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Abstract 

Buildings  in  cities  consume up to  70% of  all  primary energy.  To achieve
cities’ energy and climate goals, it is necessary to reduce energy use and
associated  greenhouse  gas  emissions  in  buildings  through  energy
conservation and efficiency improvements. Computational tools empowered
with rich urban datasets can model performance of buildings at the urban
scale  to  provide  quantitative  insights  for  stakeholders  and  inform  their
decision  making  on  urban  energy  planning,  as  well  as  building  energy
retrofits at scale, to achieve efficiency, sustainability, and resilience of urban
buildings. 

Designing and operating urban buildings as a group (from a city block to a
district to an entire city) rather than as single individuals requires simulation
and optimization to account for interactions among buildings and between
buildings and their surrounding urban environment, and for district energy
systems serving multiple buildings with diverse thermal loads across space
and time. When hundreds or more buildings are involved in typical urban
building  energy  modeling  (UBEM)  to  estimate  annual  energy  demand,
evaluate design or retrofit options, and quantify impacts of extreme weather
events or climate change, it is crucial to integrate urban datasets and UBEM
tools  in  a  seamless  automatic  workflow  with  cloud  or  high-performance
computing for users including urban planners, designers and researchers.

This paper presents ten questions that highlight significant UBEM research
and applications.  The  proposed  answers  aim to  stimulate  discussion  and
provide insights into the current and future research on UBEM, and more
importantly, to inspire new and important questions from young researchers
in the field.

Keywords

Building energy use; energy efficiency; urban systems; urban building 
energy modeling (UBEM); urban energy planning; building performance 
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1. Introduction

Cities consume over two-thirds of the world's energy and account for more
than 70% of  global CO2 emissions (C40.org). Based on the United Nation’s
prediction (un.org), the global urban population is expected to rise from 3.5
billion in 2017 to 5 billion by 2030, and energy and infrastructure choices
made in the intervening years will define the difference between strong and
stable  urban  spaces  and  crumbling  infrastructure  unable  to  serve  our
competitive  needs.  In  the  United  States,  more  than  two-thirds  of  the
population lives in urban areas that are trying to manage growth and build
for resilience in the face of more extreme weather events, while much of the
aging  U.S.  urban  infrastructure—including  the  buildings,  transmission
systems, gas pipelines, and electricity grid—need to be repaired or replaced.

Urbanization is one of the great challenges of this century, with linkages to
climate change and the need to develop sustainable use of energy and other
natural  resources.  Urban  energy  models  aim  to  explore  opportunities  to
address these issues by combining the data generated in cities with new
energy simulation tools. Urban computational tools combine urban sensing,
data  management,  and  data  analytics  to  evaluate  city-scale  energy  and
environmental  systems. Urban modeling is an interdisciplinary field where
computer  science  meets  city-related  fields  like  transportation,  civil
engineering,  energy  supply  and demand analysis,  environmental  science,
economics, ecology, and sociology in the context of urban spaces.

With buildings responsible for about one-third of global energy consumption
and a quarter of carbon dioxide (CO2) emissions, there is a huge, untapped
opportunity to create and transform cities to more sustainable environments
by  improving  building  energy  efficiency.  More  efficient  buildings  can
generate  economic  benefits,  reduce  environmental  impacts,  and  improve
people’s  quality  of  life. Urban  energy  analysis  is  a  complex,  multi-scale,
multi-sector  challenge.  Cities  need  to  be  able  to  evaluate  their  current
energy  use  and  explore  how  to  compare,  rank,  contrast,  and  estimate
strategies to reduce energy use and environmental impacts. Cities also need
to evaluate building retrofit opportunities for their local stock considering the
energy usage, vintage, size, type, ownership, and socioeconomic capabilities
of  each  neighborhood.  Advanced  shared  energy  infrastructures,  such  as
district  heating  and  cooling  systems,  can  achieve  much  higher  energy
efficiency by combining diverse loads, making the integrated energy use of a
group of buildings less than the simple sum of the individual buildings. 

Designing  and  operating  interconnected  urban  systems  requires  dynamic
computer  simulation  and  optimization  to  account  for  the  complexity  of
energy  systems,  such  as  different  types  of  building  systems,  operating
patterns, uncertainty and variability of weather, microclimate and urban heat
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island  (UHI)  effects,  and  occupant  behavior.  Recent  efforts  to  develop
decision support  tools  have integrated these computational  urban models
with  geographical  information  systems  (GIS)  to  obtain  input  data  for
hundreds  to  thousands  of  buildings,  to  model  their  performance  and  to
visualize  results  in  a  format  that  is  accessible  to  urban  planners
and designers. 

Building energy modeling has been widely used to inform building energy
efficient  design,  demonstrate  code  compliance,  gain  credits  towards
performance ratings, assess retrofit options, and optimize operations (Hong,
Langevin and Sun, 2018). ASHRAE Standard 209 defines typical applications
of building energy modeling across the building life cycle. These applications
can cross over several spatial and temporal scales for various stakeholders
to  inform  their  decision  making  on  building  energy  efficiency,  demand
flexibility,  occupant comfort,  and reduction of energy use and greenhouse
gas (GHG) emissions.

Urban Building Energy Modeling (UBEM),  described by Reinhart and Cerezo
Davila  (2016), is  a growing field in  building  energy modeling,  covering a
spatial scale from a city block to a district  to an entire city. UBEM has a
strong potential to support the design and optimization of urban buildings at
a large-scale for energy efficiency, sustainability, and resilience in cities. A
few papers provide diverse reviews of UBEM. 

Reinhart and Cerezo Davila (2016) reviewed emerging simulation methods
and implementation workflows for bottom-up urban building energy models.
Their review covers simulation input organization, thermal model generation
and execution, and result validation. They discussed the main challenges in
model  calibration  and  results  validation  due  to  the  lack  of  large-scale
measured building  energy use data.  They also  called  for  UBEMs to  have
stronger  intellectual  engagement  between  planners,  policymakers,  utility
representatives, and the building modeling community in order to achieve a
larger societal impact.

Sola  et  al. (2018) reviewed  simulation  tools  to  build  urban-scale  energy
models,  which  include  five  sub-models:  an  urban  meteorology  model,  a
building  energy  demand  model,  a  building  energy  supply  model,  a
transportation energy model, and an energy optimization model. Sola et al.’s
review focuses on the capacities of the simulation tools and how they work
together  through  co-simulation.  Ferrari  et  al. (2019) reviewed  17  tools
targeted  on  an  urban/district  scale  that  can  evaluate  several  energy
services, sources, and/or technologies. These tools were classified based on
their defined features: analysis type, operation spatial scale, outputs time
scale, energy service, and license. Among them, six user-friendly tools were
identified  (energyPRO,  HOMER,  iHOGA,  EnergyPLAN,  SIREN,  and  WebOpt)
that can provide hourly energy calculations and can be considered viable for
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widespread use.  Ferrari, Zagarella, Caputo, and Bonomolo (2019) reviewed
methods  and  tools  for  estimating  hourly  energy  demand  profiles  at  the
district level. Frayssinet et al. (2018) conducted an overview of city energy
simulation models capturing short (hourly or sub-hourly)  energy dynamics
and reviewed the related modeling techniques using detailed approaches.
Their analysis pointed out that computational costs of such simulations are a
key  issue  to  overcome  to  achieve  reliable  microsimulation  of  the  power
demand of  urban areas.  Li  et  al. (2017) provided  a  review of  the  broad
categories  of  energy  models  for  urban  buildings  and  describes  the  basic
workflow  of  physics-based,  bottom-up  models  and  their  applications  in
simulating urban-scale building energy use. Strengths and weaknesses of the
reviewed models  were presented,  followed by a discussion of  challenging
issues associated with model preparation and calibration. 

Moghadam  et  al. (2017) provided  a  systematic  review of  existing  spatial
urban energy planning approaches and built environment applications. Their
review of UBEM focuses on modeling approaches, including both top-down
and bottom-up approaches. The bottom-up approach is further categorized
into  building-physics  or  engineering  models  and  statistical  models.  They
summarized  from  the  literature  that  the  top-down  approach  has  been
considered suitable for large-scale analysis and not for the identification of
the possible improvements at the building sector level at urban and regional
levels; while the bottom-up approach has been recognized as suitable for
urban and regional analyses. 

Keirstead, Jennings, and Sivakumar (2012) proposed a theoretical definition
of an urban energy system model and then evaluated the state of current
practice in five key areas—technology design, building design, urban climate,
systems design, and policy assessment—each with distinct and incomplete
interpretations  of  the problem domain.  They reviewed an additional  field,
land use and transportation modeling, which has direct relevance to the use
of energy in cities. Despite their diversity, these approaches to urban energy
system  modeling  share  four  common  challenges:  understanding  model
complexity,  data  quality  and  uncertainty,  model  integration,  and  policy
relevance. They examined the opportunities for improving current practice in
urban  energy  systems  modeling,  focusing  on  the  potential  of  sensitivity
analysis  and cloud computing,  data collection  and integration techniques,
and the use of activity-based modeling as an integrating framework. 

Although the existing literature covers various aspects of UBEM, each has a
different  focus  and  does  not  address  the  comprehensive  view  of  all  the
important aspects of an ecosystem for UBEM. They especially lack in-depth
discussion  of  UBEM’s  potential  applications,  associated  challenges,  and
future  research  opportunities.  To  address  the  literature  gaps,  and  more
importantly, to share authors’ visions on UBEM, this article provides up-to-
date research trends and insights for the international community, to help
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improve understanding of urban building energy modeling and to inform its
research and application in the form of 10 questions:

 Description and importance of UBEM (Questions 1 and 2)
 Review of available UBEM tools (Question 3)
 Available urban datasets and data representation standards (Questions

4 and 5)
 Sources of local weather data for use in UBEM (Question 6)
 Methods to couple multi-physics urban system models (Question 7)
 Calibration methods of UBEM (Question 8)
 Example applications of UBEM (Question 9)
 Main challenges of UBEM (Question 10)

2. Ten Questions

2.1 Question 1: What is urban building energy modeling (UBEM)?

Urban building energy modeling refers to the computational modeling and
simulation of the performance of a group of buildings in the urban context, to
account  for  not  only  the  dynamics  of  individual  buildings  but  more
importantly, the inter-building effects and urban microclimate. The goal is to
provide  quantitative  insights  (e.g.,  annual  or  seasonal  energy  use  and
demand, potential of renewable power generation) to inform urban building
design  and  operation,  as  well  as  energy  policymaking.  Urban  building
performance metrics include near-term operational efficiency (e.g., energy
use and demand at the daily, monthly, and yearly time frames), short-term
demand response (e.g., electric load shedding and shifting at the minute to
hour time frame), long-term sustainability (e.g., GHG emissions, impacts of
climate change on energy demand at the year to decade time frame), and
event-driven  resilience  (e.g.,  impact  of  extreme  weather  events  such  as
heatwaves and wildfire on energy use, power supply, and occupant health at
the  day  time frame).  UBEM can  also  estimate  the  potential  of  renewable
power generation from photovoltaics (PV) or wind turbine systems located on
rooftops  or  integrated  into  building  facades.  For  electric  vehicle  (EV)
charging that uses the building power system, UBEM can integrate the EV
loads into the building’s overall energy demand.

Depending  on user cases,  UBEM can have different  spatial  and temporal
scales. UBEM can cover spatial scales from tens of buildings in a city block to
hundreds or thousands of buildings in a district, and to tens or hundreds of
thousands of buildings in an entire city. UBEM typical covers temporal scales
from an hour to a day, a week, a month, a year, and one or multiple decades.

Most of UBEM do not necessarily take the urban micro-climate effects into
account. Usually, there is a single weather file representing either the local
or entire city’s meteorological conditions. Only a few models are coupled to
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micro-climate simulations; and even though most of them don't represent
long-wave radiation exchange between buildings in a sufficient manner.

UBEM  can  use  different  modeling  approaches.  A  top-down  approach  is
usually  data-driven,  with  statistical  and  regression  models  integrating
building stock data, technology adoption models, and economical models to
provide high-level building energy policy evaluation and scenario analysis, as
well as a technology R&D roadmap. A bottom-up approach models building
subsectors  or  down  to  individual  buildings,  using  fully  detailed  dynamic
building physics models (white box), reduced-order dynamic models (grey
box),  or  data-driven  models  (black  box).  A  detailed  modeling  approach
usually requires a much larger amount of data to be input to the UBEM, and
requires much more computing resources.

Determination of UBEM at the appropriate spatial and temporal scales, as
well as modeling approaches, depends on the use cases, i.e., the questions
to be answered. Other important factors to consider include availability and
quality  of  input  data,  user  experience  with  the  chosen  UBEM tools,  and
available  computing  resources.  Users  and  stakeholders  of  UBEM  include
urban planners, designers, architects, engineers, energy modelers, utilities,
city  managers,  researchers,  technology  vendors,  governments,  and
policymakers. 

Figure  1  illustrates  the  key components  of  a  UBEM ecosystem,  including
datasets, simulation workflows, results, and stakeholder metrics to support
decision making.

Figure 1. Overview of Urban Building Energy Modeling

7



2.2 Question 2: Why is urban building energy modeling needed? 

Existing methods to estimate urban building energy demand using a limited
number of archetype buildings and scaling up by building floor area do not
fully  capture  the  complexity  of  urban  buildings,  especially  their
interconnections. The current urban energy flow modeling is mostly based on
top-down building stock energy models,  starting with the building energy
demand for one region and successively subdividing the whole stock into
smaller subsections. These top-down models provide estimates of the energy
analysis if more buildings of a certain type were to be built. However, such
models  are  limited  in  their  predictive  ability  when  investigating  the
performance of a group of buildings in an urban context. At this urban scale,
bottom-up urban building energy models are expected to achieve the goals
of  investigating/planning  the  integrated  energy  supply-demand  scenarios.
Bottom-up  models  are  based  on  physical  descriptions  and  engineering
calculations  in  and  around  buildings,  which  are  used  to  analyze  the
operational energy costs and dynamic performance for the group of buildings
at high spatial and temporal resolutions.

UBEM is not about scaling up energy modeling from one individual building
to many buildings in a linear fashion; it is about capturing the dynamic and
complex  interconnection  and  interdependencies  between  urban  buildings
and  the  urban  environment.  Urban  environment  strongly  influences  the
performance of surrounding buildings, while buildings strongly influence the
urban environment. Compared with modeling buildings as solo individuals,
UBEM  should  capture  the  interactions  between  buildings  (e.g.,  shading,
longwave radiant heat exchange, solar reflection) and between buildings and
the urban microclimate (e.g., building heat release to the ambient air, local
climate such as urban heat island effect influences on building performance),
as illustrated in Figure 2. It should be noted that most current UBEM tools,
e.g.,  UMI,  CitySim,  Teaser,  and  CityEnergyAnalyst,  don't  consider  the
coupling effect of heat emissions from buildings heating up the local micro-
climate which further influences the building energy demand.

UBEM also simulates on-site renewable energy generation (mainly PV) and
district  energy systems serving a group of  buildings  taking advantage of
their  thermal load diversity.  Considering urban buildings as part of  urban
systems (a system of systems) will  enable greater performance than just
considering them the simple sum of individual buildings.
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(a)Shading and long-wave radiant heat exchange between exterior
surfaces of buildings, and interaction of buildings with the local

ambient air

(b)Heat emissions from buildings to ambient air through five mechanisms

Figure 2. Interconnections between buildings and environment in an urban
context

UBEM is  a  powerful  tool  that  provides  simulation  and  analysis  for  urban
energy  planning  and  design,  carbon  emissions  from  buildings,  and  local
building energy or GHG regulations and code compliance. UBEM can support
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users in answering a broad array of important questions about technology
deployment and policy for urban buildings, such as: 

 Which types of buildings have the greatest potential for energy savings
and cost-effective retrofits? 

 Which energy efficiency technologies  can help  achieve the greatest
energy savings? 

 Where in the city are there districts with the right mix of load density
and  diversity  to  support  district  energy  systems,  or  local  energy
storage to reduce energy use? 

 How much energy savings can be expected if all buildings in a city use
a specific retrofit, such as replacing single-pane windows with double-
pane  windows,  or  fluorescent  lights  with  light-emitting  diode  (LED)
lights? 

 If all buildings in a city upgrade to meet the current building energy
code, how much energy savings and peak electricity demand reduction
can be achieved? 

 What is the impact of climate change on the energy use of the building
stock in the next 30 or 50 years? 

 What is the impact of extreme heatwaves on the energy demand of
buildings with air-conditioning and on occupants’ health in buildings
without air-conditioning?

 How  to  identify  buildings  vulnerable  to  heat  waves  and  evaluate
retrofits to address the vulnerability? 

 If solar PV is installed on available roofs of all buildings in a city, how
much  electricity  can  be  generated?  How  does  this  meet  the  city’s
renewable energy goal?  What  is  the cost  of  such a PV deployment
plan? How does this change the city’s building energy demand?

 What  are  effective  technologies  to  mitigate  the  urban  heat  island
effect?  How  much  of  UHI  effect  is  due  to  the  heat  released  from
buildings? These questions can be answered through coupling of UBEM
with urban microclimate simulations,

2.3 Question 3: What are the available UBEM tools?

Today’s  existing  UBEM  tools  have  diverse  fidelity  and  requirements  of
computational resources and user inputs. Some UBEM tools are web-based
(e.g., CityBES) while the majority are stand-alone applications (e.g., CitySim
and  UMI).  Some  UBEM  tools  use  physics-based  simulation  engines  (e.g.,
CityBES  and  UrbanOpt  use  EnergyPlus)  while  others  use  reduced-order
models  (e.g.,  SimStadt,  CitySim,  City  Energy  Analyst,  and  TASER).  Most
UBEM tools integrate GIS-based datasets or use CityGML-based virtual city
models.  More  than  20  UBEM  tools  were  selected  from  the  literature  for
review  and  are  presented  with  a  taxonomy  of  the  tools’  spatial  scale,
modeling  approach,  data  input,  and  application  platform.  Table  1
summarizes the selected UBEM tools for review. 
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Table 1. Urban building energy modeling tools selected for review

Approach Tool Developer Calculation 
method

Target 
Users

Reference

Physics-
based  
dynamic 
simualtion 
method

CityBES

Web-based data 
and computing 
platform to 
evaluate energy 
performance of city
buildings

LBNL EnergyPlus

Urban 
planners
, policy 
makers

(Hong, Chen, 
Lee, et al., 

2016)

MIT UBEM 
Tool

Tool for citywide 
hourly energy 
demand load 
calculation

MIT EnergyPlus

Urban 
planners
, policy 
makers

(Cerezo Davila,
Reinhart and 

Bemis, 2016)

UMI 

Urban modeling 
interface for energy
performance 
analysis of 
neighborhoods

MIT EnergyPlus

District 
energy 
manager
s

(Reinhart et 

al., 2013)

Virtual EPB

Automatic building 
energy model 
creation leveraging
machine learning  
simulation using 
high performance 
computing

ORNL EnergyPlus

Urban 
planners
, policy 
makers

(Ingraham and 

New, 2018)

Tool by 
Columbia 
University

Tool for 
community-scale 
energy 
performance 
analyses using 
calibrated building 
energy models

Columbia 
University EnergyPlus

District 
energy 
manager
s

(Waite and 

Modi, 2014)

Tool by 
Cambridge 
University

Tool for building 
energy analysis for 
community scale 
and display 
emission map

Cambridge
University EnergyPlus

District 
energy 
manager
s

(Tian et al., 

2015)

UrbanOPT

Modeling tool to 
integrate energy 
loads and 
renewable energy 
at the district level 
to develop

NREL
EnergyPlus 
and 
OpenStudio

District 
energy 
manager
s

(NREL, 2018)

COFFEE

Tool for utility 
customer 
optimization for 
furthering energy 
efficiency 

NREL
EnergyPlus 
and 
OpenStudio

Utility 
program (NREL, 2016b)

CitySim

Decision support 
tool for urban 
energy planners 
and stakeholders to
minimize energy 
usage and emission

EPFL CitySim solver

Urban 
planners
, policy 
makers

(Vermeulen, 
Kämpf and 

Beckers, 2013)

SEMANCO
Semantic tools for 
carbon reduction in
urban planning

FUNITEC
Tool specific 
simulation 
engine

Urban 
planners
, policy 
makers

(FUNITEC, 

2013)

Reduced-
order 
calculation
method

SimStadt
Urban energy tool 
for energy analysis 
for city districts

Hochschul
e für 
Technik 
Stuttgart

ISO / CEN 
standards 
based 
reduced-order
model

Urban 
planners
, policy 
makers

(Nouvel, 
Brassel, et al., 

2015)

Energy Atlas Spatio-semantic 
representation of 
the city structure 
including energy 

Technisch
e 
Universität
München

ISO / CEN 
standards 
based 
reduced-order

Urban 
planners
, policy 
makers

(Kaden and 

Kolbe, 2013)
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related information model

LakeSIM

Modeling tool for 
infrastructure to 
help analyze 
energy efficiency of
new city block 
development

ANL

ISO / CEN 
standards 
based 
reduced-order
model

Urban 
planners
, policy 
makers

(Bergerson et 

al., 2015)

Tool by 
Georgia 
Institue of 
Technology

A tool for building 
energy modeling 
with GIS at urban 
scale

Georgia 
Institute of
Technolog
y

ISO / CEN 
standards 
based 
reduced-order
model

Urban 
planners
, policy 
makers

(Qi Li, Steven 
Jige Quan, 
Godfried 
Augenbroe, 
Perry Pei-Ju 

Yang1, 2015)

OpenIDEAS

Open-source 
framework for 
integrated district 
energy assessment

KU Leuven
Modelica 
based reduced
order model

District 
energy 
manager
s

(Baetens, R., 
De Coninck, R.,
Jorissen, F., 
Picard, D., 
Helsen, L., 

Saelens, 2015)

TEASER

Tool for multiple 
building energy 
performance 
evaluation

RWTH 
Aachen 
University

Modelica-
based reduced
order model

District 
energy 
manager
s

(Remmen et 

al., 2017)

City Energy 
Analyst

Computational 
framework for the 
analysis and
optimization of 
energy systems in 
neighborhoods and 
city districts

ETH Zurich
Tool specific 
calculation 
modules

Urban 
planners
, policy 
makers

(Fonseca et al.,

2016)

Data-
driven 
method

UrbanFootprin
t

Planning tool for 
access to land use, 
policy, and 
resource across a 
range of sectors

Calthorpe 
Analytics

Private data-
driven 
solution 

Urban 
planners
, policy 
makers

(Calthorpe 
Analytics, 

2017)

Tool by New 
York 
University

Web-based tool to 
visualize energy 
benchmark and 
predict energy 
performance

New York 
University

Data-driven 
regression 
model

Urban 
planners
, policy 
makers

(Kontokosta et

al., 2015)

CoBAM

Tool to estimate 
the adoption of 
energy efficient 
technologies for 
building stocks

ANL

Data-driven 
regression 
model, ISO / 
CEN standards
based 
reduced-order
model

Policy 
makers

(Zhao, 
Martinez-
Moyano and 
Augenbroe, 

2011)

 2.3.1 UBEM tools by spatial scale

Utility  scale.  The Customer  Optimization  for  Energy  Efficiency (COFFEE)
tool generates baseline energy models for buildings in the utility territory of
the National Grid. It  creates three-dimensional (3D) building models using
Google  imagery to determine footprints,  then refines models  for  financial
analysis, leveraging billing data and incentive data. It uses OpenStudio for
model creation, Building Component Library (BCL) for retrofit measures, and
EnergyPlus  for  a  simulation  engine  (NREL,  2016b).  Virtual  EPB generates
utility-scale  building  energy  models  using  automatic  building  detection
techniques from imagery data (Ingraham and New, 2018).

12



City scale. Several  UBEM tools  cover city-scale  energy analysis.  CityBES
(Hong  et  al.  2016)  is  an  open  data  and  computing  platform  for  urban
buildings.  CityBES offers  building  energy modeling  and analysis  at  a  city
scale, with various retrofit scenarios considering a collection of 100 building
technologies with performance and cost data for hundreds of thousands of
buildings in U.S. cities including Boston, Chicago, Los Angeles, San Francisco,
Washington D.C., San Jose, and New York City  (Hong et al., 2018). Energy
Atlas  enables  the  heating  demand  estimation  from  the  spatio-semantic
representation of energy models of the 3D geometry of 550,000 individual
buildings  of  Berlin,  Germany  (Kaden  and  Kolbe,  2013).  UMI  enables  an
analysis of a citywide building energy performance and retrofit strategies for
92,000  buildings  in  Boston  (Reinhart  et  al.,  2013).  LakeSim  provides  an
urban scale building energy analysis for various policy scenarios and urban
morphology for 50,000 buildings in Manhattan, New York city (Bergerson et
al., 2015). TEASER offers a city scale analysis and energy supply by district
energy systems; a case study for about 3,000 buildings in German cities with
combined heating and power plant was provided (Remmen et al., 2017).

District scale.  City Energy Analyst offers energy demand/supply analysis
for  buildings  at  a  district  scale  to  support  decision  making  of  energy
efficiency  planning  (Fonseca  et  al.,  2016).  OpenIDEAS  is  an  open-source
Modelica-based tool to provide solutions for optimal district energy systems
(Baetens  et  al.,  2012).  SimStadt  provides  a  quick  energy  modeling  and
simulation  environment  for  monthly  and  hourly  energy  analysis  of  city
districts.  Urban  Modeling  Interface  (UMI)  is  a  Rhino-based  design
environment  for  architects  and  urban  planners  to  evaluate  the
environmental performance of neighborhoods (Reinhart et al., 2013). CitySim
allows  energy  simulation  at  an  urban  district  scale  for  urban  form
optimization  and  retrofit  analysis  (Vermeulen,  Kämpf  and  Beckers,  2013;
Emmanuel and Kämpf, 2015). Cambridge University developed a simulation
framework to visualize emissions by building energy and transportation at a
parcel  scale,  integrating  data  from  GIS  and  cities’  energy  performance
certification databases (Tian et al., 2015). LakeSim helps analyze the energy
efficiency  planning  of  city  blocks  by  leveraging  GIS  data  and  prototype
buildings  (Baetens  et  al.,  2012).  Urban  Renewable  Building  and
Neighborhood optimization (URBANopt) is a simulation platform to capture
the potential benefits of load diversity and renewable energy at the district
scale (NREL, 2018). 

2.3.2 Modeling Approaches

Physics-based models.  Urban building energy modeling is available with
different modeling fidelities. Physics-based modeling approaches capturing
the full  dynamic of building performance offer the highest resolution.  The
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EnergyPlus (U.S. DOE BTO, 2019) simulation engine provides capabilities for
in-depth analysis of complex building systems. EnergyPlus prototype building
energy  models  (US  DOE,  2018a) enable  wide  adoption  of  EnergyPlus  for
urban building stock energy research. Urban energy modeling tools such as
CityBES  (Hong,  Chen,  Lee,  et  al.,  2016),  COFFEE  (NREL,  2016a),  UMI
(Reinhart  et  al.,  2013),  Massachusets  Institue  of  Technology  (MIT)  tool
(Cerezo  Davila,  Reinhart  and  Bemis,  2016),  and  Columbia  University  tool
(Waite and Modi, 2014) offer detailed energy performance analysis built atop
of the EnergyPlus engine for dynamic energy simulation of urban buildings.
Often  they  use  OpenStudio  Software  Development  Kit  (SDK)  (US  DOE,
2018b) to  generate  energy  models  for  EnergyPlus  simulations.  Another
dynamic simulation engine, IDA ICE (EQUA Simulation AB, 2017), is used to
replicate  the  energy  consumption  of  district  buildings  (Signature  and
Approach,  no date).  CitySim uses its  simplified simulation engine with an
optimization  of  urban  form  for  cooling  and  heating  demand  calculation
(Vermeulen, Kämpf and Beckers, 2013), while SEMANCO uses a tool specific
simulation engine to estimate energy usage (FUNITEC, 2013). 

Reduced-order  models.  Reduced-order  modeling  approaches  are  used
widely to provide a quick evaluation of urban building energy performance,
requiring simple inputs aligned with normatively structured model parameter
values.  There  are  different  forms  of  reduced-order  models.  Calculation
standards developed by the European Committee for Standardization (CEN)
and  the  International  Organization  for  Standardization  (ISO)  (CEN,  2008)
define  the  calculation  method  using  a  set  of  normative  statements
containing  the  physical  building  parameters  and  building  systems  for
different building types. Traditionally these normative calculation methods
have been used for energy performance rating in European countries (Poel,
van Cruchten and Balaras, 2007; Lee, Zhao and Augenbroe, 2013). ASHRAE
provides  a simple thermal  network  model  to represent  heat  transfer  and
thermal  dynamics  through  building  envelope  and  subsequent  effect  on
indoor  temperature  (ASHRAE,  2017).  The  reduced-order  models  have
modeling  accuracy  drawbacks,  yet  advantages  such  as  computational
efficiency and fewer inputs requirement, which empowered the development
of UBEM tools such as SimStadt  (Nouvel, Brassel,  et al., 2015), City Energy
Analyst (Fonseca et al., 2016), and an urban energy modeling application by
Gerogia Institue of Technology (Qi Li, Steven Jige Quan, Godfried Augenbroe,
Perry  Pei-Ju  Yang1,  2015).  TEASER  (Remmen  et  al.,  2017),  OpenIDEAS
(Baetens,  R.,  De Coninck,  R.,  Jorissen,  F.,  Picard,  D.,  Helsen,  L.,  Saelens,
2015) uses Modelica libraries  (Wetter and Treeck, 2018) that are based on
the reduced-order calculation method. 
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Data-driven models.  Data-driven modeling methods are applied to urban
building  energy prediction,  which  relies  on real  measured  data,  and pre-
defined databases for building type, vintage, and locational data. Regression
methods are used to derive inverse statistical models, which infer building
design or operational parameter inputs from known outputs such as energy
consumption  data,  locational  datasets,  and  public  records  (Zhao  and
Magoulès,  2012;  Koch,  2016).  A  web-based  tool  by  New  York  University
visualizes energy benchmark data from New York City’s Property Land Use
Tax  Lot  Output  (PLUTO)  database and  predicts  energy  performance  at  a
zipcode level using a linear regression model (Kontokosta et al., 2015). The
UrbanFootprint tool enables planning of energy saving scenarios for buildings
at city parcels leveraging its data library of energy use, environment, land
use, urban planning, and census  (Calthorpe Analytics, 2017). Some of the
challenges with empirically data-driven methods include: (1) training data is
required  for  model  development,  (2)  the  model  is  limited  to  a  specific
location and building type, and (3) there lacks a physic explanation of certain
parameters of the building performance. Commercial Building Agent-based
Model (CoBAM) is a good example of a model used to reconstruct a building
stock model using energy consumption survey data (Zhao, Martinez-Moyano
and  Augenbroe,  2011;  Zhao,  Lee  and  Augenbroe,  2015).  A  data-driven
machine  learning  model that integrates physics-based  energy  simulation
is  proposed  for  multiple  scales  from a single  building  to  the  urban level
(Nutkiewicz, Yang and Jain, 2017).

2.3.3 Type of input data

Data are crucial in urban scale energy modeling, and they usually come from
diverse sources. Thus, integrating and processing data into a standardized
data format are critical  for  effective interoperability  among urban energy
modeling applications. SimStadt  (Nouvel  et al., 2013), Energy Atlas  (Kaden
and  Kolbe,  2013),  and  TEASER  (Remmen  et  al.,  2017) use  the  City
Geography Markup Language (CityGML) (Open Geospatial Consortium, 2012)
for  modeling  and  exchange  of  3D  city  models.  GeoJSON  is  another
standardized data format, and it is used by the URBANopt analytics platform
(NREL, 2018). CityBES (Hong, Chen, Lee, et al., 2016) allows the use of both
the  CityGML  and  GeoJSON  data  formats.  The  MIT  tool  (Cerezo  Davila,
Reinhart  and  Bemis,  2016) processes  Shapefile  data  from city  GIS  data.
Many other tools are governed by custom data formats that meet their tool-
specific input requirements. 

2.3.4 Web-based vs. Standalone desktop applications

Recent  trends show that  many tools  leverage web interfaces to visualize
energy  data  for  benchmarking,  as  well  as  simulation  results  for  detailed
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analysis  of  urban  buildings.  A  web-based  tool  by  New  York  University
visualizes  urban  energy  use  and  prediction  from  benchmarking  data
(Kontokosta et al., 2015). E-City is a web platform used to provide GIS-based
visualization  of  the  whole  city  energy  balance  at  the  city  block  scale;  it
supports energy supply and demand balance planning (Amado et al., 2018).
Web-based tools create energy models of urban buildings in 3D laid over a
map system. They effectively display buildings filtered by size, type, location,
and  building  systems,  and  visualize  simulation  results  using  color-codes
layered to building models to explain energy performance levels (Hong et al.
2016; Nouvel et al., 2013; Reinhart, Timur Dogan, et al., 2013; Baetens, R.,
De Coninck, R., Jorissen, F., Picard, D., Helsen, L., Saelens, 2015; Emmanuel
and Kämpf, 2015; Cerezo Davila, Reinhart and Bemis, 2016). There are also
stand-alone desktop  application-based  tools  to  load data,  create  and run
energy  calculations,  and visualize  the  results;  these tools  typically  use  a
third-party graphical interface that interacts with a calculation engine or data
libraries  (Reinhart  et  al.,  2013;  Baetens,  R.,  De  Coninck,  R.,  Jorissen,  F.,
Picard, D., Helsen, L., Saelens, 2015; Emmanuel and Kämpf, 2015; Remmen
et al., 2017). 

2.4 Question 4: What are available datasets supporting UBEM? 

Development  of  city  datasets  to  support  UBEM is  a  fundamental  activity
(Chen  et  al.,  2019).  More  and more  cities  in  the  world  are  making  their
building  stock  data  publically  available  at  their  open  data  portals.  San
Francisco’s open data portal, DataSF (City of San Francisco, 2018), provides
building  geometry,  including  the  GIS-based  footprint  and  height  of  each
building. It also includes the county’s tax assessor’s records and the land use
dataset.  The San Francisco data  also  includes  the  public  building  energy
benchmarking ordinance data, which provides annual energy use and GHG
emissions  data  for  about  1,700  commercial  buildings  and  1,200  mixed
residential or multifamily buildings. The building permit dataset describing
changes to the buildings is also available. New York City’s open data portal,
NYC OpenData (City of New York, 2018), showed 314 results when searching
with  the  “buildings”  term,  containing  the  two-dimensional  (2D)  building
footprints as well as the 3D building models in CityGML format, the property
data  (building  information  system),  and  the  monthly  energy  cost  from a
select portfolio of city-owned buildings. Berlin’s open data portal, Berlin 3D –
Download Portal  (Berlin Business Location Center, 2017), provides detailed
3D geometry information of all the buildings in Berlin, including the detailed
texture of each building surface. Users can select an area and download the
data into 3D CityGML format with or without the textures. However, building
envelope  information  is  not  available.  Advanced  algorithms  may  be
developed in the future to detect the building envelope system from the
surface  textures.  Besides  the  cities’  open  data  portal,  some  geospatial
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mapping platforms also have many data related to buildings. OpenStreetMap
(OpenStreetMap Community, 2018) provides open data and allows users to
export  the  data  for  a  selected  area.  The  data  include  the  2D  building
footprint and a list of tags, such as building type, name, or height. Microsoft
released,  at  Github  (https://github.com/Microsoft/USBuildingFootprints),  an
open dataset of building footprint polygons in GeoJSON format for 125 million
buildings in the United States. The Open City Model is an initiative to provide
open CityGML data for all the buildings in the United States. It converted the
Microsoft building footprint dataset to the CityGML format (LOD1 and LOD2)
and added building height information for a limited number (about 10%) of
buildings. Other private maps or real estate services providers, e.g., Google
Maps and Zillow,  have detailed  information  for  buildings.  However,  those
data  are  private  and  typically  not  available  for  UBEM.  Google  also
established  a  dataset  search  engine
(https://toolbox.google.com/datasetsearch) that can help users find relevant
datasets for UBEM. Those data sources include both the building geometry
(footprint, height, and number of stories) and some basic building properties
(such as year of construction and use type). However, there are no detailed
building information related to construction type, occupancy, HVAC systems,
etc.

City-scale building datasets are crucial for UBEM. Various levels of building
characteristics data are needed to enable UBEM to support energy efficiency
decision  making.  These  data  include:  (1)  building  geometry,  footprint,
number of stories, and total floor area; (2) year built, and change history /
building  permits;  (3)  location  and  climate;  (4)  use  type  and  occupancy;
(5) energy systems, including HVAC, lighting, internal loads, and service hot
water; (6) building envelope, such as construction type, insulation for walls
and  roofs,  and  window  size,  location,  and  type;  and  (7)  actual  energy
consumption data and utility  bills.  These data may be available for some
individual buildings. Unfortunately, it is very difficult to collect those data for
a large number of  buildings at the city scale using the city’s open public
records. 

Building permit  records  provide  valuable information,  such as the project
year, upgraded building systems, altered building type, and so on. However,
the current  building permit  records  lack some key information needed to
improve  the building  energy baseline  model.  First,  the description  of  the
records  is  written  in  the  text  without  using  standard  terms.  Second,  the
description lacks quantitative information for the renovation projects, such
as the performance and capacity of the installed chillers, the properties of
the new windows, and the number of replaced lighting fixtures. Additionally,
many energy-sensitive renovations are not included in the building permit
records, since the original purpose of building permit applications was not to
monitor building energy performance improvements but to address safety
and city planning. 
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Besides  the  data  for  each  individual  building,  several  other  datasets  are
required for UBEM, including weather data, local building energy codes and
standards, utility rates, and cost data of building technologies. The historical
weather data in the typical  meteorological  year (TMY) format for building
performance  simulation  are  widely  available  for  more  than  2,100  cities
worldwide (U.S. DOE, 2019). More and more real-time weather data become
available from services like Weather Underground  (The Weather Company,
2018).  The local building energy codes and standards can help to provide
defaults  of  building  energy  efficiency  levels  when  the  detailed  system
information is not available. The local utility rates and cost information of the
building  technologies  are  necessary  to  perform  an  economic  analysis  of
energy conservation measures (ECMs) (Hong et al., 2015).

2.5 Question 5: What data models and tools represent the characteristics 
of urban buildings?

Building data from different cities or different departments of the same city
are  usually  represented  in  different  formats,  and  no  common  building
identifier  is  used to  link  the diverse sets  of  data.  For  San Francisco,  the
building GIS-based footprint data are provided in the Shapefile format, while
the building characteristics are stored in multiple files with Shapefile, fixed-
width text,  or comma-separated values (CSV) formats. Moreover,  different
terms  are  used  to  represent  the  same  data  elements  among  different
datasets. Table 2 lists some of the terms used for the same data elements in
the building datasets from San Francisco, Chicago, and Portland. Moreover,
the same data element in different datasets may represent slightly different
things.  For  example,  in  Table 2,  the building height  in  the San Francisco
dataset is  the median value of  the building height;  however,  the building
height in the Portland dataset is the average value of the building height.

Table  2.  Different  terms  for  the  same  data  elements  among  different
buildings datasets in three U.S. cities: San Francisco, Chicago, and Portland

Terms San 
Francisco

Chicago Portland

Building Type LANDUSE Property 
classification

BLDG_USE

Year Built YRBUILT year_built YEAR_BUILT

Number of Floors STOREYNO Stories NUM_STORY

Building Height gnd1st_delta
_m

N/A AVG_HEIGH
T
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It  is  essential to gather building asset data at the city scale from a wide
range  of  sources  (e.g.,  surveys,  city  projects,  city  datasets,  and  public
records) and assemble them into a single open database with standardized
formats  and  terms.  The  primary  data  formats  to  support  UBEM  include
Shapefile/FileGDB,  GeoJSON,  and CityGML.  The  ESRI  Shapefile  (Wikipedia,
2017) and FileGDB (GDAL, 2017) formats are popular geospatial vector data
formats  used  by  GIS  software  tools.  They typically  include  2D GIS-based
building footprint  information and a table of  building properties.  GeoJSON
(GeoJSON  WG,  2017) is  a  data  format  based  on  JSON (JavaScript  Object
Notation) for encoding a variety of 2D GIS data structures, which is friendly
to web applications built upon JavaScript. Therefore, GeoJSON gets a lot of
attention  in  UBEM,  especially  for  web-based  applications.  However,  the
Shapefile/FileGDB and GeoJSON formats do not provide a schema to define
the building properties, leading to inconsistency among different datasets. 

CityGML is an international Open Geospatial Consortium (OGC) standard that
provides an open data model to represent and exchange digital 3D models of
cities  and  landscapes  (Gröger  and  Plümer,  2012;  OGC,  2017).  CityGML
enables  the  flexible  representation  of  objects  at  various  levels  of  detail,
which  is  critical  as  data  availability  varies  widely  for  a  large  number  of
buildings  and  other  urban  infrastructure.  Many  UBEM  projects  selected
CityGML  as  the  data  model  to  represent  and  exchange  3D  city  models,
especially for European research projects.  CityGML was used to represent
the semantic 3D city for predicting the photovoltaic potential and heating
energy  demand  of  urban  districts  (Eicker  et  al.,  2014) and  analyzing
strategies for improving building standards  (Strzalka et al., 2011). TEASER,
an open framework for urban energy modeling of building stocks, includes a
ready-to-use interface for CityGML (Remmen et al., 2017). OpenStudio City
Database  (CityDB)  is  a  flexible  framework  to  create  and  run  city-scale
building  energy  simulations  with  the  building  datasets  in  CityGML  or
GeoJSON formats  (Macumber et al.,  2016). CityBES accepts building stock
data in both CityGML and GeoJSON formats.

CityGML defines the 3D geometry, topology, semantics, and appearance of
urban objects,  including buildings and their  components,  bodies of  water,
city  furniture  (street  lighting,  traffic  lights),  transportation  infrastructure
(streets,  roads,  bridges,  tunnels),  and  vegetation.  For  many  of  these
attributes describing 3D city models, CityGML provides its standard external
code list enumerating the values for each attribute type, such as standard
lists  of  land  use  type  (LandUseClassType)  and  building  usage  type
(BuildingUsageType).  CityGML  also  provides  various  levels  of  details  to
represent urban objects for various types of applications requiring different
fidelity. Figure 3 shows some examples of CityGML objects. Figure 4 shows a
building can be represented at five levels of details: a simple 2D footprint; a
box shape; adding sloped roofs; adding exterior shades, windows, and doors;
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and full details of the interior layout and zoning. CityGML version 1.0 was
released in 2008, and an extended version 2.0 was adopted in March 2012.

Figure 3: Examples of CityGML objects (Laurini, 2015)

Figure 4. Five levels of details (LODs) to represent a building in CityGML
(OGC, 2017)

The  CityGML-based  3D  city  models  enable  information  exchange  and
interoperability for use in city projects that need different data analytics and
modeling and simulation tools, thus significantly increasing the use of such
tools  and  reducing  the  time  and  effort  needed  to  use  them  effectively.
CityGML is an effective way to represent 3D geometry information. It covers
several high-level building characteristics, but it does not have the detailed
information necessary for building energy modeling. The Energy Application
Domain  Extension  (ADE)  for  CityGML  is  currently  under  development,  to
integrate  the  building  spatial  and  physics  properties  for  urban  energy
simulation  (Nouvel, Kaden,  et al., 2015; Benner, Geiger and Häfele, 2016).
Creating an EnergyADE dataset for the building stock in San Francisco is a
significant  future  effort,  which  needs  detailed  data  from  city  buildings
projects, e.g., energy audits or commissioning. 

When representing the same amount of information for a 3D model, the size
of  a CityGML file  is  typically  larger than the GeoJSON or  FileGDB format.
Therefore,  powerful  computing  is  necessary  to  process  CityGML  files.
Splitting a city into multiple CityGML files can be more feasible. 
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Although CityGML provides a standardized representation of urban objects,
there are a significant amount of terms that are not included in the CityGML
schema but are necessary for urban building energy analysis. The Building
Energy  Data  Exchange  Specification  (BEDES)  (U.S.  DOE  and  Lawrence
Berkeley National Laboratory, 2017), developed by the U.S. Department of
Energy  (DOE)  and  Lawrence  Berkeley  National  Laboratory  (LBNL),  is  a
dictionary of terms and definitions commonly used in tools and activities that
help  stakeholders  make  energy  investment  decisions,  track  building
performance, and implement energy efficiency policies and programs. BEDES
provides  common  terms  and  definitions  for  building  energy  data,  which
different  tools,  databases,  and  data  formats  can  share.  More  than  50
projects,  programs,  and  applications  are  involved  in  the  development  of
BEDES.

2.6 Question 6: How can local weather data be generated and used for 
UBEM? 

Integration of urban climate effects in UBEM is becoming essential to achieve
a more accurate assessment of building energy consumption in urban areas.
Many previous studies have documented significant  impacts of  the urban
microclimate on the thermal loads, and thus building energy performance
(Dorer  et  al.,  2013a;  Hong,  Chang  and  Lin,  2013;  Savić,  Selakov  and
Milošević, 2014; Bourikas, 2016; Pisello, 2017). For instance, the effects of
UHI, a term raised by Manley in 1958 (Manley, 1958), might lead to changes
to building energy demand (e.g., a decrease in heating but an increase in
cooling)  depending on the city  (Davies,  Steadman and Oreszczyn,  2008),
type of building (van Hooff et al., 2016), or meteorological conditions (Xu et
al., 2012), which yield a wide range of impacts on energy consumption and
occupant health. A recent modeling study based on a building located in the
center  of  Rome,  Italy,  indicated  that  the  energy  consumption  of  cooling
would  be  underestimated  by  35%–50% if  the  climatic  effect  of  the  heat
island is not considered  (Ciancio  et al., 2018). More studies related to the
urban microclimate and the UHI effect and its mitigation technology solutions
can be tracked down in a recent special issue of  Urban Science (Yang and
Santamouris, 2018). 

During  the  past  decades,  urban  microclimate  studies  have  ranged  from
measuring  urban-rural  temperature  differences  to  physical  modeling  of
urban  microclimate  process  variables,  expanding  from  a  scaled  physical
model to a realistic urban microclimate model (Alexander and Mills, 2014). A
wide  range  of  approaches  has  been  employed  to  explore  the  urban
microclimate  and  to  generate  local  weather  data.  In  general,  these
approaches  can  be  categorized  into  two  types  (Mirzaei,  2015):  (a)
observational approaches and (b) simulation approaches. The observational
approaches refer to measurement techniques and the theoretical physical
models  (such  as  thermal  remote  sensing  techniques  and  atmosphere
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boundary  layer  research),  while  the  numerical  simulation  approaches,
including  computational  fluid  dynamics  (CFD)  and  other  weather  data
generator tools, are strongly advocated by the rapidly developed computing
communities,  which  are  also  supported  and  validated  by  the  measured
results.  Conversely,  the  simulation  approaches  are  used  to  conduct
comparative  analysis  of  all  relevant  flow  variables  at  different  scenarios
within  finer  scales,  which  are  more  adequate  for  further  integration  with
UBEM.

From the UBEM perspective, the knowledge of the local weather data (e.g.,
temperature, pressure, wind speed, solar radiation, etc.) will present as the
boundary  conditions  of  the  urban  environment,  which  is  the  key  input
parameter  for  the  building  energy  modeling.  However,  the  weather  data
employed in traditional UBEM is often obtained from either measurement at
remote  open  areas  (e.g.,  airports  near  large  cities)  or  historical  datasets
(approximately during the past 30 years), which is usually compiled as a TMY
weather file. These weather data often fail to present the actual microclimate
or  boundary  conditions  of  the  local  city,  and  are  thus  prone  to  produce
erroneous  results  for  the studies on specific blocks  and districts  (Mylona,
2012). Therefore, obtaining high-resolution weather information around the
targeted urban buildings will lead to more accurate UBEM results.

Currently,  with the recent mass production of affordable and user-friendly
weather  stations,  as  well  as  the  increasing  technology  of  automated
measurements  and  data  analysis,  a  hyper-local  weather  forecasting
approach is booming. Websites such as Weather Underground, Dark Sky, and
Weather  Observations  provide  hubs  for  sharing  weather  data  from  local
weather stations, enabling different groups of users to access hyper-local,
real-time  weather  observations  and  forecasts.  Other  weather  APIs
(Application Programming Interface) such as Cal-Adapt and Open Weather
Map  also  provide  a  wealth  of  data  and  information  for  developers  and
researchers to access, and based on that information they can easily build
their  domain-specific  visualization  and  planning  tools  on  top,  considering
their own research or design purpose.

On the other hand, driven by the increased necessity of higher resolution
and  detailed  boundary  information,  as  well  as  the  recent  advances  in
computing infrastructure, CFD is still quite a popular tool for simulating and
predicting  the  urban  microclimate  (e.g.,  OpenFOAM and  Nek5000).  Many
recent studies coupled CFD and UBEM simulations to predict  and analyze
urban energy and urban infrastructural systems. A recent work by Katal et al.
((2019) integrated a CFD tool  named CityFFD with CityBEM to model and
evaluate the building resilience under the extreme weather. Another recent
work  by  Lu  et  al.  (2019) developed  a  coupled  modeling  framework  for
energy-transportation-communication infrastructure in smart and connected
communities. Urban-/building-related simulations are conducted at different
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spatial  scales.  These  range  from  the  meteorological  mesoscale  (i.e.,
atmospheric events at the city scale, Sasaki, 2008) over the meteorological
microscale (i.e., the relevant flow variables around building groups, Mochida
and  Lun,  2008) to  the  building  scale  (i.e.,  the  boundary  information  for
modeling the energy consumption for the specific building,  Allegrini  et al.,
2015) and the indoor environment (i.e.,  the indoor environment modeling
and building services engineering,  Hong, Chou and Bong, 2000). The target
parameters include the outdoor temperature,  relative humidity,  heat flux,
solar  radiation,  wind  velocity,  turbulent  kinetic  energy,  pollutant
concentration, and air quality index. 

Most  of  these  previous  studies  employed  the  Reynolds-averaged  Navier-
Stokes  (RANS)  and  Large  Eddy  Simulations  (LES)  to  solve  the  governing
equations,  where  specific  turbulence  models/sub-grid  scale  models  were
used and improved. A recent review article written by (Toparlar et al., 2017)
investigated  the  previous  183  studies  on  the  CFD  analysis  of  urban
microclimate.  It  emphasized  the  advantages  of  CFD  simulations  both  in
obtaining  the  explicit  coupling  of  different  variables  as  the  boundary
information for further UBEM, and also in resolving the flow field at a finer
scale  (e.g.,  urban,  building—even  human—scale).  However,  despite  the
benefits of CFD, the balance between high-resolution results and reducing
computational  power  and  time  always  has  posed  a  challenge  to  its
widespread,  successful  application  in  UBEM.  Thus,  the  improvement  of
simpler models remains one of the largest challenge in this area (Kanda et
al., 2007). In addition, CFD requires a high-resolution representation of the
urban geometry (Mirzaei and Haghighat, 2010), and the sub-grid implications
for  turbulence  models  also  require  consistency  with  the  correct  physical
interpretation (Schlünzen et al., 2010). 

A more common approach is to use the comprehensive tools that couple the
data analytics science with the numerical predictive models to generate the
near-surface  urban  climatic  information.  Tools  such  as  Urban  Weather
Generator (UWG) and Weather Shift morph rural weather data and historical
high  frequency  weather  data,  respectively,  to  present  the  future  urban
weather  data  by  setting  a  series  of  location-specific  morphological
parameters  (e.g.,  building  material  thermal  properties,  building  surface
fraction) and future-periods emission scenarios (e.g., RCP scenarios). UWG
calculates the hourly values of urban air temperature and humidity inside the
urban  canyons,  given  the  meteorological  measured  information  and  the
reciprocal  interactions between the building and the urban climate, which
will be later used to account for the UHI effect in UBEM (Bueno et al., 2013). 

The Weather Research and Forecasting (WRF) model,  which is one of  the
most  commonly  applied  weather  forecasting  tools  in  the  climate  science
community, is capable of capturing atmospheric motions on scales ranging
from continent to near building scale (Chen et al., 2011; Powers et al., 2017).
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This  simulation  first  interpolates  the  meteorological  and actual  measured
data into the model domain as a pre-processing stage, and then calculates
the weather conditions under a finer spatial and temporal scale by using the
rich  suite  of  physics  packages  such  as  microphysics,  radiations,  and
planetary boundary  layer parameterization.  A recent  work by  (Jain  et  al.,
2018) presented a coupling methodology and results of one-way coupling
where WRF provided local weather data to the EnergyPlus building energy
model for a test area within the city of Chicago, which emphasized the effect
of  urban  microclimate  boundary  conditions  on  energy  use  prediction.
Compared to the aforementioned UWG and Weather Shift tools, WRF uses a
more complex model which is computationally intensive. 

Another  tool,  the  Urban  Multi-scale  Environmental  Predictor  (UMEP),  was
developed as a plugin for Quantum GIS (QGIS), and is also an integrated tool
for generating weather data to be further applied in evaluating urban energy
consumption  (Lindberg  et al., 2018). An important capability of UMEP is to
couple  relevant  processes  by  using  common  datasets  across  a  range  of
applications.  There are also other  tools  that have been widely  applied  in
generating the local weather data and could be integrated with UBEM, such
as  Parallelized  Large-Eddy  Simulation  Model  (PALM)—used  to  model  the
atmospheric turbulence and varieties of boundary layers (e.g., urban canopy
flows,  cloudy  boundary  layers)  based  on  the  non-parallelized  LES  code
(Maronga  et al., 2015) and ENVI-Met—a 3D microclimate model capable of
simulating  the  turbulent  flow  around  the  buildings  and  heat  exchange
process at urban surfaces, using the observed/existing weather data as the
meteorological boundary conditions (Yang et al., 2012).

In summary, for UBEM, it is recommended to use the local weather data:
either  the  preferred  measured  weather  data  or  the  calibrated  simulated
weather data.

2.7 Question 7: How can results from UBEM be calibrated?

Due to the limited publically available information of individual buildings in
cities, lots of default data and many assumptions must be made to conduct
detailed energy modeling. Therefore, there are inherent uncertainties with
UBEM results. Calibrating the urban building energy models is usually based
on  annual  (rather  than  monthly  or  hourly)  energy  use  data  of  individual
buildings. 

The  model  calibration  is  commonly  defined  as  an  inverse  approximation
because of the need to tune necessary inputs to reconcile the outputs by a
simulation  program as  closely  as  possible  to  the  measured  energy  data
(Yang and Becerik-Gerber,  2015).  There are well-demonstrated manual or
automated model calibration methods for individual buildings. The manual
model  calibration  methods  are  not  suitable  for  UBEM.  There  are  several
automated calibration methods developed to calibrate individual buildings,
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including optimization-based methods  (O’Neill and Eisenhower, 2013; Yang
et  al.,  2016),  pattern-based  methods  (Sun  et  al.,  2016),  and  Bayesian
calibration methods (Chong et al., 2017; Lim and Zhai, 2017). Although those
automated calibration methods can be directly applied to calibrate UBEM,
the number of simulations required to calibrate the UBEM is proportional to
the number of buildings. For example, if it takes 100 simulations to calibrate
one building, it may require 100,000 simulations to calibrate 1,000 buildings.
However,  the  buildings  in  the  UBEM share  lots  of  information.  They  are
typically located in the same city with the same or similar climate conditions
(weather files).  They are restricted or guided by the same standards and
laws,  and  may  have  very  similar  features.  They  have  same  default
assumptions for  the archetype. If  many simulations  were run to calibrate
some buildings in the UBEM, those simulation results may be used to speed
up the calibration of other buildings. The UBEM calibration should not be a
simple scale-up of the methods used for individual buildings. 

There are limited studies about UBEM calibration. Sokol et al. (Sokol, Cerezo
Davila  and  Reinhart,  2017) presented  a  method  to  define  unknown  or
uncertain parameters in an archetype as probability distributions and use
measured  energy  data  to  calibrate  those  distributions  by  Bayesian
calibration.  Six  high-uncertainty  variables  with  three  to  five  values  were
chosen to run more than 1,000 simulations per building for creating a coarse
parametric  grid.  A  meta-modeling  procedure  was  developed  to  create
polynomial  regression models for every building based on the coarse grid
parametric  results  from EnergyPlus.  The  meta-models  were  used  for  the
Bayesian calibration to determine the distribution of those high-uncertainty
parameters.  Results  showed  that  both  annual  and  monthly  Bayesian
calibration  lead  to  significantly  better  annual  energy  use  intensity  fits
compared to  traditional  deterministic  archetype definitions.  However,  this
method was based on the calibration of each building, which requires more
than 1,000 simulations to train the meta-models for each building. Nagpal et
al.  (Nagpal  et  al.,  2019) employed  statistical  surrogate  models  with  an
optimization  algorithm  to  estimate  properties  of  unknown  building
parameters.  Up  to  28  unknown  parameters  with  three  values  each  were
selected.  A  surrogate  model  was  developed  using  Random  Forests  and
Neural  Networks  based  on  200  to  400  training  samples.  The  surrogate
model-based calibration method required 200 to 400 simulations to train the
surrogate model for each building.

Occupant behavior can significantly influence simulation results not only for
individual buildings but also a group of buildings in an urban district. An et al.
(  2018)developed  detailed  occupant  behavior  models  and  simulation
approaches to consider diversity of occupant activities in a residential district
to demonstrate the improvements in the simulated peak demand and energy
use compared to the traditional homogeneous (same occupant assumptions
for each individual building) assumptions of occupant activities.

More research is needed to consider all the buildings in UBEM as a connected
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network, to speed up the model calibration for UBEM. 

2.8 Question 8: What are methods and tools for coupling UBEM with other 
urban systems models?

Sustainable urban development involves a wide range of integrated urban
systems  in  network  structures.  Understanding  the  city  as  a  cross-
departmental integrated system enables planners to address  critical issues
in  urban  development,  such  as  energy  resiliency in  a  climate  change,
demand response, innovative mobility, reducing urban sprawl, and efficient
management  of  urban services.  It  is  an  important  step to  represent  and
simulate the interrelationships between urban systems at an urban scale,
which  includes  the  interaction  between  building  energy  models,  urban
climate and microclimate models, transportation models, and socioeconomic
models (Tsai and Ghazal, 2017). Co-simulation between models is necessary
to understand the impact of systems interacting with each other in real time.
We reviewed the methods and tools to facilitate the co-simulation of building
energy  models  and  other  components  in  the  integrated  urban  system,
including (1) the urban atmosphere, (2) urban transportation and mobility,
and (3) district-scale energy systems. Figure 5 illustrates their interactions.

Figure 5 Buildings’ interactions with other urban systems (transportation,
urban climate, and grid)

Urban climate and microclimate can strongly influence building energy use
(Pisello et al., 2015). The various effects include (1) local air temperature and
humidity, (2) local air movement, and (3) solar irradiation and specular and
diffuse reflections  (Dorer  et al.,  2013b).  On the other hand, buildings also
influence the boundary conditions of urban canopy models as (1) buildings’
geometry and layout has thermal effects on the heat and airflow (Sharmin,
Steemers and Matzarakis, 2017), (2) exterior surfaces of buildings exchange

26



heat  with  the  urban  environment  through  sensible  heat  convection  and
radiation simulations (Hong and Luo, 2018), and (3) buildings release heat
and moisture through cooling towers, condensing units, and exhaust air to
the  urban  environment.  Figure   illustrates  the  coupling  schema  between
buildings and urban atmosphere models via urban boundary conditions, as
well  as  via  mass  and  heat  flow exchange.  Consideration  of  the  two-way
impact  between  buildings  and  the  urban  atmosphere  is  essential  to
conducting  a  proper  assessment  of  urban  energy  and  environment
performance in urban areas.

Figure 6. Coupling schema between building energy models and urban
atmosphere models

An approximate approach of one-way coupling has been used to evaluate
the direct impact of the environment on buildings  (Malys, Musy and Inard,
2015;  Pisello  et al.,  2015;  Palme  et al.,  2017).  For example,  Gobakis  and
Kolokotsa presented the one-way coupling of the ENVI-met (Huttner, Bruse
and Dostal, 2009) microclimatic environment simulation tool and the building
energy simulation program  ESP-r to achieve a better energy simulation of
the building  (Gobakis  and Kolokotsa,  2017).  Yang et al.  also presented a
quantitative  analysis  of  building  energy  performance  linking  ENVI-met  to
EnergyPlus  (Yang  et al.,  2012). ENVI-met, in these two studies, calculates
dynamically  the  convection  heat  transfer  coefficient  between the  outside
environment  and  the  building  outside  walls  to  feed  the  building  energy
models. On the other hand, numerical simulations of atmosphere modules
were conducted to study the one-way thermal effects of buildings on  local
atmospheric flow (Salamanca and Martilli, 2010; Yang et al., 2012; Lin et al.,
2016), and they concluded that the local microclimate is sensitive to changes
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in the physical parameters of the urban surfaces, such as wall surface albedo
(Gros, Bozonnet and Inard, 2014).

Several studies also have presented different methods to conduct two-way
coupling of building energy and urban atmosphere models, to evaluate their
interactions. The difficulty of this set-up lies in the scale compatibility, as it
requires  an  accurate  and  high-fidelity  thermal  model  to  represent  the
psychical  status and interactions of  buildings and their  environment.  Two
approaches are commonly used in simulating the two-way coupled system.
One is to combine both physical  components and processes into the one
model  hierarchy.  For  example,  the  SOLENE-microclimate  model  was
developed to model urban microclimate and building thermal behavior as an
integrated thermo-radiative model, considering the interactive effects among
atmosphere, building wall or roof, green surface, and indoor air (Malys, Musy
and Inard, 2015; Musy et al., 2015; Gros et al., 2016). However, due to the
complexity of coupled physical processes, the approach can be difficult to
scale  in  large  urban  areas.  Another  widely  used  approach  is  to  use  co-
simulation frameworks, such as Functional Mockup Interface (FMI), for data
exchange in run-time between models. Thomas et al. (2014) developed an
EnergyPlus and CitySim coupling architecture, extending the urban canopy
model  solver  in  CitySim  to  use  the  FMI  standard  for  co-simulation  to
exchange simulation variables with the EnergyPlus model at each time step.
Miller et al. (2015) applied a similar methodology to consider the long wave
exchange as part of a co-simulation process to exchange various weather,
load, and environmental information between CitySim and EnergyPlus. Yang
et  al.  (2012)  developed  an  architecture  coupling  the  urban  microclimate
model  ENVI-met and EnergyPlus,  exchanging surface boundary  conditions
using the Building Controls Virtual Test Bed (BCTVB) co-simulation platform.
For  buildings  and  their  environment  co-simulation,  land  use  and building
geometry data are used to initialize both building and urban canopy models.
Katal et al.  (Katal, Mortezazadeh and Wang, 2019) introduced CityFFD (City
Fast  Fluid  Dynamics),  an  urban-scale  fast  fluid  dynamics  model  for
microclimate modeling to couple with CityBEM (City Building Energy Model),
an urban building energy model with archetype buildings for aerodynamics
and  heat  transfer  information  exchange  at  run  time  to  produce  high-
resolution  results  of  building  thermal  load,  microclimate  condition,  and
building behavior during extreme weather. However,  limited data resources
in past studies allowed co-simulation to be performed only at a limited level
of detail. 

Integrated  planning  also  involves  considering  urban  building  energy
efficiency  along  with  urban  morphology  and  urban  mobility.  Metropolitan
planners  are  facing  increasingly  complex  issues  in  modeling  interactions
between the built environment and multimodal transportation systems (Tsai
and  Ghazal,  2017).  Some  pioneering  research  has  demonstrated  the
potential  for gaining the ability to model urban systems across simulated
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land use, travel demands, traffic flow, and building energy consumption, to
understand  district  power  consumption  and  pollutant  emissions.  Both
simulation  and data-driven methods are applied  to  understand the urban
human mobility, in order to provide representative occupancy data for UBEM
studies. For example, Shirgaokar et al. (2013) conducted an integrated study
in  Jinan,  China,  analyzing  the  district’s  environmental  performance  using
building  energy  evaluation  and  traffic  microsimulation  models. Results
showed that  an integrated optimized design would reduce energy loads by
over 25% compared to business as usual (Shirgaokar, Deakin and Duduta,
2013). Another research by Berres et al.  (Anne Berres, Piljae Im, Kuldeep
Kurte, Melissa Allen-Dumas, 2019) introduced an urban scale mobility model,
set  up  with  the  transportation  model,  TRansportation  ANalysis  SIMulation
System (TRANSIMS), to estimate building occupancy for UBEM in a sample
community  in  Chicago.  However,  for  both  studies,  the  methodology  was
based  on  running  a  combination  of  different  scenarios  across  different
models. With a data-driven approach, Marins and Roméro also presented a
study  of  building  energy  modeling  on  the  scale  of  urban  districts  and
neighborhoods, envisioning land use and urban circulation, as well as energy
efficiency of urban areas (Marins and Roméro, 2014). Mohammadi and Taylor
(2017) also  conducted  a  spatial  regression  analysis  of  positional  records
containing human mobility and energy consumption data in Greater London
and the City  of  Chicago in  residential  and commercial  buildings  over the
course of  one month revealed spatial  dependencies  for  buildings’  energy
consumption on human mobility. Based on the analysis, they presented an
urban-level  spatiotemporal  approach  for  predicting  buildings’  energy
demand  using  individual  positional  records,  introducing  a  multivariate
autoregressive model in reduced principle component analysis (Mohammadi
and Taylor,  2017). These studies conclude that urban building energy use
simulation should consider the effects of residents’ location-based activities
that influence patterns in energy supply and demand. Further, to understand
the interactive effects of urban building energy consumption and mobility,
especially  considering  interconnected  factors  such  as  occupant  flow  and
electrical vehicle charging, more-detailed data communication and coupling
architecture still requires investigation.

Simulating and optimizing district energy systems also requires co-simulation
with dynamic building models, as the real-time predicted loads and indoor
environment variables of urban buildings are important for control decisions
in a district system. The process involves long-term simulations of a large
number of buildings, including internal energy supply or energy conversion
systems,  in  combination  with  external  energy  supply  systems  like  the
electrical  grid.  Several  co-simulation  architectures  have  undergone
development in the past few years, such as MESCOS (Molitor  et al., 2014),
MOSAIK,  and  Modelica  libraries  (Bu¨nning  et  al.,  2017;  Schweiger  et  al.,
2017;  Zarin  Pass,  Wetter  and  Piette,  2018).  MESCOS  is  a  platform  that
supports the design of control and energy management algorithms for city
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district scale energy systems. Embedded in the platform, the building energy
simulators  exchange  load  prediction  and  control  signals  with  the  district
system, interfaced and coupled through a runtime infrastructure (RTI), taking
care of the time management and the data distribution management.  The
MOSAIK  framework  also  proposes  an  RTI  that  allows  for  automatically
composing simulation scenarios randomly or following defined patterns for
the simulation of active components in the smart grids. Under the scope of
IEA  Annex  60  on  “New  generation  computational  tools  for  building  and
community  energy  systems  based  on  Modelica  and  Functional  Mockup
Interface  standards,”  several  libraries  are  under  development  using  the
Modelica  co-simulation  platform,  coupling  district-level  plant  models  with
building energy demand simulation using EnergyPlus. 

Distributed energy resources simulation tools, such as DER-CAM (Stadler et
al.  2014),  in  principle,  can  adopt  similar  coupling  approaches  for  co-
simulation  with  UBEM  to  evaluate  renewable  energy  technologies  and
optimize controls for microgrid.

Overall, for UBEM, it is important to consider the buildings’ interconnections
and dynamic interactions with other components in the urban system, and
past research has illustrated the gaps between modeling an individual urban
component  alone  and  implementing  co-simulation  across  various  urban
systems. In general, the key challenges lie in achieving consistency of data
and model, and resolving the data synchronization of models with a different
temporal and spatial resolution (Wetter, 2011; Wang, Siebers and Robinson,
2017),  as  different  simulation  layers  of  a  coupled  urban  system can  be
executed  in  parallel  or  in  series.  Beyond  that,  in  most  cases,  the
computational  cost  is  high  with  high-fidelity  model  representations  and
coupling  resolutions.  To  represent  the  data  interoperability  and  system
interdependency  in  heterogeneous  infrastructures,  recent  research  has
demonstrated  proof-of-concept  multi-level,  multi-layer,  multi-agent
framework  to  enable  flexible  modeling  of  the  interconnected  energy,
transportation, and communication systems (Lu et al., 2019b).  Overall, it is
crucial  to  design  an  efficient  data  storage  and  communication  hub
architecture to coordinate the model  coupling and choose an appropriate
execution model for each individual subsystem.

2.9 Question 9: What are the example applications of UBEM? 

The  stakeholders  of  UBEM  applications  involved  in  the  development  or
operation of  livable,  healthy,  economically  profitable,  and energy efficient
cities  and  communities  are  diverse;  hold  different  needs;  and  play
miscellaneous  roles  in  the  urban  systems.  Stakeholders  of  UBEM can  be
grouped  into  five  categories,  including:  (1)  decision  makers  (urban
policymakers  and  city  program  managers),  (2)  industry  (investors,
technology  vendors,  urban  developers,  utilities),  (3) city  users  (residents,
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local communities, visitors), (4) urban energy planners and consultants, and
(5) urban researchers.

Aligned with the stakeholders’ interest, potential applications of UBEM are
reviewed in three domains as summarized in Table 3.

Table 3 Example applications of UBEM

Domain of applications Objectives Reference
End use energy auditing
and benchmarking

Energy savings (Gaube  and  Remesch,
2015;  Srebric,
Heidarinejad  and  Liu,
2015;  Heidarinejad  et
al.,  2017;  Brøgger  and
Wittchen,  2018;  Caro-
Martínez  and  Sendra,
2018)

Development  of
codes and standards

(Abdolhosseini  Qomi  et
al.,  2016;  Hong,  Chen,
Piette, et al., 2016)

Demand energy auditing
and forecasting

Demand flexibility (Pezzulli et al., 2006; Fu
et  al.,  2009;  Delmastro
et  al.,  2017;
Mohammadi and Taylor,
2017;  Wang  et  al.,
2018)

Urban resiliency (Gros,  Bozonnet  and
Inard, 2014; Link, Pillich
and  Klein,  2014;  Caro-
Martínez  and  Sendra,
2018;  Frayssinet  et  al.,
2018; Oregi et al., 2018)

Existing  urban  buildings
retrofiting 

Energy savings; GHG
emissions  reduction;
Cost effectiveness

(Ward  and  Choudhary,
2014;  Lee  et  al.,  2015;
McArthur  and  Jofeh,
2016;  Monteiro  et  al.,
2018;  Nagpal  and
Reinhart, 2018)

Urban energy planning Energy efficiency (Chow, Chan and Song,
2004;  Fu  et  al.,  2009;
Lin  et  al.,  2010;  Koch,
2016;  Delmastro  et  al.,
2017)

Urban  resiliency
under  climate

(Pisello  et  al.,  2015;
Martin  et  al.,  2017;
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change effects Ciancio  et  al.,  2018;
Katal,  Mortezazadeh
and Wang, 2019)

First  of  all,  the  formulation  of  energy  policies  for  urban  building  stock
frequently requires the evaluation of the overall building energy performance
of the urban districts (Tardioli et al., 2018). UBEM has significant potential to
inform decision makers of how much energy could be saved if appropriate
actions are enacted. Moreover, to study the distribution and determinants of
energy  use  in  large  buildings,  peer-to-peer  comparisons  by  energy
benchmarking encourages transparency in energy efficiency markets (Pérez-
Lombard  et al., 2009) and predictive models of building energy use at the
district and city scales help capture more generalized energy consumptions
behaviors  (Kontokosta  and  Tull,  2017).  Besides,  UBEM  also  provides
knowledge  for  policymakers  to  develop  industry  standards  (e.g.,  better
design of tax rebates and energy incentives), as well as to provide technical
assistance as needed.

Second, UBEM offers a common approach to district planning and retrofitting
by evaluating and prioritizing different system design options  and energy
conservation measures (ECMs) for the cities-scale analysis. In general, UBEM
helps users understand the overall potential costs and benefits of retrofitting
a large portfolio of diverse-use buildings in terms of  reducing global GHG
emissions associated with building energy use. For  example,  Wang et al.
presented the building stock model CESAR (Combined Energy Simulation and
Retrofitting), which employs EnergyPlus as its simulation engine to perform
the assessment of  different future building stock transformation scenarios
and an analysis of the energy demand and emission reductions potentials
(Wang  et  al.,  2018).  For  existing  districts,  by  applying  the  UBEM  tool  –
CityBES, Hong et al. (2018) also presented a retrofit analysis case study to
evaluate  the  energy  saving  potential  and  cost  effectiveness  of  individual
ECMs,  as  well  as  ECM  packages  for  small  and  medium office  and  retail
buildings in San Francisco (Chen, Hong and Piette, 2017). These studies have
demonstrated  the  feasibility  of  UBEM to  serve  as  a  facility  planning  and
maintenance tool for the assessment of effective strategies to reduce energy
footprints and GHG emissions  (Abdolhosseini Qomi  et al., 2016), as well as
the  potential  to  evolve  over  time as  new information  becomes  available
(Buffat et al., 2017). On the other hand, the studies also point out that future
efforts are required to calibrate district- to city-scale building energy models
and validate the results  (Booth,  Choudhary and Spiegelhalter,  2012; Louis
and Cerezo Davila, 2016; Santos et al., 2018).

In addition,  the rapid development and growth of urban areas has caused
significant impacts on the built environment, such as the UHI effect (Santos
et al., 2018) and extreme heatwaves exacerbated by the UHI effect. UBEM
was applied to perform a detailed analysis  of  how these phenomena can
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have major impacts on city energy use and how energy fluxes may result in
changes of the microclimate and contribute to climate change due to the
increased heat (Zheng and Weng, 2018) and GHG (Akbari  et al., 2016). For
example, Santosa et al. evaluated the impact of the urban context to energy
consumption and UHI  in  a representative district  in  downtown Abu Dhabi
(UAE)  via  urban-scale  modeling  and  calibration  using  metered  building
energy consumption  (Santos  et al., 2018). Detailed UBEM provides insights
on the developments of  climate change and urban heat island mitigation
techniques, such as highly reflective materials,  cool  and green roofs,  and
cool pavements (Gros, Bozonnet and Inard, 2014). These studies reveal the
need  for  higher-fidelity  simulations  and  coupled  calculations  for  more
accurate building energy modeling in urban environments.

Last  but  not  least,  there  are  also  critical  needs  for  urban energy supply
designers to estimate the energy demand and flexibility  of buildings at a
district  or  city  scale.  Reliable  microsimulation  of  power  demand of  urban
areas remains a major research issue  (Frayssinet  et al.,  2018). Integrated
modeling  systems  can  serve  to  evaluate  and  improve  the  energy
performance of urban energy systems’ design and operation in a variety of
perspectives  (Wang,  Siebers  and  Robinson,  2017),  including  maximizing
energy  conservation,  grid-efficient  building  stock  planning  and  control,
renewable  energy  generation  and  distribution,  and  large-scale  energy
storage.  In  particular,  research  has  demonstrated  the  need  for  dynamic
UBEM in city district energy system design and optimization, as a dynamic
representation  of  building  systems  imposes  constraints  on  the  possible
control algorithm (Molitor et al., 2014). 

2.10 Question 10: What are the main challenges in UBEM?

Although  UBEM emerges  as  a  field  with  significant  and  growing  interest
(based on papers and presentations at the 2017 and 2019 IBPSA Building
Simulation conferences and ASHRAE conferences since 2014), UBEM is facing
challenges, including but not limited to:

 Interconnected urban systems. Studying interdependencies of urban
systems  is  necessary.  This  requires  coupling  and  co-simulating  multi-
physics urban system models including buildings, district energy systems,
urban microclimate,  transportation,  and electric  grid,  at varying spatial
and temporal resolutions. Data exchange mechanisms, coupling methods,
and synchronization control  of  simulating several  interconnected urban
system models remains a technical challenge.

 Big data. UBEM requires a large amount of data. It takes significant effort
to  collect  and  integrate  the  datasets  into  a  standardized  format  for
interoperability. Data models and standards are still needed to streamline
representation  of  metadata,  and a vast  amount  of  urban datasets  are
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needed to enable more adoption of UBEM. Data quality, privacy, access,
and security are issues that still need to be addressed. Detailed building
characteristics  and  actual  energy  use  data  are  especially  needed  for
UBEM.

 Workflow. A seamless workflow of UBEM enabled by an open data and
computing  platform  is  needed  to  perform  large-scale  urban  building
analyses.  Such  a  platform  should  also  have  3D  GIS-integrated
visualization capability to display and provide actionable insights from a
large number of  UBEM results,  which will  support  stakeholder  decision
making.

 Computing  resources.  Simulating  all  buildings  in  a  city  requires
significant  computing resources.  For  example,  modeling annual  energy
performance  of  one  million  buildings  in  the  City  of  New  York  in  a
reasonable  amount  of  wall  clock  time  (say  a  few  hours)  can  be  an
exascale  computing  problem  that  requires  next-generation
supercomputers. 

 Collaboration.  Various  groups  of  UBEM  researchers  and  consultants
developed  different  UBEM  tools,  datasets,  and  use  cases  lacking
standardization, interoperability, or collaboration, and making it difficult to
reuse data and tools or to compare and validate results from UBEM tools.
Collaborations between the UBEM developers, researchers, stakeholders,
and  urban  policymakers  are  strongly  encouraged,  to  accelerate  the
adoption of UBEM and ensure a high societal impact that supports cities’
goals of efficiency, suitability, and resilience.

3. Summary and Future Perspectives

Urban building energy modeling is a powerful tool to inform urban building
energy  planning  and  retrofits,  as  well  as  building-grid  integration.  The
increasing  research,  development,  and  applications  of  UBEM  are  made
possible due to: (1) more practical use cases and values for stakeholders, (2)
more affordable cloud computing or high-performance computing,  and (3)
big  data  made  available  from diverse  sources  and  low-cost  sensing  and
metering at scale. Smart cities are deploying technologies of urban sensing.
Data streams from smart city projects and infrastructures provide good data
sources as input to the UBEM, as well as to validate results from UBEM. On
the other hand, UBEM results also can feed to smart cities projects (e.g.,
urban energy planning, mitigation of  UHI).  If  UBEM is  used in a real-time
mode,  it  can provide  timely optimal  control  and management of  building
energy demand in response to grid supply.

This paper presents ten questions that highlight some important issues in
urban  building  energy  modeling.  The  proposed  answers  aim  to  provide
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insights into current and future research on urban building energy modeling,
and  more  importantly,  to  inspire  new  significant  questions  from  young
researchers in the field. 

UBEM is  entering  a  new  phase  of  research  and  application,  given  more
affordable  and powerful  cloud computing or  high-performance computing,
and the rapid development of the Internet of Things (IoT), big data, machine
learning, and artificial intelligence. We believe, in the near future, UBEM will
provide  unprecedented  value  to  the  design  and  operation  of  low-energy
buildings and communities in cities. Under this vision, urban buildings will be
a key component of digital twins of smart cities, which are virtually designed
and tested using urban information modeling, computational simulation, and
virtual reality technologies, and will  be operated using augmented reality,
real-time  sensing  and  metering,  and  machine  learning-driven  predictive
controls to achieve optimal performance for energy efficiency, sustainability,
and resilience. 
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