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Abstract Studying the impact of new-physics models on
low-energy observables necessitates matching to effective
field theories at the relevant mass thresholds. We introduce
the first public version of Matchete, a computer tool for
matching weakly-coupled models at one-loop order. It uses
functional methods to directly compute all matching contri-
butions in a manifestly gauge-covariant manner, while sim-
plification methods eliminate redundant operators from the
output. We sketch the workings of the program and pro-
vide examples of how to match simple Standard Model
extensions. The package, documentation, and example note-
books are publicly available at https://gitlab.com/matchete/
matchete.
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1 Introduction

The advent of the LHC heralded a new era for beyond-the-
Standard-Model (BSM) physics. With the discovery of the
Higgs boson and no direct signs of new resonances, we
see indications of a mass gap up to the scale of yet-to-be-
discovered new physics (NP). The focus of the community is
shifting to precision flavor and electroweak physics in order
to search for indirect signs of new particles and potentially
probe scales far beyond the reach of resonance searches.
The result has been a renaissance of Effective Field The-
ories (EFTs) applied to BSM physics often using the Stan-
dard Model Effective Theory (SMEFT), whose basis was
first determined after the LHC went into service [1]. The
use of EFTs goes all the way back to Fermi’s theory and
has long since reached maturity within the Standard Model
(SM), facilitating SM predictions for many precision observ-
ables. Now, new methods are rapidly being developed for
BSM physics with an aspiration of reaching a similar level
of maturity. The new challenge to achieving this goal is the
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need for a near-complete level of generality, as the nature of
NP has yet to be revealed.

To determine the low-energy effects of high-scale NP, one
typically has to perform sequential matching to consecutive
EFTs at the relevant mass thresholds and renormalization
group (RG) running between these scales. In the absence of
any light new particles, the running and matching machinery
is already available to handle computations below the NP
mass threshold: the one-loop RG equations in the SMEFT
[2–5], the matching to the Low-Energy Effective Theory
(LEFT) at the weak scale [6–8], and the LEFT RG equations
[9] have been determined and even implemented in com-
putational tools [10–12]. Many tools are also available for
phenomenological analyses of theories within the SMEFT
and LEFT frameworks [13–24].

The sticking point for a long time has been performing
the matching computation of BSM models to their EFTs.
Although it is tempting to think of the target EFT as the
SMEFT, we should bear in mind that realistic BSM con-
structions can contain a rich NP sector spanning large ranges
of energy scales, calling for intermediate-scale EFTs. Alter-
natively, the presence of additional light fields, for exam-
ple axion-like or dark-matter particles, demands extensions
of the SMEFT (see, e.g., [25–29]). The unclear nature of
both the UV model and the target EFT makes matching
a formidable task. Functional methods promise a direct
approach to the problem [30–49]. They entirely circumvent
the matching of individual amplitudes and produce the EFT
Lagrangian directly, albeit unsimplified, without requiring
any prior knowledge about its structure or symmetries. The
method has produced general results in the form of the Uni-
versal One-Loop Effective Action [50–54], several tools to
assist part of the matching computations [55–58], and has
been used for a number of simple BSM models [59–64].
Nevertheless, the package we present here represents the first
truly automated, end-to-end one-loop matching tool based
on functional methods, making it competitive with the dia-
grammatic matchmakereft [65] but with the advantages
of the functional approach. Thanks to these new tools, fast
and competent matching requiring little more than the press
of a button is finally becoming feasible. Not only that, match-
ing tools can easily be repurposed to compute RG equations
for other EFTs, as both types of computations require the
evaluation of loop integrals in the hard region.

Here we introduce a first public, proof-of-concept version
(v0.1.0) of the Mathematica package Matchete–
Matching Effective Theories Efficiently – to solve the prob-
lem of matching weakly-coupled UV models to their EFTs
at the relevant mass thresholds. It uses functional meth-
ods [44–46], which facilitates direct matching without the
need for specifying a target basis for the EFT. This fea-
ture is especially useful in theories that match into EFTs
other than the SMEFT or when extending EFT matching

beyond dimension-six operators. The automated application
of these methods was previously demonstrated by the authors
in the SuperTracer package [57], which Matchete
supersedes. Furthermore, we make significant headway with
the challenging task of automatically simplifying the EFT
Lagrangian to an on-shell basis. The design of the package
includes a simple and user-friendly interface that consider-
ably simplifies the user input while still allowing for very
generic implementations. In essence, the user can write down
the Lagrangian in a Mathematica notebook, in manner
that is very close to a pen-and-paper form, and leave the rest
to the package. While there are still many features and capa-
bilities that we would like to implement over the next years,
this proof-of-concept release already represents a major leap
in the development of (functional) matching tools and can
greatly assist many matching computations, including those
in multiple BSM scenarios. The limitations in this release
are reflected in the discussion of the future prospects of the
package in Sect. 4.

This paper is meant as a short introduction to give a flavor
of the first public version of Matchete. The paper con-
tains a brief description of the underlying package structure
and gives some hands-on examples of how to use it. It is
not a comprehensive guide to the use of the program. For
more detailed instructions, the user is encouraged to consult
the documentation notebook included with the distribution.
Section 2 presents the organization and use of the package
in broad scopes, touching on the specific methods used in
the computation. This is followed with some concrete usage
example in Sect. 3, including simple extensions of the SM,
to give the reader a feel for the practical applications. We
conclude the paper in Sect. 4 with a short discussion of the
direction of future package developments.

2 Organization of the package

Matchete is organized around Lagrangians and operators,
which are the objects the user will interact with in the work-
flow illustrated in Fig. 1. With standard functional methods,
a UV Lagrangian is matched to an EFT Lagrangian at tree-
and one-loop level. However, by nature of the functional
approach, the EFT Lagrangian is not simplified and contains
many redundant operators that need to be reduced to a basis.
A core part of Matchete consists of powerful methods for
simplifying the matching result to a (near-)basis to bridge
the gap to a useful EFT Lagrangian. Various functions are
also available for manipulating the output in various ways
and identifying individual contributions. The simplification
methods do not handle evanescent contributions yet, so the
output is in a d-dimensional basis, which is redundant in a
physical renormalization scheme [66].
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Fig. 1 Schematic
representation of the
Matchete workflow. The user
has to specify the (gauge)
groups, fields, and couplings of
a UV model before writing
down the Lagrangian. This can
be passed to functions for EFT
matching at tree- and one-loop
level. Simplification methods
with identities and field
redefinitions can then reduce the
EFT Lagrangian

2.1 Model setup and internal representations

Much of the user experience invariably concerns the input
of models into the program. First, one must specify what
(gauge) groups and representations are available for objects
to transform under before one can specify what manner of
fields and couplings are involved. Only then can a Lagrangian
be written down. To achieve this, Matchete contains spe-
cific methods for Lorentz contractions and Dirac algebra.

2.1.1 Symmetry groups

All manner of group invariants show up in quantum-field-
theory computations. These can be as simple as Kronecker
deltas or generators of a representation, or they can be
much more complicated once more exotic representations
are involved. We will refer to all such invariant tensors as
Clebsch–Gordan (CG) coefficients in line with the well-
known SU(2) case. We are unaware of analytic rules for eval-
uating generic contractions of CG coefficients that apply to all
cases, so a more constructive approach is used inMatchete.

Matchete contains a module for handling all things
related to group and representation theory, to allow for
generic gauge and/or symmetry groups. Upon specifying a
simple Lie group, the module can determine the weights,
dimensions, and other information regarding the representa-
tions with standard methods.1 To determine CG coefficients,
which describe how to combine weights from multiple repre-
sentations in an invariant manner, we implemented the algo-
rithm of Refs. [68,69], which casts the problem in terms of

1 We found Ref. [67] very useful as a primer and reminder for relevant
Lie algebra methods.

linear algebra. With this method, the program can explicitly
construct the CG tensors.

When the user specifies a simple (gauge) group to be
included in a model, Matchete automatically generates
several common representations and CG coefficients and
more can be initialized by the user with build-in routines.
The CGs are referred to symbolically for all input and out-
put purposes. However, when contracting CG objects, the
symbols are replaced internally with numerical tensors, con-
tracted, and, finally, projected to a basis of CG coefficients.
This procedure allows for efficient evaluation of CG prod-
ucts, with a minimum of inconvenience to the user.

2.1.2 Fields and couplings

All objects in a Lagrangian have properties associated with
them that are necessary for determining what algebraic
manipulations are possible. The field and coupling objects
appearing in Matchete Lagrangians carry most of this
information with them as they are passed along to various
routines. Although concise, the amount of information con-
tained in a Lagrangian, or even an operator, is considerable,
which can be useful for careful manipulations of the output
should the user so desire. In most common cases, the user
will want to exploit the convenience of the notebook format
to view the output in a more legible form, and build-in rou-
tines allow the user to print Matchete objects in the format
of a regular textbook.

Despite all the information contained in field objects, users
can simply refer to them with their label (name) and the
indices they might have. All that is required for the user
is to define the properties of a field: spin, mass, flavor and
gauge representations, and whether if it self-conjugate (real
for scalars, Majorana for fermions). Gauge fields are even
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easier to implement, as they are automatically defined with
their gauge group. Couplings, similarly, need to be defined
beforehand to specify their flavor indices and mass dimen-
sions.

2.2 Matching step

The input UV Lagrangian is matched to an EFT under the
assumption that all heavy masses are of the same order
Ma ∼ � (otherwise, the matching will have to be per-
formed sequentially accounting for RG running), which sets
the heavy scale of the problem. This allows for arranging the
EFT as a double expansion in the heavy scale and the loop
order:

LEFT =
∑

�=0

∑

n=4

h̄�

(4π)2��n−4L
(�,n)
EFT . (2.1)

Matchete features routines for computing L(0,n)
EFT and

L(1,n)
EFT . There is no fundamental obstacle preventing the eval-

uation of higher-dimensional terms with the current imple-
mentation, although limits of computing power make push-
ing beyond dimension-six for one-loop terms time intensive.
In practice, the mass expansion is performed in terms of the
light dimensions, counting the canonical dimension of light
fields, covariant derivatives, and light masses/dimensional
couplings.

2.2.1 Tree level

Matching at tree level comes down to solving the equations of
motion (EOMs) of the heavy fields as it is commonly done by
hand. This approach has also been applied to automated tree-
level matching in MatchingTools [55]. Schematically,
with heavy fields �a and light fields φ, the UV action is
SUV[�,φ] = ∫

x
1
2�a�−1

ab (D, M)�b + Sint, where �−1 is
the appropriate kinetic operator for the heavy fields and Sint

is the interacting part of the action (including both heavy
and light fields). The solution to the heavy-field EOMs in the
presence of light fields reads

�̂a[φ] = −�ab
δSint

δ�b

[
�̂[φ], φ

]
. (2.2)

Matchete is equipped with routines to take functional
derivatives of the action after which this equation can be
solved iteratively order by order in the mass expansion. With
the solution in hand, the tree-level EFT is given by

S(�=0)
EFT [φ] = SUV

[
�̂[φ], φ

]
. (2.3)

An efficient truncation of higher-order terms ensures excel-
lent performance of this method.

2.2.2 One-loop level

One-loop contributions to the EFT encode the high-energy
components of one-loop effects in the UV theory. In the func-
tional formalism, there is but a single functional topology at
one-loop order, which is captured by a supertrace – a gener-
alization of the functional trace that accounts for the presence
of mixed bosonic and fermionic objects. The key object to
consider is the fluctuation operator

δ2SUV

δη jδη̄i

[
�̂[φ], φ

] = δi j �−1
i − Xi j , η = (�, φ), (2.4)

where again �−1 denotes the kinetic operator and Xi j

are interaction terms. The master formula for the one-loop
matching in terms of these objects is

S(�=1)
EFT = i

2
STr ln �−1

∣∣∣
hard

− i

2

∞∑

k=1

1

k
STr

[
(�X)k]

∣∣∣
hard

.

(2.5)

Here, hard indicates that loop integrands are expanded
around loop momenta q ∼ �, following the method of
expansion by regions [70,71]. This form allows for a straight-
forward counting of light mass dimensions, and the result-
ing series can be truncated at the relevant order in the mass
expansion.

For the actual computation of Eq. (2.5), we follow the
implementation outlined in Ref. [57] based on the develop-
ments of Refs. [44–46]. The procedure allows for simultane-
ous treatment of all particle spins and mixed heavy and light
states in the loop. Furthermore, the traces can be evaluated
in a manifestly gauge covariant manner using the Covari-
ant Derivative Expansion (CDE) [30–32]. Altogether, the
method allows for a very algorithmic and efficient approach
to evaluating all loop contributions simultaneously. More-
over, it remains possible to pinpoint specific contributions
based on the fields propagating in the loops by targeting spe-
cific supertraces.

2.3 Simplifications

Properly simplifying the output Lagrangian is a challenge
related to the long-standing problem of finding a basis for
the higher-dimensional operators of an EFT. We distinguish
between simplification with exact identities (integration-by-
parts and group identities, and commutation relations), taking
the Lagrangian to the Green’s basis, and using field redef-
initions to produce a simplified Lagrangian with on-shell
equivalence. The exact simplification relates operators lin-
early, and can be applied to individual operators as well as
the full EFT Lagrangian. On the other hand, field redefini-
tions work non-linearly and make sense only when acting on
the EFT Lagrangian as a whole.
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2.3.1 Green’s basis

To reduce EFT Lagrangians to a Green’s basis, we use meth-
ods from linear algebra, as this allows for efficient and robust
simplifications. One can think of LEFT as an element in the
vector space O equipped with a basis {Oa} consisting of
all operators in the absence of any exact identities. That is,
the elements of this basis span the complete set of gauge
and Lorentz-invariant monomials of the fields, their covari-
ant derivatives, and CG coefficients (including Dirac matri-
ces). This vector space is redundant once the exact identities,
relating the basis operators, are accounted for. Each identity
relation can be represented as a vector that is equivalent to
0. Together, the identity vectors span a subspace I ⊆ O , and
we can identify the coset O/I with the set of Green’s basis
Lagrangians. Simplifying LEFT then comes down to finding a
convenient basis for O/I and determining the representative
element of the equivalence class [LEFT] defined by the coset.

To arrive at the Green’s basis in Matchete, we employ
the following strategy: For all basis elements (operators) we
encounter, we generate the complete set of possible identi-
ties using integration by parts, Jacobi identities, commuta-
tion of covariant derivatives, and gamma matrix identities
(such as γμγν = gμν − iσμν). Denoting the vectors in O
corresponding to the resulting identities by In , it follows
that I = span

({In}
)
. The operator basis of O allows for the

decomposition

In =
∑

a

MnaOa, (2.6)

which in turn defines a matrix M with the coordinate vectors
of the identities as its rows. With standard methods, M is
brought to reduced row echelon form M ′, and we observe
that the non-zero rows describe a basis (in coordinate space)
for I . Conveniently, the first “1” in each non-zero row of M ′
effectively picks out a set of redundant operators {Or }r∈R ,
which can be eliminated in the EFT Lagrangian. The rows
of M ′, thus, describe a set of identities for the equivalence
classes:
[
Or +

∑

b/∈R

M ′
rbOb

]
= [0], ∀r ∈ R. (2.7)

Using these identities, all {Or }r∈R can be eliminated from the
representative element of [LEFT], that is, the Green’s basis
Lagrangian. By absorption of gauge couplings into gauge
fields, all entries in M are numbers, allowing for efficient
matrix manipulations of M . The main challenge to imple-
menting the simplification procedure described above is that
of identifying identical operators based on their internal rep-
resentation. To this end,Matchete relies heavily on pattern
matching to identify, e.g., different labeling of the dummy
indices, permutations of indices on symmetric tensors, and
orderings of terms in products. By choosing an ordering of

the basis {Oa}, it is possible to dictate a preference as to
what operators are considered redundant, that is, in {Or }r∈R .
While the choice is somewhat arbitrary, we can ensure that
the maximal number of operators that can be removed with
field redefinitions are kept in the basis. Additional require-
ments are enforced to ensure that the output Lagrangian is
manifestly Hermitian.

The main limitation of our current approach is the need
to hard-code all possible identity types in Matchete. How-
ever, additional identities can be added in a modular manner.
The initial version notably does not include Fierz identities,
as the proper handling of these necessitate the evaluation of
evanescent contributions [66]. This is something we expect to
address in future updates. In any event, the lack of implemen-
tation of identities does not result in an invalid result from the
simplification method, merely a non-minimal operator basis
for LEFT as the full identity space I is not found.

2.3.2 Field redefinitions

After the simplifications outlined in the previous section have
been performed, we are left with a Lagrangian that contains
redundant operators that can be removed by field redefini-
tions. To classify these operators, we first define for each field
type the object D (ψ) corresponding to the kinetic piece of
the field EOM and whose definition is given in Table 1. Oper-
ators with at least one occurrence of D (ψ) can be removed
from the Lagrangian employing a field redefinition of the
fieldψ . For operators at the highest power (that is, dimension-
six operators when one is working up to dimensions six),
such field redefinitions are equivalent to replacing the field
EOM at leading power in the corresponding operator. In the
presence of effective operators of different power-counting
orders, this procedure misses some of the higher-order terms
in power-counting and yields an incorrect result [72–79]. We,
therefore, employ field redefinitions for the sake of general-
ity.

Table 1 Definitions of the operator D (ψ) for the various field types. In
the scalar and vector cases, operators acting on a complex-conjugated
field follow straightforwardly from replacing the field with its complex
conjugate in the definition. In the last line, Aμν denotes the usual field-
strength tensor associated with the vector field A

Field type Objects Definition

Scalar ϕ D (ϕ) Dμ Dμϕ

Dirac fermion ψ D (ψ) γμ Dμψ

D (
ψ̄

)
(Dμψ̄)γμ

Majorana fermion η D (η) γμ Dμψ

D (
ηT

)
(DμηT )γ T

μ

Vector A D (Aν) Dμ Aμν

123
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Table 2 Field redefinitions
needed to remove redundant
operators involving a given field
type. See Table 1 for the
definitions of D (ψ)

Field type Redundant operators Field redefinition

Real scalar ϕ χD (ϕ) ϕ → ϕ + χ

Complex scalar φ χD (φ) + D (
φ†

)
� φ → φ + 1

2 (χ† + �)

Majorana fermion η χD (η) + D (
ηT

)
� η → η + iC(χT − �)

Dirac fermion ψ χD (ψ) + D (
ψ̄

)
� ψ → ψ − i

2 (χ̄ + �)

Real vector field A D (
Aμ

)
χμ Aμ → Aμ − χμ

Complex vector field A D (
Aμ

)
χμ + D (

A†
μ

)
�μ Aμ → Aμ − 1

2 (χ†
μ + �μ)

The general procedure is as follows: First, one identi-
fies all instances of D (ψ) for all fields ψ appearing in the
Lagrangian. Then one reads off the overall coefficient D (ψ)

and performs a field redefinition by these coefficients. For
illustration, consider a real scalar Lagrangian of the form

L = 1

2
(Dμϕ)(Dμϕ) − 1

2
m2ϕ2 + c

�2 ϕ3 DμDμϕ

= 1

2
(Dμϕ)(Dμϕ) − 1

2
m2ϕ2 + c

�2 ϕ3D (ϕ) . (2.8)

The field redefinition ϕ → ϕ + c
�2 ϕ3 removes the redundant

operator when inserted into the kinetic term and produces a
quartic operator when inserted into the mass term:

L → L′ = 1

2
(Dμϕ)(Dμϕ) − 1

2
m2ϕ2 − c

m2

�2 ϕ4 . (2.9)

For complex fields as well as Majorana fermions, one reads
off the coefficients of the conjugated EOM objects and aver-
ages over them. The complete list of field redefinitions for
each field type is given in Table 2.

When eliminating a redundant operator with D (ψ), the
field redefinitions will generate contributions only at higher
order in the EFT power counting or at the same dimension but
with fewer derivatives. In practice, therefore, one proceeds
in an iterative fashion, seeking out redundant operators at
the lowest order in the EFT counting and removing them by
field redefinitions. The lowest-order operators that can appear
here are kinetic-mixing terms at dimension four. At higher
powers, the procedure needs to be repeated since operators
may contain more than oneD (ψ) object, and the redefinition
removes only one occurrence. Once all redundant terms are
removed at a given order in power-counting, the procedure is
repeated at the next order, until no more redundant operators
remain.

Special care needs to be taken in the case of Abelian gauge
fields. Since removing kinetic-mixing terms between gauge
fields amounts to complicated redefinitions of the charges
under the associated gauge groups, we choose to keep them
explicit.2 Hence, in the presence of kinetic mixing, field

2 Kinetic-mixing terms are ubiquitous in BSM models with new U(1)

symmetries, which can mix with the hypercharge field. They are typi-
cally kept explicit in the Lagrangian until symmetry breaking.

redefinitions should be modified as follows: consider a set
of vector fields Ai

μ that exhibit kinetic mixing parameterized
by a mixing matrix Z and a redundant operator involving the
vector fields:

L = −1

4
Ai

μν Zi j A j,μν + χν
i Dμ Ai

μν

≡ −1

4
Ai

μν Zi j A j,μν + χν
i D

(
Ai

ν

)
. (2.10)

The appropriate field redefinition is Ai
μ = Ai

μ − (Z−1 ·χμ)i .
As long as the deviation of Z from identity is perturbative
(in either loop counting or EFT power-counting), its inverse
can be easily obtained.

An important subtlety arises from matching corrections
to the couplings of operators of mass-dimension lower than
four. That is, mass terms and cubic scalar interactions. For
example – as is famously the case with the Higgs boson in the
SM – if heavy degrees of freedom coupled to light scalars are
integrated out at loop level, the latter receive mass corrections
proportional to the hard scale. This upsets the power-counting
of the effective theory, since a mass term for a light scalar of
the form

δL = −c1

2
�2 ϕ2 , (2.11)

is formally of dimension two in the EFT counting even if c1

is loop suppressed. In this case, Matchete introduces an
effective coupling m2

ϕ,eff ,

−1

2

(
m2

ϕ + c1�
2
)

ϕ2 → −1

2
m2

ϕ,eff ϕ2 , (2.12)

that is treated as EFT dimension two, such that the term is
of dimension four again. In doing so, the program assumes
a (fine-tuned) cancellation between the tree-level mass and
the loop correction when the power enhancement from �2 is
large enough to overcome the loop suppression from c1.

2.4 Conventions

In this section we clearly state the overarching conventions
used in Matchete to prevent unnecessary confusion on the
matter. For the metric we use the “mostly-minus” signature:
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gμν = diag(+1,−1,−1,−1). Meanwhile, we take the anti-
symmetric Levi–Civita tensor to satisfy ε0123 = −ε0123 =
+1 while the chiral spinor projectors are PL = 1

2 (1 − γ5)

and PR = 1
2 (1 + γ5). The covariant derivatives of the gauge

groups are automatically generated and used throughout the
package. They are defined by Dμ = ∂μ − igT a Aa

μ (note the
sign) for non-Abelian groups with gauge field Aμ, with g
being the coupling and T a the Hermitian generators, which
normalize as tr[T aT b] = 1

2δab for fundamental representa-
tions. For the Abelian gauge groups, T a is replaced by the
charge.

All computations are performed in dimensional regular-
ization (DR) with spacetime dimension d = 4 − 2ε. The
renormalization scheme is MS in line with most BSM compu-
tations. The treatment of γ5 is a point of contention in DR and
fraught with potential errors. In this initial release, we employ
naive dimensional regularization (NDR). Namely, we use the
anticommuting γ5 and impose the four-dimensional identity

tr
[
γ μγ νγ ργ σ γ5

] = −4iεμνρσ . (2.13)

Trace cyclicity is lost in this manner, but as long as the
EFT computations follow the Dirac-trace reading point of
the matching computation, all ambiguities cancel [57]. The
source of the few ambiguities in the matching stem from IR
divergences in loops with heavy and light fermions. In these
cases,Matchete reading points can be inferred, since it will
always read these supertraces starting with a heavy-fermion
propagator. This is not a particularly elegant solution, and
we plan to explore other approaches for handling γ5 in future
updates.

3 Using Matchete

The Matchete package is free software under the terms of
the GNU General Public License v3.0 and is publicly avail-
able in the GitLab repository

https://gitlab.com/matchete/matchete

The package can be installed in one of two ways:

i) Automatic installation: The simplest way to download
and install Matchete is to run the following command
in a Mathematica notebook:

In[1]:=

Import["https://gitlab.com/matchete
/matchete/-/raw/master/
install.m"]

This will download and install Matchete in the Appli-
cations folder of Mathematica’s base directory.

ii) Manual installation: The user can also manually down-
load the package from the GitLab repository. In this case,

the user has to specify the location of the downloaded
package with3

In[1]:=

PrependTo[$ Path,"directory"];

wheredirectory is the path to theMatchete folder.

Once installed, the user can load Matchete in a fresh
Mathematica kernel by running:

In[2]:= << Matchete`

The user can check for updates and install them (when avail-
able) by simply running the CheckForUpdate[] com-
mand in a Mathematica notebook.

OnceMatchete is installed and loaded, the user can start
implementing models and matching to their EFTs with the
routines provided by the package. Below, we demonstrate
the usage of the tool with illustrative examples.

3.1 Vector-like fermion toy-model

To illustrate the use of Matchetewith a simple but compre-
hensive example, we consider a variation of the toy model of
Ref. [57] with a U(1) gauge symmetry, two charged vector-
like fermions ψ and �, and a real scalar singlet φ. The
Lagrangian is given by

L = −1

4
Fμν Fμν + 1

2
(∂μφ)2 − 1

2
m2

φφ2

+ ψ̄ i /D ψ + �̄(i /D − M)� − (
y ψ̄L φ �R + h.c.

)
,

(3.1)

where Dμψ = ∂μψ−ie Aμψ (and similarly for �). We take
ψ to be massless, φ to have a light mass mφ , and � to have
a heavy mass M . The low-energy EFT, describing physics
at energies much lower than M , is obtained by integrating
out �. We proceed to show how the matching is performed
in Matchete.4

As a first step, the user has to define all (gauge) symmetries
of the theory. We define the U(1) symmetry of the present
example, labeled U1e, by

In[3]:= DefineGaugeGroup[U1e, U1, e, A]

which initializes a gauge coupling e and the corresponding
field-strength tensor, labeled A. Next, all matter fields are
defined:

3 We recommend placing the Matchete folder in the Applications
folder of Mathematica’s base directory. Then the location does not
need be specified before loading the package.
4 A preliminary implementation of this model in Matchete was also
presented in [80].
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In[4]:= DefineField[�, Fermion, Charges
-> {U1e[1]}, Mass -> {Heavy, M}]
DefineField[ψ, Fermion, Charges
-> {U1e[1]}, Mass -> 0]
DefineField[φ, Scalar, Mass

-> Light, SelfConjugate -> True]

where we assign charges of +1 to both fermions under the
U(1) gauge group, declare the field � as heavy (for matching
purposes) with mass labelM, set ψ as massless, and set φ to be
a real field with light mass, automatically generating the mass
label mφ. Finally, we have to define the Yukawa coupling y

In[5]:= DefineCoupling[y]

which by default is understood as a complex parame-
ter that does not influence the EFT power counting (i.e.
EFTOrder -> 0).

After all symmetries, fields, and couplings are defined, the
Lagrangian of the free theory can be automatically generated
with the FreeLag routine. The interactions are manually
added to obtain the UV Lagrangian

In[6]:= LUV = FreeLag[] - PlusHc[y[] φ[]
Bar[ψ[]]**PR**�[]];

where thePlusHc routine automatically adds the Hermitian
conjugate of its argument. With the NiceForm formatting,
we can then verify that the Lagrangian does in fact agree with
our expectations:

In[7]:= LUV //NiceForm

Out[7]= -
1

4
Aμν2 +

1

2
(Dμφ)2 -

1

2
mφ2 φ2

+ i(ψ · γ μ · Dμψ) + i(� · γ μ· Dμ�)

- M(� · �)

- yφ (ψ · PR · �) - yφ (�· PR · ψ)

Next, we integrate out the heavy fermion � with the Match
routine:

In[8]:= LEFT = Match[LUV, LoopOrder -> 1,
EFTOrder -> 6];

where the option EFTOrder -> 6 prescribes the EFT
expansion is terminated at dimension-six operators, and
LoopOrder -> 1 indicates that the matching is per-
formed at one-loop order. The resulting EFT LagrangianLEFT
is given in a redundant, unsimplified form. It can be simpli-
fied to an off-shell Green’s basis by calling

In[9]:= LEFTOffShell = GreensSimplify[LEFT];

More commonly, we wish to also use field redefinitions to
achieve an even more simplified EFT that still reproduces the
same on-shell physics. Simplification to the on-shell basis is
performed by the means of field redefinitions (see Sect. 2.3.2)
by calling the EOMSimplify routine:

In[10]:= LEFTOnShell = EOMSimplify[LEFT] /.
ε-1 -> 0 //NiceForm

Out[10]=

(
-
1

4
-

1

3
h̄ e2 Log

[μ2

M2

])
Aμν2 +

1

2
(Dμφ)2

+i (ψ · γ μ · Dμψ)

+

(
cφφ +

1

3
h̄ yy cφφ

1

M2

(
4 cφφ - 3M2

(
1 + 2 Log

[μ2

M2

])))
φ2

+
1

9
h̄ y2 y2 1

M2

(
13 cφφ - 9 M2 Log

[μ2

M2

])
φ4

+
1

3
h̄ y3 y3 1

M2
φ6

+
1

3
h̄
yy e2

M2 φ2 Aμν2 -
2

15
h̄
e4

M2
(ψ · γ μ · ψ)

2

+
7

36
h̄
yy e2

M2
(ψ · γ μ ·ψ)(ψ · γ μPL ·ψ)

where we set all the poles to zero, assuming that both the UV
Lagrangian LUV and the EFT Lagrangian LEFTonShell
are properly renormalized in the MS-scheme. In a slight abuse
of notation, h̄ is used in the output to denote the loop factor
and ensure consistent truncation of the loop expansion, i.e. for
one-loop computations Matchete sets h̄2 = 0. For numer-
ical values, one simply needs to replace h̄ → 1/(16π2). We
observe that there are no redundant operators left in this EFT
Lagrangian. The simplified output has canonically normal-
ized kinetic terms for the matter fields, leaving only the non-
trivial factor on the gauge kinetic term in lieu of a coupling
correction.

The coupling cφφ is automatically introduced to account
for the hard scale contribution to the mass correction of the
scalar field, as described in Sect. 2.3.2. The user is notified
when such replacements happen and can retrieve the defini-
tions of the effective couplings in the resulting Lagrangian
using the PrintEffectiveCouplings command:

In[11]:= PrintEffectiveCouplings
[LEFTOnShell]

Out[11]= cφφ = -
1

2
mφ2 - 2 h̄ yy M2

- 2 h̄ yy M2 Log
[μ2

M2

]
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If desired, the effective couplings can be replaced by their
definitions in terms of the original input couplings using the
ReplaceEffectiveCouplings command.

3.2 Real singlet scalar BSM extension

Our first BSM example is the venerable singlet extension of
the SM previously matched in Refs. [81,82]. A real, heavy
scalar field φ, which is a singlet under the SM gauge group
is added to the SM. The resulting Lagrangian for this UV
model is

L = LSM + 1
2 (∂μφ)2 − 1

2 M2φ − μ

3!φ
3

−λφ

4! φ4 − Aφ|H |2 − κ

2
φ2|H |2. (3.2)

Assuming the mass of the scalar to be heavy compared to the
electroweak scale, the singlet can be integrated out from the
theory to arrive at the corresponding SMEFT Lagrangian.
We have validated the full one-loop dimension-six result of
this matching and obtained agreement with the calculation of
Ref. [82].5 Here, we will show how this simple SM extension
can be implemented in Matchete and how to select specific
contributions from the matching computation.

Since we are dealing with a SM extension, the task of
inputting the model is simpler. The first step is to load the
SM Lagrangian, which is already predefined in Matchete,
by running6

In[1]:= LSM = LoadModel["SM",
ModelParameters -> {"μ" -> mH,
"λ" -> λh}];

where we rename the Higgs mass parameter to mH and
the quartic Higgs coupling to λh. This command defines
all SM symmetries, couplings and fields, and saves the
SM Lagrangian into the LSM variable. For completeness,
we also provide the full SM definition in Matchete
in Appendix A. The implementation shown there agrees
with the internal implementation that is loaded when using
LoadModel["SM"].

Next, we have to define the BSM field φ with mass M by

In[2]:= DefineField[φ, Scalar,
SelfConjugate -> True, Mass ->
{Heavy, M}]

5 Actually, agreement with this reference is only obtained for μ̄ =
M2, as we find that the results provided there for the log-terms contain
contributions that cannot be generated by matching. The log-terms have
been partially cross-checked against the Greens’ basis results in Ref.
[46], finding agreement for the non-logarithmic contributions as well.
6 The complete list of available models (including the one of this exam-
ple) can be checked by GetModels[] in a Mathematica notebook
or by looking into the Models folder of the public release.

followed by the definition of all NP couplings:
In[3]:= DefineCoupling[A,

SelfConjugate -> True]
DefineCoupling[κ,

SelfConjugate -> True]
DefineCoupling[μ,

SelfConjugate -> True]
DefineCoupling[λφ,

SelfConjugate -> True]

Using these definitions, none of the couplings above carry
a light mass dimension, i.e., we have μ= O(M) and A=
O(M). The Lagranigian of the full NP model can then be
specified with

In[4]:= LUV = LSM + FreeLag[φ]

-
1

3!
μ[] φ[]3 -

1

4!
λφ[] φ[]4

- A[] Bar[H[i]]H[i]φ[]

-
1

2
κ[] Bar[H[i]]H[i]φ[]2;

The matching to the SMEFT is again performed with the
Match routine. For the tree-level matching, we find

In[5]:= LEFT0 = Match[LUV, LoopOrder -> 0,
EFTOrder -> 6];
GreensSimplify[LEFT0 - LSM] //

HcSimplify //NiceForm

Out[5]=
1

2
A2

1

M2
HiHjH

iHj

+
1

6
A2

1

M6

(
-3κ M2 + Aμ

)
HiHjHkH

iHjHk

-A2
1

M4
HiDμHjH

iDμH
j

+
(
-
1

2
A2 1

M4
HiHjH

iD2Hj + H.c.
)

where we only print the NP contributions in the EFT
after applying off-shell operator simplification, such as
integration-by-parts identities. The first operator is a modifi-
cation of the Higgs quartic coupling, the second is Q H in the
Warsaw basis (defined in [1]), the third can be exchanged for
the operator Q H� of the Warsaw basis,7 and the last term can
be removed by applying appropriate field redefinitions or the
Higgs EOM. This last simplification step can be performed by
applying EOMSimplify[LEFT0]. For brevity, we do not
show the result here, but it can be found in the example note-
bookExamples/Singlet_Scalar_Extension.nb,
included in the public release of Matchete. This notebook
contains the full matching of this model at one loop as well
as the comparison to the results presented in Ref. [82].

The one-loop matching and the full simplification of the
resulting EFT Lagrangian is performed similarly:

7 Matchete automatically applies the product rule for derivatives.
Therefore, it is not possible to directly obtain Q H� in the matching
result. The issues related to this basis mismatch are discussed below.
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In[6]:= LEFT = Match[LUV, LoopOrder -> 1,
EFTOrder -> 6];
LEFTOnShell = LEFT //EOMSimplify;

Again, the resulting Lagrangian is too long to show here, but
it can be found in the example notebook. In the following,
we demonstrate how to extract a particular contribution from
the EFT Lagrangian, using the SelectOperatorClass
routine. As an example, we extract the fully leptonic four-
fermion operator

In[7]:= SelectOperatorClass[LEFTOnShell,
{Bar[l],e,Bar[e],l},0]
//NiceForm

Out[7]=
1

6
h̄ YersYetp A

2 1

M4
(
es · PL · lir)(lt

i · PR · ep)

where the second argument specifies the field content of
the operator(s) to be extracted, and the last argument gives
the number of derivatives. The result shown above is not
in the Warsaw basis, since the current version Matchete
is not applying Fierz identities. Manually, using the iden-
tity (es�r )(�

t
e p) = − 1

2 (�
t
γμ�r )(esγ μep) gives the desired

result for Q�e in the Warsaw basis. Similarly, we extract the
Q H W operator:

In[8]:= SelectOperatorClass[LEFTOnShell,
{Bar[H],H,W,W},0] //NiceForm

Out[8]=
1

12
h̄ gL2 A2

1

M4
Hi H

iWμνI2

In general, results obtained with the
SelectOperatorClass routine do not coincide with the
matching conditions for the Warsaw basis. This is because
of the Q H� = (H† H)�(H† H) operator being replaced in
favor of the operator Q ′

H D = (H† H)[(DμH†)(DμH)] in
Matchete. These operators are related by integration by
parts, but their difference is an operator that can be removed
by applying Higgs field redefinitions. Therefore, the choice
between Q H� or Q ′

H D affects the matching conditions for a
wide set of different operator classes. The examples shown
here are, however, not affected by this. In the example note-
book, we show how to manually match the results provided
by Matchete to the Warsaw basis.

3.3 Vector-like lepton BSM extension

As our final example, we consider a vector-like lepton exten-
sion of the SM with the same quantum numbers as the SM
lepton singlet, namely E ∼ (1, 1)−1. The Lagrangian for this
model is given by

L = LSM + E(i /D − ME )E − (
y p

E �̄p H ER + h.c.
)
,

(3.3)

where H is the SM Higgs, �p is the SM SU(2)L lepton
doublet, and the index p denotes SM flavor. The NP model
parameters ME and y p

E are a real scalar and a complex flavor
vector, respectively. The matching result of this model was
already presented as an example for the matchmakereft
matching tool [65], which uses a diagrammatic approach. We
find full agreement with this result, hence providing essential
validation for both implementations.

In what follows, we show how to input the Lagrangian (3.3)
and illustrate the Matchete functions relevant to the cross
check. As in the previous example, we are dealing with a
SM extension and the first step is to load the SM Lagrangian,
which is already predefined:

In[2]:= LSM = LoadModel["SM"];

This command defines all SM symmetries, couplings and
fields, and saves the SM Lagrangian into the LSM variable.
The next step is to define the NP field8

In[3]:= DefineField[EE, Fermion,
Charges -> {U1Y[-1]}, Mass ->
{Heavy, ME}]

and Yukawa coupling

In[4]:= DefineCoupling[yE, Indices ->
{Flavor}]

The complete UV Lagrangian is then entered as

In[5]:= LUV = LSM + FreeLag[EE]
- PlusHc[yE[p] Bar[l[i, p]]**
PR**EE[] H[i]];

wherei andp are used for SU(2)L and flavor indices, respec-
tively. As in previous examples, this Lagrangian can easily
be matched to its EFT with the Match routine. For example,
at tree level we have

In[6]:= LEFT0 = Match[LUV, LoopOrder -> 0,
EFTOrder -> 6];
LEFT0 - LSM //NiceForm

Out[6]= i yEpyEr 1

ME2
DμHiH

j (l
r
j · γ μPL · lip)

+ i yEpyEr
1

ME2 HiH
j (l

r
j · γ μPL · Dμl

ip)

8 We write EE for the field label because E is reserved in
Mathematica for the Euler number.
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This result is not manifestly Hermitian but it can be recast
into a manifestly Hermitian form using IBP identities via the
GreensSimplify routine:

In[7]:= LEFT0 - LSM //GreensSimplify
//NiceForm

Out[7]=
i

2
yEpyEr 1

ME2

(
DμHiH

j (l
r
j · γ μPL · lip)

- HiDμH
j (l

r
j · γ μPL · lip)

)
+

i

2
yEpyEr

1

ME2

(
HiH

j (l
r
j · γ μPL · Dμl

ip)

- HiH
j (Dμl

r
j · γ μPL · lip)

)

Finally, this last term of the result above can be eliminated
in favor of a Warsaw basis operator using field redefinitions
(which at this order are equivalent to EOM identities). The
field redefinitions are applied with the EOMSimplify rou-
tine:

In[8]:= LEFT0OnShell = LEFT0 //
EOMSimplify;
LEFT0OnShell - LSM //

HcSimplify //NiceForm

Out[8]=

(1
2
yEsyErYesp 1

ME2
HiH

iHj (l
r
j · PR · ep)

-
i

2
yEpyEr 1

ME2
HiDμH

j (l
r
j · γ μPL · lip)

+ H.c
)

A final group identity, δikδ jl = 1
2 (δi jδkl + τ a

i jτ
a
kl), would

be needed to recast the last term into elements of the
Warsaw basis. At present, the automated reduction to the
Warsaw basis is not implemented in Matchete and this
and other identities need to be applied manually. In this
example we were careful to apply EOMSimplify to the
full EFT Lagrangian. Unlike the exact identities used by
GreensSimplify, field redefinitions cannot be applied
to individual terms. Eliminating operators with field redefini-
tions will typically shuffle all kinds of contributions between
many other operators.

The dimension-six output at one-loop order is rather
lengthy and is provided in the example notebook Examples
/E_VLL_model.nb included in the public Matchete
release along with the details of the comparison with Ref.
[65]. Instead of showing the full result, we illustrate the use
of CovariantLoop here. This Matchete routine pro-
vides the contribution from individual supertraces (or, equiv-
alently, individual covariant loop topologies). For instance,
to compute the contribution to the (H† H)3 operator arising

from the fermion hexagon graph (involving 3 vector-like and
3 SM lepton-doublet propagators), we simply run

In[9]:= CovariantLoop[LUV, {Bar[EE], l,
Bar[EE], l, Bar[EE], l}] //NiceForm

Out[9]=
1

3
h̄ yEp yEr yEs yEp yEr yEs

1

ME2 Hi Hj Hj H
i Hj Hk

which coincides with the six NP Yukawa term in Eq. (6.15)
of Ref. [65].

3.4 Further examples and applications

Despite its limitations, this proof-of-concept version of
Matchete already automates EFT matching computations
for a wide class of weakly-coupled UV models. Models with
an arbitrary particle content can be matched at tree-level,
and automated one-loop matching for any model with heavy
scalars and/or fermions (but no heavy vectors) is now possi-
ble. These matching steps can be performed up to arbitrary
order in the heavy-mass expansion without requiring any fur-
ther input from the user. This is subject to constraints from
the fast growth in computing time and memory requirements
with increasing mass dimension, an area in which there is still
room for improvement in future releases. While these func-
tionalities certainly leave out many relevant models, they can
already be used in multiple phenomenologically interesting
applications. A non-exhaustive list of recent literature results
for which Matchete could have been particularly useful
include the matching of BSM models featuring:

(i) Heavy scalars, like SM-singlets [81,82] (see Sect. 3.2),
extra Higgses [83], electroweak triplets [61,62], flavor-
ful triplets [84], or colorful new states [60,85,86].

(ii) Heavy fermions, such as sterile neutrinos [59,61,84,
87], other vector-like leptons [61,65] (see Sect. 3.3),
and vector-like quarks [88].

(iii) Any combination of heavy scalars and fermions [63,
64,89,90].

As we discuss in the next section, we intend to expand these
functionalities to cover an even wider range of applications.

Moreover, the automated simplification routines con-
tained in Matchete, although not exhaustive, introduce
entirely new capabilities to the EFT toolbox. While other
tools [91–93] deduce a suitable EFT basis, the simplifica-
tion routines of Matchete automatically simplify an EFT
with redundant operators and bring it to a form with mostly
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Fig. 2 Roadmap for the future capabilities of Matchete. The work-
flow contained in the blue boxes are implemented in the proof-of-
concept version, whereas the orange boxes are features expected in

future releases. Here Standard format output refers to both EFT basis
identification and interfacing with other EFT tools

basis operators.9 Despite some redundant operators persist-
ing in some cases, the current implementation goes most of
the way towards producing an EFT in a basis form. Fail-
ures to reach the basis with the current implementation are
not critical, as on-/off-shell equivalence is preserved. To our

9 Some redundant operators are retained due to a lack of a more robust
handling of flavor indices and an implementation of Fierz (and other
four-dimensional) identities. As discussed in the next section, the latter
is due to the appearance of evanescent operators, which need a dedicated
treatment.

knowledge, this is the first attempt at automatic simplifica-
tion without any basis-specific hard-coded identities. These
routines becomes particularly useful in studies where higher-
dimensional operators are involved (see e.g. Refs. [83,84,94–
96] for recent literature examples), as the operator-reduction
identities needed to obtain a basis are typically harder to
implement due to the large proliferation of terms.
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4 Conclusions and future prospects

In this article, we have introduced the first version of
Matchete and sketched out the workings of its routines.
Already in this first version, it has great utility and versa-
tility and can perform the matching of a wide range of UV
models without any additional input for group theory or EFT
bases: In its current form, Matchete is able to integrate out
heavy scalars and fermions at the one-loop level, as well as
heavy vectors at tree-level, with no restriction on the mass
dimension of the effective theory, other than computing time
limitations. As demonstrated in Sect. 3, this already proves
useful for a variety of concrete applications. Furthermore, the
simplification routines can be used to automatically reduce
Lagrangians to a close-to-basis form, even if the tool is not
used for matching.

It is also clear that we can enhance the capabilities of
Matchete even further. Our roadmap for future function-
ality includes addressing the following points:

• Currently, the matching is performed in strictly d dimen-
sions, which prevents EFT simplifications to the four-
dimensional basis. We intend to implement the methods
of Ref. [66] for defining a physical projection on the oper-
ator space and matching the remnant evanescent operator
to the physical space.

• After the implementation of routines for handling the
evanescent operators, it will be possible to reduce EFT
Lagrangians all the way to specific four-dimensional
bases. The idea is to use this to obtain matching results as
Wilson coefficients of known EFT bases, such as the War-
saw basis for the SMEFT or the LEFT basis of Ref. [7].
Hence, it will be possible to interface the result with phe-
nomenology packages through export in the WCxf [97]
format. The interface with other phenomenology tools
and/or commonly used formats, such as UFO [98], would
also be desirable.

• The restriction of heavy states to scalars and fermions
is the primary limitation of Matchete v0.1.0. In
weakly-coupled theories, heavy vectors must arise from
spontaneous symmetry breaking. This results in a com-
plicated interplay between vectors, ghosts, and Goldstone
bosons, especially in the background field gauge. So as
to avoid having to derive and input all interactions man-
ually, we wish to provide (semi-)automated methods to
determine the broken phase Lagrangian.

• With small changes to the matching procedure, it is pos-
sible to determine the EFT counterterms and, thereby,
the RG functions. Implementing this functionality in
Matchete will allow for finding the RG functions for
intermediate-scale EFTs and vastly simplify sequential
matching scenarios.

In Fig. 2 we show how the future functionalities fit into the
Matchete workflow. The roadmap is our vision for the
future of the Matchete package. It is of course subject to
changes, as we determine what features are most important,
or if the implementation of the functions becomes problem-
atic.

Automated tools like Matchete have the potential to
fundamentally change the workflow of BSM physics. They
allow the practitioner to focus less on mechanical tasks and
instead concentrate on finding answers to open questions in
physics. Even with its current limitations, the proof of con-
cept for Matchete already provides a valuable tool for NP
phenomenology, and it demonstrates that functional methods
offer a natural formulation of the matching (and RG running)
procedure.
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Appendix A: Defining the SM in Matchete

To illustrate the ease of defining general quantum field the-
ories in Matchete, we showcase how to input the SM
Lagrangian. When using Matchete for a BSM theory, it is
not necessary to repeat the SM input, as its definition can be
loaded running the LoadModel["SM"] routine, as shown
in the examples in Sec. 3.2 and 3.3.

In a first step, we use the DefineGaugeGroup routine
to define the SM gauge group SU(3)c × SU(2)L × U(1)Y by

In[2]:= DefineGaugeGroup[SU3c, SU[3], gs, G,
FundAlphabet -> {"a","b","c","d","e","f"},
AdjAlphabet -> {"A","B","C","D","E","F"}]

DefineGaugeGroup[SU2L, SU[2], gL, W,
FundAlphabet -> {"i","j","k","l","m","n"},
AdjAlphabet -> {"I","J","K","L","M","N"}]

DefineGaugeGroup[U1Y, U1, gY, B]

where the groups are labeled SU3c, SU2L, and U1Y, respec-
tively. This automatically defines also the associated field-
strength tensors, labeledG,W, andB, and the gauge couplings
gs, gL, and gY. The optional arguments FundAlphabet
andAdjAlphabet determine how fundamental and adjoint
indices are displayed when using the NiceForm routine.
Flavor indices and their printing style can be defined simi-
larly:

In[3]:= DefineFlavorIndex[Flavor,3,
IndexAlphabet->{"p","r","s","t",
"u","v"}]

Next, we define the field content of the SM using the
DefineField routine. We begin with the fermions:

In[4]:= DefineField[q, Fermion, Indices -> {SU3c[fund],SU2L[fund],Flavor},
Charges -> {U1Y[1/6]}, Chiral -> LeftHanded, Mass -> 0]

DefineField[u, Fermion, Indices -> {SU3c[fund], Flavor},
Charges -> {U1Y[2/3]}, Chiral -> RightHanded, Mass -> 0]

DefineField[d, Fermion, Indices -> {SU3c[fund], Flavor},
Charges -> {U1Y[-1/3]}, Chiral -> RightHanded, Mass -> 0]

DefineField[l, Fermion, Indices -> {SU2L[fund], Flavor},
Charges -> {U1Y[-1/2]}, Chiral -> LeftHanded, Mass -> 0]

DefineField[e, Fermion, Indices -> {Flavor},
Charges -> {U1Y[-1]}, Chiral -> RightHanded, Mass -> 0]

For example, the left-handed quark doublet is afterwards
written in Matchete by typing q[a,i,p], where a, i,
and p are the SU(3)c, SU(2)L , and flavor indices, respec-
tively, given in the order used in DefineField. The Higgs
doublet is defined similarly:

In[5]:= DefineField[H, Scalar, Indices
-> {SU2L[fund]},

Charges -> {U1Y[1/2]},
Mass -> 0];

The Higgs is defined as massless, because the mass parameter
of the Higgs doublet is tachyonic. We will therefore include
it manually as an interaction below.

The last missing definitions are for the (non-gauge) cou-
pling constants for which we use the DefineCoupling
routine. The Yukawa matrices can be added with

In[6]:= DefineCoupling[Yu, Indices ->
{Flavor, Flavor}]
DefineCoupling[Yd, Indices ->
{Flavor, Flavor}]
DefineCoupling[Ye, Indices ->
{Flavor, Flavor}]

Similarly, we can define the parameters of the Higgs potential
by

In[7]:= DefineCoupling[μ,
SelfConjugate -> True,
EFTOrder -> 1]
DefineCoupling[λ,
SelfConjugate -> True,
EFTOrder -> 0]
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where the option EFTOrder->1 specifies that the Higgs
mass parameter μ should be counted as having light-mass
dimension one in the EFT power counting.

We can now write down the SM Lagrangian. Starting with
the Yukawa interactions, we have

In[8]:= YukawaL = Ye[p,r] Bar[l[i,p]]
**e[r] H[i]

+ Yd[p,r] Bar[q[a,i,p]]
**d[a,r] H[i]

+ Yu[p,r] Bar[q[a,i,p]]
**u[a,r] CG[eps[SU2L], {i,j}]
Bar[H[j]];

The scalar potential is written as

In[9]:= HiggsPotential = -μ[]2 Bar[H[i]]H[i]

+
λ[]

2
Bar[H[i]]H[i]Bar[H[j]]H[j];

Eventually, we can write the full SM Lagrangian

In[10]:= LSM = FreeLag[q, u, d, l, e, H,
G, W, B]

- PlusHc[YukawaL]
- HiggsPotential //RelabelIndices;
LSM //HcSimplify //NiceForm

Out[10]= -
1

4
Bμν2 -

1

4
GμνA2 -

1

4
WμνI2 +DμHiD

μHi

+μ2HiH
i -

1

2
λHiHjH

iHj +i(d
p
a·γ μPR·Dμd

ap)

+i(ep·γ μPR·Dμe
p)

+i(l
p
i·γ μPL·Dμl

ip)

+i(qpai·γ μPL·Dμq
aip) +i(upa·γ μPR·Dμu

ap)

+
(
-YerpHi(l

r
i·PR·ep)

-YdrpHi(qrai·PR·dap) -YurpHi(q
r
aj

·PR·uap)εji + H.c.
)

where we used RelabelIndices to canonically relabel
all indices in the Lagrangian, PlusHc to include the Hermi-
tian conjugate of the Yukawa Lagrangian defined above, and
HcSimplify to collect hermitian conjugated terms for the
printing.

We can also use the CheckLagrangian routine to per-
form a series of checks on the Lagrangian, ensuring for exam-
ple that LSM is Hermitian, gauge-invariant, is free of gauge
anomalies, and more:

In[11]:= CheckLagrangian[LSM]

Out[11]= True

These checks are also internally applied by the Match rou-
tine, before performing the matching, which can only be done
for Lagrangians passing all tests of CheckLagrangian.

The addition of further BSM fields, and couplings works
analogously. For BSM theories with extended gauge sym-
metries, the BSM Lagrangian would have to be provided to
Matchete in the broken phase, where only the residual SM
gauge symmetry remains unbroken. The complexity of the
resulting Lagrangian with ghosts, heavy vectors, and gauge
fixing, and the precise relations among them needed to obtain
meaningful results is why this is not presently supported.
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