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Abstract

Twisted Gromov-Witten invariants and applications to quantum K-theory

by

Valentin Tonita

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Alexander Givental, Chair

Given a projective smooth complex variety X, one way to associate to it numerical
invariants is by taking holomorphic Euler characteristics of interesting vector bundles on
X0,n,d - the moduli spaces of genus 0, degree d stable maps with n marked points to X. We
call these numbers genuine quantum K-theoretic invariants of X. Their generating series is
called the genus 0 K-theoretic descendant potential of X and can be viewed as a function
on a suitable infinite dimensional vector space K+. Its graph is a uniruled Lagrangian cone
in T ∗K+.

We give a complete characterisation of points on the cone, proving a Hirzebruch Riemann
Roch type theorem for the genuine K-theory of X. In particular, our result can be used
to recursively express all genus 0 K-theoretic invariants of X in terms of cohomological
ones (usually known as Gromov-Witten invariants). The main technical tool we use is the
Kawasaki Riemann Roch theorem of [Ka], which reduces the computation of holomorphic
Euler characteristic of a bundle on an orbifold to the computation of a cohomological integral
on the inertia orbifold.

In the process, we need to study more general cohomological Gromov-Witten invariants
of an orbifold X , which we call twisted invariants. These are obtained by capping the virtual
fundamental classes of the moduli spaces Xg,n,d with certain multiplicative characteristic
classes. We twist the Gromov-Witten potential by three types of twisting classes and we
allow several twistings of each type. We use a Mumford’s Grothendieck-Riemann-Roch
computation on the universal curve to give closed formulae which show the effect of each
type of twist on their generating series (the twisted potential). This generalizes earlier results
of [CG] and [TS].
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Chapter 1

Introduction

In this chapter we give a self-contained presentation of the main theorems proved in later
chapters.

1.1 K-theoretic Gromov-Witten invariants

We work over the field of complex numbers C. Let X be a nonsingular complex projective
variety. Let Xg,n,d be the moduli spaces of stable maps of [K] : they parametrize data
(C, x1, . . . , xn, f) where C is an n-pointed genus g Riemann surface and f : C → X is a
degree d ∈ H2(X,Z) holomorphic map. There are natural maps:

evi : Xg,n,d → X, i = 1, . . . , n

given by evaluation at the ith marked point. There are line bundles

Li → Xg,n,d, i = 1, . . . , n

called universal cotangent line bundles. The fiber of Li over the point (C, x1, . . . , xn, f) is
the cotangent line to C at the point xi.
Let a1, . . . an ∈ K0(X,C). K-theoretic Gromov-Witten invariants are holomorphic Euler
characteristics over Xg,n,d of the sheaves:

ev∗1(a1)Lk11 · . . . ev∗n(an)Lknn ⊗Ovir.

We will often use correlator notation for these numbers:〈
a1L

k1 , . . . , anL
kn
〉X
g,n,d

:= χ
(
Xg,n,d; ev

∗
1(a1)Lk11 · . . . ev∗n(an)Lknn ⊗Ovir

)
.

The sheaf Ovir was introduced by Y.-P. Lee in [L2] and plays a role in the K-theoretic version
of the GW theory of X analogue to the role played by the virtual fundamental class [Xg,n,d]
in the cohomological GW theory of X.
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The following generating series:

F0
X :=

∑
d,n

Qd

n!
〈t(L), . . . , t(L)〉X0,n,d

is called the genus 0 K-theoretic Gromov-Witten descendant potential. Here Qd is the
monomial representing the degree d ∈ H2(X,Z) in the Novikov ring C[[Q]], which is a
completion of the semigroup ring of degrees of holomorphic curves in X and t(L) is a Laurent
polynomial in L with vector coefficients ti ∈ K0(X). Thus F 0

X is a formal series in t(L) with
coefficients in the Novikov ring. The summation is taken after all stable pairs (d, n) i.e. if
d = 0 then n ≥ 3.

Our aim is to express K-theoretic invariants in terms of cohomological Gromov-Witten
invariants. The main tool is the Kawasaki-Riemann-Roch theorem of Section 1.3, which
computes holomorphic Euler characteristics of orbifolds. We will use Kawasaki-Riemann-
Roch to give a characterisation of the expansions of the J-function (which is introduced in
Section 1.2) near each of its poles. This is the result of Theorem 1.6.2.

1.2 Symplectic loop space

The totality of genus 0 Gromov-Witten invariants can be encoded by a certain Lagrangian
submanifold L living in a certain symplectic vector space K, called the loop space and defined
as:

K :=
[
K0(X)⊗ C(q, q−1)

]
⊗ C[[Q]],

where C(q, q−1) is the ring of rational functions on the complex circle with coordinate q.
Let ( , ) be the pairing on K0(X):

(a, b) := χ(X, a⊗ b).

We endow K with the following symplectic form:

f ,g 7→ Ω(f ,g) := [Resq=0 +Resq=∞]
(
f(q),g(q−1)

) dq
q
.

The following two subspaces:

K+ = K0(X)[q, q−1]⊗ C[[Q]], K− := {f ∈ K | f(0) 6=∞, f(∞) = 0}

form a Lagrangian polarisation of K. K0(X)[q, q−1] is the ring of Laurent polynomials in q
with coefficients in K0(X).
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We now introduce the big J function of X, which is the generating function:

J (t) = 1− q + t(q) +
∑
a

φa
∑
d,n

Qd

n!

〈
φa

1− qL
, t(L), . . . , t(L)

〉X
0,n+1,d

.

Here {φa} and {φa} are any Poincaré dual bases of K0(X). t 7→ J (t) is a map K+ → K and
is identified with the graph of the differential of the genus 0 potential, via the identification
T ∗K+ = K+ ⊕K− and the dilaton shift f 7→ f + 1− q:

J (t) = 1− q + t(q) + dtF0
X .

The genus-0 general properties of K-theoretic Gromov-Witten invariants from [L2] are cap-
tured by the following:

Theorem 1.2.1. The range of the J function is the formal germ of a Lagrangian cone L
such that each tangent space T to L is tangent to L exactly along (1− q)T . In other words
T ∩ L = (1− q)T and the tangent space at all points of (1− q)T is T .

The theorem is a variant of results in [G1]. We’ll sketch its proof in Section 3.5.
We call the submanifolds with the properties of the theorem overruled Lagrangian cones.

1.3 Kawasaki Riemann Roch theorem

For a complex manifold M , one can reduce the computation of the Euler characterstic
of a holomorphic Euler bundle E to the computation of a cohomological integral via the
Hirzebruch Riemann Roch theorem of [HR], which states that:

χ(M,E) =

∫
M

ch(E)Td(TM),

where Td is the Todd class. In [Ka] Kawasaki generalized this formula to the case when M
is an orbifold. He reduces the computation of Euler characteristics on M to computation of
certain cohomological integrals on the inertia orbifold IM .

χ(M,E) =
∑
i

1

mi

∫
Mi

Td(TMi
)ch

(
Tr(E)

Tr(Λ•N∗i )

)
.

We explain below the ingredients in Kawasaki’s formula:
IM is defined as follows: around any point p ∈ M there is a local chart (Ũp, Gp) such that

locally M is represented as the quotient of Ũp by Gp. Consider the set of conjugacy classes
(1) = (h1

p), (h2
p), . . ., (h

np
p ) in Gp. Define:

IM := {(p, (hip) | i = 1, 2, . . . , np}.
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Pick an element hip in each conjugacy class. Then a local chart on IM is given by:

np∐
i=1

Ũ
(hip)
p /ZGp(h

i
p),

where ZGp(h
i
p) is the centralizer of hip in Gp. Denote by Mi the connected components of the

inertia orbifold (we’ll often refer to them as Kawasaki strata). The multiplicity mi associated
to each Mi is given by:

mi :=
∣∣∣ker (ZGp(g)→ Aut(Ũ g

p )
)∣∣∣ .

The restriction of E toMi decomposes in characters of the g action. Let E
(l)
r be the subbundle

of the restriction of E to Mi on which g acts with eigenvalue e
2πil
r . Then the trace Tr(E) is

defined to be the orbibundle whose fiber over the point (p, (g)) of Mi is :

Tr(E) :=
∑
l

e
2πil
r E(l)

r .

Finally, Λ•N∗i is the K-theoretic Euler class of the normal bundle Ni of Mi in M . Tr(Λ•N∗i )
is invertible because the symmetry g acts with eigenvalues different from 1 on the normal
bundle to the fixed point locus. We call the terms corresponding to the identity component
in the formula fake Euler characteristics :

χf (M,E) =

∫
M

ch(E)Td(TM).

Notice that all the terms in Kawasaki’s formula are fake Euler characteristics of certain
bundles.

1.4 Fake quantum K-theory

The fake K-theoretic Gromov-Witten invariants are defined as :〈
a1L

k1 , . . . , anL
kn
〉f

0,n,d
:=

∫
[X0,n,d]

ch
(
ev∗1(a1)Lk11 · . . . · ev∗n(an)Lknn

)
· Td(T vir0,n,d)

where T vir0,n,d is the virtual tangent bundle to X0,n,d. In general they are rational numbers.
We define the big J function as:

Jf (t) = 1− q + t(q) +
∑
a

φa
∑
d,n

Qd

n!

〈
φa

1− qL1

, t(L2), . . . , t(Ln+1)

〉f
0,n+1,d

.
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The loop space of the fake theory is defined as:

Kf =
[
K0(X)⊗ C(((q − 1)−1))

]
⊗ C[[Q]].

The symplectic structure is:

f ,g 7→ Ωf (f ,g) = −Resq=1

(
f(q),g(q−1)

) dq
q
.

A Lagrangian polarisation for Kf is given by:

Kf+ := K0(X)[[(q − 1)]]⊗ C[[Q]],

Kf− :=
1

1− q
K0(X)[[

1

1− q
]]⊗ C[[Q]].

In fact, if we expand

1

1− qL
=
∑
k≥1

(L− 1)k
qk

(1− q)k+1
,

then a Darboux basis of Kf is given by {φa(q−1)k, φa
qk

(1−q)k+1}. It is a result of [G1] that, just
like in the case of the genuine theory, the range of the J function of the genus 0 invariants
is a formal germ of an overruled Lagrangian cone, which we call Lf .
We call symplectic transformations on Kf which commute with multiplication by q loop
group elements. They are series in q − 1 with End(K0(X)) coefficients.

1.5 Cohomological Gromov-Witten theory

The relation between the fake K-theoretic invariants of X and the cohomological ones has
been studied in [C] and described in terms of the symplectic geometry of the loop space.
Before stating the result, we need to briefly recall the setup of the cohomological theory. Let

H := C[[Q]]⊗H∗(X,C)((z))

be the cohomological loop space. We endow H with the symplectic form:

Ω(f ,g) :=

∮
z=0

(f(z),g(−z)) dz,

where ( , ) is the Poincaré pairing on H∗(X). Consider the following polarisation of H:

H+ := H∗(X,C)[[z]] and H− := z−1H∗(X,C)[z−1].
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Let ψi = c1(Li). We define the genus 0 potential as:

F0
H(t) :=

∑
n,d

Qd

n!
〈t(ψ), . . . , t(ψ)〉0,n,d .

Let q(z) = t(z)− z. Consider the graph of the genus 0 potential, regarded as a function of
q:

LH := {(p,q) | p = dqF0
H} ⊂ T ∗H+ ' H.

Then according to [G1], LH is the formal germ of an overruled cone with vertex at the
shifted origin −z. Overruled means that the tangent spaces T to LH are tangent to LH
exactly along zT .

Given a function x → s(x) the Euler-Maclaurin asymptoics of
∏∞

r=1 e
s(x−rz) is obtained

as follows:

∞∑
r=1

s(x− rz) =

(
∞∑
r=1

e−rz∂x

)
s(x) =

z∂x
ez∂x

(z∂x)
−1s(x) =

=
s(−1)(x)

z
− s(x)

2
+
∞∑
k=1

B2k

(2k)!
s(2k−1)(x)z2k−1,

where s(k) = dks/dxk, s(−1) is the antiderivative
∫ x

0
s(t)dt, and Bk are the Bernoulli numbers.

Let xi be the Chern roots of TX , and let ∆ be the Euler-Maclaurin asymptotics of the infinite
product:

∆ ∼
∏
i

∞∏
r=1

xi − rz
1− e−xi+rz

.

We identify Kf with H extending the Chern character isomorphism ch : K0(X,C) →
H∗(X,C):

ch : Kf → H,
q 7→ ez.

This maps Kf+ to H+, but it doesn’t map Kf− to H−.

Theorem([C]) 1.5.1. Lf is obtained from LH by pointwise multiplication by ∆:

Lf = ch−1(∆LH).
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1.6 The main theorem

We will use Kawasaki’s formula to express genus 0 K-theoretic GW invariants in terms of
cohomological ones. We will first identify the Kawasaki strata in the moduli spaces X0,n,d.
Points with nontrivial symmetries in X0,n,d are those for which the domain contains a distin-
guished connected component, call it C, such that the map f|C : C → X (of degree say md′)
factors through an m cover C → C ′ given in local coordinates z 7→ zm. The set of special
points of C is fixed by the symmetry. Hence the only possible marked points lying on C are
0,∞. We also encounter the following situation: there are m-tuples of curves C1, . . . , Cm,
isomorphic as stable maps, which intersect C and are permuted by the Zm action. Notice
that this prevents them from carrying marked points , which in turn, by the stability con-
dition forces the maps f|Ci → X to have positive degrees. Assume there are l tuples of such
curves, denote the nodes by {x1, . . . , xlm}. We call the moduli spaces parametrizing such
objects (C, 0, x1, . . . , xlm,∞, f) stem spaces. It is tempting to identify the stem spaces with
the moduli spaces X0,l+2,d′ . This is not true, because the orbifold structure near the nodes
is different.

Proposition 1.6.1. The stem spaces are identified with the moduli spaces denoted (X ×
BZm)0,l+2,d′,(g,0,...,g−1) of orbimaps to the orbifold X/Zm.

We explain the notation (X ×BZm)0,l+2,d′,(g,0,...,g−1) in Section 1.7.
We refer to the (K-theoretic, cohomological) class in a certain seat in the correlators

as the “input” at the corresponding marked point. Notice that the first marked point has
distinguished input φa

1−qL . Assume the first marked point lies on a stem space with Zm
symmetries, where the generator g of Zm acts on the cotangent line with eigenvalue ζ. Denote
by t̃ the sum of contributions in J coming from integrals on stem spaces corresponding to
ζ 6= 1. If on the contrary the first marked point lies on a component of the inertia orbifold
indexed by the identity, the contributions to J are fake Euler characteristics on strata where
the other special points are marked points or nodes. But the rational tails at these nodes
must have nontrivial symmetries, otherwise we can regard the whole curve as a degeneration
within a stratum without symmetries. When we sum after these possibilities the input in
the correlators at each of these points is t + t̃. This shows that:

J (t(q)) =Jf (t + t̃).

So we see that the expansion near q = 1 of J lies on Lf . But J has poles at all roots
of unity ζ. After making the change of variable q 7→ qζ−1 we can regard J as an element of
Kf . It turns out that this element lies in the tangent space to a cone obtained from Lf by
an explicit procedure. For f ∈ K, denote by fζ the expansion of f as a Laurent polynomial
in (1− qζ). The main result of the thesis is the following theorem:

Theorem 1.6.2. Let L ∈ K the overruled Lagrangian cone of quantum K theory on X.
Then f ∈ L iff the following hold :
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1. fζ doesn’t have poles unless ζ 6= 0,∞ is a root of unity.

2. f1 lies on Lf .

3. In particular J1(0) ∈ Lf . The tangent space to Lf at J1(0) is given as S−1(Kf+), where
S−1 is the matrix of a linear transformation, whose entries are Laurent series in q− 1
with coefficients in C[[Q]]. Denote by S̃ the matrix obtained from S via the change of

variable q 7→ qm , Qd 7→ Qmd, and denote by T := S̃−1(Kf+). Let Pi be the K-theoretic
Chern roots of T ∗X and let ∇ζ denote the Euler-Maclaurin asymptotics as qζ → 1 of
the infinite product:

∇ζ ∼qζ→1

∏
i

∏∞
r=1(1− qmrPi)∏∞
r=1(1− qrPi)

.

Then if ζ 6= 1 is a primitive m root of 1, (∇−1
ζ fζ)(q/ζ) ∈ T .

Conversely, every point that satisfies conditions 1-3 above lies on L.

These conditions allow one to compute the values J (t) for all t, assuming the cone Lf
is known. Since we know how Lf is related to LH , the theorem expresses the K-theoretic
invariants in terms of cohomological ones.

1.7 Orbifold Gromov-Witten invariants

Let X be a compact orbifold. Moduli spaces of orbimaps to orbifolds have been constructed
by [CR1] in the setup of symplectic orbifolds and by [AGV2] in the context of Deligne-
Mumford stacks. Informally, the domain curve is allowed to have nontrivial orbifold structure
at the marked points and nodes.

Definition 1.7.1. A nodal n-pointed orbicurve is a nodal marked curve (C, x1, . . . , xn) , such
that

• C has trivial orbifold structure on the complement of the marked points and nodes.

• In an analytic neighborhood of a marked point, C is isomorphic to the quotient [Spec
C[z]/Zr], for some r, and the generator of Zr acts by z 7→ ζz, ζr = 1.

• In an analytic neighborhood of a node, C is isomorphic to [Spec (C[z, w]/(zw)) /Zr],
and the generator of Zr acts by z 7→ ζz, w 7→ ζ−1w.

Just like in the case of manifold target spaces, there are evaluation maps evi at the marked
points. Although it is clear how these maps are defined on geometric points, it turns out
that, to have well-defined morphisms of Deligne-Mumford stacks the target of the evaluation
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maps is the rigidified inertia stack of X . The rigidified inertia stack, which we denote IX , is
defined by taking the quotient at (x, (g)) of the automorphism group by the cyclic subgroup

generated by g. So, whereas a local chart at (x, (g)) on IX is given by Ũg/ZGx(g), on IX a

local chart is Ũg/[ZGx(g)/〈g〉]. We write IX :=
∐

µXµ.
We denote by:

Xg,n,d,(µ1,...,µn) := Xg,n,d ∩ (ev1)−1(X µ1) ∩ . . . ∩ (evn)−1(X µn).

IX and IX have the same geometric points (coarse spaces), hence we can identify the rings
H∗(IX ,C) and H∗(IX ,C). We consider the cohomological pullbacks by the maps evi having
domain H∗(IX ,C). More precisely, if ri is the order of the automorphism group of xi, then
define:

ev∗i : H∗(IX ,C)→ H∗(Xg,n,d,C),

a 7→ r−1
i (evi)

∗(p∗a).

This accounts for the difference of degree of fundamental classes of IX and IX .
For each i, there are line bundles Li, Li whose fiber over each point (C, x1, . . . , xn, f) are the
cotangent line to C at xi, respectively to the coarse space C at xi. We denote by ψi = c1(Li)
and ψi = c1(Li). If xi has an automorphism group of order ri than ψi = riψi.

We denote the universal family by π : Ug,n,d → Xg,n,d. Ug,n,d can be identified with
∪(µ1,...,µn)Xg,n+1,d,(µ1,...,µn,0). The moduli spaces Xg,n,d are equipped with virtual fundamental
classes [Xg,n,d] ∈ H∗(Xg,n,d,Q). Orbifold Gromov-witten invariants are obtained by integrat-
ing ψi and evaluation classes on these cycles. We use our favourite correlator notation:〈

a1ψ
k1
, . . . , anψ

kn
〉
g,n,d

:=

∫
[Xg,n,d]

n∏
i=1

ev∗i aiψ
ki
i .

The following generating series are called the genus g potential, respectively the total po-
tential:

FgX (t) =
∑
d,n

Qd

n!
〈t, . . . , t〉g,n,d ,

DX (t) = exp

(∑
g≥0

~g−1Fg(t)

)
.

They are functions on a suitable infinite dimensional vector space, which we describe
below.

We denote by ι : IX → IX the involution which maps (x, (g)) to (x, (g−1)). It descends
to an involution on IX , which we also denote ι. Let XµI = ι(Xµ).
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The orbifold Poincaré pairing on IX is defined for a ∈ H∗(Xµ,C) , b ∈ H∗(XµI ,C) as:

(a, b)orb :=

∫
Xµ
a ∪ ι∗b.

Let

H := C[[Q]]⊗H∗(IX ,C)((z)).

We equip H with the symplectic form:

Ω(f ,g) :=

∮
z=0

(f(z),g(−z))orb dz.

Consider the following polarisation of H:

H+ := H∗(IX ,C)[[z]] and H− := z−1H∗(IX ,C)[z−1].

Let Λ be the completion of the semigroup of the Mori cone of X . Then DX is a well defined
formal function on H+ taking values in Λ⊗ C[[~, ~−1]].

1.8 Twisted Gromov-Witten invariants

“Twisted Gromov-Witten invariants” are obtained from the usual ones by systematically
inserting in the correlators multiplicative classes of certain bundles. We first describe the
result of [TS] on twisted GW invariants, and then explain our generalizations. Let E ∈
K0(X), let a general multiplicative class be

A(E) = exp

(∑
k

skchkE

)
.

More precisely let Eg,n,d := π∗(ev
∗
n+1E) ∈ K0(Xg,n,d) and let the twisted genus 0 potential

be:

F0
A :=

∑
n,d

Qd

n!
〈t(z), . . . , t(z);A(Eg,n,d)〉X0,n,d ,

where the insert of the multiplicative class in the correlators means we cup it with the
integrand. Let

HA := H⊗ C[[s0, s1, . . .]].
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The “twisted” Poincaré pairing on HA is defined for a ∈ H∗(IXµ), b ∈ H∗(IXµI ) as:

(a, b)A =

∫
Xµ
a · ι∗b · A((q∗E)inv),

where q : IX → X is the map (x, (g)) 7→ x and (q∗E)inv is the invariant part of q∗E under
the g action.
We equip HA with the symplectic form:

f ,g 7→
∮
z=0

(f(z),g(−z))A .

The polarisation:

HA+ := H∗(X,Λ)[[z]], HA− := z−1H∗(X,Λ)[z−1]

realizes HA as T ∗HA+. Then F0
A is a function on HA+ of q(z) = t(z)− z and its graph:

LA :=
{

(p,q) | p = dqF0
A
}

is an overruled Lagrangian cone. We identify HA with H via the symplectomorphism:

HA → H
x 7→ x

√
A((q∗E)inv).

Using this, we can view F0
A as a function on H+, and LA as a section of T ∗H+.

Let ∆ be defined as follows:

∆ :=
∑
k≥0

sk

(∑
m≥0

(Am)k+1−mz
m−1

m!
+
chk(q

∗E)inv
2

)
,

where at its turn Am are defined as operators of ordinary multiplication by certain elements
Am ∈ H∗(IX ). To define Am we introduce more notation: let rµ be the order of each
element in the conjugacy class which is labeled by Xµ. The restriction of the bundle E to

Xµ decomposes into characters : let E
(l)
µ be the subbundle on which every element of the

conjugacy class acts with eigen value e2πil/rµ . Then:

(Am)|Xµ :=
l=r−1∑
l=0

Bm(
l

rµ
)ch(E(l)

µ ).

Remark 1.8.1. The decomposition:

H∗(IX ,C)((z−1)) = ⊕H∗(Xµ,C)((z−1))

is preserved by the action of this loop group element. Am acts by cup product multiplication
on each H∗(Xµ).

Theorem([TS]) 1.8.2.

LA = ∆LH.
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1.9 Twisted GW invariants - Motivation

In this section we explain why we look at “twistings” more general than the ones already
present in the literature.
Let ζ be an mth root of unity and denote by X0,n+2,d(ζ) the stem space on which the
generator g of Zm acts by ζ on the cotangent line at the first marked point. It is a Kawasaki
stratum in X0,mn+2,md. Assume for symplicity the point∞ is a marked point. Contributions
coming from integration on X0,n+2,d(ζ) in Kawasaki’s formula are of the form:∫

[X0,n+2,d(ζ)]

td(T )ch

(
ev∗1φ

∏n+2
i=1 ev

∗
i t(Li)

(1− qζL1/m
1 )Tr(Λ•N∗)

)
,

where [X0,n+2,d(ζ)] is the virtual fundamental class to the stratum and T,N are the (virtual)
tangent, respectively normal bundles to X0,n+2,d(ζ). The virtual tangent bundle T vir0,mn+2,dm ∈
K0(X0,nm+2,dm) equals:

T vir0,mn+2,dm = π̃∗(ev
∗
mn+3(TX − 1))− π̃∗(L−1

mn+3 − 1)− (π̃∗i∗(OZ̃))∨,

where Z̃ is the codimension two locus of nodes in the universal family.
As we’ve said, X0,n+2,d(ζ) is identified with (X × BZm)0,n+2,d,(g,0,...,g−1). We want to

express contributions from T vir0,mn+2,dm to T and N in terms of the universal family on the
moduli space (X ×BZm)0,n+2,d,(g,0,...,g−1), which we denote π.

Let Cζk be the Zm module C where g acts by multiplication ζk. Then the eigenspace of
g in π∗(ev

∗
mn+3(TX − 1)) with eigenvalue ζ−k is :

π∗
(
ev∗n+3(TX ⊗ Cζk)

)
.

Taking this into account, as well as the description of the contribution to T,N coming from
π̃∗(L

−1
mn+3 − 1) and (π̃∗i∗(OZ̃))∨ we are led to consider three types of twistings:

• twistings by a finite number of multiplicative index classes Aα as in Tseng’s theorem.

• twistings by classes Bβ of the form:

Bg,n,d =

iB∏
β=1

Bβ
(
π∗(fβ(L−1

n+1)− fβ(1))
)
,

where fβ are polynomials with coefficients in K0(X).

• twistings by nodal classes Cδ of the form:

Cg,n,d =
∏
µ

iµ∏
δ=1

Cµδ
(
π∗(ev

∗
n+1Fδµ ⊗ iµ∗OZµ

)
,
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where Fδµ ∈ K0(X ). The extra index µ keeps track of the orbifold type of the node.
More precisely, we denote by Zµ the node where the map ev+ lands in X µ and by iµ
the corresponding inclusion Zµ → Ug,n,d. Hence we allow different types of twistings
localised near the loci Zµ.

We will refer to these as type A,B, C twistings respectively.

1.10 Twisted GW invariants - statement of results

One can define the twisted potentials FgA,B,C, DA,B,C in a way very similar with the definitions
of Sections 1.7. and 1.8. We describe the effect of these twistings on the potential in terms
of the geometry of the corresponding cones LA,B,C.
The first generalisation we propose is rather straightforward - we allow type A twistings
by an arbitrary finite number of different multiplicative classes Aα. Slightly abusively, we
keep notation from Section 1.8. i.e. LA, HA etc. Denote by ∆α the loop group transfor-
mation obtained from Aα via the procedure described in Section 1.8. Then after a suitable
identification of HA with H :

Theorem 1.10.1. The cone

LA =

(∏
α

∆α

)
L.

Let Lz be a line bundle with first chern class z.

Theorem 1.10.2. The twisting by the classes Bg,n,d has the same effect as a translation on
the Fock space:

DA,B,C(t) = DA,C

(
t + z − z

iB∏
i=1

Bβ
(
−fβ(L−1

z )− fβ(1)

Lz − 1

))
. (1.1)

The type C twisting doesn’t move the cone, but changes the polarisation of H. For each
µ let the series uµ(z) be defined by:

z

uµ(z)
=

iµ∏
δ=1

Cµδ ((q∗Fδµ)µ ⊗ (−L−z)) .

Moreover define Laurent series vk,µ, k = 0, 1, 2, . . . by:

1

uµ(−x− y)
=
∑
k≥0

(uµ(x))kvk,µ(u(y)) ,

where we expand the left hand side in the region where |x| < |y| .
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Theorem 1.10.3. The type C twisting is tantamount to considering the potential DA,B as a
generating function with respect to the new polarisation H = H+ ⊕ H−,C, where H+ is the
same, but H−,C = ⊕µHµ

−,C and each Hµ
−,C is spanned by {ϕα,µvk,µ(u(z))} where {ϕα,µ} runs

over a basis of H∗(Xµ,C) and k runs from 0 to ∞.

1.11 Dq module structure

It is known that the tangent spaces to the cone LH are preserved by the action of certain
differential operators. A corresponding statement in quantum K-theory was missing in the
absence of the divisor equation. While it was noticed in examples (see [GL]) that J (0)
satisfies some finite difference equations, the reasons for that were unknown. The character-
isation of Theorem 1.6.2 allows one to deduce the tangent spaces to L carry a structure of
Dq module, where Dq is a certain algebra of differential operators.

Theorem 1.11.1. Let Dq be the finite-difference operators, generated by integer powers of
Pa and Qd. Define a representation f Dq on K using the operators Paq

Qa∂Qa . Then tangent
spaces to L are Dq invariant.
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Chapter 2

Twisted Gromov-Witten invariants

2.1 Introduction

Twisted Gromov-Witten invariants have been introduced in [CG] for manifold target spaces
and extended by [TS] to the case of orbifolds. The original motivation was to express
Gromov-Witten invariants of complete intersections (the “twisted” ones) in terms of the
GW invariants of the ambient space (the untwisted ones). In addition they were used in [C]
to express Gromov-Witten invariants with values in cobordism in terms of cohomological
Gromov-Witten invariants.

The results of this chapter incorporate and generalise all of the above: we consider three
types of twisting classes. These are multiplicative cohomological classes of bundles of the
form π∗E, where π is the universal family of the moduli space of stable maps to an orbifold X .
The main tool in the computations is the Grothendieck-Riemann-Roch theorem for stacks of
[TN], applied to the morphism π: this gives differential equations satisfied by the generating
functions of the twisted GW invariants. To the Gromov-Witten potential of an orbifold X
one can associate an overruled Lagrangian cone in a symplectic space H - as explained in
Section 1.5. Solving the differential equations for each type of twisting has an interpretation
in terms of the geometry of the cone: change its position by a symplectic transformation,
translation of the origin and a change of polarisation of H.

In [TL], Teleman studies a group action on 2 dimensional quantum field theories. Our
results match his, if the field theories come from Gromov-Witten theory. Our main moti-
vation comes from studying the quantum K-theory of a manifold X, detailed in the next
chapter. However it is very likely that they have other applications - for instance extending
the work of [C] on quantum extraordinary cohomology to orbifold target spaces.

The material of the chapter is structured as follows. Sections 2.2-2.4 describe the main
objects of study and introduce notation used throughout the rest of the chapter: in Section
2.2 we introduce the inertia orbifold IX and define the orbifold product, in Section 2.3 we
define the moduli spaces Xg,n,d, the symplectic space H and the Gromov-Witten potential
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and in Section 2.4 we define the twisted Gromov-Witten invariants and the twisted potential.
In Section 2.5 we state Toën’s Grothendieck-Riemann Roch theorem for stacks. Section 2.6
contains the technical results which are the core of the computations - mainly how the
twisting cohomological classes pullback on the universal family, the locus of nodes and the
divisors of marked points. We are now ready to prove the Theorems 1.10.1, 1.10.2 and 1.10.3
- which we do in Section 2.7. Finally, in Section 2.8 we extract the corollaries which we’ll
use in the next chapter on quantum K-theory.

2.2 Orbifold Cohomology

Let X be a compact Kähler orbifold over C.

Definition 2.2.1. We define the inertia orbifold IX by specifying local charts. Around any
point p ∈ X there is a local chart (Ũp, Gp) such that locally X is represented as the quotient

of Ũp by Gp. Consider the set of conjugacy classes (1) = (h1
p), (h2

p), . . ., (h
np
p ) in Gp. Then:

IX := {(p, (hip) | i = 1, 2, . . . , np}.

Pick an element hip in each conjugacy class. Then a local chart on IX is given by:

np∐
i=1

Ũ
(hip)
p /ZGp(h

i
p),

where ZGp(h
i
p) is the centralizer of hip in Gp.

Remark 2.2.2. For the reader more confortable with the language of stacks, IX can be
defined as the fiber product

IX := X ×X×X X ,

where both maps are the diagonal ∆ : X → X ×X .

For foundational material on stacks, see [F] and [LM].

Remark 2.2.3. There are natural maps: q : IX → X which sends the pair (x, g) to x and
ι : IX → IX which maps (x, g) to (x, g−1). We denote by XµI := ι(Xµ).

In general IX is disconnected, even if X is connected. We write:

IX :=
∐
µ

Xµ.

There is a distinguished stratum X0 of IX which is isomorphic to X .
For a bundle E ∈ K0(X ), we denote by (q∗E)inv the bundle whose restriction on each Xµ is
the invariant part under the action of the (conjugacy class of the) symmetry associated to
Xµ.
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Example 2.2.4. If X is a global quotient of the form Y/G then the strata of IX are in
bijection with the conjugacy classes in G. More precisely to each conjugacy class (g) we
associate the stratum X(g) := Y g/CG(g). If g = e, then Xe = X0 = Y/G.

Definition([CR2]) 2.2.5. The cohomology H∗(IX ,C) is called the orbifold cohomology.

The orbifold Poincaré pairing on IX is defined for a ∈ H∗(Xµ,C) , b ∈ H∗(XµI ,C) as:

(a, b)orb :=

∫
Xµ
a ∪ ι∗b.

We extend this by linearity to H∗(IX ,C). The orbifold product is different from the usual
cup product on H∗(IX ,C):

Definition 2.2.6. For a, b ∈ H∗(IX ,C) their orbifold product a ·orb b is the class whose
pairing with any c ∈ H∗(IX ,C) is given by

(a ·orb b, c) = 〈a, b, c〉0,3,0,

where the right hand side is defined in Section 2.3.

2.3 Moduli of orbifold stable maps

In this section we recall the definition of the moduli spaces of orbifold stable maps of [CR1]
and [AGV2]. The idea to extend the definition of a stable map to an orbifold target space is
quite natural. One then notices that in order to obtain compact moduli spaces parametrizing
these objects one has to allow orbifold structure on the domain curve at the nodes and marked
points (see e.g. [A]).

Definition 2.3.1. A nodal n-pointed orbicurve is a nodal marked curve (C, x1, . . . , xn), such
that

• C has trivial orbifold structure on the complement of the marked points and nodes.

• Locally near a marked point, C is isomorphic to the quotient [Spec C[z]/Zr], for some
r, and the generator of Zr acts by z 7→ ζz, ζr = 1.

• Locally near a node, C is isomorphic to [Spec (C[z, w]/(zw)) /Zr], and the generator
of Zr acts by z 7→ ζz, w 7→ ζ−1w. We call this action balanced at the node.

We now define twisted stable maps:

Definition 2.3.2. An n-pointed, genus g, degree d orbifold stable map is a representable
morphism f : C → X , whose domain is an n-pointed, genus g orbicurve C such that the
induced morphism of the coarse moduli spaces C → X is a stable map of degree d.
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Remark 2.3.3. The word “representable” in the Definition 2.3.2 means that for every point
x ∈ C the associated morphism Gx → Gf(x) is injective. So the orbifold structure on C does
not include “unnecessary” automorphisms.

We denote the moduli space parametrizing n-pointed, genus g, degree d orbifold stable
maps by Xg,n,d. It is proved in [AV] that Xg,n,d is a proper Deligne-Mumford stack. Just like
the case of stable maps to manifolds, there are evaluation maps at the marked points, but
these land naturally in the rigidified inertia orbifold of X , which we denote IX . To explain
this, notice that a marking (say x1) is not a point but a stack BZr. Consider a family of
stable maps (U , x1, . . . xn, f) to X parametrized by a base scheme S. Let C be the fiber over
s ∈ S. Then part of the data of f : C → X is an injective morphism Zr = Gx1 → Gf(x1)

(slightly abusively we denote by f(x1) the image of the geometric point x1 ∈ C). Call g the
image of the fixed generator of 1 ∈ Zr. Going around a nontrivial loop based at s induces
an automorphism Zr → Zr, which is not necessarily identity. So g is defined only up to
composition Zr → Zr → Gf(x1). For any such composition the image of 1 ∈ Zr lands in the
cyclic subgroup generated by g. To get a well-defined evaluation map, we need to factor by
this subgroup.

IX is a version of IX defined by changing the local stabilizer groups in Definition 2.2.1.
Keeping notation from Definition 2.2.1, local charts on IX are :

np∐
i=1

Ũ
(hip)
p /[ZGp(h

i
p)/〈hip〉].

Example 2.3.4. If X is a global quotient Y/G then the strata of IX are X (g) := Y g/CG(g),

where CG(g) = CG(g)/〈g〉 for each conjugacy class (g) ∈ G.

See [AGV1] and [AGV2] for the definition of IX in the category of stacks. In general
there is no map IX → X . The involution ι descends to an involution of IX , which we also
denote by ι.

The connected components of Xg,n,d are Xg,n,d,(µ1,...,µn), where:

Xg,n,d,(µ1,...,µn) := Xg,n,d ∩ (ev1)−1(X µ1) ∩ . . . ∩ (evn)−1(X µn).

Since we work with cohomology with complex coefficients we consider the cohomological
pullbacks by the maps evi having domain H∗(IX ,C). IX and IX have the same coarse
spaces (i.e. the same geometric points, only the stabilizer groups differ), which implies that
both spaces have the same cohomolgy rings with rational coefficients. In fact there is a map
Π : IX → IX , which maps a point (x, (g)) to (x, (g)). If ri is the order of the automorphism
group of xi, then define:

ev∗i : H∗(IX ,C)→ H∗(Xg,n,d,C),

a 7→ r−1
i (evi)

∗(Π∗a).
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Remark 2.3.5. The moduli spaces Xg,n,d, as well as the evaluation maps, differ from those
considered in [TS]. However the Gromov-Witten invariants agree, since integration in [TS]
is done over a weighted virtual fundamental class.

Notice that if a marked point xi has trivial orbifold structure, evi lands in the distin-
guished component X0 of IX . The universal family can be therefore identified with the
diagram:

Ug,n,d := ∪(µ1,...,µn)Xg,n+1,d,(µ1,...,µn,0)
evn+1−−−→ X

π

y
Xg,n,d .

In the universal family Ug,n,d lies the divisor of the i-th marked point Di: its points
parametrize maps whose domain has a distinguished node separating two orbicurves C0 and
C1. C1 is isomorphic to CP1 and carries only three special points: the node, the i-th marked
point and the (n+ 1)-st marked point and is mapped with degree 0 to X . We write:

Di,(µ1,...,µn) := Di ∩ Xg,n+1,d,(µ1,...,µn,0).

Let Z be the locus of nodes in the universal family. It has codimension two in Ug,n,d.
Denote by p : Z̃ → Z the double cover over Z given by a choice of +,− at the node. For
the inclusion of a stratum:

Xg1,n1+1,d1 ×IX X0,3,0 ×IX Xg2,n2+1,d2 → Z ↪→ Xg,n+1,d

we will denote by by pi (i = 1, 2) the projections:

pi : Xg1,n1+1,d1 ×IX X0,3,0 ×IX Xg2,n2+1,d2 → Xgi,ni+1,di .

We denote Z irr,Zred the loci of nonseparating nodes, respectively separating nodes and
iirr, ired for the inclusion maps. Moreover we will need to keep track of the orbifold structure
of the node. We denote by Zµ the locus of nodes where the evaluation map at one branch
lands in X µ. We denote by iµ the corresponding inclusions.

The moduli spaces Xg,n,d have perfect obstruction theory (see [BF]). This yields virtual
fundamental classes:

[Xg,n,d] ∈ H∗(Xg,n,d,Q).

We define ψi, ψi to be the first Chern classes of line bundles whose fibers over each point
(C, x1, . . . , xn, f) are the cotangent spaces at xi to the coarse curve C, respectively to C. If
ri is the order of the automorphism group of xi then ψi = riψi.

We denote by:

〈a1ψ
k1
, . . . , anψ

kn〉g,n,d :=

∫
[Xg,n,d]

n∏
i=1

ev∗i (ai)ψ
ki
i .
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Let C[[Q]] be the Novikov ring which is the formal power series completion of the semi-
group ring of degrees of holomorphic curves in X. For more on Novikov rings see [MS]. We
introduce one more Novikov variable λ. We define the ground ring Λ := C[[Q, λ]] and:

H := H∗(IX ,Λ)((z)).

We equip H with the Q, λ-adic topology. This means that when we say “elements of H have
property P” we mean “elements of H have property P modulo any power in the variables
Q, λ”. H is a slight modification of the Fock space (from e.g. [C]). We do this because we
need H to include expressions of the form exλ/z and ez.

Convention 2.3.6. Throughout this thesis we will refer to the “usual” Novikov variables
Q by just writing “Novikov variables” without explicit mention of λ.

Let:

t(z) := t0 + t1z + · · · ∈ H∗(IX ,C)[[z]][λ].

where the coefficient of 1 · z0 in t(z) is proportional to λ. Then the genus g, respectively
total potential are defined to be:

Fg(t) =
∑
d,n

Qd

n!
〈t, . . . , t〉g,n,d ,

D(t) = exp

(∑
g≥0

~g−1Fg(t)

)
.

We endow H with the symplectic form:

Ω(f ,g) :=

∮
z=0

(f(z),g(−z))orb dz.

Consider the following polarisation of H:

H+ := H∗(IX ,C)[[z]] and H− := z−1H∗(IX ,C)[z−1].

This identifies H with T ∗H+. We introduce Darboux coordinates {pαa , q
β
b } on H and we

write:

p(z) =
∑
a,α

pαaϕα(−z)−a−1 ∈ H−

q(z) =
∑
b,β

qβb ϕβz
b ∈ H+.



21

For t(z) ∈ H+ we call the translation q(z) := t(z) − 1z the dilaton shift. We regard the
total descendant potential as a formal function on H+ taking values in C[[Q, λ, ~, ~−1]].

The graph of the differential of F0 defines a formal germ of a Lagrangian submanifold of
H:

LH := {(p,q),p = dqF0} ∈ H.

Theorem 2.3.7. ([G1])LH is (the formal germ of) a Lagrangian cone with vertex at the
shifted origin −1z such that each tangent space T is tangent to LH exactly along zT .

The class of cones satisfying properties of Theorem 2.3.7 is preserved under the action
of symplectic transformations on H which commute with multiplication by z. We call these
symplectomorphisms loop group elements. They are matrix valued Laurent series in z:

S(z) =
∑
i∈Z

Siz
i,

where Si ∈ End (H∗(IX )⊗ Λ). Being a symplectomorphism amounts to:

S(z)S∗(−z) = I,

where I is the identity matrix and S∗ is the adjoint transpose of S. Differentiating the
relation above at the identity, we see that infinitesimal loop group elements R satisfy:

R(z) +R∗(−z) = 0.

2.4 Twisted Gromov-Witten invariants

In this section we introduce more general Gromov-Witten twisted potentials than the ones
of [TS].

For a bundle E we will denote by A(E), B(E), C(E) general multiplicative classes of E.
These are of the form:

exp

(∑
k≥0

skchk(E)

)
.

We then define the classes Ag,n,d,Bg,n,d, Cg,n,d ∈ H∗(Xg,n,d) as products of different multi-
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plicative classes of bundles:

Ag,n,d =

iA∏
α=1

Aα(π∗(ev
∗Eα)),

Bg,n,d =

iB∏
β=1

Bβ
(
π∗(fβ(L−1

n+1)− fβ(1))
)
,

Cg,n,d =
∏
µ

iµ∏
δ=1

Cµδ
(
π∗(ev

∗
n+1Fδµ ⊗ iµ∗OZµ

)
.

Here fi are polynomials with coefficients in K0(X ), the bundles Eα, Fδµ are elements of
K0(X ). If we denote by:

Θg,n,d := Ag,n,d · Bg,n,d · Cg,n,d

these “twisted” Gromov-Witten invariants are:

〈a1ψ
k1
, . . . , anψ

kn
; Θ〉g,n,d :=

∫
[Xg,n,d]

n∏
i=1

ev∗i (ai)ψ
ki
i ·Θg,n,d.

We now define the twisted potential DA,B,C :

FgA,B,C(t) :=
∑
d,n

Qd

n!
〈t(ψ), . . . , t(ψ); Θ〉g,n,d

DA,B,C := exp(
∑
g

~g−1FgA,B,C).

We view DA,B,C as a formal function on HA,B,C+ .
The symplectic vector space (HA,B,C,ΩA,B,C) is defined asHA,B,C = H, but with a different

symplectic form :

ΩA,B,C(f ,g) :=

∮
z=0

(f(z),g(−z))Adz

where ( , )A is the twisted pairing given for a, b ∈ H∗(IX ) by:

(a, b)A := 〈a, b, 1; Θ〉0,3,0.

Remark 2.4.1. We briefly discuss the case (g, n, d) = (0, 3, 0). According to [AGV1] in this
case the evaluation maps lift to evi : X0,3,0 → IX . The spaces X0,3,0,(µ1,µ2,0) are empty unless
µ2 = µI1, in which case they can be identified with Xµ1 , with the evaluation maps being
ev1 = id : Xµ1 → Xµ1 , ev2 = ι : Xµ1 → XµI1 and ev3 is the inclusion of Xµ1 in X .
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Remark 2.4.2. Notice that on X0,3,0 there are no twistings of type B (the corresponding
push-forwards are trivial for dimensional reasons) and of type C (there are no nodal curves).
That’s why the twisted pairing only depends on the A classes.

According to the previous two remarks we can rewrite the pairing as:

(a, b)A :=

∫
IX
a · ι∗b ·

∏
α

Aα ((q∗Eα)inv) .

There is a rescaling map:

(HA,B,C ,ΩA,B,C)→ (H,Ω)

a 7→ a

√∏
α

Aα((q∗Eα)inv)

which identifies the symplectic spaces. We denote by DA,B the potential twisted only by
classes of type A,B etc. and by:

[Xg,n,d]tw := [Xg,n,d] ∩Θg,n,d.

2.5 Grothendieck-Riemann-Roch for stacks

The main tool for proving Theorems 1.10.1, 1.10.2 and 1.10.3 is a theorem of Grothendieck-
Riemann Roch for stacks due to B.Toën ([TN]). Before stating it we will introduce more
notation:

Definition 2.5.1. Define Tr : K0(X )→ K0(IX ) to be the map:

F 7→ ⊕λi(g)Fi

on each component (g,Xµ) of the inertia stack, where Fi is the decomposition of the g action
and λi(g) is the eigenvalue of g on Fi.

Definition 2.5.2. Define c̃h : K0(X )→ H∗(IX ) to be the map ch ◦ Tr.

Now each vector bundle E on X restricts on each connected component (g,Xµ) of the
inertia stack as the direct sum Einv ⊕ Emov.

Definition 2.5.3. Define T̃ d(E) : K0(X )→ H∗(IX ) to be the class:

T̃ d :=
Td(Einv)

ch(Tr ◦ λ−1(Emov)∨)

where λ−1 is the operation in K-theory defined as λ−1(V ) :=
∑

a≥0(−1)aΛaV . We can now
state:
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Theorem 2.5.4. Let f : X → Y be a morphism of smooth Deligne Mumford stacks. This
induces a morphism If : IX → IY. Then under some nice technical assumptions we have:

c̃h(f∗E) = If∗

(
c̃h(E)T̃ d(Tf )

)
. (2.1)

Restricting to the identity component Y of IY we get:

ch(f∗E) = If∗

(
c̃h(E)T̃ d(Tf )|If−1Y

)
. (2.2)

The universal curve π is not necessarily a local complete intersection, so following [TS] we
proceed as follows. The construction in [AGOT] provides a family of orbicurves

π̃ : U →M (2.3)

and an embedding Xg,n,d →M satisfying the following properties:

• The family U →M pulls back to the universal family over Xg,n,d.

• A vector bundle of the form ev∗n+1(E) extends to a vector bundle over U .

• The Kodaira-Spencer map TmM→ Ext1(OUm ,OUm) is surjective for all m ∈M.

• The locus Z ⊂ U of the nodes of π̃ is smooth and π̃(Z) is a divisor with normal
crossings.

• The pull-back of the normal bundle NZ/U to the double cover Z̃ given by choice of
marked points at the node is isomorphic to the direct sum of the cotangent line bundles
at the two marked points.

So technically we apply Grothendieck-Riemann Roch to π̃ and then cap with the virtual
fundamental classes [Xg,n,d]tw. Therefore for the rest of the chapter we assume the universal
family π satisfies the above properties.

In our situation there are three strata on the universal curve which get mapped to
Xg,n,d,(µ1,...,µn):

• The total space Xg,n+1,d,(µ1,...,µn,0).

• The locus of marked points Dj,(µ1,...,µn).

• The nodal loci Zµ where µ 6= 0, i.e. the node is an orbifold point.
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2.6 Prerequisites

We need to know how the classes Θg,n,d pullback on the universal orbicurve, on the divisor
of marked points and on the locus of nodes. We state below the main result of this section,
which we’ll use in the proofs of the theorems:

Proposition 2.6.1. The following equalities hold:

1. π∗[Xg,n,d]tw = [Xg,n+1,d]
tw ·

iB∏
β=1

Bβ
(
−
fβ(L−1

n+1)− fβ(1)

Ln+1 − 1

)
+

+
n∑
j=1

[Xg,n+1,d]
tw ·

 iµj∏
δ=1

Cµjδ
(
−ev∗n+1(Fδµj)⊗ σj∗ODj

)
− 1

+

+ [Xg,n+1,d]
tw ·

(∏
µ

iµ∏
δ=1

Cµδ
(
−ev∗n+1(Fδµ)⊗ iµ∗OZµ

)
− 1

)
. (2.4)

2. σ∗j [Xg,n,d]tw = [Xg,n,d]tw ·
iµj∏
δ=1

Cµjδ
(
ev∗j (q

∗Fδµj)µj ⊗ (1− Lj)
)
. (2.5)

3. (π ◦ iredµ ◦ p)∗[Xg,n,d]tw =

=
p∗1([Xg1,n1+1,d1 ]

tw) · p∗2([Xg2,n2+1,d2 ]
tw)

(ev∗+ × ev∗−)∆µ∗
∏iµ

δ=1 C
µ
δ ((q∗Fδµ)µ)⊗ (L+L− − 1))

. (2.6)

4. (π ◦ iirrµ ◦ p)∗[Xg,n,d]tw =

=
[Xg−1,n+2,d]

tw

(ev∗+ × ev∗−)∆µ∗
∏iµ

δ=1 C
µ
δ ((q∗Fδµ)µ)⊗ (L+L− − 1))

. (2.7)

Proof: all the equalities follow from the corresponding statements about the classes
A,B, C separatedly, which we’ll prove below. Formula (2.4) follows from (2.9), (2.13), (2.38)
combined with some more cancelation: namely the terms in (2.38) supported on Dj and Z
are killed by the correction factor in (2.13) which is of the form 1 +ψn+1 · .... The untwisted
virtual fundamental classes satisfy π∗[Xg,n,d] = [Xg,n+1,d].
(2.6) and (2.7) follow from the corresponding Lemmata 2.6.2, 2.6.3 and 2.6.7 for each of the
classes Ag,n,d, Bg,n,d and Cg,n,d combined with the splitting axiom in orbifold Gromov-Witten
theory for the untwisted fundamental classes [Xg,n,d], which we briefly review below. Let
Mtw

g,n be the stack of genus g twisted curves with n marked points. There is a natural map:

gl : Dtw(g1;n1|g2, n2)→Mtw
g,n

induced by gluing two family of twisted curves into a reducible curve with a distinguished
node. Here Dtw(g1;n1|g2, n2) is defined as in Section 5.1 of [AGV2]. This induces a cartesian
diagram:
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Dtw
g,n(X ) −−−→ Xg,n,dy y

Dtw(g1;n1|g2, n2)
gl−−−→ Mtw

g,n.

There is a natural map:

g :
⋃

d1+d2=d

Xg1,n1+1,d1 ×X Xg2,n2+1,d2 → Dtw
g,n(X ).

Then the diagram:

Xg1,n1+1,d1 ×IX Xg2,n2+1,d2 ⊂ Z −−−→ IXy ∆

y
Xg1,n1+1,d1 ×Xg2,n2+1,d2

ev+×ĕv−−−−−−→ IX × IX
gives: ∑

d1+d2=d

∆!([Xg1,n1+1,d1 ]× [Xg2,n2+1,d2 ]) = g∗(gl!([Xg,n,d])). (2.8)

For details and proofs of the statements we refer the reader to the paper of [AGV2] (Prop.
5.3.1.) . The only modification we have made is - we consider the class of the diagonal with
respect to the twisted pairing on IX = X0,3,0,(µ1,µ2,0). This cancels the factor ev∗∆(A0,3,0) in
(2.6) and (2.7).

Roughly speaking relation (2.8) says that the restriction of the virtual fundamental class
of Xg,n,d to Z coincides with the push forward of the product of virtual fundamental classes
under the gluing morphisms. Hence integration on Z factors ”nicely” as products of integrals
on the two separate moduli spaces.

The rest of the section is devoted to proving pullback results about each type of twisting
class separately.

Lemma 2.6.1. Consider the following diagram:

Xg,n+◦+•,d,(µ1,...,µn,0,0)
π1−−−→ Xg,n+•,d,(µ1,...,µn,0)

π2

y π2

y
Xg,n+◦,d,(mu1,...,µn,0)

π1−−−→ Xg,n,d, (µ1, . . . , µn)

where π1 forgets the (n+1)-st marked point (which I denoted ◦) and π2 forgets the (n+2)-nd
marked point (denoted •) and let α ∈ K0(Xg,n+◦,d,(µ1,...,µn,0)). Then π∗2π1∗α = π1∗π

∗
2α.
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Proof: for symplicity of notation we suppress the labeling (µ1, . . . , µn) in the proof.
Consider the fiber product:

F := Xg,n+◦,d ×Xg,n,d Xg,n+•,d

and denote by p1, p2 the projections from F to the factors and by ϕ : Xg,n+◦+•,d → F the
morphism induced by π1, π2. ϕ is a birational map: it has positive dimensional fibers along
the locus where the two extra marked points hit another marked point or a node. We’ll
prove that

ϕ∗(OXg,n+◦+•,d) = OF .

By definition of K-theoretic push-forward

ϕ∗OXg,n+◦+•,d = R0ϕ∗OXg,n+◦+•,d −R1ϕ∗OXg,n+◦+•,d .

It is easy to see that ϕ∗(OXg,n+◦+•,d) = OF as quasicoherent sheaves (this is true for every
proper birational map with normal target). We only have to prove that R1 = 0, which we
do by looking at the stalks:

(R1ϕ∗OXg,n+◦+•,d)x = H1(ϕ−1(x),OXg,n+◦+•,d|ϕ−1(x)).

If the fiber over x is a point, there’s nothing to prove. If x is in the blowup locus the fiber
is a (possibly weighted ) P1. A calculation in [AGV2] shows that :

χ(C,OC) = 1− g,

where g is the arithmetic genus of the coarse curve C. Therefore H1(ϕ−1(x),O) = 0 .
We have p1∗p

∗
2α = π∗2π1∗α because the diagram:

F p1−−−→ Xg,n+•,d,(µ1,...,µn,0)

p2

y π2

y
Xg,n+◦,d,(µ1,...,µn,0)

π1−−−→ Xg,n,d,(µ1,...,µn)

is a fiber square. Hence:

π1∗π
∗
2α = p1∗ϕ∗ (ϕ∗p∗2α) = p1∗p

∗
2αϕ∗(O) = p1∗p

∗
2α = π∗2π1∗α.

We need to know how the classes Ag,n,d,Bg,n,d, Cg,n,d behave under pullback by the mor-
phisms π, σ and π ◦ i ◦ p.
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Proposition 2.6.2. The following identities hold:

a. π∗Ag,n,d = Ag,n+1,d. (2.9)

b. σ∗iAg,n,d = Ag,n,d. (2.10)

c. (π ◦ ired ◦ p)∗Ag,n,d =
p∗1Ag1,n1+1,d1 · p∗2Ag2,n2+1,d2

ev∗∆A0,3,0

. (2.11)

d. (π ◦ iirr ◦ p)∗Ag,n,d =
Ag−1,n+2,d

ev∗∆A0,3,0

. (2.12)

These are proved in [TS]. Denote by Eg,n,d := π∗(ev
∗
n+1E). Then he shows that:

a. π∗Eg,n,d = Eg,n+1,d,

b. (π ◦ ired ◦ p)∗Eg,n,d = p∗1(Eg1,n1+1,d1) + p∗2(Eg2,n2+1,d2)− ev∗∆(q∗Einv),

c. (π ◦ iirr ◦ p)∗Eg,n,d = Eg−1,n+2,d − ev∗∆(q∗Einv).

The identities then follow by multiplicativity of the classes Aα. Since X0,3,0,(i1,i2,0) ' IX ,
the class A0,3,0 is an element of H∗(IX ,Q). We can pull it back by the diagonal evaluation
morphism ev∆ at the node.

Proposition 2.6.3. The following hold:

a. π∗Bg,n,d = Bg,n+1,d ·
iB∏
β=1

Bβ
(
−
fβ(L−1

n+1)− fβ(1)

Ln+1 − 1

)
. (2.13)

b. σ∗iBg,n,d = Bg,n,d. (2.14)

c. (π ◦ ired)∗Bg,n,d = p∗1Bg1,n1+1,d1 · p∗2Bg2,n2+1,d2 . (2.15)

d. (π ◦ iirr)∗Bg,n,d = Bg−1,n+2,d. (2.16)

Proof: The first identity is a consequence of Lemma 2.6.1 . More precisely we apply the
lemma to the class α = ev∗n+1(E)(Ln+1 − 1)k+1. This gives:

π∗2π1∗
(
ev∗n+1(E)(Ln+1 − 1)k+1

)
= π1∗π

∗
2

(
ev∗n+1(E)(Ln+1 − 1)k+1

)
=

= π1∗
(
ev∗n+1(E)(Ln+1 − 1)k+1 − (σ•)∗

[
ev∗n+1(E)(Ln+1 − 1)k

])
=

= π1∗
(
ev∗n+1(E)(Ln+1 − 1)k+1

)
− ev∗n+1(E)(Ln+1 − 1)k.

The last equality follows because π1 ◦ σ• = Id and the second equality uses the comparison
identity for cotangent line bundles Li:

π∗((Li − 1)k+1) = (Li − 1)k+1 − σi∗
[
(Li − 1)k

]
.
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But both morphisms π1, π2 can be identified with the universal orbicurve π. Hence we
deduce:

π∗π∗
(
ev∗n+1(E)(Ln+1 − 1)k+1

)
= π∗

(
ev∗n+2(E)(Ln+2 − 1)k+1

)
−

− ev∗n+1(E)(Ln+1 − 1)k, (2.17)

or more generally if we expand

fβ(L−1
n+1)− fβ(1) =

∑
k≥0

ak(Ln+1 − 1)k+1,

then:

π∗π∗(fβ(L−1
n+1)− fi(1)) = π∗(fβ(L−1

n+2)− fi(1))−
fβ(L−1

n+1)− fβ(1)

Ln+1 − 1
. (2.18)

Then (2.13) follows because Bβ are multiplicative classes:

π∗Bβ
(
π∗(fβ(L−1

n+1)− fβ(1))
)

= Bβ
(
π∗π∗(fβ(L−1

n+1)− fβ(1))
)

=

= Bβ
(
π∗(fβ(L−1

n+2)− fβ(1))−
fβ(L−1

n+1)− fβ(1)

Ln+1 − 1

)
=

= Bβ
(
π∗(fβ(L−1

n+2)− fβ(1))
)
· Bβ

(
−
fβ(L−1

n+1)− fβ(1)

Ln+1 − 1

)
.

Example 2.6.4. In the case fβ = ev∗n+1(Eβ)⊗ L−1
n+1 (which is the only one we’ll need) we

have:

fβ(L−1
n+1)− fβ(1)

Ln+1 − 1
= −EβL−1

n+1

and relation (2.13) reads:

π∗Bg,n,d = Bg,n+1,d ·
iB∏
β=1

Bβ(Eβ ⊗ L−1
n+1). (2.19)

Relation (2.15) follows from the identity:

(π ◦ ired)∗[π∗(f(L−1
n+1)− f(1))] =

=p∗1[π∗(f(L−1
n1+2)− f(1))] + p∗2[π∗(f(L−1

n2+2)− f(1))],

which we prove below. By linearity is enough to prove the result for f = (Ln+1 − 1)k+1 for
k ≥ 0. Relation (2.17) gives:

π∗π∗(Ln+1 − 1)k+1) = π∗(Ln+2 − 1)k+1 − (Ln+1 − 1)k. (2.20)
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Assume for now that k ≥ 1. When we apply i∗red to this relation the second summand in the
RHS of (2.20) vanishes because Ln+1 is trivial on Z. Therefore

i∗redπ
∗π∗(Ln+1 − 1)k+1 = (i ◦ p)∗π∗(Ln+2 − 1)k+1.

Let Xg1,n1+1,d1×IX X0,3,0×IX Xg2,n2+1,d2 be a stratum of Z. If we denote by π : U ′g,n,d → Ug,n,d
the universal curve then we have a fiber diagram:

Z1 ∪ Z2 ∪ Z3
i−−−→ U ′g,n,d

π

y π

y
Xg1,n1+1,d1 ×IX X0,3,0 ×IX Xg2,n2+1,d2

i−−−→ Ug,n,d.

Here Z1 and Z3 are the universal curves over the factors Xg1,n1+1,d1 and Xg2,n2+1,d2 . So using

i∗redπ∗(Ln+2 − 1)k+1 = π∗i
∗
red(Ln+2 − 1)k+1, (2.21)

we see that the contribution of the strata Z1 and Z3 above is:

p∗1[π∗(f(L−1
n1+2)− f(1))] + p∗2[π∗(f(L−1

n2+2)− f(1))]. (2.22)

So if we show that the contribution from Z2 is 0 we are done. Notice that Z2 is the universal
curve over the factor X0,3,0, hence it is a fiberproduct Xg1,n1+1,d1 ×IX X0,4,0 ×IX Xg2,n2+1,d2 .
The fibers of the map Z2 → Z are (weighted) P1. However the class L is a cotangent line at
a point with trivial orbifold structure, so we can use Y.P.Lee’s formula in [L1] which in this
particular case reads:

χ(M0,4, L
k
i ) = k + 1. (2.23)

Hence the Euler characteristics of (Ln+2 − 1)k+1 is:

χ
(
M0,4, (Ln+2 − 1)k+1

)
=

k+1∑
i=0

(i+ 1)(−1)k+1−i
(
k + 1

i

)
=

=
k+1∑
i=0

(−1)k+1−i
(
k + 1

i

)
+ (k + 1)

k+1∑
i=1

(−1)k+1−i
(

k

i− 1

)
= 0 + 0 = 0.

This almost proves the statement. We are left with the case k = 0, which is slightly different:
the sum above equals 1, but this is cancelled by the −1 in the second term of (2.20). Relation
(2.15) follows then from the multiplicativity of the classes Bβ. A similar computation shows
relations (2.14) and (2.16).
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Lemma 2.6.5. Let F ∈ K0(X ). Then:

a. π∗π∗iµ∗(ev
∗
n+1(F )⊗OZµ) = π∗iµ∗(ev

∗
n+1(F )⊗OZµ)−∑

j,µj=µ

ev∗n+1(F )⊗ σj∗ODj − iµ∗(ev∗n+1(F )⊗OZµ). (2.24)

b. (π ◦ i)∗(π∗iµ∗(ev∗n+1(F )⊗OZµ) = p∗1(π∗iµ∗(ev
∗
n+1(F )⊗OZµ))+

p∗2(π∗iµ∗(ev
∗
n+1(F )⊗OZµ)) +

(
ev∗n+1F ⊗ (1− L+L−)

)
. (2.25)

Remark 2.6.2. Before delving in the technicalities of the proof, we try a heuristic explana-
tion of why the formulae, which look rather ugly, “should” be true:

• Assume for now that F is the trivial bundle C. The nodal locus Z “separates nodes”
in the following sense: above a point of Xg,n,d representing a nodal curve with k nodes
lie exactly k points of Z. This is very similar with the way the normalisation of a nodal
curve C̃ → C separates the nodes. But the structure sheaves of C̃ and C differ (in
K-theory) by skyscraper sheaves at the preimages of nodes. That’s pretty much what
the first formula expresses: the pull-back of the structure sheaf of the codimension one
stratum of nodal curves in Xg,n,d equals the structure sheaf of the nodal locus in the
universal family, minus a copy of the structure sheaf of Z (which has codimension two
in the universal family) itself. The terms supported on the divisors Dj are substracted
because they are nodes in the universal family, but they lie over the whole space Xg,n,d.
We’ll see that the presence of the class ev∗n+1(F ) doesn’t complicate things too much.

• For the second formula, think of π∗iµ∗α as a class supported on a codimension one
subvariety. We pull it back along the map (πi) , which is like restricting to another
codimension one subvariety. If these subvariesties intersect along a codimension two
cycle (represented by curves with two nodes), then they contribute p∗i (π∗iµ∗α) to (2.25).
If they are the same subvariety, then α gets multiplied with the Euler class of the normal
bundle of it in the ambient space, which is 1− L+L−.

Proof of Lemma 2.6.5: Denote by Z•, Z◦, respectively Z•◦ the nodal loci living inside
the corresponding moduli spaces (and by Z◦,µ etc. the ones with nodes of specific orbifold
type) in the following diagram:

π−1
2 (Z◦,µ)

iµ−−−→ ∪(i1,...,in)Xg,n+◦+•,d,(i1,...,in,0,0)
π1−−−→ ∪(i1,...,in)Xg,n+•,d,(i1,...,in,0)

π2

y π2

y π2

y
Z◦,µ

iµ−−−→ ∪(i1,...,in)Xg,n+◦,d,(i1,...,in,0)
π1−−−→ Xg,n,d.

Remember that Z◦,µ is defined as the total range of the gluing map:

Xg−1,n+2,d ×Xµ×XµI X0,3,0

∐
Xg1,n1+1,d1 ×Xµ×XµI X0,3,0 ×Xµ×XµI Xg2,n2+1,d2 → Z◦ ↪→ Xg,n+◦,d.
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Z◦,1 Z◦,2 Z◦,3

Z12 Z23

Figure 2.1: Strata of π−1
2 (Z◦,µ).

We will compute π∗2(π1∗iµ∗(ev
∗
◦(F )⊗OZ◦,µ)).

The square on the left is a fiber diagram, hence i∗π
∗
2 = π∗2i∗. For the one on the right we

have proved that π∗2π1∗ = π1∗π
∗
2. Therefore:

π∗2(π1∗iµ∗(ev
∗
n+1(F )⊗OZ◦,µ)) = π1∗iµ∗π

∗
2(ev∗◦(F )⊗OZ◦,µ)). (2.26)

But:

π∗2(ev∗◦F ⊗OZ◦,µ) = ev∗◦F ⊗Oπ−1
2 (Z◦,µ).

The space π−1
2 (Z◦,µ) := Z◦,1 ∪ Z◦,2 ∪ Z◦,3 is a singular space, where each codimension two

stratum is the universal curve over one factor of Z◦,µ and they intersect along two codimension
three strata, call them Z12 and Z23:

Z12 = Xg1,n1+1,d1 ×X0,3,0 ×X0,3,0 ×Xg2,n2+1,d2

where the two rational components carry the points •, ◦ and two nodes. Figure 2.1 above
schematically represents each of these five strata. We can write the structure sheaf of
π−1

2 (Z◦,µ) as:

Oπ−1
2 (Z◦,µ) = OZ◦,1 +OZ◦,3 +OZ◦,2 −OZ12 −OZ23 .
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We tensor this with the class ev∗◦F , keeping in mind that on the strata Z◦,2,Z12,Z23 ev◦ = ev•:

ev∗◦FOπ−1
2 (Z◦,µ) = ev∗◦F ⊗

[
OZ◦,1 +OZ◦,3

]
+ ev∗•F ⊗

[
OZ◦,2 −OZ12 −OZ23

]
. (2.27)

We plug (2.27) in (2.26) and we get:

π∗2(π1∗iµ∗(ev
∗
◦(F )⊗OZ◦,µ)) = π1∗iµ∗

[
ev∗◦F

(
OZ◦,1 +OZ◦,3

)
+ ev∗•F

(
OZ◦,2 −OZ12 −OZ23

)]
.

(2.28)

We now notice that the union of Z◦,1 and Z◦,3 is almost Z•◦,µ but not quite. There are
strata:

Xg,n,d ×Xµ X0,3,0 ×Xµ X0,3,0

which are in Z•◦,µ, but they are missing from Z◦,1∪Z◦,3 because the map π2◦iµ contracts one
rational tail. These are mapped by π1 ◦ iµ isomorphically to divisors Dj ∈ Xg,n+•,d. There is
one such stratum for each j such that µj = µ. Hence we can write:

π1∗iµ∗
[
ev∗◦FOZ◦,1 + ev∗◦FOZ◦,3

]
== π1∗iµ∗(ev

∗
◦(F )⊗OZµ)−

∑
j,µj=µ

ev∗◦(F )⊗ σj∗ODj . (2.29)

The codimension three strata Z12 and Z23 are mapped by π1iµ isomorphically to Z•,µ. As
for Z◦,2, this is a P1 fibration over Z•,µ. When we push forward, we integrate the structure
sheaf of (weighted) P1. This equals 1, as already explained. At the end of the day we see
that the last three terms in (2.28) contribute:

π1∗iµ∗
[
ev∗•F

(
OZ◦,2 −OZ12 −OZ23

)]
= −ev∗•F ⊗ iµ∗OZ•,µ . (2.30)

Adding up (2.29) with (2.30) and identifying π1 = π2 = π and ev◦ = evn+1 proves the first
equality in the lemma.

For the second equality, we first prove:

Lemma 2.6.6. Let j : Z ↪→ Ug,n,d be the codimension two nodal locus. Then:

j∗π∗iµ∗
(
ev∗n+1F ⊗OZµ

)
= p∗1π∗iµ∗

(
ev∗n+1F ⊗OZµ

)
+

+ p∗2π∗iµ∗
(
ev∗n+1F ⊗OZµ

)
+ (2− L+ − L−)ev∗n+1(F ). (2.31)

Proof of the Lemma 2.6.6: let U ′g,n,d be the universal curve over Ug,n,d. The universal
curve over Z is a union of three types of strata, depending on which component the extra
marked point on U ′g,n,d - which we denote • - lies on (see also Figure 2.1):

Z1 = Xg1,n1+1+•,d1 ×IX X0,3,0 ×IX Xg2,n2+1,d2 ,

Z2 = Xg1,n1+1,d1 ×IX X0,3+•,0 ×IX Xg2,n2+1,d2 ,

Z3 = Xg1,n1+1,d1 ×IX X0,3,0 ×IX Xg2,n2+1+•,d2 .
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The diagram below is a fiber square:

Z1 ∪ Z2 ∪ Z3
j−−−→ U ′g,n,d

π

y π

y
Z j−−−→ Ug,n,d.

Hence : j∗π∗iµ∗α = π∗j
∗iµ∗α. To compute j∗iµ∗α we form the following fiber diagram:

Z j−−−→ Z•,µ
π

y π

y
Z1 ∪ Z2 ∪ Z3

j−−−→ U ′g,n,d.

The space Z is simply the intersection of Z1 ∪ Z2 ∪ Z3 with Z•,µ. Where the intersection
is transversal one can simply write j∗iµ∗α = iµ∗j

∗α. On components where the intersection
is not transversal, there is some excess bundle N and j∗iµ∗α = iµ∗e(N)j∗α. The strata Z1

and Z3 intersect the nodal locus Z•,µ in U ′g,n,d transversely along codimension four strata
which can be seen as the nodal locus in Xg1,n1+1+•,d1 and Xg2,n2+1+•,d2 respectively. Hence
the contribution to (2.31) is:

p∗1π∗iµ∗
(
ev∗n+1F ⊗OZµ

)
+ p∗2π∗iµ∗

(
ev∗n+1F ⊗OZµ

)
.

On the other hand Z2 intersects Z•,µ along two codimension three strata of the form:

Z1 = Xg1,n1+1,d1 ×IX X0,3,0 ×IX X0,3,0 ×IX Xg2,n2+1,d2 .

Each gives a one dimensional excess normal bundle with Euler classes 1 − L+ and 1 − L−
respectively. They project isomorphically to Z downstairs. Hence they contribute:

(2− L+ − L−)ev∗n+1(F ).

Adding up, we get (2.31).
We now prove formula 2.25 in Lemma 2.6.5. It falls out easily by combining (2.24) with

Lemma 2.6.6. More precisely we take i∗ of formula (2.24): the first term is computed in
Lemma 2.6.6, the part supported on Dj vanishes and:

i∗µiµ∗OZµ = e(N) = (1− L−)(1− L+) (2.32)

where N is the normal bundle of Zµ in the ambient space. When we add this with (2.31)
we get:

(π ◦ i)∗(π∗iµ∗(ev∗n+1(F )⊗OZµ) = p∗1(π∗iµ∗(ev
∗
n+1(F )⊗OZµ))+

p∗2(π∗iµ∗(ev
∗
n+1(F )⊗OZµ)) +

(
ev∗n+1F ⊗ (1− L+L−)

)
, (2.33)

as stated.
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Proposition 2.6.7. The following hold:

a. π∗Cg,n,d = Cg,n+1,d ·
n∏
j=1

iµj∏
δ=1

Cµjδ
(
−ev∗n+1(Fδµj)⊗ σj∗ODj

)
·
∏
µ

iµ∏
δ=1

Cµδ
(
−ev∗n+1(Fδµ)⊗ (iµ∗OZµ

)
. (2.34)

b. σ∗jCg,n,d = Cg,n,d ·
iµj∏
δ=1

Cµjδ
(
ev∗n+1(Fδµj)⊗ (1− Lj)

)
. (2.35)

c. p∗(iredµ )∗π∗Cg,n,d =
(
p∗1C

µ
g1,n1+1,d1

· p∗2C
µ
g2,n2+1,d2

)
·

· (ev∗+ × ev∗−)∆µ∗

(
iµ∏
δ=1

Cµδ ((q∗Fδµ)µ)⊗ (1− L+L−)))

)
. (2.36)

d. p∗(iirrµ )∗π∗Cg,n,d =

= Cµg−1,n+2,d · (ev
∗
+ × ev∗−)∆µ∗

(
iµ∏
δ=1

Cµδ ((q∗Fδµ)µ)⊗ (1− L+L−))

)
. (2.37)

Proof: the equalities (2.34) and (2.36) are immediate consequences of (2.24) and (2.25)
and of the multiplicativity of the classes Cg,n,d. As for (2.35) we can view it as a particu-
lar case of (2.36) in the following way: the divisor Di can be identified with the stratum
Xg,n,d,(µ1,...,µn) ⊗IX X0,3,0 ⊗IX X0,3,0 in Xg,n+1,d,(µ1,...,µn,0,0). On that stratum L+ = Li and
L− = 1 - hence the formula.

We will use (2.34) in a different form, using the same trick as for the Todd class of Ω∨π
to transform the product into a sum:

π∗Cg,n,d = Cg,n+1,d ·
n∏
j=1

iC∏
δ=1

(
1 + Cµjδ

(
−ev∗n+1(Fδµj)⊗ σj∗ODj)

)
− 1
)

∏
µ

1 +

iCµ∏
δ=1

Cµδ
(
−ev∗n+1(Fδµ)⊗ iµ∗OZµ

)
− 1

 =

Cg,n+1,d +
∑
j

Cg,n+1,d ·
iCµj∏
δ=1

(Cµjδ
(
−ev∗n+1(Fδµj)⊗ σj∗ODj)

)
− 1)+

+
∑
µ

Cg,n+1,d ·

iCµ∏
δ=1

Cµδ
(
−ev∗n+1(Fδµ)⊗ iµ∗OZµ

)
− 1

 . (2.38)

This happens because the classes Cµδ (..)−1 are supported onDi and Z andDi·Dj = Di·Zµ = 0
if i 6= j .
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We conclude the section by doing a short Grothendieck-Riemann-Roch computation
which will turn out useful in the next section:

Lemma 2.6.8. Let F ∈ K0(X ). Then

ch
(
π∗iµ∗(ev

∗
n+1F ⊗OZµ)

)
= π∗iµ∗

(
ch(ev∗n+1F ) · Td∨(−L+ ⊗ L−)

)
. (2.39)

Proof: recall that r(µ) is the order of the distinguished node on Zµ. We’ll simply write
r throughout the proof.

We apply Toen’s GRR to the map f = π ◦ i. The map π is given in local coordinates
near Zµ by:

(z, x, y)/Zr × Zr 7→ (z, xy)/Zr

where z is a vector coordinate along Zµ and Zµ is given by x = y = 0. The generator of Zr×Zr
acts on the (x, y) plane as follows: (x, y) 7→ (ζax, ζby) and necessarily by multiplication by
ζa+b on the base. So in this local description If maps r copies of the point (z, 0, 0) to (z, 0)
on the base. Each copy has weight 1/r from Kawasaki’s formula. The relativ tangent bundle
is −L−1

+ −L−1
− because the coordinate on the base is ε = xy and is invariant with respect to

the Zr action. This proves the statement.

2.7 Proofs of Theorems

Proof of Theorem 1.10.1: this is an easy consequence of Tseng’s result and of the commuta-
tivity of the operators ∆α.

Proof of Theorem 1.10.2: Remember that Bg,n,d is a product of iB multiplicative character-
istic classes. We’ll prove the statement using induction on iB. The case iB = 0 is trivial.
Assuming the statement holds for iB − 1, we’ll prove the infinitesimal version of the propo-
sition for iB. Namely assume the twisting class BiB to be:

BiB = exp

(∑
l≥1

vlchlπ∗
(
f(L−1

n+1)− f(1))
))

.

We compute:

∂DA,B,C
∂vl

D−1
A,B,C =

=
∑
d,n

Qd~g−1

n!

〈
n∏
i=1

t(ψi) · chlπ∗
(
f(L−1

n+1)− f(1)
)
·Θg,n,d

〉
g,n,d

. (2.40)
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To compute chlπ∗
(
f(L−1

n+1)− f(1)
)

above we apply Toen’s GRR to the morphism π to
get:

ch
(
π∗(f(L−1

n+1)− f(1))
)

= Iπ∗

(
c̃h(f(L−1

n+1)− f(1))Td∨(Ωπ)
)
. (2.41)

Notice that c̃h = ch because the last marked point is not an orbifold point. We have:

c̃h(f(L−1
n+1)− f(1)) = f(e−ψn+1)− f(1). (2.42)

There are three strata in the (relative) inertia stack that map to Xg,n,d. But the expression
on the RHS in (2.42) above is a multiple of ψn+1 and ψn+1 vanishes on the locus of marked
points Dj and on the locus of nodes Z. Hence only the total space contributes to GRR. As
usually we write the sheaf of relative differentials:

Ωπ = Ln+1 −⊕ni=1σj∗ODj,(µ1,...,µn)
− i∗OZ (2.43)

which for Todd classes gives

Td∨(Ωπ) = Td∨(Ln+1)
n∏
i=1

Td∨(−σj∗ODj,(µ1,...,µn)
)Td∨(−i∗OZ) (2.44)

and then using the fact that Ln+1 is trivial when restricted to Di and Z we can rewrite the
product as a sum:

Td∨(Ωπ) = Td∨(Ln+1) +
n∑
i=1

(Td∨(−σj∗ODj,(µ1,...,µn)
)− 1) + Td∨(−i∗OZ)− 1. (2.45)

The last n + 1 summands are classes supported on Dj and Z, so they are killed by the
presence of ψ in f(e−ψn+1)− f(1). After all these cancelations we see that:

ch
(
π∗(f(L−1

n+1)− f(1))
)

= π∗
(
(f(e−ψn+1)− f(1)) · Td∨(Ln+1)

)
. (2.46)

(2.46) is a linear combination of kappa classes Kaj = π∗(ev
∗
n+1ϕaψ

j+1
n+1). Now we pull the

correlators back on the universal orbicurve. It is essential here that the corrections in the
Cg,n,d classes are also supported on Dj and Z (as we can see from (2.38) ) and the presence
of ψn+1 kills them. Therefore (we denote by[f ]l the homogeneous part of degree l of f):

D−1
A,B,C

∂DA,B,C
∂vl

=
∑
d,n,g

Qd~g−1

n!

∫
Xg,n+1,d

n∏
i=1

(∑
ki≥0

(
ev∗i (tki) · ψ

ki
i

))
·

·
[
(f(e−ψn+1)− f(1)) · Td∨(Ln+1)

]
l+1
·Θg,n+1,d ·

iB∏
β=1

Bβ
(
−
fβ(L−1

n+1)− fβ(1)

Ln+1 − 1
)

)
−
∫
X0,3,0

ϕaψ
m+1
3 (· · · )−

∫
X1,1,0

ϕaψ
m+1
1 (· · · ). (2.47)
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The correction terms occur because the spaces X0,3,0 and X1,1,0 are not universal families.
Notice that the first correction is always 0 for dimensional reasons, and the second is 6= 0
only for m = 0 (again for dimensional reasons), in which case equals 1

24

∫
X e(TX ). So the

”new” twisting by the class BiB has the same effect as the translation:

tB(z) = t(z) + z − z
iB∏
γ=1

Bβ
(
−fβ(L−1

z )− fβ(1)

Lz − 1

)
,

because both potentials satisfy the same differential equation. To see this differentiate the
potential DA,B(tB(z)) in vl:

∂DA,B(tB(z))

∂vl
D−1
A,B =

∑
d,n,g

Qd~g−1

n!

∫
Xg,n+1,d

n∏
i=1

(∑
ki≥0

(
ev∗i (tki) · ψ

ki
i

))
·

· ψn+1chl

(
f(L−1

n+1)− f(1)

Ln+1 − 1

)
·Θg,n+1,d ·

iB∏
β=1

Bβ
(
−
fβ(L−1

n+1)− fβ(1)

Ln+1 − 1

)
. (2.48)

But:

ψn+1chl

(
f(L−1

n+1)− f(1)

Ln+1 − 1

)
= ψn+1

[
f(e−ψn+1)− f(1)

eψ − 1

]
l

=[
ψn+1

f(e−ψn+1)− f(1)

eψ − 1

]
l+1

=
[
(f(e−ψn+1)− f(1)) · Td∨(Ln+1)

]
l+1

(2.49)

because

Td∨(Ln+1) =
ψn+1

eψn+1 − 1
.

Plugging (2.49) in (2.48) we see that (2.48) and (2.47) are of exactly the same form. The
potentials also satisfy the same initial condition at v = 0 by the induction hypothesis.

Proof of Theorem 1.10.3: we’ll prove that

DA,B,C = exp

(
~
2

∑
a,b,α,β,µ

Aµa,α;b;β∂
α,µ
a ∂β,µ

I

b

)
DA,B (2.50)

where Aµa,α;b,β are the coefficients of the expansion:

∑
a,b

Aµa,α;b,βϕα,µψ
a

+ ⊗ ϕβ,µIψ
b

− = −
∆µ∗

(∏iµ
δ=1 C

µ
δ ((q∗Fδµ)µ ⊗ (1− Lz))− 1

)
ψ+ + ψ−

∈

∈ H∗(Xµ,Q)[ψ+]⊗H∗(XµI ,Q)[ψ−]. (2.51)



39

Here ψ+ = c1(L+), ψ− = c1(L−) and ∆µ : Xµ → Xµ ⊗ XµI is the composition (Id× ι) ◦∆ .
The map:

∆µ∗ : H∗(Xµ,Q)→ H∗(Xµ,Q)⊗H∗(XµI ,Q)

extends naturally to a map, which we abusively also call ∆µ∗ :

∆µ∗ : H∗(Xµ,Q)[z]→ H∗(Xµ,Q)[ψ+]⊗H∗(XµI ,Q)[ψ−],

by mapping z 7→ ψ+ ⊗ 1 + 1⊗ ψ− and the RHS of (2.51) should be understood in this way.
Accordind to [C], relation (2.50) is equivalent to the statement of 1.10.3.
We’ll prove (2.50) using induction on the total number

∑
µ iµ of twisting classes Cµδ . If∑

iµ = 0 then the equality is trivial. Let now
∑
iµ ≥ 1. Assuming (2.50) to be true for∑

iµ− 1, we’ll prove the infinitesimal version of the theorem for
∑
iµ. More precisely fix an

µ0 and let the multiplicative class Cµ0 (we omit the lower index) be of the form :

Cµ0(E) = exp

(∑
l

wlchl(E)

)
. (2.52)

As we vary the coefficients wl we obtain a family of elements in the Fock space. We prove
(2.50) by showing that both sides satisfy the same differential equations with the same initial
condition. Notice that the induction hypothesis ensures that both sides of (2.50) satisfy the
same initial condition at w = 0. Moreover ∂DA,B/∂wl = 0 so on the RHS only the coefficients
Aµ0a,α;b,β depend on wl. So if denote the RHS by G and differentiate it we get:

~
2

∑
a,b

∂Aµ0a,α;b,β

∂wl
∂α,µ0a ∂

β,µI0
b G =

∂

∂wl
G. (2.53)

To compute ∂Aµ0a,α;b,β/∂wl we differentiate in wl relation (2.51) to get:

∑
a,α;b,β

∂Aµ0a,α;b,β

∂wl
ϕα,µ0ψ

a

+ ⊗ ϕβ,µI0ψ
b

− =

=
−1

ψ+ + ψ−
·∆µ0∗

chl ((q∗F )µ0(1− L+L−))

iµ0∏
δ=1

Cµ0δ ((q∗F )µ0(1− L+L−))

 . (2.54)

But:

chl((q
∗F )µ0(1− L+L−)) =

[
ch(q∗F )µ0(1− eψ++ψ−)

]
l
, (2.55)
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hence∑
a,α;b,β

∂Aµ0a,α;b,β

∂wl
ϕα,µ0ψ

a

+ ⊗ ϕβ,µI0ψ
b

− =

=
−1

ψ+ + ψ−
·∆µ0∗

[ch(q∗F )µ0(1− eψ++ψ−)
]
l

iµ0∏
γ=1

Cµ0δ ((q∗F )µ0(1− L+L−))

 . (2.56)

Below we prove that DA,B,C satisfies the same second order differential equation. The
partial derivative of DA,B,C with respect to wl equals:

D−1
A,B,C

∂DA,B,C
∂wl

=

=
∑
d,n

Qd~g−1

n!

〈
t(ψ1), . . . , t(ψn)

)
; chl(π∗(ev

∗
n+1(F )⊗ iµ0∗OZµ) ·Θg,n,d〉g,n,d. (2.57)

Lemma 2.6.8 shows that:

chl(π∗(ev
∗
n+1(F )⊗ iµ0∗OZ) = π∗iµ0∗

[
ev∗n+1ch(F ) · e

ψ++ψ− − 1

ψ+ + ψ−

]
l−1

. (2.58)

Using (2.58) and the formula :∫
[Xg,n,d]

(π∗i∗a) · b =

∫
[Z]

a · (π ◦ i)∗b

we pullback the RHS of (2.57) on Z. Moreover we use Proposition 2.6.1 to pullback the
correlators on the factors Xg1,n1+1,d1 ×Xg2,n2+1,d2 .

The classes [Xg,n,d]tw pullback as in formulae (2.6), (2.7) which we copy below:

(π ◦ iredµ0 ◦ p)
∗[Xg,n,d]tw =

p∗1([Xg1,n1+1,d1 ]
tw) · p∗2([Xg2,n2+1,d2 ]

tw)

(ev∗+ × ev∗−)∆µ0∗

(∏iµ0
δ=1 C

µ0
δ ((q∗F )µ0)⊗ (L+L− − 1))

) . (2.59)

(π ◦ iirrµ0 ◦ p)
∗[Xg,n,d]tw =

[Xg−1,n+2,d]
tw

(ev∗+ × ev∗−)∆µ0∗

(∏iµ0
δ=1 C

µ0
δ (((q∗F )µ0)⊗ (L+L− − 1))

) . (2.60)

As a consequence we see that if we define the coefficients Aµ0,la,α;b,β by:∑
a,b,α,β

Aµ0,la,α;b,βϕα,µ0ψ
a

+ ⊗ ϕβ,µI0ψ
b

− =

= r(µ0)∆µ0∗

[ch(q∗F )µ0 ·
eψ++ψ− − 1

ψ+ + ψ−

]
l−1

 iµ0∏
δ=1

Cδ((q∗F )µ0 ⊗ (1− L+L−)

 , (2.61)
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we can express (2.57) as:

D−1
A,B,C

∂DA,B,C
∂wl

=

=
∑

g1,g2,n1,n2,d1,d2

Qd1+d2~g1+g2−1

n1!n2!

∑
a,b,α,β

1

2

〈
t, . . . , t, Aµ0,la,α;b,βϕα,µ0ψ

a

+,Θg1,n1+1,d1

〉
g1,n1+1,d1

×

×
〈
t, . . . , t, ϕβ,µI0ψ

b

−,Θg2,n2+1,d2

〉
g2,n2+1,d2

+

+
∑
g,n,d

Qd~g−1

n!

∑
a,b,α,β

1

2

〈
t, . . . , t, Aµ0,la,α;b,βϕα,µ0ψ

a

+, ϕβ,µI0ψ
b

−,Θg−1,n+2,d

〉
g−1,n+2,d

. (2.62)

Hence the generating function DA,B,C satisfies the equation:

∂DA,B,C
∂wl

=
~
2

∑
a,b

Aµ0,la,α;b,β∂
α,µ0
a ∂

β,µI0
b DA,B,C . (2.63)

Comparing (2.56) with (2.61) we see that

∂Aµ0a,α;b,β

∂wl
= Aµ0,la,α;b,β. (2.64)

Therefore both sides of (2.50) satisfy the same PDE. The theorem follows.

Remark 2.7.1. According to [C] (pages 91− 95) this change of generating function corre-
sponds to a change of polarisation, namely we regard the potential DA,B,C as an element of
the Fock space HC = H+ ⊕H−,C . The corresponding element in H = H+ ⊕H− with the

usual polarisation is G. If {qα,µa , pβ,µb }, {qα,µa , pβ,µb } are Darboux coordinates systems on H,
respectively HC then this change of polarisation is given in coordinates by:

pβ,µb = pβ,µb ,

qα,µa = qα,µa −
∑
a,b

Aµa,α;b,βp
β,µ
b . (2.65)

Example 2.7.2. Let X be a manifold and let C(π∗i∗OZ) = Td(−π∗i∗OZ)∨. Then Aa,α;b,β

don’t depend on α or β and we have:

C(1− L+L−) = Td∨(L+L−) =
−ψ+ − ψ−
1− eψ++ψ−

.
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This gives: ∑
a,b

Aa,α,b,βψ
aψb =

1

ψ+ + ψ−
− 1

eψ++ψ− − 1
.

According to [C] the expansion of :

1

1− eψ++ψ−
=
∑
k≥0

ekψ+

(1− eψ+)k+1
(eψ− − 1)k

gives a Darboux basis on HC.

2.8 Examples and applications

Let X = X ×BG, the stack theoretic quotient. Notation: [γi] the conjugacy class of γi ∈ G,
C(γ) is the centralizer of γ. The inertia stack of X/G is the disjoint union

∐
i([γi], X/C(γi)).

Therefore :

H∗(I(X/G),C) = ⊕[γi]H
∗(X,C).

Denote by e[γi] := 1 ∈ H∗(([γi], pt/C([γi]))). Then a basis of H∗(([γi], X/C(γi))) is given by
ϕa × e[γi], where {ϕa} is a basis of H∗(X,C). The Poincaré pairing is given by :

(ϕa × e[γi], ϕb × e[γj ]) =
δ[γi][γ

−1
j ]

|C(γi)|

∫
X

ϕa ^ ϕb.

The J function is defined as:

JX (t, z) = −z + t(z) +
∑
n,d

Qd

n!
φa〈

φ̃a

−z − ψ1

, t(ψ2), . . . , t(ψn)〉X/Gn,d . (2.66)

where {φa}, {φ̃a} are dual basis. We use results of [JK] to express the correlators in terms of
correlators on X0,n,d. In fact there is a finite degree map: (X×BZm)0,n,d,([γ1],...,[γn]) → X0,n,d.
In [JK] it is shown the degree equals

|χG0 (γ)|
|G|

,

where

χG0 (γ) := {(σ1, . . . , σn)|1 =
n∏
j=1

σj, σj ∈ [γj] for all j}.
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Since the ψ classes in the correlators are pullbacks of ψ classes from the coarse curve it
follows that:

〈
∏
i

ψ
ki
i (ev∗i (ti × e[γi])〉

X/G
0,n,d =

|χG0 (γ)|
|G|

〈
∏
i

ψkii ev
∗
i (ti)〉X0,n,d (2.67)

where ti ∈ H∗(X).

From now on, let G = Zm. Denote by tdζ the multiplicative class defined for line bundles L
by:

tdζ(L) :=
1

1− ζe−c1(L)
.

We twist the cohomological potential of X with 3 types of twisting classes as follows:

• the type A classes we take to be:

td(π∗ev
∗(TX))

m−1∏
k=1

tdζk(π∗ev
∗(TX ⊗ Cζk)).

The effect of the type A twisting is:

Corollary 2.8.1. The cone rotates by the loop group element:

Ltw =
m−1∏
j=0

(2j)LX ,

where we think of LX as a product of m copies of LX and each operator 2j acts on the
copy corresponding to the sector labeled by gj. Let [kj/m] denote the greatest integer
less than kj/m. The operators are Euler-MacLaurin expansions of the products:

20 =
∏
i

∞∏
r=1

xi − rz
1− e−mxi+mrz

,

2j =
m−1∏
k=0

∏
i

∞∏
r=1

xi − rz
1− ζke−xi+rz−(kj/m−[kj/m])z

.

• the type B classes :

td(π∗(1− L−1
n+1))

m−1∏
k=1

tdζk(π∗((1− L−1
n+1 ⊗ ev∗Cζk)).



44

Corollary 2.8.2. The dilaton shift changes from q(z) = t(z)− z to q(z) = t(z)− (1−
emz).

Proof: We apply Theorem 1.10.2 to the potential F .

In our case fβ = −ev∗n+1(Cζ)⊗ L−1
n+1 we have:

fβ(L−1
n+3)− fβ(1)

Ln+3 − 1
= CζL

−1
n+3.

So according to Theorem 1.10.2 (fix ζ primitive m root of unity) the translation is:

t(z) := t(z) + z − z
m−1∏
k=0

Tdζk(−CζkL
−1
z ) =

:= t(z) + z − z1− ez

z

m−1∏
k=1

(1− ζkez) = t(z) + z − (1− emz). (2.68)

• the type C classes we take to be: we twist by the class Td∨(−π∗ig∗OZg) the nodal locus
Zg; the locus Z0 of nonstacky nodes by:

td∨(−π∗(i∗OZ0))
m−1∏
k=1

td∨ζk(−π∗(i∗OZ0 ⊗ ev∗Cζk)).

We don’t twist the other nodal loci.

Corollary 2.8.3. The nodal twisting changes the polarisation in the sectors (X , 1) and
(X , g) of IX . The new Darboux basis are given by expansions of

1

1− emψ++mψ−

for (X , 1) and

1

1− e
ψ++ψ−

m

=
1

1− eψ++ψ−

for (X , g).
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Proof.: according to Theorem 1.10.3, the coefficients A0
a,α,b,β in the untwisted sector are

given by:

−
∏m−1

i=0 C0
k(1− L+L−)− 1

ψ+ + ψ−
= − 1

ψ+ + ψ−

(
ψ+ + ψ−∏m−1

k=0 (1− ζkeψ++ψ−)
− 1

)
=

1

ψ+ + ψ−
− 1

emψ++mψ− − 1
.

Then (see Example 2.7.2 and [C]) the Darboux basis is given by the expansion of
1

1−emψ++mψ− . In the same way the coefficients Aga,α,b,β are given by expansion of:

−(Td∨(L+L− − 1)− 1)

ψ+ + ψ−
=

1

ψ+ + ψ−
− 1

e(ψ++ψ−) − 1

and hence the polarisation is given by the expansion 1

1−eψ+/m+ψ−/m
.
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Chapter 3

Quantum K-theory

3.1 Introduction

K-theoretic Gromov-Witten invariants have been introduced in [L2], as a tool for a better
understanding of the geometry of the moduli spaces of stable maps. They are K-theoretic
pushforwards to the point of some natural bundles on the moduli spaces of stable maps
Xg,n,d. Most of the structure present in cohomological Gromov-Witten theory and quantum
cohomology is present in its K-theoretic analogue, but there are also some essential pieces
missing: the grading axiom and the divisor equation. Moreover, K-theory on orbifolds is
“harder” than intersection theory, which makes the invariants harder to compute.

In this chapter we prove a Hirzebruch-Riemann-Roch type theorem which allows one to
compute all genus 0 K-theoretic Gromov-Witten invariants in terms of cohomological ones.
We apply Kawasaki’s formula to the moduli spaces of stable maps X0,n,d. The reason why
we have to restrict ourselves to genus 0 maps is that the automorphisms of points in X0,n,d

come only from multiple covers of the map, i.e. the domain curve has trivial automorphism
group. This makes things considerably simpler. The main result is Theorem 1.6.2 and is
stated in terms of the geometry of the uniruled Lagrangian cone L in the symplectic loop
space K. As a consequence we deduce a D-module structure in quantum K-theory from the
corresponding statement in quantum cohomology.

The material of this chapter is joint work with A. Givental. The chapter is arranged as
follows. In Sections 3.2 and 3.3 be briefly recall the definitions of the moduli spaces of stable
maps and of K-theoretic Gromov-Witten invariants. In Sections 3.4 and 3.5 we introduce
the K-theoretic symplectic loop space K, the K-theoretic Gromov-Witten potential and the
J-function. The main tool for computing holomorphic Euler characteristics on orbifolds
- Kawasaki’s formula - is explained in Section 3.6. In Section 3.7 we define the “fake”
K-theoretic Gromov-Witten invariants and recall their relation with cohomological ones. In
Sections 3.8 and 3.9 we describe the strata of maps with symmetries in X0,n,d and the tangent
and normal bundles to these strata. Section 3.10 contains a reformulation of Theorem 1.6.2,
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introducing a new object - the adelic cone K̂. The proof of Theorem 1.6.2 is given in Section
3.11. Finally, the D-module structure is proved in Section 3.12.

3.2 Moduli spaces of stable maps

Let X be a nonsingular complex projective variety. For d ∈ H2(X,Z) let Xg,n,d be the moduli
spaces of stable maps of degree d from n-pointed, genus g curves to X. This is a compact
complex orbifold. In the case when X is a point, it coincides with the Deligne-Mumford
space of stable curves M g,n. There are natural maps:

evi : Xg,n,d → X, i = 1, . . . , n

given by evaluation at the ith marked point. There are line bundles

Li → Xg,n,d, i = 1, . . . , n

called universal cotangent line bundles. The fiber of Li over the point (C, x1, . . . , xn, f) is
the cotangent line to C at the point xi.
There are also maps:

ct : Xg,n,d →M g,n

given by forgetting the map and contracting the unstable components of the curve. The
universal family can be identified with the diagram:

Xg,n+1,d
evn+1−−−→ X

π

y
Xg,n,d

where the morphism π forgets the last marked point.

3.3 K-theoretic Gromov-Witten invariants

In [L2], Y.-P. Lee introduced the sheaf Ovir and used it to define K-theoretic Gromov-Witten
invariants of X. These are holomorphic Euler charactersitics of sheaves of the form:

ev∗1(a1)Lk11 · . . . ev∗n(an)Lknn ⊗Ovir

where ai ∈ K0(X). Unlike the cohomological invariants, they are integers. We will use the
notation: 〈

a1L
k1 , . . . , anL

kn
〉X
g,n,d

:= χ
(
Xg,n,d; ev

∗
1(a1)Lk11 · . . . ev∗n(an)Lknn ⊗Ovir

)
.
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According to [L2], the virtual structure sheaves on the spaces Xg,n,d satisfy axioms analogue
to Kontsevich-Manin’s axioms in [KM] for cohomological theories. This leads to relations
among K-theoretic Gromov-Witten invariants.

Example 3.3.1. The K-theoretic string equation can be deduced from the equality π∗1 = 1:

〈a1, . . . , an, 1〉Xg,n+1,d = 〈a1, . . . , an〉Xg,n,d .

Example 3.3.2. The K-theoretic dilaton equation follows from π∗(1−Ln+1) = 2− n. This
leads to: 〈

a1L
k1 , . . . , anL

kn , 1− L
〉X

0,n+1,d
= (2− n)

〈
a1L

k1 , . . . , anL
kn
〉X

0,n,d
.

There are however pieces of structure missing, most blatantly an analogue of the divisor
equation.

3.4 The K-theoretic genus 0 potential

We define:

K :=
[
K0(X)⊗ C(q, q−1)

]
⊗ Λ

where C(q, q−1) is the ring of rational functions on the complex circle with coordinate q.
Elements of K are rational functions of q with coefficients in K0(X) ⊗ Λ in the Q, λ-adic
sense, i.e. modulo any power of the maximal ideal in the Novikov ring Λ. Let ( , ) be the
pairing on K0(X):

(a, b) := χ(X, a⊗ b).

We endow K with the symplectic form:

f ,g 7→ Ω(f ,g) := [Resq=0 +Resq=∞]
(
f(q),g(q−1)

) dq
q
.

Denote by K0(X)[q, q−1] the ring of Laurent polynomials in q with coefficients in K0(X).
The following two subspaces:

K+ = K0(X)[q, q−1]⊗ Λ, K− := {f ∈ K | f(0) 6=∞, f(∞) = 0}

form a Lagrangian polarisation of K. This will allow us to identify K with TK∗+.
The subgroup of the symplectomorphisms of K which commute with multiplication by q

are called loop group elements. They are of the form:

S(q) =
∑
i∈Z

Siq
i
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where Si ∈ End (K0(X)⊗ Λ). Being a symplectomorphism amounts to:

S(q)S∗(q−1) = I

where I is the identity matrix and S∗ is the adjoint transpose of S. Differentiating the
relation above at the identity, we see that infinitesimal loop group elements R satisfy:

R(q) +R∗(q−1) = 0.

Example 3.4.1. The operator of multiplication by

λ

1− q
− λ

2
= λ

1 + q

1− q

is an infinitesimal loop group element.

Let t(q) ∈ K+. The K-theoretic genus 0 potential is the following generating series:

F0
X :=

∑
d,n

Qd

n!
〈t(L), . . . , t(L)〉X0,n,d .

It is a formal series of t with coefficients in Λ. It is well defined because for any d there are
finitely many monomials in coordinates tak on K+ with nonzero coefficients.

3.5 The big J function of X

Let {φa} and {φa} be any dual basis of K0(X). Define:

J : K+ → K , J (t) = 1− q + t(q) +
∑
a

φa
∑
d,n

Qd

n!

〈
φa

1− qL
, t(L), . . . , t(L)

〉X
0,n+1,d

.

Lemma 3.5.1. Each correlator in J is a reduced rational function in q without poles at
q = 0, hence an element of K−.

Proof: The spaces X0,n+1,d are finite dimensional (virtual) orbifolds, hence their K-rings
are finitely generated. This implies that there exists a minimal polynomial P ′ such that
P ′(L−1) = 0. We can write correlators in this form:〈

−G(L−1)

L
, . . .

〉
0,n+1,d

=

〈
1

2πi

∮
G(q)dq

1− qL
, . . .

〉
0,n+1,d

.

If G is a multiple of P ′ the LHS of the above equality is 0. This shows that the RHS is a
rational function with denominator P ′(q−1). But P ′ can be written as the quotient of the



50

form P (q)/qm, where m = deg(P ′) ≥ 1 and P is a polynomial in q. Hence the correlators
are rational functions in q with denominator P (q). Since each line bundle has an inverse, 0
is not a root of P , or in other words the correlators are different from∞ at q = 0. Moreover
they are 0 at q =∞ q.e.d.

Notice that the first two terms in J , 1− q and t(q) are elements of K+. We refer to them
as the dilaton shift and the input respectively.

Proposition 3.5.2. The J function coincides with the graph of the differential of the genus
0 potential, considered as a section of the cotangent bundle of T ∗K+, identified with K via
the polarisation K = K+ ⊕K− and the dilaton shift f 7→ f + 1− q :

J (t) = 1− q + t(q) + dtF0
X .

Proof: We have already seen that that the K+ part of J coincides with the input shifted
by 1− q. Pick a variation δt ∈ K+. By the definition of the canonical symplectic structure
on T ∗K+ it is enough to prove that the symplectic inner product of the K− part of J is the
same as dtF0

X(δt). This follows from the following calculation (notice that δt has poles only
at 0 and ∞) :

Ω

(∑
a

φa ⊗
φa

1− qL
, δt

)
= −Ω

(
δt,
∑
a

φa ⊗
φa

1− qL

)
=

= − [Resq=0 +Resq=∞]

∑
a δta(q)φ

a

1− q−1L

dq

q
= Resq=L

δt(q)

q − L
= δt(L).

This shows that:

Ω

(∑
a

φa
∑
d,n

Qd

n!

〈
φa

1− qL
, t(L), . . . , t(L)

〉X
0,n+1,d

, δt

)
=

=
∑
d,n

Qd

n!
〈δt, t(L), . . . , t(L)〉X0,n+1,d = dtF0

X(δt).

Let L ⊂ K be the range of the J function.

Theorem 3.5.3. L is the formal germ of a Lagrangian cone such that each tangent space
T to L is tangent to L exactly along (1 − q)T . In other words T ∩ L = (1 − q)T and the
tangent space at all points of (1− q)T is T .

The proof of the theorem is very similar with that of the correponding statement in [G1].
It relies on the comparison between descendant and ancestor potentials. More precisely, let
Li := ct∗Li be pullbacks of cotangent line classes along the maps ct : X0,n+l,d →M0,n. Then
for any τ ∈ K0(X) we define the ancestor potential as:

F0

τ :=
∑
d,n

Qd

n!

〈
t(L), . . . , t(L)

〉X
0,n,d

(τ)
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where

〈
t(L), . . . , t(L)

〉X
0,n,d

(τ) :=
∞∑
l=0

1

l!

〈
t(L), . . . , t(L), τ, . . . , τ

〉X
0,n+l,d

.

One then defines the ancestor J function as:

J τ := 1− q + t(q) +
∑
a,b

φaG
ab(τ)

∑
d,n

Qd

n!

〈
φb

1− qL
, t(L), . . . , t(L)

〉X
0,n+1,d

(τ).

Here (Gab) = (Gab)
−1 and

Gab(τ) := (φa, φb) +
∑
d,n

Qd

n!
〈φa, τ, . . . , τ, φb〉X0,n,d .

The reason of the occurence of this new tensor Gab lies in the form of the WDVV equation
for K-theoretic GW invariants. See [G3] for more details. Let Lτ ∈ K be the range of J τ .
We view Lτ as a Lagrangian submanifold of (K,Ωτ ) where Ωτ is defined in the same way as
Ω, replacing the pairing ( , ) by (φa, φb)τ = Gab(τ).

It turns out that Lτ is obtained from L by a loop group transformation. Define Sτ as a
matrix with entries:

Sab = δab +
∑
d,n

Qd

n!

∑
c

Gac(τ)

〈
φc, τ, . . . , τ,

φb
1− qL

〉X
0,n+2,d

.

Theorem 3.5.4. Sτ is a symplectomorphism Sτ : (K,Ω)→ (K,Ωτ ) and

Lτ = SτL.

The proof of the theorem is the same as of the corresponding cohomological theorem in
[C], keeping in mind to replace at all times the string, dilaton, and WDVV equations with
their K-theoretic counterparts.

Then we can deduce the properties of L described in Theorem 3.5.3 from the correspond-
ing ones of Lτ . It is essential here that the spaces M0,n are manifolds of dimension n − 3,
which implies that any monomial in (Li − 1) of degree n− 3 or more is 0. Consequently, at
points t ∈ K+ such that t(1) = 0 the partial derivatives of order at most two of F τ are 0.
One can show that for each f ∈ K+ there exists τ such that Sτ · f := f ∈ (1− q)K+. By what
we said above (f , 0) ∈ Lτ and T(f ,0) = K+. One then sees that K+∩Lτ = (1−q)K+. Hence L
is ruled by the finite dimensional family (indexed by τ ∈ K0(X)) of subspaces (1− q)S−1

τ Lτ .
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The conical property of L is a consequence of the dilaton equation 3.3.2. More precisely,
if we pick coordinates {tak} on K+ and denote by ∂a,k the corresponding partial derivatives
then: ∑

d,n

Qd

n!
〈t(L), . . . , t(L), 1− L〉X0,n+1,d = 2F0

X −
∑

tak∂a,kF0
X .

This is equivalent to the degree two homogeneity of F0
X after the dilaton shift.

3.6 Kawasaki’s formula

Assume M = M̃/G is a global quotient orbifold of the manifold M̃ by the finite group G.
Then Lefschetz’ holomorphic fixed point formula asserts that for a G-equivariant bundle E
on M̃ (which induces an orbibundle on M) we have:

χ(M,E) =
∑
i

(−1)idimH i(M̃, E)G =
1

|G|
∑
g∈G

∑
i

(−1)itr
(
g|H i(M̃, E)

)
.

Kawasaki generalized this formula to the case of orbifolds which are not global quotients, by
reducing the computation of Euler characteristics on M to computation of certain cohomo-
logical integrals on the inertia orbifold IM of Definition 2.2.1.
Denote by Mi the connected components of the inertia orbifold (we’ll often refer to them as
Kawasaki strata). The multiplicity mi associated to each Mi is given by:

mi :=
∣∣∣ker (ZGp(g)→ Aut(Ũ g

p )
)∣∣∣ .

The restriction of E to Mi decomposes in characters of the g action. Let E
(l)
r be the

subbundle of the restriction of E to Mi on which g acts with eigenvalue e
2πil
r . Recall that

the trace Tr(E) is defined to be the orbibundle whose fiber over the point (p, (g)) of Mi is :

Tr(E) :=
∑
l

e
2πil
r E(l)

r .

Λ•N∗i is the K theoretic Euler class of the normal bundle Ni of Mi in M . For a line bundle L
it is defined as 1−L∨. Tr(Λ•N∗i ) is invertible because the symmetry g acts with eigenvalues
different from 1 on the normal bundle to the fixed point locus. Finally let Td be the Todd
class, defined for a line bundle L as:

Td(L) =
c1(L)

1− e−c1(L)
.

We can now state Kawasaki’s formula:
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Theorem([Ka]) 3.6.1. For any orbibundle E on M we have:

χ(M,E) =
∑
i

1

mi

∫
Mi

Td(TMi
)ch

(
Tr(E)

Tr(Λ•N∗i )

)
.

We call the terms corresponding to the identity component in the formula fake Euler
characteristics :

χf (M,E) =

∫
M

ch(E)Td(TM).

Notice that one can rewrite Kawasaki’s formula as:

χ(M,E) =
∑
i

1

mi

χf
(
Mi,

T r(E)

Tr(Λ•N∗i )

)
.

Hence all the terms in the formula are fake Euler characteristics of certain bundles.

3.7 Fake quantum K-theory

According to what we said in the previous section, the fake Gromov-Witten invariants are in
some sense an intermediate step in between the true K-theoretic ones and the cohomological
ones. They are defined by :〈

a1L
k1 , . . . , anL

kn
〉f

0,n,d
:=

∫
[X0,n,d]

ch
(
ev∗1(a1)Lk11 · . . . · ev∗n(an)Lknn

)
· Td(T vir0,n,d)

where T vir0,n,d is the virtual tangent bundle to X0,n,d. They coincide with the true invariants
only if the spaces X0,n,d are virtual manifolds. In general they are rational numbers. We
define the big J function as:

Jf (t) = 1− q + t(q) +
∑
a

φa
∑
d,n

Qd

n!

〈
φa

1− qL1

, t(L2), . . . , t(Ln+1)

〉f
0,n+1,d

.

The loop space of the fake theory is defined as:

Kf =
[
K0(X)⊗ C(((q − 1)−1))

]
⊗ Λ.

The symplectic structure is:

f ,g 7→ Ωf (f ,g) = −Resq=1

(
f(q),g(q−1)

) dq
q
.
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A Lagrangian polarisation for Kf is given by:

Kf+ := K0(X)[[(q − 1)]]⊗ Λ,

Kf− :=
1

1− q
K0(X)[[

1

1− q
]]⊗ Λ.

In fact, if we expand

1

1− qL
=
∑
k≥1

(L− 1)k
qk

(1− q)k+1

then a Darboux basis of Kf is given by {φa(q − 1)k, φa
qk

(1−q)k+1}. Just like in the case of the
genuine theory, the range of the J function of the genus 0 invariants is a formal germ of an
overruled Lagrangian cone, which we call Lf .

The relation between the fake K-theoretic invariants of X and the cohomological ones
has been studied in [C] and described in terms of the symplectic geometry of the loop space.
Roughly speaking, the theorem says that the cones Lf and LH (to be defined below) are
related by a loop group transformation, after a suitable identification of the corresponding
loop spaces. We now recall the setup of the cohomological theory: let

H := ⊗H∗(X,Λ)((z))

be the cohomological loop space. We endow H with the symplectic form:

Ω(f ,g) :=

∮
z=0

(f(z),g(−z)) dz

where ( , ) is the Poincaré pairing on H∗(X). Consider the following polarisation of H:

H+ := H∗(IX ,C)[[z]] and H− := z−1H∗(IX ,C)[z−1].

Let ψi = c1(Li). We define the genus 0 potential as:

F0
H(t) :=

∑
n,d

Qd

n!
〈t(ψ), . . . , t(ψ)〉0,n,d .

Let q(z) = t(z)− z. Consider the graph of the genus 0 potential, regarded as a function of
q:

LH := {(p,q) | p = dqF0
H} ⊂ T ∗H+ ' H.

Then according to [G1], LH is the formal germ of an overruled cone with vertex at the
shifted origin −z. Overruled means that the tangent spaces T to LH are tangent to LH
exactly along zT .
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Let xi be the Chern roots of TX , and let ∆ be the Euler-Maclaurin asymptotics of the
infinite product:

∆ ∼
∏
i

∞∏
r=1

xi − rz
1− e−xi+rz

.

We identify Kf with H extending the Chern character isomorphism ch : K0(X,C) →
H∗(X,C):

ch : Kf → H
q 7→ ez.

This maps Kf+ to H+, but it doesn’t map Kf− to H−.

Theorem([C]) 3.7.1. Lf is obtained from LH by pointwise multiplication by ∆:

Lf = ch−1(∆LH).

Remarks:

1. In our case

es(x) =
x

1− e−x

which gives:

∆ =
1√

td(TX)
exp

{∑
k≥0

∑
l≥0

s2k−1+l
B2k

(2k)!
chl(TX)z2k−1

}
,

where the coefficients sl and the Bernoulli numbers Bl are given by:

exp

(∑
l≥0

sl
xl

l!

)
=

x

1− e−x
= 1 +

x

2
+
∑
l≥1

B2l

(2l)!
x2l.

2. The result extends nicely to a statement about the total potentials (which we won’t
need), using the quantization formalism of [G2].

3. The transformations ch : Kf → H and ∆ : H → H are not symplectic, but their
composition is.

4. The results of the previous chapter generalize the initial proof of [C], offering on the
way more conceptual explanations for the change of dilaton shift and of polarisation.
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3.8 Kawasaki strata in X0,n+1,d

It is easily seen that points with non-trivial symmetries in X0,n+1,d come from maps which
can be realised as multiple covers.

Example 3.8.1. Consider a point (C, x1, x2, f) ∈ X0,2(d0+d1),2 such that:

• the domain C has three irreducible components, C0, C1, C2 such that the nodes are
1,−1 ∈ C0 and the marked points are 0,∞ ∈ C0.

• the maps f|C1 : C1 → X and f|C2 : C2 → X are isomorphic stable maps of degree d1.

• the map f|C0 : C0 → X factors as C0 → C ′0 → X, where the first map is given in local
coordinates as z 7→ z2 and the second one has degree d0.

Then this point has a Z2 symmetry given in local coordinates on C0 as z 7→ −z.

This example shows that an irreducible component of the domain is not necessarily fixed
by a symmetry.

We now introduce a dictionary to help us keep track of these Kawasaki strata and of
their contributions to the J function. We will use Figure 3.1 as book-keeping device for such
strata. Pick C a generic domain curve in a Kawasaki stratum and denote the symmetry
associated with it by g. We call the distinguished first marked point of C the horn. g acts
with eigenvalue ζ on the cotangent line at the horn. If ζ = 1 the symmetry is trivial on the
irreducible component of the curve that carries the horn. We call the maximal connected
connected component of the curve that contains the horn on which the symmetry is trivial
the head. Notice that the head can be a nodal curve. Heads are parametrized by moduli
spaces X0,n′+1,d′ for some n′, d′. In addition, there might be nodes connecting the head with
strata of maps with nontrivial symmtries. We call these the arms.

Assume now that ζ 6= 1, in which case it is an mth root of unity for some m ≥ 2.
Identifying the horn with 0, as in the example, we see that the other fixed point by the Zm
symmetry can be either a regular point, a marked point or a node. We call the maximal
connected component of the curve on which gm acts trivially and on which g acts with inverse
eigenvalues on the cotangent line at each node the stem. The reason why we allow nodes
subject to this constraint is because each such node can be smoothened while staying in the
same Kawasaki stratum. So stems are chains of P1’s. In the last P1 in this chain lies the
distinguished point ∞, fixed by the symmetry g. If it is a node, we call the rest of the curve
connected to the stem at that node the tail. In addition we encounter the situation in the
example above , i.e. there are m-tuples of curves (C1, . . . Cm) isomorphic as stable maps,
which are permuted by the symmetry g. We call these the legs.

Notice that by Kawasaki’s formula the input at the horn is 1

1−qζchL1/m
1

, where L1 is the

cotangent line at the horn on the moduli spaces of stems. The contributions in the J function
corresponding to a given ζ give the polar part of J at the pole q = ζ−1.
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+
∑
ζ 6=1

1

1− ζqL1/m

horns

stem

arms

head

tail

marked points

dilaton shift

(1− q) + t(q) + 1
1− qL

input

legs

Figure 3.1: Contributions from various Kawasaki strata in the J function of X.
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3.9 Stems as maps to X/Zm
Let BZm be the stack quotient [pt/Zm]. In this section we identify the stem spaces with
moduli spaces of maps to the orbifold X×BZm. We use the description of maps to Zm given
in [JK]. Moduli spaces of orbimaps to an orbifold X in full generality will be introduced in
the next chapter.
Let ζ be a primitive mth root of 1, and let X0,n+2,d(ζ) be the stem space in X0,nm+2,dm

which parametrizes maps (C, x0, . . . , xnm+1, f) which factor as C → C ′ → X where the first
map is given in coordinates as z 7→ zm, x0 = 0 ∈ C, xnm+1 = ∞ ∈ C and each m-tuple
(xmk+1, . . . , xmk+m) is mapped to the same point in C ′. Here ζ is the eigenvalue of the action
of the generator g ∈ Zm on the cotangent line at x0.

Proposition 3.9.1. The stem spaces are identified with the moduli spaces of orbimaps to
the orbifold X ×BZm, denoted (X ×BZm)0,n+2,d,(g,0,...,0,g−1).

Proof: We describe stable maps to X ×BZm in a way very similar with the paper [JK],
where this is done only for the case X = point. More precisely a map (C, x0, x1, . . . , xn+1, f)
to X ×BZm of degree d is equivalent to the following data:

• a map C → X of degree d from the coarse space C of C to X ,

• a principal Zm bundle on the complement to the set of special points of C, possibly
ramified over the nodes in a balanced way, i.e. such that the holonomies around the
node of the two branches of the curve are inverse to each other.

The notation (g, 0, . . . , 0, g−1) keeps track of the holonomies of the principal bundle around
the marked points, which determine it.

Remark 3.9.2. As we’ve seen in the previous chapter that the evaluation maps land in the
rigidified inertia stack of X×BZm, whose connected components are indexed by elements of
Zm. The sequence (g, 0, . . . , 0, g−1) designates the sectors picked up by the evaluation maps.

Remark 3.9.3. The geometric points of the stem space X0,n+2,d(ζ) are the same as those
of the moduli space X0,n+2,d, however they are not identified as (virtual) orbifolds for the
following reason: near a nodal curve of X0,n+2,d, if we realize the branches as quotient curves
then there are two copies of Zm acting independently on each branch. In our moduli spaces
there is one Zm acting and the action is balanced as explained above.

We now describe the tangent and normal bundle to M := X0,n+2,d(ζ) in X0,nm+2,dm in
terms of the universal family π : U → M. Denote by π̃ : X0,mn+3,md → X0,mn+2,md the

universal family over X0,mn+2,md. Denote by Ũ := π̃−1(M). Then the map π̃ : Ũ → M is
a Zm equivariant lift of π, i.e. each fiber of π̃ is a ramified Zm cover of the corresponding
fiber of π. There are also evaluation maps at the last marked point (we omit the index)
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ev : U → X/Zm and its Zm lift ẽv : Ũ → X. According to [C], the virtual tangent bundle to
X0,mn+2,md is described as an element of the K-ring by:

T vir0,mn+2,dm = π̃∗(ẽv
∗(TX − 1))− π̃∗(L−1

mn+3 − 1)− (π̃∗i∗(OZ̃))∨.

We need to compute the trace of g ∈ Zm on each piece of this bundle. Denote by Cζk

the Zm representation C where g acts by multiplication by ζk. K-theoretic push-forwards
on orbifolds considered as global quotients extract invariants, so the piece of π̃∗(ẽv

∗TX) on
which g acts by ζ−k can be expressed as π∗ev

∗(TX ⊗ Cζk). Therefore the trace is given by:

Tr (π̃∗(ẽv
∗TX)) =

m−1∑
k=0

ζ−kπ∗ev
∗(TX ⊗ Cζk). (3.1)

Of course the term k = 0 corresponds to the tangent bundle and the others to the normal
bundle. Similarly:

Tr
(
π̃∗(L

−1
mn+3)

)
=

m−1∑
k=0

ζ−kπ∗(L
−1
n+3ev

∗Cζk). (3.2)

We denote the nodal locus in Ũ by Z̃ and in U by Z. We distinguish two types of nodes.
When the node is a balanced ramification point of order m then the tangent bundle is one
dimensional and it is invariant (K theoretic Euler class class is 1− L1/m

+ L
1/m
− ). If we denote

by Zg this nodal locus, downstairs this corresponds to twisting by the class Td(−π∗ig∗OZg)∨.
If on the other hand the node is unramified then the covering curve has a Zm symmetric
m-tuple of nodes. The smoothing bundle has dimension m; it contains a one dimensional
subspace which is tangent to the stratum and a m − 1 dimensional subspace normal to it.
We denote by Z0, Z̃0 the corresponding nodal loci and we claim that:

(
(π̃∗i0∗OZ̃0

)⊗ Cζ−1

)Zm
= π∗ (ϕ∗Cζ−1 ⊗ i0∗OZ0) .

Proof of the claim: we think of the sheaf i0∗OZ̃0
as the trivial bundle on Z̃0. The map

p : Z̃0 → Z0 is an m cover. Pushforwards of a vector bundle E along this map is the vector
bundle E ⊗ Cm, where the transition matrices map v ⊗ ei 7→ v ⊗ ei+1, or equivalently it is
the regular Zm representation acting on the direct sum of m copies of E. For each ζ the
subbundle on which the generator of Zm acts with eigen value ζ is isomorphic to E. Applying
this to the trivial bundle proves the claim because:(

(π̃∗i0∗OZ̃0
)⊗ Cζ−1

)Zm
=
(
π̃∗(i0∗OZ̃0

⊗ Cζ−1)
)Zm

=

π∗
(
p∗(i0∗OZ̃0

⊗ ϕ̃∗Cζ−1)
)Zm

= π∗ (ϕ∗Cζ−1 ⊗ i0∗OZ0) .
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3.10 The adelic cone

In this section we give an alternative formulation of Theorem 1.6.2. For each ζ 6= 0,∞, let
Kζ be the space of Laurent series in 1− qζ with coefficients in C[[Q]]⊗K0(X). We endow
it with the symplectic form:

Ωζ(f ,g) = −Resq=ζ−1

(
f(q),g(q−1)

) dq
q
.

Let Kζ+ := K0(X)[[1− qζ]]⊗ Λ. Notice that we have symplectomorphisms:

ϕζ : Kf → Kζ

q 7→ qζ.

The adele space K̂ is defined as the subset in the cartesian product:∏
ζ 6=0,∞

Kζ

consisting of collections {fζ} such that, modulo any monomial Qd, fζ ∈ Kζ+ for all but finitely
many ζ. We endow it with the symplectic form:

Ω̂(f ,g) = −
∑

Resq=ζ−1

(
fζ(q),gζ(q

−1)
) dq
q
.

Recall that for every f ∈ K we denote by fζ its expansion in 1 − qζ and we call it the
localization at q = ζ−1. There is a map:

̂ : K → K̂, f 7→ f̂ := {fζ}

where we take all localizations at ζ−1 6= 0,∞. The map is symplectic:

Ω(f ,g) = Ω̂(f̂ , ĝ),

as can be easily seen from the definitions of Ω and Ω̂.
Assume now we have a collection of overruled Lagrangian cones Lζ ⊂ (Kζ ,Ωζ) such that
modulo any power of Novikov variables Lζ = Kζ+ for all but finitely many values of ζ. Then

their product
∏

ζ 6=0,∞ Lζ ⊂ K̂ is an adelic overruled Lagrangian cone.
In fact, one of the properties of being overruled is invariance with respect to multiplication
by 1 − q. Since 1 − q is an invertible element of Kζ for all ζ 6= 1, we see that each such Lζ
coincides with its tangent space at each point, i.e. it is linear subspace. We can now restate
Theorem 1.6.2:
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Theorem 3.10.1. The image L̂ ⊂ K̂ of L ⊂ K under the map ̂ followed by pointwise
completion is an adelic overruled Lagrangian cone

L̂ =
∏
ζ 6=0,∞

Lζ

such that Lζ = Kζ+ unless ζ is a root of unity, Lζ = Lf if ζ = 1 and Lζ = ∇ζϕζ(T ) if ζ 6= 1
is a root of unity, where ∇ζ and T are as described in Theorem 1.6.2.

3.11 The proof of Theorem 1.6.2

Proposition 3.11.1. The localisation J1 lies on the cone Lf .

Proof: according to the discusion in Section 3.8, theKf− part of J1 is the sum of correlators

for which the horn lies on heads. Denote by t̃ the sum of correlators for which ζ 6= 1. Then
we have:

J1 = 1− q + t + t̃ +
∑
n,m,d

Qd

n!

1

m!

∑
a

φa

〈
φa

1− qL
, t(L), . . . t(L), t̃(L), . . . , t̃(L)

〉f
0,n+m+1,d

.

(3.3)

where there are n occurences of t and m of t̃ in the correlators.
The reason why this is true is because each of the special points on the irreducible component
that carries the horn is either a marked point or a node connecting it to an arm. If it is a
marked point the input in the correlator is t(L). If it a node, it is known that the Euler
class of the normal direction to the stratum which smoothens the node is 1 − L+L− where
L−, L+ are the cotangent lines to the head and arm respectively. The input is therefore:∑

a

φa ⊗ φa
1− L−Tr(L′+)

.

The node becomes the horn for the integral on the arm. When we sum after all such
possibilities, the contribution is t̃(q) at the point q = L−. The factor 1

n!m!
in front of the

correlators is combinatorial, it accounts for choosing which are the marked points and occurs
because 1

(n+m)!

(
n+m
m

)
= 1

n!m!
. But we can rewrite (3.3) as:

J1 = 1− q + t + t̃ +
∑
a,n′,d

φa
Qd

n′!

〈
φa

1− qL
, t(L) + t̃(L), . . . , t(L) + t̃(L)

〉f
0,n′+1,d

= Jf (t + t̃).

(3.4)

This proves the proposition.
We now explain the leg contrbiutions, which we denote T. Recall that ψm are Adams’

operations which are ring morphisms ψm : K0(X) → K0(X) which map line bundles E to
E⊗m. We extend ψm on K by seting ψm(q) = qm, ψm(Qd) = Qmd.
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Lemma 3.11.2. Let T̃ be the arm contributions computed at the input t(q) = 0. Then:

T(L) = ψm
(
T̃(L)

)
.

Proof: The symmetry gm acts nontrivially at the cotangent line to each copy of the leg
because otherwise they are degenerations inside a higher degree stem space. When we sum
after all possible contributions each copy of the leg we get the arm contributions. As noted,
the legs are not allowed to ontain marked points, hence the input is t = 0. Since we have m
copies of each leg the contribution is Tr(g|T̃(L)⊗m). The proposition then follows from:

Lemma 3.11.3. Let V be a vector bundle. Then

Tr
(
g|V ⊗m

)
= ψm(V ).

Let N = rk(V ). It is enough to prove the lemma for the case when V is the universal
U(N) bundle on BU(N) as every vector bundle is induced by pullback from this one. As
BU(N) is the homotopy quotient pt/U(N), its K-theory ring is identified with the ring of
representations of U(N). The universal bundle corresponds to the standard representation
of U(N) on CN . Let h ∈ U(N) and let ~ei be eigenvectors of h with eigenvalues xi. Then we
compute the character of h on Tr(g|V ⊗m), regarded as a U(N) representation. This is equal
to the Tr(gh⊗m) on V ⊗m, because g and h⊗m commute. But the matrix gh⊗m, written with
respect to the basis ~ei1 ⊗ · · · ⊗ ~eim , has zero diagonal entries unless i1 = . . . = im, in which
case the entry is xmi1 . Thus:

Tr(gh⊗m) = xm1 + · · ·+ xmN .

This equals the trace of h on ψm(V ), q.e.d.

Proposition 3.11.4. Let ζ be a root of unity. The localisation Jζ near q = ζ−1 is a tangent
vector to the cone of some “twisted” fake theory (after identifying the loop spaces using the
Chern isomorphism). The application point is the leg T.

Proof: Denote by δt(q) the sum of terms in J which don’t have a pole at q = ζ−1. Then
we can write:

Jζ(t) = δt(q) +
∑
a,n,d

φa
Qdm

n!

〈
φa

1− qζL1/m
,T(L), . . . ,T(L), δt(ζ−1L

1
m );Tr(Λ∗Ng,n,d)

〉X/Zm,f
0,n+2,d

(3.5)

where Ng,n,d is the trace of the Euler class of the normal bundle to each stem space. Re-
member that g acts by ζ on the cotangent line at the first marked point, which explains the
denominator 1 − qζL1/m of the input at that point in the correlators. We now explain the
input δt(ζ−1L

1
m ) at the second branch point ∞. If ∞ is a marked point, then the input
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is t(ζ−1L1/m). If it is a nonspecial point of the original curve, than I claim the input is
1− ζ−1L1/m. For this look at the diagram (assume n = 0 for symplicity, since the presence
of legs doesn’t change the following argument):

X0,2,d(ζ)
i−−−→ X0,2,dm

ft2

y ft2

y
X0,2,d(ζ)

i−−−→ X0,1,dm.

The restriction of ft2 to the Kawasaki stratum X0,2,d(ζ) is an isomorphism so the conormal

bundle of X0,2,d(ζ) in X0,2,dm (denote it N
∗
) is the direct sum of the conormal bundle of

X0,2,d(ζ) in D2 := σ2(X0,1,dm) (which is the same as the conormal bundle of X0,2,d(ζ) in
X0,1,dm - call it N∗) and the conormal bundle of D2 in X0,2,dm. Taking equivariant Euler
classes we get:

Λ∗(N
∗
) = Λ∗(N∗)(1− ζ−1L

1/m
2 ).

Hence integrals on X0,2,d(ζ) viewed as a Kawasaki stratum in X0,1,dm can be expressed as
integrals on the stem space with the input 1 − η−1L1/m at ∞. Finally when ∞ is a node,
then the input is the polar part of δt(ζ−1L1/m).
The reason why we view as Jζ(t) as a tangent vector to a Lagrangian cone is that we can
identify tangent spaces to cones of theories with first order derivatives of their J function.
Taking the derivative of J in the direction of ~v(q) replaces the input by ~v(q) and one seat in
the correlators by ~v(L).
Although the correlators are on X/Zm, we will see soon that we can identify this generating
series with a tangent space to the cone of a twisted theory on X.

Notice that we already proved conditions 1 and 2 in Theorem 1.6.2. Before attacking
part 3, we prove the following:

Proposition 3.11.5. ch−1(20LH) = ψm(Lf ), where 20 is the operator in Corollary 2.8.1
and the Adams operation ψm : Kf → Kf acts on q by ψm(q) = qm.

Proof: we first show that:

20 = m1/2dimCXψm(4)e−(logm)c1(TX)/z. (3.6)

Let xi be the Chern roots of TX . Note that 4 and 20 are Euler-Maclaurin asymptotics of
infinite products:

4 =
∏
xi

∞∏
r=1

s1(xi − rz),

20 =
∏
xi

∞∏
r=1

s2(x− rz),
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where

s1(x) =
x

1− e−x
and s2(x) =

x

1− e−mx
=

1

m
ψm(s1(x)).

It follows that

lns2(x) = −log(m) + ψmlns1(x).

But from the definition of Euler-Maclaurin expansion we see −logm influences only the terms∑
i

[∫ xi

0

(−logm)dt/z + logm/2

]
=

(−logm)c1(TX)

z
+ dim(X)

logm

2
.

since the sum is taken after Chern roots of TX . Formula (3.6) follows.
Going back to the proof of 3.11.5, we know that:

4−1ch(J X
f ) = JHX . (3.7)

We use the chern character to define the Adams operation in cohomology:

ψm(a) := ch
(
ψm(ch−1a)

)
.

Notice that if a is homogeneous then ψm(a) = mdeg(a)/2a.
The J function JHX has degree two with respect to the grading deg(z) = 2, deg(Qd) =
2
∫
d
c1(TX), and the usual grading in cohomology. Therefore if we write JHX = −z

∑
d JdQ

d

then deg(Jd) = −deg(Qd), hence:

ψm(JHX ) =
∑
d

m1−
∫
d c1(TX)(−z)JdQ

d. (3.8)

We can rewrite this as:

m−1ψm(JHX ) =
∑
d

e−log(m)
∫
d c1(TX)(−z)JdQ

d. (3.9)

We now use the divisor equation (see [C]), to write the RHS above as:∑
d

e−log(m)c1(TX)/z(−z)JdQ
d = e−log(m)c1(TX)/zJHX . (3.10)

Now combine (3.6) and (3.10) to write:

20J
H
X = m1/2dimCXψm(4)e−(logm)c1(TX)/zJHX =

= m1/2dimCXψm(4)m−1ψm(JHX ) = m−1+1/2dimCXψm(4JHX ).
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This proves the proposition because the range of c4 JHX is the cone ch(Lf ), for any scalar
c ∈ C.

We now complete the proof of Theorem 1.6.2. Before that we introdue more notation:
we index the components of I(X/Zm) by elements g ∈ Zm. We write:

H∗(IX/Zm,C) := ⊕g∈ZmH∗(X/Zm,C)eg.

For cohomology classes in the identiy sector we will drop the element e1 from the notation.
We now introduce the following generating series:

JX/Zm := −z + t(z) +
∑
a

φa
∑
n,d

Qd

n!

〈
φ̃a

−z − ψ1

, t(ψ2), . . . , t(ψn+1)

〉X/Zm

0,n+1,d

δJX/Zm := δt(z) +
∑
a

φa
∑
n,d

Qd

n!

〈
φ̃aeg

−z − ψ1

, t(ψ2), . . . , δt(ψn+2)eg−1

〉X/Zm

0,n+2,d

where {φa} and {φ̃a} are dual basis with respect to the Poincaré pairing on I(X/Zm). It
follows from formula 2.67 that

JX/Zm = JX , where JX(z, t(z)) ∈ H∗((1, X))((z−1)) ' HX ,

δJX/Zm = δt(z) +
∑
a

φa
∑
n,d

Qd

n!

〈
φ̃a

−z − ψ1

, t(ψ2), . . . , δt(ψn+2)

〉X

0,n+2,d

.

We now define their twisted counterparts :

J twX/Zm := −z + t(z) +
∑
a

φa
∑
n,d

Qd

n!

〈
φ̃a

−z − ψ1

, t(ψ2), . . . , t(ψn+1); Θg,n,d

〉X/Zm

0,n+1,d

,

δJ twX/Zm := δt(z) +
∑
a

φa
∑
n,d

Qd

n!

〈
φ̃aeg

−z − ψ1

, t(ψ2), . . . , δt(ψn+2)eg−1 ; Θg,n,d

〉X/Zm

0,n+2,d

,

where Θg,n,d is the twisting of Section 2.8 by the following classes:

Θg,n,d :=td(π∗ev
∗(TX))

m−1∏
k=1

tdζk(π∗ev
∗(TX ⊗ Cζk)).

.

Proposition 3.11.6. The series J twX/Zm lies in the overruled Lagrangian cone 20LHX and

δJ twX/Zm lies in the tangent space 21T2−1
0 Jtw

X/Zm
LHX , where 20,21 are the operators introduced

in Section 2.8.
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Proof: This follows from Corollary 2.8.1: the range of J twX/Zm is the part of the untwisted

sector of the cone Ltw, which gets rotated by 20. The tangent vector δJ twX/Zm on the other
hand pertains to the sector indexed by g.

We introduce one more generating series:

δJ st(δt,T) = δt(q)+

+
∑
a

φa
∑
n,d

Qd

n!

〈
φa

1− q1/mL1/m
,T(L), . . . ,T(L), δt(ζ−1L

1
m );Tr(Λ∗Ng,n,d)

〉X/Zm,f
0,n+2,d

. (3.11)

Notice that if we do the change of variables q1/m 7→ qζ and Qd 7→ Qmd we obtain the
localisation Jζ .

Proposition 3.11.7. ch (δJ st(δt,T)) lies in the subspace 212
−1
0 TJtwX/Zm20LH where the in-

put T is related to the application point J twX/Zm by the projection [. . .]+ along the polarisation
pertaining to the identity sector in Corollary 2.8.3:

ch[1− qm + T(q)] = [J twX/Zm ]+.

Proof: According to the description of Ng,n,d of Section 3.9, ch(δJ st) is obtained from
δJ twX/Zm by twisting by the type B and C classes of Corollaries 2.8.2 and 2.8.3. Therefore it lies

in the same space as δJ twX/Zm , which according to the Proposition 3.11.6 is 212
−1
0 TJtwX/Zm20LH .

However, the dilaton shift (see Corollary 2.8.2) changes from −z to 1 − emz, and so
does the space H− of the polarisation. Changing the input at the first marked point from
φ̃a/− z−ψ = φa/(−z/m−ψ/m) to φa/(1− e(z+ψ)/m) is equivalent to applying to the same
space the polarisation pertaining to the sector g ∈ Zm. The input T is related to J twX/Zm by:

ch[T(q)]+ = [J twX/Zm ]+ − 1 + emz (3.12)

due to the new polarisation and dilaton shift.

Proposition 3.11.8. δJ st(δt,T) lies in the space 214−1 TJf (T̃)Lf , where T = ψm(T̃).

Proof: ch (δJ st(δt,T)) lies in the space 212
−1
0 TJtwX/Zm20LH according to Proposition

3.11.7. But J twX/Zm = 20J
H
X , and (up to a scalar) we also have from 3.11.5 that ch(J twX/Zm) =

ψm(Jf ). The input of Jf is determined as:

T̃ = (Jf )+ − (1− q),

where (. . .)+ means projection along the space Kf−. Comparing with (3.12) and recalling

from Corollary 2.8.3 that the negative space of the identity sector is ch−1(ψm(Kf−)), and

that ψm(1− q) = 1− qm we see that we must have T = ψm(T̃). Replacing:

20J
H
X = 204−1 ch(Jf )
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we see that δJ st(δt,T) lies in the space 214−1 TJf (T̃)Lf q.e.d.

Now notice that

204−1 =
∏
xi

∞∏
r=1

1− qre−x

1− ζ−rqr/me−x
.

The operator ∇ζ of Theorem 1.6.2 is obtained by the change of variable q1/m 7→ qζ in
the formula above and computing the Euler-Maclaurin asymptotics as qζ → 1. But the
same change of variable and Qd 7→ Qmd transforms δJ st(δt,T) to the localisation Jζ(t).
Combining this with Proposition 3.11.8 we see that ∇−1

ζ Jζ(t), after the change q 7→ qζ−1,

lies in the subspace T of Lf obtained from the tangent space TJ1(0)Lf by the change of
variable q1/m 7→ q and Qd 7→ Qmd.

This concludes the proof of Theorem 1.6.2.

Proposition 3.11.9. The Theorem 1.6.2 determines J in terms of head and stem correla-
tors.

Proof: we use induction on the degree d of Novikov’s monomials Qd. The Deligne-
Mumford spaces M0,n are manifolds, hence in degree d = 0 there are only head contributions
to J (t). Assume now we have computed J (t) for all d < d0. We can compute J (0) up
to degree d0: if the head has degree 0, then it suffices to know the arms up to degree < d
, since there are two arms attached and since the arms have positive degrees. Also, when
the stem and the tail have degree 0, and there is only one leg attached, we can recover the
information about the leg from that of the arm up to degree d0/m < d0.

We can now project J1(0) and Jζ(0) to Kf+ and Kζ+ respectively to reconstruct the arm

T̃(q) and the tail δt(q) up to degree d0. But if we know T̃ we can reconstruct the leg T up
to degree d0. Hence we know all contributions and we can recover J (t) up to degree d0.

Corollary 3.11.10. The Theorem 1.6.2 expresses genuine K-theoretic invariants of X in
terms of cohomological invariants.

Proof: this follows from the previous corollary, combined with the twisting formulae
which express head correlators in terms of cohomological ones, and stem correlators in terms
of the cohomological ones of X/Zm. But it is known ([JK]) how cohomological GW invariants
of X/Zm are related to those of X, q.e.d.

Corollary 3.11.11. Two points f ,g ∈ L lie in the same ruling space of L if and only if
their expansions f1,g1 near q = 1 lie in the same ruling space of Lf .

Proof: If f1 and g1 lie in the same ruling space of Lf , then εf̂ +(1−ε)ĝ ∈ L̂ for each value

of ε and therefore, by the theorem, the whole line εf̂ + (1 − ε)ĝ lies in L. The converse is
also true: if the line through f ,g lies in L then the line through f1, g1 lies in Lf . It remains
to notice that ruling subspaces of L and Lf are maximal linear subspaces of these cones -
because this is true modulo Novikov’s variables, i.e. in classical K-theory.
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3.12 Floer’s S1 equivariant K-theory and Dq modules

In this section we show that tangent spaces to the overruled Lagrangian cone L carry a
natural structure of modules over a certain algebra Dq of finite difference operators with
respect to Novikov’s variables. This structure, although manifest in examples ([GL]) and
predictable on heuristic grounds of S1- equivariant Floer theory ([G4], [G5]), has been missing
so far in the realm of K-theoretic Gromov-Witten invariants. We first recall the heuristics and
then derive the Dq invariance of tangent spaces to L from the divisor equation in quantum
cohomology theory and the HRR Theorem 1.6.2.

Let X be a compact symplectic (or Kähler) target space, which is assumed simply-
connected in this discussion, so that π2(X) = H2(X). Let k = rkH2(X), let d = (d1, . . . , dk)
be integer coordinates on H2(X,Q), and let ω1, . . . , ωk be closed two forms on X with integer
periods, representing the corresponding basis in H2(X,R).

On the space L0(X) of parametrized loops S1 → X, as well as on its universal cover

L̃0X, one defines closed two forms Ωa, that to two vector fields ξ and η along a given loop
associates the value:

Ωa(ξ, η) =

∮
ωa (ξ(t), η(t)) dt.

A point γ ∈ L̃0X is a loop in X together with a homotopy type of disk u : D2 → X attached
to it. One defines the actionn functionals Ha : L̃0X → X by evaluating the 2-forms ωa on
such disks:

Ha(γ) :=

∫
D2

u∗ωa.

Consider the action of S1 on L̃0X defined by the rotation of loops and let V be the velocity
vector field of this action. It is well known that V is Ωa - Hamiltonian with Hamilton function
Ha, i.e.:

iV (Ωa) + dHa = 0, a = 1, . . . , k.

Denote by z the generator of the coefficient ring H∗(BS1) of S1-equivariant cohomology

theory. The S1-equivariant De Rham complex (of L̃0X in our case) consists of S1 equivariant
differential forms with coefficients in R[z], and is equipped with the differential D := d+ziV .
Then:

pa := Ωa + zHa, . . . a = 1, . . . , k,

are degree 2 S1-equivariantly closed elements of the complex: Dpa = 0. This is a standard
fact that usually accompanies the formula of Duistermaat-Heckman.
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Furthermore, the lattice π2(X) acts by deck transformations on the universal cover

L̃0X → L0X. Namely, an element d ∈ π2(X) acts on γ ∈ L̃0X by replacing the homotopy
type [u] of the disk with [u]+d. We denote by Qd = Qd1

1 · · ·Q
dk
k the operation of pulling-back

differential forms by this deck transformation. It is an observation from [G4], [G5] that the
operations Qa and the operations of exterior multiplication by pa do not commute:

paQb − pbQa = −δabzQa.

These are commutation relations between generators of the algebra of differential operators
on the k-dimensional torus:

[−z∂τa , eτb ] = −δabzeτa .

Likewise, if Pa denotes the S1-equivariant line bundle on L̃0X whose Chern character
is e−pa , then tensoring vector bundles by Pa and pulling back vector bundles by Qa do not
commute:

PaQb = δabqQaPb.

These are commutation relations in the algebra of finite-difference operators, generated by
multiplications and translations:

Qa 7→ eτa , Pa 7→ ez∂τa = q∂τa , where q = ez.

Thinking of these operations acting on S1-equivariant Floer theory of the loop space, one
arrives at the conclusion that S1-equivariant Floer cohomology (K-theory) should carry the
structure of a module over the algebra of differential (respectively finite-difference) operators.
Here is how this heuristic prediction materializes in Gromov-Witten theory:

Proposition 3.12.1. Let D denote the algebra of differential operators generated by pa, a =
1, . . . , k, and Qd, with d lying in the Mori cone of X. Define a representation of D on the
symplectic loop space H using the operators pa − zQa∂Qa where pa acts by multiplication in
the classical cohomology algebra of X) and Qd acts by multiplication in the Novikov ring.
Then tangent spaces in the overruled Lagrangian cone LH ⊂ H of cohomological GW-theory
of X are D-invariant.

Proof: invariance with respect to multiplication by Qd is tautological since the Novikov
ring C[[Q, λ]] is considered as the ground ring of scalars. To prove invariance with respect to
operators pa − zQa∂Qa , recall from [G1] that tangent spaces to LH have the form S−1

τ H+,
where H 3 τ 7→ Sτ (z) is a matrix power series in 1/z whose matrix entries are:

Sba = δba +
∑
n,d

Qd

n!

∑
µ

〈
φµ, τ, . . . , τ,

φb
z − ψ

〉X
0,n+2,d

.
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The matrix Sτ lies in the twisted loop groop, i.e. Sτ−1(z) = S∗τ (−z). Let ∂τa denote
differentiation in τ in the direction of the degree two cohomology class pa. According to the
divisor equation:

zQa∂QaSτ (z) + Sτ (z)pa = z∂τaSτ (z). (3.13)

In fact the property of LH to be uniruled implies that z∂τaS = pa • S, where • stands for
quantum cup product. Transposing, we get:

(pa − zQa∂Qa)S
−1
τ (z) = −z∂τaS−1

τ (z) = S−1
τ (z)(pa•).

Also, if τ =
∑

α τα(Q)φα and h ∈ H+ , so that f(z,Q) = S−1
τ (z)h(z,Q) ∈ Tτ , then:

(pa − zQa∂Qa)f = S−1
τ (z)

[
(pa•)− zQa∂Qa + z

∑
Qa∂Qaτga(φα•)

]
h.

Since H+ is invariant under the operators in brackets, the result follows.

Remark 3.12.2. Each ruling space zTτ , and therefore the whole cone LH , is D-invariant.

Corollary 3.12.3. Tangent and ruling spaces of Lf are D-invariant.

Proof: In the QHRR formula ch(Lf ) = 4LH of Section 3.7, the operator 4 commutes
with D, since it does not involve Novikov’s variables, and since the operators (which do occur
in 4) of multiplication in the classical cohomological ring of X commute with pa.

Lemma 3.12.4. The subspace T ⊂ Kf obtained from TJ (0)1Lf by the change z 7→ mz,Q 7→
Qm, is D-invariant.

Proof: The tangent space in question is 4(z)S−1
τ(Q)(z,Q)H+ for some τ =

∑
α ταφα ∈ H.

(Recall that H = H∗(X,C[[Q]])). The space T is therefore 4(mz)S−1
τ(Qm)(mz,Q

m)H+ ,
where H+ is D-invariant, and 4 commutes with D. Since zQa∂Qa = mzQm∂Qma , we find
that the divisor equation still holds in the form:

(pa − zQa∂Qa)S
−1
τ (mz,Qm) = S−1

τ (mz,Qm)
(
pa•(τ,Qm)

)
,

where the last subscript indicates that the matrix elements of pa• depend on τ and Qm. The
result now follows as in Proposition 3.12.1.

Corollary 3.12.5. Let ζ be a primitive m-th root of unity. Then the factor Lζ = ∇ζT ζ of

the adelic cone L̂ is D-invariant.

Proof: recall that T ζ is related to T by the change q = ζez and the action of z in the
operator pa − zQa∂Qa should be understood in the sense of this identification. The result
follows from Lemma 3.12.4 since ∇ζ commutes with D.
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Theorem 3.12.6. Let Dq denote the algebra of finite-difference operators, generated by
integer powers of Pa, a = 1, . . . , k, and Qd, with d lying in the Mori cone of X. Define a
representation of Dq on the symplectic loop space K, using the operators Paq

Qa∂Qa and Qd.
Here Pa acts by multiplication in K0(X) by the line bundle with Chern character e−pa and Qd

acts by multplication in the Novikov ring. Then tangent spaces to the overruled Lagrangian
cone L ⊂ K of true quantum-K theory on X are Dq invariant.

Proof: thanks to the adelic characterization of the cone L and its ruling spaces given by
Theorem 1.6.2 and Corollary 3.11.11, this is an immediate consequence of the following:

Lemma 3.12.7. The adelic cone L̂ is Dq invariant.

Proof: If ζ is not a root of unity it is obvious that Lζ are Dq-invariant because Lζ = Kf+.
For ζ = 1, it follows from Corollary 3.12.3 that the family of operators eε(zQa∂Qa−pa) preserves
Lf , and so does the operator with ε = 1, which is Paq

Qa∂Qa . When ζ 6= 1 is a primitive
m-th root of unity, the family of operators eε(zQa∂Qa−pa) preserves Lζ by Corollary 3.12.5.
However at ε = 1 the operator differs Paq

Qa∂Qa by the factor ζQa∂Qa because q = ζez. The
operator ζQa∂Qa acts by Qa 7→ ζQa. It is essential here that this extra factor commutes with
S−1
τ(Qm)(mz,Q

m) because ζm = 1. Since it also preserves H+ the result follows.

Example 3.12.8. It is known from [GL] that for X = CPn−1,

J (0) = (1− q)
∞∑
d=0

Qd

(1− Pq)n · · · (1− Pqd)n
,

where P ∈ K0(CPn−1) is the Hopf bundle. It follows from the string equation that
J (0)/(1−q) lies in the tangent space TJ (0)L. Applying powers T r of the translation operator
T := PqQa∂Qa , we conclude that, for all integers r, the same tangent space contains

P r

∞∑
d=0

Qdqrd

(1− Pq)n · · · (1− Pqd)n
.

In fact J (0) satisfies the second order finite-difference equation DnJ (0) = QJ (0), where
D := 1−T . Therefore the Dq-module structure generated by J (0)/(1−q) is spanned over the
Novikov ring by T rJ (0)/(1− q), with r = 0, 1, . . . , n− 1. The projections of these elements
to K+ are P r, r = 0, . . . , n − 1, which generate the ring K0(CP)n−1 = Z[P, P−1]/(1 − P )n.
The K-theoretic Poincaré pairing on this ring is given by the residue formula:

(φ(P ), φ′(P )) = −ResP=1
φ(P )φ′(P )

(1− P )n
dP

P
.
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By computing the pairings with the above series we actually evaluate K-theoretic Gromov-
Witten invariants:(

φ(P ),
T rJ (0)

1− q

)
=
∑
d

Qd

〈
φ(P )

1− qL
, P r

〉X
0,2,d

, r = 0, . . . , n− 1.

Thus, using the Dq structure alone we can compute all values 〈φLk, φ′〉X0,2,d from 〈φLk, 1〉X0,2,d.
By virtue of general properties of the invariants we can then compute all 〈φLk, φ′Ll〉X0,2,d.
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Appendix A

Virtual Kawasaki formula

In this appendix we prove that Kawasaki’s formula “behaves well” with working with
virtual structure sheaves in the following sense: if we replace the structure sheaves, tangent
and normal bundles in the formula by their virtual counterparts then Kawasaki’s formula
stays true.

Let X be a compact, complex orbispace (Deligne-Mumford stack) with a perfect obstruc-
tion theory E−1 → E0. This gives rise to the intrinsic normal cone, which is embedded in E1

- the dual bundle to E−1 (see [LT], also [BF]). The virtual structure sheaf OvirX was defined
in [L2] as the K-theoretic pull-back by the zero section of the structure sheaf of this cone.
Let IX =

∐
µXµ be the inertia orbifold of X . We denote by iµ the inclusion of a stratum Xµ

in X . For a bundle V on X we write i∗µV = V f
µ ⊕V m

µ for its decomposition as the direct sum
of the fixed part and the moving part under the action of the symmetry associated to Xµ.
To avoid ugly notation , we will often not write the lower index µ in the notation and simply
write V m, V f . The virtual normal bundle to Xµ in X is defined as [Em

0 ] − [Em
1 ]. We will

in addition assume that X admits an embedding j in a smooth compact orbifold Y . This
is always true for the moduli spaces of stable maps X0,n,d because an embedding X ↪→ PN
induces an embedding X0,n,d ↪→ (PN)0,n,d.

Proposition A.0.1. Denote by N vir
µ the virtual normal bundle of Xµ in X . Then in the

notation of Section 3.6:

χ
(
X , j∗(V )⊗OvirX

)
=
∑
µ

1

mµ

χf

(
Xµ,

T r(Vµ ⊗OvirXµ )

Tr
(
Λ•(N vir

µ )∗
)) . (A.1)

Remark A.0.2. A perfect obstruction theory E−1 → E0 on X induces canonically a perfect
obstruction theory on Xµ by taking the fixed part of the complex E−1,f

µ → E0,f
µ . The proof

is the same as that of Proposition 1 in [GP]. This is then used to define the sheaf OvirXµ .

Remark A.0.3. It is proved in [FG] that the Grothendieck-Riemann-Roch theorem, which
gives the fake invariants, is compatible with virtual fundamental classes and virtual funda-
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mental sheaves i.e.:

χf (X , V ⊗OvirX ) =

∫
[X ]

ch(V ⊗OvirX ) · T vir

where [X ] is the virtual fundamental class of X and T vir is its virtual tangent bundle.

Remark A.0.4. The bundles V to which we apply the proposition in Section 3 are (sums and
products of) cotangent line bundles Li and evaluation classes ev∗i (ai). They are pull-backs
of the corresponding bundles on (PN)0,n,d.

Example A.0.5. We first look at the toy-case when there is a bundle E on Y with a section
s : Y → E such that X = s−1(0) ⊂ Y . In this case the sheaf OvirX is the K-theoretic Euler
class Λ•E∗ and the obstruction theory is the differential ds : TY → E. If we denote by iµ
the inclusion of the Kawasaki stratum Yµ in Y then by Kawasaki formula applied to Y we
have:

χ(X ,OvirX ) = χ(Y , j∗Λ•E∗) =
∑
µ

1

mµ

χf
(
Yµ,

T r(i∗µj∗Λ
•E∗)

Tr(Λ•N∗µ)

)
. (A.2)

The following diagram:

Xµ
i′µ−−−→ X

j′

y j

y
Yµ

iµ−−−→ Y
is cartesian hence i∗µj∗Λ

•E∗ = j′∗(i
′
µ)∗Λ•E∗. By multiplicativity of Euler classes:

i′∗µΛ•E∗ = Λ•(Ef )∗Λ•(Em)∗

and the sheaf Λ•(Ef )∗ = OvirXµ by definition. Moreover N vir
µ = Nµ − Em. This gives:

χf
(
Yµ,

T r(i∗µj∗Λ
•E∗)

Tr(Λ•N∗µ)

)
= χf

(
Yµ, j′∗

Tr(OvirXµ )

Tr(Λ•N vir
µ )

)
.

Plugging the above expression in (A.2) and pulling back to Xµ proves the proposition in this
case.

Before proving Proposition A.0.1 in the general case we recall a lemma of [L2] which we
will use. For any fiber square:

V ′ −−−→ Vy y
B′

i−−−→ B
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with i a regular embedding one can define K-theoretic refined Gysin homomorphisms i! :
K0(V )→ K0(V ′) (see [L2]). Consider now the diagram:

ι∗CX/Y −−−→ CX/Yy y
X ′

ι−−−→ Xy j

y
Y ′

i−−−→ Y

with i a regular embedding and j an embedding, CX/Y is the normal cone of X in Y and
both squares are fiber diagrams. Then Lemma 2 of [L2] states that:

i![OCX/Y ] = [OCX′/Y ′ ] ∈ K0(ι∗CX/Y ). (A.3)

Proof of Proposition A.0.1: we have:

χ(X , j∗V ⊗OvirX ) = χ(Y , V ⊗ j∗OvirX ).

We now apply Kawasaki’s formula to the sheaf V ⊗ j∗OvirX on Y . This gives:

χ(Y , V ⊗ j∗OvirX ) =
∑
µ

1

mµ

χf
(
Yµ,

T r(Vµ ⊗ i∗µj∗OvirX )

Tr(Λ•N∗µ)

)
. (A.4)

From the fiber diagram:

Xµ
i′µ−−−→ X

j′

y j

y
Yµ

iµ−−−→ Y

and Theorem 6.2 in [FL] we have i∗µj∗OvirX = j′∗i
!
µOvirX . Plugging this in (A.4) gives:

χf

(
Yµ,

T r
(
Vµ ⊗ i∗µj∗OvirX

)
Tr(Λ•N∗µ)

)
= χf

(
Yµ,

T r
(
Vµ ⊗ j′∗i!µOvirX

)
Tr(Λ•N∗µ)

)
. (A.5)

Let Gµ be the cyclic group generated by one element of the conjugacy class associated to
Xµ. Then we will show that:

Tr

(
i!µOvirX
Λ•(N∗µ)

)
= Tr

(
OvirXµ

Λ•(N vir
µ )∗

)
(A.6)
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in the Gµ-equivariant K-ring of Xµ. This is essentially the computation of Section 3 in
[GP] carried out in C∗-equivariant K-theory. Relation (A.6) then follows by embedding the
group Gµ in the torus and specializing the value of the variable t in the ground ring of
C∗-equivariant K-theory to a |Gµ|-root of unity.

If we define a cone D := CX/Y ×X E0, then this is a TY cone (see [BF]). The virtual
normal cone Dvir is defined as D/TY and OvirX is the pull-back by the zero section of the
structure sheaf of Dvir. Alternatively there is a fiber diagram:

TY −−−→ Dy y
X

0E1−−−→ E1

whre the bottom map is the zero section of E1. Then one can define OvirX as 0∗TY0!
E1

[OD].
We’ll prove formula (A.6) following closely the calculation in [GP]. First by definition of
OvirX and by commutativity of Gysin maps we have :

i!µOvirX = i!µ0∗TY0!
E1

[OD] = 0∗TY0!
E1
i!µ[OD]. (A.7)

We pull-back relation (A.3) to (i′µ)∗D = (i′µ)∗(CX/Y × E0) to get:

i!µ[OD] = [ODµ × (Em
0 )∗]. (A.8)

In the equality above we have used the fact that Dµ = CXµ/Yµ × E
f
0 and we identified the

sheaf of sections of the bundle Em
0 with the dual bundle (Em

0 )∗. Plugging (A.8) in (A.7) we
get:

i!µOvirX = 0∗TY0!
E1

[ODµ × (Em
0 )∗]. (A.9)

Notice that the action of TYµ leaves Dµ× (Em
0 )∗ invariant (it acts trivially on (Em

0 )∗). Now
we can write 0∗TY = 0∗

TYfµ
× 0∗TYmµ and since Dvir

µ = Dµ/TYµ we rewrite (A.9) as:

i!µOvirX = 0∗TYmµ 0!
E1

[ODvirµ × (Em
0 )∗]. (A.10)

The proof of Lemma 1 in [GP] works in our set-up as well: it uses excess intersection
formula which holds in K-theory. It shows that the following relation holds in the C∗-
equivariant K-ring of Xµ:

0∗TYmµ 0!
E1

[ODvirµ × (Em
0 )∗] = 0∗Em0

(
0!
E1

[ODvirµ × (Em
0 )∗]

)
· Λ•(TYm)∗

Λ•(Em
0 )∗

. (A.11)

The class 0!
E1

[ODvirµ ×E
m
0 ] lives in the C∗-equivariant K-ring of Em

0 . The class doesn’t depend
on the bundle map Em

0 → Em
1 so we can assume this map to be 0. Then by excess intersection

formula and the definition of OvirXµ we get :

0∗Em0

(
0!
E1

[ODvirµ × (Em
0 )∗]

)
= OvirXµ · Λ

•(Em
1 )∗. (A.12)
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Formula (A.12) holds because Dvir
µ × (Em

0 ) ⊂ Ef
1 ×Em

0 and 0!
E1

acts as 0!

Ef1
× 0!

Em1
on factors.

0!

Ef1
[ODvirµ ] = OvirXµ by definition of OvirXµ . By excess intersection formula applied to the fiber

square:
Em

0 −−−→ Em
0

π

y y
Xµ

0Em1−−−→ Em
1

we have 0∗Em0 0!
Em1

[(Em
0 )∗] = 0∗Em0 π

∗Λ•(Em
1 )∗ = Λ•(Em

1 )∗. Plugging formula (A.12) in (A.11)

(note that Nµ = TYmµ and N vir
µ = [Em

0 ] − [Em
1 ]) and taking traces proves (A.6). We now

plug (A.6) in (A.5) and then pull-back to Xµ to get:

χf
(
Yµ,

T r(Vµ ⊗ j∗i∗µOvirX )

Tr(Λ•N∗µ)

)
= χf

(
Yµ, T r(Vµ)⊗ j′∗

Tr(OvirXµ )

Tr(Λ•(N vir
µ )∗)

)
=

= χf

(
Xµ,

T r(Vµ ⊗OvirXµ )

Tr(Λ•(N vir
µ )∗)

)
. (A.13)

This concludes the proof of the proposition.




