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 54 

Abstract 55 

Climate change is warming the ocean and impacting lower trophic level (LTL) organisms. 56 

Marine ecosystem models can provide estimates of how these changes will propagate to 57 

larger animals and impact societal services such as fisheries, but at present these estimates 58 

vary widely. A better understanding of what drives this inter-model variation will improve our 59 

ability to project fisheries and other ecosystem services into the future, while also helping to 60 

identify uncertainties in process understanding. Here, we explore the mechanisms that 61 

underlie the diversity of responses to changes in temperature and LTLs in eight global marine 62 

ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project 63 

(FishMIP). Temperature and LTL impacts on total consumer biomass and ecosystem structure 64 

(defined as the relative change of small and large organism biomass) were isolated using a 65 

comparative experimental protocol. Total model biomass varied between -35% to +3% in 66 

response to warming, and -17% to +15% in response to LTL changes. There was little 67 

consensus about the spatial redistribution of biomass or changes in the balance between 68 

small and large organisms (ecosystem structure) in response to warming, and LTL impacts on 69 

total consumer biomass varied depending on the choice of LTL forcing terms. Overall, climate 70 

change impacts on consumer biomass and ecosystem structure are well approximated by the 71 

sum of temperature and LTL impacts, indicating an absence of nonlinear interaction between 72 

mailto:ryan.heneghan@gmail.com
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the models’ drivers. Our results highlight a lack of theoretical clarity about how to represent 73 

fundamental ecological mechanisms, most importantly how temperature impacts scale from 74 

individual to ecosystem level, and the need to better understand the two-way coupling 75 

between LTL organisms and consumers. We finish by identifying future research needs to 76 

strengthen global marine ecosystem modelling and improve projections of climate change 77 

impacts. 78 

 79 

Keywords 80 

Climatic change, modelling, fishery oceanography, marine ecology, FishMIP, structural 81 

uncertainty 82 

  83 

  84 
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1. Introduction  85 

Water temperature and primary production play critical roles in marine processes. Higher 86 

temperatures accelerate reaction rates, with consequences ranging from the molecular to 87 

ecosystem scale, while primary production provides the fundamental source of energy for 88 

almost all marine life (Brown et al. 2004; Chavez et al. 2011). Climate change impacts on both 89 

water temperature and primary production will thus alter marine ecosystems in fundamental 90 

ways (Pörtner et al. 2014). For example, a first-order expectation of these impacts is that 91 

accelerated metabolic rates will consume energy more quickly in a warmer ocean, all else 92 

being equal, so that less biomass could be supported by a given level of primary production 93 

(Heneghan et al, 2019). Yet, ecosystem-level effects emerge from individual-level processes 94 

and interactions, which could lead to nonlinear effects and changes in ecosystem structure, 95 

while shifting thermal habitats may influence the distribution of species, transforming food-96 

webs to previously unknown states (Coll et al. 2020; Pinsky et al. 2020; Poloczanska et al. 97 

2016). 98 

 99 

There is a growing need to quantify and project climate change impacts on marine ecosystems 100 

to motivate mitigation (Bryndum-Buchholz et al. 2020), provide insight into potential future 101 

threats to food security (Barange et al. 2014; Blanchard et al. 2017a; Boyce et al. 2020), and 102 

identify needs for biodiversity conservation (Brito-Morales et al. 2020; Waldron et al. 2020). 103 

Thus, there has been a recent proliferation of spatially-explicit marine ecosystem models that 104 

simulate higher trophic level biomass and ecosystem structure at regional and global scales, 105 

driven by output from climate-ocean-biogeochemical models (Tittensor et al. 2018). These 106 

ecosystem models differ significantly in their design, level of complexity and implementation, 107 

reflecting different choices for how to represent fundamental marine ecosystem processes, 108 
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as well as a diversity of model purpose and scope. As a result, there is considerable 109 

uncertainty in model projections of climate change impacts on higher trophic levels (e.g. Lotze 110 

et al., 2019), with projections from each model dependent upon decisions around the 111 

inclusion or simplification of many candidate processes. Structural diversity in model 112 

projections is a strength for gaining a rich view of possible outcomes, given that each model 113 

reflects a different subset of established physiological and process knowledge, implemented 114 

using different mathematical representations (Knutti, 2010; Brander et al. 2013; Lefevre et al. 115 

2017; Payne et al. 2016). At the same time, this diversity reflects fundamental uncertainty in 116 

our understanding of processes. Thus, identifying sources of structural uncertainty in 117 

ensemble projections can point to critical weaknesses and thereby accelerate model 118 

improvement.  119 

  120 

The Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP) was created to 121 

explore this uncertainty and provide more robust assessments of climate impacts on marine 122 

ecosystems through the analysis of multi-model ensembles (Tittensor et al. 2018). A recent 123 

FishMIP study (Lotze et al. 2019) found that projections of mean changes in animal biomass 124 

from a model ensemble typically compared better with empirical data than individual models, 125 

emphasising the benefits of ensemble climate impact projections. However, uncertainty in 126 

ensemble projections of higher trophic level biomass is significant: Lotze et al. (2019) found 127 

that the spread of changes across the FishMIP ensemble in 21st century marine consumer 128 

biomass under the high emissions, representative concentration pathway 8.5 (RCP 8.5) 129 

climate change scenario (0 to -35%) was larger than the multi-model mean consumer biomass 130 

change between the RCP 2.6 (low emissions) and RCP 8.5 scenarios (-5% to -20%). This means 131 

that structural uncertainty across global marine models is greater than climate scenario 132 
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uncertainty, which is problematic for the goal of using these models to provide assessments 133 

of climate impacts on marine ecosystems and the societal services they provide.  134 

  135 

For all global models in the FishMIP ensemble, temperature and lower trophic level (LTL) 136 

forcings such as net primary production, phytoplankton and zooplankton biomass, and export 137 

carbon are the two main drivers of projected climate change impacts (Tittensor et al. 2018), 138 

yet their implementations vary. Although there is some agreement on how temperature 139 

impacts physiological processes in general (e.g. Kooijman, 2010), there is less agreement on 140 

how these impacts vary across functional groups, body sizes, and different processes such as 141 

growth and metabolism (van Denderen et al. 2020). Similarly, although it is universally 142 

understood that LTL biomass and production provide the source of energy that supports 143 

higher trophic levels, there is less understanding about how the physiology and structure of 144 

LTLs affects transfer efficiency and ecosystem structure, and how to couple lower and higher 145 

trophic levels (Eddy et al. 2020; Heneghan et al. 2016; Stock et al. 2017). Previous multi-model 146 

ensemble studies have explored structural model uncertainty in projections of consumer 147 

biomass and species distribution shifts under climate change (e.g. Jones et al. 2012; 148 

Woodworth-Jefcoats et al. 2015), but these studies did not disentangle the effects of 149 

temperature and lower trophic level (LTL) changes, a strategy that can provide mechanistic 150 

insight on underlying processes (Carozza et al. 2018). 151 

  152 

Here, we identify sources of structural uncertainty in marine ecosystem models, by 153 

disentangling the effects of temperature and LTL changes on model projections using eight 154 

global models from the FishMIP ensemble. We first summarise how temperature and LTL 155 

processes are incorporated in these models, highlighting common representations and 156 
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differences across the ensemble. We then isolate the impact of changes in temperature and 157 

LTL processes on consumer biomass and ecosystem structure (which we define as the relative 158 

change in small <30 cm and large ≥30 cm consumer biomass) in a simulation protocol 159 

involving a combination of pre-industrial, historical and RCP 8.5 forcings. By illuminating key 160 

sources of structural uncertainty in marine model projections, we identify critical areas of 161 

future research necessary to improve not only climate impact projections but also our 162 

understanding of the marine ecosystem. 163 

 164 

2. Methods 165 

We used projections from eight marine ecosystem models from the Fisheries and marine 166 

ecosystem Model Intercomparison Project (FishMIP, www.fishmip.org; Tittensor et al. 2018). 167 

There are several model types (see Tables 1 and 2 for a summary of each model and key 168 

references). First, models that draw on the strongly size-structured nature of marine 169 

ecosystem processes to represent the ecosystem purely by body size (BOATS, 170 

Macroecological) or trophic level (EcoTroph). Second, trait-based size-structured models 171 

(APECOSM, DBPM, FEISTY, ZooMSS), which move beyond a purely size-based representation 172 

to include different communities and groups using functional traits other than body size. Last, 173 

DBEM is a habitat suitability-based species-distribution model that resolves the biomass and 174 

spatial distribution of >1200 fish and invertebrate species using observational data, and 175 

includes other mechanisms such as species ecophysiology and dispersal. There is large 176 

variation in the structural complexity of the models, and a detailed description of how each 177 

model incorporates temperature and lower trophic level (LTL) impacts, including relevant 178 

equations and temperature parameters, can be found in the Supplementary Information S2. 179 

Here we summarise the key similarities and differences of each model as they pertain to 180 

http://www.fishmip.org/
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temperature, LTLs and other drivers in Sections 2.1, 2.2, 2.3 and Table 1 and 2. We then 181 

explain the experimental protocol and model outputs in Section 2.4. 182 

  183 

2.1. How do models incorporate temperature impacts?  184 

Across all models, individuals gain mass through anabolic processes such as food uptake and 185 

assimilation, while they lose mass through catabolic processes such as respiration. 186 

Populations can also gain individuals through reproduction, and lose individuals through 187 

mortality (Table 2). These processes are all influenced by temperature.  As a result, changes 188 

in ecosystem structure depend on how models resolve: (i) temperature effects on individual 189 

anabolic and catabolic processes across different functional groups, body sizes or trophic 190 

levels; and (ii) how these variations drive changes in ecological interactions (Table 2). 191 

Temperature effects on these processes are represented in all models as an exponential 192 

scaling, with parameters varying widely between models (Supplementary Information S2). 193 

However, within models the same temperature scaling parameters are used across all 194 

functional groups and ecosystem components, excluding EcoTroph, which uses different 195 

scalings depending on the ecosystem’s biome. 196 

 197 

The representation of anabolic and catabolic processes varies across models (Table 2). 198 

Macroecological and EcoTroph have the simplest representations, with individual mass 199 

changes resolved implicitly in each model by a single individual metabolic rate that scales with 200 

temperature and body size (for Macroecological) or trophic level (for EcoTroph). For these 201 

models, total biomass at a given body size/trophic level is determined by the metabolic 202 

carrying capacity of that size/trophic level, divided by the metabolic rate of individuals. In 203 

these two models, individual metabolic rates increase with temperature while total metabolic 204 
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carrying capacity at a given body size/trophic level is determined by net primary production. 205 

Thus, as warming drives an increase in individual metabolism, total biomass decreases even 206 

if primary production remains constant. The BOATS model uses a similar framework to 207 

Macroecological and EcoTroph to determine maximum supported biomass at each body size 208 

class. However, in BOATS individual mortality is resolved separately and the growth of 209 

individuals from one size class to the next is explicitly resolved. As temperatures rise, 210 

individual growth rates in BOATS increase, increasing the speed of biomass flow from small 211 

to large size classes, but also increasing mortality and reducing the maximum biomass that 212 

can be supported at each body size. Taken together, these processes mean that warming 213 

causes total biomass to decrease in BOATS.  214 

 215 

Within BOATS, Macroecological and EcoTroph, ecological interactions such as predator-prey 216 

encounters or predator-predator competition are not explicitly resolved. Thus, temperature 217 

and LTL drivers do not explicitly change interactions among individuals. However, in BOATS 218 

and Macroecological, all primary producers are represented by a single body size, which is 219 

inversely related to temperature; as temperature increases, the single representative body 220 

size of primary producers decreases according to an empirical equation. This in turn decreases 221 

the production of higher trophic level organisms, as the number of trophic steps that net 222 

primary production must be transferred through to reach any given body size increases. 223 

However, since trophic transfer efficiency in these models is not temperature-dependent, an 224 

increase in the number of trophic levels is not expected to change the ratio of small and large 225 

organism biomass. In contrast, transfer efficiency decreases with warming in Ecotroph. This 226 

means that warmer waters in Ecotroph will support relatively less biomass at high trophic 227 

levels (large body sizes) than what they will at low trophic levels (small body sizes).  228 
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  229 

For trait-based models (APECOSM, DBPM, FEISTY and ZooMSS), individual growth is fuelled 230 

by ingesting smaller organisms, with individual ingestion rates scaling with temperature and 231 

body size. For APECOSM, DBPM and FEISTY this scaling is also modulated with the density of 232 

prey. Thus, food uptake for individuals at one size is fuelled by predation of smaller size 233 

individuals, and in some cases predators can compete with each other for the same prey. 234 

These models also include other sources of mortality (destruction of population biomass). 235 

APECOSM, DBPM and ZooMSS incorporate at least one size-dependent mortality term, and 236 

FEISTY includes a single natural mortality term that is independent of body size. These 237 

additional mortality sources increase with temperature (except for senescence mortality, 238 

which increases with body size, in DBPM and natural mortality, which is independent of body 239 

size, in FEISTY), causing population biomass to decrease with increasing temperature. In 240 

FEISTY, maintenance costs increase faster with both body size and temperature than do 241 

ingestion rates. APECOSM and FEISTY also explicitly resolve size and temperature-dependent 242 

costs of maintaining existing biomass (metabolism). In these models, as temperature 243 

increases, maintenance costs also increase, reducing the available energy for growth and 244 

reproduction. If maintenance costs of existing biomass exceed energy intake from ingestion, 245 

biomass decreases. As food becomes limited in APECOSM, ingestion rates scale more slowly 246 

with temperature than maintenance costs, limiting the scope for new growth and potentially 247 

inducing biomass to decrease as maintenance costs outpace ingestion.  248 

 249 

In APECOSM, DBPM, FEISTY and ZooMSS, temperature affects anabolic and catabolic 250 

processes differently across ecosystems, which has cascading effects on how the different 251 

components of ecosystems (e.g. predators and prey) interact. In APECOSM, FEISTY and 252 
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ZooMSS for example, the scaling of maintenance costs (in APECOSM and FEISTY) and 253 

senescence mortality (in APECOSM and ZooMSS) with body size and temperature mean that 254 

large organisms are more vulnerable to warming compared to small organisms. Everything 255 

else being equal, a warming-induced decrease in large organism biomass would reduce 256 

predation mortality on smaller organisms, thus favouring small organisms in these models. 257 

 258 

Unlike what happens in the size and trait-based models, anabolic and catabolic processes in 259 

DBEM are not driven explicitly by net primary production or by the ingestion of smaller 260 

organisms. Instead, individual mass increases in DBEM when anabolism exceeds catabolism, 261 

both of which are affected by temperature and other drivers (see Section 2.3). Similar to 262 

APECOSM, FEISTY and BOATS, the explicit balance between anabolic and catabolic processes 263 

drives an organism’s scope for growth–if catabolism outpaces anabolism, an individual’s mass 264 

will decline. In DBEM, anabolism accelerates more slowly with warming compared to 265 

catabolism. Thus, as waters warm, an organism’s potential for growth becomes increasingly 266 

limited, and their maximum size decreases.  267 

 268 

Organisms do not interact in DBEM. Rather, temperature and other forcings drive the spatial 269 

distribution of species across the ocean, with species’ relative abundance in a region changing 270 

with respect to temperature depending on their thermal preference, and the prevailing water 271 

temperature. Thus, as waters warm, ecosystem structure changes by individual organisms 272 

becoming smaller on average, and by different species shifting their spatial boundaries to 273 

follow their thermal preferences.  274 

  275 
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Finally, energy transfer from small to large organisms through size-based predation is not the 276 

only way that different parts of the ecosystem interact; in APECOSM, BOATS, DBPM, DBEM 277 

and FEISTY, energy moves from large to the smallest size classes through reproduction. In 278 

these models, the flux of small organism biomass entering the population through 279 

reproduction can increase or decrease, depending on the relative impacts of warming on large 280 

organisms. In FEISTY for example, if large organisms are more adversely affected by warming 281 

than small organisms, the reproduction rate in larger size classes would also decline, leading 282 

to less biomass overall. 283 

  284 

2.2. How do models incorporate lower trophic level processes? 285 

Net primary production sustains essentially all non-photosynthetic life in the oceans, and 286 

limits the biomass of higher trophic levels (Ryther, 1969; Friedland et al. 2012). Solar energy 287 

captured and organic matter synthesized by primary producers flow through food webs, 288 

primarily by larger organisms preying on smaller organisms. FishMIP models focus on higher 289 

trophic levels, so lower trophic level processes are driven by a range of Earth system model 290 

forcings (Table 1). The role of lower trophic levels in setting the limits to growth for higher 291 

trophic levels is represented across the eight FishMIP models in two ways. First, for BOATS, 292 

DBEM, Macroecological and EcoTroph, net primary production is used to determine limits of 293 

consumer growth rates and total biomass according to trophic transfer functions. Second, in 294 

the trait-based models (APECOSM, DBPM, FEISTY and ZooMSS), plankton biomass and export 295 

production are consumed by the size classes or functional groups that feed on them. This 296 

energy is then transferred to higher trophic levels through size-based predation. However, all 297 

eight models considered here are one-way forced (run offline), so there is no feedback from 298 

higher trophic levels to lower trophic level biomass or production. This means that for the 299 
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trait-based models, ingestion-fuelled growth of higher trophic level predators is not explicitly 300 

matched by predation mortality in the plankton. 301 

   302 

The correlation of mean phytoplankton size with total primary production is an important 303 

driver of ecosystem structure (Boyce et al. 2015). Phytoplankton are generally larger in more 304 

productive waters (Barnes et al. 2011; Finkel et al. 2010). Given the size-structured nature of 305 

the marine ecosystem (Trebilco et al. 2013), smaller phytoplankton support longer food 306 

chains, which are thought to support relatively less consumer biomass (Eddy et al. 2020; 307 

Ryther, 1969). All models explicitly represent this phenomenon with the exception of 308 

EcoTroph and DBEM. EcoTroph uses trophic level instead of body size to represent the marine 309 

ecosystem. In DBEM, changes in net primary production affect the carrying capacity of 310 

modelled species disregarding the size of primary producers. In BOATS and Macroecological, 311 

changes in food chain length are represented by a varying representative size of 312 

phytoplankton, the size increasing with net primary production according to empirical 313 

equations. In DBPM and ZooMSS, the phytoplankton size-spectrum, which is the relationship 314 

between primary producer abundance 𝑁 and body size 𝑤, 𝑁 =  𝑎𝑤𝑏 , is continuous, with the 315 

intercept 𝑎 and slope 𝑏 set by phytoplankton biomass. In these two models, the plankton size-316 

spectrum intercept is lower and the slope is steeper in less productive waters, meaning 317 

relatively more small producers but less biomass overall. APECOSM and FEISTY use size-318 

fractionated phytoplankton and zooplankton biomass inputs from earth system models to 319 

directly set the biomass of small and large phytoplankton and zooplankton groups, with a 320 

fixed size-spectrum slope assigned to each LTL group in APECOSM. APECOSM and FEISTY also 321 

use export carbon to represent detrital flux across the entire water column (in APECOSM) or 322 

to the seafloor to fuel the growth of benthic invertebrates (in FEISTY). 323 
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 324 

 325 

2.3. How do models incorporate other impacts? 326 

All models in the FishMIP ensemble are driven solely by temperature and LTL drivers, with 327 

the exception of APECOSM and DBEM (Table 1). In these two models, movement of organisms 328 

between adjacent grid cells is resolved, so both models incorporate current speeds. Since 329 

APECOSM resolves the 3D density of animal biomass, the model also uses 3D 330 

photosynthetically active radiation to resolve water clarity and light penetration across the 331 

water column. Thus, in APECOSM areas with the highest consumer biomass are not 332 

necessarily regions with the highest LTL biomass, due to active and passive horizontal 333 

movements in response to temperature, light, food availability and the strength of currents. 334 

Both APECOSM and DBEM also incorporate oxygen concentration, which impacts anabolic 335 

processes; lower oxygen concentration reduces the scope for organism growth in both 336 

models, and thus reduces total biomass. DBEM also resolves the negative impacts of 337 

acidification on catabolic processes, by incorporating pH forcings. DBEM also uses salinity, sea 338 

ice and mixed layer depth forcings, alongside temperature, to establish the spatial extent of 339 

each of the >1200 fish and invertebrate species the model resolves. 340 

 341 

 342 

 343 

 344 

 345 

 346 

 347 



16 

 348 

Table 1 Summary of temperature, lower trophic level (LTL) and other drivers sourced from 349 

earth system models, used by each model in the FishMIP ensemble, as well as the ecosystem 350 

representation of each model. All drivers used by the models in this experiment had a monthly 351 

temporal resolution. 352 

Model and key 
references 

Temperature drivers LTL drivers Other drivers Taxonomic scope 

APECOSM 
Maury et al. 2007a; 
2007b; Maury 2010; 
Maury and Poggiale, 
2013  

3D water temperature 3D small and large 
phytoplankton, 3D small and 
large zooplankton biomass*, 
3D export carbon flux 

3D oxygen concentration, 3D 
photosynthetically active 
radiation, 3D current 
velocities 

All epipelagic, mesopelagic 
and migratory heterotrophic 
marine animals in the pelagic 
ecosystem between 15μg– 
120kg. 

BOATS  
Carozza et al. 2016; 
2017 

2D water temperature 
(averaged over top 75 m) 

2D depth-integrated net 
primary production 

NA All commercial animal 
biomass from 10g–100kg. 

DBEM 
Cheung et al. 2008; 
2010; 2011; 2016 

2D sea surface temperature 2D depth-integrated net 
primary production 

2D surface and bottom 
oxygen concentration, 
salinity and pH, sea ice, 
mixed layer depth, 3D 
current velocities 

>1200 fish and invertebrate 
species. 

DBPM  
Blanchard et al. 
2009; 2012 

2D sea surface and bottom 
water temperature 

2D depth-integrated small 
and large phytoplankton 
biomass 

NA All benthic and pelagic 
marine animals, weighing 
between 1mg and 1 tonne. 

EcoTroph 
Gascuel and Pauly, 
2009; du Pontavice 
et al. 2020  

2D sea surface temperature 2D depth-integrated net 
primary production 

NA All marine animals with 
trophic level ≥ 2. 

FEISTY  
Petrik et al. 2019 

2D upper pelagic (averaged 
over 100 m) and bottom 
water temperature 

2D depth-integrated (top 100 
m) small and large 
zooplankton biomass*, 2D 
export carbon flux to the sea 
floor 

NA Forage, large pelagic and 
demersal fish, as well as 
benthic invertebrates, 
between 1mg and 125kg. 

Macroecological 
Jennings and 
Collingridge  (2015) 

2D sea surface temperature 2D depth-integrated net 
primary production 

NA All marine animals between 
1mg and 1 tonne. 

ZooMSS  
Heneghan et al. 
(2020) 

2D sea surface temperature 2D sea surface 
phytoplankton biomass 

NA Nine zooplankton groups, 
from flagellates to jellyfish 
and all marine animals 
between 1mg and 10 tonnes. 

* Where small and large zooplankton biomass are not provided by an earth system model (as 353 
is the case with CESM1-BGC, the earth system model used in this study) FishMIP splits total 354 
zooplankton biomass using the fraction of total phytoplankton biomass from small and large 355 
phytoplankton.  356 
 357 

 358 
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Table 2 Summary of temperature and lower trophic level impacts in the FishMIP model ensemble.  359 
Model Temperature effect on: Lower trophic level effect on: 

Individual anabolic and catabolic processes Ecosystem structure Individual anabolic and catabolic processes Ecosystem structure 

APECOSM 

 

Ingestion and thus predatory mortality scale with temperature and 
vary with predator size as well as the density and size of prey. 
Assimilation, maintenance, and non-predation mortality rates also 
scale with temperature. Temperature effects are stronger where 
prey density is high. In food-limited areas, catabolic processes 
increase faster than anabolic processes, causing individual mass to 
decrease. In food-rich areas, catabolic and anabolic processes 
increase in the same proportion, accelerating life-cycles. 

Growth and mortality rates increase with 
temperature. In food limited situations, this leads 
to less biomass, especially for large organisms. In 
prey-rich regions, temperature does not drive 
biomass down but drives a faster transfer toward 
large sizes causing an increase in large organisms 
and a decrease of small organisms due to top-down 
control. 

Small and large plankton biomass is the 
primary food source of small consumer 
organisms. More plankton biomass increases 
satiation and maximizes individual growth and 
reproduction, thus driving increases in 
biomass. 

More plankton biomass supports more ecosystem 
biomass and reduces the trophic amplification of 
food limitation with size. This leads to biomass 
increase of large organisms and the presence of 
larger species in the communities. 

BOATS 

 

Warming drives higher individual growth and mortality rates, which 
reduces the maximum biomass that can be supported by a given 
level of primary production. 

Phytoplankton size decreases with warming. 
Smaller phytoplankton means longer food chains 
causing biomass declines for all sizes. 

Net primary production sets the limits to 
growth across all body size classes. Higher 
production means more biomass. 

Phytoplankton size decreases with decreasing 
production. Smaller phytoplankton mean longer 
food chains causing biomass declines for all sizes. 

DBEM 

 

Biomass creation occurs after catabolism is deducted from 
anabolism. Catabolism increases faster with warming than 
anabolism. Thus, biomass decreases with warming. 

Catabolism increases with size faster than 
anabolism, so warming affects large species more 
and drives shifts in spatial distribution of species. 

In all regions, net primary production is a key 
part of what sets the limits to maximum 
biomass across all higher trophic levels. 

Lower net primary production means less consumer 
biomass can be supported. 

DBPM 

 

Ingestion-driven growth, and mortality rates from predation and 
natural sources scale with temperature at the same rate. Thus, 
temperature effects largely balance, except in low food regions 
where natural mortality is relatively large and causes biomass to 
decrease. 

Natural mortality costs scale with temperature but 
decrease with body size. Thus, warming increases 
mortality relatively more for small organisms 
compared to large, potentially causing their 
biomass to decrease faster.  

Small and large phytoplankton biomass set the 
slope and intercept of the phytoplankton size-
spectrum, which is the primary food source of 
small pelagic organisms. More phytoplankton 
means more biomass. 

Relatively more small phytoplankton with less 
phytoplankton biomass, which reduces food for 
small organisms and increases food chain length. 
This should decrease overall biomass, especially for 
larger sizes, as senescence increases with size. 

EcoTroph 

 

Warming drives higher individual turnover rates, and lower trophic 
transfer efficiency, which means fewer individuals can be 
supported, causing  biomass to decrease. 

Trophic transfer efficiency decreases with 
warming, causing higher trophic level biomass to 
decrease more than lower trophic level biomass. 

Net primary production is a driver of total 
biomass across all trophic levels. Higher 
production means more biomass. 

Lower net primary production means less biomass 
can be supported across all trophic levels. 

FEISTY 

 

Maintenance costs, ingestion-driven growth, and mortality rates 
from predation scale with temperature. Maintenance costs increase 
faster with warming compared to ingestion, so warming reduces the 
scope for growth, causing biomass to decrease. 

Maintenance costs increase faster than ingestion-
driven growth with body size and temperature. 
Thus, warming will reduce the scope for large 
organism growth more than small organisms. 
 

Zooplankton is food for all small consumers 
and  medium pelagic consumers. Export 
production fuels benthic growth. More 
zooplankton biomass and export production 
mean  more ecosystem biomass overall. 

Less zooplankton biomass supports lower pelagic 
biomass, and more small zooplankton biomass may 
reduce  large fish biomass due to an increase in the 
number of trophic steps between zooplankton and a 
narrower scope for growth than smaller sizes. 

Macroecological 
 

Warming drives higher individual metabolic rates, which means 
fewer individuals can be supported by a given level of primary 
production, causing total biomass to decrease. 

Phytoplankton size decreases with warming, 
lengthening food chains and reducing how much 
energy is transferred to higher trophic levels. 

Net primary production is a key determinant of 
total biomass. Higher net primary production 
means more biomass. 

Phytoplankton size decreases with decreasing 
production. Smaller phytoplankton support longer 
food chains, thus less biomass across all sizes. 

ZooMSS 

 

Ingestion-driven growth and mortality rates from predation and 
senescence scale with temperature at the same rate. Thus, 
temperature effects largely balance, except where senescence 
mortality is large, causing biomass to decrease. 

Warming negatively impacts large organisms more 
than small by increasing senescence. If large 
organism biomass declines more than small, small 
biomass will increase from reduced predation. 

The phytoplankton spectrum—set by total 
phytoplankton biomass—is the main food of 
microzooplankton. More phytoplankton 
means more consumer biomass. 

Less phytoplankton biomass means less food for 
small organisms, and relatively more small 
phytoplankton. Drives shifts in zooplankton 
composition, which stabilise food chain length.  

360 



18 

2.4. Experimental protocol 361 

To isolate the impact of temperature and LTL processes on the FishMIP ensemble, we 362 

conducted four simulations (Table 3) following the general approach of Carozza et al. (2018). 363 

In each simulation, all models were forced with different combinations of temperature, LTL 364 

and other (for APECOSM and DBEM) drivers from pre-industrial, historical and high emissions 365 

scenarios (RCP 8.5; IPCC, 2014) from the CESM1-BGC earth system model (Moore et al. 2013). 366 

simulation submitted for the Coupled Model Intercomparison Project 5 (CMIP5; IPCC, 2014). 367 

For RCP 8.5 in the CMIP5 multi-model ensemble, CESM-BGC is average in temperature 368 

sensitivity and less than average in global mean NPP and export production decline (Bopp et 369 

al. 2013). All forcings were provided to modellers with a monthly temporal resolution. We do 370 

not use a range (from low to high) of emission scenarios for the future, or source forcings 371 

from multiple Earth system models, as our purpose here is to isolate sources of structural 372 

uncertainty within the FishMIP model ensemble itself (Payne et al. 2016). Under the RCP 8.5 373 

scenario, the CESM1-BGC model projects a global sea surface temperature increase, which is 374 

particularly marked at high latitudes (Figure 1b); net primary production declines across most 375 

of the tropics and mid-latitudes, but increases at high latitudes and in the eastern South 376 

Pacific (Figure 1d); phytoplankton and zooplankton biomass declines across most of the 377 

world’s oceans, except in polar regions (Figure 1f, h). The mean change in sea surface 378 

temperature across the global ocean from 1950 to 2100 under historical (averaged over 1950-379 

1960) and RCP 8.5 (averaged over 2090-2100) scenarios is +3.2°C, and for net primary 380 

production, phytoplankton and zooplankton carbon the mean change was -14%, -8% and -381 

21%, respectively. 382 

 383 
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To enable the model comparison, two standardized outputs - total consumer biomass (which 384 

broadly includes all consumer with trophic level >1, see Table 1) and the biomass of large 385 

consumers (≥30 cm; see Tittensor et al. 2018 for details) - were calculated from each 386 

ecosystem model. All models supplied both outputs, except DBEM which did not provide the 387 

biomass of large consumers. Outputs were reported as depth integrated carbon biomass (g 388 

m-2) and aggregated to a spatial grid with a resolution of 1° on a monthly or annual time step, 389 

depending on model capability. Owing to differences in model formulation total consumer 390 

biomass varies widely amongst models, all else being equal (Tittensor et al. 2018). Since our 391 

focus was not on explaining these differences in total biomass, but rather the differences in 392 

the responses of the models to temperature and LTL changes, we compared model outputs 393 

using biomass change relative to biomass levels under the preindustrial control. Further, as 394 

our focus was isolating impacts of temperature and LTL processes, simulations were run in 395 

the absence of fishing.  396 

 397 

 Table 3 Summary of the experimental simulations and corresponding environmental driver 398 

combinations. Temperature: all temperature-related drivers (e.g., sea surface temperature); 399 

LTL: all lower trophic level drivers (e.g., phytoplankton biomass); Other: any drivers that are 400 

not related to temperature or lower trophic levels (e.g., pH). The abbreviations for forcings 401 

are: PI (blue) = pre-industrial control, H (yellow) = historical, RCP 8.5 (purple) = RCP 8.5. 402 

 Simulation 

Control Temperature Change LTL Change All (Climate) Change 

Drivers 1950-2005 2006-2100 1950-2005 2006-2100 1950-2005 2006-2100 1950-2005 2006-2100 

Temperature PI PI H RCP 8.5 PI PI H RCP 8.5 
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LTL PI PI PI PI H RCP 8.5 H RCP 8.5 

Other PI PI PI PI PI PI H RCP 8.5 

 403 

 404 

 405 

 406 

Figure 1 Control (historical averaged over 1950-1960) forcing variables and the change in 407 

those variables from climate change (RCP 8.5) from the CESM1-BGC earth system model; a,b) 408 

Sea surface temperature, c,d) Net primary production, e,f) Phytoplankton carbon, g,h) 409 

Zooplankton carbon. The change in each variable is measured as the mean over 2090-2100 410 

under the RCP 8.5 scenario minus the mean over 1950-1960 (for sea surface temperature), or 411 
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the percentage change between the mean in 1950-1960 and 2090-2100 (for net primary 412 

production, phytoplankton carbon and zooplankton carbon). 413 

 414 

 415 

3. Results 416 

3.1. Global changes in total consumer biomass 417 

All models projected a decline of globally averaged consumer biomass in the Temperature 418 

Change simulation, with the exception of APECOSM (Figure 2a). The spread of total global 419 

consumer biomass change in response to warming ranged from around -35% for 420 

Macroecological and BOATS, to +3% for APECOSM by the end of the 21st century. EcoTroph 421 

produced the third largest change after BOATS and Macroecological of around -13%. The 422 

remaining four models (DBEM, DBPM, FEISTY, ZooMSS) simulated modest changes in global 423 

consumer biomass of between -2% (FEISTY) to -7% (DBPM) in response to changes in 424 

temperature alone.  425 

 426 

The LTL Change simulation also showed globally averaged biomass decreases for most 427 

models, except BOATS and Macroecological, which projected global biomass increases (Figure 428 

2b). For these two models, the trajectory of global biomass change was switched in the LTL 429 

Change simulation from negative change to positive in comparison with the warming only 430 

simulation. In contrast, APECOSM projected global consumer biomass to increase slightly with 431 

warming, but decrease with LTL changes. APECOSM projected a 7% decrease in total 432 

consumer biomass globally, while BOATS and Macroecological projected increases of 10-15% 433 

in response to LTL changes in isolation. Maximum decreases of biomass in LTL simulations are 434 

half the magnitude (up to 15%) of the decreases in warming simulations. The smallest 435 
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response to LTL changes was from EcoTroph, which projected a total consumer biomass 436 

change of <-1%. Trends in total consumer biomass from the other five models (DBEM, DBPM, 437 

FEISTY and ZooMSS) were grouped within a range between -5% (DBEM) and -15% (ZooMSS).  438 

 439 

The combined temperature and LTL changes led to a decline in globally averaged consumer 440 

biomass across all models except DBEM (Figure 2c). By the end of the 21st century, changes 441 

in global consumer biomass in the All (Climate) Change simulation ranged from around -30% 442 

for BOATS and Macroecological, to +3% for DBEM. The other five models (APECOSM, DBPM, 443 

EcoTroph, FEISTY and  ZooMSS) had changes in total global consumer biomass of between -444 

5% (for APECOSM) and -17% (for ZooMSS). For all models except BOATS, DBEM and 445 

Macroecological, climate change impacts at the global scale were largely the sum of the 446 

separate global impacts of warming and LTL change, with almost no non-additive impact 447 

(Figure 2d). For BOATS and Macroecological, climate change impacts caused total consumer 448 

biomass to decline by about 4% more than the sum of separate warming and LTL impacts. In 449 

DBEM, total consumer biomass under climate change was ~15% higher than under the 450 

combined, separate impacts of warming and LTL impacts, indicating some non-additive 451 

impact of cumulative temperature and LTL changes. Non-additive impacts in DBEM may also 452 

be caused by additional impacts from changes in pH and oxygen levels. APECOSM, the only 453 

other model to incorporate non-temperature or LTL drivers, had negligible non-additive 454 

impacts, indicating these other drivers had little effect compared to warming and LTL shifts.  455 

 456 

 457 
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 458 

Figure 2 Model projections of percentage change in global consumer biomass, relative to the 459 

Control, from 1950-2100 for the: a) Temperature Change simulation, b) Lower Trophic Level 460 

(LTL) Change simulation,  c) All (Climate) Change simulation and d) the non-additive impacts 461 

of temperature and LTL changes, calculated by taking the difference between the All Change 462 

and the sum of the Temperature and LTL Change simulations. 463 

 464 

3.2. Spatial changes in total consumer biomass 465 

Globally averaged time-series of total consumer biomass change conceal considerable spatial 466 

variation across regions within each model, and between models in each experiment. 467 

Temperature-induced shifts in the spatial distribution of total consumer biomass (Figure 3, 468 



24 

left column) varied from increases in many regions for APECOSM, to decreases across the 469 

global ocean in DBPM, ZooMSS, EcoTroph, BOATS and Macroecological. The magnitude of the 470 

total consumer biomass changes generally followed the magnitude of change in temperature 471 

(Figure 1b); temperate regions that experienced the strongest warming (Figure 1b) exhibited 472 

the largest decreases in biomass for these five models. FEISTY and ZooMSS consumer biomass 473 

also decreased with increased temperature in many of the regions with the greatest warming. 474 

However, in warm regions (Figure 1a) with relatively small temperature increases such as the 475 

eastern Pacific or northern Indian Ocean, FEISTY consumer biomass increased, and small 476 

increases in ZooMSS consumer biomass occurred almost entirely in very high latitude polar 477 

regions where temperature change was relatively small (Figure  1b). In contrast, APECOSM 478 

consumer biomass increased across most of the global ocean in response to warming. The 479 

exception to this pattern was in patches where phytoplankton biomass was highest (Figure 480 

1c) such as the North Atlantic, the Bering Strait or the South Pacific around New Zealand. In 481 

DBEM, temperature-induced changes in consumer biomass were greatest in the warmest 482 

waters around the equator, where DBEM consumer biomass decreased by 60-100%. In cold 483 

high latitude waters, DBEM consumer biomass increased by ≥60% in response to warming. 484 

 485 

For all models, lower trophic level (LTL) induced shifts in the distribution of consumer biomass 486 

(Figure 3, centre column) show more agreement in their patterns of change; most models 487 

show biomass decreases in equatorial regions, and increases towards the poles. The 488 

exceptions here are APECOSM, FEISTY and ZooMSS which show a mix of positive and negative 489 

consumer biomass toward the north pole. Consumer biomass shifts generally followed 490 

changes in the distribution of the main LTL forcings used by each model (Figure 1d, f, h). 491 

APECOSM, DBPM, FEISTY and ZooMSS use plankton biomass inputs (Table 2), and for these 492 
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models, consumer biomass generally decreased with decreasing phytoplankton carbon 493 

(Figure 1f) and increases were isolated to polar regions. DBEM, EcoTroph, BOATS and 494 

Macroecological use net primary production as their LTL forcing and the spatial distribution 495 

of changes in consumer biomass followed spatial shifts in net primary production (Figure 1d), 496 

with increases in biomass not only in polar regions, but also in the North Pacific and in the 497 

South East Pacific.  498 

 499 

When both temperature and LTL drivers changed simultaneously in the All (Climate) Change 500 

simulation, shifts in the distribution of consumer biomass for each model were a combination 501 

of the shifts driven by separate temperature and LTL effects (Figure 3, right column; 502 

Supplementary Figure S1). Across all models, temperature-induced declines in consumer 503 

biomass were generally exacerbated in regions where LTL changes negatively impacted 504 

consumer biomass. Overall, consumer biomass generally increased in polar waters, where all 505 

LTL variables increased but temperature changed relatively little. Increases in consumer 506 

biomass in DBEM were greater in polar regions under climate change, compared to the sum 507 

of the separate impacts of warming and LTL shifts (Supplementary Figure S1e). Outside of 508 

polar regions, the magnitude and direction of change in consumer biomass varied among 509 

models, depending on their individual responses to temperature and LTL changes. For BOATS 510 

and Macroecological, the magnitude of positive and negative changes in consumer biomass 511 

from LTL shifts in isolation were attenuated when combined with the impacts of warming in 512 

the Climate Change simulation (Supplementary Figure S1g, h), however these non-additive 513 

effects largely cancelled at the global scale (Figure 2d). 514 

 515 
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 516 

Figure 3 Maps of relative total consumer biomass averaged over 2090-2100, compared to the 517 

Control (over 2090-2100), for the Temperature (left column), Lower Trophic Level (LTL) and 518 



27 

All Change simulations for a-c) APECOSM, d-f) FEISTY, g-i) ZooMSS, j-l) DBPM, m-o) DBEM, p-519 

r) EcoTroph, s-u) BOATS, v-x) Macroecological. Maps are ordered by the magnitude (from 520 

smallest to greatest) of the negative warming impact on consumer biomass. 521 

 522 

3.3. Disentangling temperature and lower trophic level impacts on total consumer 523 

biomass 524 

Figure 4 compares the forced changes in sea surface temperature (SST) with the co-located 525 

simulated changes in biomass for all grid cells in the global ocean. Regressions give negative 526 

exponential slopes for all models, but with substantial variation (Supplementary Table S1). 527 

Globally, consumer biomass changed between -0.5% and -2.0% for every 1°C of sea surface 528 

warming for APECOSM, FEISTY, DBPM and ZooMSS, and between -4.8% and -15.4% per 1°C 529 

across EcoTroph, BOATS and Macroecological (Supplementary Table S4). The models vary in 530 

their degree of linearity, with DBEM projecting the greatest nonlinearity in the impacts of 531 

warming between cold and warm waters (Figure 4e; Supplementary Table S4). DBEM 532 

consumer biomass increased by ~50% in cold waters (<15°C SST) in response to warming 533 

(Figure 4e), and decreased on average by >27% for each 1°C warming in warm (≥15°C SST) 534 

waters.  535 

 536 

Figure 5 shows the corresponding plots for LTL forcing. For all models, changes in total 537 

consumer biomass were positively correlated with changes in their respective aggregated 538 

lower trophic level (LTL) forcing (Figure 5). A 1% change in LTL forcings caused a change in 539 

total consumer biomass of between 0.6% in DBPM to 1.7% in BOATS (Supplementary Table 540 

S4). Positive correlations between consumer biomass and LTL changes ranged from 𝑟 =  0.39 541 

for DBPM, to 𝑟 =  0.98 for EcoTroph. For all models except DBPM, the greatest correlation 542 
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was between change in total consumer biomass and change in total LTL production, or 543 

biomass, of the model’s chosen LTL forcing (Supplementary Table S3). In models that used 544 

size-fractionated LTL inputs, or additional secondary LTL inputs, changes in consumer biomass 545 

were less correlated with changes in their main aggregated LTL forcing (APECOSM, DBPM, 546 

FEISTY) compared to models that did not use size-fractionated or multiple LTL forcings 547 

(BOATS, DBEM, EcoTroph, Macroecological, ZooMSS).  548 

 549 

 550 

Figure 4  Change in total consumer biomass (%) against the mean change in sea surface 551 

temperature (SST) over 2090-2100, for individual 1° grid squares, under the Temperature 552 
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Change simulation, compared to the Control simulation, for a) APECOSM, b) FEISTY, c) 553 

ZooMSS, d) DBPM, e) DBEM, f) EcoTroph, g) BOATS, h) Macroecological. Each point is coloured 554 

according to the mean 1950-1960 historical SST in its grid cell. Dotted horizontal and vertical 555 

black lines indicate where % change in total consumer biomass and change in temperature 556 

are zero, respectively. The green line is the fitted regression (Δ Total Consumer Biomass =557 

exp(β0 + β1ΔSST) + ε) for the change in consumer biomass with warming. We use 558 

exponential regression to calculate the line of best fit here since all models incorporate 559 

temperature effects using an exponential function (see Supplementary Information). 560 

Information about the fitted regression is in Supplementary Table S1 and S4. 561 

 562 
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563 

Figure 5 Change in total consumer biomass (%) against change in aggregated lower trophic 564 

level forcings (LTL), from 2090-2100 under the LTL Change simulation, against the Control, for 565 

individual 1° grid squares, compared to the Control simulation for a) APECOSM, b) FEISTY, c) 566 

ZooMSS, d) DBPM, e) DBEM, f) EcoTroph, g) BOATS, h) Macroecological, with Pearson’s 567 

correlation coefficient (𝑟) reported for each. Each point is coloured according to the average 568 

1950-1960 historical sea surface temperature (SST) in its corresponding grid cell. The black 569 

solid line is the 1:1 line, and the dotted horizontal and vertical black lines indicate where % 570 

change in total consumer biomass and % change in LTL are zero, respectively. The green line 571 

is the fitted regression (ΔTotal Consumer Biomass = β0 + β1ΔLTL + ε) for the change in 572 
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consumer biomass with warming. For models that use more than one LTL variable 573 

(APECOSM), or size-fractionated LTL (FEISTY and DBPM),  ΔLTL is calculated from the sum of 574 

all LTL forcings. Information about the fitted regression is in Supplementary Table S2 and S4. 575 

 576 

3.4. Impacts of warming and lower trophic level change on ecosystem structure 577 

In response to warming, there was little consensus in the relative change of small (<30 cm) 578 

and large (≥30 cm) mean global consumer biomass (Figure 6a), with four models (BOATS, 579 

EcoTroph, Macroecological, ZooMSS) showing a decrease of both and the other three models 580 

(APECOSM, DBPM, FEISTY) showing a mixture of responses. Small consumer biomass 581 

increased by ~2% in both APECOSM and FEISTY in response to warming, but large consumer 582 

biomass increased in APECOSM by 5% while decreasing in FEISTY by >10%. Similarly, although 583 

small consumer biomass in DBPM and ZooMSS decreased by 3% and 6% respectively, these 584 

models disagreed on the direction of change for large consumer biomass. In response to 585 

warming total large consumer biomass in DBPM increased by 15%, and over 60% in some 586 

regions (Supplementary Figure S2n), but in ZooMSS total large consumer biomass declined by 587 

~2% overall. Finally, small and large consumer biomass declined in EcoTroph, BOATS and 588 

Macroecological, and the spatial pattern of decline across was similar both across models and 589 

across small and large consumer biomass (Supplementary Figure S2). There was no difference 590 

in the magnitude of the decline of small and large consumer biomass in Macroecological, 591 

however in EcoTroph and BOATS the magnitude of the decline in large consumer biomass was 592 

greater than the decline in small consumer biomass. 593 

 594 

Changes in total small and large consumer biomass in response to lower trophic level (LTL) 595 

changes show more agreement (Figure 6b). The change in total small and large consumer 596 
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biomass was similar in APECOSM, FEISTY, ZooMSS, EcoTroph, BOATS and Macroecological, 597 

and again the spatial pattern of change in small and large consumer biomass generally 598 

followed each model’s respective LTL forcings (Supplementary Figure S2; Figure 1f-h). 599 

However, in DBPM, total large consumer biomass declined by 40%, while small consumer 600 

biomass declined by only 10%. This was reflected in the spatial patterns of biomass change 601 

for DBPM, with large consumer biomass varying by over ±60% and small consumer biomass 602 

varying by less than ±30% across non-polar regions of the global ocean (Supplementary 603 

Figure S2 o,p).  604 

 605 

Small and large consumer biomass declined for all models (except DBEM, which was excluded 606 

from this part of the analysis since it did not provide size-fractionated biomass) in response 607 

to climate change (simultaneous temperature and LTL changes) impacts (Figure 6c). Large 608 

consumer biomass declined more than small consumer biomass in BOATS, DBPM, EcoTroph 609 

and FEISTY. In contrast, small consumer biomass declined more than large consumer biomass 610 

in APECOSM and ZooMSS, and there was no difference between small and large consumer 611 

biomass change in Macroecological. For all models, the impacts of climate change on small 612 

and large consumers were largely the sum of temperature and LTL impacts, with relatively 613 

small non-additive impacts (Figure 6d). 614 

 615 
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 616 

Figure 6 Change in total small (<30 cm) consumer biomass versus change in global large 617 

(>30cm) consumer biomass averaged between 2090-2100 relative to Control simulation for 618 

each model (excluding DBEM, which did not provide small and large consumer biomass) in 619 

the a) Temperature Change simulation b) Lower Trophic Level (LTL) Change simulation, c) All 620 

Change simulation and d) the non-additive impacts of temperature and LTL changes, 621 

calculated by taking the difference between the All Change and the sum of the Temperature 622 

and LTL Change simulations. The red solid line is the 1:1 line, and the dotted horizontal and 623 

vertical black lines indicate where the percentage change in global large and small consumer 624 

biomass are zero, respectively.  625 

 626 

 627 



34 

4. Discussion 628 

The results of our experimental protocol reveal commonalities, as well as contrasts among 629 

the FishMIP models. All models agreed that the combination of warming and lower trophic 630 

level (LTL) shifts will cause substantial regional changes in consumer biomass. Furthermore, 631 

no model projected a significant increase in global biomass in response to climate change. 632 

However, the impacts of warming varied markedly between models, leading to large inter-633 

model disagreements. Changes in LTL drivers were more directly correlated with the 634 

outcomes on consumer biomass, but with substantial variation among models, and strong 635 

dependence on each model’s choice of LTL driver. For almost all models, the combined 636 

impacts of warming and LTL changes were largely additive at the global scale, showing little 637 

nonlinear interaction, and additional climate change drivers (e.g., oxygen, acidification, 638 

current speeds) were not significant global drivers in the models that included them 639 

(APECOSM and DBEM). By separating the marine ecosystem model responses to climate-640 

driven warming versus LTL shifts, our results point toward the processes that need to be 641 

clarified to reduce the uncertainty of how these two dominant drivers impact marine 642 

ecosystems. 643 

  644 

4.1. Warming impacts are complex 645 

One straightforward expectation might be that the different responses to warming reflect 646 

differences in the temperature scalings used in each model. However, the differences in 647 

temperature scalings do not readily explain the variation in the results. For instance, DBPM 648 

and Macroecological use identical temperature scalings (see Supplementary Information S2.4 649 

and S2.7), yet DBPM’s projections of warming-induced biomass decline are almost an order 650 

of magnitude smaller than those of Macroecological. This does not mean the temperature 651 
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scalings are irrelevant, but rather that the emergent results depend on the interactions of 652 

multiple temperature-dependent processes, operating within the structural context of each 653 

model. 654 

 655 

For example, DBEM attempts to resolve preferred temperature ranges for different species, 656 

while the other models consider the effect of temperature on generalized physiological 657 

processes, implicitly assuming that species moving out of a region are replaced by species 658 

moving in with no change in ecosystem function.  Although food web processes such as 659 

predator-prey interactions are not explicitly included in the DBEM species-distribution model, 660 

it projects an emptying of tropical waters and a corresponding build-up of biomass in polar 661 

waters, as species move poleward to follow their thermal preferences. This redistribution of 662 

the biomass of >1200 recorded commercial species included in the model reflects the absence 663 

of very warm water fish that can repopulate the tropics, and the small number of cold water 664 

fish in the initial state (Cheung et al. 2010). It also largely explains the model’s combined 665 

impacts of warming, LTL shifts and other drivers being nonlinear: relative to extant species in 666 

polar waters, a larger number of species follow their thermal niche poleward and are able to 667 

take advantage of increased primary production in high latitude regions, compared to the 668 

regions they left behind.  669 

 670 

DBEM aside, four of the models included here (APECOSM, DBPM, FEISTY and ZooMSS) project 671 

much smaller warming impacts on consumer biomass than the remaining three 672 

models (BOATS, EcoTroph and Macroecological). Although there are many differences 673 

between these models, one particularly salient feature is that the low-sensitivity models all 674 

use LTL biomass as Earth-system model (ESM) drivers for the projections, together with 675 
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temperature-dependent feeding rates. In contrast, the high-sensitivity models use ESM net 676 

primary production to directly limit the growth rates of upper trophic levels.  We suggest that 677 

the discrepancy in temperature sensitivity between the model groups can be attributed, at 678 

least in part, to an inconsistency that arises from the 1-way forcing of marine models with LTL 679 

biomass. The relationship between LTL biomass (BLTL), LTL production (PLTL) and higher 680 

trophic level predation (PredHTL) through time 𝑡 can be represented as: 681 

𝑑BLTL

𝑑𝑡
= PLTL(𝑡) − PredHTL(𝑡). 682 

In reality, if warming accelerates predation rates, but lower trophic level production remains 683 

constant or does not increase as much, such that PLTL(𝑡) < PredHTL(𝑡), LTL biomass would 684 

decrease. However in the 1-way forcing used here, LTL biomass is determined externally by 685 

the Earth system model and is not affected by predation from higher trophic levels. Thus, 686 

increased predation rates from warming on fixed LTL biomass causes an increase in the flux 687 

of biomass energy into higher trophic levels that is decoupled from lower trophic level 688 

production. This increased energy input counters the increased metabolic rates and 689 

associated respiratory losses, dampening biomass declines from warming. This inconsistency 690 

in coupling between LTLs and higher trophic level consumers would tend towards an 691 

underestimate of warming impacts on consumer biomass. In contrast, in the production-692 

driven models there is no spurious energy input under warming, so that warming-driven 693 

increases in consumer respiration costs and decreases in representative phytoplankton size 694 

act to drive biomass down strongly.   695 

 696 

Our results also explored the warming impacts on ecosystem structure, defined as the relative 697 

biomass of small versus large organisms. Here, there was little consensus between models. 698 
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DBPM and FEISTY provide a striking example of divergent projections of ecosystem structure 699 

with warming. In DBPM, ingestion-fuelled anabolism outpaces senescence-induced mortality 700 

in large organisms as waters warm (Blanchard et al. 2012), causing their biomass to increase. 701 

This raises predation pressure on smaller organisms, which when coupled with warming-702 

induced increases in natural mortality, causes their biomass to decline. By contrast, in FEISTY, 703 

biomass respiration increases faster with both body size and temperature compared to 704 

ingestion-fuelled anabolism (Petrik et al. 2019) reducing the scope for growth and causing 705 

large organism biomass to decline with warming. Declines in large consumer biomass in 706 

FEISTY with increasing temperature relieve predation pressure on small consumers, resulting 707 

in an increase in their biomass, especially in tropical waters. The divergent impacts of warming 708 

on individual processes and ecosystem structure reflects the lack of consensus among 709 

modellers of how temperature impacts on individuals translate into ecosystem impacts.  710 

  711 

4.2. Lower trophic level impacts are influenced by choice of forcing 712 

The choice of LTL forcings differed between models, with each model using either biomass or 713 

production variables at the phytoplankton or zooplankton level, with significant impacts on 714 

the results. Generally, spatial changes in consumer biomass were most correlated with 715 

changes in the distribution of the LTL forcing used. The sensitivity of models to the choice of 716 

LTL forcing again indicates a lack of common understanding of how to link lower trophic levels 717 

production with higher trophic levels, with no consensus on whether production rates or 718 

standing-stock biomass should be used. We believe this problem fundamentally arises out of 719 

practical necessity because of each model’s one-way, offline coupling with the Earth system 720 

model—were higher trophic levels and LTLs to be fully coupled, and predation feedbacks on 721 

LTLs resolved, there should theoretically be no disagreement between models that use 722 
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production or biomass variables, everything else being equal. However, in the absence of two-723 

way coupled models in the FishMIP ensemble, the development of which is a tremendous 724 

technical challenge (see Aumont et al., 2018), this problem remains to be addressed. As 725 

mentioned above, this problem also leads to inconsistency in the temperature response when 726 

plankton biomass versus net primary production rates are used.   727 

  728 

Ecosystem structure did not change substantially in response to LTL changes, except in DBPM. 729 

Large organism biomass in DBPM declined by 40% and small organisms declined by <10% in 730 

response to decreases in phytoplankton biomass and resultant shifts in the size structure of 731 

the phytoplankton abundance spectrum. DBPM’s relatively large decrease in large consumer 732 

biomass in response to phytoplankton biomass declines is a result of biomass destruction 733 

through senescence mortality, which increases with body size but does not depend on food 734 

density, outpacing ingestion-fuelled biomass creation. The other predation-explicit models—735 

including ZooMSS and FEISTY, which also include biomass destruction processes independent 736 

of food density that increase with body size—did not exhibit similar declines in large organism 737 

biomass. This is because in these models, ingestion-fuelled growth outpaces biomass 738 

destruction from these processes, highlighting the sensitivity of model outputs to the 739 

parameterisation of these rates. In fact, across all models except DBPM, the change in large 740 

organism biomass with LTL change was equal to or slightly less than the change in small 741 

organism biomass. 742 

 743 

4.3. Cumulative warming and lower trophic level impacts are largely additive 744 

Across the model ensemble, climate change impacts on total consumer biomass and 745 

ecosystem structure were generally well-approximated by the sum of separate warming and 746 
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LTL impacts. This lack of non-linearity is perhaps less surprising for the majority of models that 747 

only use temperature and LTL drivers to force their models (Tittensor et al. 2018), but 748 

remarkably it also holds for APECOSM, which incorporates other drivers such as oxygen, pH 749 

and current velocity. The fact that the overall climate change impact on consumer biomass in 750 

APECOSM was close to the sum of temperature and LTL impacts indicates that the additional 751 

forcings have a comparatively small effect. DBEM, which also includes additional 752 

environmental drivers, did show a much stronger non-additive impact of climate change on 753 

overall consumer biomass, but this appeared to be driven primarily by the relocation of 754 

species niches in DBEM in response to warming, rather than the other drivers. DBEM aside, 755 

only BOATS and Macroecological show significant non-linear interactions between 756 

temperature and LTL drivers. This can be attributed to the fact that, in BOATS and 757 

Macroecological, the representative size of phytoplankton used to force the models scales 758 

with both net primary production and temperature, increasing in cooler waters or regions 759 

with high net primary production (Dunne et al. 2005). For these two models, the spatial 760 

pattern of attenuation follows shifts in net primary production, indicating that warming 761 

attenuates the increases and decreases in biomass from shifts in net primary production. 762 

  763 

It may be tempting to assume that the lack of nonlinear interactions in the models means that 764 

such nonlinearities are unlikely to exist in the ocean. However, an increasing number of 765 

experimental and observational studies indicate that cumulative impacts from climate change 766 

stressors such as warming, deoxygenation and acidification are likely to be nonlinear and 767 

amplifying (Sampaio and Rosa, 2020). Rather, given the rudimentary representation of many 768 

ecosystem processes in the models (e.g., no phenological or diversity-related mechanisms, 769 

simplistic or absent predation relationships), we suggest that it is more appropriate to ascribe 770 
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the lack of nonlinear interactions in marine climate change projections to our present lack of 771 

ability to resolve them in the models. 772 

  773 

4.4. Improving marine ecosystem models with observational constraints 774 

In this study, we have identified key sources of structural uncertainty that drive disparate 775 

projections of climate change impacts on the global marine ecosystem. As a first step, the 776 

marine modelling community can work to reduce this structural uncertainty and increase the 777 

credibility of ecosystem projections by constraining models with independent observations. 778 

An increasingly popular approach to confront model projections with observations is to use 779 

emergent constraints, which relate the long-term climate sensitivity of an observable 780 

ecosystem feature - such as total biomass change (Free et al. 2019) or size-spectrum slope 781 

(Blanchard et al. 2017; Heneghan et al. 2019) - to its short-term, observed variability (Allen & 782 

Ingram, 2002; Eyring et al. 2019). Models that give a closer fit to short-term observed 783 

variability of an ecosystem feature are hypothesised to provide more reliable projections of 784 

its long-term variability from climate change (Kwiatkowski et al. 2017; Veytia et al. 2020). 785 

Moreover, within a model ensemble, each model’s weighting can be linked to its ability to 786 

capture the emergent constraint (Eyring et al. 2019). This provides a more sophisticated and 787 

credible way to weight model projections within an ensemble, over the standard approach 788 

where all models are given equal weighting (known as model democracy), irrespective of 789 

performance (Knutti, 2010).  Emergent constraints do not require or necessarily reward any 790 

particular ecosystem representation. This is important as differing representations of the 791 

marine ecosystem across the FishMIP ensemble not only represent our present uncertainty 792 

of the most important drivers structuring marine ecosystems, but also the diversity of 793 

purpose and scope for which models have been built.  794 



41 

 795 

Finally, it is possible for models to perform well against whole-ecosystem emergent 796 

constraints, while neglecting fundamental physiological or ecosystem processes (Knutti, 797 

2010). Therefore, if we are to improve marine models, it is also necessary to consider 798 

observational constraints on physiological processes such as the balance between growth and 799 

respiration with temperature, or ecosystem processes such as the coupling of lower and 800 

higher trophic levels. Improving our understanding of how physiological processes such as 801 

ingestion and metabolism respond to warming, and how changes in LTL processes propagate 802 

through marine ecosystems, are critical steps towards model improvement and more robust 803 

climate impact projections.  804 

 805 

5. Concluding remarks 806 

Projecting the global impact of climate change on marine ecosystems and fisheries is an 807 

important and challenging task. Marine ecosystem models represent the current 808 

understanding of how climate change could impact the food web and fisheries globally in the 809 

future. Yet, although these models have made great strides in recent years, our results show 810 

that the current understanding falls short in many respects. 811 

  812 

Our harmonized experimental protocol clearly showed that the responses to the two most 813 

important drivers of change – warming and LTL shifts – differ widely among models. 814 

Uncertainty in the temperature sensitivities of competing processes, including both 815 

physiology and ecological interactions, undermine confidence in the emergent sensitivities, 816 

and can only be improved with better observational constraints. Meanwhile, the outcome of 817 

changes in both water temperature and LTL production depends strongly on the feedback of 818 
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consumers on the LTL biomass itself, a process which is not captured by any of the one-way 819 

forcings available at present, and can only be rectified with fully two-way coupling, which is 820 

itself sure to raise many new questions.  821 

  822 

What are the implications of our results for single ecosystem model studies? The eight models 823 

used here differ significantly in their design and ecosystem representation, having been built 824 

for different purposes (Tittensor et al. 2018). Although using common outputs across models 825 

has been useful here to identify shared weaknesses, this approach conceals the strengths of 826 

individual models to resolve certain processes and ecosystem components that other models 827 

do not. Thus, studies that explore the unique strengths and weaknesses of individual models 828 

remain important, in order to explore questions that each model has been designed to 829 

address. However, results of these single model studies should be interpreted within the 830 

greater context of sources of structural uncertainty shared across models identified here. 831 

 832 

Attempting to summarise the vast complexity of the global marine ecosystem in a handful of 833 

equations is enormously difficult. The fact that independently constructed models with 834 

contrasting architectures have arrived at many similar conclusions is encouraging, while their 835 

diversity is useful to identify common weaknesses. These initial results from the FishMIP 836 

ensemble provide a glimpse into the great promise of multi-model comparisons to improve 837 

our understanding of the global marine ecosystem and its future under change. 838 

 839 

Code and data availability  840 



43 

The experimental protocol in this paper has no code associated with it. Forcing data from 841 

CMIP5 used for the protocol, and the FishMIP model outputs presented in this paper are 842 

available on the ISIMIP servers (https://www.isimip.org/). 843 
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