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ABSTRACT 

A new technique is described for calculation of the scattering of 

charged particles by atoms .. This is done by means of an expansion in 

"incoherent· fluctuations" of the state of the atom. Two limiting cases are 

discussed - the adiabatic and the high-energy limits. The structure and 

convergence of the expansion are investigated. Several variational techniques 

may be used within the framework of the method described. Finally, a 

detailed study is made of scattering by hydrogen atoms. 
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I. INTRODUCTION 

We should like to discuss a nove 1 technique for describing the 

scattering of charged particles by atoms. The method may be readily gen­

eralized to describe the scattering of one complex system by another (for 

example, the scattering of molecules by molecules); we shall, however, limit 

our scope to the following problem. 

A simple particle ~without internal degrees of freedom, except 

possibly angular momentum) of charge Q is scattered by a single neutral 

atom, having atomic number Z. Our problem is to determine the scattering 

cross section. To provide a first simple presentation, we shall either 

suppose that the incident particle is not an electron, or, if it is an electron, 

we shall suppose that its exchange interactions with the orbital electrons of 

the atom are negligible. In Part II, we shall show that a simple modification 

of our method suffices to include exchange effects because of the Pauli 

principle, 

The formulation to be presented provides in principle an exact solution 

to the problem. Thus approximation methods may be studied systematically. 

We shall also show that our technique lends itself to several variational 

methods, providing means for practical computation.-:-- · 

The bulk of our discussion, after the presentation of the method, will 

be concerned withthe physical basis of several methods of approximation 

and the resulting rapidity of convergence. In the course of doing this, we 

shall show how other techniques for such: problems are related to that given 

here. I 
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The Hartree-Fock method provides one of the most elaborate devices 
l 

that has been used in handt'ing atomic-scattering problems. This is, indeed, 

somewhat related to our method. In contrast to the method presented here, 

however, the Hartree -Foe k formulation does not lend itse 1£ to systematic 

improvement to arbitrary accuracy. Buckingham has used another vari-

. 1 h d b . 1 . . . 1 2 • 3 Th" · at1ona met o to o ta1n a po ar1zatlon potentia . 1s appears 1n a 

definite approximation (the adiabatic approximation) in our discussion, where 

a nove 1 variational technique is employed to obtain it. Nonadiabatic corrections 

to the polarization potential are also for"mulated from a variational principle. 

It will not be assumed that the interactions responsible for the scattering 

are weak. Instead, an expansion will be made in the number and complexity 

of the "discontinuous changes in orbit 11 that the scattered particle makes. 

More precisely, by a "discontinuous change of orbit" we mean a single 

scattering interaction that leads to a change in the state of the atom. Such 

an inelastic scattering changes the wave number of the scattered particle, 

so that the resulting scattered wave does not interfere with the unscattered 

wave. Using the concept of scattered waves, we may re-express our method 

as providing an expansion in "incoherent" scattering processes. 

The expansion just described appears to have rather simple features 

1n several limiting cases. For scattering of fast particles, the method con­

verges rapidly, partly because the interactions are effectively weaker at 

high energies and partly because the incoherent scatterings are more readily 

"localized" in space. For slow massive particles, or for slow particles 

scattered by atoms of large atomic number, our method gives immediately 

the classical limit of a particle moving in a potential welL 

To actually determine the scattering, one must first compute the 

"potential well" in which the scattered particle travels within the atom. In­

elastic scatterings of the particle with individual electrons are treated as if 

occurring impulsively; however, between such impulsive interactions the 

particle travels. "smoothly" in its potential welL 

This type of treatment has been used for a variety of phenomena in 

nuclear physics. These include stripping and pickup processes, 
4

• 
5 

as well 

as elastic scattering and transport phenomena. 
6 

The specific method that 

is given here is a modified form of that used to describe high-energy nuclear 

interactions. 
7

' 8 The applicability of these techniques to low-energy nuclear 

B k 
. 9, l 0 

interactions has been demonstrated by· ruec ner and h1s collaborators. 
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For these latter applications, it was important to assume that an atomic 

nucleus has many of the properties of a nearly degenerate Fermi gas - a 

condition that is also found in the electronic structure of all but the lightest 

atoms. Because electromagnetic interactions are weaker and of longer 

range than nuclear forces, we shall actually find that our problem is simpler 

than the corresponding ones in nuclear physics. 

In the next section, the formulation of the technique just described is 

presented. We shall see how to apply it to either elastic or inelastic scatter­

ing of a charged particle by an atom. In the following section, we shall ob­

tain both the adiabatic and high-energy approximations and discuss the con­

ditions for their applicability. In Section IV a more detailed investigation 

of the adiabatic limit will be given based on the Fermi-Thomas model. In 

Section V, the scattering by hydrogen atoms will be discussed. Finally, in 

Section VI, the applicability of several variational principles will be demon­

strated. 

II. FORMAL DEVELOPMENT 

It is assumed that the neutral atom is described by a Hamiltonian 

HA' a set of energy eigenvalues·Wn (n = 0, l, 2 ..... ), and a complete set 

of wave functions <I> . The ground-state energy and wave function are denoted 
n ll 

respectively, by W 
0 

and 4>
0

• Thus, we have 

HA<I> =W 4>. n n n 
(2 -l) 

The coordinates of the electron are represented by z 1 ~J. = l, 2 .... Z), and 

the mass of an electron by m. The particle to be scattered has a mass M 
0 

and a charge Q. 

The scattering is considered in the center -of -mass coordinate system. 

The initial kinetic energy is e . The kinetic energy in general is 
0 

- p2 
,K(p)- 2M ' 

where p is the relative momentum of particle and atom, and M is their 

reduced ma-ss. 
12 

The interaction energy of the particle with.the atom is 

written as 

where 
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.v = ZeO .. 
N X (2 -2) 

and 

with 

e'Q 
(2 -3) 

·Here e' = -e is the charge on an electron and X is the coordinate of the 

scattered particle, measured with respect to the atomic nucleus (which we 

cdnsider as at a point) . 

The scattering of the particle bythe atom is now described by the 

Schrodinger equation 

[K + V:N + V + HA) ~ = [€o + wo] ~· (2 -4) 

Th. . . 1 . . t 1 . 13 , 1s 1s more conven1ent y wr1tten as an 1n egra equahon. 

1 
X+~ (V+VN) ~. o a . 

where 

i p . X 
-o -e 

X = 
0 (2tr)3/2 <I> 0' 

(2 -5) 

and 

a=:€ -K+in+,(W -HA). 0 'I. 0 (2 -6) 

(Here Yl is a positive infinitesimal parameter that determines the contour of 

integration past the pole of a -
1
.) The incident wave is x in ·Eq. 2-5. 

0 

. The wave function ~may conveniently be expanded in terms of <1> : 
n 

~ = ~ ljJ (X, n) <I> • 
·- n 

(2- 7) 
n 

The elastic scattering is given by the term with n = 0: 

(2 -8) 
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To condense our notation, we write (2 -7) as 

-;r.=F-;r. 
::r. .:l:.c ' ~2 -9) 

where (<!> 
0

, F q,
0

) = 1 and {F -1) has matrix elements for inelastic scattering 

only. 

As we shall see, the elastic scattering may be obtained from an 

equivalent potential V, such that 

~2 -10) 

The potential 1.f depends only upon the coordinate X of the scattered partie le, 

so'Eq. (2-10) actually describes the motion·of a single particle in a fixed­

force field. We shall alwp.ys consider Eq. (2 -1 0) as a soluble problem, 

that is, one for which we need not find approximations. 

It is desirable to generalize Vto a potential !.{(n) which describes 

the elastic scattering of the particle in an excited state n, although for many 

applications one:may suppose that t{n) does not depend very strongly on n. 

However, it. is very important that the matrix V is diagonal in the state n 
14 

of the atom 

The potential V will be explicitly determined later; for the moment, 

however, let us suppose it to be known. Then Eq. (2-10) may be rewritten 

as 

iJi c = X 
0 

+ ~ ~lf ~c-· (2 -11) 

Because U is diagonal in the atomic states, a is just (€ 
0 

- K + in) in 

Eq. (2-11). 

Now, in order that Eqs. (2-9) and .(2-11) be consistent with (2-5), we 

find that F must satisfy the matrix equation 

F = 1 + ~ [V N + V - lf ) F, 

with 

d:::: a- V. (2-12) 

To see this, we substitute Eqs. (2-11), (2-12), and (2-9) into the right-hand 

side of {2-5) to obtain 

. 1 
~=x 0 + ~.(V+VN)F~c· 
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Now 

1 = .!...d + .!_ {d-a) .!_ = .!_ - .!_ if.!_ 
a a d d a d (2 -13) 

is a simple algebraic identity, which permits us to write 

1 1 I r' 
= [ 1 - a 'V] [ F - 1 + d v F ], 

using the Eq. {2-12) satisfied by F. Now we have 

1 . . 1 "' ~ = X + [ 1 - - lf] [F - 1 + - u F] ~ · o a d c 

The first two terms cancel because of Eq. (2 -11). The last term 

vanishes because of Eq. (2-13). The remaining term is F ~ , which . c 
verifies that Eq. (2-9) provides a solution to·Eq. (2-5). 

Thus far, all that we have said is formally exact - but not useful, 

because we have not yet determined the potential lf .. To obtain lf, we use 

the condition that. (F-1) must describe only inelastic scatterings. That is, 

we require that F satisfy the equation 

1 
F=1+dP[VN+V]F. (2-14) 

Here P is an operator that instructs us never to repeat a giveh state "n" 
of the atom in the perturbation expansion for F:

8 

The general term is 

n2,n3 ... ns 

The operators P instruct us that the atomic states n 1 , n
2

, ... ns' 0 must all 

be different. Aside from this restriction on states, P has no other effect on 

the perturbation series. In particular, it does not act on the states of the 

scattered partie le. 
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We may finally determine Vfrom the condition that Eqs. (2 -14) and 

(2-12) be equivalent. Indeed, we may rewrite Eq. (2-12) as 

1 1 
F = 1 + dP(VN+V)F + d[(1-P)(VN+V)~V] F. 

For (2~12) and 2-14) to be equivalent in generq.l, we must obviously have 

Because we require that 1/'be diagonal in the states n, this may be written as 

(2 -15) 

Now ( l ~P) is an instruction that tells us that the state "n" must have 

occurred someplace in the perturbation expansion for F. It may have 

occurred at the previous interaction, at the second previous interaction, 

etc. This may be expressed as
8 

(ni<1-P)(VN+V)F~o)=(ni<VN+V)In)(ni1+~P(VN+V) + I o) 

+(ni<VN+V) ~P(VN+V)ln) (nil +~P(VN+V) + ... I o) 

+ 

= (ni(VN-t V)F ljn) (niF I 0) . 
I 

(2-16) 

On comparing this with Eq. (2 -15), we see that 

defines the potentialV. Finally, we may (for most practical purposes) drop 

the VN in Eq. (2-14) for F. That is, the operator Pin F implies that each 

matrix element of (VN-+ V) changes the state of the atom. Except for very 

energetic nuclear interactions (which we are rot considering) the electrons 

can follow adiabatically the recoil of the nucleus associated with VN, so we 
15 

have 

(2 -18) 
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·We may now summarize our scattering equations: 

~ = F.~c 

1 
9!-= X+- lf9! c a c 

F = 1 + ~ PVF 

d - € + iYI-£ + (W -' W \ 0 ., 0 r{ 

= K + lf. 

The fact that VN, which is in general the strongest interaction term, occurs 

only in one place (and in a trivial manner) in our equ;1tion {2-19) simplifies 

subsequent applications considerably. Indeed, this point hqs frequently 

arisen before in atomic-scattering problems and has on occasion caused 

difficulties. 

As described in the Introduction, the separation of "coherent" and 

"incoherent" interactions has now been achieved. Indeed, the physical 

interpretation of the wave function ~ in the form {2 -19) is that the partie le 

moves "smoothly" as determined by .the potential lf between inelastic 

interactions, these being determined by (P V) in F. 

When the scattered particle has a positive charge, it may pick up 

one or more electrons before the scattering is complete. "Such rearrange­

ment collisions" are of course included in our wave function ~· Some care 

in application is called for because in such.'collisions one must expand the 

outgoing wave in terms of eigenfunctions of the two outgoing systems .. This 

means expanding the last ~ in F in terms of the appropriate new Green's 

function. When this is done, one obtains the appropriate starting point for 

a discussion of the "pick-up" cross section. In Part II we shall return to 

a detailed discussion of this type of process. We note for later reference, 

however, that a first approximation would give the familiar result 

R = 2rr /o{ e + w - Ef ) 1 1 xf, v ~ ) 12 
d' · 

0 0 . C T 
(2 -20) 
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for the "rearrangement" transition rate. Here X£ is the final wave function, 

describing the 2-product atomic systems and Ef is their appropriate energy. 

The volume element of integration over final status is written as "d 7'". 

Finally, the cross -section for the rearrangement collision is 

3 
0 = (2lT) R 

-v ' ·(2-21) 

where V is the initial relative velocity of the incident particle and the 

original atom, and (2lT) -
3 

is the incident-particle flux with our normalization. 

III. APPROXIMATE FORMS FOR U 
When the potentials '1f and V are approximately constant over a 

distance of the order of one wavelength of the scattered particle, we may 

expect to approximate d in the equation for F by a much simpler quantity. 

In this case, the scattered particle undergoes a very large number of 

scatterings, each giving it a very small impulse. If this condition obtains' 

the kinetic energy of the scfittered particle will not change appreciably when 

a scattering occurs, so the kinetic -energy operator may be neglected in the 

denominators d that occur in F. 

To express this in detail, we note that for a particle moving in a 

potential well, the condipon of energy conservation is 

€ = K+ V(O). 
0 

When rapid fluctuations in the atomic state occur, but under conditions such 

that the kinetic energy of the scattered partie le is not modified, the virtual 

energy of the particle is 

The energy difference 

€ = K + 1f(n). 

(€ - € J in d is then (1/(0) -l/(n) J which is just the 
0 

difference between the two expressions above. 

In this case we have the so-called adiabatic approximation. The 

denominators d occurring in lf are replaced by 

(3-la) 
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For a degenerate Fermi gas the excitations (W - W ) tend to be large; thus o n 
it appears that the difference [V(O} - U(n}] above will often be negligible in 

d A" For many practical applications the simpler equation 

d:::::d =W ~w A o n 
(3-lb} 

seems quite adequate. This may be seen most easily in terms of the 

Hartree-Fock modeL The potentials 1f{n) depend upon averages over all 

electrons. Thus, when only a few electrons at a time are excited, lf(n) 

may differ but little from 1.((0). For our subsequent discussions of the 

adiabatic approximation, we shall often assume (3 -l b). 

As an example, in the limit when classical mechanics is valid, the 

particle scatters continuously, each scattering corresponding to an infinitesi­

mal momentum transfer. For such interactions, the difference [E - e: ] is 
0 

vanishingly smalL 

··When either Eq. (3-la) or Eq. (3·-lb) is valid, the coordinate x of 

the scattered partie le commutes with d A and thus with F. It appears there­

fore only as a parameter in the equations for F and(}, so 

l./(~) = Z~Q +(niV(x)F(x)ln) (3-2) 

This potential describes the interaction energy of a charge Q at a 

distance x from the nucleus. (We shall compare this result with the more 

conventional ones in Sec. VL} Expanding F, we have 

(/(x) = z:Q + (n!V~x)in) +(niV{x) ~A PV(x)!n) + ... 

(3 -3) 

The first two ~erms represent the potential of the nucleus as shielded by the 

orbital electrons - a familiar result. The higher order terms represent 

corrections to this because of the polarization of the atom by the extra 

partie le. 

We may express this in more conventional terms. If the charge 

density of electrons in the atom is p(Z), we may write this as 

p(Z) = p (Z) + Op{Z) 
. 0 

(3 -4) 

Here p (Z) is the charge density of the original atom before it was perturbed 
0 

by the charge Q and Op is the change in p due to the perturbing effect of Q. 
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The energy of interaction of Q, when at x, - with the atom is 

ZeQ 1 p (Z)d
3

Z 
+Q J op(Z)d

3 z 
b.E = + Q 0 +ow, 

X lx- ZJ lx- Z I - -
(3 -5) 

where OW is the change in energy of the atom due to the perturbation Op. The 

first two terms of Eq. (3-5) are identified with the first two terms of Eq. (3-3). 

The last two terms of (3 -5) are contained 1but not separately exhibited) in the 

remaining terms of (3-3).
12 

The validity of the adiabatic approximation will be discussed below, 

and in Section IV means for evaluation of Eq. (3 -2) will be considered. 

For the high-energy approximation, we replace d by 

d .::::: d = e + in - e. H o 
(3 -6) 

In this approximation we may take E as independent of the atomic state n 

and also as diagonal in the momentum p. Now, the coordinates z 1 .... Z 
- -z 

of the orbital electrons commute with d in F and consequently would appear 

only as parameters in F and V F if it were not for the operators P. These 

operators now occur only as projection operators however, and again one 

has a simple limit. The validity of this limit will be discussed below and 

application will be made in Section ·V. 

We shall estimate the limits of validity of the high~ energy and 

adiabatic approximations using the second-order term in V(O): 

(3 -7) 

where d is the value of d when operating on <j> . To carry out a specific 
n n 

discussion here aiJ.d elsewhere in this paper, we shall assume Hartree -Fock 

wave functions for the atom - that is, we shall assume that the electrons 

have individual orbital states, <j>n (Z) with quantum number n 1 (1 = 1, 2 ... Z). 
1 

When convenient, we shall also use the Fermi-Thomas model to make semi-

quantitative estimates. 

Then, Eq. (3~7) is, in coordinate space, 

z 1 * 1 = ~ 2).· • <I> o ( z 1) V 1 (?5. - ~1) <I> n ( z 1) d 
1= 1 n

1 
, 1 

;)~ 

<I> ( z I ) v ( X I - Z' ) 
n 1 1 1 - 1 

(3 -8) 
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(PlV:: I P')= t L f d3P 
- 2 - (2Tr)3 

1=1 n 1 

1 4Tre'Q 
--2 
12 -~1 [e - e(P) + in + w 

0 0 

-i(£!'- ~) 0 z .t 
e 
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4Tre'Q 

Je'- ~~2 

I ] . (3- 9) 

As mentioned above, we are neglecting here the dependence of € 

on the state n and considering € to be diagonal in the state P. For the 

high-energy approximation this seems quite justifiable - indeed, in this 

case € z K should be adequate, as will appear from the following 

considerations. 

The validity of the "high-energy" approximation depends upon having 

le-e I>> (W - W ) , (3-10) 
o n 1 o 

an appropriate average excitation energy of the atom. Now, we have 

where Op is the momentum transferred to the scattered particle. To leave 

the atom excited, however, ,requires Op z pF' the Fermi momentum in 

the atom. Then, the condition (3-10) is 

(3 -11) 
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According to the Fermi-Thomas model, 
16 

the Fermi momentum is 

given by 

2 2.2 z 4/ 3 ti2 [x~)J PF = 2 ' a 

with 
2 1/3 

y= 0.9 a 
r 

a = 
ti2 

(3 -12) -mez 
and 

where r is a distance measured from the center of the atom, The dimen­

sionless functionX(y) is unity for y:: 0 and falls to zero for y > > 1. For 

the energy (Wn - W ) , we use the Fermi energy 
i. 0 

2 
If we square both sides of Eq. (3 -11) and simplify, taking E :: :e._ , there o 2M 
results the condition 

r-~J 
2 

e 
a 

(3 -13) 

if the high energy approximation is to be valid. Near the outer boundaries 

of the atom, X{y) becomes small. In this case, we should more properly 

take 

{op)2 
m 

(W - W ) :: 
n 1 o 

where Op is the momentum transferred to an electron. If we assume the 
11 size 11 of the atom to be approximately a Z -

1
/ 3 the characteristic 

momentum transfer is 

op .:::: 
a 
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With this, Eq. (3-13) is .replaced by the condition 

(3-14) 

For the validity of the high-'energy approximation, we require then that both 

conditions (3-13) and (3-14) be satisfied on the particles orbit. 

· We turn next to conditons for validity of the adiabatic approximation. 

For the moment, we ignore the possibility of rearrangement collisions. If 

we set 

1 - 1 cr- w -w 
o n 

+ [ € - Eo] (3-15) 
[W -·W J ['W - W + (€ - €

0
) - iry J n o n o 

the nonadiabatic correction is 

[W - W J[W - W + €- € - iry J 
n o n o o 

(3-16) 

Because [€ - €] ·~ = 0; this may be written as 
0 c 

1 
(nl[E,V]IO). 

[w ..;; w J [w - w + € - € - iry] n o n o o · 

(3 -17) 

In the adiabatic limit, we have 

112 
2 

[ £, V] = - 2M { [ 'V V] + 2 ( 'V V) . 'V } • (3-18) 

This results because in the adiabatic limit lf"(x) commutes ·With V. 

When the scattered particle is well outside the atom and .at x, the -
leading term in Eq. (3~18) is approximately 

1'i p v. M X 

Then the value of A~ is 

A1r2 -::-·V [~ p 1 ] (3-19) 
> 2 ·M X 

(W - W ) 
n o 



-17- UCRL-8246 

We require then 

X 

p 
M << 1W - W ) .\ n o (3 -20) 

if the adiabatic limit is to be valid. Equation {3-20) is understandable from 

elementary considerations. The. "collision time" is of the order of 

The uncertainty in energy during the collision is n/ 'T which must be small 

compared to the excitation energy .(W n -- W 
0

); this condition is equivalent 

to Eq. (3 ~20). 

When the incident particle is inside the atom, we approximate the 

right -hand side of Eq. (3 -18) bythe first term and use Pois son• s equation 

to write 

[ €, V] (3-21) 

H Hartree-Fock wave functions are used to evaluate Eq. (3-17), we obtain 

(with the approximation (3 -21 )) 

2 411" e'Qti 

For very rough evaluation, we make the conservative estimate 

(3-22) 

where l.IJ. is the second term on the right-hand side of Eq. (3-3). Also we 

have 
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where n is the electron density in the atom. This is, by use of the Fermi­

Thomas model, 

• ) 2/ 3 n(x ~ 0.1 Z a (3-23) 

For W - W we use again 
n 1 o' 

2 e /a 

Then Eq. (3 -22) becomes 

m 
M [ 

y ].!. 
X(y) z . (3 -24) 

When rearrangement collisions may occur, the condition 

I € - € I < < {W - w . ) o n o 

will not in general be satisfied at the time the rearrangement occurs. It is 
-1 

then necessary that the propagators d be e~pressed in terms of new 

eigenvalues W and € appropriate to the new atomic systems. When this 
n 

is done, our formalism applies to those new systems. The potential u has 

an imaginary part in this case, however. To first order this is 

(3-25) 

The value in this approximation is given essentially by the quantity R of 
17 

Eq. (2-20): 

Im[ll] 
i 

= -2 R. (3-26) 



UCRL-8246 

IV. THE ADIABATIC APPROXIMATION FOR V 
In this Section we should like to discuss more completely the adiabatic 

form of 1.f. This means estimating the effect of the higher -order terms in 

Eq. (3-3). As we shall indicate, an adequate evaluation seems feasible if 

one uses Hartree -Fock wave functions. The principal reason for this is 

that the inner-shell electrons are sufficiently tightly bound that they do not 

polarize very readily. Thus the major contribution from higher -order terms 

in Eq. · (3-3) comes 'from only the outermost electron (or electrons). Our 

method permits us to study this in detail. 

To orient ourselves, we first discuss the Fermi-Thomas model. The 

electron density n(r) is then 

8rr 3/2 n(r) = ~3 [2me<j>] , 
3h 

(4 -1) 

where <j> is the electric potential, as given by Poisson's equation: 

2 
'V <j> = -4rre [Z O(x) - n(_::)]. (4-2) 

The Fermi momentum pF is ±-elated to <j> and n by 

and 

= n (4-3) 

(thus Eq. (4-1)). 

· We next ask for the modification of <j> and n when an external charge 

of density S(r) is placed within the atom. To first order inS, we write 

and 

<!> = <!> + <!> I 
0 

n = n + n' 
0 

where, from Eq. (4-1), we have 

n' = 4'1T 

i? 
Now Eq. (4-2) becomes 

(V' 2 - _1 ) <!>' = -4'1TS 
}1.2 

D 

(4-4) 

(4-5) 
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and 

4 1 
(4-6) 

1T a 

The· "radius 11 of the atom is 

b ~ 0.9 az- 1/ 3 , (4-7) 

while the shielding distance X.D' as given by Eq. {4-6}, is 

-1/3 
a Z . (4-8} 

Because these two distances are comparable, we conclude that complex 

cooperative motions are not of predominant importance to our problem and 

that perturbation methods may therefore be applicable. 

With the Fermi,Thomas model, one may evaluate Eq. (3-5) as 

follows: 

ZeQ 
X 

- e f n'(r) ~'(r) d
3
r. (4- 9) 

The last term represents the '.'polarization energy''. From Eqs. (4-4) and 

(4-5}, we obtain (for Q near the center of the atom) 

<I> I : 
Q - r /X.n - e r 

and 

1 2 PF 
en' 

me 
<I>', = -2 

n2 1T 1'i 

and therefore 

•! n'{r)oj>'{r) d
3

r 
1.5 Q2 

Z 1/3 f d\ (X(y~f -2y .z 
2 - e . 

a ' y 
1T 

(4-10) 

The notation of Eq. (3-12) has been used here. 

The order of magnitude of the terms in Eq. (4-9) is now easily seen. 

First, the total binding energy
16 

of the neutral atom is 

ET.z e2/a z7/3. 
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The first and second terms in Eq. (4-9) are of magnitude 
2 

Ea .z : z4/3 . 

Finally, the energy of the last term in (4-9) is 

>·E z ~ z 113 
p a .. 
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(4-lla) 

(4-11b) 

We now return to the quantum mechanical Eq. (3-2) for V. 
second order energy is 

The 

V 2 = (olv~ vJo). 
A 

(4-12) 

Now, in the "classical limit", if the charge Q is in the interior ofthe 

atom, we have 
2 2 

z1/3 v e e 
'::' 

b 
'::' -a 

and 
2 

(-dA).z z4/3 e -a 

Finally, we have 

~ ·[(ol][lo)J '==' /d3
xn(:x) zz. 

electrons 

Thus we can write 

This agrees with Eq. (4-11b). 

2 -1 
e ] 
a 

2 
e 
a 

(4-13) 

A more conventional calculation of this (Eq. 4-13) may be made if 

we consider the electrons as uniformly distributed in plane-wave states in 

a box of volume 

r = 4rr b3. 
3 

The electron levels are filled to the Fermi momentum PF. Now, Eq. (4.,.12) 

is 

V= 2 
2 21 1 rd

3
P 

1 2m (4rr; ) r d3P o 
[(P -P)2] 2 p2 _p2 

r p <P 
o F P>PF -o- 0 

PF dP 
2 2 I 0 (4-12a) ':::' (4rre ) mPF 

(Po -PF)2 )0 
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Although this integral diverges, the second-order perturbation lf2 does not. 

This is because the states in a box are discrete rather than continuous. The 

gap between levels is 

b. ::::::.. 11 
b 

Thus the integral above (4-12a) should be replaced by 

jrF-C> dP 1 b 0 

(Po -Pf)2 
-:::' 

25. = 11 

This gives 

2 2 b 
2 

z l/3 . 1.)2 = 
e 

(41Te ) mPf 11 = a (4-14) 

This, of course, agrees withEqs. (4-llb) and (4-13). ,; 
' The higher-order perturbation terms in Eq. (3,..2) are of the form 

The P operator plays a very important role in determining the convergence 

of this series. The reason for this is that because of P each interaction V 

must change the electronic states. Because the Fermi-momentum is large, 

this implies a tendency toward large values of dA. 

If the terms [1/(0) - (({n)] in (3-la) are negligible, then the condition 

for the convergence of the series {4-15) seems fairly simple. 
41T 

above moder of a degenerate Fermi gas in a box of volume 3 

Using the 
3 

b , we see 

that each electron that scatters must scatter at least twice - once when it is. 

excited and once when it is de -excited. Now, an excitation followed by a 

de -excitation contributes approximately 

(4-16) 
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2 
2 4/3 If we set d ~ 

e the expression (4-16) is A- a ' 

2 
1 -4/3 .3_ 
-2 ':::' z 0 a 

2
4/3 e -a 

The expansion (4-15) thus is an expansion of the form 

(4-17) 

Here the coefficients a 1 , a 2 -- ~ are independent of Z o 

This argument suffers from a flaw, however. If there is a close 

approach of two levels as we vary the parameter ;::. then dA becomes smalL 

·This may be associated with the possibility of a rearrangement collision. 

Such contributions must be included separately and in addition to the "we 11-

behaved" series (4-1 7) (this condition is described in the Appendix)o 

When the scattered particle is at large distances from the atom, the 

series (3 13) is again simpleo The first two terms cancel, and one is left 

with 

U= ( o i v k A ~v l o) + ( o I v ~A PV ~A PV 1 o ) + .. 0 0 

(4-18) 

-2q 
As may be easily seen, the term with q factors of V varies as X (because 

of the operators P). 

That is, we have 

V = Ze'Q 
X 

z 

L 
1=1 

e'Q 
2 ( ~ 0 '!:i + (4-19) 
X 

The first term here makes no contribution to the terms in the series (4-18}. 

The second-order potential above is thus 

v 2 = (olv ~ PVIo) 
A W -W n o 

(4-20) 
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This may be related to the induced electric dipole moment of the atom 

_ 12 =,a_~, (4-21) 

where a is the polarizability and 12 is the dipole moment. The polarizability 

of the atom is easily seen to be (see Eq, {4-20)) 

a= 2e2 L l(nlg· r ~~o)12 
n;t'O w 

n 
-W 

0 

Thus, we have the familiar classical result, 

1.£. = ~ Q2a ~P4 
2 2x 4 - x 

(4-22) 

(4-23) 

The conditions for the validity of the adiabatic approximation in this case 

have been discussed in Section IIL 

Atomic polarizabilities have been evaluated particularly by 

S h 
. 18 

tern e1mer. 

When the scattered partie le is close to the outer edge· of the atom, 

the polarization due to the outer-shell electrons is less easily calculated. 

In Section VI, we shall suggest variational methods for handling this problem, 

V, APPLICATION TO HYDROGEN 

We now turn to the application to hydrogen of the method described 

in Sec, IL In this .case the statistical methods of Sec II and III do not apply, 

but the wave functions and eigenvalues of the atomic system are explicitly 

known so that evaluation of the scattering potential is again possible in the, 

limits discussed above, We agaln limit our discussion to the case where the 

nuclear -recoil velocity is sma 11 compared to the electron velocity so that 

the discussion of Sec, II may be repeated and Eqs, (2-19) applied directly, 

We shall discuss only the first two orders in the expansion of the elastic 

.scattering potential 

(5-1) 
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As before, the first two terms represent the nuclear coulomb potential 

shielded by the atomic electron. These may be evaluated explicitly by the 
-zla. r-:-::-3 -use of the ground-state hydrogen wave function, <j> (z) = e '\11Ta , which 

0 

yields 

1.( 1 (x) = V N(x) + ( 0 IV I 0) = eQ { ~ + ~ ) e -
2
x/a. (5-2) 

The second-order l.f2 represents an impulsive scatterir:g by the electron, 

with the atom going into an intermediate excited state, while the scattered 

particle moves in the potential of that atomic state, l/(n). Another impulsive 

scattering then takes place de -exciting the atom. In general 1{z is an 

energy-dependent nonlocal potential 

* 
r. f 2 2 
- U- (x, x') = e Q 

2--
l 

<j> (Z) 
n-

~ (x, n)~ (x', n) a_ a-

IZ-xl - - [ € -€ +W -W +inl o a, n o n -

* <l> (Z I) 
n-

l 
(5-3) 

I Z'-x'! -- -
where ~ (x, n) is the ath eigen-function and € is the energy of the 

a an 
scattered particle moving in the potential of the atom in its nth state. 

In the limit of large distances, the potential changes by a small 

fraction in a wave length, and the conditions for adiabaticity apply. Then 

the approximate,Eq. {3-lb) may be used, so that the dependence of the de~ 

nominator on the scattered parti.cle index a disappears, and the sum over a 

may be performed by the use of the completeness relation for the wave 

functions ~K. The potential V
2 

is then local, 

* * -<l> ( Z )<j> ( Z ) <j> ( Z I ) <j> ( Z ) 
o n- n- o 

(W - W ) 
n o 

(5-4) 

and real so that only elastic scatterings are possible. At large distances, 

we again make the expansion of Eq. (4-19). The contribution of the leading 

term is the dipole polarizability 
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ut; Q2 a 
- - 4 

X 2 
(5 -5a) 

where we have 

In-a 

like 

(5 -5b) 
W -W 

n o 

This can be evaluated analytically with the result· a = i- 3 18 
a 

0 

similar manner one can show that the qth term in the series behaves 
x-2q. 19 

In the adiabatic limit we can find the scattering potential at small 

distances from the proton by noting that it is essentially given as an energy 

eigenvalue of the atom in the field of the scattered partie le (See Eq. 6 ,~4). 

Thus, if the scattered particle, with charge Q, is at the position of the 

proton the atomic electron is then moving in the coulomb field of a charge 

e f Q = Ze. For Z; 0 the eigenvalue for such a system is well known
20 

to be z 2w . The adiabatic potential at the origin is then given by 
0 

lim 
x-o 

( V (x) - eQ) = lfi 0) = ( Z 
2 

- 1 ) W . 
0 X 0 

(5-6) 

For example, for a singly charged, negative-scattered particle we have 

Z = 0 and v(O) = ~~ . The. potential can be obtained from a variational 

principle ~see Eqs. 6 ·~8) and be put in a form suitable for negative 

O:x (Eq. (6 -13 )) . For this form we use for ~ the interaction with the 

static electron cloud, 

:i
oo 2 . 

x' dx' p (x') + 41Te x x' dx' p (x') 

and we modify the polarization potential in the manner suggested by Bates 
3 

and Massey, 
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'V:= p 
p 

The parameter d is determined by the condition on V(O) to be 

~ = ~~{; = .J372 -a. Then the approximate potential is 

lf(x) = 
rv;{x)] 2 

p 
1[1 {x)+ 2 2 2 

~~ +x ) 

{5-8) 

(5-9) 

For a positive particle the variational form (Eq. 6-13) is not suitable, but 

we may construct an approximate potential from the requirements that 

V'(O) = 3W = -3/2 e
2 
/a and from the form of the polarization potentiaL 

0 

For a positive charge, the potential is 

2 
lf (x) = ~ [e -2x/a _ ~ p _ e -2x/a)]. 

1 a x 
(5-1 0) 

. For the polarization potential (Eq. 5-8) we again use the form 

(5 -11) 

where 

is again determined from the condition at the origin. 

We may estimate the magnitude of the nonadiabatic contribution to 

l./2 by substituting Eq. (3-15) in Eq. (5-3): 

t:::.l.f = 
2 

1 

IZ-xl --
€ -€ 

<j> (Z) o n 
n- {W .-W )2 

n o 

(5 -12) 
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where we have 

~~ \72 +1/(n). 

·We neglect the n dependence of € and perform the sum over n. In the 
n 

limit of large distances, we find 

""\/"" 2 2 -
A v

2 
_ z -e Q {€ -€ ) 

o n 

This gives 

where we have 

Thus 

12. 
3 n 

+ ~) 

= 0 (::) 

and 

defines the region of validity of the adiabatic approximation. 

(5 -13) 

(5-14) 

In the high-energy limit, the momentum transfer to the atomic 

system is assumed to be large compared to the important momenta of the 

electron, and small compared to the initial momentum of the scattered 

particle. In this case the potential expression again becomes simple. We 

approximate the intermediate states, l\J (x, n), by free states and write in 
,a -

the momentum representation 

_/pr rv: I p ) = 4e2Q2 L fd3x1 d3x2 d3q 
\- 2 -o (2 '11")6 

niO 

i(!:o-9)·~r- i(9.-~')·~ 

e------~2~-----. ~2----
(9. -~0) (s_ -~·) 

X 
* <Po (x.1 )<!>n (~1) <Pn (_:2) <Po (x2) 

(5-16) 
[ £ -lf(q)+ w ~w +in] o o n 
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In the high-energy limit, we approximate the denominator by neglecting its 

dependence upon the energy change of the bound electrons. This may be 

justified by noting that 

while 

W -W 
o n 

P oP 
0 

M 

<)p2 

2M 

(as in Sec. III). Further, we may approximate the energy of the scattered 

particle by its kinetic energy only e(q) = q 2 
/2M. The sum over excited 

states may now be performed by the use of the completeness relation 

) <j> (x 1) <j> *<x
2

) = O(x
1
-x,)- <j> (x

1
) <j> (x

2
) 

.:;; 0 n - n - - ·-L. o o 
(5-17) 

The spatial integrations are now performed by the use of 

fd3x <j> 2(x) ei~·:: = (2/a)4 
o [{ 2 /a)2+P2]2 

(5 -18) 

We then have 

Now let us take 

p +P• 
,__Q,,_ 

p = 
2 

0 = p• - p ' 
- - -o 

and 1 = 9... - !'. 
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Then we have 

~5-20) 

But P· 6 equals 0, so that the integral is a function of only the magnitude of 

the vectors 6 and P. We may then average over the directions of P and 
1 -

expand in p 0 The remaining integral may then be performed with the 

result 

+ 6 

+ 2 

" 
( -1 
~in 

2 
" -1 
y2+1 

(5-21) 

where " = a6/211 = a/211 IP' - p j 0 For large 6 this takes the form -o 

-e2Q2 
= 

4 
3 4.1';5 

1T c; a v 
0 

Re ( P' I V
2

1 P 
0

) (5-22) 

In coordinate space, we may obtain the behavior of the local potential V
2 

(x) 

near the origin by transforming Eq. 5-16. The result is 

V 2 (x) = -e 2Q
2 

8 2 1 
2 2 [ 1 + 3 (~ ) ( 2 + ln ~ J + · · · ] 

161T a c; 

(5-23) 

0 
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This may be combined with the large -distance potential (Eq. 5-5) to give the 

approximate high-energy potential: 

[ 1 + ~ ( ~ ) 2 ( .!_ + ln ~ ) ] 
3 a 2 2a 

rV (x) = z. 
( ~ )6 ( .!_ + ln x ) 

a 2 Za 

(5 -24) 

We may estimate the range of validity of the high-energy approximation 

by using 

1 
d 

,, ! 

= l 
E="E(q) 

0 

+ 
W -W 

n o 
(€ -dqn2 + ... 

0 

(5-25) 

in Eq. 5-11 and estimating the contribution of the second term. We approxi-

mate W - W by some average excitation energy and perform the integrals 
n o 

in the manner described in connection with Eq. 5-15. The result is 

m 
< < 1 (5 -26) 

M 

as a requirement for the validity of the high-energy approximation. 
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VI. VARIATIONAL PRINCIPLES 

It is possible to formulate a number of variational principles for use 

in obtaini,ng the potential V. These result from the use of the integral 

equation in terms of which ~U may be expressed. We begin by discussing 

the simpler adiabatic approximation. 

A. The Adiabatic Limit 

In the adiabatic limit we have: 

V' (0) = (ol VFio) ' 
V(n) = (niVFin) 

F 1 + 1 
PVF = 

(fA 

dA = W + -v(O) - (H A + :v'· 0 

Here we h'ave set v(O) = 1f(O} - ZeQ 
X 

be omitted from our considerations here. 

The term ZeQ 
X 

(6-q 

may evidently 

The equation for F may be rewritten in the original form 

Now, set 

F = 1 + .!_ VF- .!_ (1-P)VF 
dA dA 

=l+.!_ (V-lf")F. 
dA 

(6 -2) 

<p=Fio) (6-3) 

and operate on both sides of (6 -2) with d A. This leads to 

Thus ~ satisfies the Schrodinger equation for the atom in the potential of 

the scattered particle. Equation (6 -4) is, of course, not unexpected. 

In view of Eq. (6 -4), which shows that 1.r is given by a standard 
0 

Schrodinger eigenvalue equation, we may generalize Eqs. (6 -1). Using the 

expressions of Riesenfeld and Watson, 
21 

we have (where Er' is essentially 

an arbitrary operator): 
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'1! (0) = lim ( 0 l VM I 0) 
D-E -1/(o) 

M = 1 + 1 
(V -a')M i):"y 

(olMio) = 1, b = W + D.E - HA .o 

1 - Mlo) . (6 -5) 

With Eq. (6 -4), we may apply standard variational methods. That 

which has been most commonly used is the Hartree -Fock method. 
22 

This 

involves considerable c?mputational labor. A simpler, less elaborate 

approach has been used by Buckingham in diseus sing atomic polarizabilities. 
2 

He begins with the minimal expression 

(W +~0)) = 
0 

f ~*(HA + V)~ d7 

* f ~ ! d7 

Choosing parametrized trial forms for ~' Buckingham obtains an 

expression for the polarization energy '1!(0). 

(6 -6) 

In addition to these, there is a class of useful variational expressions 

h h . 0 d 0 h s h . 13 w '11 h 'th t at seem to ave originate wit c winger. e I ustrate t ese Wl an 

example. 

Consider the Brillouin-Wigner form of Eqs. (6 -5): 

1 .:P= X+b [1- A0 ]V~, (6 -7) 

where X = I 0) and A
0 

is a projection operator onto the state I 0) = X· 

Then the expression 

(6 -8) 

reduces to V
0 

when we have 

(6 -9) 
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Furthermore, VT is stationary with respect to independent, small variations 

of ~I and ~2 about the correct values (6 -9)o To see this, we write 

(6-IO) 

Then, varying 22 , we obtain 

I 
6. 2 (x, V!I)(p2 , Vx)(og?2 , Vx) (6 -II) 

0 

On setting pi = ~2 = _p, we obtain 

Thus o.v;_, = Oo In the same manner, one may vary PI to obtain 0 ~ = 0. 

Then 

To illustrate Eq. (6-8), let us set <PI = p2 =.X· 
\ 

p 
4 
X 

(6-I2) 

is the polarization potential obtained in Section IV [Eqo (4-23)]. Similarly, 

~ (x) = (X, Vx) 

is the average potential associated with the electrons in the unperturbed 

atomo This is usually calculated using Hartree or Hartree-Fock wave­

functions. Then, Eq. (6 -8) becomes 

['Vii (x)] 2 

1 -Vi (x)+ ~ 
(6-13) 

X 

Equation (6-I3) is suitable for negative Q. It breaks down (i.e., the 

denominator vanishes at some distance x) for positi~e Q. This breakdown 

is related to the fact that the energy may be lowered if the positive charge 

actually captures an orbital electron. In the case of a positive charge Q, 

one cannot of course use the asymptotic form (- P
4 

) of Eqo (6 -I2), and the 
X 
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singularity will only occur if the polarization term is larger in magnitude 

than is 1/1 (x) for some value of x. This is associated with the crossing of 

levels, as discussed in Section IV. 

B. The General Case 

Even when the adiabatic approximation is not valid, a variational 

principle may be given. Consider the wavefunction 

ill(+) -- 1 y<+) 
T X+ d PV , 

where we now write 

...., r:: ZeQ 
'V ( o ) ~ vt( o ) -

X 
(in general) 

so that 

Next introduce 

F i-) = 

and 
<II'~ - ) - ( -) 
T - F X· 

The symbol P+ is defined by the requirement 

F (- )+ = 1 + F (- )+ V ~ P. 

Now, 

satisfies the equation 

G = 1v + q~PV. 
It also satisfies the equation 

(6 -14) 

(6-15) 

(6-16) 

(6-17) 

(6-18) 

(6-19) 

(6 -20) 

Q=V+VP~Q, (6-21) 

as rna y be verified by substitution. Because of Eq. (6 -21 ), we have then 

(6 -22) 

and therefore, 

(6:..23) 
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It follows then that the potential is 

(6 -24) 

Following the argument of Eq. (6 -11 ), we can easily show that Eq. (6 -24) 

is stationary with re
1
spect to small, independent variations off(-) and 7f (+). 

An immediate application of Eq. (6 -24) is that of obtaining non­

adiabatic cdrrections to the adiabatic potential. Write, for some tria 1 7((-) 

and 1{(+), 

cf'-), [v- v ~ pypr(+))~ 6. + 6. . 
• d 1 0 1 

(6 -25) 

Here 6.
0 

is the adiabatic form (6-10) and 6. 1 represents the correction to 

this. Then 'we have 

1f= 
[11' ] 2 

-zP- [1 ] . (6 -26) 
0 

We interpret this as being expressed in momentum space, so 6.
0 

and 6. 1 are 

approximately diagonaL 1r A is the adiabatic approximation to 1/'. 
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APPENDIX 

Rearrangement Collisions 

To supplement the discussion just given we make a few qualitative 

remarks concerning rearrangement collisions 0 A more complete account is 

to be given in Part IL 

We consider only the "adiabatic limit" here. The Green's function 

(n I Win') for (HA + V) is then 

(n!Win') = 
l!Jx_ (n) ljJ~ (n 1 ) 

E - EA. 
(A-1) 

Here, as before, n is an eigenstate of the unperturbed atom; EA. is the 

eigenvalue 

(A-2) 

Now, W satisfies the equation 

(E - H A - V) W = 1, (A-3) 

where 1 is the unit matrix 0 1 o · We next factor W as
21 

nn 

W = MWd, (A-4) 

where W d is the diagonal matrix formed from the diagonal elements of W: 

W d(n) = (n.l Win) o (A-5) 

It follows from these equation~ that the diagonal elements of Mare unity: 

(niMin) = L 

We may rewrite Eqo (A-3) as 

(E- HA)MWd = 1 + VMWdo 

This is equivalent to 

(E - H A- 'V") MW d = 1 + (V -1/')M W d' 

where Vis a diagonal matrix defined by 

V(n) = (nl VM!n) o 

(A-6) 

(A-7)_ 

(A -8) 

(A-9) 

Taking the diagonal matrix element of Eq. (A-8) and using (A-9), 

we find w = d 
1 

E-H -ii'· 
A 

(A-1 0) 
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.Similarly, we find from Eq. (A-8) 

+ 1 -
E-H _y(V -'\I}M 

A 

1 -
= 1 + E-H _.ir'(V -lr)M 

A 

= 1 + 1 
E -H _ ii" PVM~ 

A 

(See Eqs. (2-12) and (2-14).) 

Thus, we make the identifications M = F, V = 1.f', and 

UCRL-8246 

(A -11) 

(A-12) 

To apply the above discussion, consider the adiabatic motion of the . 
partie le through the atom and suppose the original energy leve 1 approaches 

another - for example, the other might correspond to the pickup of an 

electron by the charge Q. Label the two unperturbed levels as 0 and 1, and. 

write 

'V = D-

distant 
levels 

Also, set If' equal to ~E, the unknown "level shift". Then we have 

~E = ( 0 I VM I 0) :::: V( 0) + ( 0 I V 11 ) 1 
d( 1) 

(A-13) 

and 

(A-14) 

Here d(1) is 

d( 1) z E - W 1 - l/( 1) 

= W 
0 

- W 1 + ~E -1f ( 1), 

where 

[Because of the P operator, the states 0 and 1 cannot reoccur in V (1)]. 

By the use of these expressions Eq. (A-13) becomes 

~E = 11(0) + (A-15) 
[W 

0
- W 1 - 11( 1)] + ~E 
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Solving this equation for .C.E =Vgives 
' 1 

.C.E± =} {'11(0) +'if(l)'+ W 1 -W
0 

± [(11'(0)-'V'(1)+W
0

-W 1 )
2

+41 (llVIO) 12 ]2- }. 

(A-16) 

The resulting energy levels are 

(A-1 7) 

· When these lie close together the system may make a nonadiabatic transition 

between the two levels. The cor responding transition rate has been calculated 
23 24 25 

b-y: Landau, Zener, and Stueckelberg. 

The above may be readily generalized to the case that a number of 

states n correspond to roughly the same value of d. In this case the 

energy-leve 1 shift is 

.C.E = v ( 0) + ~ [ 2:' ( 0 I V I n) ( n I VI o) ] . (A-18) 
n 

Here ~· represent a sum over the appropriate states and we have 
n 

d = -.6. W + .C.E - 1r ( 1 ) (A-19) 

where .C.W is the effective value of (W 1 - W 
0

). We obtain now an equation 

of the form (A-16) with I (11V!O) 12 
replaced by 

2:' ( 0 I Y l n) ( n IV l 0) 
n 

Nonadiabatic transitions may again be calculated using the formulae of 

Landau, Zener, and Stueckelberg. 
23

• 
24

• 
25 

Finally, we consider the case that the original energy level crosses 

into a continuum. This results, for example, if an outer electron becomes 

unbound and escapes from the atom. 

Let nf represent such states, say with a free electron. Equation 

(A-1) tells us that ~ is singular when the crossing occurs. To first order, 

we identify the states n£ with s orne of the states ~ of Eq. (A-1). Then 

we have 

( o I V ~ PV I 0) ~ J d nf 



... 

' ~. 
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This has an imaginary part given by 

Im[lf] = -i1rjdnf 6(E-Enf) i(nr1VID)i
2

, fA-20) 

which agrees in form with Eq! (3 -26). 

The above examples show how our formalism may be related to 

more conventional methods of handling these problems. 
26 

This work was done under the auspices of the U. S. Atomic Energy 

Commission . 
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