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Abstract

ADP-ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad 

functions, including roles in stress responses elicited, for example, by DNA damage and viral 

infection and is involved in intra-and extracellular signaling, chromatin and transcriptional 

regulation, protein biosynthesis, and cell death. ADP-ribosylation is catalyzed by ADP-

ribosyltransferases (ARTs), which transfer ADP-ribose from NAD+ onto substrates. The 

modification, which occurs as mono- or poly-ADP-ribosylation, is reversible due to the action 

of different ADP-ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being 

developed for clinical use. Moreover, ADP-ribosylhydrolases are being assessed as therapeutic 

targets, foremost as antiviral drugs and for oncological indications. Due to the development of 

novel reagents and major technological advances that allow the study of ADP-ribosylation in 

unprecedented detail, an increasing number of cellular processes and pathways are being identified 

that are regulated by ADP-ribosylation. In addition, characterization of biochemical and structural 

aspects of the ARTs and their catalytic activities have expanded our understanding of this protein 

family. This increased knowledge requires that a common nomenclature be used to describe the 

relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported 

nomenclature for mammalian ARTs that will facilitate future discussions when addressing the 

biochemistry and biology of ADP-ribosylation. This is combined with a brief description of the 

main functions of mammalian ARTs to illustrate the increasing diversity of mono- and poly-ADP-

ribose mediated cellular processes.

Keywords

ADP-ribosylation; MARylation; PARP; PARylation; posttranslational modification
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The ADP-ribosyltransferase superfamily

ADP-ribosylation, an ancient modification of proteins, nucleic acids, and metabolites, 

describes the reversible transfer of ADP-ribose (ADPr) from β-nicotinamide adenine 

dinucleotide (NAD+) onto a substrate. This modification is central to many cellular 

processes across all domains of life. The biochemical reaction is catalyzed primarily by 

enzymes of the ADP-ribosyltransferase (ART) clan or superfamily of proteins (Fig. 1A), 

which are found in all kingdoms of life, generating N-, O-, or S-glycosidic linkages at the 1" 

position of the nicotinamide ribose following a dissociative SN2 reaction scheme. Typically, 

the modification occurs as mono-ADP-ribosylation (MARylation), but some ARTs have 

the ability to synthesize polymers of ADPr (PAR chains or PARylation) (Fig. 1A). The 

information carried by both PAR and MAR can be disseminated by dedicated reader 

domains. Amino acids that are currently known to be ADP-ribosylated include Glu, Asp, 

Ser, Thr, Tyr, Arg, Lys, His, and Cys (Fig. 1B), while nucleic acids are typically modified 

at an exposed phosphate group. By targeting the glycosidic bonds, ADP-ribosylhydrolases 

are capable of either degrading PAR chains or removing the substrate proximal ADPr, 

or both in the case of ARH3 (ADP-ribosylhydrolase, ADP-ribosyl-acceptor hydrolases 

or ADP-ribosyl-glycohydrolases) (Fig. 1A). We refer the reader to recent reviews that 

summarize and expand on these observations [1–16].

The ART superfamily consists of 23 families when the Pfam database is interrogated 

[17,18]. ARTs are characterized by a comparable overall structure consisting of a split 

β-sheet and two helical regions, despite low conservation of primary amino acid sequences. 

ARTs can be divided into three clades, the H-Y-[EDQ] clade (clade 1), the R-[ST]-E clade 

(clade 2), and the H-H-h clade (not further discussed), containing the indicated amino 

acids in the active sites. These structural aspects have been widely discussed and will be 

summarized below [3,19,20]. The focus here will be on mammalian proteins that belong to 

clade 1 and clade 2.

Classification of mammalian ADP-ribosyltransferases

The majority of mammalian proteins that belong to clade 1 are referred to as PARPs and 

tankyrases (TNKS) or together as ARTDs (see below for definitions), which are located 

intracellularly [1,4,7,8,21]. The proteins expressed in mammals belonging to clade 2 are 

extracellular or secreted and designated ARTCs or ecto-ARTs [22–25]. The proposition to 

use the terminology ARTD and ARTC for two structurally related but distinct families of 

ARTs was made more than ten years ago [20]. It was based on the observation that the 

catalytic domains of diphtheria toxin and cholera toxin represent these two families with 

the above indicated specific configurations of amino acids, H-Y-[EDQ] and R-[ST]-E, in 

the catalytic cleft for NAD+ binding and catalysis, hence the addenda D and C to ART, 

respectively (Fig. 1C).

The ARTD/ARTC nomenclature as well as the proposed numbering of the members has 

been endorsed by some groups. However, most research groups have opted to continue to 

use the term PARP, in particular those working on PARP1 and PARP2 and on clinically 

relevant inhibitors of these enzymes as well as those who apply PARP inhibitors in patients. 

Lüscher et al. Page 4

FEBS J. Author manuscript; available in PMC 2022 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In contrast, ARTC has been well received and adopted more broadly. Here, we propose 

a revised nomenclature, taking into account the structural considerations, the biochemical 

specifications and the preferences for the names as used in the literature (Table 1). In brief, 

we suggest using ARTD and ARTC for the two structurally distinct families and PARP and 

TNKS with appropriate numbering as the names of the mammalian ARTD family members 

(Fig. 1C).

It is worthwhile to briefly review how the naming of these enzymes evolved. Originally, 

the enzyme that synthesizes PAR chains was referred to as poly(ADP-ribose) synthetase 

and typically compared to DNA and RNA polymerases, also reflecting that PAR was 

initially thought to be a polyadenylic polymer [26]. In the 1980s and 1990s, the name 

poly(ADP-ribose) synthetase (PARS) as well as ADP-ribosyltransferase (ADPRT) were 

used, but then gradually replaced by poly(ADP-ribose) polymerase [27,28]. Subsequently, 

the abbreviation PARP was established, coined for an enzyme that synthesizes poly-

ADP-ribose (a nucleic acid mimic molecule) from NAD+. This resulted in naming all 

mammalian clade 1 proteins with an H-Y-[EDQ] signature in the active center as poly(ADP-

ribose) polymerases, poly-ADP-ribosepolymerases or PARP enzymes, and occasionally 

as poly-ADP-ribosyltransferases. Early on it was clear that PARP, now PARP1 and the 

founding member of the ART superfamily, transfers multiple ADP-ribose units in an 

iterative process directly onto protein substrates thus being biochemically speaking an 

ADP-ribosyltransferase that PARylates proteins. This is distinct from findings with bacterial 

toxins that MARylate their substrates and enzymes with this activity were initially referred 

to as NAD+:protein ADP-ribosyl transferases [26]. For many years, PARP1 was considered 

to be the only mammalian enzyme able to catalyze ADP-ribosylation. In the late 1990s, in 

part as a result of sequencing the human genome, an entire family of proteins was defined 

that is characterized by a sequence related to the catalytic domain of PARP1 and bacterial 

ARTs. The initial biochemical characterization of some of these proteins, for example, 

tankyrase (TNKS, for TRF1-interacting, ankyrin-related ADP-ribose polymerase [29]) and 

PARP2 [30] confirmed their ability to synthesize PAR, similar to PARP1 (Table 1, Fig. 2). 

It is important to note that these enzymes do not require a template for synthesizing PAR, 

different from both DNA- or RNA-synthesizing polymerases. Instead, they use an iterative 

transferase activity to polymerize PAR chains.

In contrast to these early findings, the more recent characterization of certain other ARTs, 

including PARP10, revealed that these enzymes only MARylate substrates and are unable 

to form PAR [31]. Sequence and structural considerations led to the hypothesis that the 

majority of the ARTD family members function as mono-ARTs rather than poly-ARTs. 

This original suggestion was based on the presence or absence of a catalytic glutamate 

or aspartate in the active center of clade 1 H-Y-[EDQ] proteins [31]. Furthermore, this 

was guided by the finding that mutating the corresponding glutamate in PARP1 resulted in 

an enzyme that was able to MARylate but could no longer PARylate [32]. Thus, at first 

sight the presence or absence of a glutamate in the active center specified catalytic activity. 

This left open the question how enzymes lacking this key acidic residue catalyze ADP-

ribosylation. To overcome this conundrum, a model was proposed that suggests substrate-

assisted catalysis as a mechanism to compensate for the lack of a catalytic glutamate [31]. 

Subsequent studies by different groups have provided evidence that most enzymes belonging 
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to the ARTD family are mono-ARTs [33–36]. Moreover, two of the enzymes that possess a 

glutamate in the active center, PARP3 and PARP4, were also found to MARylate rather than 

PARylate their substrates [33,37], suggesting that additional determinants are important to 

distinguish between the ability to MARylate or PARylate substrates.

Revised nomenclature of mammalian ADP-ribosyltransferases

In eukaryotes, ARTD summarizes the intracellular ART family with PARP and TNKS as the 

names for individual proteins that possess a diphtheria toxin-like version of the ART fold, 

while ARTC describes the family of extracellular enzymes with a cholera toxin-like version 

of the ART fold (Fig. 2). The term poly-ADP-ribose-polymerase is widely used to define 

intracellular ARTs. In our view, this term is imprecise and should not be applied to describe 

the biochemical properties or the family of intracellular ARTs because most of the members 

do not synthesize PAR and those that can form PAR do so in a template-independent manner 

using their transferase activity (Table 2). Therefore, ADP-ribosyltransferase or ART as both 

a biochemical and family description is more accurate, and we suggest using these terms 

for all enzymes that can transfer ADP-ribose onto a substrate. ART defines the biochemical 

activity described by these enzymes, including PARPs, TNKSs, ecto-ARTs, and bacterial 

toxins, that is, the transfer of ADP-ribose. Included are also pseudo-enzymes without 

catalytic activity, such as PARP13, which possess a domain that exhibits high structural 

similarity to the catalytic domain of active ART members [38].

To extend this logic, we recommend that PARP is not used as the abbreviation for poly-

ADP-ribosepolymerase and the characterization of the intracellular ART family (Table 2). 

Instead, PARP should be defined as a term in its own right to describe distinct members 

of the ART family, for example, PARP1 and PARP7 denote a poly- and a mono-ART, 

respectively. In addition to the nomenclature in eukaryotes, the terms ARTD/ARTC can be 

used to discern ARTs in other kingdoms. Thus, a main aspect of classification is that it 

categorizes the enzymes according to their evolutionary history and structural properties, 

that is, whether they possess a fold with greater similarity to diphtheria toxin or cholera 

toxin. This nomenclature does not rely on the ability of enzymes to modify substrates by 

either MARylation or PARylation. Also, the term ART is the biochemically correct term for 

these enzymes.

Based on these considerations, we define here the names and acronyms and make 

recommendations for what and how these should be used (Table 2). PARPx and TNKSx 

stand for distinct members of the ARTD family (Figs 1C and 2, Table 1). ARTC constitutes 

another family of ARTs, which in mammals is congruent with ecto-ARTs (Figs 1C and 2). 

In our view, this revised use of PARPx and TNKSx as names of ARTD family members 

should make this nomenclature acceptable to both PARP- and ARTD-ologists. It also avoids 

conflicts with the widespread use of the name PARP particularly also in the clinical setting. 

As the ARTD family contains enzymes that can either MARylate or PARylate substrates, 

poly-ARTs and mono-ARTs could be used to clarify their biochemical reaction. We suggest 

omitting abbreviations such as pART and mART as these terms are frequently found with 

different meanings (e.g., in PubMed). The consequences of this line of thought are that 

names, which are intrinsically illogical and may lead to confusion, can be avoided. For 
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example, the term mono-PARP, which can be found in the literature, should not be used 

any longer, because if taken as acronym for poly-ADP-ribose-polymerase, a mono-PARP 

would then refer to a mono-poly-ADP-ribose-polymerase. Thus, PARP1 is a poly-ART, 

while PARP10 is a mono-ART. Moreover, the term tankyrase has been well established, 

describing the two related ARTD family members TNKS1 and 2. We therefore recommend 

that these names are used rather than PARP5a and PARP5b or ARTD5 and ARTD6.

An additional concern lies in the numbering of the members of the ARTD family of ARTs 

(Fig. 1C, Table 1). As both PARPx and ARTDx are currently being used in parallel, the 

different numbers of the enzymes are a source of confusion. The original concept that was 

endorsed and published in 2010 attempted to order the intracellular ART family members 

according to sequence similarities in the catalytic domains and additional structural domains 

[20]. Due to the wider use of PARPx compared to ARTDx, we suggest that the original 

numbering be maintained in combination with PARP (Table 1, Fig. 2).

Functional properties of mammalian ARTD and ARTC ADP-

ribosyltransferases

The proteins of the mammalian ART superfamily are associated with an increasing number 

of activities (summarized in Fig. 3). Moreover, due to advances in mass spectrometry, 

chemical genetics, proximity labeling and other methods, novel substrates, and interactors 

are being identified at a breathtaking rate (for recent findings see Ref. [9,34,39]). While 

exciting, this comes with some reservation as in many cases we only have limited 

functional information about the consequences of ADP-ribosylation, particularly relevant 

for MARylation. Defining functions is a major task and challenge for upcoming studies. At 

the same time, to be able to use a common nomenclature for these proteins will be highly 

valuable for future communication, avoiding confusion and misunderstandings.

ARTD family members have been suggested to participate or to be associated with many 

different intracellular processes, located both in the nucleus as well as in the cytoplasm 

(Fig. 3). While numerous studies describe PARP1 as a key sensor that recognizes DNA 

damage and disseminates this information to regulate repair, cell cycle progression and 

cell death, among other consequences [40,41], the molecular functions of other family 

members are less well understood. Additional proteins have been identified that possess 

an ADP-ribosyltransferase domain classified as belonging to clade 1 [18]. One is tRNA 

2’-phosphotransferase (TRPT1), an essential component of the fungal tRNA splicing 

machinery, while its role in mammalian cells is poorly defined [2]. Another clade 1 member 

is TASOR. So far, no catalytic activity has been associated with the ART domain of TASOR, 

which is part of the HUSH (human silencing hub) complex [42–44]. This complex is 

involved in methylating histone H3 lysine 9, a repressive chromatin mark [45]. Additional 

proteins include LRRC9, for which no catalytic activity has been reported so far, and 

NEURL4, which has been suggested to modify mitochondrial proteins [18,19,46]. Also of 

note is that PARP9, which was considered inactive, MARylates ubiquitin when in complex 

with DTX3L [47]. Recently, the RING-DTC domain of Deltex family E3 ubiquitin ligases 

was found to MARylate ubiquitin independently of PARP9 [48]. Finally, some sirtuins have 
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been suggested to function as ADP-ribosyltransferases, although these activities have been 

debated [4]. The findings regarding DTX domain proteins and sirtuins suggest the existence 

of additional intracellular ART families that will need further exploration.

Members of the ARTC family or ecto-ARTs that are expressed in mammals are membrane 

bound facing the extracellular environment or are secreted [22–25]. Four family members 

are expressed in humans, six in mice. They regulate multiple activities including immune 

functions, signaling, and ER stress response (Fig. 3) [22,23]. Of note is that ARTC enzymes 

modify primarily arginines. While so far, no mammalian ARTD has been reported to possess 

a comparable target amino acid specificity, mass spectrometry studies indicate that arginine-

ADP-ribosylation is abundant within cells [49–51], suggesting that one or more intracellular 

enzymes exist that modify arginine. ARTC1 appears to be predominantly located in the ER 

and may reach other membranous compartments in cells, possibly explaining the substantial 

arginine-ADP-ribosylation that can be detected intracellularly [22]. Further work is required 

to clarify the identity of the relevant enzyme(s).

Inhibitors of ADP-ribosyltransferases

Keeping with PARP as the name for most of the ARTD family members implies that 

PARP inhibitors (PARPi) are then substances that interfere with the functions of PARP 

enzymes. This is particularly relevant as in the clinical setting PARPi is an established term 

to describe inhibitors of PARP1, although the clinically approved inhibitors are not specific 

for PARP1 and also inhibit PARP2 and possibly other PARPs [52]. Importantly, PARP1/2 

inhibitors are approved for the treatment of specific cancers, particularly those that are 

defective in homologous recombination-mediated repair, including tumors with mutations 

in the tumor suppressors BRCA1 or BRCA2, referred to as synthetic lethality [53–56]. 

Moreover, tankyrase inhibitors (TNKSi) are being developed as potential cancer therapeutics 

[57,58], defining an additional specific inhibitor entity associated with mammalian ARTD 

family members.

Recently, inhibitors of other PARP family members have been developed; these include 

inhibitors of PARP10 [59–61], PARP11 [62], and PARP14 [61,63,64]. Additionally, a 

selective inhibitor of PARP7 (RBN-2397) is in human clinical trials for treatment of patients 

with solid tumors (clinical trial: https://clinicaltrials.gov/ct2/show/NCT04053673). This is a 

significant development in the field because RBN-2397 is the first inhibitor of a MARylating 

enzyme in human clinical trials. While the terms PARPi and TNKSi will be helpful to define 

the two general subclasses of inhibitors, the recent disclosures of inhibitors of PARPs other 

than PARP1/2 and TNKS1/2 necessitate further specification for inhibitors. We suggest that 

the PARP family member name is used when describing an inhibitor with clear specificity; 

for example, a PARP7 selective inhibitor can be referred to as PARP7i.

As of now, the name PARPi implies inhibition of PARP1/2 but formally is not specific 

for these polymer forming enzymes. Also it does not imply how inhibitors impair protein 

function, be it via catalytic inhibition, via allosteric means or by interfering with protein-

protein interactions, giving this term flexibility to also be used to describe entities such 
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as PROTACs that could also eventually find their way into common experimental and/or 

clinical use [65–69].

Conclusions and consequences

Together, we suggest an updated, revised nomenclature of mammalian enzymes belonging to 

the ART superfamily. This nomenclature is based on the currently used names but also takes 

structural and biochemical functions of these proteins into consideration. In this, ARTD 

and ARTC define the two major families of the mammalian ART superfamily. The terms 

PARP and TNKS, which are widely used and very well established, stand for different 

ARTD members. In the context of the mammalian ART superfamily, we consider and 

thus propose PARP as a name on its own right, rather than an abbreviation for poly-ADP-

ribose-polymerase. We are convinced that these modifications to the two existing versions 

of ART nomenclatures will unify and clarify how to describe and discuss the enzymes 

that ADP-ribosylate an ever-increasing number of substrates, and the processes that are 

controlled by this modification.
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Abbreviations

ADPr ADP-ribose

ARH ADP-ribosylhydrolase/ADP-ribosyl-acceptor hydrolases/

ADP-ribosyl-glycohydrolases

ART ADP-ribosyltransferase

ARTC ADP-ribosyltransferase cholera toxin-like

ARTD ADP-ribosyltransferase diphtheria toxin-like

MAR mono-ADP-ribose

MARylation mono-ADP-ribosylation

NAD+ β-nicotinamide adenine dinucleotide

PAR poly-ADP-ribose

PARP suggested not to be used as abbreviation but rather as a 

term in its own right to describe distinct members of the 

ART family

PARPi PARP inhibitor

PARylation poly-ADP-ribosylation
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TNKS tankyrase
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Fig. 1. 
ADP-ribosylation is a reversible modification of proteins, nucleic acids, and metabolites. 

(A) Indicated are ADP-ribosyltransferases (ARTs), which catalyze mono- and poly-ADP-

ribosylation (MARylation and PARylation, respectively). Poly-ARTs may modify naïive 

substrates generating PAR chains. Alternatively, poly-ARTs may use MARylated substrates 

and extend the modification to form polymers. The modification is removed by ADP-

ribosylhydrolases. Some hydrolases degrade PAR chains (e.g., PARG and ARH3), and 

others cleave the glycosidic bond between the substrate and the proximal ADPr (e.g., 

MacroD1, MacroD2, TARG1, ARH1 and ARH3). Substrates include proteins, nucleic acids, 

and metabolites (the latter exemplified by O-acetyl-ADPr). The specificity of the enzymes 

is not indicated, some are highly selective, while others have broad specificity, including 

the modification of different classes of substrates. (B) Indicated are proteins with different 

ADPr acceptor amino acids and the corresponding N-, O-, or S-glycosidic linkages at the 

1″ position of the nicotinamide ribose. Additional amino acids that have been detected to be 

modified include Asp, Asn, Lys, Thr, Tyr, His, Phospho-Ser, and diphthamide. Please note 

that for Ser-ADPr and Arg-ADPr, and probably for other linkages, the initial products are 

in the a configuration. Isomerization may occur, which is indicated. Additionally, migration 

to the 2″- and 3″-OH may happen for Glu-ADPr and Asp-ADPr. (C) Summary of the 

proposed nomenclature. ARTs represent the superfamily, which consists of 23 families, 

two being ARTD and ARTC [17,18]. Names that are commonly used for ARTD family 

members are PARP (the historic abbreviation for poly(ADP-ribose)polymerase) and TNKS 

(for tankyrase). Here, we propose PARP as a name on its own right, rather than an 

abbreviation.
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Fig. 2. 
Domain architecture of ARTD and ARTC family members. Important domains of ARTDs 

and ARTCs family members are indicated. PARylating members as well as members 

that have been suggested to be catalytically inactive are highlighted in orange and gray, 

respectively. All other proteins possess MARylating activity. As discussed in the text, 

whether PARP9 is active has not been fully clarified. The potential coding region of human 

ARTC2 carries premature stop codons, displayed are the two proteins expressed from 

two closely related murine genes. ART, ADP-ribosyltransferase domain; BRCT, BRCA1 

C terminus domain; GPI, glycosylphosphatidylinositol anchor; HD, helical domain; MD, 

macrodomain; MVPID, major vault protein interaction domain; RRM, RNA-recognition 

motif; SAM, sterile alpha motif; SP, signal peptide; TM, transmembrane motif; UIM, 

ubiquitininteraction motif; vWA, von Willebrand factor type A domain; WGR, conserved 

Trp-Gly-Arg motif domain; WWE, three conserved residues Trp-Trp-Glu motif domain; ZF, 

Zinc finger (light green, CCHC-type ZnF1 and ZnF2, CCCC-type ZnF3; purple, CCCH-type 

ZnF).
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Fig. 3. 
Summary of the functions of mammalian ART family members. The proteins belonging 

to the H-Y-[EDQ] clade (in lighter colors) and of the R-[ST]-E clade (in darker colors) 

are grouped together according to cellular processes in which they are proposed to be 

involved. The family members that are capable of synthesizing PAR chains are indicated in 

orange, those that MARylate substrates are in green, proteins for which so far no catalytic 

activity has been identified are in gray. While PARP and TNKS proteins are intracellular, 

ARTC proteins are translocated into the endoplasmic reticulum and transported to the 

plasma membrane. Intracellular and/or organelle associated functions are being discussed. 

ARTC1–4 are membrane associated through a GPI (glycosylphosphatidylinositol) anchor 

and ARTC5 is secreted. ARTC2 is not expressed in humans, but in other species. The 

figure gives an overview on important biological functions that appear to be regulated by 

ADP-ribosylation, it is not meant to be exhaustive. For details readers are referred to the 

cited, recent reviews. Please note that ARTC2 is not expressed in humans.
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Table 1.

Names and properties of the family of diphtheria toxin-like ADP-ribosyltransferases.

Preferred/suggested names for ARTs of the diphtheria 
toxin-like family (ARTD)

Alternatively/previously used names Catalytic ADP-ribosylation activity

PARP1 Poly-PARP, ARTD1, PARS, ADPRT Poly

PARP2 ARTD2 Poly

PARP3 ARTD3 Mono

PARP4 VPARP, ARTD4 Mono

TNKS1 Tankyrase 1, TNKS, PARP5a, ARTD5 Poly

TNKS2 Tankyrase 2, PARP5b ARTD6 Poly

PARP6 ARTD17 Mono

PARP7 TIPARP, ARTD14 Mono

PARP8 ARTD16 Mono

PARP9 BAL1, ARTD9 Mono

PARP10 ARTD10 Mono

PARP11 ARTD11 Mono

PARP12 ZC3HDC1, ARTD12 Mono

PARP13 ZAP, ZC3HAV1, ARTD13 Inactive

PARP14 BAL2, ARTD8 Mono

PARP15 BAL3, ARTD7 Mono

PARP16 ARTD15 Mono
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