
UC Irvine
ICS Technical Reports

Title
The effects of variations in component styles and shapes on high-level synthesis

Permalink
https://escholarship.org/uc/item/19d671hn

Authors
Jha, Pradip K.
Ramachandran, Champaka
Dutt, Nikil D.
et al.

Publication Date
1992-12-18

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/19d671hn
https://escholarship.org/uc/item/19d671hn#author
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

The ,Effects of Variations in Component Styles

and Shapes on High-Level Synthesis

Pradip K. Jha* Champaka Ramachandran t
Niki(D.::buttt Fadi J. Kurdahit

Technical Report #92-115
December 18, 1992

tECE Department, *ICS Department,
University of California, Irvine

Irvine, CA 92717

ti 9?
C3
' ()

I) f'.\' I

I
I

,,,
, I

' , I

, r: ,,
'11 I,;

Abstract

High-level synthesis (HLS) has long relied on point models for RT-components that assume
fixed area and delay values for a given component style. However, aspect ratio variations alone
can result in substantially different area-delay characteristics for a component. In this work, we
explore the combined effect of style and aspect ratio variations on the area and delay of individual
RT-components, as well as on complete RT-level designs produced by HLS. We describe the results
of extensive experiments which indicate that point models are inadequate for use in the synthesis
process. We believe that our results have some deep implications on the formulation of HLS al­
gorithms that attempt to realistically incorporate physical design information early in the design
process.

ii

Contents

1 Introduction 1

2 Previous work 3

3 Problem Description 5

4 Effect of Aspect Ratio Variation on RT-Components 8

5 Effect of Aspect Ratio Variations on Complete RT-Designs Obtained from High-

Level Synthesis 11

6 Summary 13

A Results of the Adder experiments 19

iii

List of Figures

1

2

3

Sources of variations (or degrees of freedom) in design implementations.

The "traditional" area-delay HLS paradigm

Description of the experiments of (a) Section 4, and (b) Section 5. . . .

4 area and delay variations of (a) timer and (b) mutiplier (with varying aspect ratios).

2

3

7

Both designs assume 16 bit words. 15

5 area and delay variations of MAHA design with one adder (with varying aspect

ratios). Designs assume 8 and 16 bit words. 16

6 area and delay variations of MAHA design with two adders (with varying aspect

ratios). Design assumes 16 bit words. 17

7 area and delay variations of (a) 8 and (b) 16 bits adders (with varying aspect ratios) 20

8 area and delay variations of (a) 32 and (b) 64 bits adders (with varying aspect ratios) 21

9 area and delay variations of (a) 96 and (b) 128 bits adders (with varying aspect ratios) 22

List of Tables

1 Percentage variation in area and delay for ADDER design 10

2 Percentage variation in area and delay by varying aspect ratios for some benchmark

designs . 14

3 Percentage variation in area and delay for 16 bit Maha with two adders 18

iv

1 Introduction

High-Level Synthesis (HLS) typically uses generic RT components during the tasks of scheduling,

allocation and binding. The use of generic components simplifies HLS algorithms and standardizes

the output of HLS to a common component set, so that these these generic components can then

be implemented in a particular technology through RT-component synthesis (e.g., logic synthesis,

technology mapping and physical design). Consequently, during HLS, each generic component is

assumed to have a rather simple model for its design attributes, usually characterized by a single

set of quality measures such as component area and delay.

However, for each such generic RT component, there is tremendous variation in the attributes

based not only on the target technology chosen, but also based on the physical design of each imple­

mentation. For high-level synthesis algorithms (e.g., scheduling, allocation and binding) to make

effective decisions that eventually result in high-quality layouts, we need to incorporate physical

design information during HLS. Indeed, we must account, not only for place and route effects, but

also global considerations such as RT wiring, component styles, aspect ratio, floorplanning, and the

combination of "all of the above". This is illustrated in Figure 1 which shows the sources of design

variations during the different design steps. Based on these observations, a high-quality component

model must specifically:

1. capture the variations in implementation styles of a given RT level component in an efficient

and structured manner. The work on component libraries is of importance in establishing a

realistic model of hardware since it encompasses a number of considerations such as word ver­

sus bit level implementation (i.e. word delay/area may not be a multiple of bit delay/area),

alternative implementations and design styles, and control signal requirements. These con­

siderations are generally overlooked by most high-level synthesis systems but can have a

significant impact on the final implementation,

2. realistically and accurately account for the layout effects on area and delay. The layout consid­

erations affecting area and delay include wiring, floorplanning, fanin, and fanout effects. This

requires a good approximation of the physical design topology. In other words, the model

should reasonably reflect the relative locations of the various constituents in a component

layout.

3. allow for uncertainties in the shapes of components. Eventually, these components will be

used in a design layout and the final shape of each component will be determined by a global

floorplanning step which chooses an "optimal", or preferred aspect ratio of that component so

as to efficiently pack the overall design layout. Since the precise shape of the final component

layout will not be determined until after the synthesis tasks have concluded, the uncertainty

in their layout configurations should be accounted for by allowing the final shape(s) to be

1

Functional
Synthesis f

~
I
I
I
I

behavioral specs

____ j_ ____

Scheduling
and

Allocation

Binding
and

style selection

Scope I
of our I
work

----- 1-----

I
I
I
I
y

I

I

'

Physical
Design

'

layout

(a) Design steps

...,

aspect
ratio

aspect
ratio

aspect
ratio

parallelism

parallelism

parallelism

~ ___ styles

(b) Degrees of freedom

Figure 1: Sources of variations (or degrees of freedom) in design implementations.

approximated by a shape function, rather than by a single design point.

4. be efficient to evaluate. The design model must not be too costly to evaluate. In extreme cases,

the physical design process can be carried out in full and an exact model can thus be realized.

Obviously, this is not practical as one can easily see that generating layouts for a large number

of different layout configurations of different design styles of a given RT level component could

easily take enormous amounts of time, especially when extensive delay characterization and

analysis is applied through timing analysis and simulation of the resulting layouts.

Although there has been a recent interest in coupling HLS with physical design, thus far it has

not considered the variation of aspect ratios of individual RT components, and its effects on the

area and delay of these components, as well as on the final design. Intuitively, there should be

substantial variations in these attributes due to additional wiring effects introduced by different

physical design configurations resulting from aspect ratio variations. However, to the best of our

2

Delay (cycle time)

- cheapest design

• - inferior design

_...-- non-inferior designs

\

/

fastest design

Area (cost)

Figure 2: The "traditional" area-delay HLS paradigm.

knowledge, no previous work to date has examined and quantified the magnitude of these variations.

In this work, we attempt to realistically explore the effects of varying aspect ratios on the area

and delay of generic components, as well as on the area and delay of complete designs generated

by HLS using generic components. Section 2 describes previous and related work, while Section 3

defines the problem. In Section 4, we describe the experiments performed to observe the variation

of a generic component's area and delay with respect to its aspect ratio. The variations were quite

substantial and are indicative of the need to factor in aspect-ratio effects at the RT-component level.

In Section 5 we describe the experiments performed to observe the effect of aspect ratio variations

on complete designs generated by high-level synthesis tools - the results of these experiments

show substantial variation in the area and delay of each final design, indicating the importance of

factoring in aspect ratio variations during HLS. Section 6 concludes with some observations and a

summary.

2 Previous work

Researchers are beginning to realize the importance of physical design (PD) considerations before,

during, and after almost every phase of HLS (e.g., scheduling, allocation, module selection, binding,

etc.).

One of the main principles of traditional high-level synthesis is the area-time tradeoff paradigm

shown in Figure 2. The basic assumption here is that, within limits, one can always trade off cost

(area) for performance (speed) and that faster chips always consume more layout area, and vice

versa. In [1], Granacki and Parker compared the area time tradeoffs of various implementations of

a given behavior both at the RT level and the layout level. It was concluded that while the AT

3

tradeoff was still somewhat applicable, the abstraction of layout effects may mislead the designer

into generating implementations which can be inferior in quality.

One of the earliest high-level synthesis systems to consider layout effects was BUD (Bottom-Up

Design) by McFarland (2],[3]. In BUD, the flow graph operations are combined into a clustering

tree. By controlling the clustering depth, various configurations can be achieved. Each can be

evaluated based on a layout model. BUD was used as a design space exploration tool. When

applied to some example designs, the results indicated that, when layout effects such as wiring

and multiplexors were considered, the AT tradeoff "law" did not apply. In fact, it was observed

that designs which had smaller layout area were indeed faster that those with larger area (3]. This

behavior can be explained by the fact that designs with smaller layout area tend to have shorter

wires. In large designs, wires tend to dominate in both area and delay. When the designs were

reevaluated without incorporating the layout effect, the AT tradeoff curve was observed.

CHIPPE [4] employs an expert system paradigm to control the synthesis process. A candidate

implementation is generated and evaluated. Based on the results of the evaluation and the designer

constraints, some transformations are applied to the design by invoking some synthesis tools for

scheduling and allocation [5]. The knowledge in this system is represented in the form of rules

which indicate the actions to be taken based on the evaluation results.

A more recent work, Fasolt was reported in [6]. Here, a data path is first synthesized and

evaluated using a Layout Estimator (LE). The resulting design is then analyzed and, based on

the analysis, some transformations are applied in order to optimize the layout. The design is then

reevaluated and the process of transformation followed by evaluation is iteratively repeated until no

further improvements are possible. This approach was applied to three examples and improvements

in area and performance were reported over the initial designs. The methodology described in this

work is based on the concepts of incremental repair and partial designs previously reported in [7].

The work in [8] reported an attempt at simultaneous synthesis and floorplanning, referred to as

3-D scheduling (the three dimensions being x,y, and time). Here the starting point is a scheduled

data flow graph. An assignment of operations to hardware is generated and the resulting design

is floorplanned and the critical path in each cycle is analyzed. The system then tries to reduce

the cycle time by exchanging the bindings between operations or adding extra hardware so as to

reduce the length of the physical critical path. One of the interesting results reported was that

an improvement in performance can be achieved by adding redundant operators, a move which

may be somewhat counter intuitive when considering an abstract hardware model. This work only

addresses operator binding which is a subtask of synthesis.

In [9] and [10], an abstracted layout area model for high-level synthesis was presented. This

model was experimentally shown to accurately and efficiently reflect the effects of the data path

design tradeoffs on the layout area and delay. It has also shown that traditional cost functions are

not good indicators for optimization in high level synthesis.

4

A chip level model of layout was described in [11]. This model was successfully used to estimate

layout area and delay of chips containing a mixture of macrocells, datapath, and random logic with

10% or better accuracy. This model was compared against traditional high level synthesis area and

delay models and has shown the inadequacy of the latter models both in terms of their lack of both

accuracy and fidelity when benchmarked against real layouts.

3 Problem Description

As noted earlier, HLS tools typically use abstract models of RT components for the synthesis

tasks of scheduling, allocation and binding. These models range from extremely simple unit-delay,

generic components, to more realistic models that attempt to factor in technology-effects. On the

one hand, we would like to incorporate technology-specific information and PD effects early in the

design cycle (e.g., during HLS). This requires detailed characterization of the component libraries

and possibly customization of HLS tools to accommodate specific technology constraints. On the

other hand, we would like to abstract out technology-specific information so as to simplify the HLS

tasks and make the resulting designs targetable to different layout styles and cell libraries. In order

to effectively factor in lower-level design information during HLS, we first need to understand the

sensitivity of high-level synthesis techniques to physical design considerations such as wiring and

module shape functions. In this report we specifically address the effect of varying RT-component

aspect ratios on the area-delay attributes of RT-components, as well as its effect on a complete

RTL design produced by a high-level synthesis tool.

We begin by defining the class of RT-component generators, their parameters and their at­

tributes. HLS tools typically assume the availability of an RT design library that is characterized

by parametrized generic components. The generator's parameters specify the size, functionality,

design style and shape for a component instance. Let G be the set of component generators, P be

the set of parameters and C; be the set of components associated with a generator G;:

• G = {G;jG; is a RT component generator.}

• P = {P;jP; is a parameter.}

• C; = {C;1ICiJ is a member of generator G;.}

We instantiate a particular component CiJ by specifying parameter values P;1 for the compo­

nent generator G;. For example, a 4-bit ripple-carry adder component with unity aspect ratio is

generated by invoking the ADDER generator with parameter values (bit-width = 4, style= Ripple­

carry, AR = 1.0). Furthermore, with each such component C;1 we associate design attributes such

as area (A;1) and delay (DiJ).

The domain of parameter values P;1 associated with a generator G; specifies the complete design

space of component implementations for the generator G;. Accordingly, by varying the parameter

5

values for a generator, we obtain component designs with different area and delay attributes. Such

a design space is typically visualized by the plotting the area and delay of the RT-component for

varying bit-widths, resulting in a "family" of possible designs. Note that in the most general case,

the parameter set Pii for a component generator Gi includes not only the bit-width, functionality

and design style, but also physical design information such as the component's aspect ratio. We

define this general case to be the comprehensive model for an RT-component, where, for example,

multiple design implementations (and hence area-delay attributes) can be generated for a fixed bit­

width component by simply changing the component's aspect ratio.

The design space of a RT-component generator Gi can be constrained by holding constant the

value of one or more of its parameters Pi;. For example, an adder component generated for a fixed

shape (e.g., unity aspect ratio), restricts the space of all possible adders realizable from the ADDER

generator. Traditionally, HLS tools have used one such restricted model that ignores the effect of

aspect ratio variations in individual RT components as well on the complete design composed of

several RT-components. In this report, we define a point model to refer to the restricted design

space for a generator whose aspect ratio parameter is fixed to a constant value. For example, Figure

2 is representative of a point model for the design space for an n-bit adder, where each "point"

defines an n-bit adder with a particular implementation style (i.e., ripple-carry, carry-lookahead,

etc.). Similarly, for a complete design composed of several RT-components, we can use a "point

model" that assumes a fixed aspect ratio, as well as a "comprehensive model" that reflects aspect

ratio variations on the complete RT-level design.

In this report we present the results of comparing the effect of the point model versus the

comprehensive model on individual RT components, as well as on a complete RT-level design

synthesized by HLS tools. In particular, we are interested in finding answers to the following

questions. Given a particular RT-level component generator Gil

1. What are the 1st order factors (parameters) that determine and/or influence the size, com­

position, and distribution of the "real" design space of a component generator Gi?

2. How would the nature of the design space of individual components (from 1) influence the

overall design space of a "typical" complete design composed of several RT components?

3. The main question we wish to address is: are these "point models" of RT-components

adequate for characterizing the resulting space of complete design implementations using these

RT-components? In other words, how much penalty in accuracy is incurred by using the "point

model" instead of the "comprehensive model"?

In order to answer these questions, we performed two sets of extensive experiments. In the first

set of experiments, depicted in Figure 3(a), we varied the aspect ratios and styles for an individual

RT-component and observed the resulting variations in the component's area and delay attributes.

In the second set of experiments, depicted in Figure 3(b), we took the output of high-level synthesis

applied to some benchmark descriptions, and studied the effects of varying component styles and

6

Component
design styles

Layouts with
different aspect
ratios

Generic
RT

Function
Add

Design space
for Add function

(a) Experiment 1 : Effect of aspect ratio variations on Individual RT -component

All combinations
of component
design styles

r------------~

~;~~·~~·" ! ~ §31
L_____ ------'

(b) Experiment 2: Effect of aspect ratio variations on complete RT-design

Figure 3: Description of the experiments of (a) Section 4, and (b) Section 5.

7

the design's overall aspect ratio on the area and delay of the complete RT-design. In both sets of

experiments we observed large variations in the area and delay. We then generated several figures

and tables to help analyze these variations.

Before describing these experiments, we first outline the experimental set-up used for our design

runs. For the generator set G, we used the generic component library GENUS [12] that is used

extensively by several high-level synthesis tools at UC Irvine. GENUS provides logic equations for

every instantiated component from a class of generators. For example, consider the ADDER gener­

ator instantiated with parameters (num-bits=4, style=RC) and (num-bits=4, style=CLA). GENUS

automatically provides the logic equations for both the ripple-carry and the carry-lookahead 4-bit

adder. These logic equations are then synthesized by MIS and mapped to the GDT CMOS standard

cell library.

Since the actual layout characterization process is extremely time-consuming, we used two

fast but accurate layout estimators: LAST, a Layout Area and Shape function esTimator [13],

and TELE, a Timing Evaluator based on Layout Estimates (14). Both tools rely on a combined

analytical/ contructive layout model which estimates the layout area and delay for a range of layout

aspect ratios. Both LAST and TELE have been benchmarked against actual layouts. LAST was

benchmarked using standard cell layouts produced by commercial layout tools from VALID and

Mentor Graphics and found to predict layout area with an average relative error of about 5% for

standard cell design as large as 15,000 cells. Similarly, TELE was shown to achieve a 7% or smaller

relative error in the worst case delay predictions for standard cell designs with up to 1800 cells.

Since both LAST and TELE generate estimates within a few seconds of CPU time, we were able

to accelerate the experimental run times without paying a penalty for accuracy.

4 Effect of Aspect Ratio Variation on RT-Components

This section explores the effect of varying aspect ratios for a RT-component on its area and delay

attributes and attempts to determine if the "point model" for RT-components sufficiently covers

the actual design space (i.e., the "comprehensive model") of component implementations.

The experiments, as illustrated in Figure 3(a), were organized as follows:

1. We chose the RT-level ADDER generator which is characterized by three parameters: (bit­

width, style, aspect ratio). The adder is an interesting RT-component, since it has multiple

style choices.

2. We generated several ADDER components by varying the styles of designs for each bit-width,

and repeated this process for different bit-widths. In particular, we generated:

• Ripple Carry adder (RC),

8

• MED4 adder, (i.e., 4-bit carry-lookahead blocks rippled)

• MED8 adder, (i.e., 8-bit carry-lookahead blocks rippled)

• Full carry-lookahead adder (CLA), and

• Carry save adder (CS).

3. For each implementation, we first estimated the area and delay of the corresponding design

netlist assuming a unity aspect ratio (i.e. square layout). This essentially gave us a "point

model" estimate. The estimation was done by first generating a standard cell netlist of

each implementation, and then used the highly accurate predictors LAST and TELE (briefly

described in Section 3) to obtain estimates of its layout area and delay.

4. We also used the "comprehensive model" to generate area/ delay values for different aspect

ratios of each RT-component. This capability is built into our model because it employs the

constructive-analytical technique described in [13] (14] when estimating both area and delay.

5. To analyze the effects of aspect-ratio variation on each RT component, we plotted the results

of the experiment in several ways and attempted to capture the overall effects with figures

indicating percentage variations in area and delay for each RT component, with respect to

different design styles (e.g., ripple-carry or carry-lookahead) and bit-widths.

The results of the experiments are summarized by the graphs in Appendix 6 which graphically

shows the results for adders whose bitwidths range from 8 to 128 bits. In these graphs, the

point models (corresponding to designs with unity aspect ratios) are represented by big circles.

Specifically, these graphs show:

• Area vs. delay of the adder (with varying aspect ratios),

• Aspect ratio vs. area for the adder,

• Aspect ratio vs. delay for the adder, and

• Aspect ratio vs. the product of area and delay (AT - a relative overall figure-of-merit) 1
•

Table 1 summarizes the percentage variations obtained by varying the aspect ratios of different

adder implementations with different bit widths.

In analyzing the data, we note the following:

• we observe large variations in area and delay, as summarized by Table 1. In most cases, the

variations exceed 30% in either area or delay by simply changing the component's aspect

ratio.

1 Assuming a linear tradeoff between area and delay for the sake of illustration - any other tradeoff model could
also be used.

9

Style BiLwidth
8 16 32 64 96 128

Ripple area 101.11 183.51 67.80 62.36 31.04 24.77
carry delay 30.60 41.65 17.29 31.50 98.55 35.87

4-bit carry area 108.02 131.15 87.82 52.59 29.01 20.11
lookahead delay 23.37 37.53 31.57 62.60 61.42 77.14

8-bit carry area 100.28 140.53 56.65 26.63 22.70 14.55
lookahead delay 28.36 43.42 84.20 137.73 110.40 169.02

Full carry area 100.28 70.29 69.70 18.45 19.11 23.24
lookahead delay 28.36 51.92 50.61 98.77 99.86 125.22

Carry area 160.88 100.95 55.41 26.40 22.02
save delay 36.92 45.71 70.73 I 69.89 99.89

Table 1: Percentage variation in area and delay for ADDER design

• for smaller bit widths, the area variations are larger than the corresponding delay variations,

but the trend is reversed for larger bit widths. This indicates that the areas of larger designs

tend to change less at extreme aspect ratios while delay is still quite sensitive to the changes

in the relative layout dimensions.

• The design space (area versus delay) is more "cluttered" for the smaller bitwidths (e.g., Fig­

ure 8(a)), and is sparser for larger bit widths (e.g., Figure 8(b)). Thus, for smaller bitwidths,

there are no cle.ar "boundaries" between the different design styles. For example, two imple­

mentations with different design styles (MED4 and MED8) can have similar areas (or delays)

for some aspect ratio configurations, and hence there is no clear choice unless the component

shapes are restricted by a floorplanner.

• the "bathtub" effect of extreme aspect ratios on area is less pronounced as bit width increases,

i.e., the Aspect-vs-area curves are "flatter" for larger bit-widths. Note that this is not true

for delay, i.e. delay is still sensitive to extreme aspect ratio variations for all the designs.

• using the A *T figure of merit, MED4 appears to beat the others consistently (i.e. it has the

lowest AT product). This is also confirmed in the Area-vs-Delay curves where the MED4

design points generally appear closer than others to the origin.

• The Area-vs-Delay curves show that CS adders have the worst area and inferior delays in

general. Moreover, using the A *T figure of merit, CS adders seem to be the worst buy.

However, this conclusion may change if another figure of merit is used.

Basetl on these observations, one can easily see that the point models are not adequate for

representing the RT-component attributes, and for use in High-Level Synthesis because:

10

1. RT components are building blocks that will be floorplanned together to form a design layout.

Thus, the final aspect ratio (and hence the are-delay attributes) of each component cannot

be known until physical design is started. However, point models implicitly assume a single

aspect ratio configuration which yields a single area-delay value for each component - in other

words, they assume that area and delay do not vary under different aspect ratio configurations.

2. Contrary to the assumption above, the experimental results in Table 1 clearly indicate that

there are large area and delay variations with aspect ratio. Thus one cannot rely on a single

set of attributes (area,delay) of one point per design style as a "representative" of the whole

design space of that style.

3. Since point models are not adequate for modeling the metrics of RT component, they cannot

be used as a basis for module set selection prior to, during, or after scheduling and allocation.

Instead, one must examine the full design space of these components, or alternatively, include

the physical design information into the synthesis process. The latter approach means that

component style and aspect ratio must be determined at the same time in order to obtain

reliable measures of the attributes of the components.

5 Effect of Aspect Ratio Variations on Complete RT-Designs Ob­

tained from High-Level Synthesis

The previous section showed that we observe substantial variation in area/ delay attributes for

each component generator by simply varying the aspect ratio parameter of the implementation.

However, a larger question is, how does this influence a complete RT design, and how can this be

used in the process of generating a RT-design from High-Level Synthesis?

In an attempt to answer this larger question, we examined the combined effects of aspect ratio

variation as well as component style variations on two popular examples from the HLS literature:

MAHA [15] and Shift-multiplier [16], and one industrial timer example. The objective of these

experiments was to study the overall RT area-delay design space as populated by different RT­

component styles (e.g., CLA adder and RC adder), and by varying the overall aspect ratio of the

final RT design, as shown in Figure 3(b). That is, our goal was to compare the effectiveness of the

"point" model (using fixed aspect ratios) for covering the complete design space represented by the

"comprehensive" model. The results are summarized using graphs that plot area vs. delay, aspect

ratio vs. area, aspect ratio vs. delay, and aspect ratio vs AT, as well as tables that show percentage

variations in area and delay attributes with respect to the "point" model for the complete RT

designs.

The experiments were run in the following manner. For each RT design generated by a HLS

tool ([17]) from a benchmark description,

11

1. We used the "point model" to generate the design space with a fixed aspect ratio using typical

RT components, including layout and wiring which were estimated using LAST and TELE.

2. We then modified the aspect ratio of the final design and generated the RT design space for

different combinations of RT component styles/implementations, and included the effects of

wiring and PD. To make the comparisons realistic, we restricted the aspect ratio variations

to between 1:10 through 10:1.

The results for the timer and shift multipler benchmarks are shown in Figures 4(a) and 4(b)

respectively. The results for the MAHA benchmark using an allocation of one adder for 8 and 16

bits are shown in Figure 5. Figure 6 shows the Area-vs-Delay curve for the MAHA benchmark with

an allocation of two adders. Note that the "point model" (with unity aspect ratio) is represnted

by big circles in Figures timer+mult, 5 and 6. The percentage variation in area and delay with

respect to the "point model" for the timer, shift-multiplier and Maha (one-adder and two-adder)

designs are shown in Tables 2 and 3. By examining these figures and tables, we make the following

observations:

• In all the cases, we observed a large size design space (as noted from the amount of variations

in area and delay from Table 2). This design space tends to be densely-populated in some

regions and sparse as area and delay increase. However, we note that the size of the densely

populated region is large, indicating several not-so-obvious design alternatives for similar

area/ delay constraints. Furthermore, a seemingly inferior design point on the traditional

Area-vs-Delay curve (i.e., a design with inferior area and inferior delay) may turn out to be

the only feasible design due to the shape constraint in the final floorplan and layout.

• In comparing the point models to the overall design space, we observe that the space defined

by the set of points in the "point model" is a small subset of the overall design space(Figures

5 and 6). In the case of MAHA with 2 adders (Figure 6), we can see that the range of delays

of the "point model" space is only a small fraction of the possible variations in delay across

the overall space.

• Given any target delay or area for the system within a certain range, it is possible to find

some design point which is quite close to that target. This stems from the fact that the design

space is quite dense for a wide range of area and delay values. More analysis is needed to be

able to quantize this density in general.

• We observe more swing in delay than area (2-3 times or more), which indicates that in contrast

to area, delay is quite sensitive to aspect ratio variations (this agrres with the results in [18]).

• The Aspect-vs-Delay graph indicates that designs using the MED* & CLA adders have close

delays, while design using the RC adders are clearly slower.

12

• The designs with MED adders are generally the best for medium-to-high performance, while

RC-based designs dominate for area-efficiency, however,

• The A *T figure of merit gives almost equal scores to all implementations, except RC which

is higher in most cases. What this indicates is that it may not be worth the small savings in

area to go with RC-based designs because of the drastic degradation in performance which

would result from such a choice.

Based on these observations, the experimental results show conclusively that aspect ratio vari­

ations cannot be ignored during HLS, since variations are quite large and that the "point model"

is indeed restricting the design space. We need to consider the "comprehensive model" that factors

in aspect ratio variations in order to capture a more realistic design space.

6 Summary

In this report, we attempted to explore the effects of varying aspect ratios on the overall RT design

space. Although it is intuitively obvious that aspect ratio variations of RT-components affect

the area-delay attributes of individual components and complete RT-level designs, we provided

conclusive data derived from a fairly extensive set of experiments to verify this fact. We presented

experimental data for aspect ratio variations at the RT-component level, as well as aspect ratio

variations for complete RT-level designs generated by HLS tools from some benchmarks. The

variations in area and delay were observed to be significantly large to warrant early inclusion in

HLS decisions.

Indeed, we believe that the results we obtained have some deep implications on the "traditional"

flow of HLS design tasks where scheduling and allocation are subject to some area and/or delay

constraints. Our results raise two interesting questions related to this approach:

1. Given these large variations in the final area/ delay, how can one ensure that the area/ delay

constraints initially imposed on the overall design are indeed satisfied when design is laid out?

This is especially relevant when the synthesized design is part of a chip which contains other

blocks, thus the shape of the final design is not exactly known in advance.

2. Does it make sense to assume "point models" during HLS? Why constrain the HLS to assume

a certain (area, delay) point for each component type? Why not have HLS optimize (or se­

lect) preferred (area, delay) for each component type since we can find some implementation

which can be very close to those specs? This argument can be extended to more recent syn­

thesis systems (e.g. [17] and [19]) which incorporate a mix-and-match strategy of component

selection, except that here only the aspect ratio is the source of variation in results.

13

Style Timer Shift-add Mult Maha{l Adder)
Ripple area 13.33 14.02 13.54
carry delay 51.68 27.68 50.96

4-bit carry area 23.51 13.43 10.32
lookahead delay 59.36 35.79 47.79

8-bit carry area 20.88 16.71 17.30
lookahead delay 53.88 32.95 45.53

Full carry area 17.28 11.70 17.49
lookahead delay 51.97 33.12 46.57

Over all area 27.86 26.58 22.08
designs delay 92.37 64.47 70.14

Table 2: Percentage variation in area and delay by varying aspect ratios for some benchmark designs

Clearly, these and other interesting questions remain to be answered in light of the results we

presented. Future work needs to address the issue of how exactly to abstract out this information

for use early in the design (for example, during High-Level Synthesis).

14

I
E

~

\\Aj \llllWI

1000.0 ...--.-----,-,--.---~~-----,.----.---,

A

800.0 -

400.0 I-

1.3e+o7

1.2e+o7

1.1e+o7

A

<>o • •
•
•

-

-

0 0
0Point Model-

I I I

1.1 e+o7 1.2e+o7 1.3e+o7 1.4e+o7
Area (Sq microns)

1.0e+o7 ~-~-___..,--~-~-___..,--~-~-~
·1.0 ·0.5

800.0

0.0
Log(Aspect ratio)

0.5 1.0

..,

.:..

iU'
~

~

~ 600.0

2l

400.0

0.0
Log(Aapect ratio}

1.2e+10 ...--....--...... --...----.--...... --...----.----.

1.0e+10

8.0e+o9

6.0e+o9

--tlmer_CLA
13--tJ tlmer_MED4
<>---0 tlmer_MED8
.ir---Atlmer_RC

4.0e+o9 --~-___..,--~-~-___.., ____~-~
·1.0 ·0.5 0.0

Log(Aspect ratio)
0.5 1.0

QPoint Model
...

500.o ,_ •"' A b "' ! ~ Ii.

~!' i '-l #a e
J; A 0 8

0 0 •
0 0 • 0

400.0 1- ~o CG IIDoA f)

c:F. ~r
0 0

0 "' • I O <). I 300.o~-~-__._ ____ _,,_ _ __._ ____ _,,_ _ _,
5.0et-06 5.5e+06 6.0et-06 6.5e+o6

-

0

•
-

7.0e+o6
Area (Sq. microns)

6.5e+06

I
.ll
E
~ 6.0e+o6

~

iU'
~ .
~
<

5.5e+o6

500.0

400.0

·0.5 o.o
Log(Aspect ratio)

0.5 1.0

3.5e+o9 ...--.--...... --...----.--...... --...----.--~

3.0e+o9

2.5e+o9

2.0e+o9

._.mulLCLA
13--tl mu1LMED4
<>---0 mult_MEDB
.lr---Amult_RC

1.5e+o9 --~-__._ ____ _,,_ _ ___.., ____ ~ _ ___,

• 1.0 ·0.5 0.0 0.5 1.0
Log(Aspect ratio)

Figure 4: area and delay variations of (a) timer and (b) mutiplier (with varying aspect ratios).
Both designs assume 16 bit words. 15

\'-4} 111'-41 IU. IV_ I '""UUVI

1400.0

... QPoint Model 1200.0 ... ~ ...
......

... g 0 'Ill e: A ~f1/r/ ~ te D.i. l 1000.0
& •a ... •0 0 •

~~

'W e
·~
t7
~
RI
('!
<

..

.:.
>. ..
~

>.
RI

~
:..
('!
<

•
800.0 o. !i

6CX]'.'k+o1

2.0e+07

1.9e+07

1.8e+07

1.7e+07

1.6e+07
-1.0

1400.0

1200.0

1000.0

800.0

...... ti

1.7e+07

-0.5

-0.5

-•
1.8e+07

Area (Sq microns)

0.0
Log(Aspect ratio)

0.0
Log(Aepect ratio)

0 •

1.9e+07 2.0e+07

0.5 1.0

0.5 1.0

2.5e+10 ..---....... ---,.--..---....... ----.--..---.----.

2.0e+10

1.5e+10

-0.5

.--maha16_1adder_CLA
e----€1 maha16_ 1 adder_MED4
~ maha16_1adder_MED8
.i.----.i. maha16_1adder_RC

0.0
Log(Aspect ratio)

0.5 1.0

I

g
>.
RI

~

700.0

600.0

500.0

400.0
8.5e+06

1.0e+07

\VJ ll1'-'1Uo4V_IV.\dUVI

"
"

0

o" 0

"a
0

" 0
~ 0 0 00 0

" ~o " 0
a o

;If" o" 0 0 0

~" ~ a 0
a 0 0 ...(~'1\: 0

a
0 0

QPointMo ~ o'b:>o

oaoJfo Oooo 0

9.0e+06 9.5e+06 1.0e+07 1.0e+07
Area (Sq. microns)

~ 9.5e+06

J

~
~ .
RI

~

9.0e+06

B.5e+06 '---'-----'---'-----'-----'----'----'-----'
-1.0 -0.5 0.0 0.5 1.0

600.0

500.0

7.0e+-09

6.0e+-09

5.0e+-09

4.0e+-09

3.0e+-09
-1.0

-0.5

Log(Aspect ratio)

0.0
Log(Aspect ratio)

0.5

..___. maha8_1adder_CLA (same as MED8)
e----€1 maha8_ 1 adder_MED4
~ maha8_ 1adder_MED8

-0.5 0.0
Log(Aspect ratio)

0.5

1.0

1.0

Figure 5: area and delay variations of MAHA design with one adder (with varying aspect ratios).
Designs assume 8 and 16 bit words. 16

---(/)
c ->. ro
(].)

0

2000

"1
"1

v
"1

"1
"1
"1

"1

"1
"1

"1

"1

"1

1500 l'7
"1

"1

"1

"1

500
2.1e+07

"1
"1

"1

"'v
"1

"1

"1

"1

"10 Cb ¢

"1 0 0

A

A

A
A

A

A

A

A
A

A

A

A

A
A

A

A

A

A

A

A
"1

A ++
A

++
~ 0 ~ ~/ +

+ + <l
0 + +

...

<l "4:i
... 0

9mal>Lstruct_CLA..ClA
• mal>o_struct_CLA..MED4
+ mal>o_struct_CLA..MED8
.I. mal>o_struct_CLA..RC
""mal>Lstruct_MED4_CLA
1' mal>o_struct_MED4_MED4
I> mrne_struct_MED4_ME08
+ moha_struct_MED4_RC
x mal>o_strucl_MED8_CLA * mal>Lstruct_MED8_MED4
Omoha_struct_MED8_MED8
Omoha_struct_ME08_RC
Omaha_struct_RC_CLA
Amal>o_struct_RC_ME0-4
<lmrne_struct_RC_ME08
"l moha_struct_RC_RC

0 Poln!Model

•
A

... <l

...
ti.,.

"-
<l •

0
<l*

...

... •
• *

•

I I

2.3e+07 2.5e+07
Area (Sq. microns)

...

+

•
...
•
x

•

+

<l

x •
* •

... x

•

I

2.7e+07

x

• *

Figure 6: area and delay variations of MAHA design with two adders (with varying aspect ratios).
Design assumes 16 bit words.

17

Style Percentage variation
Adder#l Adder#2 Area Delay

Ripple carry Ripple carry 21.93 104.31
Ripple carry 4-bit CLA 21.23 107.24
Ripple carry 8-bit CLA 17.67 56.08
Ripple carry Full CLA 15.86 54.88
4-bit CLA Ripple carry 17.74 61.94
4-bit CLA 4-bit CLA 15.78 56.22
4-bit CLA 8-bit CLA 15.19 64.50
4-bit CLA Full CLA 15.32 53.43
8-bit CLA Ripple carry 12.29 56.44
8-bit CLA 4-bit CLA 18.12 64.88
8-bit CLA 8-bit CLA 17.60 63.14
8-bit CLA Full CLA 17.38 66.67
Full CLA Ripple carry 14.81 66.92
Full CLA 4-bit CLA 16.49 63.18
Full CLA 8-bit CLA 13.41 72.94
Full CLA Full CLA 15.28 56.90

Over all designs I 29.85 I 148.26

Table 3: Percentage variation in area and delay for 16 bit Maha with two adders

18

A Results of the Adder experiments

19

I
E

~

120.0

g
~ 100.0

~

..

.;.

80.0

~9ie+o5

2.0e+06

1.5e+06

1.0e+06

120.0

~ 100.0

~

80.0

1.0e+06 1.5e+06 2.0e+06
Area (Sq microns)

0.0
Log(Aspect ratio)

·1,0 0.0
Log(Aapect ratio)

2.59+06

3.0e+08 .---~-----------~----

2.0e+08

1.0e+08

--ADD_B_CLA
~ADD_B_CS

~ADD_B_MED

4---4 ADD_B_MED2
<l--<I ADD_B_RC

0.0e+OO .___ _ _._ _ __._ __ .___ _ _._ _ ___. __ ..._ _ __._ _ __.

·2.0 ·1.0 0.0
Log(Aspect ratio)

1.0 2.0

350.0

300.0

g
>- 250.0

~
200.0

150.0

100.0'----"L.::=----'---...L..--...l..----'----'
1.0e+06 2.0e+06 3.0e+06 4.0e+06

Area (Sq. microns)

i 3.0e+06

~
~ < 2.0e+06

1 ·0e+0!'.2 o _ __. ___ 1.o __ .___ o.-o-....... _-1,_.o _ __, _ __,2.o

350.0

300.0

g
.f 250.0

0

200.0

150.0

Log(Aspect ratio)

100·~2 o _ __, ___ -'1.-o-~---'o 0-------1~.o--'---2 o

Log(Aspect ratio)

1.0e~ --~------~------~-~

B.Oe.+-08

! 6.0e+OB

._..ADD_ 16_CLA
G--€l ADD_ 18_CS
~ADD_16_MED

4---4 ADD_16_MED2
<r-<IADD_16_RC

.
J 4.0e.+-08

2.0e+08

o.0e~2 o _ __, ___ _.1.-o-~--o o---'--1~.o--'---2 o

Log(Aspect ratio)

Figure 7: area and delay variations of (a) 8 and (b) 16 bits adders (with varying aspect ratios)

20

600.0 .---,-----,-------.----r----r---,

500.0

g 400.0

iU'
8 300.0

200.0

100.0'----.L----~---'----'----'---~

2.0e+06 4.0e+-06 6.0e+-06 8.0e+-06
Area (Sq microns)

l 6.0e+06

·~
O'

~

'° ~ 4.0e+06

500.0

'Oi' 400.0
s
i;'
8 300.0

200.0

0.0
Log(Aspect ratio)

100·~2 o _ __. ___ ~1.-o--'---0 0---'--1~.o--'---2~.o

Log(A1pect ratio)

5.0e+09 r---....... --....--...---...---.--..---.---

4.0e+09

iU' 3.0e+09

~

~ 2.0e+09

1.0e+09

--ADD_32_CLA
G--€l ADD_32_CS
~ ADD_32_MED
.ii.----.t. ADD_32_MED2
<l--<I ADD_32_RC

O.Oe+OO .___ _ _._ _ __.. __ ..__ _ _.._ _ __. __ ..._ _ _... _ __,

-2.0 -1.0 o.o
Log(Aspect ratio)

1.0 2.0

.

1500.0 ,----,---,---.--.---.--~-~----.-~

1000.0

500.0

0.0 '-----'---'---'---'---'--~-"---'----'----'
4.0e+-06 6.0e+-06 8.De+-06 1.0e+-07 1.2e+-07 1.4e+-07

Area (Sq. microns)

1.2e+-07

J 1.Qe+-07

~
~ 8.Qe+-06

<

6.0e+-06

4.0e+-06 '----'----'---'----'----'---.L----'--~
-2.0 -1.0 0.0 1.0 2.0

Log(Aspect ratio)

1000.0

500.0

0.0 '----'---'""--.L----'-----'--"----'----'
-2.0 -1.0 0.0 1.0 2.0

Log(Aspect ratio)

1.5e+10 .----.---....--~--r---....--...---r---,

1.0e+10

--ADD_64_CLA
C3--EJ ADD_64_CS
~ ADD_64_MED
.ii.----.t. ADD_64_MED2
<l---<l ADD_64_RC

~
5.0e+-09

o.0e~2 o _ __. ___ 1~.o--'---~o.~o--'""--1~.o---'~-2~.o

Log(Aspect ratio)

Figure 8: area and delay variations of (a) 32 and (b) 64 bits adders (with varying aspect ratios)

21

r -
~f'~ V-

3000.0 -

:[
>- 2000.0 -

~

1000.0 -

0.0 '-----'----'-1 --~-~'~-_,__ __ ..__ , _ _,__ _ __,

5.0e+06 1.0e+-07 1.Se+-07 2.Qe+-07 2.Se+-07
Area (Sq microns)

~
1.5e+07

.. .:.

1.0e+07

s.0e+~2~.o----'--.~1.o--~--o.f-o-~--1~.o--~-2~.o

Log(Aspect ratio)

3000.0

~ 2000.0

~

1000.0

0.0 ~-~-~--~-~-~--~-~-~
·2.0 • 1.0 0.0 1.0 2.0

Log(Aapect ratio)

5.0e+10 ...--....... - --..---...... --.--~--.-----.

4.0e+10

10' 3.0e+10

- ADD_96_CLA
G--€l ADD_96_CS
o----<> ADD_96_MED
- ADD_96_MED2
~ADD_96_RC

~

~ 2.0e+10

1.0e+10

O.Oe+OO .____.._.__~--~------'--""-------'
·2.0 ·1.0 o.o

Log(Aspect ratio)
1.0 2.0

4000.0 .---.,---.,--,--.,--..,---,.---.,---...,

3000.0 f- 4(("
! 11-
! 2000.0 -

1000.0 -

2.Se+-07

-

I I I

1.Se+-07 2.Qe+-07 2.Se+-07 3.0e+-07
Area (Sq. microns)

i
~ 2.Qe+-07

~

/;'

1.Se+-07

1.0e+-07 ~-~-~--~-~-~--~-~-~
·2.0 • 1.0 o.o 1.0 2.0

Log(Aspect ratio)

3000.0

:[
~ 2000.0

2;

1000.0

0.0 '-----'----'---'-----'-----'---~---'----'
·2.0 • 1.0 0.0 1.0 2.0

Log(Aspect ratio)

5.0e+10 .----.---..,.--.----.---..,.--..,---,.----,

4.0e+10

....._ADD_ 128_CLA
~ADD_128_RC

o----<> ADD_128_MED
-ADD_128_MED2

~ 3.0e+10

J
2.0e+10

1.0e+10 L _ _.__ _ _1__:~~~~~:,_:_ _ _t__---'-_ _J
·2.0 • 1.0 0.0 1.0 2.0

Log(Aspect ratio)

Figure 9: area and delay variations of (a) 96 and (b) 128 bits adders (with varying aspect ratios)

22

References

[1] J. Granacki and A. Parker, "The effect of register-transfer design tradeoffs on chip area and

performance," in Proceedings of the 20th Design Automation Conference, 1982.

[2] M. McFarland, "Using bottom-up design techniques in the synthesis of digital hardware from

abstract behavioral specifications," in Proc. 23rd Design Automation Conj., pp. 474-480,

IEEE/ ACM, 1986.

[3] M. McFarland, "Reevaluating the design space for register-transfer hardware synthesis," in

Proc. ICCAD-87, pp. 262-265, 1987.

[4] F. Brewer and D. Gajski, "Chippe: A system for constraint driven behavioral synthesis," IEEE

Trans. CAD, vol. CAD-9, pp. 681-695, July 1990.

[5] B. M. Pangrle and D. D. Gajski, "Design tools for intelligent silicon compilation," IEEE Trans.

CAD, vol. CAD-6, no. 6, pp. 1098-1112, 1987.

[6] D. W. Knapp, "Datapath optimization using feedback," in Proc. EDAC-91, pp. 129-134, Feb.

1991.

[7] D. W. Knapp, "An interactive tool for register level structure optimization," in Proc. 26th

Design Autiomation Conj., pp. 589-601, June 1989.

[8] J. Weng and A. C. Parker, "3-D scheduling: high-level synthesis with floorplanning," tech.

rep., Dept. of EE-Systems, USC, 1991.

[9] A. C.-H. Wu, V. Chaiyakul, and D. D. Gajski, "Layout-area models for high-level synthesis,"

in Proc. ICCAD-91, pp. 34-37, Sept. 1991.

[10] V. Chaiyakul, A. Wu, and D. Gajski, "Timing models for high-level synthesis," in Proc.

EuroDAC-92, 1992.

[11] C. Ramachandran, F. J. Kurdahi, D. Gajski, V. Chayakul, and A. Wu, "Accurate layout area

and delay modeling for system level design," in Proc. ICCAD-92, Nov. 1992.

[12] N. D. Dutt and J. R. Kipps, "Bridging high-level synthesis to RTL technology libraries," in

Proc. 28th Design Automation Conference, 1991.

[13] F. J. Kurdahi and C. Ramachandran, "LAST: A layout area and shape function estimator for

high level applications," in Proc. Second European Conj. on Design Automation, Feb. 1991.

[14] C. Ramachandran and F. J. Kurdahi, "TELE: a timing evaluator using layout estimation for

high level applications," in Proc. EDAC-92, 1992.

23

[15) A. Parker, J. Pizarro, and M. Mlinar, "Maha: A program for datapath synthesis,'' in Proceed­

ings of the 23rd Design Automation Conference, pp. 461-466, IEEE and ACM, 1986.

[16) F. Brewer and D. D. Gajski, "An expert system paradigm for design,'' in Proc. 23rd DAG,

1986.

[17] L. Ramachandran and D. Gajski, "CHASSIS: A combined hardware selection and scheduling

technique for peformance-driven synthesis,'' Tech. Rep. 91-20, Dept. oflCS, Univ. of California,

Irvine, Feb. 1991.

[18] C. Ramachandran and F. J. Kurdahi, "A combined topological and functionality based delay

estimation using a layout-driven approach for high level applications," in Proc. Euro-DAG 92,

Sept. 1992.

[19] P. Gutberlet, J. Muller, H. Kramer, and W. Rosenstiel, "Automatic module allocation in high

level synthesis," in Proc. EuroDAC-92, 1992.

24

