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ABSTRACT OF THE DISSERTATION

The Development of Transition Metal Silylene and Germylene Complexes for Small
Molecule Activation

by

Marissa Christina Barrientos

Doctor of Philosophy, Graduate Program in Chemistry
University of California, Riverside, September 2019

Dr. Hill Harman, Chairperson

While N-heterocyclic carbenes (NHC) are widely recognized for their utility as cat-

alysts and ligands for catalysts, their heavier analogues, namely N-heterocyclic silylenes and

germylenes have not been as extensively explored. These divalent group-14 compounds are

intriguing as they have a more accessible empty p-orbital due to decreased overlap with the

nitrogen centered lone pairs. This fact results in both nucleophilic and electrophilic charac-

ter, or ambiphilicity, in silylenes and germylenes. We are interested in utilizing this prop-

erty to design transition metal complexes of N-heterocyclic silylenes (NHSi) and germylenes

(NHGe) Herein we report the synthesis of a several diphosphine pincer frameworks anchored

by silicon and germanium atoms. In the case of the silicon-based ligands, dichlorosilane,

hydrochlorosilane derivatives function as proligands whereas the germanium derivative is

accessible as the free germylene. Metallation of the Si-anchored pincers with the Pt group

metals (Ni, Pd, and Pt) proceeds by SiCl or SiH activation of the proligands to give divalent

square planar complexes featuring a chlorosilyl anchoring ligand. Two-electron reduction

of the Pd derivative affords a bimetallic dipalladium(0) disilylene species with inequivalent

vii



metal sites that are in dynamic exchange in solution. This bimetallic disilylene activates

the OH bonds of both water and phenol to give the corresponding disilyl dipalladium(I)

species. In contrast to the analogous dinickel system explored in our lab, it does not react

with H2. CO2 reacts with the disilylene species to give CO and a bridging disilylcarbon-

ate complex. These results highlight the viability of cooperative small molecule activation

at late-metal silylene complexes. We also report a large family of bimetallic complexes of

first row metals (Mn, Fe, Co, and Ni) supported by the germylene-anchored pincer. Unlike

the silicon-based ligands discussed above, which bind metals in a 1:1 ratio, the germylene

ligand variant typically binds two metals. These bridging germylene complexes exhibit a

range of metal-metal distances and electronic interactions resulting in both diamagnetic

and paramagnetic complexes. Unlike the silicon anchored species, the bimetallic germylene

complexes were generally electronically and/or coordinatively saturated, and thus typically

unreactive.These results highlight the substantial differences in germylene and silylene lig-

and owing to the larger size of Ge versus Si.
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Chapter 1

Introduction

Since the discovery of stable N-heterocyclic carbenes (NHCs), a great deal of re-

search has been devoted to exploring the properties of NHC’s and other stable carbenes

as ligands in transition metal catalysis.These ligands have been identified as exceptionally

strong σ-donating L-type ligands and have found use in a range of important catalytic

transformations including olefin metathesis and cross-coupling reactions, in addition to re-

actions catalyzed by NHC’s under metal-free conditions[1]. The broad utility of these stable

singlet carbenes suggests potential applications for analogues based on the heavier group 14

elements (i.e. NHE, where E = Si, Ge, Sn, etc.); however, these molecules possess substan-

tially different properties than their carbene counterparts. This is due in part to the poor

overlap between the 2p nitrogen lone pairs and the more diffuse np orbital (n > 2) on the

group 14 center.[2][3] Whereas the lowest unoccupied molecular orbital of a diaminocarbene

is highly destabilized by the nitrogen lone pairs, the less extensive π-bonding present in the

heavier analogues results in a group 14 element that possesses significant ambiphilic char-
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acter, acting as both an electrophile and a nucleophile.[4] As a result, the group 14 center

is significantly more Lewis acidic than in analogous carbenes, a feature born out in some

preliminary studies of metal-silylene reactivity.[5][6] Our aim is to exploit this feature to de-

velop transition metal-silylene and -germylene complexes capable of cooperative activation

of strong bonds across the metal-E interaction.

1.1 Carbenes

Figure 1.1: Singlet VS Triplet Carbene

Carbenes are defined as neutral compounds of divalent carbon with only six valence

electrons. Carbenes are generally either in the triplet or singlet ground state. In the triplet

state, one of the nonbonding electrons occupies the σ orbital and the other occupies the px

orbital. In the singlet state, the two nonbonding electrons occupy the σ orbital (1.1). Since

the singlet carbenes have an occupied σ orbital and empty p, they are more ambiphilic

in nature than the triplet state, and are able to act as π acceptors giving rise to a linear

geometry around the carbene.

The first isolated, stable carbene was in 1988 by Bertrand [7] quickly followed by

the first N-heterocyclic carbene (NHC) in 1991[8].However the first carbene complex was
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synthesized much earlier in 1925 by Tschugajeff, but the structure and its identity as a

diaminocarbene platinum complex was not confirmed until 1970[9],[10]. Subsequently, there

has been an explosion of research into this area with applications in a wide variety of areas

from surface chemistry, catalytic applications such as olefin metathesis and cross-coupling,

metallopharmeceuticals, and organometallic materials such as MOFs, liquid crystals, poly-

mers, and photoactive materials.

What makes carbenes so versitile is their ability to be tuned both electronically

and sterically. NHC’s can be tuned though modifying the heterocyclic backbone and ring

substituents. Carbenes can be tuned by modifying the HOMO-LUMO gap. The higher

the HOMO energy of a ligand, the stronger σ donating it is, and conversely the lower the

LUMO energy level is, the better π acceptor. NHC’s futher increase this gap from the σ

withdrawing and π donating effects of the nitrogen which increases the HOMO-LUMO gap

resutling in the increased stability of NHC’s[11],[12].

Hill 2012, 2015 [13],[14]

Braunschweig 2012 [15]
Robinson 2008 [16]

Robinson 2008 [17]

Figure 1.2: Examples of NHC’s in Main Group Chemistry

The sigma donating ability of carbenes has made them good ligands for support-

ing low valent metal and main group compounds[18]. A very limited examples of NHC’s
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and main group chemistry are show in 1.2, but there are number more examples in the

literature.[18]

Figure 1.3: 1st and 2nd Generation Grubbs Catalysts

NHC’s have also been widely explored in conjunction with metals. NHC’s have

been most predominately used with mid and late transition metals and with stability in-

creasing with the heavier 5d metals due to better π bonding. The most infamous of these

applications was the development of the Grubbs catalysts for olefin metathesis[19][20].

Interestingly, another class of carbenes, cyclic alkyl-amino carbenes (CAAC) which

are carbenes with one nitrogen to support the carbene. This difference of a σ donating car-

bon and one nitrogen instead of two nitrogens causes for a smaller HOMO-LUMO gap

compared to traditional NHC’s. This smaller HOMO-LUMO gap leads to stronger σ do-

nating and stronger π accepting qualities. This increase is seen in the ability of CAACs to

activate H2, CO, and NH3. This leads us to silylenes, which also have a promise of increased

reactivity due to their more ambiphilic nature.
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1.2 Silylenes

Figure 1.4: First Stable Silylene

The first stable silylene was isolated in 1994 by Denk et al[21] with 11 more isolable

silylenes being reported in the subsequent 15 years. The first N-heterocyclic silylene tran-

sition metal complex was isolated in 1977 by Welz and Schmid [22].

Figure 1.5: Four Types of Silylenes

There are four main types of silylene complexes. Type A compounds are analogues

of Fischer or Schrock type carbenes (=SiR2). Type B compounds are ”base stabilized”

silylenes. Type C compounds are NHSi complexes with unsaturated backboard or differing

R groups. Type D compounds are more specifically NHSi halide or hydride complexes.
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Silylenes have seen gained attention for their participation in various transfor-

mations of organosilicon compounds[23],[24],[25],[26] from the shuffling of subsituents on

silcion[27], dehydrogenative coupling of hydrosilanes[28], and silicon based catalysts for

polymerization.[29],[30],[31]. The first catalytic transformation by a silylene-metal catalyst,

which was effective in Suzuki cross-coupling reactions, was in 2001 by Fürstner[32].

Figure 1.6: Demonstration of Si and Ge tuning Ability for C-H Borylation of Arenes

As show in Figure 1.6, Driess and co-workers [33] synthesized an iridum silylene

catalyst along with the germylene analog and explored its catalyst ability for C-H bory-

lation of arenes using pinacolborane. To explore how substantial the effects of the strong

sigma donation of the silylenes and germylenes, they compared the catalytic activity to the

phosphine version of the catalyst. The phosphines, while being isoelectronic to silylenes and

germylenes, did not exhibit the same catalytic activity. Subsequently, the nickel version of

the catalyst was synthesized, and was found to be successful as a Sonogashira cross-coupling
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reaction[34].

Figure 1.7: Nickel pre-catalyst for C-C cross-coupling reactions

As much interest lies in developing first row transition metal based catalysts, Inoue

and coworkers developed a bis-NHSi pre-catalyst for C-C cross coupling reactions[35]. These

examples demonstrate that NHSi ligands are different from NHC’s; not simply isoelectronic

replacements. NHSi ligands can be tuned to influence the metal center and act as a strong

σ donor. We seek to continue the research to better understand the full potential of N-

heterocyclic silylenes in catalysis and continue exploring first row silylene and germylene

metal complexes.
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Chapter 2

Synthesis of Bidentate Phosphine

Ligands

2.1 Abstract

Scheme 2.1: Synthesis of Ligand Precursor

Here we report the synthesis of a family of group 14 PGeP and PSiP N-heterocyclic

compounds. The phosphine pincer scaffold has proven successful in its ability to act as a
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strong sigma donor to stabilize low valent metal sources. We also report attempts to isolate

the free silylene ligand which we were unable to isolate in our hands. We did successfully

synthesize the free germylene ligand.

2.2 Introduction

PBut
2
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2
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H N
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Jensen 1996 [1] Yamashita 2014 [2]

Thomas 2013 [3]

Whited 2014 [4] Polo 2017 [5] Polo 2018 [6]

Figure 2.1: Phosphine Pincer Ligands

While carbenes are ubiquitous in chemical transformations, the heavier group 14

analogs of silicon and germanium are relatively unexplored. There exists much precedence

for the synthesis of various PEP and PEP N heterocyclic ligand frameworks with carbon,

boron[7], and phosphorous. Furthermore, these N-heterocyclic frameworks are key to sup-

porting carbenes and silylenes due to stabilization from π donation from the nitrogens to

the central atom.[8] After we began our work, the silicon, germanium, and tin versions were
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later synthesized by other groups[9]. We utilized a bidentate phosphine ligand to support

various potential catalytic transformations once the ligand was bound to a metal. While

attempts to synthesize the free silylene were unsuccessful, we created a novel germylene

PGeP N-heterocyclic ligand framework. We also explored various silane ligand derivatives

in an attempt to access a silylene metal complex.

2.3 Results and Discussion

The initial inspiration for the synthesis of a bidentate phosphine silane was de-

rived from the diphenylphosphino and dicyclohexylphosphino boryl pincer (PBP) ligands

by Nozaki[10]. However, soon after the synthesis of a dihydrosilyl ligand was reported

by Whited[4] and later the dichloro and hydrochloro silyl and germylene pincer ligands

were reported by Polo[11][6]. The initial base ligand (NHCH2P
tBu2)2C6H4 was synthe-

sized according to the Nozaki prep which involved the condensation of o-phenylenediamine,

paraformaldehyde, and the desired phosphine. We synthesized both the ditertbutyl phos-

Scheme 2.2: Detailed Synthesis of Ligand Precursor
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phine and dicyclohexylphosphine derivatives. While we initially synthesized the silyl deriva-

tives using n-butyl lithium to deprotonate the bis(phosphine) diamine we later found tri-

ethylamine to be a sufficient base to mediate the insertion of the appropriate silicon or

germanium electrophile. These findings are also in agreement with the aforementioned

reports on this family of bidentate phosphine ligands.

Scheme 2.3: Routes to 3

The general synthetic approach for the targeted ligand class is outlined in 2.2. The

diaminodichlorosilane Cl2Si(NCH2PtBu2)2C6H4 1 was prepared in good yields ( 90%) via

the addition of SiCl4 to (NHCH2PtBu2)2C6H4 in the presence of NEt3 and was characterized

by 1H, 31P and 29Si NMR spectroscopy ( 31P 1H: δ 14.44; 29Si: δ -27.8). and liquid injection

field desorption ionization mass spectrometry (LIFDIMS). The related hydrochlorosilane 2

was prepared in analogous fashion using trichlorosilane ( 31P {1H}: δ 18.1 ppm, 29Si: δ29.3

ppm). Dihydrosilane analogue 3 can be prepared by two different methods: 1) the reaction

of 1 or 2 equivalents of K[HB(sec-butyl)3] with 2 or 1, respectively or 2) the reaction of

(NCH2PtBu2)2C6H4 with TEEDA(SiH2Cl2).

We pursued the synthesis of the free silylene in parallel as a more direct and

general route to metal silylene complexes of these ligands. The free silylene has proven
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Figure 2.2: Potential Routes to a Metal Silylene Complex

challenging to isolate as reduction of either 1 and 2 using a number of conditions and

reducing agents (Na, K, KC8, etc) afforded complicated mixtures of products. As an al-

ternative to the free silylene, we turned our attention to the germanium analogue, which,

owing to the increased stability of the heavier group 14 elements in low oxidation states,

could prove more synthetically tractable. The availability of a stable Ge(II) source, GeCl2-

dioxane, facilitated the successful synthesis of germylenes 4 (Ge(NCH2PC(CH3)3)2C6H4)

and 5 (Ge(NCH2PCy2)2C6H4) via NEt3 promoted metallation of (NHCH2PC(CH3)3)2C6H4

or (NHCH2P(Cy)2)2C6H4. These compounds were characterized by LIFDIMS and NMR

spectroscopy and display peaks in 31P NMR spectrum at δ 26.7 ppm and δ 8.10 ppm re-

spectively. Crystals of 4 for X-ray diffraction were grown from a concentrated cold pentane

solution of the complex. The Ge–N bond length is 1.883 Å, roughly average for Ge–N

complexes (G–N: 1.726 3.182 Å).

2.4 Experimental Section

2.4.1 Synthetic Materials and Methods

Unless started otherwise, all compounds were purchased from commercial sources

and used without further purification. Solvents were dried and deoxygenated by argon
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sparge followed by passage through an activated alumina column and were stored over 4Å

molecular sieves. All manipulations were performed under an N2 atmosphere either in a

glovebox or using standard Schlenk techniques. NMR spectra were recorded at 298K using a

Varian 300 MHz, 500 MHz, or Bruker 600 MHz instruments. Chemical shifts in 1H NMR are

referenced to deuterated solvent. Chemical shifts in 31P NMR are referenced to phosphoric

acid. Mass spectra were recorded using either an Agilent LCTOF mass spectrometer or

a Waters GCT high-resolution mass spectrometer operating in LIFDI mode. Elemental

analysis was performed by Midwest Microlab, LLC; Indianapolis, IN.

2.4.2 Cl2Si(NCH2P
tBu2)2C6H4 (1)

Triethylamine was added to a stirred solution of (NHCH2P
tBu2)2C6H4 in THF.

To this mixture, freshly distilled silicon tetrachloride was added dropwise with stirring.

Gas evolution was immediately observed. After 12 hours, the volatiles were removed in

vacuo. The resulting solid was then dissolved in ether, filtered through celite and the

filtrate pumped down to dryness. Recrystallization from hexanes/THF gave 1 as a white

crystalline solid. Yield (90%)

1H (300 MHz, C6D6): δ 6.95 (s, 4H), 3.50 (s, 4H), 1.09 (d, J=15 Hz, 36 H)

31P: δ 14.44

29Si: δ -27.8

2.4.3 HClSi(NCH2P
tBu2)2C6H4 (2)

Triethylamine was added to a stirred solution of (NHCH2P
tBu2)2C6H4 in THF. To

this mixture, freshly distilled trichlorosilane was added dropwise with stirring. Gas evolution
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was immediately observed. After 12 hours, the volatiles were removed in vacuo. The

resulting solid was then dissolved in ether, filtered through celite and the filtrate pumped

down to dryness. Recrystallization from hexanes/THF gave 2 as a white crystalline solid.

Yield (83%)

1H (300 MHz, C6D6): δ 7.45 (t,J=12 Hz, 1H), 7.13 (dd, J=3, 6 Hz, 2H), 6.95 (dd, J=3,6

Hz, 2H), 3.69 (dd, J=3,15 Hz, 2H), 3.45 (dd, J=3,15 Hz, 2H), 1.18 (d, J=15 Hz, 36H)

31P: δ 18.1

29Si: δ 29.3

2.4.4 H2Si(NCH2P
tBu2)2C6H4(3)

This compound can be prepared by two general methods.

Method A: One or two equivalents of a 1.0 M solution of K[HB(sec-butyl)3] in THF was

added to a dissolved solution of 2 or 1 respectively in THF. After 12 hours, the volatiles

were removed in vacuo and the resulting solid was redissolved in ether and filtered through

celite and pumped down to dryness.

Method B: A solution of TEEDA(SiH2Cl2) in THF was added to a stirred solution of

(NHCH2P
tBu2)2C6H4 in THF.After 12 hours, the volatiles were removed in vacuo and the

resulting solid was redissolved in ether and filtered through celite and pumped down to

dryness. Yield (78%)

1H (300 MHz, C6D6): δ 6.97 (dd, J=3, 6 Hz, 2H), 6.65 (dd, J=3,6 Hz, 2H), 6.56 (t,J=6 Hz,

1H), 3.28 (s, 4H), 1.04 (d, J=9 Hz, 36H)

31P: δ 26.1

16



2.4.5 Ge(NCH2P
tBu2)2C6H4 (4)

Triethylamine was added to a stirred solution of (NHCH2P
tBu2)2C6H4 in THF.

To this mixture, germanium chloride dioxane in a solution of THF was added dropwise with

stirring. An immediate color change to orange was observed. After 12 hours, the volatiles

were removed in vacuo. The resulting solid was then dissolved in ether, filtered through

celite and the filtrate pumped down to dryness. Recrystallization from hexanes/THF gave

4 as a white crystalline solid. Yield (68%)

1H (300 MHz, C6D6): δ 7.33 (dd, J=3, 6 Hz, 2H), 7.24 (dd, J=3,6 Hz, 2H), 4.12 (s, 4H),

1.08 (d, J=12 Hz, 36H)

31P: δ 26.7

2.4.6 Ge(NCH2PCy2)2C6H4(5)

Triethylamine was added to a stirred solution of (NHCH2PCy2)2C6H4 in THF. To

this mixture, germanium chloride dioxane in a solution of THF was added dropwise with

stirring. An immediate color change to orange was observed. After 12 hours, the volatiles

were removed in vacuo. The resulting solid was then dissolved in ether, filtered through

celite and the filtrate pumped down to dryness. Recrystallization from hexanes/THF gave

5 as a pale yellow crystalline solid. Yield (56%)

1HNMR:(600 MHz, C6D6)δ 7.36 (d, J=4.5Hz, 2H), 7.22 (d, J=4.8Hz, 2H), 4.13 (s, 4H),

1.84 (d, J=12.9 Hz, 4H), 1.73 (d, J=13.3Hz, 4H), 1.69-1.52 (m, 17H), 1.39-0.98 (m, 23H).

31PNMR: δ8.10
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2.6 Figures, Schemes, and Tables

Figure 2.3: 1HNMR of 1 in C6D6, 300MHz
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Figure 2.4: 31PNMR of 1 in C6D6, 300MHz
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Figure 2.5: 29Si{H} HSQC NMR of 1 in C6D6, 300MHz
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Figure 2.6: 1HNMR of 2 in C6D6, 300MHz
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Figure 2.7: 31PNMR of 2 in C6D6, 300MHz
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Figure 2.8: 29Si{H} HSQC NMR of 2 in C6D6, 300MHz
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Figure 2.9: 1HNMR of 3 in C6D6, 300MHz
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Figure 2.10: 31PNMR of 3 in C6D6, 300MHz
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Figure 2.11: 1HNMR of 4 in C6D6, 300MHz
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Figure 2.12: 31PNMR of 4 in C6D6, 300MHz
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Figure 2.13: 1HNMR of 5 in C6D6, 600MHz

29



Figure 2.14: 31PNMR of 5 in C6D6, 600MHz
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Figure 2.15: 13CNMR of 5 in C6D6, 600MHz
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4

chemical formula C24H44GeN2P2

formula weight 495.14
T (K) 100
l (Å) 0.71073
crystal system monoclinic
space group I 2/a(#15)
a (Å) 14.0814(4)
b (Å) 13.2784(3)
c (Å) 14.1678(6)
α (deg) 90
β (deg) 93.526(1)
γ (deg) 90
V (Å3) 2644.06(15)
Z 4
rcalcd (g/cm3 1.244
R1, RW 2 0.0196, 0.0528
GOF 1.058

Table 2.1: Crystallographic Data for Complex 4
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Figure 2.16: Thermal ellipsoid plot at 50% probability of the germylene complex 4. Orange,

blue, teal, and grey ellipsoids correspond to phosphine, nitrogen, germanium, and carbon

atoms, respectively. Hydrogen atoms bonded to carbon have been omitted for clarity.
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Chapter 3

Metallation of the Silylane

Framework

3.1 Abstract

Figure 3.1: Routes to Group 10 Metal Silyl Complexes

Seeking alternate routes to a metal silylene complex, we initially explored the met-

allation of 1 and 2 using Group 10 metals in either the 0 or 2+ oxidation state respectively.

We were successful in synthesizing a family of these complexes and explored the chemistry
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of these compounds. While we were unsuccessful in reducing these complexes, we were

successful in reacting the nickel silyl complex with MeMgBr to form 7.

3.2 Introduction

The first bis-amino metal-silylene complex was synthesized in 1994 using Ni(CO)4

and the N-hetercyclic tertbutyl silylene by West.[1]

In 2010, work by Hillhouse featured an unusual bridging of an H atom across

nickel and silicon which gives insight into the processes occurring during Si-H activation at

metals[2].

Figure 3.2: Unambiguous H atom bridging metal and silicon

After we began our work, more people found success in performing chemical trans-
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formations using first row silylene complexes. One of these was a Co(III) silylene complex

capable of performing Kumada cross-coupling reactions of aryl chlorides and bromides with

Grignards[3]. However, we began our exploration using Group 10 metals since they have

also been shown to be useful catalysts with organosilicon compounds[4]. Another advantage

of using Group 10 metals is they tend to make diagmanetic complexes which understand-

ing the results of metallations more tracktable. When we initially began, there were less

examples of Group 10 silyl complexes, but since then the area has continued to explode in

advances. There were initially advances in ”PCP” and ”PNP” pincer complexes which were

able to perfrom C-H and C-C bond activations. In 2009, Turculet et al. synthesized neutral

and cationioc platnium pincer complexes capable of Si-H bond activation[5],[6]. Platinum

complexes have also shown other reactivity such as the oxidative addition of phenol[7].

Other notable examples are various dimers of group 10 silyl complexes[8].

3.3 Results and Discussion

Scheme 3.1: Synthesis of 6

Since we had little success in isolating a free silylene ligand, we sought an alterna-
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tive route. We began by exploring the metallation reactions of ligand precursors 1 and 2

and focused on the Group 10 metal complexes. NiCl2Si(NCH2PtBu2)2C6H4 (6), an orange,

air-sensitive solid, could be conveniently prepared in good yield (50%) by reaction of 2

with NiCl2 and a base. Alternatively, 6 can be prepared by addition of Ni(COD)2 to 1 via

oxidative addition of the silicon-chloride bond. Complex 6 was characterized by LIFDIMS,

NMR, spectroscopy, and X-ray crystallography. Importantly, in the 31PNMR of 6 a peak is

observed at δ93.22ppm, which is significantly (δ111.36ppm) downfield of the peak observed

for the free ligand precursor, characteristic of a phosphine bound to a metal. Similarly,

the 29SiNMR spectrum shows a peak at δ52.35ppm, significantly downfield of the starting

material. The 29SiNMR spectrum also displays Si coupling of 53.6 Hz and the same can be

seen in the 31PNMR spectrum.

Scheme 3.2: Synthesis of 7

Crystals suitable for X-Ray diffraction were grown from the slow evaporation of a

benzene solution of 6. The solid-state structure of 6 features a tetrahedral chlorosilyl ligand

bound to a distorted square planar Ni complex. The Ni-Si bond has an average distance of

2.1388Å and is consistent with silyl ligand ligation to Ni(II) (avg Ni-Si distance 2.0376Å)

The reactivity of 6 was explored. Addition of excess MeMgBr to 6 yielded a

new product with was identified as 7. A new peak in the 1HNMR of 7 at δ0.7 of rela-
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tive integration of 3 was assigned to a methyl group not present in the starting complex.

Crystals of 7 suitable for X-ray diffraction were grown from slow evaporation of a benzene-

hexamethyldisiloxane (HMDSO) solution. The structure confirmed the substitution of chlo-

ride for methyl at silicon as well as halogen exchange at Ni, with MeMgBr the likely source

of bromide.

Reduction of 6 was attempted under a wide range of conditions (i.e, hydride

reagents, alkali metals, etc) in order to access a low valent species capable of interesting re-

activity. Unfortunately, despite all efforts, no one product could be obtained cleanly. Given

that the cyclcohexyl variation of 6 and 8 can be reduced to form silylene-metal dimers, it

suggests the tert-butyl groups are too bulky and prevent dimerization of 6 upon reduction.

The 1HNMR spectra of the crude reaction mixtures of reduction attempts with 6 invariably

showed peaks below δO, consistent with the presence of metal hydride(s). Formation of a

highly unstable species which undergoes C-H activaiton may explain this observation.

Scheme 3.3: Synthesis of 8

We next sought to explore the rest of the group 10 elements. We found that we

could prepare the palladium and platinum complexes by similar methods. Using 2 and

PdCl2 in the precense of a base while stirring for three days, we noticed a color change to a
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dark orange solution. A new peak in the 31PNMR confirmed the presence of a new metals

species.

Scheme 3.4: Synthesis of 9

Next to complete the series we prepared the platinum complex, 9 using PtCl2 and

the 2 in the precense of a base. A light yellow compound was formed. The 29Si NMR

revealed an interesting spectrum since Pt has an NMR active nuclei at 33% abundance.

Looking at ?? shows a central triplet peak from Si-P coupling (9.54 Hz) then two smaller

peaks from the Si-Pt coupling (1662 Hz). The 31PNMR reveals a similar pattern with the

Pt-P coupling being 3,053 Hz.

3.4 Experimental Section

3.4.1 NiCl2Si(NCH2P
tBu2)2C6H4 (6)

The compound can be prepared by the following two methods.

Method A: 1 was dissolved in minimal THF. To this stirring solution, a solution of Ni(COD)2

in THF was added. An immediate color change to burnt orange was observed. The solution

was then filtered, concentrated, and dissolved in minimal benzene to yield orange crystals.
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Method B: 2 was dissolved in minimal THF. Excess triethylamine was also added to the so-

lution. Anhydrous NiCl2 was then added as a suspension in THF. The reaction was allowed

to go overnight after which the solution appeared a darker orange. The reaction mixture

was filtered through celite and concentrated and diluted with hexanes to yield crystals.

1HNMR:(600 MHz, C6D6)δ 6.94 (d, J=6.0, 2H), 6.64(d, J=6.0Hz, 2H), 3.15 (s, 4H), 1.42

(d, J=6.0 Hz, 18), 1.13 (d,J=6.0Hz, 18H)

31PNMR (243 MHz, C6D6): δ 93.22 (s).

13CNMR (151 MHz, C6D6): δ 141.44 (s), 118.76 (s), 109.91 (s), 41.35 (s), 36.54 (s), 30.28

(s), 29.76(s).

29SiNMR (119 MHz, C6D6): δ 52.34 (t, J=52.36Hz).

3.4.2 NiMeBrSi(NCH2P
tBu2)2C6H4 (7)

6 was dissolved in THF and cooled to -78◦C. To this was added a 3.1M solution

of MeMgBr in THF in excess. The solution was slowly warmed and became a dark brown

solution. The volatiles were removed in vacuo. The solid was then redissolved in mini-

mal benzene and the product crashed out with ether. The compound was then dissolved in

minimal THF/hexanes to give dark orange crystals. 31PNMR (243 MHz, C6D6): δ 100.8 (s).

3.4.3 PdCl2Si(NCH2P
tBu2)2C6H4 (8)

The compound can be prepared by the following two methods.

Method A: 1 was dissolved in minimal THF. A solution of Pd(PPh3)4 dissolved in THF
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was added to the ligand. A color change to dark yellow was immediately observed. After

several hours, the solution was diluted with hexanes. The solution was cooled to -35◦C and

crystals formed. The crystals were isolated as a light orange-yellow solid.

Method B: 2 was dissolved in THF. To this was added excess triethylamine. Then a sus-

pension of anhydrous PdCl2 in THF was added. The mixture was allowed to stir overnight.

The reaction was then filtered through celite and the volatiles were removed in vacuo. The

mixture was then recrystalized from minimal DCM/ether. 1HNMR:(400 MHz, C6D6) 6.91

(dd, J = 5.6, 3.3 Hz, 2H), 6.61 (dd, J = 5.6, 3.3 Hz, 2H), 3.32 (dt, J = 5.8, 3.0 Hz, 4H),

1.32 (t, J=5.6Hz 18H), 1.12 (t, J=5.6 Hz, 18H).

31PNMR (243 MHz, C6D6): δ 103.37 (s).

29SiNMR (119 MHz, C6D6): δ 59.07 (t, J=59.07Hz).

3.4.4 PtCl2Si(NCH2P
tBu2)2C6H4 (9)

The compound can be prepared by the following two methods.

Method A: 1 was dissolved in minimal THF. A suspension of Pt(PPh3)4 in THF was added.

The reaction was allowed to stir overnight resulting in a light yellow solution. The mixture

was concentrated and to this was added hexanes. The solution was then cooled and allowed

to stand in a -35◦C fridge until crystals formed.

Method B: 2 was dissolved in THF. To this was added excess triethylamine. Then a sus-

pension of anhydrous PtBr2 in THF was added. The solution was allowed to stir overnight

resulting in a brown/yellow solution. The volatiles were removed in vacuo. The mixture

was recrystallized from DCM/ether to give yellow crystals.
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31PNMR (243 MHz, C6D6): δ 97.01 (s/d, textitJPt−P= 3053Hz).

29SiNMR (119 MHz, C6D6): δ 53.91 (t/dt, JSi−P=9.54Hz,JSi−Pt=1661Hz ).
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3.6 Figures, Schemes, and Tables

Figure 3.3: 1HNMR of 6 in C6D6, 600MHz.
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Figure 3.4: 31PNMR of 6 in C6D6, 600MHz.
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Figure 3.5: 13CNMR of 6 in C6D6, 300MHz.
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Figure 3.6: 29SiNMR of 6 in C6D6, 600MHz.
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Figure 3.7: 1HNMR of 8 in C6D6, 400MHz.
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Figure 3.8: 31PNMR of 8 in C6D6, 300MHz.
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Figure 3.9: 13CNMR of 8 in C6D6, 600MHz. Impurities are denoted with a *
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Figure 3.10: 29SiNMR of 8 in C6D6, 600MHz.
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Figure 3.11: 31PNMR of 9 in C6D6, 600MHz.
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Figure 3.12: 29SiNMR of 9 in C6D6, 600MHz.
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Chapter 4

Metallation of the Germylene

Ligand

4.1 Abstract

After exploring Group 10 metal chemistry, we sought to explore the other first

row elements. We initially explored cobalt, but soon found that the germanium pincer

framework afforded a variety of bimetallic complexes. This is surprising given that there

remain relatively few examples of bimetallic silylene and germylene complexes and few

examples of heavier tetrylenes in metal complexes. We were successful in synthesizing a

family of cobalt, iron, manganese bimetallic complexes and compared their properties.
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Figure 4.1: Family of Bimetallic Germanium Complexes

4.2 Introduction

When we began the exploration of these complexes the germanium complex 4

and its related metal complexes were unreported in the literature. Since then this area

of chemistry has been further explored[1],[2],[3],[4]. Once we discovered that we could pro-

duce bimetallic complexes, we sought to exploit a potential for bimetallic reactivity. There

have been several instances in the literature of bimetallic reactivity to perform carbene

transfers[5],[6]. Furthermore, there existed bimetallic group 14 Ru and Rh complexes, but at

the time we began exploring the chemistry, there were very few first row metal complexes[7].
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4.3 Results and Discussion

The increased stability of the heavier group 14 elements made exploring the germy-

lene derivative more attractive than attempts to make a silylene ligand precursor. Further-

more the availability of a Ge(II) source, GeCl2-dioxane facilitated the successful synthesis of

5 as described in Chapter 2. Initially the goal was to synthesize a metal-germylene complex.

However, we realized the germylene ligand may be unsuitable for supporting monometallic

complexes due to the difficulty of coordinating all three donor atoms to the same metal.

We therefore examined the synthesis of bimetallic systems.

Figure 4.2: Family of Silyl and Germanyl Carbaonyl Complexes

The reaction of Co2(CO)8 with 5 affords the bimetallic cobalt complex

GeCo2(CO)6(NCH2PCy2)2C6H4 (10) as an air-sensitive dark red powder after column chro-

matography. Crystals of 10 for X-ray diffraction were grown from a concentrated solution

of pentane and HMDSO and the solid-state structure is shown in Figure 4.20. The germa-

nium has a tetrahedral geometry while each cobalt center is in a distored trigonal bipyra-

midal geometry. There is no direct Co-Co bonds with a Co-Co distance of 4.123Åand no
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bridging carbonyl ligands. Our findings are in agreement with the conclusions of Cabeza

et al.[1] where they concurrently synthesized the tert-butyl derivative of 10. We heated

10 at 100◦ under vacuum in an attempt to liberate some of the CO ligands. This gave

rise to a new peak in the 31P NMR spectrum at 99.2 ppm corresponding to the complex

GeCo2(CO)5(NCH2PCy2)2C6H4 (11)

(a) MO of 10 (b) MO of 11

Figure 4.3: Calculated MO’s for 10 and 11 using ORCA Triplet Basis Set FQ OPT

We next sought to synthesize the analogous iron and manganese complexes. Due

to the toxicity of Ni(CO)4 we did not attempt to synthesize the analogous nickel complex

via the metal carbonyl precursor. We did attempt to synthesize a nickel complex using

nickel bis(triphenylphosphine) dicarbonyl but were unsuccessful in isolating a compound

with nickel complexed to the ligand framework.

The reaction of Fe2(CO)9 with 5 affords the bimetallic iron complex

GeFe2(CO)5(NCH2PCy2)2C6H4 (12) as air-sensitive red crystals after recrystallization from
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Scheme 4.1: Synthesis of 12

minmal THF/hexanes. Crystals suitable for X-ray diffraction were from from a concen-

trated solution of THF/hexanes and the solid-state structure is shown Figure 4.22. The

germanium has a tetrahedral geometry and each iron center is in a distorted octahedral ge-

ometry. The Fe-Fe distance is 2.870Åwhich is slightly above the average Fe-Fe bond length

of 2.616Åand suggests there is a iron-iron bond which is in agreement of the NMR data

showing 12 to be a diamagnetic compound.

Scheme 4.2: Synthesis of 13

The reaction of Mn2(CO)10 with 5 affords the analogous manganese complex
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GeMn2(CO)8(NCH2PCy2)2C6H4 (13). The reaction mixture was purified through column

chromotography using silica in the glovebox to give an orange solid. Crystals suitable for

X-Ray diffraction were grown from a concentrated solution of THF/hexanes. The solid state

structure is similar to 10 with a very long Mn-Mn distance of 4.563Åand indicates there is

no metal-metal bond. Interestingly, the analogous tertbutyl complex that was synthesized

by Cabeza et al[4] displays very similar Mn-Mn of 4.5162Åand similar characteristics. Of

note is The germanium exhibits a tetrahedral geometry and each manganese exhibits a

distorted octahedral geometry.

Scheme 4.3: Synthesis of 14

We next sought routes to access other bimetallic complexes that were not satur-

tured with carbonyl ligands. We decided upon the known complex cobalt pentamethyl-

cyclopentadiene bis(trimethyl(vinyl)silane) for an accessible low valent metal source with

labile trimethyl(vinyl)silyl ligands. The reaction of 5 with pentamethylcyclopentadiene

bis(trimethyl(vinyl)silane) affords the compound GeCo2(C5Me5)2(NCH2PCy2)2C6H4 (14)

as a dark purple solid. Crystals suitable for X-Ray diffraction were grown from minimal

THF/hexanes. The cobalt-cobalt metal distance is 4.306Å which suggests there is no cobalt-
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cobalt bond. This is consistent with the compound being a Co1+ 17e− complex as supported

by the paramagnetic 1H NMR spectrum. Furthermore, we were unable to obtain a 31Pnmr

which further supports that 14 is paramagnetic. We attempted to explore reactivity with

14, but it was generally unreactive or the reactions were unproductive.

Scheme 4.4: Synthesis of 15

We then sought to replace the pentamethylcyclopentadiene with a smaller ligand.

We then attempted to synthesize the analogous iron cyclopentadiene complex using the

starting material iron cyclopentadiene benezene and generating the reduced species insitu

and adding 5 to the mixture resulting in a green complex GeFe2(C5H5)2(NCH2PCy2)2C6H4

(15). The solution was filtered, concentrated and diluted with hexanes to afford dark olive

green crystals. However, instead of forming the Fe cyclopentadiene bimetallic complex, we

actually isolated a dimer, with one phosphine arm uncoordinated on each ligand. This is

consistent with the 31P NMR containing two phosphorus signals. The complex exhibits C2

rotational symmetry. The iron-iron distance is 2.949Å which suggests there is an iron-iron

bond. This is consistent with the compound exhibiting a diamagnetic NMR spectrum. The

germanium has a tetrahedral geometry and each iron center displays a distorted trigonal

bipyramidal geometry.
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4.4 Experimental Section

4.4.1 Synthetic Materials and Methods

Unless started otherwise, all compounds were purchased from commercial sources

and used without further purification. Solvents were dried and deoxygenated by argon

sparge followed by passage through an activated alumina column and were stored over 4Å

molecular sieves. All manipulations were performed under an N2 atmosphere either in a

glovebox or using standard Schlenk techniques. NMR spectra were recorded at 298K using a

Varian 300 MHz, 500 MHz, or Bruker 600 MHz instruments. Chemical shifts in 1H NMR are

referenced to deuterated solvent. Chemical shifts in 31P NMR are referenced to phosphoric

acid. Mass spectra were recorded using either an Agilent LCTOF mass spectrometer or

a Waters GCT high-resolution mass spectrometer operating in LIFDI mode. Elemental

analysis was performed by Midwest Microlab, LLC; Indianapolis, IN.

4.4.2 GeCo2(CO)6(NCH2PCy2)2C6H4 (10)

A solution of cobalt octacarbonyl in THF and a solution of 5 in THF were added

to a shlenk bomb and heated at 65◦C overnight. The volatiles were removed in vacuo. The

resulting solid was extracted with hexane, filtered through celite, concentrated, and cooled

to -35◦C to give dark red crystalline material.

1HNMR:(600 MHz, C6D6)δ 6.81 (dd, J=7.8, 3.8 Hz, 2H), 6.73(dd, J=4.4Hz, 2H), 4.13 (dd,

J=13.9, 6.8Hz, 2H), 3.08 (t, J=13.5Hz, 2H), 1.92-1.79 (m, 7H), 1.40-1.31 (m, 4H), 1.06 (t,

J=12.4 Hz, 7H), 0.99-0.92 (m, 2H), 0.84-0.76 (m, 4H), 0.78-0.67 (m, 4H).

31PNMR (243 MHz, C6D6): δ 121.11 (s).
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13CNMR (151 MHz, C6D6): δ 205.57 (s), 145.03 (s), 118.39 (s), 112.03 (s), 43.98 (s), 37.56

(s), 37.48(s), 36.50 (s), 36.41 (s), 29.93 (s), 29.78 (s), 29.30 (s), 28.74 (s), 27.86 (s), 27.79

(s), 27.71 (s), 27.65 (s), 27.59 (s), 27.50 (s), 27.44 (s), 26.59 (s).

4.4.3 GeCo2(CO)5(NCH2PCy2)2C6H4 (11)

A solution of 10 in THF is placed under static vacuum and heated at 80◦C for

three days with the vacuum being renewed each day. The volatiles were removed in vacuo

and the resulting solid was recrystallized in minimal THF/hexanes.

1HNMR:(600 MHz, C6D6)δ 7.12 (s, 2H), 6.93(s, 2H), 3.72 (s, 4H), 1.89 (m, 8H), 1.618 (s,

4H), 1.53 (m, 14H), 1.35 (m, 6H), 1.19 (m, 6H), 1.06 (m, 14H).

31PNMR (243 MHz, C6D6): δ 99.99 (s).

13CNMR (151 MHz, C6D6): δ 142.0 (s), 118.98 (s), 110.08 (s), 38.39 (s), 38.21 (s), 37.74(s),

37.61 (s), 28.42 (s), 27.94 (s), 29.45 (s), 29.41 (s), 28.35 (s), 26.52 (s).

4.4.4 GeFe2(CO)5(NCH2PCy2)2C6H4 (12)

A solution of iron nonacarbonyl in dioxane and a solution of 5 in dioxane were

added to a Straus flask. The flask was then placed under a static vacuum and heated at 86◦C

for 4 days. The volatiles were removed in vacuo and the resulting solid was recrystallized

from minimal THF/hexanes to give red crystals.

1HNMR:(600 MHz, C6D6)δ 7.12 7.08 (m, 2H), 6.92 6.87 (m, 2H), 3.27 (s, 4H), 2.08 (d, J

= 10.0 Hz, 4H), 1.93 (d, J = 12.9 Hz, 5H), 1.84 (d, J = 12.9 Hz, 5H), 1.60 (d, J = 13.7 Hz,

9H), 1.47 (d, J = 11.8 Hz, 5H), 1.35 (q, J = 13.0 Hz, 4H), 1.24 (q, J = 12.5 Hz, 4H), 1.06

(dt, J = 22.3, 12.0 Hz, 11H).
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31PNMR (243 MHz, C6D6): δ 88.28 (s).

13CNMR (151 MHz, C6D6): δ 214.86 (s), 143.65 (s), 118.98 (s), 110.00 (s), 39.15 (s), 38.96

(s), 38.83 (s), 29.29 (s), 28.95 (s), 27.80 (s), 27.73 (s), 27.66 (s), 26.27 (s). Anal. Cald for

C38H52Fe2GeN2O6P2: C: 51.92, H: 5.96, N: 3.19, Found: C: 52.40, H: 6.13, N: 2.92

4.4.5 GeMn2(CO)8(NCH2PCy2)2C6H4 (13)

A solution of dimanganese decacarbonyl in tetrahydrofuran and a solution of 5

in tetrahydrofuran were added to a Straus flask. The flask was then placed under a static

vacuum and heated 80C for 3 days. The volatiles were removed in vacuo. The resulting

solid was then purified by column chromatography in a nitrogen glovebox using a mixture

of THF/hexanes. The product was then further purified by recrystallization from minimal

THF/hexanes to give orange crystals.

1HNMR:(600 MHz, C6D6)δ 6.82 (dd, J = 5.8, 3.2 Hz, 2H), 6.75 6.71 (m, 2H), 4.12 (dd,

2H), 3.04 (dd, 2H), 2.21 (s, 1H), 2.10 (d, J = 9.4 Hz, 2H), 1.94 (d, J = 11.8 Hz, 7H), 1.86

(d, J = 15.0 Hz, 5H), 1.71 1.66 (m, 3H), 1.62 (d, J = 12.3 Hz, 3H), 1.54 (t, J = 15.6 Hz,

9H), 1.44 (dtd, J = 17.0, 10.5, 8.8, 4.6 Hz, 7H), 1.36 (s, 3H), 1.20 1.01 (m, 10H), 0.99 0.94

(m, 4H), 0.86 (s, 1H), 0.84 (s, 5H).

31PNMR (243 MHz, C6D6): δ 108.8

13CNMR (151 MHz, C6D6): δ 147.13 (s), 117.70 (s), 110.12 (s), 42.65 (s), 42.55 (s), 39.66

(s), 39.57 (s), 39.29 (s), 39.21 (s), 31.16 (s), 30.99 (s), 30.26 (s), 30.13 (s), 27.97 (s), 27.91

(s), 27.80 (s), 27.74 (s), 27.68 (s), 26.56 (s), 26.47 (s).

Anal. Cald for C40H52Mn2GeN2O8P2 + 1
2(C6H12): C: 52.89, H: 6.09, N: 2.87, Found: C:

52.91, H: 6.20, N: 2.90
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4.4.6 GeCo2(C5Me5)2(NCH2PCy2)2C6H4 (14)

A solution of cobalt pentamethylcyclopentadiene bis(trimethyl(vinyl)silane) in pen-

tane was added to a slurry of 5 in pentane. The reaction was stirred overnight and the

precipitated solids were collected by filtration and washed with small portions of pentane.

The crude product was then recrystallized in minimal THF/hexanes to give dark purple

crystals.

4.4.7 GeFe2(C5H5)2(NCH2PCy2)2C6H4 (15)

This compound can be prepared by two different methods.

Method A: A solution of iron cyclopentadiene benzene hexafluorophosphate in THF is

added to an excess amount of sodium. The reduction proceeds for approximately 20-30

minutes resulting in a dark green solution. The reaction mixture is then filtered through

celite into a solution of 5 in THF and stirred overnight. The volatiles were removed in vacuo

and the resulting solid was recrystalized from minimal THF/hexanes giving dark olive green

crystals.

Method B: A solution of 5 in THF is added to a solution of iron cyclopentadienyl

benzene hexafluorophosphate in THF and a stochiometric amount of sodium metal. The

reaction is stirred overnight. The volatiles were removed in vacuo and the resulting solid

was recrystalized from minimal THF/hexanes.
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4.6 Figures, Schemes, and Tables

Figure 4.4: 1HNMR of 10 in C6D6, 600MHz Residual hexane is designated with a *.
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Figure 4.5: 31PNMR of 10 in C6D6, 600MHz
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Figure 4.6: 13CNMR of 10 in C6D6, 600MHz Residual hexane is designated with a *.

68



Figure 4.7: FTIR spectrum of 10
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Figure 4.8: 1HNMR of 11 in C6D6, Impurities and residual solvent is denoted with a *.
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Figure 4.9: 31PNMR of 11 in C6D6.
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Figure 4.10: 13CNMR of 11 in C6D6.
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Figure 4.11: 1HNMR of 12 in C6D6 Residual dioxane and silicon grease is denoted with a

*.
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Figure 4.12: 31PNMR of 12 in C6D6 Impurities are denoted with a *
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Figure 4.13: 13CNMR of 12 in C6D6 Impurities are denoted with a *
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Figure 4.14: FTIR of 12
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Figure 4.15: 1HNMR of 13 in C6D6 Residual HMDSO, silicon grease and pentane are

denoted with a *.
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Figure 4.16: 31PNMR of 13 in C6D6
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Figure 4.17: 13CNMR of 13 in C6D6
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Figure 4.18: FTIR of 13
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10 11 12

chemical formula C38H52Co2GeN2O6P2 C37H52Co2GeN2O5P2 C38H52Fe2GeN2O6P2

formula weight 885.20 857.19 879.04
T (K) 100 100 100
l (Å) 0.71073 0.71073 0.72073
crystal system monoclinic monoclinic monoclinic
space group P 21/c (#14) P21/n P 21/c (#14)
a (Å) 15.2631(2) 14.8753(3) 13.8066(4)
b (Å) 14.6858(2) 16.5205(3) 16.7541(5)
c (Å) 18.7496(3) 15.5405(3) 17.1755(6)
α (deg) 90 90 90
β (deg) 107.9143(5) 98.4187(10) 92.3893(5)
γ (deg) 90 90 90
V (Å3) 3998.98(10) 3777.89(13) 3969.5(2)
Z 4 4 4
rcalcd (g/cm3 1.470 1.507 1.471
R1, RW2 0.0319, 0.0615 0.0468, 0.0650 0.0330, 0.0666
GOF 1.067 1.036 1.033

Table 4.1: Crystallographic Data for Complex 10, 12
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13 14 15

chemical formula C45.08H63.86GeMn2N2O8P2 C52H82Co2GeN2P2 C82H113Fe2Ge2N4P4

formula weight 1006.27 987.58 1555.68
T (K) 100 100 100
l (Å) 0.71073 0.71073 0.71073
crystal system triclinic triclinic triclinic
space group P -1 (2)1 P -1 (2) P -1 (2)
a (Å) 13.4157(5) 12.2765(3) 14.9894(8)
b (Å) 13.8194(5) 14.5534(4) 17.1562(9)
c (Å) 14.842(6) 15.0356(4) 17.8246(9)
α (deg) 94.2153(6) 84.5532(4) 113.5344(9)
β (deg) 110.3228(6) 88.6096(4) 102.0215(9)
γ (deg) 110.5939(6) 65.5674(4) 97.3694(9)
V (Å3) 2355.37(16) 2434.39(11) 39994.5(4)
Z 2 2 2
rcalcd (g/cm3 1.419 1.347 1.293
R1, RW2 0.0377, 0.0986 0.0268, 0.0637 0.0521, 0.0889
GOF 1.108 1.045 1.022

Table 4.2: Crystallographic Data for Complex 13, 14, 15
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Figure 4.19: 1HNMR of 14 in C6D6 Residual HMDSO, silicon grease and pentane are

denoted with a *.
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Figure 4.20: Thermal ellipsoid plot at 50% probability of the bimetallic cobalt carbonyl

complex 10. Orange, gray blue, teal, blue, red and grey ellipsoids correspond to phosphorus,

nitrogen, germanium, cobalt, oxygen and carbon atoms, respectively. Hydrogen atoms

bonded to carbon have been omitted for clarity.
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Figure 4.21: Thermal ellipsoid plot at 50% probability of the bimetallic cobalt carbonyl

complex 11. Orange, gray blue, teal, blue, red and grey ellipsoids correspond to phosphorus,

nitrogen, germanium, cobalt, oxygen and carbon atoms, respectively. Hydrogen atoms

bonded to carbon have been omitted for clarity.
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Figure 4.22: Thermal ellipsoid plot at 50% probability of the bimetallic iron carbonyl

complex 12. Light orange, gray blue, teal, orange, red and grey ellipsoids correspond to

phosphorus, nitrogen, germanium, iron, oxygen and carbon atoms, respectively. Hydrogen

atoms bonded to carbon have been omitted for clarity.
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Figure 4.23: Thermal ellipsoid plot at 50% probability of the bimetallic manganese carbonyl

complex 13. Light orange, gray blue, teal, purple, red and grey ellipsoids correspond

to phosphorus, nitrogen, germanium, manganese, oxygen and carbon atoms, respectively.

Hydrogen atoms bonded to carbon have been omitted for clarity.
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Figure 4.24: Thermal ellipsoid plot at 50% probability of the bimetallic cobalt complex 14.

Light orange, gray blue, teal, blue and grey ellipsoids correspond to phosphorus, nitrogen,

germanium, cobalt, and carbon atoms, respectively. Hydrogen atoms bonded to carbon

have been omitted for clarity.
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Figure 4.25: Thermal ellipsoid plot at 50% probability of the bimetallic iron complex 15.

Light orange, gray blue, teal, orange and grey ellipsoids correspond to phosphorus, nitrogen,

germanium, iron, and carbon atoms, respectively. Hydrogen atoms bonded to carbon have

been omitted for clarity.
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Chapter 5

Reactivity with Carbon Dioxide

5.1 Abstract

We were successful in synthesizing a reduced Pd silylene dimer capable of small

molecule activation. The Pd(0) dimer complexes was shown to be reactive with carbon

dioxide to form a carbonate adduct. The complex also reacted with water and various

O-atom sources. While these processes are not catalytic, they still provide fundamental

insight on the reactivity of this class of Pd silylene dimers.

5.2 Introduction

With the beginning of the industrial revolution, there seems to be a rise in the level

of atmospheric carbon dioxide as a result of anthropogenic activities. As levels of carbon

dioxide rise, scientists turn towards carbon neutral based approaches to energy by seeking

ways to capture CO2 from the atmosphere and convert it into methanol and other fuels
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Figure 5.1: Rising Levels of Carbon Dioxide: Climate.gov ”Climate Change: Atmospheric

Carbon Dioxide”

photocatalytically. However there are many challenges associated with this process[1][2].

If we begin to examine the different reactions necessary to convert carbon dioxide

to fuel, we see that many of these processes are multi-electron involving 4, 6, and up to 8

electrons. One major challenge is that many metal oxidation/reduction processes involve

only 1 or 2 electron processes, so finding a system capable of multi-electron processes is a

challenge. Furthermore, there are also competitive reactions which make this difficult such

as the completing H+ to hydrogen reduction which occurs at a higher potential.

To solve this issue, nature has created enzymes, carbon monoxide dehydrogense,

capable of converting carbon dioxide to carbon monoxide. These enzymes contain bimetallic
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E◦(v)
CO2 + e− −→ CO2

−. -1.9 (5.1)
CO2 + 2e− + 2H+ −→ CO + H2O -0.53 (5.2)
CO2 + 2e− + 2H+ −→ HCOOH -0.61 (5.3)
CO2 + 4e− + 4H+ −→ H2CO + H2O -0.48 (5.4)
CO2 + 6e− + 6H+ −→ H3COH + H2O -0.38 (5.5)
CO2 + 8e− + 8H+ −→ CH4 + 2H2O -0.24 (5.6)
H+ + 2e− −→ H2 -0.41 (5.7)

metal ceters, one being Fe-Ni based, the other Mo-Cu. Taking inspiration from these

bimetallic catalysts, we hoped to explore similar reactivity with our bisphosphino Pd silylene

dimer. We also sought to pursue late group 10 transition metals since another challenge of

carbon dioxide activation is breaking the M-O bond once formed. However group 10 M-O

bonds are weaker making potential catalytic transformations more facile[3].

In the literature, there exists relatively few examples of group 10 bimetallic silylene

complexes. There is a diiron (I) complex that reacts with CO2 to give a carbonate adduct

and CO[4]. However, there is precedent for group 10 reactivity with carbon dioxide. The

first nickel-CO2 adduct was isolated in 1975[5], and more recently in an analogous compound

was isolated in 2010 by Hillhouse[6]. In attempts to mimic the CODH active site, Lee et al,

synthesized a Ni-Fe bimetallic complex by adding an iron fragment to a Ni-CO2 adduct[7].

5.3 Results and Discussion

While we were unable to isolate a reduced species of 6, a co-worker, Amy Bartrom

Jehl, had sucess in reducing the analogous compound with cyclohexyl phosphine arm sub-

stituents as opposed to tert-butyl substituents. The reduction of this compound resulted

in a nickel silylene dimer. We suspect that the tert-butyl substituents are too bulky and
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Scheme 5.1: Reduction of 19 to 16

prevent the reduced species from dimerizing. Without this dimerization, we have been

otherwise unable to isolate a stable reduced species[8]. This discovery led us to explore

whether the palladium cyclohexyl compound, 19 could also be reduced. We began by using

the same procedures previously established by Amy, and found that reduction of 19 using

2.2 equivalents of KC8 in benzene resulted in a dark green compound. This compound

is very similar spectroscopically to its nickel analog. At room temperature, we observe a

very broad 31PNMR around 73 ppm. After performing VT experiments, we concluded this

broad signal is due to fluctional behavior. Based off of calculations using the VT spectrum

in 5.5 we estimated the energy difference between the two conformers to be approximately

.22kJ/mol. At low temperatures, we see two phosphine signals consistant with C2 rotational

symmetry as there are a total of 4 phosphines. At high temperatures the fluctional behav-

ior makes all phosphines equivalent as indicated by a single PNMR peak around 73ppm.

This dynamic behavior is similar to that observed in the nickel silylene cyclohexylphosphine

dimer.

We next sought to explore reactivity. Interestingly, in our hands, we were unable

to get 16 to react with H2. We did have success in reacting 16 with 2 equivalents of carbon

93



Figure 5.2: E-H Activation with 16

dioxide to form 17 and releasing an equivalent of carbon monoxide. When we react 16 with

one equivalent of carbon dioxide, we get a new compound, but we have been unsuccessful

in isolating the compound. From the phosphorus NMR, we know it is a product that has

C2 rotational symmetry, but further studies are needed in this area. The carbonate is

added across the silicon with silicon being 5 coordinate, but formally Si(IV) with one of

the palladium’s acting as an L type ligand to support one silicon. This difference in types

of bond to each silicon from the palladium is supported by the differences in bond lengths.

Each silicon center has one bond length of 2.6 Å to one Pd center and 2.4 Å to the other

Pd.

We also explore the reactivity of 16 with various oxygen atom sources such as

oxygen, pyridine n-oxide, and nitrous oxide. Each reaction gave a consistent product 18

as most easily characterized by two 31PNMR signals at 52 and 45.8 ppm 5.14. This also
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Figure 5.3: Various routes to 18

indicates that the molecule posses C2 symmetry. These results are also consistent with

results from co-workers in the lab on the analogous nickel oxygen bridged compound.

5.4 Experimental Section

5.4.1 Synthetic Materials and Methods

Unless started otherwise, all compounds were purchased from commercial sources

and used without further purification. Solvents were dried and deoxygenated by argon

sparge followed by passage through an activated alumina column and were stored over 4Å

molecular sieves. All manipulations were performed under an N2 atmosphere either in a

glovebox or using standard Schlenk techniques. NMR spectra were recorded at 298K using a

Varian 300 MHz, 500 MHz, or Bruker 600 MHz instruments. Chemical shifts in 1H NMR are

referenced to deuterated solvent. Chemical shifts in 31P NMR are referenced to phosphoric

acid. Mass spectra were recorded using either an Agilent LCTOF mass spectrometer or

a Waters GCT high-resolution mass spectrometer operating in LIFDI mode. Elemental

analysis was performed by Midwest Microlab, LLC; Indianapolis, IN.
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5.4.2 Si2Pd2((NCH2PCy2)2C6H4)2 (16)

19 was dissolved in a solution of minimal benzene. A suspension of potassium

naphthalenide in benzene was added to this solution with mixing. The reduction was mon-

itored by 31PNMR and after approximatley one hour the reaction was determined to by

done as characterized by a broad peak at 72.54 ppm in the 31PNMR as shown in 5.5. The

reaction mixture was filtered through a pad of celite and the volatiles were evaporated un-

der reduced pressure. The resulting solid was recrystalized from a concentrated solution of

ether to give dark green crystals.

1HNMR:(600 MHz, C6D6)δ 6.96 (dt, J = 6.2, 3.0 Hz, 4H), 6.86 (dt, J = 6.2, 3.0 Hz, 4H),

3.91 (d, J = 13.0 Hz, 4H), 3.24 (d, J = 13.1 Hz, 4H), 2.02 (d, J = 13.2 Hz, 4H), 1.85 (d,

J = 13.0 Hz, 4H), 1.77 (t, J = 12.8 Hz, 8H), 1.72 (d, J = 15.2 Hz, 7H), 1.65 (q, J = 14.1,

13.6 Hz, 21H), 1.55 (d, J = 12.4 Hz, 7H), 1.44 (t, J = 12.6 Hz, 4H), 1.28 (d, J = 12.6 Hz,

8H), 1.24 (d, J = 8.3 Hz, 7H), 1.23 1.06 (m, 14H), 1.06 0.95 (m, 5H).

31PNMR (243 MHz, C6D6): δ 72.54 (s).

13CNMR (151 MHz, C6D6): δ 142.43, 127.77, 127.61, 127.45, 117.26, 107.66, 38.86, 38.78,

37.84, 35.44, 29.56, 29.09, 27.72, 27.59, 27.31, 27.23, 27.12, 26.58, 26.46. 29SiNMR (119

MHz, C6D6): δ 173.33 (s).

5.4.3 Si2Pd2CO2((NCH2PCy2)2C6H4)2 (17)

16 was dissolved in benzene. The solution underwent three freeze, pump, cycles

using liquid nitrogen. After the final thawing cycle, the solution was exposed to a flow of
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UHP carbon dioxide. The mixture was stirred and turned orange immediately. The solvent

was reduced in vacuo and the solid was recrystalized from minimal hexanes/THF to give

yellow crystals.

1HNMR:(600 MHz, C6D6)δ 7.17 (s, 1H), 7.03 (dd, J = 7.8, 3.0 Hz, 1H), 6.89 (dd, J = 7.8,

3.1 Hz, 1H), 4.14 (t, J = 10.4 Hz, 1H), 3.86 3.79 (m, 1H), 3.54 (dq, J = 12.9, 4.2 Hz, 1H),

2.99 (d, J = 12.7 Hz, 1H), 2.26 (t, J = 12.0 Hz, 1H), 1.98 (d, J = 12.5 Hz, 1H), 1.91 (t, J =

12.3 Hz, 5H), 1.80 (s, 1H), 1.73 (q, J = 14.4, 13.6 Hz, 5H), 1.63 (d, J = 12.8 Hz, 4H), 1.57

(d, J = 12.9 Hz, 4H), 1.52 (d, J = 11.7 Hz, 3H), 1.46 (s, 1H), 1.43 (d, J = 13.8 Hz, 2H),

1.39 (s, 1H), 1.34 1.29 (m, 3H), 1.26 (d, J = 12.8 Hz, 2H), 1.20 1.14 (m, 2H), 1.12 (d, J =

14.0 Hz, 3H), 1.08 (s, 2H), 1.03 (dt, J = 24.8, 10.8 Hz, 6H), 0.93 (ddd, J = 25.9, 13.4, 3.6

Hz, 3H).

31PNMR (243 MHz, C6D6): δ 52.02, 45.84.

13CNMR (151 MHz, C6D6): δ 146.52, 141.46, 139.76, 128.06, 127.90, 127.74, 118.73, 116.74,

108.93, 107.61, 43.00, 41.21, 41.04, 36.68, 36.53, 34.87, 34.67, 33.76, 30.68, 30.44, 30.35,

28.69, 28.04, 27.92, 27.60, 27.42, 27.35, 27.25, 27.20, 27.16, 26.76, 26.57, 26.27, 25.98.

29SiNMR (119 MHz, C6D6): δ 23.04 (m), 21.37 (m).

5.4.4 Si2Pd2CO2((NCH2PCy2)2C6H4)2 (17)

16 was dissolved in benzene. The solution underwent three freeze, pump, cycles

using liquid nitrogen. After the final thawing cycle, the solution was exposed to a flow of

UHP carbon dioxide. The mixture was stirred and turned orange immediately. The solvent

was reduced in vacuo and the solid was recrystalized from minimal hexanes/THF to give
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yellow crystals.

1HNMR:(600 MHz, C6D6)δ 7.17 (s, 1H), 7.03 (dd, J = 7.8, 3.0 Hz, 1H), 6.89 (dd, J = 7.8,

3.1 Hz, 1H), 4.14 (t, J = 10.4 Hz, 1H), 3.86 3.79 (m, 1H), 3.54 (dq, J = 12.9, 4.2 Hz, 1H),

2.99 (d, J = 12.7 Hz, 1H), 2.26 (t, J = 12.0 Hz, 1H), 1.98 (d, J = 12.5 Hz, 1H), 1.91 (t, J =

12.3 Hz, 5H), 1.80 (s, 1H), 1.73 (q, J = 14.4, 13.6 Hz, 5H), 1.63 (d, J = 12.8 Hz, 4H), 1.57

(d, J = 12.9 Hz, 4H), 1.52 (d, J = 11.7 Hz, 3H), 1.46 (s, 1H), 1.43 (d, J = 13.8 Hz, 2H),

1.39 (s, 1H), 1.34 1.29 (m, 3H), 1.26 (d, J = 12.8 Hz, 2H), 1.20 1.14 (m, 2H), 1.12 (d, J =

14.0 Hz, 3H), 1.08 (s, 2H), 1.03 (dt, J = 24.8, 10.8 Hz, 6H), 0.93 (ddd, J = 25.9, 13.4, 3.6

Hz, 3H).

31PNMR (243 MHz, C6D6): δ 52.02, 45.84.

13CNMR (151 MHz, C6D6): δ 146.52, 141.46, 139.76, 128.06, 127.90, 127.74, 118.73, 116.74,

108.93, 107.61, 43.00, 41.21, 41.04, 36.68, 36.53, 34.87, 34.67, 33.76, 30.68, 30.44, 30.35,

28.69, 28.04, 27.92, 27.60, 27.42, 27.35, 27.25, 27.20, 27.16, 26.76, 26.57, 26.27, 25.98.

29SiNMR (119 MHz, C6D6): δ 23.04 (m), 21.37 (m).

5.4.5 Si2Pd2O((NCH2PCy2)2C6H4)2 (18)

This compound can be prepared by two methods.

Method A: 16 was dissolved in minimal benzene. To a stirring solution was added pyridine

n-oxide in a solution of benzene. The reaction was allowed to go overnight with stirring. The

dark-green solution became an orange solution overnight. The volatiles were reduced.and

the compound was crashed out with ether. The parcipitate was washed with ether to re-

move excess pyridine n-oxide. 18 was recrystallized from minimal hexanes/THF.
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Method B: 16 was dissolved in minimal benzene and subjected to three freeze, pump, thaw

cycles. The solution was then exposed to UHP nitrous oxide. The solution turned orange

immediately. The volatiles were reduced.and the compound was crashed out with ether.

The parcipitate was washed with ether to remove excess pyridine n-oxide. 18 was recrys-

tallized from minimal hexanes/THF. 1HNMR:(600 MHz, C6D6)δ 7.19 7.13 (m, 4H), 6.89

(dd, J = 7.5, 1.3 Hz, 2H), 6.84 (dd, J = 7.5, 1.3 Hz, 2H), 3.98 (dd, J = 12.6, 10.4 Hz, 2H),

3.60 (dd, J = 12.6, 4.9 Hz, 2H), 3.50 (dt, J = 12.2, 3.1 Hz, 2H), 3.41 (dt, J = 12.4, 4.7

Hz, 2H), 2.26 (d, J = 13.2 Hz, 4H), 2.17 2.00 (m, 8H), 1.96 (t, J = 14.8 Hz, 2H), 1.88 (s,

8H), 1.86 1.78 (m, 4H), 1.75 (d, J = 12.6 Hz, 3H), 1.69 (d, J = 14.8 Hz, 2H), 1.63 1.56

(m, 12H), 1.56 1.50 (m, 2H), 1.50 (d, J = 11.1 Hz, 2H), 1.49 (s, 12H), 1.46 (d, J = 15.8

Hz, 4H), 1.38 1.08 (m, 18H), 1.08 1.01 (m, 4H), 1.01 0.92 (m, 2H). 31PNMR (243 MHz,

C6D6): δ 55.10, 44.34.

13CNMR (151 MHz, C6D6): δ 13C NMR (151 MHz, Benzene-d6) 142.88, 134.29, 118.97,

115.97, 109.83, 106.48, 44.92, 44.76, 42.65, 38.57, 37.57, 35.86, 33.69, 31.72, 31.03, 30.74,

29.11, 29.01, 28.82, 28.68, 28.32, 27.81, 27.39, 27.13, 26.98, 26.85, 26.82, 26.53. 29SiNMR

(119 MHz, C6D6): δ 6.60 (m), 5.40 (m)
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5.6 Figures, Schemes, and Tables

Figure 5.4: 1HNMR spectrum of 16 at 65◦C in C6D6, 600MHz.
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Figure 5.5: Variable Temperature 31PNMR spectrum of 16 from -40◦C to 70◦C in C6D6,

600MHz.
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Figure 5.6: 13CNMR spectrum of 16 at 65◦C in C6D6, 600MHz.
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Figure 5.7: 29SiNMR spectrum of 16 at 65◦C in C6D6, 600MHz. Spectrum was centered

at 200ppm resulting in an artifact noted with an *
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Figure 5.8: 29SiNMR spectrum of 16 at -40◦C in C6D6, 600MHz.
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Figure 5.9: 1HNMR spectrum of 17 in C6D6, 600MHz.
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Figure 5.10: 31PNMR spectrum of 17 in C6D6, 600MHz.
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Figure 5.11: 13CNMR spectrum of 17 in C6D6, 600MHz.
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Figure 5.12: 29SiNMR spectrum of 17 in C6D6, 600MHz.
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Figure 5.13: 1HNMR spectrum of 18 in C6D6, 600MHz.
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Figure 5.14: 31PNMR spectrum of 18 in C6D6, 600MHz.
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Figure 5.15: 13CNMR spectrum of 18 in C6D6, 600MHz.
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Figure 5.16: 29SiNMR spectrum of 18 in C6D6, 600MHz.
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Figure 5.17: Thermal ellipsoid plot at 50% probability of the palladium silyl carbonate

complex. 17. Light orange, gray blue, aqua blue, red, light yellow and grey ellipsoids corre-

spond to phosphorus, nitrogen, palladium, oxygen, silicon, and carbon atoms, respectively.

Hydrogen atoms bonded to carbon have been omitted for clarity.
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