UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Forced Simple Recurrent Neural Networks and Grammatical Inference

Permalink
https://escholarship.org/uc/item/199587h\

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 14(0)

Authors
Maskara, Arun
Noetzel, Andrew

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/199587hv
https://escholarship.org
http://www.cdlib.org/

Forced Simple Recurrent Neural Networks and Grammatical Inference

Arun Maskara
New Jersey Institute of Technology
Department of Computer and Information Sciences
University Heights, Newark, NJ 07102
arun@hertz.njit.edu

Andrew Noetzel
The William Paterson College
Department of Computer Science
Wayne, NJ 07470

Abstract

A simple recurrent neural network (SRN) intro-

duced by Elman [1990] can be trained to infer
a regular grammar from the positive examples of
symbol sequences generated by the grammar. The
network is trained, through the back-propagation
of error, to predict the next symbol in each se-
quence, as the symbols are presented successively
as inputs to the network. The modes of prediction
failure of the SRN architecture are investigated.
The SRN’s internal encoding of the context (the
previous symbols of the sequence) is found to be
insufficiently developed when a particular aspect
of context is not required for the immediate pre-
diction at some point in the input sequence, but is
required later. It is shown that this mode of fail-
ure can be avoided by using the auto-associative
recurrent network (AARN). The AARN architec-
ture contains additional output units, which are
trained to show the current input and the current
context.
The effect of the size of the training set for
ammatical inference is also considered. The
RN has been shown to be effective when trained
on an infinite (very large) set of positive exam-
ples [Servan-Schreiber et al., 1991). When a finite
small) set of positive training data is used, the
RN architectures demonstrate a lack of general-
ization capability. This problem is solved through
a new training algorithm that uses both positive
and negative examples of the sequences. Simu-
lation results show that when there is restriction
on the number of nodes in the hidden layers, the
AARN succeeds in the cases where the SRN fails.

Introduction

The problem of inferring a regular grammar from
examples has often been studied. An overview of
traditional algorithms can be found in [Angluin
and Smith, 1983]. Following the development of
the back-propagation algorithm [Rumelhart and

McClelland, 1986)], various recurrent neural archi-
tectures using back-propagation have been shown

420

to have some capability for grammatical inference
when trained from examples [Servan-Schreiber et
al., 1991, Pollack, 1991, Giles et al., 1990).

The idea of training recurrent neural networks
with back-propagation was first introduced by Jor-
dan [1986]. In the recurrent neural network, the
symbols of a sequence are presented se?uentially
as network inputs. Also, tﬁe output of a higher
level layer during one time interval is fed back as
an input to a lower level layer at the next interval.

Two training schemes are associated with two
different paradigms for grammatical inference. In
the classification paradigm, it is assumed that
the desired output is not known until the end of
the sequence. Training this case requires back-
propagation of error in time [Rumelhart and Mc-
Clelland, 1986). It is hard to train a recurrent
neural network using this paradigm since the net-
work makes many decisions before it is influenced
by the results of those decisions. The classification
paradigm has been studied by Giles et al. [1990]
and Pollack [1991].

The other paradigm is the predictive paradigm.
In this case, 1t is assumed that the desired out-
put at each time interval is known. To use this
paradigm in the problem of grammatical infer-
ence, the network is trained to predict the next
input in any sequence. An on-line training algo-
rithm can be used to back-propagate error at the
end of each interval. The simple recurrent net-

work (SRN) introduced by Elman (1990] has been
shown to behave as a finite state automata (FSA)

when trained in the predictive paradigm [Servan-
Schreiber et al., 1991).

The current work is based on the the predic-
tive paradigm. It is shown that when the SRN
predicts incorrectly it is because it has failed to
encode the aspects of the context (the previous
symbols of the sequence) that are necessary to

redict the next input. We show that this prob-
em can be solved by modifying the SRN to in-
clude features of an auto-associative network. The
result is the auto-associative recurrent network



Next Input I(1+1)
Hidden Units H(t)

-~
~
~
~
A

I
Input Units I(t) J ’ Context Units H(t-1) ’A'

-~

Figure 1: Simple Recurrent Network

(AARN). When trained to predict the next in-
g?{& the AARN generally performs better than the

However, when only a finite set of positive ex-
amples are used for training, all networks of the
SRN type exhibit a limited ability to generalize.
Their generalization capability is improved when
a finite set of positive and negative examples are
used for training.

The Simple Recurrent Network

A diagram of the simple recurrent network (SRN)
introduced by Elman [1990) is shown in Figure 1.
In this model, the state of the hidden units is
copied into the context unit at the end of each
interval in the temporal sequence. At time t the
context unit holds the state of the hidden units at
t — 1. And at t, the network is trained to predict
the input at ¢t + 1. In order to produce an output
corresponding to the next :irmbol of any sequence,
the SRN creates an internal representation, or en-
coding, of the previous symbols of the sequence.
The symbols preceding any input symbol will be
called the contezt for that input.

The input and output layers use a local rep-
resentation for the symbols of the sequence: each
symbol is represented by a single node. The back-
propagation algorithm [Rumelhart and McClel-
land, 1986] is used to train the network from the
positive examples of the sequences. For a partic-
ular context, a positive error is back-propagated
for the next symbol, and a negative error is back-
propagated for all the other symbols. After com-
pletion of training, when a symbol sequence is pre-
sented at the input, the the network generates out-
put node values that represent likelihoods for the
next input symbol.

If a particular context is always followed b
one particular symbol, then in that context a posi-
tive error is back-propagated only for that symbol,
and a negative error for all other symbols. In an
ideal case the network should learn to generate a
high likelihood (1.0) for that symbol and low like-
lihood (0.0) for all other symbols. When different
instances of a particular context are followed by
different symbols, then during training the succes-

421

sor symbols will sometimes back-propagate a posi-
tive error and at other times a negative error. The
number of times each error is b -prognfated will
depend on the frequency of the symbol. There-
fore the value of likelihood shown by a symbol in
a context will depend on the frequency of occur-
rence of the symbol in that particular context. If
in the training data p different symbols follow a
particular context with equal frequency, then af-
ter training each of those p symbol should ideally
generate a likelihood of 1/p.

The network is said to accept a sequence if each
symbol in the sequence is predicted; and a sym-
bol is said to be predicted if its associated output
unit shows a value of greater than the positive
threshold 7 on the preceding s‘ymbol. The value
of 7 depends on the number of different symbols
which can follow a context. If at most two sym-
bols can follow a context then ideally a threshold
of 0.5 should be used. Since the momentum is
used in training, in case of two successor symbols
a nominal value of 0.3 is used for the threshold
7 [Servan-Schreiber et al., 1991). The sequence
is said to be rejected if the network is unable to
predict any symbol.

The process of encoding context in the hidden
layer can be conceptualized in the following way.
Early in training, each symbol forms its own dis-
tinct code in the hidden layer. Since the output of
the hidden layer at t—1 is used as the context input
at t, the encoded context gradually begins to show
a rejaresentation of the previous symbol. Then the
hidden layer can begin to encode combinations of
the previous and current symbols. With this com-
bination as the context, the hidden layer begins
to encode the relevant aspects of three consecu-
tive symbols. Eventually, it encodes the relevant
aspects of the entire sequence.

The Auto-Associative Recurrent
Network

Sometimes the SRN is unable to encode the con-
text required to predict the next input. During
training, at time ¢ the network encodes in the hid-
den layer the information necessary to predict the
next input. The context at t is the output of hid-
den layer at t — 1. If a particular aspect of any
context is not encoded at ¢, it will not be F:Opaf'
gated to times greater than ¢. The network fails to
predict properly if at time ¢ a particular aspect of
the context is not encoded (since it is not relevant
to predict the input at ¢ + 1), but that aspect of
context is required for prediction at a later time.
An auto-associative network is one in which
the output is trained to be the same as (or similar
to) the input. Adding the auto-associative fea-
ture to the SRN results in auto-associative recur-
rent network (AARN). The AARN succeeds in the
cases where the SRN fails. The AARN has out-
put units that show the current context and the
current input, as well as the predicted next input.
A diagram of the AARN is shown in Figure 2.
At the beginning of interval ¢, the previous acti-
vation pattern in the hidden units (the encoded



context) is copied into the context unit. The net-
work is trained through back-propagation to show
the current input and the current context that is
active in the context unit, as well as to predict the
next input.

The idea of auto-association in recurrent net-
works was initially used by Pollack [1990], in a
model called the recursive auto-associative mem-
ory (RAAM). Gharamani and Allen (1991) showed
that the AARN performs better than the SRN for
the XOR problem. The AARN will encode as-
pects of the context that are not required to pre-
dict the next symbol, but are required at a later
time. The encoding of the context is more efficient
in the AARN because the hidden layer is forced
to represent simultaneously the past (the current
context) and the present (the current input).

The formation of internal code in the AARN
begins same as in the SRN. Each symbol initially
becomes associated with a single internal represen-
tation. But in the SRN, two symbols that result
in a common prediction could form similar inter-
nal representations. And the AARN architecture
guarantees that each symbol will have a unique
representation, since the hidden layer must learn
to represent the current symbol. In the SRN, only
the context necessary to predict the next input is
gradually encoded. But since the AARN forces
the hidden layer to show the previous context, the
entire sequence is always gradually encoded.

We have simulated the training of the SRN
from examples in which two different contexts
must have different hidden layer activations, and
yet must make the same prediction. In terms of fi-
nite state automata (FSA), this is the same as the
requirement that the minimal FSA has two differ-
ent states that have same set of successor symbols.
Let u be the number of states in the minimal FSA
from which the training sequences were generated.
(We will call the FSA used to generate the training
set the ‘desired’ FSA.) For many examples of FSA,
the SRN with O([log; ©]) units in the hidden layer
was unable to correctly encode the desired FSA.
An AARN with Olg.[lo%, u]J units succeeded in the
cases where the SRN failed.

Training with an Infinite Data Set

We have performed a number of experiments
where the SRN fails but the AARN succeeds. Here
we discuss the results of two such experiments.
For these experiments the training sequences were
5enerated randomly from the desired FSA. If the

esired FSA has n edges leading out of a state,
then each edge was assigned a probability 1/n of
being selected.

In both experiments, the common weights of
both SRN and AARN were initialized with the
same random values for each trial. During train-
ing, the same random sequences were generated
for both the cases. A training trial consisted of
60,000 randomly generated sequences. We per-
formed 15 different training runs and results were
evaluated at the end of each run. After completion
of the training the performance of the network was
evaluated with threshold 7 = 0.3 (since each state
of the FSA has at the most two possible succes-
sors).

he performance of the network was evaluated
by two types of randomly generated sequences.
The first type are those sequences that were ran-
domly generated from the FSA. These are positive
examples of the language of the FSA. We will call
these random positive sequences. The second type
are random sequences of valid symbols. Each was
started with the symbol S, and then valid symbols
other than S were picked randomly until the sym-
bol E was encountered. The special symbols S
and E are used to indicate the beginning and the
end of each sequence. We will cafl these random
sequences. Most of the random sequences are the
negative examples of the language of the desired
FSA.

For the experiments discussed next, the perfor-
mance was evaluated on 60,000 sequences: 10,000
are random positive sequences and 50,000 are ran-
dom sequences. The network was declared a fail-
ure if it was unable to correctly classify even one
of the 60,000 test sequences.

The first experiment consisted of training the
networks to recognize the sequences generated by
the FSA shown in Figure 3. In this FSA, state 7
is the final state. For each of the 15 runs the SRN

Current Input I(t)

Next Input I(t+1)

Current Context H(t-1)

"\T

Hidden Units H(t) =

~
~
~
~
\
1
/
/

Input Units I(t)

Context Units H(t-1) &

Figure 2: Auto-Associative Recurrent Network

422



Figure 3: The FSA for Experiment 1

with three units in the hidden layer was never able
to correctly classify the entire test set. By exam-
ining the hidden layer encodings, we found that
at the end of the each training run the SRN had
generated similar encodings for the contexts SX
and SY.

The AARN with three units in the hidden layer
was able to correctly encode the desired FSA in 9
out of 15 runs. After investigating, it was found
that in each of the six failure, the context SX and
SY had different encoding, the reason of failure
seems to be lack of generalization.

The second experiment consisted of training
the networks to recognize the sequences gener-
ated by the FSA shown in Figure 4. In this FSA,
state 10 is the final state. An SRN with four units
in the hidden layer was trained in on the language
of the FSA in 15 training runs. At the end of eac
training run, the SRN correctly predicted the next
symbols of all the random positive sequences, but
failed for few of the random negative sequences.
By examining the hidden layer code of the SRN
it was found that the network had similar hidden
layer representations for the contexts SPX P and
SPPXP.

The failures occurred because the number of
P’s preceding X is not required to predict the
next symbol. This aspect of the context was there-
fore not encoded. After the context SPXP and
SPPXP, the SRN predicted a value above the
threshold 7 for the symbols X and P. In other
words, the SRN learned to recognize the sequences
of the regular expression ((P|PP)X)*, instead of

the expression ((PX)*|(PPX)*).

The AARN with four units in the hidden layer
was able to correctly encode the desired FSA in
10 out of 15 runs. Again the reason of failures in
five runs seems to be lack of generalization.

In the related set of experiments we have run
some simulations to show the necessity of forcing
SRN to show both the current input and the cur-
rent context. The SRN which was only forced to
show the current input succeed for the FSA used
shown in Figure 3, where the SRN always failed.
The SRN and the SRN with current input failed
for the FSA shown in Figure 4, but the SRN with
current context succeeded in this case. When a
FSA that combines the FSA’s shown in Figures 3
and 4 was used, the SRN, the SRN with only cur-
rent input, and the SRN with only current con-
text were unable to encode that FSA. However,
the AARN was able to succeed in that case. More
detail of the experiment can be found in [Maskara
and Noetzel, 1992).

Training with a Finite Data Set

In the problem of grammatical inference, we can-
not assume that the FSA is given to us and the
sequences are generated randomly from the FSA.
Rather, a small set of training data is provided,
and the problem is to find the rules (FSA) which
will accept the entire class of language implied by
the training data. Depending on the application
and the inferring algorithm the training could be
carried out b{y a finite set of positive examples, or
a finite set of positive and negative examples.

In the next section we will show that when a
finite set of positive data is used for training, the
SRN encounters some additional problems. How-
ever, we show that these problems can be solved
by using positive and negative training examples.

Using Only Positive Examples

After training, the SRN learns to predict the like-
lihood of the next symbol for each context. If the
training sequence is randomly generated from the
desired FSA, and each successive symbol is picked
up with equal probability, then the SRN learns to
generate equal likelihood values for each possible
next symbol.

If a finite set of positive data is used for train-

Figure 4: The FSA for Experiment 2

423



ing, then the value of the symbol predicted by
the SRN will depend on the frequency of the oc-
currence of the symbol in the particular context
with in the training set. For example, suppose in
a data set with five sequences, the context SX is
followed by E in one sequence, and by P in the
rest. In this case, after training the SRN should
learn to predict E with a value of 0.2, and P with
0.8. This creates a serious problem in determining
the value of threshold 7, wEich is important in de-
ciding whether a sequence is accepted or rejected.

To illustrate this problem, the SRN was
trained to learn the regular expression XP°,
from the following six sequences: SXE
SXPE, SXPPE, SXPPPE, SXPPPPE, and
SXPPPPPE. After 5,000 training trials for the
context SX, the SRN learned to predict E with
a value of 0.19, and P with value 0.82. As the
training continued the problem worsened. After
20,000 trails, for the context SX it predicted E
with a value 0.15, and X with a value 0.83. The
situation did not improve with further training.

The AARN, when trained with the finite set
of positive examples, behaved in a similar way.
We have found that the problem of dependence
on the frequencies of cases in the training set can
be a.voidea by using both positive and negative
examples.

Using Positive and Negative Examples

We consider a training algorithm that uses both
positive and negative examples. This has two
main advantages. The first 1s that the threshold
is not dependent on the frequency of the symbols,
so a predetermined value can be used. The sec-
ond advantage is that the training can be halted
as soon as the network is able to correctly classify
all the given examples. This will help the net-
work to avoid overgeneralization. If the training
is continued after the correct classification of the
examples, the network continue to encode the en-
tirety of each sequence in the training set, which
will decrease its capability for generalization.

In the training algorithm, the error is back-
propagated only if the example is incorrectly clas-
sified. A positive example is correctly classified
if each context results in the correct prediction of
the next symbol. That is, for all contexts, the
output for next symbol has a value greater than
the positive threshold r. If a positive sequence
is incorrectly classified, a positive error is back-
propagated for the instances of the context for
which the next symbol prediction failed. If the
AARN is used, it is also trained to show the cur-
rent input and the current context throughout the
sequence. This will allow the context to be propa-

atec}l even when the next symbol is correctly pre-
icted.

A negative example is correctly classified if at
some point in the sequence the network does not
predict a following symbol. A prediction failure in
a negative exa.mp?e 1s indicated by an output cell
value that is less than a threshold (called the neg-
ative threshold p) that is generally less than the

424

threshold 7 used to indicate prediction in positive
examples. For the negative examples, the loca-
tion of the classification error is unknown, so a
negative error is back-propagated for all contexts.
Along with the back-propagation of a negative er-
ror for the next symbol, the AARN is also trained
to show the current context and the current input.
The training is stopped as soon as the network is
able to correctly classify all the positive and neg-
ative examples.

The results of two experiments show the ad-
vantage of using a finite set of positive and nega-
tive examples. During training, a positive thresh-
old of 7 = 0.7 and a negative threshold of p = 0.3
was used. After training, a threshold equal to 0.6
was used to check the validity of the sequences.
The number of sequences used to measure the per-
formance will be mentioned in the results.

In the first experiment, the SRN was trained
to recognize the sequences generated by the reg-
ular expression X P*. These four positive exam-
ples were again used: SXE, SXPE, SXPPE,
SXPPPPE. In addition, five negative exam-
ples were used: SE, SPE, SXXFE, SXPPPXE,
SXPXE. The SRN was trained by picking a se-

uence randomly, and back-propagating the error
if the sequence was incorrectly classified. This pro-
cess was refeated until all the nine sequences were
correctly classified. After the completion of the
training, the performance was evaluated by using
100 random positive sequences, and 1,000 random
sequences.

A network was said to fgeneralize correctly, if
it correctly classified all of the randomly gener-
ated sequences. A SRN with two hidden units
was trained for 15 different runs. For each of the
runs, the SRN correctly classified all of the ran-
domly generated sequences. The average number
of training trials required were 1,800. For the same
experiment the AARN succeeded with an average
of 1,427 training trials.

The second experiment was trained the net-
works to recognize the sequences generated from
the automata shown in Figure 3. The following
positive and negative examples were used.

Positive Examples: SXPE, SXPXPE,
SXPXPXPE, SYPE, SYPYPE,
SYPYPYPE.

Negative Examples: SE, SP, SXX, SXY,
SXE, SXPY,SXPP,SXPXX, SXPXY,
SXPXE, SYX,SYY,SYE, SYPX,
SYPP,SYPYX, SYPYY, SYPYE.

The SRN with three hidden units was trained
for 60,000 random presentation (trials) of the
above sequences, After 15 different training runs,
the SRN never correctly classified all of the train-
ing sequences. An AARN with three hidden units
was trained for 15 different runs. After each
the AARN correctli classified all the training se-
quences. To check the performance of the network,
10,000 random positive sequences, and 50,000 ran-
dom sequences were generated. The AARN was
able to correctly classify all the random generated
sequences in 11 out of 15 runs. In each of the re-



maining four runs, it failed for one particular long
sequence. On the average the training lasted for
12,424 trials.

A culoff point is defined as a position in a
negative example at which the prediction of next
symbol should be below the threshold p. The
cutoff point is determined by the associated set
of positive examples. For example, the sequence
SXPXX has a cutoff point after the context
SXPX, that is, the symbol X should not be pre-
dicted after the context. Since the context SX PX
is used in the positive example, each of the next
symbol should have a value greater than 7. The
only symbol which can have a value less than p is
the symbol X after context SXPX.

Each negative examples in the experiment de-
scribed above has exactly one cutoff point. But if
the examples with more than one cutoff points are
used in the training, the generalization will dete-
riorate. For example, the sequence SXXPE has
three cutoff point, the symbol X after the context
SX, the symbol P after the context SXX, and
the symbol E after the context SXXP. During
training, the network is required to learn just one
of the cutoff point, since the output value below
the threshold p for any of the next symbol will
be taken as correct negative classification. During
training, the algorithm can pick any cutoff point,
but the maximal generalization will be done in the
case when the symbol X after the context SX is
picked as the cutoff point. We are still working
to develop a training algorithm for an SRN type
network which will always find the optimal cutoff
point such that the generalization is at its maxi-
mum.

Related Work

Pollack [1991) and Giles et al. [1990] have devel-
oped neural network architectures that learn from
positive and negative examples. They used a clas-
sification paradigm in which the error is back-
propagated at the end of each example. In the
classification paradigm, a network does not have
a trap state. An error followed by a long sequence
of correct examples will be accepted by such a
network [Pollack, 1991]. However, the predictive
paradigm has a trap state, so that the network
stopsdaccepting the input as soon an error is de-
tected.

Conclusions

The AARN architecture can be used in any appli-
cation where the SRN has been used. We show
that there are cases for which the SRN fails to
encode the FSA, but the AARN with same num-
ber of units in the hidden layer succeeds. The
training algorithm used by Servan-Schreiber et al.
(1991], is suitable for training the network from
randomly generated sequences from the FSA. For
most applications, the FSA is not known in ad-
vance. Hence only a finite set training data may be
available. We show that when a finite set of posi-
tive examples is used, the network will not perform
well if a predetermined threshold value is used for

425

classification. This problem can be solved by using
a finite set of positive and negative examples. The
results of using both positive and negative exam-
ples are encouraging, but the performance of the
network deteriorates if the negative examples have
more than one cutoff points. Work is in progress
to remove this deficiency.

Acknowledgement

The author Arun Maskara is a Ph.D. Candidate at
the Polytechnic University, Brooklyn, New York.
This work has been done as part of his Ph.D. dis-
sertation.

References

[Angluin and Smith, 1983] Dana Angluin and
Carl H. Smith. Inductive inference: Theory
;xﬁ:g %%t;mds. Computing Survey, 15(3):237-

[Elman, 1990] Jeffrey L. Elman. Finding struc-
ture in time. Cognitive Science, 14:179-211,
1990.

[Ghahramani and Allen, 1891] Zoubin Ghahram-
ani and Robert B. Allen. Temporal process-
ing with connectionist networks. In Proceedings
o!gthe International Joint Conference on Neural
Networks, pages 541-548. Lawrence Erlbaum,
1991.

(Giles et al., 1990] C. Lee Giles, G. Z. Sun, H. H.
Chen, Y. C. Lee, and D. Chen. Higher order
recurrent networks & grammatical inference.
In Advance in Neural Information Processing
Sy;Eema 2, pages 380-387. Morgan Kaufmann,
1990.

[Jordan, 1986] Michael I. Jordan. Attractors dy-
namics and parallelism in a connectionist se-
quential machine. In Proceedings of the 8th An-
nual Conference of the Cognitive Science Soci-
ety, 1986.

[Maskara and Noetzel, 1992] Arun Maskara and
Andrew Noetzel. Forced learning in simple
recurrent neural networks. In Proceedings of
the Fifth Conference on Neural Networks and
Parallel Distributed processing. Indiana-Purdue
University, Fort Wayne, Indiana, 1992.

[Pollack, 1990] Jordan B. Pollack. Recursive dis-
tributed representation. Artificial Intelligence,
46:77-105, 1990.

[Pollack, 1991] Jordan B. Pollack. The induction
of dynamical recognizer. Machine Learning,
7(2/3):227-252, 1991.

(Rumelhart and McClelland, 1986] David E. Ru-
melhart and James L. McClelland, editors. Par-
allel Distributed Processing. MIT press, 1986.

[Servan-Schreiber et al., 1991] David Servan-Sch-
reiber, Axel Cleeremans, and James L. McClel-
land. Graded state machine: The representation
of temporal contingencies in simple recurrent
networks. Machine Learning, 7(2/3):161-193,
1991.



	cogsci_1992_420-425



