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Abstract

Twisted Gromov-Witten invariants and applications to quantum K-theory
by
Valentin Tonita
Doctor of Philosophy in Mathematics
University of California, Berkeley

Professor Alexander Givental, Chair

Given a projective smooth complex variety X, one way to associate to it numerical
invariants is by taking holomorphic Euler characteristics of interesting vector bundles on
Xon,a - the moduli spaces of genus 0, degree d stable maps with n marked points to X. We
call these numbers genuine quantum K-theoretic invariants of X. Their generating series is
called the genus 0 K-theoretic descendant potential of X and can be viewed as a function
on a suitable infinite dimensional vector space .. Its graph is a uniruled Lagrangian cone
in T"°K .

We give a complete characterisation of points on the cone, proving a Hirzebruch Riemann
Roch type theorem for the genuine K-theory of X. In particular, our result can be used
to recursively express all genus 0 K-theoretic invariants of X in terms of cohomological
ones (usually known as Gromov- Witten invariants). The main technical tool we use is the
Kawasaki Riemann Roch theorem of [Ka|, which reduces the computation of holomorphic
Euler characteristic of a bundle on an orbifold to the computation of a cohomological integral
on the inertia orbifold.

In the process, we need to study more general cohomological Gromov-Witten invariants
of an orbifold X', which we call twisted invariants. These are obtained by capping the virtual
fundamental classes of the moduli spaces X, 4 with certain multiplicative characteristic
classes. We twist the Gromov-Witten potential by three types of twisting classes and we
allow several twistings of each type. We use a Mumford’s Grothendieck-Riemann-Roch
computation on the universal curve to give closed formulae which show the effect of each
type of twist on their generating series (the twisted potential). This generalizes earlier results
of [CG] and [TS].
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Chapter 1

Introduction

In this chapter we give a self-contained presentation of the main theorems proved in later
chapters.

1.1 K-theoretic Gromov-Witten invariants

We work over the field of complex numbers C. Let X be a nonsingular complex projective
variety. Let X, ,q be the moduli spaces of stable maps of [K] : they parametrize data
(C,x1,...,2,, f) where C' is an n-pointed genus g Riemann surface and f : C — X is a
degree d € Hy(X,Z) holomorphic map. There are natural maps:

ev;t Xgna— X, 1=1,...,n
given by evaluation at the ¢th marked point. There are line bundles
Li_>Xg,n,d; 1=1,...,n

called universal cotangent line bundles. The fiber of L; over the point (C,x1,...,2,, f) is
the cotangent line to C' at the point z;.

Let ay,...a, € K°(X,C). K-theoretic Gromov-Witten invariants are holomorphic Euler
characteristics over X, 4 of the sheaves:

evi(a))LF - .. ev’(a,) L @ OV
We will often use correlator notation for these numbers:

X * * vir
(a LM, ... ,anLk">g7n7d =X (Xgna evi(ar) LY - .. evi(a,) L @ OV) .
The sheaf O"" was introduced by Y.-P. Lee in [L2] and plays a role in the K-theoretic version
of the GW theory of X analogue to the role played by the virtual fundamental class [X,,, 4]
in the cohomological GW theory of X.



The following generating series:
Fo= 3 L))
X . n! 9000y O7n,d
dn

is called the genus 0 K-theoretic Gromov-Witten descendant potential. Here Q? is the
monomial representing the degree d € Hy(X,Z) in the Novikov ring C[[Q]], which is a
completion of the semigroup ring of degrees of holomorphic curves in X and t(L) is a Laurent
polynomial in L with vector coefficients t; € K°(X). Thus FY is a formal series in t(L) with
coefficients in the Novikov ring. The summation is taken after all stable pairs (d,n) i.e. if
d =0 then n > 3.

Our aim is to express K-theoretic invariants in terms of cohomological Gromov-Witten
invariants. The main tool is the Kawasaki-Riemann-Roch theorem of Section 1.3, which
computes holomorphic Euler characteristics of orbifolds. We will use Kawasaki-Riemann-
Roch to give a characterisation of the expansions of the J-function (which is introduced in
Section 1.2) near each of its poles. This is the result of Theorem 1.6.2.

1.2 Symplectic loop space

The totality of genus 0 Gromov-Witten invariants can be encoded by a certain Lagrangian
submanifold £ living in a certain symplectic vector space K, called the loop space and defined
as:

K:=[K°(X)®C(q.q")] ® C[Q]],

where C(q, ¢™!) is the ring of rational functions on the complex circle with coordinate q.
Let (, ) be the pairing on K°(X):

(a,b) == x(X,a®0D).

We endow K with the following symplectic form:

f,g— Q(f,g) := [Resy—o + Resq—oo) (£(q), 8(¢7")) %

The following two subspaces:
Ko = K'(X)g.q |0 CQl, K ={fek | £(0)+# oo0,f(c0) =0}

form a Lagrangian polarisation of K. K°(X)[q,¢™'] is the ring of Laurent polynomials in ¢
with coefficients in K°(X).



We now introduce the big J function of X, which is the generating function:

J(t) = 1—q+t(Q)+Z¢aZ%<1faqL,t(L),...,t(L)>

X

0,n+1,d

Here {¢,} and {¢*} are any Poincaré dual bases of K°(X). t — J(t) is a map K, — K and
is identified with the graph of the differential of the genus 0 potential, via the identification
T°K+ = K4 @ K_ and the dilaton shift f —f+1 —¢:

Jt) =1—q+t(q) + d Fy.

The genus-0 general properties of K-theoretic Gromov-Witten invariants from [L.2] are cap-
tured by the following:

Theorem 1.2.1. The range of the J function is the formal germ of a Lagrangian cone L
such that each tangent space T to L is tangent to L exactly along (1 — q)T. In other words
TNL=(1-q)T and the tangent space at all points of (1 —q)T is T

The theorem is a variant of results in [G1]. We'll sketch its proof in Section 3.5.
We call the submanifolds with the properties of the theorem overruled Lagrangian cones.

1.3 Kawasaki Riemann Roch theorem

For a complex manifold M, one can reduce the computation of the Euler characterstic
of a holomorphic Euler bundle F to the computation of a cohomological integral via the
Hirzebruch Riemann Roch theorem of [HR], which states that:

mmm=@mmmmm

where T'd is the Todd class. In [Ka| Kawasaki generalized this formula to the case when M
is an orbifold. He reduces the computation of Euler characteristics on M to computation of
certain cohomological integrals on the inertia orbifold I M.

X(M, E) Zml/ Td(Thy, ch(TzZ\(f\)[*J.

We explain below the ingredients in Kawasaki’s formula: _
IM is defined as follows: around any point p € M there is a local chart (U,, G,) such that

locally M is represented as the quotient of ﬁp by G,. Consider the set of conjugacy classes
(1) = (hy), (h2), ..., (hy") in G,. Define:

IM = {(p.(h}) | i=12,....n,}.



Pick an element h; in each conjugacy class. Then a local chart on I'M is given by:

]_[ 0% ) Za, (1),

=1

where Zg, (h}) is the centralizer of !, in G,. Denote by M; the connected components of the
inertia orbifold (we'll often refer to them as Kawasaki strata). The multiplicity m; associated
to each M; is given by:

m; =

ker (ng(g) — Aut(ﬁfj))‘ :

The restriction of F to M; decomposes in characters of the g actlon Let E" be the subbundle
of the restriction of £ to M; on which g acts with eigenvalue ¢”™. Then the trace Tr(E) is
defined to be the orbibundle whose fiber over the point (p, (¢)) of M; is :

Tr(E):= Z e%ﬂEg).

l

Finally, A* N/ is the K-theoretic Euler class of the normal bundle N; of M; in M. Tr(A*N})
is invertible because the symmetry ¢ acts with eigenvalues different from 1 on the normal
bundle to the fixed point locus. We call the terms corresponding to the identity component
in the formula fake Fuler characteristics:

Y/ (M,E) = / ch(EYTd(Tyy).

Notice that all the terms in Kawasaki’s formula are fake Euler characteristics of certain
bundles.

1.4 Fake quantum K-theory

The fake K-theoretic Gromov-Witten invariants are defined as :
<mL“~w%J“%mr=/‘ ch (evi(an) Ly - evi(an) Liy) - Td(T53)
Y [XO n d]

where 7%, is the virtual tangent bundle to Xgnq. In general they are rational numbers.
We define the big J function as:

70 =1-0+ 0+ 30 5 L (1L tLa) L))

a d,n 1= qu

f

0O,n+1,d



The loop space of the fake theory is defined as:
Kl = [K°(X)® C(((¢ - 1)™))] @ C[[Q]].
The symplectic structure is:

fig s ©/(E.8) = ~Res (6. gla ) 2.

A Lagrangian polarisation for K/ is given by:
KL= K°(X)[[(¢ - D] @ C[[Q]],

K = KX [l o @),

In fact, if we expand

LS - L
— B — )k’
e (1—q)**

then a Darboux basis of K/ is given by {¢%(q—1)*, ¢, = kﬂ} It is a result of [G1] that, just
like in the case of the genuine theory, the range of the j function of the genus 0 invariants
is a formal germ of an overruled Lagrangian cone, which we call £/.

We call symplectic transformations on K/ which commute with multiplication by ¢ loop
group elements. They are series in ¢ — 1 with End(K"(X)) coefficients.

1.5 Cohomological Gromov-Witten theory

The relation between the fake K-theoretic invariants of X and the cohomological ones has
been studied in [C] and described in terms of the symplectic geometry of the loop space.
Before stating the result, we need to briefly recall the setup of the cohomological theory. Let

H = C[[Q]] ® H*(X,C)((2))
be the cohomological loop space. We endow H with the symplectic form:
Qt.g)i= §(EG)e(-2)dz,
2=0

where ( , ) is the Poincaré pairing on H*(X). Consider the following polarisation of H:

Hy = H(X,O)[[z]] and H_:=z'H*(X,C)[z']



Let 1; = ¢1(L;). We define the genus 0 potential as:

)= 3L w), W)
n,d ’

Let q(z) = t(z) — z. Consider the graph of the genus 0 potential, regarded as a function of
q:

T={p,a) | p=dqFy} CTH, ~H.

Then according to [G1], £ is the formal germ of an overruled cone with vertex at the
shifted origin —z. Overruled means that the tangent spaces T to L£¥ are tangent to L7
exactly along 27T

Given a function x — s(z) the Euler-Maclaurin asymptoics of [[°2, e*®~"*) is obtained
as follows:
S —7r20z Zaﬁﬂ a -1 o
Zsa:—rz Ze ezam(z ) s(x) =
r=1
_ 3(71)( ) 5( . 2R () ;241
z 2 ’
k=1
where s*) = d*s/dax*, s(-1) is the antiderivative fo t)dt, and By are the Bernoulli numbers.

Let z; be the Chern roots of T'x, and let A be the Euler—Maelaurm asymptotics of the infinite
product:

NI =

i r=1

We identify K/ with H extending the Chern character isomorphism ch : K°(X,C) —
H*(X,C):

ch:/Cf—>'H,
q+— €.

This maps lecr to H., but it doesn’t map K' to H_.
Theorem([C]) 1.5.1. £/ is obtained from L7 by pointwise multiplication by A:

L£f=ch H(ALH).



1.6 The main theorem

We will use Kawasaki’s formula to express genus 0 K-theoretic GW invariants in terms of
cohomological ones. We will first identify the Kawasaki strata in the moduli spaces X, 4.
Points with nontrivial symmetries in Xy, 4 are those for which the domain contains a distin-
guished connected component, call it C, such that the map fic : C — X (of degree say md’)
factors through an m cover C' — C" given in local coordinates z — z™. The set of special
points of C' is fixed by the symmetry. Hence the only possible marked points lying on C' are
0,00. We also encounter the following situation: there are m-tuples of curves Ci,...,C,,,
isomorphic as stable maps, which intersect C' and are permuted by the 7Z,, action. Notice
that this prevents them from carrying marked points , which in turn, by the stability con-
dition forces the maps fic, — X to have positive degrees. Assume there are [ tuples of such
curves, denote the nodes by {z1,...,2;,}. We call the moduli spaces parametrizing such
objects (C,0,x1, ..., Xy, 00, f) stem spaces. It is tempting to identify the stem spaces with
the moduli spaces Xg;4+24. This is not true, because the orbifold structure near the nodes
is different.

Proposition 1.6.1. The stem spaces are identified with the moduli spaces denoted (X X
BZm)o42,4,(9,0,..g-1) of orbimaps to the orbifold X/ Z,,.

We explain the notation (X X BZup,)o 42,0 ,(g,0,..,4-1) i Section 1.7.

We refer to the (K-theoretic, cohomological) class in a certain seat in the correlators
as the “input” at the corresponding marked point. Notice that the first marked point has
distinguished input 1‘_15%. Assume the first marked point lies on a stem space with Z,,
symmetries, where the generator g of Z,, acts on the cotangent line with eigenvalue (. Denote
by t the sum of contributions in J coming from integrals on stem spaces corresponding to
¢ # 1. If on the contrary the first marked point lies on a component of the inertia orbifold
indexed by the identity, the contributions to J are fake Euler characteristics on strata where
the other special points are marked points or nodes. But the rational tails at these nodes
must have nontrivial symmetries, otherwise we can regard the whole curve as a degeneration
within a stratum without symmetries. When we sum after these possibilities the input in

the correlators at each of these points is t + t. This shows that:
J (t(q)) =T (t + ).

So we see that the expansion near ¢ = 1 of J lies on £f. But J has poles at all roots
of unity ¢. After making the change of variable ¢ — ¢(~! we can regard J as an element of
IC/. Tt turns out that this element lies in the tangent space to a cone obtained from £/ by
an explicit procedure. For f € K, denote by f; the expansion of f as a Laurent polynomial
in (1 — ¢¢). The main result of the thesis is the following theorem:

Theorem 1.6.2. Let L € K the overruled Lagrangian cone of quantum K theory on X.
Then £ € L iff the following hold :



1. f; doesn’t have poles unless ¢ # 0,00 is a root of unity.
2. f, lies on L.

3. In particular J1(0) € Lf. The tangent space to L at J;(0) is given as S~ (KL), where
S~tis the matriz of a linear transformation, whose entries are Laurent series in q — 1
with coefficients in C[[Q]]. Denote by S the matriz obtained from S wvia the change of
variable ¢ — ¢™ , Q% — Q™¢, and denote by T = §_1(1Ci). Let P; be the K-theoretic
Chern roots of T and let V¢ denote the Euler-Maclaurin asymptotics as ¢¢ — 1 of
the infinite product:

Hrl]‘_q P)
QC—HH 11_qu)

Then if ¢ # 1 is a primitive m root of 1, (Vglfg)(q/g) eT.
Conwversely, every point that satisfies conditions 1-3 above lies on L.

These conditions allow one to compute the values J(t) for all t, assuming the cone £/
is known. Since we know how L7 is related to £, the theorem expresses the K-theoretic
invariants in terms of cohomological ones.

1.7 Orbifold Gromov-Witten invariants

Let X be a compact orbifold. Moduli spaces of orbimaps to orbifolds have been constructed
by [CR1] in the setup of symplectic orbifolds and by [AGV2] in the context of Deligne-
Mumford stacks. Informally, the domain curve is allowed to have nontrivial orbifold structure
at the marked points and nodes.

Definition 1.7.1. A nodal n-pointed orbicurve is a nodal marked curve (C,xq,...,x,) , such
that

e C has trivial orbifold structure on the complement of the marked points and nodes.

e In an analytic neighborhood of a marked point, C is isomorphic to the quotient [Spec
C[z]/Z,], for some r, and the generator of Z, acts by z +— (z, (" =

e In an analytic neighborhood of a node, C is isomorphic to [Spec (Clz, w]/(zw)) /Z,],
and the generator of Z, acts by z — (z, w — (" lw.

Just like in the case of manifold target spaces, there are evaluation maps ewv; at the marked
points. Although it is clear how these maps are defined on geometric points, it turns out
that, to have well-defined morphisms of Deligne-Mumford stacks the target of the evaluation



maps is the rigidified inertia stack of X. The rigidified inertia stack, which we denote X, is
defined by taking the quotient at (z, (g)) of the automorphism group by the cyclic subgroup
generated by g. So, whereas a local chart at (z, (g)) on IX is given by /Uvg/ZGz (9), on IX a
local chart is /Uvg/[ZGz (9)/(g)]. We write [X := I, X,

We denote by:

Xy md(11,eopin) = Xgnd N (@1)71(Tu1) M...N (@n)il(yun»

IX and IX have the same geometric points (coarse spaces), hence we can identify the rings
H*(IX,C) and H*(1X,C). We consider the cohomological pullbacks by the maps ev; having
domain H*(IX,C). More precisely, if r; is the order of the automorphism group of z;, then
define:

ev; : H*(IX,C) — H*(X,,.4,C),
a1, (e0;)* (psa).

This accounts for the difference of degree of fundamental classes of X and IX.

For each 4, there are line bundles L;, L; whose fiber over each point (C,1,...,o,, f) are the
cotangent line to C at x;, respectively to the coarse space C' at x;. We denote by 1; = ¢1(L;)
and ¥; = ¢ (L;). If 2; has an automorphism group of order r; than b = ;.

We denote the universal family by 7 : Uypna — Xgna- Ugna can be identified with
U sooospin) Xgin1,d,(pi1oin,0)-  Lhe moduli spaces X, 4 are equipped with virtual fundamental
classes [X, 4] € Hi(Xy 4, Q). Orbifold Gromov-witten invariants are obtained by integrat-
ing 1); and evaluation classes on these cycles. We use our favourite correlator notation:

<a1Ekl, o ,anﬂk”> = / ﬁ evfaiﬂfi.

g;n,d

The following generating series are called the genus g potential, respectively the total po-
tential:

Qd
FLt) =" Lt
d,n )

Dx(t) = exp (Z hgl}"g(t)> :

920

They are functions on a suitable infinite dimensional vector space, which we describe
below.

We denote by ¢ : IX — IX the involution which maps (z, (g)) to (z,(g™')). It descends
to an involution on X, which we also denote ¢. Let X1 = ¢(X,,).
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The orbifold Poincaré pairing on IX is defined for a € H*(X),,C) , b € H*(X,1,C) as:

(@, 0)orp ::/ aJlh.
X,

n

Let
H:=C[Q ® H"(IX,C)((2))

We equip ‘H with the symplectic form:

Ot g) = § (). B (=),
Consider the following polarisation of H:
H, = H(IX,C)[[z]] and H_:=:z'H*(IX,C)z7".
Let A be the completion of the semigroup of the Mori cone of X. Then Dy is a well defined
formal function on H, taking values in A ® C[[h, h™']].
1.8 Twisted Gromov-Witten invariants

“T'wisted Gromov-Witten invariants” are obtained from the usual ones by systematically
inserting in the correlators multiplicative classes of certain bundles. We first describe the
result of [TS] on twisted GW invariants, and then explain our generalizations. Let E €
K°(X), let a general multiplicative class be

A(E) = exp (Z skcth> )

More precisely let By, 4 := m(evi E) € K°(X,,4) and let the twisted genus 0 potential
be:

d
Fhom 30 Tt b2 Ay )
n,d ’

where the insert of the multiplicative class in the correlators means we cup it with the
integrand. Let

HA = H @ C[[s0, 51, - - ]
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The “twisted” Poincaré pairing on H* is defined for a € H*(1X,,), b € H*(1X,1) as:

(a,b) 4 = /X a- b A((¢"E)inw),

i

where ¢ : IX — X is the map (x,(g)) — = and (¢*E);p, is the invariant part of ¢*F under
the g action.
We equip H* with the symplectic form:

fgs f ()82
The polarisation:
HA = H (X, N)[[2]], HA:=2"H(X,A)[z7Y]
realizes HA as T*H7'. Then FY is a function on H7 of g(z) = t(z) — z and its graph:
La={(p.a) | p=deFy}
is an overruled Lagrangian cone. We identify H* with H via the symplectomorphism:
HA = H
= 27/ A(G*E)inw)-

Using this, we can view FY as a function on H, and L4 as a section of T*H.
Let A be defined as follows:

. (Am)k-l-l—mzmil Chk(q*E)zm}
A = Zsk (Z m| —+ 2 ;

k>0 m>0

where at its turn A, are defined as operators of ordinary multiplication by certain elements
A, € H*(IX). To define A,, we introduce more notation: let 7, be the order of each
element in the conjugacy class which is labeled by &),. The restriction of the bundle £ to

X, decomposes into characters : let E,(f) be the subbundle on which every element of the
conjugacy class acts with eigen value e?™/"= . Then:

I=r—1

Ay, = > Bm%)chw;”).

Remark 1.8.1. The decomposition:
H*(1X,C)((+7")) = @H"(X,, C)((=7"))

is preserved by the action of this loop group element. A,, acts by cup product multiplication
on each H*(X),).

Theorem([TS]) 1.8.2.
Ly=AL"
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1.9 Twisted GW invariants - Motivation

In this section we explain why we look at “twistings” more general than the ones already
present in the literature.

Let ¢ be an mth root of unity and denote by Xg,424(¢) the stem space on which the
generator g of Z,, acts by  on the cotangent line at the first marked point. It is a Kawasaki
stratum in Xo ,n42.ma. Assume for symplicity the point oo is a marked point. Contributions
coming from integration on X ,24(¢) in Kawasaki’s formula are of the form:

/ td(T)ch< vt [I7 evit(L) )
[Xo,n+2,4(0)] (1—qCLy™)Tr(A*N") )

where [X ,12,4(C)] is the virtual fundamental class to the stratum and 7', N are the (virtual)
tangent, respectively normal bundles to Xo ,+24(¢). The virtual tangent bundle ;nn to.dm €
K O(XO,nerQ,dm) equals:

Olj:;:n—i-Q,dm = ,ﬁ*(ev;knn-l-?)(TX - 1)) - 7T’"(‘L77L}r7,—|—3 1) - (%*Z*(Og))vv

where Z is the codimension two locus of nodes in the universal family.
As we've said, Xg,424(¢) is identified with (X X BZp)oni2.4d,g0,..9-1)- We want to

express contributions from 73 . 4, to T and N in terms of the universal family on the

moduli space (X x BZm)o,n+2,d,(g, 0,...g-1), Which we denote 7.
Let Cex be the Z,, module C where g acts by multiplication ¢*. Then the eigenspace of
g in m.(ev},, 5(Tx — 1)) with eigenvalue "

7. (evs 5(Tx ® Cer))

Taking this into account, as well as the description of the contribution to 7', N coming from
Tu(Lmis — 1) and (T.i.(Oz))" we are led to consider three types of twistings:

e twistings by a finite number of multiplicative index classes A, as in Tseng’s theorem.

e twistings by classes Bs of the form:

Bgna = HBB me(fo(Lnty) — f5(1)))

B=1
where fs are polynomials with coefficients in K°(X).
e twistings by nodal classes Cs of the form:

Coma = [ [TIC4 (mulevy 1 Fou ®,.02,) ,

po 6=1
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where Fs, € K°(X). The extra index p keeps track of the orbifold type of the node.
More precisely, we denote by Z,, the node where the map ev, lands in ?H and by i,
the corresponding inclusion Z, — U, 4. Hence we allow different types of twistings
localised near the loci Z,,.

We will refer to these as type A, B, C twistings respectively.

1.10 Twisted GW invariants - statement of results

One can define the twisted potentials F- fil, s> Dapc inaway very similar with the definitions
of Sections 1.7. and 1.8. We describe the effect of these twistings on the potential in terms
of the geometry of the corresponding cones £ 45c.

The first generalisation we propose is rather straightforward - we allow type A twistings
by an arbitrary finite number of different multiplicative classes A,. Slightly abusively, we
keep notation from Section 1.8. i.e. L4, HA etc. Denote by A, the loop group transfor-
mation obtained from A, via the procedure described in Section 1.8. Then after a suitable
identification of H* with H :

Theorem 1.10.1. The cone
L= (H Aa> L.

Let L, be a line bundle with first chern class z.

Theorem 1.10.2. The twisting by the classes By, q has the same effect as a translation on
the Fock space:

D.A,B,C(t) = D.A,C (t +z— Zf[Bﬁ (_ fﬁ(Lil)__lfﬁ(l))> . (11)

i=1

The type C twisting doesn’t move the cone, but changes the polarisation of H. For each
p let the series u,(z) be defined by:

Tu

=TI¢ (" Fo)u ® (L))

uu(z) 51

Moreover define Laurent series vy, k = 0,1,2,... by:

1 = Z(uu(x))kvk,u(u(y)) )

where we expand the left hand side in the region where |z| < |y] .
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Theorem 1.10.3. The type C twisting is tantamount to considering the potential Dapg as a
generating function with respect to the new polarisation H = Hy ® H_ ¢, where Hy is the
same, but H_c = ®,H" ; and each H"  is spanned by {pa, vk, (w(2))} where {@a,} runs
over a basis of H*(X,,C) and k runs from 0 to co.

1.11 D, module structure

It is known that the tangent spaces to the cone £# are preserved by the action of certain
differential operators. A corresponding statement in quantum K-theory was missing in the
absence of the divisor equation. While it was noticed in examples (see [GL]) that J(0)
satisfies some finite difference equations, the reasons for that were unknown. The character-
isation of Theorem 1.6.2 allows one to deduce the tangent spaces to L carry a structure of
D, module, where D, is a certain algebra of differential operators.

Theorem 1.11.1. Let D, be the finite-difference operators, generated by integer powers of
P, and Q*. Define a representation f D, on K using the operators P,q%«%a. Then tangent
spaces to L are D, invariant.
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Chapter 2

Twisted Gromov-Witten invariants

2.1 Introduction

Twisted Gromov-Witten invariants have been introduced in [CG] for manifold target spaces
and extended by [TS] to the case of orbifolds. The original motivation was to express
Gromov-Witten invariants of complete intersections (the “twisted” ones) in terms of the
GW invariants of the ambient space (the untwisted ones). In addition they were used in [C]
to express Gromov-Witten invariants with values in cobordism in terms of cohomological
Gromov-Witten invariants.

The results of this chapter incorporate and generalise all of the above: we consider three
types of twisting classes. These are multiplicative cohomological classes of bundles of the
form 7, F, where 7 is the universal family of the moduli space of stable maps to an orbifold X'.
The main tool in the computations is the Grothendieck-Riemann-Roch theorem for stacks of
[TN], applied to the morphism 7: this gives differential equations satisfied by the generating
functions of the twisted GW invariants. To the Gromov-Witten potential of an orbifold X
one can associate an overruled Lagrangian cone in a symplectic space H - as explained in
Section 1.5. Solving the differential equations for each type of twisting has an interpretation
in terms of the geometry of the cone: change its position by a symplectic transformation,
translation of the origin and a change of polarisation of .

In [TL], Teleman studies a group action on 2 dimensional quantum field theories. Our
results match his, if the field theories come from Gromov-Witten theory. Our main moti-
vation comes from studying the quantum K-theory of a manifold X, detailed in the next
chapter. However it is very likely that they have other applications - for instance extending
the work of [C] on quantum extraordinary cohomology to orbifold target spaces.

The material of the chapter is structured as follows. Sections 2.2-2.4 describe the main
objects of study and introduce notation used throughout the rest of the chapter: in Section
2.2 we introduce the inertia orbifold /X and define the orbifold product, in Section 2.3 we
define the moduli spaces X, , 4, the symplectic space H and the Gromov-Witten potential
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and in Section 2.4 we define the twisted Gromov-Witten invariants and the twisted potential.
In Section 2.5 we state Toén’s Grothendieck-Riemann Roch theorem for stacks. Section 2.6
contains the technical results which are the core of the computations - mainly how the
twisting cohomological classes pullback on the universal family, the locus of nodes and the
divisors of marked points. We are now ready to prove the Theorems 1.10.1, 1.10.2 and 1.10.3
- which we do in Section 2.7. Finally, in Section 2.8 we extract the corollaries which we’ll
use in the next chapter on quantum K-theory.

2.2 Orbifold Cohomology

Let X be a compact Kahler orbifold over C.

Definition 2.2.1. We define the inertia orbifold /X" by specifying local charts. Around any
point p € X there is a local chart (U, G,) such that locally X' is represented as the quotient
of U, by G,. Consider the set of conjugacy classes (1) = (h}), (h2), ..., (hp") in G}. Then:

1X:={(p,(h) | i=1,2,...,np}.

Pick an element h; in each conjugacy class. Then a local chart on IX is given by:
"' N(hz) .
H Up Y /ZGp(h;))’
i=1

where Zg, (h!) is the centralizer of h! in G,.

Remark 2.2.2. For the reader more confortable with the language of stacks, /X can be
defined as the fiber product

X =X Xxxx X,
where both maps are the diagonal A : X - & x X.
For foundational material on stacks, see [F] and [LM].

Remark 2.2.3. There are natural maps: ¢ : IX — X which sends the pair (z,¢) to = and
v IX — IX which maps (z,g) to (z,¢97"). We denote by X,r := ¢(X),).

In general IX is disconnected, even if X' is connected. We write:
1x =] x.
“w

There is a distinguished stratum Ay of IX which is isomorphic to X.
For a bundle £ € K°(X), we denote by (¢*F);,, the bundle whose restriction on each X, is
the invariant part under the action of the (conjugacy class of the) symmetry associated to

X

e
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Example 2.2.4. If X' is a global quotient of the form Y/G then the strata of IX are in
bijection with the conjugacy classes in G. More precisely to each conjugacy class (g) we
associate the stratum A{y := Y9/Cq(g). If g = e, then &, = X, =Y/G.

Definition([CR2]) 2.2.5. The cohomology H*(IX,C) is called the orbifold cohomology.
The orbifold Poincaré pairing on I X" is defined for a € H*(X),,C) , b € H*(X,1,C) as:

(a,b)orp := / aJLh.
X,

14

We extend this by linearity to H*(1X,C). The orbifold product is different from the usual
cup product on H*(IX,C):

Definition 2.2.6. For a,b € H*(IX,C) their orbifold product a -, b is the class whose
pairing with any ¢ € H*(IX,C) is given by

((l ‘orb ba C) = <a7 ba C>0,3,07

where the right hand side is defined in Section 2.3.

2.3 Moduli of orbifold stable maps

In this section we recall the definition of the moduli spaces of orbifold stable maps of [CR1]
and [AGV2]. The idea to extend the definition of a stable map to an orbifold target space is
quite natural. One then notices that in order to obtain compact moduli spaces parametrizing
these objects one has to allow orbifold structure on the domain curve at the nodes and marked
points (see e.g. [A]).

Definition 2.3.1. A nodal n-pointed orbicurve is a nodal marked curve (C,x1,...,x,), such
that

e ( has trivial orbifold structure on the complement of the marked points and nodes.

e Locally near a marked point, C is isomorphic to the quotient [Spec C[z]/Z,], for some
r, and the generator of Z, acts by z +— (z, (" = 1.

e Locally near a node, C is isomorphic to [Spec (C[z,w]/(zw)) /Z,], and the generator
of Z, acts by z — Cz, w — (tw. We call this action balanced at the node.

We now define twisted stable maps:

Definition 2.3.2. An n-pointed, genus g, degree d orbifold stable map is a representable
morphism f : C — X , whose domain is an n-pointed, genus g orbicurve C such that the
induced morphism of the coarse moduli spaces C'— X is a stable map of degree d.
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Remark 2.3.3. The word “representable” in the Definition 2.3.2 means that for every point
x € C the associated morphism G, — G, is injective. So the orbifold structure on C does
not include “unnecessary” automorphisms.

We denote the moduli space parametrizing n-pointed, genus ¢, degree d orbifold stable
maps by X, 4. It is proved in [AV] that X, 4 is a proper Deligne-Mumford stack. Just like
the case of stable maps to manifolds, there are evaluation maps at the marked points, but
these land naturally in the rigidified inertia orbifold of X, which we denote IX. To explain
this, notice that a marking (say z) is not a point but a stack BZ,. Consider a family of
stable maps (U, x1, ... xz,, f) to X parametrized by a base scheme S. Let C be the fiber over
s € S. Then part of the data of f : C — X is an injective morphism Z, = G,, — Gy@u,)
(slightly abusively we denote by f(x;) the image of the geometric point x; € C). Call g the
image of the fixed generator of 1 € Z,. Going around a nontrivial loop based at s induces
an automorphism Z, — Z,, which is not necessarily identity. So g is defined only up to
composition Z, — Z, — G(,). For any such composition the image of 1 € Z, lands in the
cyclic subgroup generated by g. To get a well-defined evaluation map, we need to factor by
this subgroup.

IX is a version of IX defined by changing the local stabilizer groups in Definition 2.2.1.
Keeping notation from Definition 2.2.1, local charts on IX are :

L1086, () 053]

Example 2.3.4. If X is a global quotient Y/G then the strata of IX are X, :=Y9/Cq(g),

where Cg(g) = Ca(g)/{g) for each conjugacy class (g) € G.

See [AGV1] and [AGV?2] for the definition of IX in the category of stacks. In general
there is no map IX — X. The involution ¢ descends to an involution of X, which we also
denote by ¢.

The connected components of X, ,, 4 are Xy a(u1,....un), Where:

Xy o) = Xgmna N (€01) (X ) NN (@0,) (X )

Since we work with cohomology with complex coefficients we consider the cohomological
pullbacks by the maps ev; having domain H*(/X,C). IX and IX have the same coarse
spaces (i.e. the same geometric points, only the stabilizer groups differ), which implies that
both spaces have the same cohomolgy rings with rational coefficients. In fact there is a map
I1: IX — IX, which maps a point (z, (¢)) to (z,(g)). If r; is the order of the automorphism
group of x;, then define:

ev; : H(IX,C) = H*(X,,.4,C),
a— 1y (ev;)*(I,a).
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Remark 2.3.5. The moduli spaces X, 4, as well as the evaluation maps, differ from those
considered in [T'S]. However the Gromov-Witten invariants agree, since integration in [T'S]
is done over a weighted virtual fundamental class.

Notice that if a marked point z; has trivial orbifold structure, ev; lands in the distin-
guished component &y of IX. The universal family can be therefore identified with the
diagram:

EUn+1

ugyn7d = U(l”‘l7"'7#”)ngn+17d7(“17"'7un10) X

|

Xgnd
In the universal family U, 4 lies the divisor of the i-th marked point D;: its points
parametrize maps whose domain has a distinguished node separating two orbicurves Cy and

C,. C; is isomorphic to CP! and carries only three special points: the node, the i-th marked
point and the (n + 1)-st marked point and is mapped with degree 0 to X'. We write:

D; =D; N Xy 1,4,

M yeeesin) B1seespin,0) -

Let Z be the locus of nodes in the universal family. It has codimension two in U, 4.

Denote by p : Z — Z the double cover over Z given by a choice of +, — at the node. For
the inclusion of a stratum:

Xy 41,40 X1x X030 X1 Xgynot1,d; = 2 = Xgpt1d
we will denote by by p; (i = 1,2) the projections:
Pi © Xgim41,dy Xrx X0,3,0 X1 Xgy not1,ds = Xginit1,d;-

We denote Z7", Z"*? the loci of nonseparating nodes, respectively separating nodes and
i 57 for the inclusion maps. Moreover we will need to keep track of the orbifold structure
of the node. We denote by Z, the locus of nodes where the evaluation map at one branch
lands in ?M. We denote by ¢, the corresponding inclusions.

The moduli spaces X, , 4 have perfect obstruction theory (see [BF]). This yields virtual

fundamental classes:
[Xg,n,d] S H* (Xg,n,da Q)

We define 1;,1); to be the first Chern classes of line bundles whose fibers over each point
(C,z1,...,x,, f) are the cotangent spaces at x; to the coarse curve C, respectively to C. If
r; is the order of the automorphism group of z; then 1; = r;t);.

We denote by:

<a1Ekl7 s 7anakn>g,n,d = / H 61): (az)Efl

[Xg,n,d] =1
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Let C[[Q]] be the Novikov ring which is the formal power series completion of the semi-
group ring of degrees of holomorphic curves in X. For more on Novikov rings see [MS]. We
introduce one more Novikov variable \. We define the ground ring A := CJ[[@, \]] and:

M= H*(1X,N)((2)).

We equip H with the @, A-adic topology. This means that when we say “elements of H have
property P” we mean “elements of H have property P modulo any power in the variables
Q,\’. H is a slight modification of the Fock space (from e.g. [C]). We do this because we
need # to include expressions of the form e*/# and €.

Convention 2.3.6. Throughout this thesis we will refer to the “usual” Novikov variables
@ by just writing “Novikov variables” without explicit mention of .

Let:
t(z) =to+tiz+--- € H (X, C)[[2]][\

where the coefficient of 1 - 2° in t(z) is proportional to A. Then the genus g, respectively
total potential are defined to be:

Qd
Fot)=>_ b By
d,n ’

D(t) = exp (Z ﬁg_l]:g(t)> .

920

We endow H with the symplectic form:

Qt.8)i= §(E(:),8(~2),p
z=0
Consider the following polarisation of H:
H, = H(IX,0)[[2]] and H_:=z'H*(IX,C)z"".

This identifies H with T"H,. We introduce Darboux coordinates {pg‘,qf } on ‘H and we
write:

P(z) =Y piva(—2) """ €M

a(z) =Y qyppz’ € Hy.
b’ﬁ
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For t(z) € Hy we call the translation q(z) := t(z) — 1z the dilaton shift. We regard the
total descendant potential as a formal function on H, taking values in C[[@, \, i, h™]].
The graph of the differential of F° defines a formal germ of a Lagrangian submanifold of

H:
L7 = {(p,q),p = dF'} € H.

Theorem 2.3.7. ([G1])LH is (the formal germ of) a Lagrangian cone with vertex at the
shifted origin —1z such that each tangent space T is tangent to LY exactly along 2T .

The class of cones satisfying properties of Theorem 2.3.7 is preserved under the action
of symplectic transformations on H which commute with multiplication by z. We call these
symplectomorphisms loop group elements. They are matrix valued Laurent series in z:

S(z) = Z S,
icZ
where S; € End (H*(IX) ® A). Being a symplectomorphism amounts to:
S(2)S*(—z) =1,

where [ is the identity matrix and S* is the adjoint transpose of S. Differentiating the
relation above at the identity, we see that infinitesimal loop group elements R satisfy:

R(z) + R*(—2) = 0.

2.4 Twisted Gromov-Witten invariants

In this section we introduce more general Gromov-Witten twisted potentials than the ones
of [TS].

For a bundle £ we will denote by A(E), B(E), C(E) general multiplicative classes of E.
These are of the form:

exp (Z skchk(E)> :

k>0

We then define the classes Ay, 4, Bgnd,Cona € H*(Xyna) as products of different multi-
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plicative classes of bundles:

Agna = H Ao (i (ev*Ey)),

a=1

Bona = || Bs (m(fs(Lty) — f5(1)))
p=1

Cona = H HC(‘; (W*(GU:LHFM ® iu*OZu) :
p 0=1

Here f; are polynomials with coefficients in K°(X), the bundles E,, Fj, are elements of
K°(X). If we denote by:

Ognd = Agnd Bynd Cynd

these “twisted” Gromov-Witten invariants are:

n

<a1Ek1, . ,anakn; O)gnd = / H evf(ai)afi - Ogn.d-

[Xg,n,d] i=1

We now define the twisted potential Dy p ¢ :

Forselt) =S L(t(0), () 0)gna

Dagpe = 61519(2 W po)-

9

We view Dy g ¢ as a formal function on Hf’B’C.
The symplectic vector space (HAPC, Q4 5c) is defined as HABC = H, but with a different
symplectic form :

Qupe(f.g) = f:0<f<z>,g<—z>>Adz

where (, )4 is the twisted pairing given for a,b € H*(IX) by:
(@; b)A = (a, b, 1; 9)0,3,0-

Remark 2.4.1. We briefly discuss the case (g,n,d) = (0,3,0). According to [AGV1] in this
case the evaluation maps lift to ev; : Xy 30 — IX. The spaces Xj30,(4,,u0,0) ar€ empty unless
po = pd, in which case they can be identified with X, , with the evaluation maps being
evy =id : X, — Xy, evy =0 X, — X1 and evs is the inclusion of X, in X.
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Remark 2.4.2. Notice that on Xp 3, there are no twistings of type B (the corresponding
push-forwards are trivial for dimensional reasons) and of type C (there are no nodal curves).
That’s why the twisted pairing only depends on the A classes.

According to the previous two remarks we can rewrite the pairing as:
(a,b) 4 := / a-U"b- H Ao (" Ea)iny) -
Ix o

There is a rescaling map:

(Hapco:Qupc) = (H,Q)
a — CL\/H Aa((q*Ea)inv)

which identifies the symplectic spaces. We denote by Dy p the potential twisted only by
classes of type A, B etc. and by:

[Xg,n,d]tw = [Xg,n,d] N @gyn,d'

2.5 Grothendieck-Riemann-Roch for stacks

The main tool for proving Theorems 1.10.1, 1.10.2 and 1.10.3 is a theorem of Grothendieck-
Riemann Roch for stacks due to B.Toén ([TN]). Before stating it we will introduce more
notation:

Definition 2.5.1. Define Tr : K°(X) — K°(IX) to be the map:

on each component (g, X),) of the inertia stack, where F; is the decomposition of the g action
and \;(g) is the eigenvalue of g on F;.

Definition 2.5.2. Define ch : K9(X) — H*(IX) to be the map ch o T'r.

Now each vector bundle £ on X restricts on each connected component (g, X)) of the
inertia stack as the direct sum Ej,, @ Erop-

Definition 2.5.3. Define Td(E) : K°(X) — H*(IX) to be the class:

—~ Td(Einy)
Td :=
ch(Tr o A_1(Emov)Y)

where A_; is the operation in K-theory defined as Ay (V) := 3 - ,(=1)?A®V. We can now
state:
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Theorem 2.5.4. Let f : X — Y be a morphism of smooth Deligne Mumford stacks. This
induces a morphism If : IX — IY. Then under some nice technical assumptions we have:

h(f.E) = If. (CNh(E)fd(Tf)) . (2.1)
Restricting to the identity component ) of 1Y we get:
ch(f.E) = If, (&I(E)TE(TJC)W_W) . (2.2)

The universal curve 7 is not necessarily a local complete intersection, so following [TS| we
proceed as follows. The construction in [AGOT] provides a family of orbicurves

TU—-M (2.3)
and an embedding X, , ; — M satisfying the following properties:
e The family &/ — M pulls back to the universal family over X, ,, 4.
e A vector bundle of the form ev} ,(E) extends to a vector bundle over .
e The Kodaira-Spencer map T,, M — Ezt'(Oy,, Oy, ) is surjective for all m € M.

e The locus Z C U of the nodes of 7 is smooth and 7(Z) is a divisor with normal
crossings.

e The pull-back of the normal bundle Nz, to the double cover Z given by choice of
marked points at the node is isomorphic to the direct sum of the cotangent line bundles
at the two marked points.

So technically we apply Grothendieck-Riemann Roch to 7 and then cap with the virtual
fundamental classes [}, 4]". Therefore for the rest of the chapter we assume the universal
family 7 satisfies the above properties.

In our situation there are three strata on the universal curve which get mapped to

e The locus of marked points Dj ;.. 1)

e The nodal loci Z,, where it # 0, i.e. the node is an orbifold point.
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2.6 Prerequisites

We need to know how the classes ©,, 4 pullback on the universal orbicurve, on the divisor
of marked points and on the locus of nodes. We state below the main result of this section,
which we’ll use in the proofs of the theorems:

Proposition 2.6.1. The following equalities hold:

D HB( (Lak) — f5(1 >)+

n+1_1

Z#]

"’Z on+1a)™ ch] —€U, 41 Féu])®UJ*OD) L)+

+ [Xgnt1,a)™ (HHC —ev) 1 (F5u) ® 1,.0z,) — 1). (2.4)

pno 6=1
in

2. U;[ngmd]tw = [Xg,n,d]t“’ . HC;” (6v;(q*F5M)M ® (1 - Lj)) ) (2.5)
=1

3. (moiop) [ Xynd™ =

_ pl([Xghm-i-l‘,dl]tw) 'pS([ng,nz-i-l,dz]tw) (2 6)
(6?1 x vt ) A T35, CF (¢ Fsp)u) @ (Ly Lo — 1))
4 (mod op) [Xynd™ =
X n tw
— l,[ g ; +2.d] . (2.7)
(evi x ev? )AL T C5 (¢ Fop)p) ® (Ly Lo — 1))

Proof: all the equalities follow from the corresponding statements about the classes
A, B, C separatedly, which we’ll prove below. Formula (2.4) follows from (2.9), (2.13), (2.38)
combined with some more cancelation: namely the terms in (2.38) supported on D; and Z
are killed by the correction factor in (2.13) which is of the form 1+ 1,11 - .... The untwisted
virtual fundamental classes satisfy 7 [ X} ., 4] = [Xgn+1.d)-

(2.6) and (2.7) follow from the corresponding Lemmata 2.6.2, 2.6.3 and 2.6.7 for each of the
classes Ay .4, Bgna and C,,, 4 combined with the splitting axiom in orbifold Gromov-Witten
theory for the untwisted fundamental classes [X},, 4], which we briefly review below. Let
zmgwn be the stack of genus g twisted curves with n marked points. There is a natural map:

gl : ®"(g1;:n1g2, n2) — M,

induced by gluing two family of twisted curves into a reducible curve with a distinguished
node. Here D™ (gy;n1]g2, n2) is defined as in Section 5.1 of [AGV2]. This induces a cartesian
diagram:
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@Z%(X) Em— Xgnd

l !

1
DM (g1;n1g2,n2) —— me.

There is a natural map:

. tw
g: U X91,n1+1,d1 Xx X927n2+1,d2 - gg,n<X>’

di1+do=d
Then the diagram:
X917n1+1,d1 Xr1x ng,n2+1,d2 cCZ — Ix
| y
Xy s X Xpparrar 20 TX X IX
gives:
Z A!([Xgl,m-i-l#h] X [X927n2+1,d2]) = g*(gll([xgﬁhd]))' (28)
di+do=d

For details and proofs of the statements we refer the reader to the paper of [AGV2] (Prop.
5.3.1.) . The only modification we have made is - we consider the class of the diagonal with
respect to the twisted pairing on IX = Xp 30 (41,0 Lhis cancels the factor evj(Agsp) in
(2.6) and (2.7).

Roughly speaking relation (2.8) says that the restriction of the virtual fundamental class
of X, 4 to Z coincides with the push forward of the product of virtual fundamental classes
under the gluing morphisms. Hence integration on Z factors "nicely” as products of integrals
on the two separate moduli spaces.

The rest of the section is devoted to proving pullback results about each type of twisting
class separately.

Lemma 2.6.1. Consider the following diagram:

1
ngn+o+.’d’(ﬂl seesn 70’0) ngn"".’d’(ﬁul yeesln 70)

= =
1
ngn"’_ovdv(mulv"-vunvo) — ngnzd’ (/'L:L’ T )MTL)

where my forgets the (n+1)-st marked point (which I denoted o) and o forgets the (n+2)-nd
marked point (denoted ) and let oo € K°( Xy piod (ur,pn,0))- Then mma = mmior.
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Proof: for symplicity of notation we suppress the labeling (u1,. .., u,) in the proof.
Consider the fiber product:

‘F = Xg7”+07d X‘Xg,n,d ngn+.7d

and denote by pi,ps the projections from F to the factors and by ¢ : Xy ,404ea — F the
morphism induced by 7, . ¢ is a birational map: it has positive dimensional fibers along
the locus where the two extra marked points hit another marked point or a node. We’ll
prove that

@*(OXg,n+o+',d> = Of

By definition of K-theoretic push-forward

_ po 1
C’O*O-Xg,n+o+.,d =R QO*OXg,n+o+o,d — R SO*OXQ,HJrOJr-,d'

It is easy to see that ¢.(Oy, . ,,..,) = OF as quasicoherent sheaves (this is true for every

proper birational map with normal target). We only have to prove that R! = 0, which we
do by looking at the stalks:

(R1¢*0X97n+0+.7d)m - Hl(gp_l(x)7 O‘ngn+o+o,d|§071(z)>‘

If the fiber over z is a point, there’s nothing to prove. If z is in the blowup locus the fiber
is a (possibly weighted ) P'. A calculation in [AGV2] shows that :

X(C7 OC) =1- g,

where g is the arithmetic genus of the coarse curve C. Therefore H' (¢! (z),0) =0 .
We have py.pya = m3m. because the diagram:

p1
F X97"+'ydv(ﬂly~-~,ﬂn70)
pzl ml
X SN
g,n+0,d,(11,--,tn,0) G51,d, (111 5+, 0n)
is a fiber square. Hence:
* k %k * * *
Ty = DLy (9 P50) = prprap.(O) = prpra = THT.a.

We need to know how the classes Ay, 4, Bgna;Cgna behave under pullback by the mor-
phisms 7,0 and w o7 o p.
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Proposition 2.6.2. The following identities hold:

a. W*A!Jﬂ%d = Ag7n+1»d' (2'9>
b. 07 Agna = Agna- (2.10)
-red * plAgl ni+1,d; ° pQAgz na+1, d2
c. (moi"op)Ajni= 2.11
(roi™op) A, L 2.1)
. -/4 —1,n+2.d
d. (moi" op) Ay g = 2% 2.12
(7087 0 )" Ay = S (212)

These are proved in [TS]. Denote by E, 4 := m.(ev},F). Then he shows that:

a. ﬂ-*Eg7n7d = E97n+1,d7
b. (77 o ired © p>*Eg,n7d = p? (E917n1+1,d1) + pZ(Egz,nz-&-Ltb) - ev*A(q*Emv)a
c. (moi" op)' Eynd=Ej1ni24— €VA(¢ Einy).
The identities then follow by multiplicativity of the classes A,. Since &30, ,i00) = X,

the class Ag 3 is an element of H*(IX, Q). We can pull it back by the diagonal evaluation
morphism eva at the node.

Proposition 2.6.3. The following hold:

a. 7 Byni=Bynird- HB ( ”*1) foll )) (2.13)

n+1 —1
b. U;Bgnd = Bgmd. (214)
C. (W o Zred) Bg,n,d = pTthm-i-l,dl ’ p;Bgz,nrH,dQ' (215)
(71' @) ZWT> Bg,n,d = Bgfl,nJrQ,d- (216)

Proof: The first identity is a consequence of Lemma 2.6.1 . More precisely we apply the
lemma to the class a = ev}, ;(F)(L,+1 — 1)F*1. This gives:

T (eanrl(E) (Lo — 1)k+1) = 14T (€UZ+1 (E)(Ln+1 — 1>k+1) =
= 1 (et 1 (B) (L1 = DM = (o). [evy 1 (B) (Lnga = 1)*]) =
= 1o (01 (B)(Lnes = 1)P41) — ety (B) (L — 1)

The last equality follows because m o 0, = Id and the second equality uses the comparison
identity for cotangent line bundles L;:

T (Li — )R = (L — )R — oy, [(Li — 1]
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But both morphisms 71,75 can be identified with the universal orbicurve 7w. Hence we
deduce:

7 (evn 1 (B) Ly — D) = 7 (et 15(B) (Lgz — 1)) =
—evy 1 (B)(Lnga — 1)k, (2.17)

or more generally if we expand

Fo(Lpty) = f5(1) = ap(Lng — 1,
k>0

then:

fo(Luzr) — f5(1)
Lt —1

1 (fa(Loty) — (1)) = ma(fs(Ly1s) — fi(1)) — (2.18)

Then (2.13) follows because Bs are multiplicative classes:

w By (m(FaLicks) = f5(1))) = Bs (°m. (fo(Lk)) = £3(1))) =
=8 (mUaLaty) — o)) - 2B 2R

Bg (7T*<f,8(L,_LJlr2) — fﬂ(l))) . Bﬁ <_fB(L£::—3 : {5(1)) .

Example 2.6.4. In the case fz = ev’, (Es) ® L, 1, (which is the only one we’ll need) we

have:
f ( n+l) fﬂ( ) -1
= —F3L
Lt —1 BHn+1
and relation (2.13) reads:
iB
7 Byna = Bynsra- | [ Bs(Eps ® Ly 1y)- (2.19)

g=1
Relation (2.15) follows from the identity:
(7 0 irea) [m(f (Lpsa) — f(1))] =
=pilme(f (Lo y2) = FO) + pa[ma(f (Lnyi0) — (1)),

which we prove below. By linearity is enough to prove the result for f = (L,,; — 1)*** for
k > 0. Relation (2.17) gives:

(L — DFY) = 1 (Lpgo — D — (Lpyy — 1" (2.20)
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Assume for now that £ > 1. When we apply 7, to this relation the second summand in the
RHS of (2.20) vanishes because L, is trivial on Z. Therefore

i:edﬂ-*ﬂ-*([m—i—l - 1)k+1 = (l Op>*7T*(Ln+2 - 1>k+1'

Let Xy, nit1,d0 X120 X0,3.0 X 16 Xgymat1,d, De a stratum of Z. If we denote by 7 : u;m — Ugnd
the universal curve then we have a fiber diagram:

i !
Z1UZU Z5 Em— Z/{gqu
i
Xgrm+1d X1x X030 X1x Xgy myv1,a; — Ugna.
Here Z, and Z3 are the universal curves over the factors X, ,, 114, and Xy, ;,41.4,. S0 using

i:ed’]r*(Ln-‘r? - 1)k+1 = W*i* (Ln+2 - 1)k+17 (221)

red

we see that the contribution of the strata Z; and Z; above is:

pilm(f (Lo ye) = FO)] + p3[m(f (Lo, i) = f(1)]. (2.22)

So if we show that the contribution from Z5 is 0 we are done. Notice that Z, is the universal
curve over the factor Xy 30, hence it is a fiberproduct Xy, », 41,4, X1 X040 X8 Xgomoti,ds -
The fibers of the map Z, — Z are (weighted) P*. However the class L is a cotangent line at
a point with trivial orbifold structure, so we can use Y.P.Lee’s formula in [L1] which in this
particular case reads:

X(Moa, L) =k + 1. (2.23)

Hence the Euler characteristics of (L, o — 1)51 is:

X (Mo, (Lpsz — DFF) = (i + 1) (=) (k + 1) —

1

=0
k+1 k+1
(k1 Lk
=S (M s n e (F ) —oro—o
=0 =1

This almost proves the statement. We are left with the case k = 0, which is slightly different:
the sum above equals 1, but this is cancelled by the —1 in the second term of (2.20). Relation
(2.15) follows then from the multiplicativity of the classes Bz. A similar computation shows
relations (2.14) and (2.16).
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Lemma 2.6.5. Let ' € K°(X). Then:

a. T (ev,  (F) ® Oz,) = M (evy (F) ® Oz,)—

D e (F)®05.0p, —iys(evy (F) ® Ogz,). (2.24)
Jobbj =t
b. (7m0 d)" (Muips(evpy (F) ® Oz,) = pi(Taips(evy 1 (F) @ Oz,))+
Py (Taips (V)1 (F) @ Oz,)) + (v F @ (1 = LyL)). (2.25)

Remark 2.6.2. Before delving in the technicalities of the proof, we try a heuristic explana-
tion of why the formulae, which look rather ugly, “should” be true:

e Assume for now that F'is the trivial bundle C. The nodal locus Z “separates nodes”
in the following sense: above a point of X, ,, 4 representing a nodal curve with £ nodes
lie exactly k points of Z. This is very similar with the way the normalisation of a nodal
curve C' — C separates the nodes. But the structure sheaves of C' and C differ (in
K-theory) by skyscraper sheaves at the preimages of nodes. That’s pretty much what
the first formula expresses: the pull-back of the structure sheaf of the codimension one
stratum of nodal curves in X, , 4 equals the structure sheaf of the nodal locus in the
universal family, minus a copy of the structure sheaf of Z (which has codimension two
in the universal family) itself. The terms supported on the divisors D; are substracted
because they are nodes in the universal family, but they lie over the whole space X, , 4.
We'll see that the presence of the class ev},;(F') doesn’t complicate things too much.

e For the second formula, think of m,i,.« as a class supported on a codimension one
subvariety. We pull it back along the map (7i) , which is like restricting to another
codimension one subvariety. If these subvariesties intersect along a codimension two
cycle (represented by curves with two nodes), then they contribute p} (7. ,.«) to (2.25).
If they are the same subvariety, then « gets multiplied with the Euler class of the normal
bundle of it in the ambient space, which is 1 — L, L_.

Proof of Lemma 2.6.5: Denote by Z,, Z,, respectively Z,, the nodal loci living inside
the corresponding moduli spaces (and by Z, , etc. the ones with nodes of specific orbifold
type) in the following diagram:

1 2z 1
Ty (Zop) — Ulir,sin) Xgntoted(inmin00) — U(ir,omin) Xgnted,(it,.min,0)

2 l ™2 l T l
iy T
Zop  — Ui Xgntod(in,ind) — Xy nd-

)

Remember that Z, , is defined as the total range of the gluing map:

Xg-1n+2.d Xa,xx,; X030 H Xgrmt1dr XX, X030 Xx,xx 1 Xganat1,dy = Lo Xgnpod:
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Z19 Zo3

Figure 2.1: Strata of 7, '(2,.,,).

We will compute 75 (71,8, (ev)(F) ® Oz, ,)).
The square on the left is a fiber diagram, hence 7,75 = 757,. For the one on the right we
have proved that m5m, = m,75. Therefore:

T (Mo (041 (F) © O3,.,)) = masiyumy(evt(F) © Oz,.,). (2.26)
But:
(e @ Ogz,,) = eviF @ O o1z, .-
The space my 1(ZW) = 2,1 U Z,5U Z,3 is a singular space, where each codimension two

stratum is the universal curve over one factor of Z, , and they intersect along two codimension
three strata, call them Z5 and Zs3:

219 = Xyt X Aoz X X030 X Xy npt1.ds

where the two rational components carry the points e, o and two nodes. Figure 2.1 above
schematically represents each of these five strata. We can write the structure sheaf of
Ty (Zo,,) as:

Owgl(Zo,u) - 020,1 + 020,3 + 030,2 - 0212 - 0223‘
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We tensor this with the class ev I, keeping in mind that on the strata Z, 5, Z12, Z23 v, = ev,:
e, FO, 15 = ersF @[O0z, + O0z,,] +ev)F © [Oz,, — Oz, — Oz,]. (2.27)
We plug (2.27) in (2.26) and we get:

T (M eV (F) @ Oz, ) = Tixips [eU;kF ((’)zo’l + (930,3) +evi I ((930,2 — Oz, — (’)223)} )
(2.28)

We now notice that the union of Z,; and Z,3 is almost Z,., but not quite. There are
strata:

Xgnd Xx, X030 Xx, X030

which are in Z,, ,,, but they are missing from Z, ; UZ, 3 because the map 7501, contracts one
rational tail. These are mapped by 7 o ¢, isomorphically to divisors D; € X, 14 4. There is
one such stratum for each j such that p1; = . Hence we can write:

Tiaipe 02 F Oz, |+ eviFOz, | == Ty (evi(F) ® Oz,) — Z evi(F) ® 0;.0p,. (2.29)
Js Hi=

The codimension three strata 2,5 and Z,3 are mapped by ¢, isomorphically to Z, ,. As

for Z, 5, this is a P! fibration over Z, ,. When we push forward, we integrate the structure

sheaf of (weighted) P!. This equals 1, as already explained. At the end of the day we see
that the last three terms in (2.28) contribute:

7T1*Z'M* [eva (02072 — 0312 — 0223)] = —€UfF & Z.u*@g.’“. (230)

Adding up (2.29) with (2.30) and identifying m = m = 7 and ev, = ev,41 proves the first
equality in the lemma.
For the second equality, we first prove:

Lemma 2.6.6. Let j : Z < Uy, 4 be the codimension two nodal locus. Then:

J s (ev;HF ® Ozu) = DIl pun (ev;‘LHF ® Oz,,) +
+ Pimaiy (evh  F @ Oz,) + (2 — Ly — L_)evy, . (F). (2.31)

Proof of the Lemma 2.6.6: let U; , ; be the universal curve over U,, 4. The universal
curve over Z is a union of three types of strata, depending on which component the extra
marked point on U , ; - which we denote e - lies on (see also Figure 2.1):

Z1 = Xy m+1+eds X1x X030 X1x Xgynot1,dys
ZQ = Xgl,n1+1,d1 Xx X0,3+0,0 Xx X927n2+1,d27

Zs = Xy mit1.di X1x X030 X110 Xgonot1+e.ds-
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The diagram below is a fiber square:
ZUZy U Zg L) U;’nyd
Z — s Uy

Hence : j*m. i = mj*1,,. To compute j%¢,,.«c we form the following fiber diagram:

Z sz,

| |
ZIUZUZ —— U .,
The space Z is simply the intersection of Z; U Z, U Z5 with Zo,. Where the intersection
is transversal one can simply write j*i . = ¢,.7%a. On components where the intersection
is not transversal, there is some excess bundle N and j*i,.a = i,.e(N)j*«. The strata Z;
and Zj intersect the nodal locus Z, , in U, , transversely along codimension four strata
which can be seen as the nodal locus in X, ,,,+14e4, and Xy, n,+11e.4, respectively. Hence
the contribution to (2.31) is:
Pty (evh  F @ Oz,) + pymaiys (evi  F @ Oz,) .

On the other hand Z; intersects Z, ,, along two codimension three strata of the form:

Z1 = Xy mt1,dr X1 Xo3,0 X100 X03,0 X1 Xgymot1,ds-

Each gives a one dimensional excess normal bundle with Euler classes 1 — L, and 1 — L_
respectively. They project isomorphically to Z downstairs. Hence they contribute:

(2= Ly — L_)ev,.,, (F).

Adding up, we get (2.31).

We now prove formula 2.25 in Lemma 2.6.5. It falls out easily by combining (2.24) with
Lemma 2.6.6. More precisely we take i* of formula (2.24): the first term is computed in
Lemma 2.6.6, the part supported on D; vanishes and:

i11uxOz, =e(N) =(1—-L_)(1—Ly) (2.32)
where N is the normal bundle of Z,, in the ambient space. When we add this with (2.31)
we get:
(7 0 8)" (i €V (F) ® Oz,) = pi(Tuipe (€051 (F) @ Oz,))+
i (i et 1 (F) © O2,)) + (et F @ (1 - Ly L) (2.33)

as stated.
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Proposition 2.6.7. The following hold:

a. T Cond=Cyntid- H H C#J —€Un 4y FM;) ® 0.Op, )
7j=146=1
11 H Ct (—evi ) (Fsu) © (1,03, . (2.34)
po o=1
=1

-red

c. p (Zu )*W*Cg,n,d (P1C grnitldy C go,na-+1, dz)
(ev] x ev ) Ay (H CE((q" Fi)) ® (1 - L+L_>>>> - (2.36)
5=1
d. p*(iZT)*ﬂ* nd =
= O g (o0 X v, (H CE((q" Fi)) ® (1 — L+L_>>) S (237)
=1

Proof: the equalities (2.34) and (2.36) are immediate consequences of (2.24) and (2.25)
and of the multiplicativity of the classes C,,, 4. As for (2.35) we can view it as a particu-
lar case of (2.36) in the following way: the divisor D; can be identified with the stratum
Xg,n,d (1, tin) RQrx Xogo Rrx ngg in Xg,nJrl,d,(,m .... 167,0,0) + On that stratum L+ = LZ and
L_ =1 - hence the formula.

We will use (2.34) in a different form, using the same trick as for the Todd class of 2Y
to transform the product into a sum:

n ic
7T*C97n’d = Cg,n-f—l,d : H H (1 + ng (—€U;+1 (Fguj) &® Uj*ODj)) - 1)

j=106=1
ic,
H 1+ HC —evl 1 (F3) ®1,.0z,) —1 | =
I
ZCMJ

gn+1d+ chn+1d H Cﬂ evnH Fgw) ®O'J*OD )) — 1)+

z(;#

+ZCg,n+1,d- HC —ev) 1 (Fs,) ®1,.0z,) — 1| . (2.38)
17

This happens because the classes C§ (..)—1 are supported on D; and Z and D;-D; = D;-Z,, = 0
ifv#£75.
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We conclude the section by doing a short Grothendieck-Riemann-Roch computation
which will turn out useful in the next section:

Lemma 2.6.8. Let F' € K°(X). Then
ch (Teiys(evs  F @ Oz,)) = iy (ch(ev)  F) - Td'(—Ly @ L_)). (2.39)

Proof: recall that r(u) is the order of the distinguished node on Z,. We’ll simply write
r throughout the proof.

We apply Toen’s GRR to the map f = wo¢. The map 7 is given in local coordinates
near 2, by:

(z,2,9) /Ly X Ly > (2,29) ]2y

where z is a vector coordinate along Z, and Z,, is given by x = y = 0. The generator of Z, xZ,
acts on the (z,y) plane as follows: (z,y) — ((%z, (") and necessarily by multiplication by
¢ on the base. So in this local description I f maps 7 copies of the point (z,0,0) to (z,0)
on the base. Each copy has weight 1/r from Kawasaki’s formula. The relativ tangent bundle
is —Ljrl — L~! because the coordinate on the base is € = 2y and is invariant with respect to
the Z, action. This proves the statement.

2.7 Proofs of Theorems

Proof of Theorem 1.10.1: this is an easy consequence of Tseng’s result and of the commuta-
tivity of the operators A,.

Proof of Theorem 1.10.2: Remember that B, , 4 is a product of g multiplicative character-
istic classes. We'll prove the statement using induction on ig. The case ip = 0 is trivial.
Assuming the statement holds for 15 — 1, we’ll prove the infinitesimal version of the propo-
sition for ip. Namely assume the twisting class B;,, to be:

B, = exp (Z vchim, (f(Ly1) — f(l)))) :
1>1

We compute:

8IDA,B,C D_1 o
avl A,B,C

thgfl
:; n!

<H t(%» - chym, (f(L;Jlrl) - f(l)) ) @g,n,d> . (2.40)
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To compute chy, (f(L, ;) — f(1)) above we apply Toen’s GRR to the morphism 7 to
get:

ch (m(f(Lit) = F)) = Ime (h(F(L4) = FO)Td (@) (2.41)

Notice that ch = ch because the last marked point is not an orbifold point. We have:

ch(f(Lyty) = F(1) = fle ) = f(1). (2.42)

There are three strata in the (relative) inertia stack that map to X, 4. But the expression
on the RHS in (2.42) above is a multiple of ¢, and 1,1 vanishes on the locus of marked
points D; and on the locus of nodes Z. Hence only the total space contributes to GRR. As
usually we write the sheaf of relative differentials:

Qﬂ. = Ln+1 — @?=1Uj*ODj,(u1 7777 wn) Z*OZ (243)
which for Todd classes gives
Td"(Q) = Td'(Ln) [ [ TdY(=0;.0p,,,, . )Td'(=i.0z) (2.44)

=1

and then using the fact that L, is trivial when restricted to D; and Z we can rewrite the
product as a sum:

Td"(Q) = Td" (Lns1) + Y (Td"(~05.0p, — 1)+ Td"(-i,0z) —1.  (2.45)

The last n + 1 summands are classes supported on D; and Z, so they are killed by the
presence of ¢ in f(e ¥n+1) — f(1). After all these cancelations we see that:

ch (m(f(Lysa) = f(1)) = me ((f(e™) = f(1)) - Td" (Lns1)) - (2.46)

(2.46) is a linear combination of kappa classes K,; = m.(ev} H(pawifl). Now we pull the
correlators back on the universal orbicurve. It is essential here that the corrections in the
Cyn.a classes are also supported on D; and Z (as we can see from (2.38) ) and the presence
of ¥, 41 kills them. Therefore (we denote by|[f]; the homogeneous part of degree [ of f):

1 9Dapc _ thg : / I I —k;
/D iy - .
A,B,C 02}; Xy i1a = < ) ¢z )

(flevmt) = £(1)) - TdY (Lng)] .y - Oginra - HBB ( (Lriy) — fo(1 )))

nJrl_1

—/ wWM%w—/ (). (2.47)
X0,3,0 X110
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The correction terms occur because the spaces X3 and Xj 1 are not universal families.
Notice that the first correction is always 0 for dimensional reasons, and the second is # 0
only for m = 0 (again for dimensional reasons), in which case equals i [y e(Tx). So the
"new” twisting by the class B;, has the same effect as the translation:

tp(z) =t(2)+2z—z2 H Bs <—f6(Liz>__1fﬁ(1)) ;

because both potentials satisfy the same differential equation. To see this differentiate the
potential Dy p(tp(2)) in v

g, = 3 O (S (e ).

d,n,g ki>0
st (LRI o [y (LERZPW)
But:
f(Lyiy) — f(1) flevm+1) — f(1)
wn-i-lChl ( L’:,—+1 1 ) - ¢n+1 |: e _ 1 :|l =
—Ynt1) _
O] e ) T L)), 0)
1+1
because
Td" (L) = Cﬁ—Jil.

Plugging (2.49) in (2.48) we see that (2.48) and (2.47) are of exactly the same form. The
potentials also satisfy the same initial condition at v = 0 by the induction hypothesis.

Proof of Theorem 1.10.3: we’ll prove that

Dapc = exp ( Z Al g0 Pt ) Dus (2.50)

a,b,a, B,

where Aj ., 5 are the coefficients of the expansion:

A (T G (@ P ® (1 - L) — 1)
Yy +1h

€ H*(X,,Q)[¢,]) ® H*(X,r,Q)[v_]. (2.51)

ZAaabﬁgoaﬂl/}Jr@@Bu”/}— S
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Here ¢ = c1(Ly), - = c1(L-) and A, : X, — X, ® X1 is the composition (Id x t) o A .
The map:

A, HY(X,Q) — H*(X,,Q) ® H*(X,1,Q)
extends naturally to a map, which we abusively also call A, :

Ayt H'(X,,Q)[2] = H' (X, Q] © H* (X0, Q)[v_],

by mapping z — ¢, ® 1 + 1 ®¢_ and the RHS of (2.51) should be understood in this way.

Accordind to [C], relation (2.50) is equivalent to the statement of 1.10.3.

We'll prove (2.50) using induction on the total number 3 i, of twisting classes Cy. If
>4, = 0 then the equality is trivial. Let now ) i, > 1. Assuming (2.50) to be true for
>4, — 1, we'll prove the infinitesimal version of the theorem for > ,. More precisely fix an
wo and let the multiplicative class C*° (we omit the lower index) be of the form :

CH(E) = exp (Z wichy(E ) ) (2.52)

As we vary the coefficients w; we obtain a family of elements in the Fock space. We prove
(2.50) by showing that both sides satisfy the same differential equations with the same initial
condition. Notice that the induction hypothesis ensures that both sides of (2.50) satisfy the
same initial condition at w = 0. Moreover D4 5/0w; = 0 so on the RHS only the coefficients
AZ?Q;W depend on w;. So if denote the RHS by G and differentiate it we get:

- aabﬁ Q140 ﬁﬂo 8
Z D000 = 5. (2.53)

To compute 9A}",, 5/0w;, we differentiate in w; relation (2.51) to get:

m
a14a004'b B

Z T‘pa uo¢+ X pg, ,/1/1_
a,a;b,8 !
_1 . i#o .
= oo B |l (0" F)u(1 = Lo L) T €4 (0 F) (L — Ly L)) | . (2.54)

But:

(0 Fyo(1 — Ly L)) = [eh(q” F)yp (1 — €407)] . (2.55)
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hence
ajélgocrb B —a —b
Zﬁ Tg"ﬁayuoﬂ@ ® 905,%770_ =
a,a;b,
—1 g
= oo B | [ehl@ Pt = ) TT G (0P = LeLo)) ) - (2:56)

7=1

Below we prove that Dy p ¢ satisfies the same second order differential equation. The
partial derivative of Dy p ¢ with respect to w; equals:

’Dil aIZ)A,B,C' _
A,B,C awl

thgfl . o i .
- Z n' <t(¢1)7 R 7t<¢n)) ;Chl<ﬂ-*(evn+1<F) ® Z#O*OZ/.L) : @g,n,d>g,n,d- (257)
d,n ’
Lemma 2.6.8 shows that:
ew++¢'— — 1
chy(m(ev) 1 (F) ® 10:O0z) = Tuiys {evfbﬂch(ﬁ’) — . (2.58)
@Zj—i— + ¢— -1

Using (2.58) and the formula :

/ (Tyiva) - b= / a-(moi)b
[Xg.n.dl (Z]

we pullback the RHS of (2.57) on Z. Moreover we use Proposition 2.6.1 to pullback the
correlators on the factors Xy, », 11,4, X Xgynot1,do-
The classes [X,,.q4]™ pullback as in formulae (2.6), (2.7) which we copy below:

(71' o Z-red Op)*[X d]tw _ pT([X917n1+1,d1]tw) 'p;([ng,nz-i-l,dz]tw) (2 59)
1o g,n, - i,u . . .
(vt x evt) Ao (T2 G4 (4" F)ue) @ (L4 Lo — 1))
) X n tw
(00l 0 p)* [yl ™ = (12 (2.60)

(vt x ev2) Auge (TT3, C° ((q F)p) @ (L4 L = 1))
As a consequence we see that if we define the coefficients Agf&l;b, 5 by:
1 —a —b
Z Asfa;b,g(ﬁa,uo%h ® g uth_ =
a,b,a,B

et _ 1} o
-1

= r(ﬂO)Auo* |:Ch(q*F),u0 ) Uy + v Hcé((q*F)uo ® (1 - L+L—) ) (2'61)
- 6=1
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we can express (2.57) as

dDasc
D—l 1=y
A,B,C ow
Qd1+d2 ho1tg2—1 1 < —a
- et Al o e, > X
Z nylns! Z 9 a,a;b,8%F ,uow—&— gr,ni+1,d g1t 1ds
91,92,n1,n2,d1,d2 a,b,o,8
—b
X <t, e )t7 (pﬂ7uéw_7 692’n2+17d2>927n2+1’d2 +
Q hs! 1
‘|‘Z | Z §< 4oy 7A#0’bﬁ<pa#01/}+7(pﬁ,u11/} @g 1n+2d> . (262)
g n.: abof g—1n+2,d
Hence the generating function D4 p ¢ satisfies the equation:
oD
—ABC = —Z Aol SR D, e (2.63)
Comparing (2.56) with (2.61) we see that
QA |
a,a;b,8 N
_awl = Al (2.64)

Therefore both sides of (2.50) satisfy the same PDE. The theorem follows.

Remark 2.7.1. According to [C] (pages 91 — 95) this change of generating function corre-
sponds to a change of polarisation, namely we regard the potential Dy p ¢ as an element of
the Fock space Ho = H4 @ H_ ¢ . The corresponding element in H = H, & H_ with the
usual polarisation is G. If {¢3*, pbﬁ Hy {@2"“,}‘95 "1 are Darboux coordinates systems on H,
respectively He then this change of polarisation is given in coordinates by:

pbﬁ1 - ﬁf M7
D Y. L (2.65)

a,b

Example 2.7.2. Let X be a manifold and let C(7,i,Oz) = Td(—m,i.Oz)". Then A, 0
don’t depend on « or 8 and we have:

—Yy —

C(l - L+L_) — Tdv<L+L_) - w
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This gives:

1 1
ZAaabﬂ¢w ¢ +¢ 6w++¢*—1‘

According to [C] the expansion of :

1 €k¢+
1 _ ebrto- Z (1 — evr)ktl

k>0

(e — 1)

gives a Darboux basis on He.

2.8 Examples and applications

Let X = X x BG, the stack theoretic quotient. Notation: [v;] the conjugacy class of ; € G,
C() is the centralizer of v. The inertia stack of X /G is the disjoint union [ [,([vi], X/C(v:)).
Therefore :

H*(I(X/G),C) = @ H* (X, C).

Denote by e, := 1 € H*(([vi],pt/C([7i]))). Then a basis of H*(([vi], X/C(7:))) is given by
©a X €p,], where {p,} is a basis of H*(X,C). The Poincaré pairing is given by :

(Pa X €7, 06 X €1y7) )| / Pa

The J function is defined as:

Tult,2) = =z +1(z ZQ%_;¢<W @I (260

where {¢,}, {¢°} are dual basis. We use results of [JK] to express the correlators in terms of
correlators on X, 4. In fact there is a finite degree map: (X X BZy,)on.d,(jy1],....[m]) — X0n.d-
In [JK] it is shown the degree equals

.....

X6 ()
Gl

where

X6 (7)== {(o1, ..., om |1—H0],0] [v;]  for all j}.
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Since the 1) classes in the correlators are pullbacks of 1 classes from the coarse curve it
follows that:

Ond (267)

sz evl(t; X ep)))ohy =

where t; € H*(X).
From now on, let G = Z,,. Denote by td, the multiplicative class defined for line bundles L
by:
1
1 —Ce—al)

We twist the cohomological potential of X with 3 types of twisting classes as follows:

tde(L) ==

e the type A classes we take to be:

m—1

td(m.ev”(Tx)) [ | tdes (moev™(Tx @ Cer)).

k=1
The effect of the type A twisting is:

Corollary 2.8.1. The cone rotates by the loop group element:

m—1

v =Tl O)Lx,

J=0

where we think of Ly as a product of m copies of Lx and each operator O; acts on the
copy corresponding to the sector labeled by ¢’. Let [kj/m] denote the greatest integer
less than kj/m. The operators are Euler-MacLaurin expansions of the products:

—Trz
HH — e~ mx;+mrz’

i r=1
m—1 o9
T; — Tz
;=] H 11 1 — Che—aitre—(ki/m—[k/m])z"
k=0 ¢ r=1

e the type B classes :

td(m.(1 = Ly 1y)) ] tde (mu((1 = L}y @ ev*Cer)).
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Corollary 2.8.2. The dilaton shift changes from q(z) = t(z) — z to q(z) = t(z) — (1 —
emz)'

Proof: We apply Theorem 1.10.2 to the potential F.

In our case fz = —ev’, (C;) ® L1, we have:
Lty — fs(1
fs( £+3) - {/3( ) _ CoLol,
n+3

So according to Theorem 1.10.2 (fix ¢ primitive m root of unity) the translation is:

t(Z) = t(Z) +z—z f[ Td(k<—CCkL;1) =
=) 42— T = ) = () + 2 — (1— ™). (2.68)

the type C classes we take to be: we twist by the class T'dY(—m,ig,Oz,) the nodal locus
Z4; the locus Zj of nonstacky nodes by:

m—1

td’ (. (i,0z,)) | [ tdf(—m.(i.0z, ® ev*Ce)).

k=1
We don’t twist the other nodal loci.

Corollary 2.8.3. The nodal twisting changes the polarisation in the sectors (X,1) and
(X, qg) of IX. The new Darboux basis are given by expansions of

1
1 — emdur +map_

for (X, 1) and
1 1

il ] _ i tus
l—e™m

for (X, 9).
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Proof.: according to Theorem 1.10.3, the coefficients Agab# in the untwisted sector are
given by:

IRei L) -1 1 (R S
Vi + Y- Py o \ Iy (1 — Chev+v-)
1 1
Sty e

Then (see Example 2.7.2 and [C]) the Darboux basis is given by the expansion of
W. In the same way the coefficients Az,a,b, 5 are given by expansion of:
(Td(LyL_—1)—1) 1 1

Yy + 1o Yo el —1

. . . . . 1
and hence the polarisation is given by the expansion PRy
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Chapter 3

Quantum K-theory

3.1 Introduction

K-theoretic Gromov-Witten invariants have been introduced in [L2], as a tool for a better
understanding of the geometry of the moduli spaces of stable maps. They are K-theoretic
pushforwards to the point of some natural bundles on the moduli spaces of stable maps
Xgn.d- Most of the structure present in cohomological Gromov-Witten theory and quantum
cohomology is present in its K-theoretic analogue, but there are also some essential pieces
missing: the grading axiom and the divisor equation. Moreover, K-theory on orbifolds is
“harder” than intersection theory, which makes the invariants harder to compute.

In this chapter we prove a Hirzebruch-Riemann-Roch type theorem which allows one to
compute all genus 0 K-theoretic Gromov-Witten invariants in terms of cohomological ones.
We apply Kawasaki’s formula to the moduli spaces of stable maps X, 4. The reason why
we have to restrict ourselves to genus 0 maps is that the automorphisms of points in Xy, 4
come only from multiple covers of the map, i.e. the domain curve has trivial automorphism
group. This makes things considerably simpler. The main result is Theorem 1.6.2 and is
stated in terms of the geometry of the uniruled Lagrangian cone £ in the symplectic loop
space K. As a consequence we deduce a D-module structure in quantum K-theory from the
corresponding statement in quantum cohomology.

The material of this chapter is joint work with A. Givental. The chapter is arranged as
follows. In Sections 3.2 and 3.3 be briefly recall the definitions of the moduli spaces of stable
maps and of K-theoretic Gromov-Witten invariants. In Sections 3.4 and 3.5 we introduce
the K-theoretic symplectic loop space K, the K-theoretic Gromov-Witten potential and the
J-function. The main tool for computing holomorphic Euler characteristics on orbifolds
- Kawasaki’s formula - is explained in Section 3.6. In Section 3.7 we define the “fake”
K-theoretic Gromov-Witten invariants and recall their relation with cohomological ones. In
Sections 3.8 and 3.9 we describe the strata of maps with symmetries in Xy, 4 and the tangent
and normal bundles to these strata. Section 3.10 contains a reformulation of Theorem 1.6.2,
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introducing a new object - the adelic cone K. The proof of Theorem 1.6.2 is given in Section
3.11. Finally, the D-module structure is proved in Section 3.12.

3.2 Moduli spaces of stable maps

Let X be a nonsingular complex projective variety. For d € Hy(X,Z) let X, ,, 4 be the moduli
spaces of stable maps of degree d from n-pointed, genus g curves to X. This is a compact
complex orbifold. In the case when X is a point, it coincides with the Deligne-Mumford
space of stable curves Mg,n‘ There are natural maps:

evy: Xgna— X, 1=1,...,n
given by evaluation at the ith marked point. There are line bundles
Li—>Xg,n,d7 2':1,...,71

called universal cotangent line bundles. The fiber of L; over the point (C,xy,...,x,, f) is
the cotangent line to C' at the point z;.
There are also maps:

ct: Xg,n,d — Mgﬂl

given by forgetting the map and contracting the unstable components of the curve. The
universal family can be identified with the diagram:

€Un+1
Xg,nJrl,d > X
TrJV
Xg,n,d

where the morphism 7 forgets the last marked point.

3.3 K-theoretic Gromov-Witten invariants

In [L2], Y.-P. Lee introduced the sheaf OV and used it to define K-theoretic Gromov-Witten
invariants of X. These are holomorphic Euler charactersitics of sheaves of the form:

evt(a) L - .. ev’(a,) L @ OV

where a; € K°(X). Unlike the cohomological invariants, they are integers. We will use the
notation:

<a1Lk1’ e ’a”Lkn>X a =X (Xg,n,d§ evﬁal)[/lgl T 61);(&”)[17’2" ® Ovir) .

P
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According to [L2], the virtual structure sheaves on the spaces X, , 4 satisfy axioms analogue
to Kontsevich-Manin’s axioms in [KM] for cohomological theories. This leads to relations
among K-theoretic Gromov-Witten invariants.

Example 3.3.1. The K-theoretic string equation can be deduced from the equality 7,1 = 1:

<CL1, ey Oy, 1>f){,n+1,d = <a17 te aan>;n7d :

Example 3.3.2. The K-theoretic dilaton equation follows from 7, (1 — L, 1) = 2 —n. This
leads to:

(aL*,. L 1Ly = (2= n) (@D, a, L)

There are however pieces of structure missing, most blatantly an analogue of the divisor
equation.

3.4 The K-theoretic genus 0 potential

We define:
K:=[KX)®C(g,qg )] ®A

where C(q,q™') is the ring of rational functions on the complex circle with coordinate q.
Elements of K are rational functions of ¢ with coefficients in K°(X) ® A in the @, M-adic
sense, i.e. modulo any power of the maximal ideal in the Novikov ring A. Let (, ) be the
pairing on K°(X):
(a,b) == x(X,a®b).
We endow K with the symplectic form:
“1yy g

f.g Qf g) = [Resymo + Reso=x] (£(a). g(071) -
Denote by K°(X)[q,q '] the ring of Laurent polynomials in q with coefficients in K°(X).
The following two subspaces:

Ky =K'(X)[g, g ®A, K_:={feKk | f(0)# oo, f(c0)=0}

form a Lagrangian polarisation of K. This will allow us to identify K with T'K?.
The subgroup of the symplectomorphisms of I which commute with multiplication by ¢
are called loop group elements. They are of the form:

S(q) = Z Siq’

1€Z
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where S; € End (K°(X) ® A). Being a symplectomorphism amounts to:

S(@S* (¢ =1

where [ is the identity matrix and S* is the adjoint transpose of S. Differentiating the
relation above at the identity, we see that infinitesimal loop group elements R satisfy:

R(q)+ R*(¢"") =0.

Example 3.4.1. The operator of multiplication by

1—q 2 1—g¢q

1
A >\_>\ +q

is an infinitesimal loop group element.

Let t(q) € K. The K-theoretic genus 0 potential is the following generating series:
Fo= e, L))
X - n‘ g ey O,H,d'
d,n

It is a formal series of t with coefficients in A. It is well defined because for any d there are
finitely many monomials in coordinates ¢{ on K, with nonzero coefficients.

3.5 The big J function of X

Let {¢,} and {¢*} be any dual basis of K°(X). Define:

X

d a
Fikiok g0 -1-grt+ X a X S (L)
~nl \1- qL 0n+1,d
Lemma 3.5.1. Each correlator in J is a reduced rational function in ¢ without poles at

q = 0, hence an element of C_.

Proof: The spaces X ,+1,4 are finite dimensional (virtual) orbifolds, hence their K-rings
are finitely generated. This implies that there exists a minimal polynomial P’ such that
P'(L7') = 0. We can write correlators in this form:

<_G(L1) > _ <L%G(Q)dq >
Lo 0,n+1,d 2mi ) 1—qL’ 0,n+1,d'

If G is a multiple of P’ the LHS of the above equality is 0. This shows that the RHS is a
rational function with denominator P’(¢'). But P’ can be written as the quotient of the
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form P(q)/q™, where m = deg(P') > 1 and P is a polynomial in q. Hence the correlators
are rational functions in ¢ with denominator P(q). Since each line bundle has an inverse, 0
is not a root of P, or in other words the correlators are different from co at ¢ = 0. Moreover
they are 0 at ¢ = oo q.e.d.

Notice that the first two terms in J, 1 — ¢ and t(q) are elements of K. We refer to them
as the dilaton shift and the input respectively.

Proposition 3.5.2. The J function coincides with the graph of the differential of the genus
0 potential, considered as a section of the cotangent bundle of T, identified with IC via
the polarisation K = K, & K_ and the dilaton shift f — f+1—¢q :

Jt)=1—q+t(q) + deF%.

Proof: We have already seen that that the K, part of J coincides with the input shifted
by 1 — q. Pick a variation 0t € K. By the definition of the canonical symplectic structure
on T*K, it is enough to prove that the symplectic inner product of the X part of J is the
same as dyF%(dt). This follows from the following calculation (notice that dt has poles only

at 0 and o00) :
qba
1—¢qL

¢a
0 (;%@ﬁ,&) = -0 (&,?%@
ot(q)

20 0ta(9)0" dg _
=y — Resq:Lq —7 = dt(L).

= — [Resy—0 + Resy—oo] =2———

This shows that:

(Z¢asz< faqL,t(L),...,t(L)>X ,5t>:

0,n+1,d

=Y = (0t t(L), . (L)) s g = A TR (0Y).

Let £ C K be the range of the J function.

Theorem 3.5.3. L is the formal germ of a Lagrangian cone such that each tangent space
T to L is tangent to L exactly along (1 — q)T. In other words T N L = (1 — q)T and the
tangent space at all points of (1 —q)T is T.

The proof of the theorem is very similar with that of the correponding statement in [G1].
It relies on the comparison between descendant and ancestor potentials. More precisely, let
L; := ct*L; be pullbacks of cotangent line classes along the maps ct : X ntld = M, n- Then
for any 7 € K°(X) we define the ancestor potential as:

Fri= 3 L@, D))y, (1)

d,n
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CONUINCED 3 XU RSN,

One then defines the ancestor J function as:

p X
T ::1—q+t(q)+z¢aG“b(T)ZQ—< P t(L),...,t(L)> (7).

~ 7l 1—qL’

Here (G?) = (Gy)~* and

d
Gap(T) = (¢a, ) + Z % (Pay Ty ooy T, ¢b>gfn,d-
d,n )

The reason of the occurence of this new tensor G lies in the form of the WDVV equation
for K-theoretic GW invariants. See [G3] for more details. Let £, € K be the range of 7.
We view L, as a Lagrangian submanifold of (K, €),) where €2, is defined in the same way as
(2, replacing the pairing ( , ) by (¢a, ®p)r = Gap(T).

It turns out that £, is obtained from £ by a loop group transformation. Define S, as a
matrix with entries:

d X
a a § E ac ¢
Sb:5b+ TL' G (T)<¢C7T7"'7T71_qu>
d,n B

0,n+2,d

Theorem 3.5.4. S; is a symplectomorphism S, : (IC,Q) — (K, 2,) and
L,=S.L.

The proof of the theorem is the same as of the corresponding cohomological theorem in
[C], keeping in mind to replace at all times the string, dilaton, and WDVV equations with
their K-theoretic counterparts.

Then we can deduce the properties of £ described in Theorem 3.5.3 from the correspond-
ing ones of £,. It is essential here that the spaces Mo,n are manifolds of dimension n — 3,
which implies that any monomial in (L; — 1) of degree n — 3 or more is 0. Consequently, at
points t € K, such that t(1) = 0 the partial derivatives of order at most two of F, are 0.
One can show that for each f € K. there exists 7 such that S, -f :=f € (1 —¢)K,. By what
we said above (f,0) € £, and Ty = K+. One then sees that K, NL, = (1—q)K,. Hence £
is ruled by the finite dimensional family (indexed by 7 € K°(X)) of subspaces (1 —q)S; 'L, .
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The conical property of L is a consequence of the dilaton equation 3.3.2. More precisely,
if we pick coordinates {t{} on K, and denote by 0, the corresponding partial derivatives
then:

Q1 o
Y T A6(L), (L), 1 - L)gnsrg =2F% = > _t10axTX.
d,n ’

This is equivalent to the degree two homogeneity of FY after the dilaton shift.

3.6 Kawasaki’s formula

Assume M = M /G is a global quotient orbifold of the manifold M by the finite group G.
Then Lefschetz’ holomorphic fixed point formula asserts that for a G-equivariant bundle £
on M (which induces an orbibundle on M) we have:

X(M,E) =Y (~1)'dimH (M, E)° =G Z Y (1)t (g|Hi(z\7, E)) .

i geG i

Kawasaki generalized this formula to the case of orbifolds which are not global quotients, by
reducing the computation of Euler characteristics on M to computation of certain cohomo-
logical integrals on the inertia orbifold IM of Definition 2.2.1.

Denote by M; the connected components of the inertia orbifold (we’ll often refer to them as
Kawasaki strata). The multiplicity m; associated to each M; is given by:

= ’ker <ng(g) — Aut(ﬁﬁ))‘ :

The restriction of F to M; decomposes in characters of the g action. Let EY be the
subbundle of the restriction of E to M; on which g acts with eigenvalue e *. Recall that
the trace Tr(E) is defined to be the orbibundle whose fiber over the point (p, ( )) of M, is :

Tr(E) = Z e’ EW.

l

A®*N; is the K theoretic Euler class of the normal bundle N; of M; in M. For a line bundle L
it is defined as 1 — LY. Tr(A®N}) is invertible because the symmetry g acts with eigenvalues
different from 1 on the normal bundle to the fixed point locus. Finally let T'd be the Todd
class, defined for a line bundle L as:

c1(L)

Td(l) = — o

We can now state Kawasaki’s formula:
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Theorem([Ka]) 3.6.1. For any orbibundle E on M we have:

X(M,E) Zml/ Td(T,) ch<TT(A(.]\)[*)).

We call the terms corresponding to the identity component in the formula fake Fuler
characteristics:

x (M, E) = / ch(E)Td(Tyy).

Notice that one can rewrite Kawasaki’s formula as:
1 Tr(E)
M. E) = —T (M, ——=2_ ).
xX(M, B) Zi:mix ( ’Tr(A-N;))

Hence all the terms in the formula are fake Euler characteristics of certain bundles.

3.7 Fake quantum K-theory

According to what we said in the previous section, the fake Gromov-Witten invariants are in
some sense an intermediate step in between the true K-theoretic ones and the cohomological
ones. They are defined by :

<a1Lk1,...,anLk”>£7n7d ;:/[ ]ch (evi(ar)Li* - ... evi(an)Lim) - Td(TSY )
XOnd

where 73, is the virtual tangent bundle to Xo, 4. They coincide with the true invariants
only if the spaces Xy, 4 are virtual manifolds. In general they are rational numbers. We
define the big J function as:

d a f
jf<t>=1—q+t<q>+2¢a§j@—,<¢—,t<L2>,...,t<Ln+l>> .
e 1 —qly 0,n+1,d
The loop space of the fake theory is defined as:
K = [K°X) @ C(((a— 1)) ® A

The symplectic structure is:

f,g— Qf(f,g) = —Res,—1 (f(g),8(¢7")) %-
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A Lagrangian polarisation for K/ is given by:

KL= KO(X)[[(¢ — D)) @ A,
1 1

In fact, if we expand

1 i k
gz = D g

k>1

then a Darboux basis of K/ is given by {¢%(¢ — 1)*, (ba#}. Just like in the case of the
genuine theory, the range of the J function of the genus 0 invariants is a formal germ of an
overruled Lagrangian cone, which we call £7.

The relation between the fake K-theoretic invariants of X and the cohomological ones
has been studied in [C] and described in terms of the symplectic geometry of the loop space.
Roughly speaking, the theorem says that the cones £/ and £ (to be defined below) are
related by a loop group transformation, after a suitable identification of the corresponding
loop spaces. We now recall the setup of the cohomological theory: let

M= @H*(X,A)((2))

be the cohomological loop space. We endow H with the symplectic form:

Qt.g)i= (EG:)8(-2)ds
z=0
where ( , ) is the Poincaré pairing on H*(X). Consider the following polarisation of #:
H, = H*(IX,0)[[2]] and H_:=z'H*(IX,C)z"".

Let ©; = ¢1(L;). We define the genus 0 potential as:
0 Q
Fht) =30 L (). )y
n,d

Let q(z) = t(z) — z. Consider the graph of the genus 0 potential, regarded as a function of
q:

LM :={(p,a) | p=doFy} CT"H, ~H.

Then according to [G1], £ is the formal germ of an overruled cone with vertex at the
shifted origin —z. Overruled means that the tangent spaces T to £ are tangent to £
exactly along 27T
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Let x; be the Chern roots of T'x, and let A be the Euler-Maclaurin asymptotics of the
infinite product:

NI =

i r=1

We identify K/ with H extending the Chern character isomorphism ch : K°(X,C) —
H*(X,C):

ch: Kf = H
q+— e

This maps le; to H,, but it doesn’t map K to H_.
Theorem([C]) 3.7.1. £/ is obtained from L™ by pointwise multiplication by A:
L£f=ch H(ALH).
Remarks:

1. In our case

which gives:

1
A:—exp{ZZs% 1+l chl(T ) 1},
td(Tx) k>0 1>0

where the coefficients s; and the Bernoulli numbers B; are given by:

! x x By
— — =1 - 21.
e:cp(Zszl!> T +2+;<2Z)!x

1>0

2. The result extends nicely to a statement about the total potentials (which we won’t
need), using the quantization formalism of [G2].

3. The transformations ch : K/ — H and A : H — H are not symplectic, but their
composition is.

4. The results of the previous chapter generalize the initial proof of [C], offering on the
way more conceptual explanations for the change of dilaton shift and of polarisation.
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3.8 Kawasaki strata in Xy, 14

It is easily seen that points with non-trivial symmetries in Xg,1,4 come from maps which
can be realised as multiple covers.

Example 3.8.1. Consider a point (C, x1, 72, f) € Xo2(dy+d,),2 Such that:

e the domain C' has three irreducible components, Cy, C;, Cy such that the nodes are
1,—1 € Cy and the marked points are 0, 00 € (.

e the maps fic, : C1 — X and f|¢, : Co — X are isomorphic stable maps of degree d;.

e the map fio, : Cp — X factors as Cy — Cj — X, where the first map is given in local
coordinates as z — z? and the second one has degree dj.

Then this point has a Z, symmetry given in local coordinates on Cy as z — —z.

This example shows that an irreducible component of the domain is not necessarily fixed
by a symmetry.

We now introduce a dictionary to help us keep track of these Kawasaki strata and of
their contributions to the J function. We will use Figure 3.1 as book-keeping device for such
strata. Pick C' a generic domain curve in a Kawasaki stratum and denote the symmetry
associated with it by g. We call the distinguished first marked point of C' the horn. g acts
with eigenvalue ¢ on the cotangent line at the horn. If ( = 1 the symmetry is trivial on the
irreducible component of the curve that carries the horn. We call the maximal connected
connected component of the curve that contains the horn on which the symmetry is trivial
the head. Notice that the head can be a nodal curve. Heads are parametrized by moduli
spaces Xo /41,4 for some n',d’. In addition, there might be nodes connecting the head with
strata of maps with nontrivial symmtries. We call these the arms.

Assume now that ¢ # 1, in which case it is an mth root of unity for some m > 2.
Identifying the horn with 0, as in the example, we see that the other fixed point by the Z,,
symmetry can be either a regular point, a marked point or a node. We call the maximal
connected component of the curve on which ¢ acts trivially and on which g acts with inverse
eigenvalues on the cotangent line at each node the stem. The reason why we allow nodes
subject to this constraint is because each such node can be smoothened while staying in the
same Kawasaki stratum. So stems are chains of P'’s. In the last P! in this chain lies the
distinguished point oo, fixed by the symmetry g. If it is a node, we call the rest of the curve
connected to the stem at that node the tail. In addition we encounter the situation in the
example above , i.e. there are m-tuples of curves (Cy,...C,,) isomorphic as stable maps,
which are permuted by the symmetry g. We call these the legs.

Notice that by Kawasaki’s formula the input at the horn is W, where L, is the
“gCehL!

cotangent line at the horn on the moduli spaces of stems. The contributions in the J function
corresponding to a given ¢ give the polar part of J at the pole ¢ = (1.
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Figure 3.1: Contributions from various Kawasaki strata in the J function of X.
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3.9 Stems as maps to X/Z,,

Let BZ,, be the stack quotient [pt/Z,,]. In this section we identify the stem spaces with
moduli spaces of maps to the orbifold X x BZ,,. We use the description of maps to Z,, given
in [JK]. Moduli spaces of orbimaps to an orbifold X" in full generality will be introduced in
the next chapter.

Let ¢ be a primitive mth root of 1, and let X ,424(¢) be the stem space in Xg um+2.d4m
which parametrizes maps (C, zo, . .., Tpmi1, f) which factor as C' — C" — X where the first
map is given in coordinates as z +— 2™, 2o = 0 € C, Tpme1 = 00 € C and each m-tuple
(Timkt1s - - - Tmk+m) 18 mapped to the same point in C’. Here ( is the eigenvalue of the action
of the generator g € Z,, on the cotangent line at z.

Proposition 3.9.1. The stem spaces are identified with the moduli spaces of orbimaps to
the orbifold X x BZ,, denoted (X X BZuy,)on+2.d,(,0,..0,g-1)-

Proof: We describe stable maps to X x BZ,, in a way very similar with the paper [JK],
where this is done only for the case X = point. More precisely a map (C, zo, z1, ..., Tnt1, f)
to X x BZ,, of degree d is equivalent to the following data:

e a map C — X of degree d from the coarse space C of C to X ,

e a principal Z,, bundle on the complement to the set of special points of C, possibly
ramified over the nodes in a balanced way, i.e. such that the holonomies around the
node of the two branches of the curve are inverse to each other.

The notation (g,0,...,0,g9!) keeps track of the holonomies of the principal bundle around
the marked points, which determine it.

Remark 3.9.2. As we've seen in the previous chapter that the evaluation maps land in the
rigidified inertia stack of X x BZ,,, whose connected components are indexed by elements of
Zm. The sequence (g,0,...,0,97 ') designates the sectors picked up by the evaluation maps.

Remark 3.9.3. The geometric points of the stem space X ,+24(¢) are the same as those
of the moduli space X 124, however they are not identified as (virtual) orbifolds for the
following reason: near a nodal curve of X 12 4, if we realize the branches as quotient curves
then there are two copies of Z,, acting independently on each branch. In our moduli spaces
there is one Z,, acting and the action is balanced as explained above.

We now describe the tangent and normal bundle to M = X ,12.4(¢) in Xonmi2.dm 0
terms of the universal family 7 : &4 — M. Denote by 7 : Xomnt+3.md — Xomnt2,md the
universal family over X n12md- Denote by U= 7Y(M). Then the map 7 : U — Mis
a Zp, equivariant lift of 7, i.e. each fiber of 7 is a ramified Z,, cover of the corresponding

fiber of m. There are also evaluation maps at the last marked point (we omit the index)
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ev:U — X/ %, and its Zyy, lift é0 : U — X. According to [C], the virtual tangent bundle to
Xo,mn+2,md 1s described as an element of the K-ring by:

o 2.dm = T4(€0 (Tx — 1)) = T Ly s — 1) — (Fein(03))".

We need to compute the trace of g € Z,, on each piece of this bundle. Denote by C
the Z,, representation C where g acts by multiplication by ¢*. K-theoretic push-forwards
on orbifolds considered as global quotients extract invariants, so the piece of T,(ev*Ty) on
which g acts by (7% can be expressed as m.ev*(Tx ® C¢r). Therefore the trace is given by:

1
Tr (T (ev'Tx)) = ¢ Frev* (Tx ® Cer). (3.1)
0

3

B
Il

Of course the term k£ = 0 corresponds to the tangent bundle and the others to the normal
bundle. Similarly:

-1
Tr (Fe(Lpmis)) = Y (T mu(L, 50" Cer). (3.2)
0

3

i

We denote the nodal locus in U by Z and in U by Z. We distinguish two types of nodes.
When the node is a balanced ramification point of order m then the tangent bundle is one
dimensional and it is invariant (K theoretic Euler class class is 1 — Li/ mpY ™). If we denote
by Z, this nodal locus, downstairs this corresponds to twisting by the class T'd(—m,ig.Oz,)".
If on the other hand the node is unramified then the covering curve has a Z,, symmetric
m-~tuple of nodes. The smoothing bundle has dimension m; it contains a one dimensional
subspace which is tangent to the stratum and a m — 1 dimensional subspace normal to it.
We denote by Z, Zy the corresponding nodal loci and we claim that:

(FeioeO3,) ® Ce1) ™" = m, (" Cet @ 0,03,) -

Proof of the claim: we think of the sheaf io*(’)fzvo as the trivial bundle on ZNO. The map

P :Zvo — Z; is an m cover. Pushforwards of a vector bundle F along this map is the vector
bundle £ @ C™, where the transition matrices map v ® e; — v ® e;11, or equivalently it is
the regular 7Z,, representation acting on the direct sum of m copies of . For each ( the
subbundle on which the generator of Z,, acts with eigen value ( is isomorphic to E. Applying
this to the trivial bundle proves the claim because:

((Fri0s0z,) @ Cer) ™™ = (FuliosOz, © Cen)) " =
7. (p.(i0.05,® FCc1)) ™" = 7. (¢"Cet © 0,03, -
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3.10 The adelic cone

In this section we give an alternative formulation of Theorem 1.6.2. For each ( # 0, 0o, let
K¢ be the space of Laurent series in 1 — q¢ with coefficients in C[[Q]] ® K°(X). We endow
it with the symplectic form:

Q(f,g) = —Resy—c1 (f(q),8(a7")) %-

Let K := K°(X)[[1 — ¢¢]] ® A. Notice that we have symplectomorphisms:

goC:ICf—HCC
q+— qG.

The adele space K is defined as the subset in the cartesian product:

1 x

<750,OO

consisting of collections {f;} such that, modulo any monomial Q¢, f; € /CC+ for all but finitely
many (. We endow it with the symplectic form:

Ofg) = — 3 Resy_c (fe(a) gela™)) dfj

Recall that for every f € K we denote by f; its expansion in 1 — ¢¢ and we call it the
localization at ¢ = (7. There is a map:

K=K, fefi= )

where we take all localizations at (~! # 0, co. The map is symplectic:

o~

O(f,g) = Q(f, g),

as can be easily seen from the definitions of €2 and Q.

Assume now we have a collection of overruled Lagrangian cones £° C (K¢, €¢) such that
modulo any power of Novikov variables £¢ = ICfL for all but finitely many values of (. Then
their product HC £0,00 £ C K is an adelic overruled Lagrangian cone.

In fact, one of the properties of being overruled is invariance with respect to multiplication
by 1 —¢. Since 1 — ¢ is an invertible element of K¢ for all ( # 1, we see that each such £¢
coincides with its tangent space at each point, i.e. it is linear subspace. We can now restate
Theorem 1.6.2:
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Theorem 3.10.1. The image Lck of L C K under the map ~ followed by pointwise
completion is an adelic overruled Lagrangian cone

L= 1]
(#0,00

such that L& = K unless  is a root of unity, LS = L' if C =1 and LS = Vo (T) if ¢ # 1
is a root of unity, where V¢ and T are as described in Theorem 1.6.2.

3.11 The proof of Theorem 1.6.2

Proposition 3.11.1. The localisation J; lies on the cone Ll

Proof: according to the discusion in Section 3.8, the Kt part of J; is the sum of correlators
for which the horn lies on heads. Denote by t the sum of correlators for which ¢ # 1. Then
we have:

~ Qd 1 ¢a " . f
Ji=l—q+t+t+ > FﬁZ¢a<1_qL,t<L),...t(L),t(L),...,t(L)>

0,n+m+1,d

(3.3)

n,m,d

where there are n occurences of t and m of t in the correlators.
The reason why this is true is because each of the special points on the irreducible component
that carries the horn is either a marked point or a node connecting it to an arm. If it is a
marked point the input in the correlator is t(L). If it a node, it is known that the Euler
class of the normal direction to the stratum which smoothens the node is 1 — L L_ where
L_, L, are the cotangent lines to the head and arm respectively. The input is therefore:
Z " ® ¢

1—-L_Tr(L)

a

The node becomes the horn for the integral on the arm. When we sum after all such

possibilities, the contribution is t(g) at the point ¢ = L_. The factor ﬁ in front of the
correlators is combinatorial, it accounts for choosing which are the marked points and occurs

because (n:m)! (") = —L.. But we can rewrite (3.3) as:
. d ¢a . . f .
jlzl—q+t+t+z¢>a—”< ,t(L)+t(L),...,t(L)+t(L)> = Jp(t +1t).
ot n'!' \1—qlL Om/41.d

(3.4)

This proves the proposition.

We now explain the leg contrbiutions, which we denote T. Recall that ¢ are Adams’
operations which are ring morphisms ¢¥™ : K°(X) — K°(X) which map line bundles E to
E®m. We extend ¢™ on K by seting ™ (q) = ¢™, v™(Q%) = Q™.
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Lemma 3.11.2. Let T be the arm contributions computed at the input t(q) = 0. Then:
T(L) = ™ (T(L)) .

Proof: The symmetry g™ acts nontrivially at the cotangent line to each copy of the leg
because otherwise they are degenerations inside a higher degree stem space. When we sum
after all possible contributions each copy of the leg we get the arm contributions. As noted,
the legs are not allowed to ontain marked points, hence the input is t = 0. Since we have m
copies of each leg the contribution is Tr(g|T(L)®™). The proposition then follows from:

Lemma 3.11.3. Let V be a vector bundle. Then

Tr (g|vVeE™) =y™(V).

Let N = rk(V). It is enough to prove the lemma for the case when V' is the universal
U(N) bundle on BU(N) as every vector bundle is induced by pullback from this one. As
BU(N) is the homotopy quotient pt/U(N), its K-theory ring is identified with the ring of
representations of U(N). The universal bundle corresponds to the standard representation
of U(N) on CV. Let h € U(N) and let & be eigenvectors of h with eigenvalues z;. Then we
compute the character of h on Tr(g|V®™), regarded as a U(N) representation. This is equal
to the Tr(gh®™) on V®™ because g and h®™ commute. But the matrix gh®™, written with
respect to the basis €i; ® --- ® €, , has zero diagonal entries unless i1 = ... = 4,,, in which
case the entry is zj". Thus:

Tr(gh®™) =ap* + - + 2%

This equals the trace of h on ¥ (V), q.e.d.

Proposition 3.11.4. Let ¢ be a root of unity. The localisation J: near ¢ = (™' is a tangent

vector to the cone of some “twisted” fake theory (after identifying the loop spaces using the
Chern isomorphism). The application point is the leg T.

Proof: Denote by dt(q) the sum of terms in 7 which don’t have a pole at ¢ = (~'. Then
we can write:

Qdm b° ) X)L, f
i) = 3t0)+ - o (g T T B LR TN )

(3.5)

a,n,d

where N, q is the trace of the Euler class of the normal bundle to each stem space. Re-
member that g acts by ¢ on the cotangent line at the first marked point, which explains the
denominator 1 — g¢LY™ of the input at that point in the correlators. We now explain the
input 51:(("1Li) at the second branch point co. If oo is a marked point, then the input
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is t(C1LY™). If it is a nonspecial point of the original curve, than I claim the input is
1 — ¢~'LY™. For this look at the diagram (assume n = 0 for symplicity, since the presence
of legs doesn’t change the following argument):

X02,4(¢) —— Xo2.4m

ftzl ft2l

X02,4(¢) —— Xo1.4m-

The restriction of fty to the Kawasaki stratum X2 4(¢) is an isomorphism so the conormal
bundle of Xg24(¢) in Xo2am (denote it N*) is the direct sum of the conormal bundle of
Xo2,4(C) in Dy := 02(Xo1,4m) (which is the same as the conormal bundle of X5 4(¢) in
Xo.1,am - call it N*) and the conormal bundle of Dy in Xg34m. Taking equivariant Euler
classes we get:

A*(N") = A (N*)(1 = ¢ Ly™).

Hence integrals on X2 4(¢) viewed as a Kawasaki stratum in Xg; 4m can be expressed as
integrals on the stem space with the input 1 — 7~ 'LY™ at co. Finally when oo is a node,
then the input is the polar part of §t(¢~*LY/™).
The reason why we view as J:(t) as a tangent vector to a Lagrangian cone is that we can
identify tangent spaces to cones of theories with first order derivatives of their J function.
Taking the derivative of J in the direction of ¥(q) replaces the input by #(¢) and one seat in
the correlators by (L).
Although the correlators are on X/Z,,, we will see soon that we can identify this generating
series with a tangent space to the cone of a twisted theory on X.

Notice that we already proved conditions 1 and 2 in Theorem 1.6.2. Before attacking
part 3, we prove the following:

Proposition 3.11.5. ch=}{(O0,L%) = ™ (L), where Oq is the operator in Corollary 2.8.1
and the Adams operation Y™ : KI — KI acts on q by v™(q) = ¢™.

Proof: we first show that:
O, = ml/?dich,l?Z)m(A)e—(logm)q(TX)/z. (36)

Let x; be the Chern roots of Tx. Note that /A and Oy are Euler-Maclaurin asymptotics of
infinite products:

A = HHsl(xi —rz),

x; r=1

o0
Oy = HHSQ(x —rz),
x; =



where

s1(z) = ‘ — and  sy(z) = v %@Z)m(sl(@).

1 —eme

It follows that

Inss(x) = —log(m) + ™Ins (x).
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But from the definition of Euler-Maclaurin expansion we see —logm influences only the terms

(=logm)er(Tx)

logm

+ dim(X)

Z {/Oxi(_l(?gm)dt/z + logm/2| =

7

since the sum is taken after Chern roots of Tx. Formula (3.6) follows.
Going back to the proof of 3.11.5, we know that:

A"eh(T7) = JE.
We use the chern character to define the Adams operation in cohomology:
Y™ (a) = ch (Y (ch " a)).

Notice that if a is homogeneous then 1™ (a) = m?9(9)/2q,

(3.7)

The J function JZ has degree two with respect to the grading deg(z) = 2, deg(Q?) =
2/ 4 c1(Tx), and the usual grading in cohomology. Therefore if we write .J B =23, JaQ?

then deg(J;) = —deg(Q?), hence:

IR = 3 mt e (=2) 1,Q"
d

We can rewrite this as:

mn () = 3 e e (=) J,Q",
d

We now use the divisor equation (see [C]), to write the RHS above as:

Z e—log(m)cl(Tx)/z(_Z>Jde — e—log(m)01(Tx)/ZJ)Ig.
d
Now combine (3.6) and (3.10) to write:
D()J)Ig _ ml/2dim¢;X,¢m(A)e—(logm)cl(TX)/ZJ)Ig _

_ ml/Qdich¢m(A)m_l¢m(J§) _ m_1+1/2dich¢m(AJ§).

(3.8)

(3.9)

(3.10)
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This proves the proposition because the range of ¢ A J¥ is the cone ch(L7), for any scalar
ceC.

We now complete the proof of Theorem 1.6.2. Before that we introdue more notation:
we index the components of I(X/Z,,) by elements g € Z,,. We write:

H*(IX/Z,,C) := Byez, H (X)L, C)e,.

For cohomology classes in the identiy sector we will drop the element e; from the notation.
We now introduce the following generating series:

m%:ﬂﬂr+2%2 <_“¢cw tmm>
0,n41,d

X)L,
0.x/7, = O +Z%Z <f%pww t%m%)

0,n+2,d

X/Zom

where {¢,} and {¢°} are dual basis with respect to the Poincaré pairing on I(X/Z,y,). It
follows from formula 2.67 that

Ix/z,, = JIx, where Ix(z,t(2)) € H*((1, X))((z71)) ~ Hx,

X
d a
5M%ﬂWHZ%Z%<jW (1), wm»
a n,d ’

0,n+2,d
We now define their twisted counterparts :

X/Zom

Iz, = 2+ t(2 +Z¢az <_z¢_aw t(12), . t(wn+1>;®g,n,d> :
1

0,n+1,d
X/lm

0%, = 0t(2) + Z Pa Z < _¢a€g t(2), ..., 0t (Vni2)eg1; @g,n,d> :

0,n+2,d
where O, , 4 is the twisting of Section 2.8 by the following classes:

m—1

Oyn.a =td(m.ev™( tden (myev™(Tx @ Cer)).
k 1

Proposition 3.11.6. The series J&“;Zm lies in the overruled Lagrangian cone OoLE and
5J§(“;Zm lies in the tangent space DlTDSlJ??zm LE where Oy, 0, are the operators introduced
in Section 2.8.
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Proof: This follows from Corollary 2.8.1: the range of J&“}Zm is the part of the untwisted

sector of the cone £, which gets rotated by Oy. The tangent vector 6J§(’“)Zm on the other
hand pertains to the sector indexed by g.
We introduce one more generating series:

5T (6, T) = 6t(q)+
X/ L. f

+Z¢az <1_qffw T(L),...,T(L),(st(g1L#);TT(A*Ng,n,d)> . (3.11)

0,n+2,d

Notice that if we do the change of variables ¢/ — ¢C and Q% — Q™ we obtain the
localisation J.
Proposition 3.11.7. ch (65 (6t,T)) lies in the subspace 515517};72 0oL where the in-

put T is related to the application point J;“;Zm by the projection [...]+ along the polarisation
pertaining to the identity sector in Corollary 2.8.3:

ch[l = ¢™ + T(q)] = [J¥)z,, )+
Proof: According to the description of Ny, 4 of Section 3.9, ch(6J*") is obtained from
) J}fg"/zm by twisting by the type B and C classes of Corollaries 2.8.2 and 2.8.3. Therefore it lies
in the same space as 0.Jy); , which according to the Proposition 3.11.6 is 515617}%2 0oL,
However, the dilaton shift (see Corollary 2.8.2) changes from —z to 1 — €™*, and so

does the space H_ of the polarisation. Changing the input at the first marked point from
) —z—1p = ¢*/(—z/m —/m) to ¢*/(1 — eFT¥)/™) is equivalent to applying to the same
space the polarisation pertaining to the sector g € Z,,. The input T is related to Jé(“;zm by:
ch[T(q)]+ = [J%th — 14" (3.12)
due to the new polarisation and dilaton shift.
Proposition 3.11.8. §7°!(dt,T) lies in the space O; A~} ij(rf)llf, where T = wm(’f‘)
Proof: ch (6.7°%(6t,T)) lies in the space Dlmglﬂ% OoLH according to Proposition

3.11.7. But Jﬁ}'jzm = OyJH, and (up to a scalar) we also have from 3.11.5 that ch(Jﬁ}‘;Zm) =
Y™(J¢). The input of J; is determined as:

= (jf)Jr - (1-q),

where (...); means projection along the space K!. Comparing with (3.12) and recalling
from Corollary 2.8.3 that the negative space of the identity sector is ch™'(¢™(K”)), and
that ¢"(1 — ¢) = 1 — ¢ we see that we must have T = ¢™(T). Replacing:

O J% = 0o A" ch(Ty)
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we see that 6.7°1(dt, T) lies in the space O; A~ ij@)ﬁf q.e.d.
Now notice that

= 1—q"e™™®

DoA™ = :

0 H H 1 — C*Tqr/mefm

x; r=1

The operator V. of Theorem 1.6.2 is obtained by the change of variable ¢/ — qC in
the formula above and computing the Euler-Maclaurin asymptotics as ¢¢ — 1. But the
same change of variable and Q¢ — Q™? transforms 6.7%(5t, T) to the localisation J(t).
Combining this with Proposition 3.11.8 we see that Vgljc(t), after the change ¢ — ¢ 1,
lies in the subspace T of £/ obtained from the tangent space le(o)ﬁf by the change of
variable ¢/ — ¢ and Q% — Q™.

This concludes the proof of Theorem 1.6.2.

Proposition 3.11.9. The Theorem 1.6.2 determines J in terms of head and stem correla-
tors.

Proof: we use induction on the degree d of Novikov’s monomials @?. The Deligne-
Mumford spaces M, are manifolds, hence in degree d = 0 there are only head contributions
to J(t). Assume now we have computed J(t) for all d < dy. We can compute J(0) up
to degree dy: if the head has degree 0, then it suffices to know the arms up to degree < d
, since there are two arms attached and since the arms have positive degrees. Also, when
the stem and the tail have degree 0, and there is only one leg attached, we can recover the
information about the leg from that of the arm up to degree dy/m < dp.

We can now project 7;(0) and J¢(0) to KL and KS respectively to reconstruct the arm
’T‘(q) and the tail dt(q) up to degree dy. But if we know T we can reconstruct the leg T up
to degree dy. Hence we know all contributions and we can recover J(t) up to degree dy.

Corollary 3.11.10. The Theorem 1.6.2 expresses genuine K-theoretic invariants of X in
terms of cohomological invariants.

Proof: this follows from the previous corollary, combined with the twisting formulae
which express head correlators in terms of cohomological ones, and stem correlators in terms
of the cohomological ones of X/Z,,. But it is known ([JK]) how cohomological GW invariants
of X/Z,, are related to those of X, q.e.d.

Corollary 3.11.11. Two points f,g € L lie in the same ruling space of £ if and only if
their expansions f}, g; near ¢ = 1 lie in the same ruling space of £7.

Proof: If f; and g; lie in the same ruling space of £f, then ef + (1—e)g € L for each value
of € and therefore, by the theorem, the whole line ef + (1 — e)g lies in L. The converse is
also true: if the line through f, g lies in £ then the line through f;, g; lies in £/. It remains
to notice that ruling subspaces of £ and £/ are mazimal linear subspaces of these cones -
because this is true modulo Novikov’s variables, i.e. in classical K-theory.
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3.12 Floer’s S! equivariant K-theory and D, modules

In this section we show that tangent spaces to the overruled Lagrangian cone L carry a
natural structure of modules over a certain algebra D, of finite difference operators with
respect to Novikov’s variables. This structure, although manifest in examples ([GL]) and
predictable on heuristic grounds of S'- equivariant Floer theory ([G4], [G5]), has been missing
so far in the realm of K-theoretic Gromov-Witten invariants. We first recall the heuristics and
then derive the D, invariance of tangent spaces to £ from the divisor equation in quantum
cohomology theory and the HRR Theorem 1.6.2.

Let X be a compact symplectic (or Kéhler) target space, which is assumed simply-
connected in this discussion, so that mo(X) = Ho(X). Let k = rkHy(X), let d = (dy, ..., dy)
be integer coordinates on Hy( X, Q), and let wy, ..., w be closed two forms on X with integer
periods, representing the corresponding basis in H%(X,R).

On the space Lo(X) of parametrized loops S' — X, as well as on its universal cover
IT.;( , one defines closed two forms €2,, that to two vector fields £ and 7 along a given loop
associates the value:

Qa(&m) = ]{ wa (£(1),n(t)) dt.

A point v € [j(;j( is a loop in X together with a homotopy type of disk u : D? — X attached
to it. One defines the actionn functionals H, : LyX — X by evaluating the 2-forms w, on
such disks:

H,(v) := /D2 ww,.

Consider the action of S on [70\5( defined by the rotation of loops and let V' be the velocity
vector field of this action. It is well known that V' is €2, - Hamiltonian with Hamilton function
H,, ie.:

iv(Qa)—FdHa:O, azl,...,k‘.

Denote by z the generator of the coefficient ring H*(BS!) of S'-equivariant cohomology

theory. The S'-equivariant De Rham complex (of Ly X in our case) consists of S* equivariant
differential forms with coefficients in R[z], and is equipped with the differential D := d+ ziy .
Then:

Do =0+ 2zH,,...a=1,...,k,

are degree 2 S'-equivariantly closed elements of the complex: Dp, = 0. This is a standard
fact that usually accompanies the formula of Duistermaat-Heckman.
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Furthermore, the lattice mo(X) acts by deck transformations on the universal cover
ITO\)/( — LoX. Namely, an element d € my(X) acts on v € Ijo\)/( by replacing the homotopy
type [u] of the disk with [u] +d. We denote by Q% = Q% - - QZ’“ the operation of pulling-back
differential forms by this deck transformation. It is an observation from [G4], [G5] that the
operations (), and the operations of exterior multiplication by p, do not commute:

paQb - pb@a - _5asza-

These are commutation relations between generators of the algebra of differential operators
on the k-dimensional torus:

[—20,,,e™| = —dapze™.

Likewise, if P, denotes the S'-equivariant line bundle on LAOS( whose Chern character
is e7P+, then tensoring vector bundles by P, and pulling back vector bundles by ), do not
commute:

PaQb = 5abQQan-

These are commutation relations in the algebra of finite-difference operators, generated by
multiplications and translations:

Qor— e, P,— ¢?0ra = qam, where q = €°.

Thinking of these operations acting on S!-equivariant Floer theory of the loop space, one
arrives at the conclusion that S'-equivariant Floer cohomology (K-theory) should carry the
structure of a module over the algebra of differential (respectively finite-difference) operators.
Here is how this heuristic prediction materializes in Gromov-Witten theory:

Proposition 3.12.1. Let D denote the algebra of differential operators generated by p,, a =
1,....k, and Q% with d lying in the Mori cone of X. Define a representation of D on the
symplectic loop space H wusing the operators p, — 2Q,0q, where p, acts by multiplication in
the classical cohomology algebra of X ) and Q% acts by multiplication in the Novikov ring.
Then tangent spaces in the overruled Lagrangian cone L C H of cohomological GW-theory
of X are D-invariant.

Proof: invariance with respect to multiplication by Q? is tautological since the Novikov
ring C[[@Q, A]] is considered as the ground ring of scalars. To prove invariance with respect to
operators p, — 2Q,0q, , recall from [G1] that tangent spaces to £ have the form S7'H .,
where H > 7 +— S;(z) is a matrix power series in 1/z whose matrix entries are:

_ Q* u o
S§_6§+%m;<¢ ,T,...,T,z_w>

X

0,n+2,d
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The matrix S, lies in the twisted loop groop, i.e. S;—1(z) = S*(—z). Let 0, denote
differentiation in 7 in the direction of the degree two cohomology class p,. According to the
divisor equation:

20400, 5:(2) + S:(2)pa = 20:,5:(2). (3.13)

In fact the property of £ to be uniruled implies that 20, S = p, @ S, where e stands for
quantum cup product. Transposing, we get:

(P — 2Qa0o,) S (2) = —20,,57(2) = S7H(2) (Pa®)-
Also, if 7 =3 7a(Q)¢o and h € H , so that f(z,Q) = S;'(2)h(z,Q) € T, then:

(Pa = 2Qudg )t = S7'(2) | (Pa®) = 2Qudg, + 2 ) Qudg,Tya(da®) | .
Since H . is invariant under the operators in brackets, the result follows.
Remark 3.12.2. Each ruling space z7;, and therefore the whole cone £, is D-invariant.

Corollary 3.12.3. Tangent and ruling spaces of £/ are D-invariant.

Proof: In the QHRR formula ch(L/) = AL of Section 3.7, the operator /A commutes
with D, since it does not involve Novikov’s variables, and since the operators (which do occur
in A) of multiplication in the classical cohomological ring of X commute with p,.

Lemma 3.12.4. The subspace 7 C K/ obtained from Tj(g)lﬁf by the change z — mz, Q —
@™, is D-invariant.

Proof: The tangent space in question is A(Z)S;&Q)(Z, Q)H for some T =) Tod, € H.
(Recall that H = H*(X,C[[Q]])). The space T is therefore A(mz)S;é?m)(mz,Qm)’HJr ,
where H, is D-invariant, and A commutes with D. Since 2Q,0qg, = mzQ"dgm, we find
that the divisor equation still holds in the form:

(Pa — 2Qu0q,)S; (mz, Q™) = S (mz, Q™) (pu®(rom) -

where the last subscript indicates that the matrix elements of p,e depend on 7 and Q™. The
result now follows as in Proposition 3.12.1.

Corollary 3.12.5. Let ¢ be a primitive m-th root of unity. Then the factor £¢ = V T¢ of
the adelic cone £ is D-invariant.

Proof: recall that T¢ is related to 7 by the change ¢ = (e* and the action of z in the
operator p, — 2Q,0g, should be understood in the sense of this identification. The result
follows from Lemma 3.12.4 since V commutes with D.
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Theorem 3.12.6. Let D, denote the algebra of finite-difference operators, generated by
integer powers of P,, a = 1,...,k, and Q%, with d lying in the Mori cone of X. Define a
representation of D, on the symplectic loop space K, using the operators P,q%%a and Q.
Here P, acts by multiplication in K°(X) by the line bundle with Chern character e P+ and Q%
acts by multplication in the Novikov ring. Then tangent spaces to the overruled Lagrangian
cone L C K of true quantum-K theory on X are D, invariant.

Proof: thanks to the adelic characterization of the cone £ and its ruling spaces given by
Theorem 1.6.2 and Corollary 3.11.11, this is an immediate consequence of the following:

Lemma 3.12.7. The adelic cone E is D, invariant.

Proof: If ¢ is not a root of unity it is obvious that £¢ are D -invariant because £¢ = ICfr.
For ¢ = 1, it follows from Corollary 3.12.3 that the family of operators e#(*?@e9@a=Pa) preserves
L7, and so does the operator with ¢ = 1, which is P,g%%a. When ¢ # 1 is a primitive
m-th root of unity, the family of operators e*(*?a9%2a=Pe) preserves £¢ by Corollary 3.12.5.
However at € = 1 the operator differs P,g%%a by the factor (?+%@« because ¢ = (e*. The
operator (4% acts by Q, — (Q,. It is essential here that this extra factor commutes with
S;(t?m)(mz, Q™) because ("™ = 1. Since it also preserves H the result follows.

Example 3.12.8. It is known from [GL] that for X = CP"',

(1—
1 % (1—Pqg)»---(1 — Pgh»

where P € K°(CP" ') is the Hopf bundle. It follows from the string equation that
J(0)/(1—q) lies in the tangent space T7()£. Applying powers 7" of the translation operator
T := Pq%9%a  we conclude that, for all integers 7, the same tangent space contains
0 qurd

PTdZ; (1= Pg)--- (1= Pgh)™

In fact J(0) satisfies the second order finite-difference equation D"J(0) = QJ(0), where
D :=1-T. Therefore the D,-module structure generated by 7 (0)/(1—g) is spanned over the
Novikov ring by 777 (0)/(1 — q), with r = 0,1,...,n — 1. The projections of these elements
to K, are P", r = 0,...,n — 1, which generate the ring K°(CP)"~! = Z[P, P~']/(1 — P)".
The K-theoretic Poincaré pairing on this ring is given by the residue formula:

¢(P)¢'(P)dP

(¢(P), ¢'(P)) = —Resp=y i-Pr P
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By computing the pairings with the above series we actually evaluate K-theoretic Gromov-
Witten invariants:

IO) _ o) o\" _ ~
<¢(P)7Tq>—;Qd<m,P>o’27d, r=0,...,n—1.

Thus, using the D, structure alone we can compute all values (¢L*, '), 4 from (pL* 1), ;.
By virtue of general properties of the invariants we can then compute all (¢L*, ¢’ Ll>éf2,d.
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Appendix A

Virtual Kawasaki formula

In this appendix we prove that Kawasaki’s formula “behaves well” with working with
virtual structure sheaves in the following sense: if we replace the structure sheaves, tangent
and normal bundles in the formula by their virtual counterparts then Kawasaki’s formula
stays true.

Let X be a compact, complex orbispace (Deligne-Mumford stack) with a perfect obstruc-
tion theory E—' — E°. This gives rise to the intrinsic normal cone, which is embedded in £,
- the dual bundle to E~! (see [LT], also [BF]). The virtual structure sheaf O%" was defined
in [L2] as the K-theoretic pull-back by the zero section of the structure sheaf of this cone.
Let IX = Hu X, be the inertia orbifold of X. We denote by i, the inclusion of a stratum X,
in X. For a bundle V' on & we write ¢,V = Vuf & V" for its decomposition as the direct sum
of the fixed part and the moving part under the action of the symmetry associated to X),.
To avoid ugly notation , we will often not write the lower index p in the notation and simply
write V™, V4. The virtual normal bundle to X, in X is defined as [E7'] — [E7"]. We will
in addition assume that X admits an embedding j in a smooth compact orbifold ). This
is always true for the moduli spaces of stable maps X; , 4 because an embedding X — PV
induces an embedding X, 4 < (PY)g 4.

Proposition A.0.1. Denote by N:j”’ the virtual normal bundle of &, in X. Then in the
notation of Section 3.6:

A Tr(V, @ O%"

Remark A.0.2. A perfect obstruction theory E~! — E° on X induces canonically a perfect
obstruction theory on X, by taking the fixed part of the complex E, '/ — E%/. The proof
is the same as that of Proposition 1 in [GP]. This is then used to define the sheaf O%".

Remark A.0.3. It is proved in [FG]| that the Grothendieck-Riemann-Roch theorem, which
gives the fake invariants, is compatible with virtual fundamental classes and virtual funda-
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mental sheaves i.e.:

@ veoy = [ aveoy) .
[A]

where [X] is the virtual fundamental class of X and T is its virtual tangent bundle.

Remark A.0.4. The bundles V' to which we apply the proposition in Section 3 are (sums and
products of) cotangent line bundles L; and evaluation classes ev(a;). They are pull-backs
of the corresponding bundles on (PV)g,, 4.

Example A.0.5. We first look at the toy-case when there is a bundle £ on ) with a section
s:Y — FE such that X = s71(0) C Y. In this case the sheaf O%" is the K-theoretic Euler
class A*E* and the obstruction theory is the differential ds : TY — E. If we denote by 7,
the inclusion of the Kawasaki stratum ), in ) then by Kawasaki formula applied to ) we
have:

Tr (it A E7)
X (yﬂ, T AN ) . (A.2)

] © A @ T 1
X(X,OF) = x(V, A E) =) | —
PR

The following diagram:

X, oy x

j/l ]l

Vo —= Y
is cartesian hence i j . A*E* = j,(7,)*A*E*. By multiplicativity of Euler classes:
and the sheaf A*(E/)* = OY" by definition. Moreover Ny*" = N, — E™. This gives:

Tr(i* j A*E) Tr(O0%r)
f H — S ! u
X <y“’ Tr(A*NY) ) X (y“’J*Tr(A-Ngir) '

Plugging the above expression in (A.2) and pulling back to X, proves the proposition in this
case.
Before proving Proposition A.0.1 in the general case we recall a lemma of [L2] which we

will use. For any fiber square:
Vi—— V

Lo

i

B —— B
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with i a regular embedding one can define K-theoretic refined Gysin homomorphisms ' :

Ko(V) = Ko(V') (see [L2]). Consider now the diagram:

L*Cx/y —_— Cx/y

X — X

! /|

Y sy
with ¢ a regular embedding and j an embedding, C’x/y is the normal cone of X in Y and
both squares are fiber diagrams. Then Lemma 2 of [L2] states that:

i![OCX/Y] = [OCX’/Y’] S K()(L*CX/Y)' (AB)
Proof of Proposition A.0.1: we have:
(X, 7V @ 0% = x(V,V ® 5.0%).

We now apply Kawasaki’s formula to the sheaf V' ® 7,0%" on ). This gives:

o 1 Tr(V, ® it j.O%")
XYV, V08 =Y —x/ (y, o ) (A.4)
v z“: m, " Tr(A*N;)

From the fiber diagram:

Vi ==Y
and Theorem 6.2 in [FL] we have i%,7,0%" = jli;, O%". Plugging this in (A.4) gives:

Tr(V, ®1i:j,0%") Tr (V, ® jli, O%")
f I Iz X _ I M *pu~ X A
X (y“’ Tr(A*NY) > X (y“’ Tr(A*NY) ' (4.5)

Let G|, be the cyclic group generated by one element of the conjugacy class associated to
X),. Then we will show that:

Z‘! Ovir O%T
Tr| "2 ) =7 [ —2 A6
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in the G,-equivariant K-ring of &,,. This is essentially the computation of Section 3 in
[GP] carried out in C*-equivariant K-theory. Relation (A.6) then follows by embedding the
group G, in the torus and specializing the value of the variable ¢ in the ground ring of
C*-equivariant K-theory to a |G ,|-root of unity.

If we define a cone D := Cy/y Xx Ep, then this is a T) cone (see [BF]). The virtual
normal cone D" is defined as D/TY and O%" is the pull-back by the zero section of the
structure sheaf of DV, Alternatively there is a fiber diagram:

7y —— D

Lo

0p,
X — E
whre the bottom map is the zero section of Fj. Then one can define O%" as 03,03 [Op].

We'll prove formula (A.6) following closely the calculation in [GP]. First by definition of
O%" and by commutativity of Gysin maps we have :

i, O%" = 0,035,055, [Op] = 05,05, %, [Op). (A7)
We pull-back relation (A.3) to (¢),)*D = (i},)*(Cxy x Ep) to get:
1,|0p] = [Op, x (EF")"]. (A.8)

In the equality above we have used the fact that D, = Cx,/y, ¥ E(]; and we identified the
sheaf of sections of the bundle EJ* with the dual bundle (EJ")*. Plugging (A.8) in (A.7) we
get:

z’ﬂogg‘r = 059,05, [Op, x (E§")*). (A.9)

Notice that the action of T'Y), leaves D, x (E{*)* invariant (it acts trivially on (Eg*)*). Now
we can write 07, = O;yj X 07ym and since D" = D, /TY, we rewrite (A.9) as:

The proof of Lemma 1 in [GP] works in our set-up as well: it uses excess intersection
formula which holds in K-theory. It shows that the following relation holds in the C*-
equivariant K-ring of &,

* ! ™m\ * * ! m *
0y O, [Opyir x (E§')"] = O (oEl [Opyir x (EJ') ]) T (A.11)
The class 0%, [O pyir X '] lives in the C*-equivariant K-ring of Ef". The class doesn’t depend
on the bundle map E* — E7" so we can assume this map to be 0. Then by excess intersection

formula and the definition of O%" we get :

O (O’El Oy (Eé”)*]) — Oy AY(EY (A.12)
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Formula (A.12) holds because D" x (Ef") C Ef x E™ and 0, acts as 02{ X O!Ein on factors.

O!Ef [Opuir] = OF" by definition of O%. By excess intersection formula applied to the fiber
1

square:
Byt —— Eg'

OE{TL
X, —— ET"
we have O*ESnOEET[(Egl)*] = OfpmA*(EY")" = A*(EY")". Plugging formula (A.12) in (A.11)
(note that N, = TY]" and N = [Eg"] — [E"]) and taking traces proves (A.6). We now
plug (A.6) in (A.5) and then pull-back to &, to get:

Tr(V, ® j.itO%r) . Tr(o%)
f H p- X — ! r =
X (y,“ T’]”(A.Nlj) ) X (yH7Tr(Vu) ®j*TT(A.(NﬁZT)*)

_ Tr(V,® (93}:)
X (X,“ TriA(Ngr)) ) (A.13)

This concludes the proof of the proposition.





