural activity in the BLA disrupts 

both learning and expression of conditional fear (Helmstetter, 1992). Single-unit 

electrophysiological activity recordings in anesthetized rats revealed that neurons in the 

dorsal LA responded to both CS (tone) and US (footshock) stimuli (Romanski, et al., 

1993). Additionally, a molecular imaging technique that utilizes the immediate early gene 

Arc known as cellular compartment analysis of temporal activity by fluorescent in-situ 

hybridization (catFISH) showed convergence of contextual information and shock in the 

BLA as well (for catFISH methodology see Guzowsky & Worley, 2001; Barot, et al., 

2008). These studies further establish that BLA neurons are critical for mediating 

Pavlovian fear conditioning. However, the BLA receives information about the cue and 

context from different sources. Gainfully, the BLA is a cortex-like structure that receives 

highly processed information from several cortical and some thalamic regions (Swanson 

& Petrovich, 1998).   

 

Amygdala Afferents  

The BLA receives information about the cue and context from different sources. 

In auditory fear conditioning, the BLA receives highly processed information from 

cortical and thalamic regions, (Swanson & Petrovich, 1998) auditory information from 

the medial geniculate nucleus of the thalamus and the auditory cortex. These regions 
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converge with aversive stimuli onto the BLA during Pavlovian fear conditioning 

(LeDoux, 1993; Li, Stutzmann; & LeDoux, 1996).  

 

CS Convergence: Auditory 

Pre-training lesions to the LA produce a deficit in fear learning. LeDoux et al., 

(1990) lesioned the LA and then looked at mean arterial pressure as well as freezing and 

found a lower autonomic response and freezing deficits as opposed to controls.  

Additionally, the LA  is  implicated as the site where convergence of auditory signaling 

information (tone) and reinforcement (shock) result in the synaptic plasticity necessary to 

produce conditioned fear (Romanski et al., 1993; LeDoux, 2000; Blair et al. 2001; Paré, 

Quirk, & LeDoux, 2004; Davis, 2006; Sigurdsson et al., 2007; Ploski et al., 2010). 

Auditory cues from both the auditory thalamus (medial geniculate nucleus) and auditory 

cortex can acquire fear conditioning, inducing long-lasting changes in the LA (Boatman 

and Kim, 2006; Romanski and LeDoux, 1992; Clugnet & LeDoux, 1990; Doyère, Schafe, 

Sigurdsson, & LeDoux, 2003). As with tone-shock associations, the evidence on context-

shock association formation also points to the basolateral amygdala (Phillips & LeDoux, 

1992, Onishi & Xavier, 2010; Goosens & Maren, 2001; Humeau et al., 2007). 

 

CS Convergence: Contextual 

Contextual fear conditioning is a bit more complex because it requires 

hippocampal activation during the time of training.  This activation is limited to the 

acquisition of contextual, but not auditory fear. Hippocampal lesions made just after 
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training block context fear, but not auditory fear (Kim & Fanselow, 1992). However, 

hippocampal activation follows a temporal gradient. If the lesion occurs after one week, a 

significant amount of fear is maintained (Kim & Fanselow, 1992). Pre-training 

hippocampal lesions do not have an effect on fear memory (Maren, Aharonov, & 

Fanselow, 1997). Therefore the hippocampus is thought to be involved in the formation 

of an integrated, gestalt-type configural representation of an environment as well as its 

temporary storage (Fanselow, 2000; Kim & Fanselow, 1992, Anagnostaras, Maren, & 

Fanselow, 1999). Contextual memories are then transferred to the cortex within thirty 

days for permanent storage (Frankland et al., 2004). As with cued fear conditioning, 

context-shock associations converge at the BLA.  The dorsal hippocampus forms the 

configural representation of the context, then must pass through the ventral hippocampus 

before it arrives at the amygdala via the ventral angular bundle, and lesions within this 

pathway attenuate contextual, but not auditory fear conditioning (Anagnostaras, Maren, 

& Fanselow, 1999; Maren & Fanselow 1995). While the hippocampus is important for 

forming the contextual representation the amygdala is critical for the context-shock 

association. Interestingly, it has been shown that the BA is important for contextual, but 

not auditory, fear conditioning (Onishi & Xavier, 2010). However, electrolytic lesions or 

loss of GluA1 in the BA  is  shown to disrupt both contextual and auditory fear 

conditioning (Goosens & Maren, 2001; Humeau et al., 2007). 

 

Amygdala Efferents 
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The amygdala receives and interprets information from the medial pre-frontal 

cortex, hippocampus, and thalamus, and undergoes synaptic plasticity during fear 

learning (Schafe et al., 2001; Clugnet & LeDoux, 1990; Maren & Fanselow, 1995; 

Mahan & Ressler, 2012). Once the BLA processes the association between the CS and 

the US, fear responses are elicited via the medial central nucleus of the amygdala 

(CEAm) and bed nuclei of the stria terminalis (BST). The CEAm contains projection 

neurons to downstream structures that generate fear responses including analgesia, 

autonomic and respiration changes; potentiated startle, and freezing, as well as to the 

BST (Fendt & Fanselow, 1999; LeDoux, 2000; Maren & Fanselow, 1995; Nagy & Paré, 

2008). The BLA nuclei and the CEA are separated by paracapsular intercalated cells 

(ITC; Millhouse, 1986).  There are multiple pathways connecting the nuclei within the 

BLA to the CEAm that are important for fear expression, although it is unclear if one 

pathway is more efficient, or relied upon, as the primary pathway.  

The cortex-like BLA consists of excitatory glutamatergic projection neurons and 

inhibitory interneurons. The CEA is striatal-like and so its projection neurons release the 

inhibitory transmitter γ-Aminobutyric acid (GABA; Swanson & Petrovich, 1998).  The 

PICs are also GABAergic (Nitecka & Ben-Ari, 1987). 

Within the BLA complex, the BA nucleus projects directly to the CEAm, while 

the LA has no known direct connections to the CEAm (Carlsen, 1989; Paré, Quirk, & 

LeDoux, 2004; Pitkänen & Amaral, 1991).  Since the LA is implicated in processing 

auditory fear conditioning, the pathway to elicit fear responses via the CEAm have been 

explored (Haubensak et al., 2010; Paré, Quirk, & LeDoux, 2004; Nader et al., 2001). A 
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pathway of interest involves the projection from the LA to the BA, and then the BA to the 

CEAm (Pitkänen & Amaral, 1991). A second indirect connection comprises the LA 

projections to the lateral central nucleus of the amygdala (CEAl), which possesses 

reciprocal inhibitory γ-Aminobutyric acid (GABA) neurons regulating CEAm output 

(Haubensak et al., 2010). Still, a third pathway leading information from the LA to the 

CEAm is via the intercalated cells. The LA sends projections to the GABAergic ITC 

neurons, which then disinhibits neurons in the CEAm, which then executes fear responses 

(Paré, Quirk, & LeDoux, 2004). 

 

Molecular Level 

NMDA Receptors  

The NMDA receptor is constructed from four subunits to form a heteromeric 

pentamer with a variety of physiological and pharmacological properties that depend on 

the assemblage with the obligatory GluN1 subunit (Cull-Candy & Leszkiewicz, 2004; 

Traynelis et al., 2010). Embryonic synaptic NMDA receptors predominantly have 

subunits GluN1/GluN2B diheteromers and once synaptic connections are formed, activity 

results in a triheteromer NMDA receptor type containing GluN1/GluN2A/GluN2B, or 

diheteromers GluN1/GluN2A and GluN1/GluN2B (Tovar & Westbrook, 1999; Endele et 

al., 2010). During postnatal development in rats, a developmental shift from GluN2B-

containg receptors to an increase GluN2A expression  is shown in thalamic and cortical 

neurons, and suggests that synaptic GluN2B is displaced to extrasynaptic sites after the 

insertion of the GluN2A (Tovar & Westbrook, 1999; Kew et al., 1998; Liu, Murray, & 
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Jones, 2004). In adult cortex and hippocampus, GluN2A and GluN2B are predominant 

subunits and determine distinct functional responses to NMDARs. GluN2B is important 

for synaptic plasticity, which is critical for learning and memory formation (Kirkwood, 

Rioult, & Bear, 1996; Cull-Candy, Brickley, & Farrant, 2001). GluN2B is particularly 

crucial in long-term depression in the adult hippocampus, with a loss of GluN2B 

sufficient to cause learning deficits and an overexpression of GluN2B enhancing synaptic 

plasticity and learning (Clayton et al., 2002; Zhao et al., 2005; Brigman et al., 2010; Tang 

et al., 1999).  

NMDA receptors are coincidence detectors because it requires both pre-synaptic 

and post-synaptic activity (Mayer, Westbrook & Guthrie, 1984; Nowak et al., 1984). 

NMDAR have voltage-gated channels requiring a decrease overall voltage, via an EPSC, 

on the membrane in order to release the magnesium ion that is stuck in the receptor  

(Mayer, Westbrook & Guthrie, 1984). Additionally, pre-synaptic activity is required, 

which is the ligand binding of glutamate to the NMDAR to allow both sodium and 

calcium to enter the cell (Fukunaga et al., 1993).  Calcium entering the cell triggers 

multiple responses including phosphorylation of protein kinases and secondary 

messenger systems and ultimately result in learning induced changes at the synaptic 

level, which include increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

receptors (AMPAR) and retrograde messengers such as nitric oxide. 

NMDA receptors are important mediators of synaptic plasticity and learning at 

most excitatory synapses in the central nervous system. The amygdala receives and 

interprets information from the medial pre-frontal cortex, hippocampus, and thalamus, 
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and undergoes synaptic plasticity during fear learning (Schafe et al., 2001; Clugnet & 

LeDoux, 1990; Maren & Fanselow, 1995; Mahan & Ressler, 2012). NMDA-dependent 

synaptic plasticity is an essential component for memory formation of aversive 

conditioning, creating permanent changes within cells (Maren, 1996; Guzowski et al, 

2000; Blair et al., 2001). The majority of studies examining the role of NMDAR in 

synaptic plasticity have examined long-term potentiation (LTP) induced by stimulation of 

Schafer collaterals onto CA1 pyramidal cells of the hippocampus Davies & Collinridge, 

1989). Although this has also been shown in neurons within the BLA important for CS-

US convergence (Rodriguez & Schafe, 2004). Here NMDAR are critical for induction 

but not expression of LTP or do they play a critical role in cell firing. Consistent with 

this, the classic NMDAR antagonist, 2-amino-5-phosphonovaleric acid (APV) prevents 

acquisition of hippocampus-dependent memory but does not prevent the expression of an 

already formed memory (Morris et al., 1996; Kim et al., 1991). The selective effect of 

APV on acquisition but not expression of learned behavior is critical to isolate the role 

for NMDA receptors in memory formation. The interpretation of studies with intra-BLA 

administration of APV is less straightforward.  Pre-training infusions of APV into the 

BLA blocks acquisition of both auditory and contextual fear (Fanselow & Kim, 1994; 

Miserendino et al., 1990).  However, pretesting intra-BLA infusion has also been found 

to block expression of an already acquired fear memory (Maren , Aharonov, & Fanselow, 

1996; Fendt, 2001). Additionally, intra-BLA APV not only prevents the induction of LTP 

in the BLA, it also reduces neuronal spiking (Maren & Fanselow, 1995). Such findings 
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make it difficult to attribute intra-BLA APV’s actions on fear conditioning specifically to 

a prevention of LTP.  

NMDA-dependent synaptic plasticity is an essential component for memory 

formation of aversive conditioning, creating permanent changes within cells (see below, 

and Maren, 1996; Guzowski et al, 2000; Blair et al., 2001). Processed information is then 

transmitted to the CeA, which sends projections to various structures including the 

periaqueductal gray (freezing response), modulatory systems (arousal), and nuclei within 

the hypothalamus to regulate stress hormone release (LeDoux et al., 1998; LeDoux, 

1993). Sensory and contextual information are thought to project both directly and 

indirectly to the LA and BA.  The inputs to the amygdala, and within the amygdala itself 

are responsible for fear learning, with the CeA responsible for the output to regulatory 

systems as described above. 

 

Dissertation Objective 

My thesis work has been focused on the role of the N-methyl-D-aspartate receptor 

(NMDAR) in learning and memory, with a principle focus on using cellular 

manipulations of the NMDAR on basolateral nuclei of the amygdala (BLA) to measure 

the significance of NMDAR-mediated synaptic plasticity on auditory and contextual 

Pavlovian fear conditioning. This was achieved through temporary inactivation, the use 

of a shRNA virus targeted at depleting the Grin1 gene, and the use to transgenic mice to 

specifically isolate and dissociate the LA and BA nuclei. The behavioral effects of the 

manipulations were assessed with Pavlovian auditory and contextual fear conditioning. In 
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the following sections, I will explain a set of experiments designed manipulate the 

NMDAR- related synaptic plasticity in BLA nuclei during auditory and contextual 

Pavlovian fear conditioning and implications for the primary pathway projecting auditory 

fear associations from the LA to produce a fear response. Specifically, Chapter 2 

concerns the role of selective GluN2B antagonist on fear learning and retention. Chapter 

3 utilizes the shRNA virus to look at NMDA-mediated plasticity in the lateral amygdala. 

Chapter 4 uses transgenic mice to address the role of NMDAR-mediated synaptic 

plasticity in both the LA and BA nuclei. Chapter 4 also addresses specific analyses that 

utilize the data to extract more information from viral infusion studies, and implicates the 

primary pathway for projecting auditory fear associations, and a pathway to project 

contextual fear associations, to produce a fear response. Explicitly, my data support the 

NMDAR-mediated plasticity in the BA as being imperative for auditory and contextual 

fear conditioning.  In Chapter 5 these findings will be synthesized into a model that can 

explain the role of NMDAR- mediated plasticity in fear learning and memory. 
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The NMDA subunit GluN2B in the basolateral amygdala is critical 

for the acquisition of contextual fear 
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Abstract 

Previous studies have shown that neural mechanisms of fear learning involve the 

amygdala.  N-methyl-D-aspartate receptors (NMDAR), and especially the GluN2B 

subunit of the NMDAR, have been implicated in the mechanism of long-term 

potentiation, a neuronal substrate for fear learning.  Here, we show that by temporarily 

inactivating the GluN2B subunit of the NMDAR in the basolateral amygdala (BLA) a 

deficit in contextual fear learning is produced.  Unlike previous studies using intra-BLA 

application of the classic NMDA receptor antagonist d-amino-phosphonovalerate (APV) 

the effects of intra-BLA ifenprodil could not be attributed to state-dependent learning, 

interference with working memory or suppression of performance.  
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Introduction 
  

Fear conditioning is a type of Pavlovian learning produced when an aversive 

unconditional stimulus (US), such as a shock, becomes associated with a neutral stimulus 

because the two co-occurred in a conditional or dependent relationship (Pavlov, 1927; 

Rescorla, 1967).  This associative learning transforms the neutral stimulus into what 

Pavlov termed a conditional stimulus (CS) and is reflected by the emergence of a new or 

conditional response (CR) to the CS.  In the typical preparation a brief cue (e.g., a tone) is 

presented immediately prior to the US and both the cue and the context (conditioning 

chamber) become CSs.    

The amygdala, specifically the basolateral complex (BLA) consisting of the 

basolateral, basomedial, and lateral nuclei of the amygdala, is essential for fear learning 

to both the cue and the context (Maren et al., 1996; Gale et al., 2004; Lee et al., 1993; 

Phillips & LeDoux, 1992). Lesions or temporary inactivation of the BLA produces 

impairments of both cued and contextual fear acquisition and expression (Blanchard & 

Blanchard, 1972; Helmstetter, 1992; Helmstetter & Bellgowan, 1994; Hitchcock & 

Davis, 1986; Muller et al., 1997; Maren et al., 1996a). However, the BLA receives 

information about the cue and context from different sources.  Auditory cues arrive via 

the auditory thalamus and cortex (Boatman & Kim, 2006; Romanski & LeDoux, 1992); 

while contextual information relies on projections between the hippocampal formation 

and BLA (Kim & Fanselow, 1992a; Maren & Fanselow, 1995). 

NMDA receptors are important mediators of synaptic plasticity and learning at 

most excitatory synapses in the central nervous system. The NMDA receptor is 
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constructed from four subunits to form a heteromeric pentamer with a variety of 

physiological and pharmacological properties depending on the assemblage with the 

obligatory GluN1 subunit (Cull-Candy & Leszkiewicz, 2004; Traynelis et al., 2010). 

Embryonic synaptic NMDA receptors are predominantly GluN1/GluN2B diheteromers 

and once synaptic connections are formed, activity results in a triheteromer NMDA 

receptor type containing GluN1/GluN2A/GluN2B, or diheteromers GluN1/GluN2A and 

GluN1/GluN2B  (Tovar & Westbrook, 1999; Endele et al., 2010).  

There is a developmental shift during postnatal development from GluN2B-

containing receptors to an increase GluN2A expression in thalamic and cortical neurons, 

and suggests that synaptic GluN2B is displaced to extrasynaptic sites after the insertion 

of the GluN2A (Kew et al., 1998; Tovar & Westbrook, 1999; Liu, Murray, & Jones, 

2004). In adult cortex and hippocampus, GluN2A and GluN2B are predominant subunits 

and determine distinct functional responses to NMDARs. GluN2B is important for 

synaptic plasticity, which is critical for learning and memory formation (Kirkwood et al., 

1996; Cull-Candy et al., 2001; Quinlan et al., 2004). GluN2B is particularly crucial in 

long-term depression in the adult hippocampus, with a loss of GluN2B sufficient to cause 

learning deficits and an overexpression of GluN2B enhancing LTP and learning (Clayton 

et al., 2002; Zhao et al., 2005; Brigman et al., 2010; Tang et al., 1999).  

Acquisition of fear requires N-methyl-D-Aspartate receptor (NMDAR)-mediated 

synaptic plasticity in the BLA (Fanselow & LeDoux, 1999). The majority of studies 

examining the role of NMDAR in synaptic plasticity have examined long-term 

potentiation (LTP) induced by stimulation of Schafer collaterals onto CA1 pyramidal 
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cells of the hippocampus (Davies & Collingridge, 1989).  Here NMDAR are critical for 

induction but not expression of LTP or do they play a critical role in cell firing.  

Consistent with this, the classic NMDAR antagonist, 2-amino-5-phosphonovaleric acid 

(APV) prevents acquisition of hippocampus-dependent memory but does not prevent the 

expression of an already formed memory (Morris et al., 1986; Kim et al., 1991).  The 

selective effect of APV on acquisition but not expression of learned behavior is critical to 

isolate a role for NMDA receptors in memory formation (Rudy &Keith, 1990).   

Furthermore, Rudy and Keith (1990) point out that studies that block NMDAR 

only at the time of training are insufficient in implicating NMDAR in the acquisition of 

memory because they allow for a state-dependent decrement in performance.  Drug states 

may act as cues for memory retrieval and a change in drug state between training and 

testing may cause a loss of performance simply because the cues have changed between 

training and testing (Overton, 1968).  State-dependent effects of drugs on learning are 

best addressed by factorially manipulating the presence or absence of the drug during 

both training and testing within the same experiment.  Using such a design, Kim et al., 

(1991) ruled out an effect of APV on hippocampus-dependent learning because 

administering the drug at the time of acquisition blocked performance equivalently 

regardless of drug state at the time of test. 

The interpretation of studies with intra-BLA administration of APV is less 

straightforward.  As in the hippocampus, pre-training infusions of APV into the BLA 

blocks acquisition of both cued and contextual fear (Fanselow &Kim, 1994; Miserendino 

et al., 1990).  However, pretesting intra-BLA infusion has also been found to block 
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expression of an already acquired fear memory (Fendt, 2001; Lee et al., 2001; Maren et 

al, 1996b).  Additionally, intra-BLA APV not only prevents the induction of LTP in the 

BLA, it also reduces neuronal spiking (Maren &Fanselow, 1995).  Such findings make it 

difficult to attribute intra-BLA APV’s actions on fear conditioning specifically to a 

prevention of LTP. 

LeDoux and colleagues turned to ifenprodil, a selective noncompetitive NMDA 

antagonist, that specifically binds to the GluN2B subunit by acting on its polyamine site, 

stabilizing the inactivated form of the ion channel (Bauer et al., 2002); Blair et al., 2005; 

Rodrigues et al., 2001). This drug is able to bind to the magnesium-gated channel 

inhibiting the channels activation. Previous studies have shown that ifenprodil maximally 

blocks GluN1/GluN2B receptors without having an effect on GluN1/GluN2A receptors 

(Williams, 1993; Legendre & Westbrook, 1991).  Like APV, intra-BLA ifenprodil 

blocked acquisition of fear learning.  However, unlike intra-BLA APV, ifenprodil did not 

block expression of a previously learned fear response (Bauer et al., 2002).  

The purpose of the present experiment was to rule out state-dependent 

generalization decrement as the source of ifenprodil’s action on fear memory.  This was 

accomplished by factorially manipulating pre-training and pretesting drug state.  An 

account of drug action specifically on memory formation requires an effect on the pre-

training drug condition with no effect on the pretesting condition and no interaction 

between the two factors.  A state-dependent account predicts a reliable interaction 

between the two factors. 

In addition we examined the effect of pre-training ifenprodil on freezing during 
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acquisition.  Unlike APV directed at the hippocampus (Kim et al., 1991; Quinn et al., 

2005), intra-BLA APV severely reduces freezing during training (Maren et al., 1996b).  

Freezing during training reflects working memory for the context-shock association 

(Fanselow, 1980; Kim et al., 1992b) and a loss of behavior during training makes 

attribution of the drugs effects to memory inconclusive. 

 

Materials and Methods 

All experiments were conducted in accordance with the National Institutes of 

Health guide for the Care and Use of Laboratory Animals, and were approved by the 

Institutional Animal Care and Use Committee of the University of California, Los 

Angeles. 

 

Subjects 

Forty-one male Long-Evans rats initially weighing 250–280 g were obtained from 

a commercial supplier (Harlan, Indianapolis, IN, USA).  After arrival, rats were housed 

individually in standard stainless-steel cages on a 12/-h light/dark cycle and were 

provided free access to food and tap water. After being housed, the rats were handled 

daily (60–90 s per rat) for five days to acclimate them to the experimenter.  The number 

of animals used was the minimum required to ensure reliability of the results, and every 

effort was made to minimize animal suffering. 

 

Surgery 
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Under aseptic conditions, animals were given atropine methyl nitrate (0.04 mg/kg, 

i.p.), anesthetized using isofluorine and mounted into a stereotaxic apparatus (David Kopf 

Instruments, Tujunga, CA, USA). The scalp was incised and retracted, and head position 

was adjusted to place bregma and lambda in the same horizontal plane.  Small holes were 

drilled in the skull to implant 26-gauge guide cannula (Plastics One, Roanoke, VA, USA) 

bilaterally into the amygdala (from bregma: anteroposterior, −3.1 mm; mediolateral, ±5.3 

mm; dorsoventral, −7.6 mm). Implanted cannulae were then cemented to the skull using 

three anchoring screws to stabilize the dental acrylic. After surgery the cannulae were 

kept clean and free of infection by inserting dummy cannula. These dummies were 

replaced daily with clean ones. This adapted the rat to handling during the 12–13 day 

recovery period making it easy to insert the injectors in awake animals at the time of 

ifenprodil (IFEN) or artificial cerebro-spinal fluid (ACSF) infusion without agitating the 

animals. For drug infusion, 33-g injectors were inserted and extended 1 mm below the 

guide cannula. 

 

Infusion 

Ifenprodil tartrate (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in ACSF 

(0.4 mg/mL, pH 7.4) or vehicle (ACSF with 0.1% tartaric acid pH, 7.4) was micro 

infused bilaterally into the BLA using 33-gauge infusion cannula attached to 

polyethylene tubing connected to 5uL Hamilton syringes (Hamilton Company, Reno, 

NV, USA).  The infusion cannula protruded 1mm beyond guide cannula and injected 
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0.25 uL per side at a rate of 0.1 uL per minute.  Injectors remained for two minutes post-

infusion to minimize backflow.   

 

Apparatus 

The context consisted of a chamber with aluminum sidewalls and Plexiglas in the 

front, back, and top (28x21x22 cm; Lafayette Instruments, Lafayette, IN, USA).  The 

floor of each chamber had 18 stainless steel rods (4mm diameter, 1.5mm apart from 

center) connected to a shock scrambler, and computer controlled (Med-Associates, St. 

Albans, VT, USA).  The chambers were scented with 10% Simple Green and cleaned 

with 70% isopropyl alcohol.  Locomotor activity was recorded and hand-scored by a 

blind observer for two seconds every eight seconds.  The number of observations were 

summed and converted to a percentage of number of freezing observations over total 

number of observations.  During the training phase, freezing was measured during the 

first three minutes and after the termination of each shock.  During testing, freezing was 

measured for the entire duration of the test. 

 

Procedure 

Thirty-six animals were placed into one of four groups.  Animals received either a 

pre-training injection of ifenprodil (IFEN) or artificial cerebro-spinal fluid (ACSF) fifteen 

minutes before contextual training on day 1.  On day 2, pre-testing injections of IFEN or 

ACSF were given fifteen minutes prior to the context test. These injections were properly 

counter-balanced (see Table 1). On day 1, subjects were in the context for a total of 8.4 
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minutes.  They were able to explore the context for the first three minutes.  After the 

initial exploratory period, they were shocked five times with each shock consisting of  

.9mA for a duration of two seconds every 64 seconds.  One minute after the last shock, 

they were removed.  On day 2, the subjects were put back in the same context for an 8-

minute context test to measure fear learning. Our measure of fear was the freezing 

response, which is defined as lack of movement except for respiration (Fanselow, 1980).  

 

Histology 

At the end of the experiment, subjects were euthanized with sodium pentobarbital 

and perfused intracardially with PBS followed by 4% buffered paraformaldehyde.  The 

brains were removed and stored in 4% buffered paraformaldehyde for five days before 

being cryoprotected using 30% sucrose in PBS mixture for 48 hours prior to being 

frozen.  Coronal sections at 50 microns were taken and stained using the Nissl procedure 

to verify the cannulation placement (Paxinos &Watson, 1998).  Stained sections were 

examined using a light microscope (Zeiss, Oberkochen, Germany).   

 

Results 

 

Cannula placement verification 

 As illustrated in Figure 1, all cannula placements were determined to be within 

the boundaries of the BLA.   
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Fear Acquisition 

Freezing scores taken during training and testing were subjected to appropriate 

ANOVA. Inspection of Figure 2, which displays the training data, reveals a significant 

increase in freezing between shock trials indicating acquisition of context fear F (4,31) = 

22.8, p < 0.001, but no interaction between trial and pre-training injections of IFEN 

(N=18) versus ACSF (N=18) during acquisition F (4,31) < 1.  All subjects were able to 

show freezing to the context following five aversive shocks.   

 

Context Test 

The test data are shown in Figure 3. Pre-training injections of IFEN produced a 

significant impairment compared to pre-training injections of ACSF controls regardless 

of posttest injections.  A 2x2 ANOVA indicated a reliable main effect for pre-training 

injections F (1,32) = 24.949, p < 0. 001.  There was no effect of posttest infusions F 

(1,32) = 1.472, p > 0.05, indicating that ifenprodil did not impair expression of freezing 

behavior.  Importantly, the lack of an interaction of the pretesting and pre-training drug 

factors indicates that the results cannot be interpreted in terms of a drug state dependent 

effect F (1,32) < 1. 

 

Discussion 

Consistent with previous reports (Rodriguez et al., 2001), when the selective 

GluN2 antagonist, ifenprodil, was given prior to Pavlovian fear conditioning, fear was 

reduced during a later test of long-term contextual fear memory.  Additionally, when the 
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drug was only given during testing, expression of a previously acquired fear remained 

intact.  Importantly, fear was blocked when the animals were trained and tested in the 

presence of the drug, arguing against a state-dependent interpretation of the drug’s action 

on behavior. 

We also assessed ifenprodil’s effects during the acquisition session.  Freezing 

during this time reflects a working memory for the context-US association (Fanselow 

1980; Kim et al., 1992).  The drug had no effect on behavior at this time suggesting that 

ifenprodil did not affect context (CS) or shock (US) processing.  Thus the most likely 

account of ifenprodil’s effect is that it blocked long-term memory formation.  Such an 

effect on associative learning is consistent with the drug’s known action on NMDAR-

mediated plasticity. 

The overall pattern of effects found on contextual fear conditioning with intra-

amygdala ifenprodil was very similar to that found with NMDA antagonist, APV, when it 

is administered directly to the hippocampus or intra-cerebro-ventricularly (Kim et al., 

1991; Quinn et al., 2005).  However, in the hippocampus NMDAR contributes to 

learning about the context per se, while in the BLA, NMDAR play a role in associating 

the context with shock (Matus-Amat et al; 2007). Surprisingly, intra-BLA ifenprodil had 

very different effects from intra-amygdala APV.  Both NMDAR antagonists block later 

memory expression when given prior to training, although APV seems more effective 

(Fanselow &Kim, 1994, Maren et al., 1996b).  However, ifenprodil seems to have a more 

“pure” effect on long-term memory formation, as it did not interfere with working 
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memory or expression of a long-term memory acquired in a drug-free state. Furthermore, 

ifenprodil’s effects were not caused by drug-state cuing of memory.   

 

Functional NMDAR are composed of an obligatory GluN1 subunit that is usually 

paired with either a GluN2A or a GluN2B subunit.  The differential effects of APV and 

ifenprodil suggests that GluN2B containing NMDAR play a somewhat exclusive role in 

supporting long-term memory formation while GluN2A containing NMDAR have a more 

general role in synaptic transmission in the BLA (Maren & Fanselow, 1995; Maren et al., 

1996).  Further elucidation of the role of GluN2A and GluN2B subunits in the BLA may 

provide keys to more selective modulation of fear and anxiety disorders. 
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Figure 1.   Histological analysis of BLA cannula implantations.  Reconstruction of the 

cannula tip placement in the region of the BLA (AP 2.6-3.3mm).  Coronal section images 

adapted from Paxinos and Watson, 2007. 
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Figure 2:  Effect of intra-amygdala infusions of IFEN on contextual fear 

conditioning. Mean percentage of freezing during acquisition in rats infused with either 

intra-amygdala IFEN (N=18) or ACSF (N=18) 15 minutes prior to training.  There was 

no interaction between trial and drug F (4,31) < 1. 
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Figure 3:  Effect of intra-amygdala infusions of IFEN on long-term memory for 

contextual conditioning.  Mean +/- S.E.M during the 8-minute shock-free context-fear 

memory test in rats with either IFEN or ACSF infused into the amygdala 15 minutes 

prior to training and/or IFEN or ACSF 15 minutes prior to testing.  IFEN prior to training 

significantly retarded learning fear to the context as compared to ACSF prior to training 

regardless of the posttest infusion drug p < 0.001. 
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Table 1. Contextual Fear Conditioning Groups 
 
Group  Day 1: Context A  Day 2: Context A animals 
1.  IFEN/ 5 shocks  IFEN/ Test  8 
2.  IFEN/ 5 shocks  ACSF/ Test  10 
3.  ACSF/ 5 shocks  IFEN/ Test  10 
4.  ACSF/ 5 shocks  ACSF/ Test  8 
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CHAPTER THREE 

 

 

 

 

 

shRNA-induced knockdown of NMDA receptors in the lateral amygdala causes a 

deficit in auditory fear conditioning 
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Abstract 

The lateral amygdala (LA)  is implicated as the site where convergence of auditory 

signaling information (tone) and reinforcement (shock) result in the synaptic plasticity 

necessary to produce conditioned fear. Synaptic plasticity that mediates the formation of 

fear memories is thought to be dependent upon N-methyl-D-aspartate receptors 

(NMDAR). Techniques previously used to implicate NMDAR, such as pharmacological 

antagonists, have been limited in addressing specificity of anatomical location and the 

particular receptors they bind to. Additionally, the lack of promoters specific to the LA 

limits the genetic mutation approach (e.g., knockout mice). The GluN1 subunit is 

obligatory for NMDA receptors to assemble. Therefore, we used an shRNA construct 

directed at the GluN1 subunit to interfere with NMDA receptor expression. Prior to 

training, rats were given bilateral infusions of a lentivirus containing either the shRNA or 

a scrambled sequence, to knockdown the GluN1 subunit in the LA. Four weeks after 

infection, rats received a five tone-shock Pavlovian fear conditioning procedure. It was 

found that depletion of the GluN1 subunit in the LA caused a deficit in auditory, but not 

contextual fear conditioning.  
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Introduction 

Pavlovian fear conditioning signifies to the learning of associations between 

neutral stimuli (conditional stimulus; CS) and painful stimuli, such as a footshock 

(unconditional stimulus; US).  The major components of the neural circuit mediating 

from environmental stimulation to fear behavior are well established (Fanselow & 

Poulos, 2005; Kim & Jung, 2006; Paré, Quirk, & LeDoux, 2004). The amygdala, 

specifically the basolateral complex (BLA) consisting of the basolateral, basomedial, and 

lateral nuclei of the amygdala, is shown to essential for fear learning to both the cue and 

the context (Maren, Aharonov, & Fanselow, 1996; Gale et al., 2004; Lee et al., 1993; 

Phillips and LeDoux, 1992). Lesions or temporary inactivation of the BLA produces 

impairments of both cued and contextual fear acquisition and expression (Blanchard and 

Blanchard, 1972; Helmstetter, 1992; Helmstetter and Bellgowan, 1994; Hitchcock and 

Davis, 1986; Muller et al., 1997; Maren, Aharonov, & Fanselow, 1996). However, the 

BLA receives information about the cue and context from different sources. 

Conveniently, the BLA is a cortex-like structure that receives highly processed 

information from several cortical and some thalamic regions (Swanson & Petrovich, 

1998).   

The lateral amygdala (LA)  is  implicated as the site where convergence of 

auditory signaling information (tone) and reinforcement (shock) result in the synaptic 

plasticity necessary to produce conditioned fear (Romanski et al., 1993; LeDoux, 2000; 

Blair et al. 2001; Pare, Quirk, & LeDoux, 2004; Davis, 2006; Sigurdsson et al., 2007; 

Ploski et al., 2010). Auditory cues from both the auditory thalamus (medial geniculate 
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nucleus) and auditory cortex can acquire fear conditioning, inducing long-lasting changes 

in the LA (Boatman and Kim, 2006; Romanski and LeDoux, 1992; Clugnet & LeDoux, 

1990; Doyère, Schafe, Sigurdsson, & LeDoux, 2003).  

Synaptic plasticity that mediates the formation of fear memories is thought to be 

dependent upon N-methyl-D-aspartate receptors (NMDAR; Hitchcock and Davis, 1991; 

Maren, 1999; Ressler et al., 2002). The NMDAR is constructed from four subunits to 

form a heteromeric pentamer with a variety of physiological and pharmacological 

properties depending on the assemblage with the obligatory GluN1 subunit (Cull-Candy 

& Leszkiewicz, 2004; Traynelis et al., 2010). The majority of studies examining the role 

of NMDAR in synaptic plasticity have examined long-term potentiation (LTP) induced 

by stimulation of Schafer collaterals onto CA1 pyramidal cells of the hippocampus 

(Davies and Collingridge, 1989).  Here NMDARs are critical for induction but not 

expression of LTP or do they play a critical role in cell firing.  Consistent with this, the 

classic NMDAR antagonist, 2-amino-5-phosphonovaleric acid (APV) prevents 

acquisition of hippocampus-dependent memory but does not prevent the expression of an 

already formed memory (Morris et al., 1986; Kim et al., 1992).  The selective effect of 

APV on acquisition but not expression of learned behavior is critical to isolate a role for 

NMDA receptors in memory formation (Rudy and Keith, 1990).  The interpretation of 

studies with intra-BLA administration of APV is less straightforward.  As in the 

hippocampus, pre-training infusions of APV into the BLA blocks acquisition of both 

cued and contextual fear (Fanselow and Kim, 1994; Miserendino et al., 1990).  However, 

pretesting intra-BLA infusion has also been found to block expression of an already 
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acquired fear memory (Fendt, 2001; Lee et al., 2001; Maren et al, 1996).  Additionally, 

intra-BLA APV not only prevents the induction of LTP in the BLA, it also reduces 

neuronal spiking (Maren and Fanselow, 1995).  Such findings make it difficult to 

attribute intra-BLA APV’s actions on fear conditioning. 

Techniques previously used to implicate NMDAR, such as pharmacological 

antagonists, have established the importance of amygdalar NMDA receptors in the 

acquisition of fear conditioning (Boulis et al., 1990; Fanselow & Kim, 1994; Rodrigues, 

Schafe, & LeDoux, 2001; Goosens & Maren, 2004).  However, these procedures are 

somewhat limited in terms of anatomical and pharmacological specificity. Additionally, 

the lack of promoters specific to the LA has limited the genetic mutation approach 

(Bardgett et al., 2004; Sprengel & Single, 1991). NMDARs are important mediators of 

synaptic plasticity and learning at most excitatory synapses in the central nervous system.  

The purpose of the present experiment was to examine the role of NMDA 

receptors in the lateral amygdala during auditory fear conditioning using a small hairpin 

RNA (shRNA) lentivirus that targeted the Grin1 gene. To target rat Grin1 (GluN1 subunit 

of the NMDAR) for RNA interference, shRNA sequences were chosen based on the 

ability to down-regulate Grin1 expression while minimizing off target effects that might 

interfere with the expression of other related proteins. Based on previous data as 

described above, our predictions were that a reduction of NMDA receptors in the lateral 

amygdala would an impairment in auditory fear memory, and possible a deficit in 

contextual fear memory if the LA is important for mediating contextual memory as well. 

This is a novel approach using techniques that allow for anatomical specificity without 
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the disruption of information passing through the region.    

 

Materials and Methods 

All experiments were conducted in accordance with the National Institutes of 

Health guide for the Care and Use of Laboratory Animals, and were approved by the 

Institutional Animal Care and Use Committee of the University of California, Los 

Angeles. 

 

Subjects 

Twenty-eight male Long Evans rats initially weighing 250–280 g were obtained 

from a commercial supplier (Harlan, Indianapolis, IN, USA).  After arrival, rats were 

housed individually in standard stainless-steel cages on a 12-hour light/dark cycle and 

were provided free access to food and water. Animals were handled daily (one-two 

minutes per rat) for at least one week prior to the start of surgery and behavioral training 

to acclimate them to the experimenter.  The number of animals used was the minimum 

required to ensure reliability of the results, and every effort was made to minimize animal 

suffering.  

 

Grin1 shRNA design and virus production 

To target rat Grin1 (GluN1 subunit of the NMDAR) for RNA interference, 

shRNA sequences (from Alvarez et al.) were chosen based on the ability to down-

regulate Grin1 expression, while minimizing off target effects that might interfere with 
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the expression of other related proteins. DNA oligonucleotides encoding the shRNAs 

were cloned into the lentiviral vector pLL3.7 (as described in Lasek et. al., 2007) and 

tested for the ability to down-regulate Grin1 expression in 293FT cells.  Cells were co-

transfected with the Grin1 shRNA lentiviral plasmids and a Grin1 cDNA expression 

plasmid. The most effective sequence, shGrin1-1173 (corresponding to shRNA sequence 

“a” published by Alvarez et. al., 2007), reduced Grin1 expression by 85% in 293FT cells.  

Lentivirus was produced from shGrin1-1173 and a control shRNA plasmid (shScr) in 

293FT cells (as described in Lasek et. al.). Viral titers were approximately 5 x 107 pg p24 

antigen per mL 

 

Lentiviral shRNA Injection  

Under aseptic conditions, animals were given carprofen (1 mg/kg, s.c.), 

anesthetized using isofluorine and mounted into a stereotaxic apparatus (David Kopf 

Instruments, Tujunga, CA, USA). The scalp was incised and retracted, and head position 

was adjusted to place bregma and lambda in the same horizontal plane.  Small holes were 

drilled bilaterally into the amygdala. Male Long-Evans rats were randomly assigned to 

either the shRNA virus (n=10), the scramble virus (n=9), or a control group (n=9).  

shRNA or a scrambled sequence control viral infusions were made bilaterally targeting 

the LA at -3.0mm from Bregma, -/+ 5.2 lateral to midline, and -7.6 below the skull 

surface.  Injection cannulae (33 gauge) were attached to a 5µl microsyringe (Hamilton 

Instruments) via polyethylene tubing (PE20) and inserted into guide cannulae (28 gauge) 

attached to the arms of the stereotax. Microsyringes were mounted into a syringe pump 
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(Harvard Apparatus, South Natick, MA) for controlled microinfusions. Cannulae were 

lowered and infusions of .75 µl viral injections were made across eight minutes (0.1 µl 

/min rate).    Cannulae remained in place for an additional ten minutes to allow for 

adequate diffusion and reduction of backflow. Following infusions, incisions were closed 

with stainless steel wound clips and animals were given i.p. injections of the 

analgesic/anti-inflammatory carprofen (1 mg/kg) and placed on heating pads until they 

recovered from anesthesia. Carprofen injections were continued for an additional two 

days post-surgery. In addition, rats were given the antibiotic trimethoprim sulfa (TMS) in 

their drinking water, weighed, monitored and handled for one-week following surgery. 

Rats were allowed a total of 28 days of recovery prior to behavioral training.  

 

Apparatus 

All behavioral training was performed using two different sets of four identical 

conditioning chambers. The context consisted of a chamber with aluminum sidewalls and 

Plexiglas in the front, back, and top (28x21x22 cm; Lafayette Instruments, Lafayette, IN, 

USA). The contexts were surrounded with a sound-attenuating chamber, and each set of 

chambers was in a unique spatial location.  Animals received fear conditioning and 

contextual testing in one context.  A novel context was used to test generalization as well 

as auditory fear conditioning. The two context types were differentiated by lighting, 

scent, cleaning solution, background noise, context shape, and different transport to and 

from the contexts. One context contained a brightly lit chamber, a standard grid floor 

which had18 stainless steel rods (4mm diameter, 1.5mm apart from center) connected to 
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a shock scrambler, and computer controlled (Med-Associates, St. Albans, VT, USA). The 

chambers were scented with 10% Simple Green and cleaned with 70% isopropyl alcohol 

in between each subject training. Animals were transported into this context using a 

portable cart where their cages hung individually from racks mounted to the cart. The 

alternate context had no lights on and contained a plastic triangle to change the shape of 

the context. The grid flooring consisted of 18 steel rods (4mm diameter, 1.5mm apart 

from center) that were staggered to create uneven flooring. The chambers were scented 

and cleaned with 1% acetic acid solution. Animals were placed in a dark black box that 

had clean bedding at the floor for transport into this context. 

 

Procedure 

Subjects were given one-month recovery prior to training and were handled for 

one minute per day for one week prior to the beginning of training. During fear 

conditioning, rats were able to explore the context for the first three minutes.  After the 

initial exploratory period, subjects were given five tone-shock pairings. This consisted of 

a 30 second 2800Hz tone that co-terminated with a two second .9mA shock, followed by 

an inter-trail interval of 60 seconds prior to the next tone presentation. One minute after 

the last shock, they were removed.  The following day, subjects were put back in the 

same context for an 8-minute context test to measure fear learning. On Day 3, a tone test 

was given in a novel context that consisted of the same time frame and duration as 

training, but without the shock administration.  These tests were counterbalanced across 

subjects.  
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Histology 

At the end of the experiment, subjects were euthanized with sodium pentobarbital 

and perfused intracardially with PBS followed by 4% buffered paraformaldehyde.  The 

brains were removed and stored in 4% buffered paraformaldehyde for five days before 

being cryoprotected using 10% sucrose in PBS mixture for 24 hours, then 20% sucrose in 

PBS mixture for 24 hours, and finally, 30% sucrose in PBS mixture for 24 hours prior to 

being frozen. Coronal sections at 40 microns were taken and immunohistochemistry was 

preformed.  We looked at expression of GFP tagged viral infusion with the addition of 

DAPI to stain nuclei. Stained sections were examined using a light microscope (Zeiss, 

Oberkochen, Germany).    

 

Statistical  Analysis 

Fear was indexed by defensive freezing behavior, as defined by the absence of all 

movement except for those necessitated by respiration (Fanselow, 1980). Behavior was 

recorded using an automated near infrared (NIR) video tracking equipment and computer 

software (VideoFreeze, Med-Associates Inc.). Video was recorded at 30 frames per 

second and the software calculated the noise (standard deviation) for each pixel in a 

frame by comparing its grayscale value to previous and subsequent frames. This 

produced an "activity unit" score for each frame. Based on previous validation with hand 

scoring (correlation of r >0.9 between automated system and highly trained human 

observers) freezing was defined as sub-threshold activity (when the motion threshold was 
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held at 50 activity units) for longer than 1 second. Average freezing was scored for the 

baseline period in all phases and the first 28 s of each tone used for conditioning (prior to 

US onset). For presentation purposes, the 30 tone presentations during extinction 

sessions were blocked into six bins of five tone presentations and freezing was averaged 

within each bin. Freezing data were statistically analyzed using between-subjects 

analyses of variance (ANOVAs) and repeated measures (trial) ANOVAs where 

appropriate.  Post-hoc comparisons were performed following significant findings and a 

Bonferroni correction was applied to control for the number of comparisons made. The 

level of significance used for all analyses was p < .05. 

 

Results 

shRNA infection in the Lateral Amygdala 

Figure 1 represents the target area of the virus and a representative image of the 

viral infusion at a 40x magnification in the lateral amygdala. The extent of the shRNA 

virus in the lateral amygdala was consistent with previous research involving excitotoxic 

lesions, electrolytic lesions, and cannula placement within the LA.  

 

Animals with shRNA viral infusions in the LA acquire fear, maintain contextual 

fear recent memory, but have a deficit in tone fear memory 

Fear Acquisition 

Mean freezing (+/- SEM) to each 30s tone of five conditioning trials are not 

shown. Rats were split by infusion (shRNA virus, Scramble virus, control) resulting in 
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three groups.  All animals displayed <1% baseline freezing to the context during the 

initial three-minute exploratory period, suggesting that the surgery alone did not generate 

inappropriate freezing behavior.  A repeated measures ANOVA by trial revealed 

significant main effect for tone fear acquisition (F(3,27) = 132.2, p = 0.0001), with no 

significant main effect of group (F(3,27) < 1) or significant interaction of trial by group 

(F(3,27) < 1) indicating that shRNA injections into the LA did not impair fear acquisition. 

 

Context Test 

Figure 2 presents mean freezing (+/- SEM) across the eight-minute context test. 

An ANOVA revealed no significant main effect of context freezing between the groups 

(F(3,27) < 1) indicating that shRNA injections into the LA did not impair expression of 

freezing behavior to the context.   

 

Tone Test 

Figure 3 presents Mean freezing (+/- SEM) to each 30s tone of five tone-test 

trials. The apparent decrease in percent freezing as a function of type of viral infusion 

that are indicated in Figure 3 was confirmed by a one-way ANOVA performed on the 

data, which revealed a significant main effect of type of viral infusion on percent freezing 

F(2,26) = 4.302, p = 0.025. 

  To test prediction that an shRNA virus would produce a severe deficit in freezing 

behavior to the tone than either the scramble virus or controls, and that the scramble virus 

would produce a similar deficit in freezing to the tone compared to controls, post-hoc 
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multiple comparisons were conducted to compare the individual condition means. The 

comparison of shRNA virus versus controls revealed that the average percent freezing of 

the shRNA viral animals was significantly lower than the percent freezing of the controls, 

p = 0.025. The comparison of shRNA versus the scramble virus revealed that the average 

percent freezing to the tone of the shRNA viral animals were not significantly different 

than the percent freezing to the controls, p > .05.  Additionally, the comparison of the 

scramble virus versus the control animals revealed that the average percent freezing of 

the scramble viral animals were not significantly different than the percent freezing to the 

controls, p > .05. 

 

Discussion 

 

The lateral amygdala is hypothesized to be the site where convergence of auditory 

signaling information (tone) and reinforcement (shock) cause the NMDA-dependent 

synaptic plasticity that mediates the formation of fear memories (Blair et al. 2001; 

Sigurdsson et al., 2007; Ploski et al., 2010).  This data support the hypothesis that the LA 

is important for mediating fear memories, but was inconclusive on whether NMDAR-

related plasticity was the cause for the deficit in fear memory, since the scramble virus 

also cause a deficit in tone fear. The LA is an important site where convergence of 

auditory signaling information (tone) and reinforcement (shock) produce conditioned fear 

(Romanski et al., 1993; LeDoux, 2000; Pare, Quirk, & LeDoux, 2004; Davis, 2006). 

Selective knockdown of GluN1 subunit of the NMDA receptor in the LA caused a 
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specific impairment of auditory fear learning when compared to control animals. 

Surprisingly, the scramble virus caused a minor deficit to tone freezing as well, and did 

not reach a statistical significance difference when compared to the shRNA viral animals. 

The data also suggests that contextual fear memory may not be reliant on the LA. 

There were no significant differences in freezing between any of the groups during the 

context. This indicates that LA dysfunction is not sufficient to disrupt contextual fear. As 

with tone-shock associations, the evidence on context-shock association formation also 

points to the amygdala (Phillips & LeDoux, 1992). Hippocampal lesions will attenuate 

context conditioning but leave cued conditioning intact, even though both types of 

associative learning occurred at the same time (Phillips & LeDoux, 1992).  The study 

hints that the BA might be a potential region of interest for exploring the relationship 

between the hippocampus and the NMDAR- related synaptic plasticity in specific nuclei 

within the BLA. 

Some limitations to this study included the vector transport of interest.  A 

lentiviral vector has a large vesicle and makes it more difficult to transfect a large 

population of neurons.  Consequently, a higher volume of virus must be infused into the 

region of interest.  The data suggest that the sheer volume of the infusion alone into the 

LA was enough to produce a disruption in LA functioning to produce a deficit in tone 

memory. This was supported by the fact that the scramble virus, which did not affect any 

gene expression, caused a deficit in freezing during the tone test.   

The purpose of the present experiment was to examine the role of NMDA 

receptors in the lateral amygdala during auditory fear conditioning using a small hairpin 
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RNA (shRNA) lentivirus that targeted the Grin1 gene. Based on previous data our 

predictions were that a reduction of NMDA receptors in the lateral amygdala would 

cause an impairment in auditory fear memory, and possibly an impairment in contextual 

fear memory, if the LA was a critical site for the association between contextual 

information and aversive stimuli. This was a novel approach using techniques that allow 

for anatomical specificity without the disruption of information passing through the 

region. Although the results indicate problems with the transfection rate of the specific 

viral vector (i.e. lentivirus), this study provides insight for the potential of using RNA 

interference as a powerful strategy for analyzing memory formation and amnesia.  
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Figure 1: Virus Injection Site (40x) and a diagram of infusion region. The site of the 

GFP tagged viral infusion in green (A), DAPI-stained nuclei are blue and the lateral 

nucleus is indicated with red arrows (B).  The merged figure (C) shows successful 

targeting of the virus at the dorsal portion of the lateral nucleus.  
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Figure 2: Effect of Intra-amygdalar injections of shRNA or shScr lentivirus on long-

term memory for contextual conditioning.  Data from the context test are shown. There 

was no effect of infusions into the lateral nucleus of the amygdala on freezing to context.   
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Figure 3: Effect of Intra-amygdalar injections of shRNA or shScr lentivirus on long-

term memory for auditory fear conditioning.  The data from tone testing on Day 3 are 

shown. Relative to unmanipulated controls, the scrambled construct (ShScr) produced a 

small reduction in freezing that did not approach statistical reliability (p<0.1). The 

interfering sequence (ShRNA) produced a large reduction in freezing relative to both the 

unmanipulated controls (p<.0001) and the and control virus (p<.005). 
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CHAPTER FOUR 

 

 

 

 

 

Dissociating the relative contribution of NMDA receptors in the basal and lateral 

amygdala in supporting auditory and contextual fear learning 
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Abstract 

The basolateral amygdala complex, containing the lateral (LA) and basal (BA) nuclei, are 

critical for cued and contextual fear learning and memory formation through mechanisms 

that include N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic plasticity.  

However, the relative contribution of NMDAR-mediated plasticity in the BA and LA is 

unknown because the pharmacological techniques previously used to implicate NMDAR 

have limited anatomical specificity.  While lesion studies can be more anatomically 

precise, lesions affect far more than synaptic plasticity.  To overcome these limitations 

we used Grin1flox mice combined with stereotaxic delivery of an AAV2/1 virus coding for 

Cre-recombinase (Cre-GFP or GFP-only control) targeted at either the BA or LA.  The 

virus will delete Grin1 from infected cells causing a loss of GluN1, which is necessary 

for a functional NMDAR.  One-month after viral infusion, mice received fear 

conditioning, which consisted of five tone-shock pairings.  Following training, mice were 

given both a context test and a tone test.  Using an ANOVA separating groups by their 

nominal target infection region of either the LA or BA, we found that targeting the LA 

produced a deficit in tone fear, while targeting the BA produced a deficit in both tone and 

contextual fear.  Since the viral constructs used were tagged with a green fluorescent 

protein, we were able to identify the spread of the virus and found that regardless of 

intended target there was often some infection of neighboring nuclei.  Therefore, we 

performed immunohistochemistry to identify the amount of GluN1 per region, and used 

GluN1 levels as predictors in a linear regression model.  Our model indicated that GluN1 

levels significantly predicted time spent freezing during both the context and tone tests.  
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Depletion of GluN1 in the BA was a strong predictor for a deficit in both contextual and 

auditory fear conditioning over and above the effect of GluN1 levels in the LA.  The 

relationship between auditory fear conditioning and GluN1 levels in the LA fell just short 

of statistical significance.  These results indicate that NMDARs in the BA are important 

for both auditory and contextual fear conditioning.  They also illustrate how the 

combination of genetic and viral techniques, whose effectiveness can be directly assessed 

with immunohistochemistry and then correlated with behavior, allows far greater 

precision than previous methodologies. 
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Introduction 

Fear and the development of conditional fear are critical for survival.  When faced 

with an immediate threat, the fear response is an adaptation that is required for survival.  

However, mal-adaptations in the fear system lead to psychiatric disorders such as Post-

Traumatic Stress Disorder and anxiety disorders, such as specific phobias.  Pavlovian fear 

conditioning in rodents allows for the study of the neural circuitry and cellular 

mechanisms the underlie fear learning and memory in mammals. 

The basolateral amygdala complex (BLA)  is  clearly implicated in forming the 

association between a previously neutral stimulus (conditional stimulus; CS) and an 

aversive stimulus, such as a shock (unconditional stimulus; US).  Lesions to the BLA, 

consisting of both the lateral nucleus (LA) and the basal nucleus (BA), during Pavlovian 

fear conditioning result in a pronounced deficit in fear learning in both humans and non-

humans (Blanchard & Blanchard, 1972; Bechara et al., 1995; Hitchcock & Davis, 1986; 

Maren, Aharonov, & Fanselow, 1996; Gale et al., 2004; Lee et al., 1993; Phillips and 

LeDoux, 1992).  Furthermore, temporarily inhibiting neural activity in the BLA disrupts 

both learning and expression of conditional fear (Helmstetter, 1992).  Single-unit 

electrophysiological activity recordings in anesthetized rats revealed that neurons in the 

dorsal LA responded to both CS (tone) and US (footshock) stimuli (Romanski, et al., 

1993).  Additionally, a molecular imaging technique that utilizes the immediate early 

gene Arc known as cellular compartment analysis of temporal activity by fluorescent in-

situ hybridization (catFISH) showed convergence of contextual information and shock in 

the BLA as well (for catFISH methodology see Guzowsky & Worley, 2001; Barot, et al., 
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2008).  Using a variety of techniques, these studies further establish that BLA neurons are 

critical for mediating Pavlovian fear conditioning.  However, the BLA receives 

information about the cue and context from different sources.  Gainfully, the BLA is a 

cortex-like structure that receives highly processed information from several cortical and 

some thalamic regions (Swanson & Petrovich, 1998).   

Pre-training lesions to the LA produce a deficit in fear learning.  LeDoux (1990) 

lesioned the LA and then looked at mean arterial pressure and found a lower autonomic 

response and freezing deficits as opposed to controls.  Additionally, the LA  is  

implicated as the site where convergence of auditory signaling information (tone) and 

reinforcement (shock) result in the synaptic plasticity necessary to produce conditioned 

fear (Romanski et al., 1993; LeDoux, 2000; Blair et al. 2001; Pare, Quirk, & LeDoux, 

2004; Davis, 2006; Sigurdsson et al., 2007; Ploski et al., 2010).  Auditory cues from both 

the auditory thalamus (medial geniculate nucleus) and auditory cortex can acquire fear 

conditioning, inducing long-lasting changes in the LA (Boatman and Kim, 2006; 

Romanski and LeDoux, 1992; Clugnet & LeDoux, 1990; Doyère, Schafe, Sigurdsson, & 

LeDoux, 2003).  As with tone-shock associations, the evidence on context-shock 

association formation also points to the amygdala (Phillips & LeDoux, 1992). 

Contextual fear conditioning is a bit more complex because it requires 

hippocampal activation during the time of training.  This activation is limited to the 

acquisition of contextual, but not auditory fear.  Hippocampal lesions made just after 

training block context fear, but not auditory fear (Kim & Fanselow, 1992).  However, 

hippocampal activation follows a temporal gradient.  If the lesion occurs after one week, 
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a significant amount of fear is maintained (Kim & Fanselow, 1992).  Pre-training 

hippocampal lesions do not have an effect on fear memory (Maren, Aharonov, & 

Fanselow, 1997).  Therefore the hippocampus is thought to be involved in the formation 

of an integrated, gestalt-type configural representation of an environment as well as its 

temporary storage (Fanselow, 2000; Kim & Fanselow, 1992, Anagnostaras, Maren, & 

Fanselow, 1999).  Contextual memories are then transferred to the cortex within thirty 

days for permanent storage (Frankland et al., 2004).  As with cued fear conditioning, 

context-shock associations converge at the BLA.  Information about the context arrives at 

the amygdala via the ventral angular bundle and lesions within this pathway attenuate 

contextual, but not auditory fear conditioning (Anagnostaras, Maren, & Fanselow, 1999; 

Maren & Fanselow 1995).  While the hippocampus is important for forming the 

contextual representation the amygdala is critical for the context-shock association.  

Interestingly, the BA is important for contextual, but not auditory, fear conditioning 

(Onishi & Xavier, 2010).  Although some studies found impairment to the BA via 

electrolytic lesions, or the absence of GluA1 caused a deficit in both context and auditory 

fear learning (Goosens & Maren, 2001; Humeau et al., 2007). 

Once the BLA processes the association between the CS and the US, fear 

responses are elicited via the medial central nucleus of the amygdala (CEAm) and bed 

nuclei of the stria terminalis (BST).  The CEAm contains inhibitory projection neurons to 

downstream structures that generate fear responses including analgesia, autonomic and 

respiration changes; potentiated startle, and freezing, as well as to the BST (see Figure 1; 

Fendt & Fanselow, 1999; LeDoux, 2000; Maren & Fanselow, 1996; Nagy & Paré, 2008).  
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The BLA nuclei and the CEA are separated by inhibitory γ-Aminobutyric acid (GABA) 

paracapsular intercalated cells (ITC; Millhouse, 1986).  There are multiple pathways 

connecting the nuclei within the BLA to the CEAm that are important for fear expression, 

although it is unclear if one pathway is more efficient, or relied upon, as the primary 

pathway.  

As shown in Figure 1, within the BLA complex, the BA nucleus projects 

excitatory neurons directly to the CEAm, while the LA has no known direct connections 

to the CEAm (Carlsen, 1989; Paré, Quirk, & LeDoux, 2004; Pitkänen & Amaral, 1991).  

Since the LA is implicated in processing auditory fear conditioning, the pathway to elicit 

fear responses via the CEAm have been explored (Haubensak et al., 2010; Paré, Quirk, & 

LeDoux, 2004; Nader et al., 2001).  A pathway of interest involves the projection from 

the LA to the BA, and then from the BA to the CEAm (Pitkänen & Amaral, 1991).  A 

second indirect connection comprises the LA projections to the lateral central nucleus of 

the amygdala (CEAl), which possesses reciprocal inhibitory GABA neurons regulating 

CEAm output (Haubensak et al., 2010).  Still, a third pathway leading information from 

the LA to the CEAm is via the intercalated cells.  The LA sends projections to the 

GABAergic ITC neurons, which then disinhibits neurons in the CEAm, which then 

executes fear responses (Paré, Quirk, & LeDoux, 2004). 

The amygdala receives and interprets information from the medial pre-frontal 

cortex, hippocampus, and thalamus, and undergoes synaptic plasticity during fear 

learning (Schafe et al., 2001; Clugnet & LeDoux, 1990; Maren & Fanselow, 1995; 

Mahan & Ressler, 2012).  N-methyl-D-aspartate (NMDA) is known to be important for 
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encoding fear memories.  NMDA receptors (NMDAR) are known as coincidence 

detectors because it requires both pre-synaptic and post-synaptic activity (Mayer, 

Westbrook & Guthrie, 1984; Nowak et al., 1984).  NMDAR have voltage-gated channels 

requiring a decrease overall voltage, via an EPSC, on the membrane in order to release 

the magnesium ion that is stuck in the receptor  (Mayer, Westbrook & Guthrie, 1984).  

Additionally, pre-synaptic activity is required, which is the ligand binding of glutamate to 

the NMDAR to allow both sodium and calcium to enter the cell (Fukunaga et al., 1993).  

Calcium entering the cell triggers multiple responses including phosphorylation of 

protein kinases and secondary messenger systems and ultimately result in learning 

induced changes at the synaptic level, which include increased α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic receptors (AMPAR) and retrograde messengers such as 

nitric oxide. 

NMDA-dependent synaptic plasticity is an essential component for memory 

formation of aversive conditioning, creating permanent changes within cells (Maren, 

1996; Guzowski, et al., 2000; Blair et al., 2001).  Processed information is then 

transmitted to the CeA, which sends projections to various structures including the 

periaqueductal gray (freezing response), modulatory systems (arousal), and nuclei within 

the hypothalamus to regulate stress hormone release (LeDoux, et al., 1988; LeDoux, 

1993).  As illustrated in Figure 1, sensory and contextual information are thought to 

project both directly and indirectly to the LA and BA.  The inputs to the amygdala, and 

within the amygdala itself are responsible for fear learning, with the CeA responsible for 

the output to regulatory systems as described above. 
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Some limitations with previous research involving pharmacological 

manipulations, such as temporary inactivations through the use of agonists or antagonists 

(i.e muscimol, or APV) have been limited in addressing specificity of anatomical location 

due to unknown spread of the drug.  Additionally, excitotoxic and electrolytic lesions, 

might disrupt the flow of information passing through a specific region.  These set of 

experiments use Grin1flox transgenic mice to decipher the significance of NMDAR-related 

synaptic plasticity BLA nuclei on auditory and contextual Pavlovian fear conditioning. 

 

Materials and Methods 

All experiments were conducted in accordance with the National Institutes of 

Health guide for the Care and Use of Laboratory Animals, and were approved by the 

Institutional Animal Care and Use Committee of the University of California, Los 

Angeles. 

 

Subjects 

Grin1flox mice 

All subjects were Grin1flox mice, which possess loxP sites flanking the sequence 

of the Grin1 gene that encodes the entire transmembrane domain and C-terminal region.  

Mice that are homogenous for this allele do not show any behavioral abnormalities.  The 

colony was backcrossed with C57BL/6J mice for multiple generations prior to receiving 

the strain. 
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All mice were bred and maintained in the Psychology Department vivarium at the 

University of California, Los Angeles and were housed on a 12h light/dark cycle in 

groups of 3-5 with free access to food and water.  Experiments were performed on both 

female and male mice during the light phase of their cycle (n = 15-20 per group, for a 

total of 80 mice). 

 

Surgery 

Under aseptic conditions, animals were given carprofen (1 mg/kg, s.c.), anesthetized 

using isofluorine and mounted into a stereotaxic apparatus (David Kopf Instruments, 

Tujunga, CA, USA).  The scalp was incised and retracted, and head position was adjusted 

to place bregma and lambda in the same horizontal plane.  Small holes were drilled 

bilaterally into the skull so that microsyringes could be placed in the amygdala.  

Grin1floxed mice were randomly assigned to the AAV2/1-CAG-Cre-GFP virus (n=39; LA 

targeted=19, BA targeted = 20), the AAV2/1-CAG-GFP virus (n=30; LA targeted=15, 

BA targeted = 15), or a control group (n=11).  Viral infusions were made bilaterally 

targeting the LA (-1.7mm from Bregma, -/+ 3.1 lateral to midline, and -4.3 below the 

skull surface)  or BA (-1.31mm from Bregma, -/+ 2.8 lateral to midline, and -4.75 below 

the skull surface.  Injection microsyringes (Hamilton Instruments)  33 gauge, were 

mounted into a syringe pump (David Kopf Instruments, Tujunga, CA, USA) for 

controlled microinfusions.  Syringes were lowered and infusions of .15 µl viral injections 

were made across 3 min (50 nl/min rate).  Microsyringes remained in place for an 

additional ten minutes to allow for adequate diffusion and reduction of backflow.  
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Following infusions, incisions were closed with stainless steel wound clips and animals 

were given i.p. injections of the analgesic/anti-inflammatory carprofen (9 mg/kg) and 

placed on heating pads until they recovered from anesthesia.  Carprofen injections were 

continued for an additional two days post-surgery.  In addition, mice were given the 

antibiotic trimethoprim sulfa (TMS) in their drinking water, weighed, monitored and 

handled for one-week following surgery.  Mice were allowed a total of 28 days of 

recovery prior to behavioral training.  

 

Apparatus 

All behavioral training was performed using two different sets of four identical 

conditioning chambers.  The context consisted of a chamber with aluminum sidewalls 

and Plexiglas in the front, back, and top (28x21x22 cm; Lafayette Instruments, Lafayette, 

IN, USA).  The contexts were surrounded with a sound-attenuating chamber, and each set 

of chambers was in a unique spatial location.  Animals received fear conditioning and 

contextual testing in one context.  A novel context was used to test generalization as well 

as auditory fear conditioning.  The two context types were differentiated by lighting, 

scent, cleaning solution, background noise, context shape, and different transport to and 

from the contexts.  One context contained a brightly lit chamber, a standard grid floor 

which had18 stainless steel rods (4mm diameter, 1.5mm apart from center) connected to 

a shock scrambler, and computer controlled (Med-Associates, St.  Albans, VT, USA).  

The chambers were scented with 10% Simple Green and cleaned with 70% isopropyl 

alcohol in between each subject training.  Animals were transported into this context 
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using a portable cart where their cages hung individually from racks mounted to the cart.  

The alternate context had no lights on and contained a plastic triangle to change the shape 

of the context.  The grid flooring consisted of 18 steel rods (4mm diameter, 1.5mm apart 

from center) that were staggered to create uneven flooring.  The chambers were scented 

and cleaned with 1% acetic acid solution.  Animals were placed in a dark black box that 

had clean bedding at the floor for transport into this context. 

 

Procedure 

Subjects were given one-month recovery prior to training and were handled for one 

minute per day for one week prior to the beginning of training.  During fear conditioning, 

mice were able to explore the context for the first three minutes.  After the initial 

exploratory period, subjects were given five tone-shock pairings.  This consisted of a 30 

second 2800Hz tone that co-terminated with a two second .9mA shock, followed by an 

inter-trail interval of 60 seconds prior to the next tone presentation.  One minute after the 

last shock, they were removed.  The following day, subjects were put back in the same 

context for an 8-minute context test to measure fear learning.  On Day 3, a tone test was 

given in a novel context that consisted of the same time frame and duration as training, 

but without the shock administration.  These tests were counterbalanced across subjects.  

 

Histology 

Ninety minutes after the start of testing, mice were perfused intra-cardially with 

KPBS and 4% paraformaldehyde.  Brains were cryo-protected in (10%, 20%, and 30% 
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sucrose), frozen (-80o C), and serial sections were taken at 40um.  We looked at 

expression of GFP tagged viral infusion, NMDA, and AChE in every other slice.  In 

alternate slices we looked at expression of GFP tagged viral infusion, c-Fos, and DAPI.  

Free-floating sections were washed in PBS and incubated in 10% normal goat serum + 

10% normal donkey serum + 0.1% Triton-X 100 + PBS.  They were then incubated in 

rabbit anti serum against NMDAε1 (1:500; Santa Cruz #SC-9056) and goat antiserum 

against AChE (1:500; Santa Cruz #SC-6432) or rabbit anti serum against cFos  (1:500; 

Santa Cruz #SC-52) and DAPI for 72 hours at 4o C.  Sections were the washed in PBS 

and incubated overnight in biotinylated goat anti-rabbit AlexaFluor 568 (1:250; 

Invitrogen) and donkey anti-goat AlexaFluor 350 (1:250; Invitrogen).  The following 

day, sections were washed in PBS, mounted, and coverslipped with fluorescent-

protective mounting medium (either with or without DAPI; Vectashield).  Stained 

sections were examined using a light microscope (Zeiss, Oberkochen, Germany).    

 

Image Analyses 

Positivity for NMDAR was assessed at an excitation wavelength of 568nm with 

an emission wavelength of 602nm.  Image analysis was performed using ImageJ and an 

automatic custom-made macro.  We developed an ImageJ macro-command to process the 

images in three basic steps: (1) determining the amount of NMDAR on the image, (2) 

thresholding that against the background, (3) Analyzing the set measurements, and 

displaying the label.  Once the macro was created, it was used for all slices. 
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Positivity for viral infusion tagged with GFP was assessed at an excitation 

wavelength of 488nm and an emission wavelength of 510nm.  Image analysis was 

performed using ImageJ and an automatic custom-made macro.  We developed an 

ImageJ macro-command to process the images and received guidance for maintaining 

processing integrity from ImageJ associates since the background for the GFP was high 

(see acknowledgments).  The macro required a bandpass filter with large structures down 

to 200 pixels and small structures down to 0 pixels to help eliminate background.  The 

image was then thresholded and converted to a mask.  Particles were analyzed by setting 

the pixel size (^2) from 1000-infinity, with a circularity of 0.1-1.0 and then displaying the 

results.  Once created, the macro was used for all slices.   

 

Statistical  Analysis 

Fear was indexed by defensive freezing behavior, as defined by the absence of all 

movement except for those necessitated by respiration (Fanselow, 1980).  Behavior was 

recorded using an automated near infrared (NIR) video tracking equipment and computer 

software (VideoFreeze, Med-Associates Inc.).  Video was recorded at 30 frames per 

second and the software calculated the noise (standard deviation) for each pixel in a 

frame by comparing its grayscale value to previous and subsequent frames.  This 

produced an "activity unit" score for each frame.  Based on previous validation with hand 

scoring (correlation of r > 0.9 between automated system and highly trained human 

observers) freezing was defined as sub-threshold activity (when the motion threshold was 

held at 50 activity units) for longer than 1 sec.  Average freezing was scored for the 
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baseline period in all phases and the first 28 s of each tone used for conditioning (prior to 

US onset).  For presentation purposes, the 30 tone presentations during extinction 

sessions were blocked into six bins of five tone presentations and freezing was averaged 

within each bin.  

Freezing data were statistically analyzed using between-subjects analyses of 

variance (ANOVAs) and repeated measures (trial) ANOVAs where appropriate.  Post-

hoc comparisons were performed following significant findings and a Bonferroni 

correction was applied to control for the number of comparisons made.  The level of 

significance used for all analyses was p < .05.  

 Additionally, a linear regression model was used to predict the percent freezing in 

subjects during the context test or the tone test based on the percent of NMDAR in both 

the lateral amygdala and the basal amygdala.  Since the viral vector had a GFP tag, we 

were able to precisely detect the amount of spread per infusion.  After 

immunohistochemistry, we were able to determine the amount of NMDAR per nuclei.  

Given the ability to accurately describe the location and percentage of the virus, as well 

as the amount of NMDAR, we used a linear regression model to look at our data with 

finer detail and precision.  

 

 

 

Results 
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AAV2/1 infection in the Lateral Amygdala and Basal Amygdala 

Figure 2 represents the target area of the AAV2/1-CAG-Cre-GFP virus and a 

representative image of the viral infusion at a 40x magnification in the lateral amygdala 

and basal amygdala.  Additionally, Figure 2 represents the target area of the AAV2/1-

CAG-GFP control virus and a representative image of the control viral infusion at a 40x 

magnification in the lateral amygdala and basal amygdala. 

 

Grin1flox mice with a down-regulation of NMDAR in the basal amygdala acquire 

fear, but have a deficit contextual fear recent memory, and in tone fear memory.  

Grin1flox mice with down-regulation of NMDAR in the lateral amygdala acquire 

fear, maintain contextual fear recent memory, but have a deficit in tone fear 

memory. 

 

Analysis of Variance 

Fear Acquisition 

Mean freezing (+/- SEM) to each 30s tone of five conditioning trials are shown in 

Figure 3.  Mice were split by viral injection type resulting in two Cre-expressing viral 

groups: AAV2/1-CAG-Cre-GFP virus targeted to the LA (Lateral; n= 19), AAV2/1-

CAG-Cre-GFP virus targeted to the basal amygdala (Basal; n=20).  The criterion for 

inclusion into either group was for the virus to be expressed at least 90% in the targeted 

region.  The control groups consisted of three groups: the AAV2/1-CAG-GFP control 

virus targeted to the LA (n=15), the AAV2/1-CAG-GFP control virus targeted to the BA 
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(n=15), or a control group (n=11).  There were no differences in the freezing behaviors of 

the three control groups, so the data was collapsed across all three groups (Control; n = 

41).  This revealed an end total of three groups (Lateral, Basal, and Control).  All animals 

displayed low baseline freezing to the context during the initial three-minute exploratory 

period, suggesting that the surgery alone did not generate inappropriate freezing 

behavior.  A repeated measures ANOVA by trial revealed significant main effect for tone 

fear acquisition (F(3,27) = 132.2, p = 0.0001), with no significant main effect of group 

(F(3,27) < 1) or significant interaction of trial by group (F(3,27) < 1) indicating that AAV2/1 

injections into the LA or BA did not impair fear acquisition. 

 

Context Test 

Figure 4 presents mean freezing (+/- SEM) across the eight-minute context test.  

The apparent decrease in percent context freezing as a function of down-regulation of 

NMDAR in particular brain regions, that are indicated in Figure 4 was confirmed by a 

one-way ANOVA performed on the data, which revealed a significant main effect of 

brain region on percent context freezing F (2,78) = 8.251, p = 0.001. 

  To test prediction that the down-regulation of NMDAR in the BA would produce 

a deficit in freezing during the context test than either the LA or controls, and that the LA 

group would produce a similar deficit in freezing compared to controls, post-hoc multiple 

comparisons were conducted to compare the individual condition means.  The 

comparison of BA versus controls revealed that the average percent freezing to the 

context of the BA group was significantly lower than the percent context freezing of the 
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controls, p = 0.001.  The comparison of the BA group versus LA group revealed that the 

average percent freezing to the context of the BA group was significantly lower than the 

percent context freezing of the LA group, p = 0.012.  Additionally, the comparison of the 

LA group versus the control group revealed that the average percent context freezing of 

the LA group were not significantly different than the percent freezing to the controls, p > 

.05. 

 

 

Tone Test 

Figure 5 presents mean freezing (+/- SEM) across each 30s tone of five tone-test 

trials..  The apparent decrease in percent freezing as a function of down-regulation of 

NMDAR in particular brain regions, that are indicated in Figure 5 was confirmed by a 

one-way ANOVA performed on the data, which revealed a significant main effect of 

brain region on percent freezing F (2,78) = 15.609, p = 0.001.  

  To test prediction that the down-regulation of NMDAR in the BA group and LA 

group would produce a deficit in freezing during the tone test than the control group, and 

that the LA group would produce a similar deficit in tone freezing compared to the BA 

group, post-hoc multiple comparisons were conducted to compare the individual 

condition means.  The comparison of BA versus controls revealed that the average 

percent freezing to the tone of the BA group was significantly lower than the percent tone 

freezing of the controls, p < 0.001.  Additionally, the comparison of the LA group versus 

control group revealed that the average percent freezing to the tone of the LA group was 
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significantly lower than the percent tone freezing of the control group, p = 0.004.  The 

comparison of the LA group versus the BA group revealed that the average percent tone 

freezing of the LA group were not significantly different than the percent freezing to the 

BA group, p > .05. 

 

Grin1flox mice with a down-regulation of NMDAR in the basal amygdala predict a 

deficit in freezing during the context test and tone test. 

We modeled the amount of NMDAR based on immunohistochemistry to measure 

the amount of NMDAR per nuclei and determined parameters using a custom-made 

macro in ImageJ as described above.  We then performed a linear regression on the data 

to make predictions on the amount of NMDAR per area’s influence on percent freezing 

during the context and auditory test (see Figures 6 and 7, respectively). 

 

Linear regression analysis 

Context Test 

The main purpose of the regression analysis was to predict the percent freezing in 

subjects during the context test based on the percent of NMDAR in both the lateral 

amygdala and the basal amygdala and is represented in Figure 6.  The amount of 

NMDAR in the basal amygdala and lateral amygdala predicted 31.7% of the variability in 

the model (adjusted R2= .244) and was statistically significant F (2,42) = 4.651, p  = 

0.022 (see Figure 6 A and B).  For every 1% decrease in NMDAR in the basal amygdala, 

there is a 0.639% decrease in context freezing over and above the effect of NMDAR in 
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the lateral amygdala t(42) = 2.399, p = 0.026 (see Figure 6C).  For every 1% decrease in 

NMDAR in the lateral amygdala, there is a 0.323% decrease in context freezing over and 

above the effect of NMDAR in the basal amygdala t(42) = 1.56, p = 0.135 (see Figure 

6D).  The amount of NMDAR in the lateral amygdala is not shown to be making a 

significant contribution to the percent freezing during the context test, but the overall 

model is considered accurate according to the regression.  The regression model for the 

context test is as follows:  

 

Freezing to Context = 35.88 + (0.639) NMDABA + (0.323) NMDALA 

 

Tone Test 

The main purpose of the regression analysis was to predict the percent freezing in 

subjects during the tone test based on the percent of NMDAR in both the lateral 

amygdala and the basal amygdala and is represented in Figure 7.  The amount of 

NMDAR in the basal amygdala and lateral amygdala predicted 47.7% of the variability in 

the model (adjusted R2= .424) and was statistically significant F (2,42) = 9.113, p  = 

0.002 (see Figure 7 A and B).  For every 1% decrease in NMDAR in the basal amygdala, 

there is a 0.948% decrease in tone freezing over and above the effect of NMDAR in the 

lateral amygdala t(42) = 4.093, p = 0.001 (see Figure 7C).  For every 1% decrease in 

NMDAR in the lateral amygdala, there is a 0.312% decrease in tone freezing over and 

above the effect of NMDAR in the basal amygdala t(42) = 1.730, p = 0.099 (see Figure 

7D).  The amount of NMDAR in the lateral amygdala is shown to be trending towards 
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making a significant contribution to the percent freezing during the tone test, but the 

overall model is considered accurate according to the regression.  The regression model 

for the tone test is as follows:  

 

Freezing to Tone = 52.09 + (0.948) NMDABA + (0.312) NMDALA 

 

With new techniques and technologies, it is important to advance our data 

analyses to reflect our progress.  As the precision to identify areas of infection increased 

with the use of the transgenic mice and a virus with a GFP tag, we utilized the available 

statistical analyses to extract as much information as possible from the data.  

 

Discussion 

 

Using an AAV2/1-CAG-Cre-GFP virus into the BA or LA of Grin1flox mice 

produced a depletion of NMDAR in their respective regions.  This approach allowed for 

the evaluation of the impact of NMDAR-mediated plasticity in the BA or LA on 

acquisition and maintenance of both contextual and auditory fear conditioning.  The 

results indicate NMDAR-mediated plasticity in the BA predicts a deficit in freezing 

behavior for both contextual and auditory fear conditioning and shows NMDAR-

mediated plasticity in the BA is critical for fear expression during both contextual and 

auditory fear conditioning. 
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The results do not conflict with the popular view that normal function of the BLA 

is important for acquisition of Pavlovian fear conditioning (Fanselow & LeDoux, 1999; 

LeDoux, 1993; Maren, 1999; LeDoux, 2000).  The data indicates that NMDAR-mediated 

plasticity in the BA is critical for contextual fear memory.  NMDAR depletion in the BA 

produced a severe deficit in freezing as compared to NMDAR depletion in the LA or the 

control animals.  The linear regression revealed NMDAR depletion in the BA accounted 

for the majority of the freezing deficit during fear learning when controlling for the LA.  

These data support studies that used excitotoxic lesions of the BA, which produced a 

deficit in contextual fear learning (Onishi & Xavier, 2010). 

Additionally, the data also support the convergence of auditory and aversive 

stimuli in the LA.  The lateral amygdala is hypothesized to be the site where convergence 

of auditory signaling information (tone) and reinforcement (shock) cause the NMDA-

dependent synaptic plasticity that mediates the formation of fear memories (Blair et al. 

2001; Sigurdsson et al., 2007; Ploski et al., 2010).  This data support the hypothesis that 

the LA is the site where convergence of auditory signaling information (tone) and 

reinforcement (shock) produce conditioned fear (Romanski et al., 1993; LeDoux, 2000; 

Pare, Quirk, & LeDoux, 2004; Davis, 2006).  However, it is the NMDAR-mediated 

plasticity in the BA that seems to be driving the fear expression.  Selective knockdown of 

GluN1 subunit of the NMDA receptor in the LA caused a specific impairment of auditory 

fear learning when compared to control animals.  Surprisingly, NMDAR depletion in 

both the BA and the LA caused a significant impairment in freezing during the tone test 

as compared to controls.  The linear regression revealed NMDAR depletion in the BA 
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accounted for the majority of the freezing deficit during the tone test when controlling for 

the LA.  The data supports previous findings that post-training electrolytic lesions of the 

BA abolish tone fear expression (Anglada-Figueroa & Quirk, 2005).  The results suggest 

that the LA is a relay site for the convergence of the discrete CS and US to form an 

association, but that the information from the LA is projected to the basal amygdala (BA) 

and that is where NMDAR-mediated plasticity critical for auditory fear conditioning.  

 

Contextual Fear Conditioning 

NMDAR-mediated synaptic plasticity in the basal amygdala is critical for the 

contextual fear conditioning.  Literature on the BLA’s role in fear conditioning have 

focused on the LA as an essential site for the tone-shock association, but less focus has 

been given to the processes that underlie contextual fear learning in the BLA, although 

much research has been devoted to the role of the hippocampus in contextual fear 

learning.  

The BLA has a strong anatomical connection with the hippocampus via the 

ventral angular bundle.  While the majority of projections from the hippocampus synapse 

onto the BA, some also synapse onto the LA, although the BA  is implicated as the site 

for hippocampal-dependent contextual-shock associations (Goosens & Maren, 2001; 

Pitkänen, Savander, & LeDoux, 1997).  Information about the context arrives at the BLA 

via the ventral angular bundle and lesions within this pathway attenuate contextual, but 

not auditory fear conditioning (Anagnostaras, Maren, & Fanselow, 1999; Maren & 

Fanselow 1995).  Additionally, the BA is shown to undergo associative plasticity during 
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fear learning (Humeau et al., 2007).  Furthermore, the BA is important for contextual fear 

conditioning, with ibotenic or electrolytic lesions of the BA cause an impairment in 

freezing during the context test (Onishi & Xavier, 2010; Goosens & Maren, 2001).  

These results support previous data showing the BA is required for acquisition of 

contextual fear conditioning.  These data further this idea by stating NMDAR-mediated 

synaptic plasticity in the basal amygdala is critical for contextual fear conditioning. 

 

Auditory Fear Conditioning 

NMDAR-mediated plasticity in the BA is more important for producing an 

auditory fear response than the LA during auditory fear conditioning.  The LA forms an 

association between a discrete cue and an aversive stimulus (Romanski et al., 1993; 

LeDoux, 2000; Blair et al. 2001; Pare, Quirk, & LeDoux, 2004; Davis, 2006; Sigurdsson 

et al., 2007; Ploski et al., 2010).  The data supports this notion, since depletion of the 

NMDAR in the LA caused an impairment in freezing during the auditory fear test.  More 

interesting, a similar deficit was seen when the depletion of NMDAR was in the BA.  The 

linear regression revealed the amount of NMDAR in the BA was the main predictor of 

the freezing deficit seen in auditory fear conditioning over and above the effect of the 

NMDAR depletion in the LA, suggesting NMDAR in the BA is critical for auditory fear 

expression.   

Literature on the BLA’s role in auditory fear conditioning focuses on the LA as an 

essential site for the tone-shock association, but less focus is given to the involvement of 

the BA during Pavlovian fear conditioning.  Interestingly, the studies that have focused 
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on the BA mostly dealt with pre-training lesions and did not see a deficit in training.  Pre-

training electrolytic or excitotoxic lesions to the LA or the CEA, but not BA, disrupt 

freezing behavior elicited by the tone (Onishi & Xavier, 2010; Nader et al., 2001).  These 

results indicate that when the BA is not present, auditory fear learning can occur.  

However, when the BA is functioning normally, post-training lesions of the BA ablate 

fear expression to the previously trained auditory cue, suggesting that the BA is an 

important component in auditory fear learning in intact animals (Anglada-Figueroa & 

Quirk, 2005).  Further, Humeau et al. (2007) also reported that the loss of synaptic 

plasticity in the BA of GluR1-/- mice impaired freezing to both discrete cues and to the 

context.  Additionally, Anglada-Figueroa & Quirk (2005), re-trained animals that had 

received BA lesions and those animals were able to re-acquire auditory fear.  

This indicates that when the BA is absent prior to training, the LA uses alternate 

routes, with less straightforward means, to connect to the CEA via two different 

pathways to compensate, but that when the BA is intact and functioning normally, this 

seems to be the primary pathway.  Specifically, when the BA is not functioning, the tone-

shock association that is formed in the LA can send projections to the lateral central 

nucleus of the amygdala (CEAl), which possesses reciprocal inhibitory GABA neurons 

regulating CEAm output (Haubensak et al., 2010).  Still, another viable pathway leading 

information from the LA to the CEAm is via the intercalated cells.  The LA sends 

projections to the GABAergic ITC neurons, which then connect to the CEAm to execute 

fear responses (Paré, Quirk, & LeDoux, 2004). 
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These results support previous data showing the LA is required for the tone-shock 

association during auditory fear conditioning.  More interesting, the data reveals that the 

NMDAR-mediated synaptic plasticity in the BA is critical for auditory fear conditioning 

and is responsible for driving the fear response.  Specifically, the results suggest that the 

LA is a relay site for the convergence of the discrete CS and US to form an association, 

but that the information from the LA is projected to the BA and that is where NMDAR-

mediated plasticity critical for auditory fear conditioning.  When the BA is functioning 

normally, post-training lesions of the BA ablate fear expression to the previously trained 

auditory cue (Anglada-Figueroa & Quirk, 2005).  In intact animals, the NMDAR-

mediated receptor plasticity in the BA is what is essential to produce an auditory fear 

response.  

 

The Fear Circuit 

 The present study sought to elucidate the role of NMDAR-mediated plasticity 

within the BLA on auditory and contextual fear conditioning.  However, in doing so, we 

also discovered an important component in the fear conditioning circuitry.  Specifically, 

that NMDAR-mediated plasticity in the BA plays a much more important role in discrete 

cued and contextual fear conditioning than previously expected.  

The pattern of results is congruent with previous literature on contextual fear 

conditioning such that the BA is critical for contextual fear conditioning and extends this 

finding to describe the importance of NMDAR-mediated plasticity in the BA as essential 

for contextual fear learning.  Similarly, the data is consistent with literature on auditory 
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fear conditioning wherein the LA forms an association between a discrete cue and an 

aversive shock, however extends these findings to reveal NMDAR-mediated synaptic 

plasticity in the BA is what is necessary to modulate fear expression. 

By uniting these results with the established data on contextual and auditory fear 

conditioning, a more defined fear circuit emerges.  First, information about the context 

forms a configural representation in the hippocampus and project to the BLA via the 

ventral angular bundle (Anagnostaras, Maren, & Fanselow, 1999; Maren & Fanselow 

1995).  Although these projections synapse onto the BA and LA (Goosens & Maren, 

2001; Pitkänen, Savander, & LeDoux, 1997), the NMDAR- mediated plasticity in the BA 

seems to be responsible for driving the context-shock associations.  From there, 

information travels from the BA to the CEAm to produce a fear response, including 

analgesia, autonomic and respiration changes; potentiated startle, and freezing (Fendt & 

Fanselow, 1999; LeDoux, 2000; Maren & Fanselow, 1996; Nagy & Paré, 2008).  

Likewise, information about a discrete cue, such as a tone projects from the 

medial geniculate nucleus of the thalamus via thalamo- and cortico- pathways to the LA.  

Neurons in the LA are responsible for forming a tone-shock association and undergo 

NMDAR-mediated plasticity (Romanski et al., 1993; LeDoux, 2000; Blair et al. 2001).  

From there, neurons project to the BA and the NMDAR-mediated synaptic plasticity in 

this region is what is critical for auditory fear expression.  Similar to contextual fear, 

information flows from the BA to the CEAm to generate fear responses.  
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Figure 1: Connections within and between the basolateral amygdaloid complex. (A) 

Schematic representing the afferent inputs between and within the amygdala including 

the lateral amygdala (LA), basal amygdala (BA), and central nucleus of the amygdala.  

Green represents excitatory Glutamatergic neurons and red represents inhibitory GABA 

neurons. (B) Schematic representing the efferent outputs between and within amygdala. 

(Note: For simplification, no neuromodulatory inputs were included. 
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Figure 2: Virus Injection Site and a diagram of infusion region. (A)The site of the 

nuclear GFP tagged viral infusion in green at 4X. (B), NMDAR stain on the processes are 

red, nuclear GFP tagged Cre-expressing virus is green and AChE stained nuclei are blue 

along with the merged image in the lateral nucleus. (C) shows the same figures as B, but 

in the basal nucleus.  Similarly, (D) represents NMDAR stain on the processes are red, 

nuclear GFP tagged control virus is green and AChE stained nuclei are blue along with 

the merged image in the lateral nucleus. (E) shows the same figures as D, but in the basal 

nucleus. 
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Figure 3: Effect of Intra-amygdalar injections of AAV2/1-CAG-Cre-GFP or 

AAV2/1-CAG-GFP on acquisition during contextual and auditory fear conditioning 

 Data from the acquisition are shown.  This figure presents mean freezing (+/- SEM) 

during each 30s. tone period prior to the shock in Grin1flox mice.  Mice were split by viral 

injection type resulting in two Cre-expressing viral groups: AAV2/1-CAG-Cre-GFP virus 

targeted to the lateral amygdala (Lateral; n= 19), AAV2/1-CAG-Cre-GFP virus targeted 

to the basal amygdala (Basal; n=20).  The criterion for inclusion into either group was for 

the virus to be expressed at least 90% in the targeted region.  Two control virus groups: 

AAV2/1-CAG-Cre-GFP virus targeted to the lateral amygdala (Lateral Control; n=15), 

AAV2/1-CAG-Cre-GFP virus targeted to the basal amygdala (Basal Control; n=15), and 
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a Control group (n=11).  All animals displayed low baseline freezing to the context 

during the initial three-minute exploratory period, suggesting that the surgery alone did 

not generate inappropriate freezing behavior.  A repeated measures ANOVA by trial 

revealed significant main effect for tone fear acquisition (F(3,27) = 132.2, p = 0.0001), 

with no significant main effect of group (F(3,27) < 1) or significant interaction of trial by 

group (F(3,27) < 1) indicating that AAV2/1 injections into the LA or BA did not impair 

fear acquisition. 
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Figure 4: Effect of Intra-amygdalar injections of AAV2/1-CAG-Cre-GFP or 

AAV2/1-CAG-GFP on contextual fear memory. Data from the context test are shown.  

This figure presents mean freezing (+/- SEM) across the eight-minute context test.  The 

apparent decrease in percent context freezing as a function of down-regulation of 

NMDAR in particular brain regions was confirmed by a one-way ANOVA performed on 

the data, which revealed a significant main effect of brain region on percent context 

freezing F (2,78) = 8.251, p = 0.001.  Percent freezing for the Basal group was 

significantly lower than the percent context freezing of the Controls, (p = 0.001) and the 

Lateral group (p = 0.012).  Additionally, the comparison between the Lateral group and 

the Control group was not significantly different (p > .05). 
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Figure 5: Effect of Intra-amygdalar injections of AAV2/1-CAG-Cre-GFP or 

AAV2/1-CAG-GFP on auditory fear memory. Data from the tone test are shown.  This 

figure presents mean freezing (+/- SEM) across each 30s tone of five tone-test trials.  The 

apparent decrease in percent freezing as a function of down-regulation of NMDAR in 

particular brain regions, that are indicated in was confirmed by a one-way ANOVA 

performed on the data, revealed a significant main effect of brain region on percent 

freezing F (2,78) = 15.609, p = 0.001.  Percent freezing for the Basal was significantly 

lower than the percent context freezing of the Controls, p < 0.001.  Additionally, freezing 

during the tone in the Lateral group was significantly lower than Control group, p = 

0.004.  The comparison of the Lateral group versus the Basal group revealed that the 
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average percent tone freezing of the Lateral group were not significantly different than 

the percent freezing to the Basal group, p > .05. 
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Figure 6: Using a linear regression to predict the effect of NMDAR depletion in the 

BA and LA on contextual fear memory. (A)	
  Using the amount of NMDAR in the BA 

and the amount of NMDAR in the LA as predictors of contextual freezing in a linear 

regression, the model accounted for 31.7% of the variance in freezing during the context 

test. (B) This scatterplot shows context freezing on the Y-axis and that predicted value 

based on the amount of NMDAR in both the LA and BA amygdala on the x-axis. (C) 

This scatterplot has the amount of NMDAR in the BA on the x-axis and the context 

freezing on the Y-axis.  The regression showed that for every 1% decrease in NMDAR in 

the BA, there was a .639% decrease in freezing during the context test over and above the 

amount of NMDAR in the LA, which was a statistically significant predictor. (D) This 

scatterplot has the amount of NMDAR in the LA on the x-axis and the context freezing 

on the Y-axis.  The regression showed that for every 1% decrease in NMDAR in the LA, 

there was a .323 increase in freezing during the context test over and above the amount of 

NMDAR in the BA, but this was not a statistically significant predictor in the model. 
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Figure 7: Using a linear regression to predict the effect of NMDAR depletion in the 

BA and LA on tone fear memory. (A)	
  Using the amount of NMDAR in the BA and the 

amount of NMDAR in the LA as predictors of tone freezing in a linear regression, the 

model accounted for 47.7% of the variance in freezing during the tone test. (B) This 

scatterplot shows tone freezing on the Y-axis and that predicted value based on the 

amount of NMDAR in both the LA and BA amygdala on the x-axis. (C) This scatterplot 

has the amount of NMDAR in the BA on the x-axis and the tone freezing on the Y-axis.  

The regression showed that for every 1% decrease in NMDAR in the BA, there was a 

.948% decrease in freezing during the tone test over and above the amount of NMDAR in 

the LA, which was a statistically significant predictor. (D) This scatterplot has the 

amount of NMDAR in the LA on the x-axis and the tone freezing on the Y-axis.  The 

regression showed that for every 1% decrease in NMDAR in the LA, there was a 

.312increase in freezing during the tone test over and above the amount of NMDAR in 

the BA, but this was not a statistically significant predictor in the model. 
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CHAPTER FIVE 

 

 

 

 

 

Summary: The role of NMDAR- mediated plasticity in the basal amygdala and 

lateral amygdala on Pavlovian contextual and auditory fear conditioning 
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Discussion 

 

Anxiety disorders are highly prevalent and affect 18% of Americans per year, 

with 4.1% being diagnosed as severe (Kessler et al., 2005).  In order to find 

advancements for treatments, an animal model is necessary to research the underlying 

behavior, circuitry, and cellular mechanisms arising from the foundation of the disorder, 

including mal-adaptive fear. 

Fear is highly conserved across species, and Pavlovian fear conditioning in 

rodents allows for the study of the neural circuitry and cellular mechanisms the underlie 

fear learning and memory in mammals.  For example, a rodent will make an association 

between a previously neutral stimulus (conditional stimulus; CS) that  is paired with an 

aversive stimulus (unconditional stimulus; US) and will develop a fear response to the 

conditional stimulus (conditional response, CR).  When tested 16 months later, the rat 

will still show a significant conditional fear response to the CS (i.e. freezing; Gale et al., 

2004).  

My thesis work has been focused on the role of the N-methyl-D-aspartate receptor 

(NMDAR) in fear learning and memory, with a principle focus on using cellular 

manipulations of the NMDAR on basolateral nuclei of the amygdala (BLA) to measure 

the significance of NMDAR-mediated synaptic plasticity on auditory and contextual 

Pavlovian fear conditioning.  This was achieved through temporary inactivation, the use 

of a shRNA virus targeted at depleting the Grin1 gene, and the use to transgenic mice to 

specifically isolate and dissociate nuclei within the BLA, specifically the lateral nucleus 
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(LA) and basal nucleus (BA).  The behavioral effects of the manipulations were assessed 

with Pavlovian auditory and contextual fear conditioning.  

The experiments in this dissertation were designed to manipulate the NMDAR- 

related synaptic plasticity in BLA nuclei during auditory and contextual Pavlovian fear 

conditioning. Specifically, Chapter 2 concerns the role of selective GluN2B antagonist on 

fear learning and retention.  Chapter 3 utilizes the shRNA virus to look at NMDA-

mediated plasticity in the lateral amygdala.  Chapter 4 uses transgenic mice to address the 

role of NMDAR-mediated synaptic plasticity in both the LA and BA nuclei.  More 

importantly, the results from Chapter 4 explores the primary pathways projecting 

contextual and auditory fear associations, as well as reveals the critical role of NMDAR-

mediated synaptic plasticity in the BA to drive a fear response.  

 

The NMDA subunit GluN2B in the basolateral amygdala is critical for the 

acquisition of contextual fear 

 

The GluN2B subunit of the NMDAR  is implicated in the mechanism of long-

term potentiation, a neuronal substrate for fear learning.  This experiment was designed 

to show that by temporarily inactivating the GluN2B subunit of the NMDAR in the 

basolateral amygdala (BLA) a deficit in contextual fear learning is produced.  Unlike 

previous studies using intra-BLA application of the classic NMDA receptor antagonist d-

amino-phosphonovalerate (APV) the effects of intra-BLA ifenprodil could not be 

attributed to state-dependent learning, interference with working memory or suppression 
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of performance. Pretesting intra-BLA infusion has also been found to block expression of 

an already acquired fear memory (Fendt, 2001; Lee et al., 2001; Maren et al, 1996b).  

Additionally, intra-BLA APV not only prevents the induction of LTP in the BLA, it also 

reduces neuronal spiking (Maren & Fanselow, 1995).  Such findings make it difficult to 

attribute intra-BLA APV’s actions on fear conditioning specifically to a prevention of 

LTP. 

Freezing scores taken during training and testing revealed a significant increase in 

freezing between shock trials indicating acquisition of context fear but no interaction 

between trial and pre-training injections of ifenprodil versus artificial cerebrospinal fluid 

(ACSF) during acquisition (see Chapter 2, Figure 2).  Freezing during acquisition 

reflects a working memory for the context-US association (Fanselow 1980; Kim et al., 

1992).  The drug had no effect on behavior at this time suggesting that ifenprodil did not 

affect context (CS) or shock (US) processing.  Thus the most likely account of 

ifenprodil’s effect is that it blocked long-term memory formation.  Such an effect on 

associative learning is consistent with the drug’s known action on NMDAR-mediated 

plasticity. 

Additionally, context test data (see Chapter 2, Figure 3) indicated pre-training 

injections of  ifenprodil produced a significant impairment compared to pre-training 

injections of ACSF controls regardless of posttest injections.  There was no effect of 

posttest indicating that ifenprodil did not impair expression of freezing behavior.  

Importantly, the lack of an interaction of the pretesting and pre-training drug factors 

indicates that the results cannot be interpreted in terms of a drug state dependent effect.  
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Consistent with previous reports (Rodriguez, Schafe, & LeDoux, 2001), when the 

selective GluN2B antagonist, ifenprodil, was given prior to Pavlovian fear conditioning, 

fear was reduced during a later test of long-term contextual fear memory.  Additionally, 

when the drug was only given during testing, expression of a previously acquired fear 

remained intact.   

Functional NMDAR are composed of an obligatory GluN1 subunit that is usually 

paired with either a GluN2A or a GluN2B subunit.  The differential effects of APV and 

ifenprodil suggests that GluN2B containing NMDAR play a somewhat exclusive role in 

supporting long-term memory formation while GluN2A containing NMDAR have a more 

general role in synaptic transmission in the BLA (Maren & Fanselow, 1995; Maren et al., 

1996).  Further elucidation of the role of GluN2A and GluN2B subunits in the BLA may 

provide keys to more selective modulation of fear and anxiety disorders.  

 

shRNA-induced knockdown of NMDA receptors in the lateral amygdala causes a 

deficit in auditory fear conditioning. 

 

The lateral amygdala (LA)  is implicated as the site where convergence of 

auditory signaling information (tone) and reinforcement (shock) result in the synaptic 

plasticity necessary to produce conditioned fear (Romanski et al., 1993; LeDoux, 2000; 

Blair et al. 2001; Pare, Quirk, & LeDoux, 2004; Davis, 2006; Sigurdsson et al., 2007; 

Ploski et al., 2010).  Auditory cues from both the auditory thalamus (medial geniculate 

nucleus) and auditory cortex can acquire fear conditioning, inducing long-lasting changes 
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in the LA (Boatman and Kim, 2006; Romanski and LeDoux, 1992; Clugnet & LeDoux, 

1990; Doyère, et al., 2003).  Synaptic plasticity that mediates the formation of fear 

memories is thought to be dependent upon N-methyl-D-aspartate receptors (NMDAR; 

Hitchcock and Davis, 1991; Maren, 1999; Ressler et al., 2002). 

This experiment was designed to show that injection of an shRNA lentivirus 

containing a construct directed at the GluN1 subunit to interfere with NMDA receptor 

expression in the LA, will produce a deficit in auditory fear conditioning. 

The results from this study indicate shRNA or scramble virus injections into the 

LA did not impair fear acquisition.  However, the data during the tone test demonstrated 

injection of either the shRNA virus or the scramble virus produced a deficit in freezing 

during the tone test (Chapter 3, Figure 3).  This data support the hypothesis that the LA 

is important for mediating fear memories, but was inconclusive on whether NMDAR-

related plasticity was the cause for the deficit in fear memory, since the scramble virus 

also cause a deficit in tone fear.  The LA is an important site where convergence of 

auditory signaling information (tone) and reinforcement (shock) produce conditioned 

fear.  Selective knockdown of GluN1 subunit of the NMDA receptor in the LA caused a 

specific impairment of auditory fear learning when compared to control animals.  

Surprisingly, the scramble virus caused a minor deficit to tone freezing as well, and did 

not reach a statistical significance difference when compared to the shRNA viral animals 

or the control viral animals.  This could be due to the fact that infusing the lentivirus itself 

disrupted the functionality of the LA, regardless of the sequence (e.g. shRNA or 

scrambled virus). 
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The data also suggests that contextual fear memory may not be reliant on the LA.  

There were no significant differences in freezing between any of the groups during the 

context (Chapter 3, Figure 2).  This indicates that LA dysfunction is not sufficient to 

disrupt contextual fear.  As with tone-shock associations, the evidence on context-shock 

association formation also points to the amygdala (Phillips & LeDoux, 1992).  

Hippocampal lesions will attenuate context conditioning but leave cued conditioning 

intact, even though both types of associative learning occurred at the same time (Phillips 

& LeDoux, 1992).  The study hints that the BA might be a potential region of interest for 

exploring the relationship between the hippocampus and the NMDAR- related synaptic 

plasticity in specific nuclei within the BLA. 

Some limitations to this study included the vector transport of interest.  A 

lentiviral vector has a large vesicle and makes it more difficult to transfect a large 

population of neurons.  Consequently, a higher volume of virus must be infused into the 

region of interest.  The data suggest that the sheer volume of the infusion alone into the 

LA was enough to produce a disruption in LA functioning to produce a deficit in tone 

memory.  This was supported by the fact that the scramble virus, which did not affect any 

gene expression, also caused a deficit in freezing during the tone test.  This was a novel 

approach using techniques that allow for anatomical specificity without the disruption of 

information passing through the region.  Although the results indicate problems with the 

transfection rate of the specific viral vector (i.e. lentivirus), this study provides insight for 

the potential of using RNA interference as a powerful strategy for analyzing memory 

formation and amnesia. 
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Dissociating the relative contribution of NMDA receptors in the basal and lateral 

amygdala in supporting auditory and contextual fear learning. 

 

These set of experiments use Grin1flox transgenic mice to decipher the significance 

of NMDAR-related synaptic plasticity BLA nuclei on auditory and contextual Pavlovian 

fear conditioning.  With new techniques and technologies, it is important to advance our 

data analyses to reflect our progress.  As the precision to identify areas of infection 

increased with the use of the transgenic mice and a virus with a GFP tag, we utilized 

multiple statistical analyses to extract as much information as possible from the data.  

The results from this study indicate AAV2/1-CAG-Cre-GFP shRNA or AAV2/1-

CAG-GFP injections into the LA or BA did not impair fear acquisition.  However, 

Grin1flox mice with a down-regulation of NMDAR in the basal amygdala acquire fear, but 

have a deficit contextual fear memory, and in tone fear memory.  Grin1flox mice with 

down-regulation of NMDAR in the lateral amygdala acquire fear, maintain contextual 

fear recent memory, but have a deficit in tone fear memory.  Furthermore, Grin1flox mice 

with a down-regulation of NMDAR in the basal amygdala predict a deficit in freezing 

during the context test and tone test. NMDAR- mediated synaptic plasticity in the BA is 

critical for expressing a fear response in both contextual and auditory fear conditioning. 

 

Contextual Fear Conditioning 
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The context test revealed that the average percent freezing to the context in 

animals with a depletion of NDMAR in the BA was significantly lower than the percent 

context freezing of the controls, and the group with a depletion of NDMAR in the LA.  

Additionally, there was no significant freezing between the LA group and the control 

group (Chapter 4, Figure 4). 

We modeled the amount of NMDAR based on immunohistochemistry to measure 

the amount of NMDAR per nuclei and determined parameters using a custom-made 

macro in ImageJ as described in Chapter 4.  We then performed a linear regression on the 

data to make predictions on the amount of NMDAR per area’s influence on percent 

freezing during the context test (Chapter 4, Figure 6). 

 The amount of NMDAR in the basal amygdala and lateral amygdala significantly 

predicted the variance in freezing during the context test.  For every 1% decrease in 

NMDAR in the basal amygdala, there is a 0.639% decrease in context freezing over and 

above the effect of NMDAR in the lateral amygdala.  For every 1% decrease in NMDAR 

in the lateral amygdala, there is a 0.323% decrease in context freezing over and above the 

effect of NMDAR in the basal amygdala. 

NMDAR-mediated synaptic plasticity in the basal amygdala is critical for the 

contextual fear conditioning.  Literature on the BLA’s role in fear conditioning have 

focused on the LA as an essential site for the tone-shock association, but less focus  is 

given to the processes that underlie contextual fear learning in the BLA, although 

research has been devoted to the role of the hippocampus in contextual fear learning.  

 The BLA has a strong anatomical connection with the hippocampus via the 
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ventral angular bundle.  While the majority of projections from the hippocampus synapse 

onto the BA, some also synapse onto the LA, although the BA  is implicated as the site 

for hippocampal-dependent contextual-shock associations (Goosens & Maren, 2001; 

Pitkänen, Savander, & LeDoux, 1997).  Information about the context arrives at the BLA 

via the ventral angular bundle and lesions within this pathway attenuate contextual, but 

not auditory fear conditioning (Anagnostaras, Maren, & Fanselow, 1999; Maren & 

Fanselow 1995).  Additionally, the BA undergoes associative plasticity during fear 

learning (Humeau et al., 2007).  Furthermore, the BA is important for contextual fear 

conditioning, with ibotenic or electrolytic lesions of the BA cause an impairment in 

freezing during the context test (Onishi & Xavier, 2010; Goosens & Maren, 2001). 

Projections from the basal amygdala are sent to the CEAm in order to express the fear 

response (see Figure 1A; Pitkänen & Amaral, 1991).   

The results support previous data showing the BA is required for acquisition of 

contextual fear conditioning.  The data further this idea by stating NMDAR-mediated 

synaptic plasticity in the basal amygdala is critical for contextual fear conditioning.  

Figure 1A outlines the micro circuitry within the amygdala for the contextual fear 

conditioning. 

 

Auditory Fear Conditioning 

The tone test revealed that the average percent freezing to the tone in animals with 

a depletion of NDMAR in the LA and the BA was significantly lower than the percent 
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tone freezing of the control group (Chapter 4, Figure 5).  There was no significant 

difference in freezing levels between the LA and BA groups during the tone test. 

We modeled the amount of NMDAR based on immunohistochemistry to measure 

the amount of NMDAR per nuclei and determined parameters using a custom-made 

macro in ImageJ as described in Chapter 4.  We then performed a linear regression on the 

data to make predictions on the amount of NMDAR per area’s influence on percent 

freezing during the tone test (Chapter 4, Figure 7). 

Using a linear regression analysis we were able to predict the percent freezing in 

subjects during the tone test based on the percent of NMDAR in both the lateral 

amygdala and the basal amygdala.  The amount of NMDAR in the basal amygdala and 

lateral amygdala significantly predicted the variance in freezing during the tone test.  For 

every 1% decrease in NMDAR in the basal amygdala, there is a 0.948% decrease in tone 

freezing over and above the effect of NMDAR in the lateral amygdala.  For every 1% 

decrease in NMDAR in the lateral amygdala, there is a 0.312% decrease in tone freezing 

over and above the effect of NMDAR in the basal amygdala.  These results indicate that 

NMDAR mediated synaptic plasticity in the BA is more critical than NMDAR mediated 

synaptic plasticity in the LA for driving the auditory fear response.  

NMDAR-mediated plasticity in the BA is more important for producing an 

auditory fear response than NMDAR-mediated plasticity in the LA during auditory fear 

conditioning.  The LA forms an association between a discrete cue and an aversive 

stimulus (Romanski et al., 1993; LeDoux, 2000; Blair et al. 2001; Pare, Quirk, & 

LeDoux, 2004; Davis, 2006; Sigurdsson et al., 2007; Ploski et al., 2010).  The data 
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supports this notion, since depletion of the NMDAR in the LA caused an impairment in 

freezing during the auditory fear test.  More interesting, a similar deficit was seen when 

the depletion of NMDAR was in the BA.  The linear regression revealed the amount of 

NMDAR in the BA was the main predictor of the freezing deficit seen in auditory fear 

conditioning over and above the effect of the NMDAR depletion in the LA, suggesting 

NMDAR in the BA is critical for auditory fear expression, as compared to NMDAR in 

the LA.   

Literature on the BLA’s role in auditory fear conditioning have focused on the LA 

as an essential site for the tone-shock association, but less focus  is given to the 

involvement of the BA during Pavlovian fear conditioning.  Interestingly, the studies that 

have focused on the BA mostly dealt with pre-training lesions and did not see a deficit in 

training. Pre-training electrolytic or excitotoxic lesions to the LA or the CEA, but not 

BA, disrupt freezing behavior elicited by the tone (Onishi & Xavier, 2010; Nader et al., 

2001).  These results indicate that when the BA is not present, auditory fear learning can 

occur.   

However, when the BA is functioning normally, post-training lesions of the BA 

ablate fear expression to the previously trained auditory cue, suggesting that the BA is an 

important component in auditory fear learning in intact animals (Anglada-Figueroa & 

Quirk, 2005).  Further, Humeau et al. (2007) also reported that the loss of synaptic 

plasticity in the BA of GluR1-/- mice impaired freezing to both discrete cues and to the 

context.  Additionally, Anglada-Figueroa & Quirk (2005), re-trained animals that had 

received BA lesions and those animals were able to re-acquire auditory fear.   
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This indicates that when the BA is absent prior to training, the LA uses alternate 

routes, with less straightforward means, to connect to the CEA via two different 

pathways to compensate, but that when the BA is intact functioning normally, this seems 

to be the primary pathway.  Specifically, when the BA is active, the tone-shock 

association is formed in the LA, which then sends projections to the BA. The BA then 

sends inputs to the CEAm to express the fear response (see Figure 1B; Pitkänen & 

Amaral, 1991). When the BA is not functioning, the tone-shock association is formed in 

the LA, which then sends projections to the lateral central nucleus of the amygdala 

(CEAl), which possesses reciprocal inhibitory GABA neurons regulating CEAm output 

(see Figure 1C; Haubensak et al., 2010).  Still, another viable pathway leading 

information from the LA to the CEAm when the BA is not intact, is via the intercalated 

cells (ITC).  The LA sends projections to the GABAergic ITC neurons, which then 

connect to the CEAm to execute fear responses (see Figure 1D; Paré, Quirk, & LeDoux, 

2004). 

The results support previous data showing the LA is required for the tone-shock 

association during auditory fear conditioning. More interesting, the data reveals that 

NMDAR-mediated synaptic plasticity in the BA is critical for auditory fear conditioning 

and is responsible for driving the fear response.  Specifically, the results suggest that the 

LA is a relay site for the convergence of the discrete CS and US to form an association, 

but that the information from the LA is projected to the BA and that is where NMDAR-

mediated plasticity critical for auditory fear conditioning.  When the BA is functioning 

normally, post-training lesions of the BA ablate fear expression to the previously trained 
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auditory cue (Anglada-Figueroa & Quirk, 2005).  In intact animals, the NMDAR-

mediated receptor plasticity in the BA is what is essential to produce an auditory fear 

response.  

 

The Fear Circuit 

 Chapter 4’s study sought to elucidate the role of NMDAR-mediated plasticity 

within the BLA on auditory and contextual fear conditioning.  However, in doing so, we 

also discovered an important component in the fear conditioning circuitry.  Specifically, 

that NMDAR-mediated plasticity in the BA plays a much more important role in discrete 

cued and contextual fear conditioning than previously expected.  

The pattern of results is congruent with previous literature on contextual fear 

conditioning such that the BA is critical for contextual fear conditioning and extends this 

finding to describe the importance of NMDAR-mediated plasticity in the BA as essential 

for contextual fear learning.  Similarly, the data is consistent with literature on auditory 

fear conditioning wherein the LA is needed for the discrete cue- aversive shock 

association, however these findings reveal the significance of NMDAR-mediated 

synaptic plasticity in the BA to modulate fear expression. 

By uniting these results with the established data on contextual and auditory fear 

conditioning, a more defined fear circuit emerges.  First, information about the context 

forms a configural representation in the hippocampus and project to the BLA via the 

ventral angular bundle (Anagnostaras, Maren, & Fanselow, 1999; Maren & Fanselow 

1995).  Although these projections synapse onto the BA and LA (Goosens & Maren, 
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2001; Pitkänen, Savander, & LeDoux, 1997), the NMDAR- mediated plasticity in the BA 

seems to be responsible for driving the context-shock associations.  From there, 

information travels from the BA to the CEAm to produce a fear response, including 

analgesia, autonomic and respiration changes; potentiated startle, and freezing (see Figure 

1A; Fendt & Fanselow, 1999; LeDoux, 2000; Maren & Fanselow, 1996; Nagy & Paré, 

2008).  

Likewise, information about a discrete cue, such as a tone projects from the 

medial geniculate nucleus of the thalamus via thalamo- and cortico- pathways to the LA.  

Neurons in the LA are responsible for forming a tone-shock association and undergo 

NMDAR-mediated plasticity (Romanski et al., 1993; LeDoux, 2000; Blair et al. 2001).  

From there, neurons project to the BA and the NMDAR-mediated synaptic plasticity in 

this region is what is critical for auditory fear expression.  Similar to contextual fear, 

information flows from the BA to the CEAm to generate fear responses (see Figure 1B; 

Pitkänen & Amaral, 1991).  Figure 1 outlines the micro circuitry within the amygdala for 

the primary  pathway for auditory fear conditioning.  Additionally, Figure 1, details the 

two alternate pathways that can support auditory fear conditioning in the absence of the 

basal amygdala. 

 

Conceptual Significance 

 

 This research has led us to rethink how the fear circuitry functions to create 

enduring memories.  Currently, most models of fear learning involve a serial circuit, 
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emphasizing very few sites of synaptic plasticity.  Since the models involve a 

straightforward prediction, disruption of the circuit either prior to learning or after 

learning should disrupt the fear response equally.  However, research involving the 

hippocampus and contextual fear conditioning disconfirmed this prediction by showing 

pre-training lesions to the hippocampus produced little deficit compared to post-training  

lesions to the hippocampus (Maren, Aharonov, & Fanselow, 1997; Kim & Fanselow, 

1992).  Further more that the post-training lesions were time dependent (Kim & 

Fanselow, 1992).  The approach adopted was to think about the circuit in terms of 

primary and alternate pathways, versus a serial circuit, with an interconnected network to 

support fear learning when one area is compromised (Fanselow, 2000).  

Similar to the hippocampal studies, experiments have shown that without the 

BLA, fear learning can still occur, but that the learning was inefficient and could not be 

maintained when tested one week later (Ponnusamy, Poulos, & Fanselow, 2007; Poulos 

et al., 2009; Poulos et al., 2010).  Additionally, pre-testing inactivations of the BLA 

revealed that when learning occurs when the BLA is intact, an alternate pathway is not 

sufficient to acquire and maintain the fear memory (Ponnusamy, Poulos, & Fanselow, 

2007; Anglada & Quirk, 2005).  Thus, an alternate pathway can support learning when 

the primary pathway is not online during training.  

The data that I presented in Chapter 4, support the implication that the basal 

amygdala is important for contextual and auditory fear learning and memory in an intact 

animal.  Anglada & Quirk (2005), present data supporting this option, since post-training 

lesions of the basal amygdala abolish auditory fear conditioning.  Additionally, Humeau 
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et al., (2007) supported this idea with the lack of GluA1 in the BA also produced a deficit 

in auditory and contextual fear learning. Importantly, my results show that in normal 

functioning animals, the NMDAR-mediated synaptic plasticity in the BA, as compared to 

the LA, is what is critical for driving the fear response during auditory fear conditioning. 

Hebb recognized that in order for a cell assembly to form, there must by a 

network consisting of multiple neurobiological representations in order to support 

meaningful memories (Hebb, 1949). The neuro-architecture that creates fear memories 

should be a dynamic network, versus a serial circuit, in order to increase the chances of 

survival if damage occurs to the primary pathway.   
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Figure 1: Primary and alternate pathways with and the between the basolateral 

complex during contextual and auditory fear conditioning.  Schematic representing 

the afferent and efferent connections between and within the amygdala including the 

lateral amygdala (LA), basal amygdala (BA), and central nucleus of the amygdala.  Green 

represents excitatory Glutamatergic neurons and red represents inhibitory GABA 

neurons. (Note: For simplification, no neuromodulatory inputs were included. (A) 

Primary pathway for contextual fear conditioning. (B) Primary pathway for auditory fear 

conditioning. (C-D) Alternate pathways for auditory fear conditioning when the basal 

amygdala is damaged prior to training. 
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