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Abstract

We report the development and use of a synthetic, discrete event, discrete space model that
functions as an epithelio-mimetic device (EMD). It is intended to facilitate the study of
intestinal transport of drug-like compounds. We represent passive paracellular and transcellular
transport, carrier-mediated transport and active efflux using stand-alone components.
Systematic verification of the EMD over a wide physiologically realistic range is essential
before we can use it to address questions regarding the details of the interacting mechanisms
that are believed to influence absorption. We report details of key verification experiments.
We demonstrate that this device can generate behaviors similar to those observed in the in vitro
Caco-2 transwell system. To do that we used a series of hypothetical drugs and we simulated
behaviors for two clinically used drugs, alfentanil and digoxin. The results support the
feasibility and practicability of the EMD as a tool to expand the experimental options for better
understanding the biological processes involved in intestinal transport and absorption of
compounds of interest.
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1. Introduction

Understanding the interplay among the mechanisms that influence the intestinal absorption of drugs
in humans is critical to the successful development of orally administered drugs (Prentis et al. 1988). The
in vitro model system based on Caco-2 cells, a human colon carcinoma epithelial cell line, is used widely
in pharmaceutical research to study intestinal drug absorption and transport processes (Artursson et al.
1997). A variety of traditional mathematical models have been employed to help understand which
mechanisms may be most important for different classes of compounds, and to make semi-quantitative
predictions for new compounds or conditions (Parrott et al. 2002; Yu et al. 1999). These models have
worked well in predicting the consequences of hypothesized mechanisms. They are not as useful,
however, for testing hypotheses about interacting mechanisms or their details (Benet et al. 2004). Nor are
they useful in linking those mechanisms to the expanding volume of biological data. Such hypotheses
and linkages are typically tested using wetlab experiments. The model described here is an example of a
class of models that can be built specifically to enable in silico testing of such hypotheses and exploring
of linkages by conducting large numbers of distinct, easily automated experiments.

One of the best ways to learn about a phenomenon is to build a device that exhibits that behavior. To
test hypotheses about actual mechanisms, we can construct a model of the posited mechanisms from
component parts that map to counterparts in the referent, conduct experiments using the model, and show
that the model behaves like the referent system under a sufficiently wide range of operating conditions.
One approach is to develop synthetic, discrete event, discrete space, continuous time models (Ropella et
al. 2005a; Ropella et al. 2005b) in which biomimetic, object-oriented software components can be
plugged together and operated in ways that represent the hypothesized biological mechanisms within the
referent wetlab system.



This is the first report of one example of this new class of in silico models. It is designed to study
transport of drug-like compounds. The referent system is confluent monolayers of Caco-2 cells in a
transwell device, and so we refer to our in silico model system as being an epithelio-mimetic device
(EMD). This device is designed to generate biomimetic behaviors of epithelial cells and is constructed
from software components that can map logically to biological counterparts at multiple levels of
resolution. The first set of interacting mechanisms of interest includes passive paracellular and
transcellular transport, carrier-mediated transport, and active efflux transport.

The paracellular route of absorption is taken primarily by small hydrophilic compounds while the
transcellular route is taken by molecules that are sufficiently hydrophobic to partition into and then out of
lipid bilayers. Hydrophilic molecules pass the cell monolayer via aqueous channels at tight junctions.
Hydrophobic compounds mainly cross cell membranes using a process that involves breaking and
reforming hydrogen bonds. For those orally administered compounds that mimic nutrients to some
degree, carrier-mediated transport is either the only way, or an important way, to transverse the epithelial
monolayer. There are two classes of transmembrane transporters. One consumes energy and can
transport substrate against a concentration gradient. The other is not energy dependent and facilitates
transport along the concentration gradient. All examples of both classes studied to date exhibit saturable
kinetics.

Many different transporters are found in epithelial cells (Hidalgo et al. 1996; Tsuji et al. 1996). Some
are found only on one side of the cell. Others can be found in both locations. Some work in both
directions (e.g., PepT1 in the apical (A) membrane transports drugs in and out), whereas others work in
only one direction (e.g., MRP-1 in the basolateral (B) membrane only transports compounds out, i.e., A
to B). P-glycoprotein (P-gp, the MDR-1 gene product) is present in the apical membrane of enterocytes
and many other cell types. It is a promiscuous transporter for xenobiotic removal. In the intestine, it
actively transports a variety of compounds, including many drugs and their metabolites, out of intestinal
epithelial cells. It functions as an efflux pump and it is believed to help protect the individual against
absorption of potentially toxic substances.

Our goal is to have useful, extensible EMDs suitable for assessment of interacting drug metabolism
and transport-related mechanisms. We envision a variety of scientific uses for such devices. All,
however, require that EMDs function as objects for experimentation, where some of the in silico
experiments are designed to explore and address mechanistic questions and hypotheses that are difficult
or impossible to address using either traditional wetlab or mathematical modeling methods. The purpose
of this report is to demonstrate that we can build an EMD that is a practicable device for experimentation,
and, most importantly, to report on experiments that help verify that the device can function as intended,
and that it generates behaviors similar to those observed in experiments using the in vitro Caco-2
transwell system. Systematic verification is an essential first step before beginning to explore
mechanistic questions of interest.

2. Inductive vs. Synthetic Models

The models mainly used in biomedical research fall into two broad categories: constructed wetlab
models and induced mathematical models. Wetlab models, including in vivo, in situ, and in vitro models,
are the mainstay of biomedical research (cell cultures, isolated, perfused organs and tissues, etc.). They
are synthetic models where some of the building blocks are laboratory items and others are living parts.
The Caco-2 transwell system is an example of such synthetic models. There is a huge gap between the
experimental wetlab models and traditional computational models. This gap sits on a continuum between
the two extremes of experiment and theory. To make progress toward understanding biological
complexity we need to bridge this gap, and to do that we need new methods. From these new methods
will come new classes of models that make computational biology more experimental and wetlab research
more computational. The EMDs are intended to make progress narrowing that gap.

The inductive method (Steels et al. 1995) for creating mathematical models dominates the biomedical
literature. Examples include the oral drug absorption model (Grass 1997) and the more elaborate,



physiologically based toxicokinetic model (Andersen 2003). These models are usually built by analyzing
data, creating a mapping between the envisioned structure of the experimental system and components of
the data, and then representing those data components with mathematical equations. The equations are
then implemented, executed, and validated against the data. This modeling method relies heavily on
mental knowledge combined with induction. It stays very close to the data and, when successful,
provides models that extrapolate beyond the original data, making them usable for prediction. However,
these equation-based models lack particulars. The detail that is washed away when an equation is
induced is where all the heuristic value lies. That detail describes the mechanism by which the data were
generated, whereas the mathematics only describes the abstracted properties of the data.

To better understand how a mammalian system such as the intestine, or even a much simpler in vitro
model system such as the cultured cells in a transwell device, generates a seemingly endless variety of
robust and fragile behaviors, we need to construct models that can exhibit some of those behaviors. The
constructive or “synthetic” method (Steels et al. 1995; Zeigler 1990) consists of proposing and
constructing building blocks that can be assembled to create an artificial system that functions in the real
world. One can look inside such a system and observe the components and how they interact as the
system operates. With the advance of object-oriented (OO) programming it has become feasible to build
such synthetic models computationally (Zeigler 1990). It has also become easier to construct large
system models where the modular components are not parts of a mechanism, but are themselves inductive
models. The sophisticated physiologically based models constructed as part of the Physiome Project' are
examples of the latter. With the most recent progress in OO programming has come the ability to actually
build, in silico, a functioning model of the mechanism of which an inductive model is an abstraction.
That is what we have done here.

An essential difference between inductive models and synthetic models lies in the fact that the
inductive method explicitly uses the observed phenomena (the data) as its input whereas the synthetic
method starts with proposed building blocks and relations between them (Ropella et al. 2005b).

Consider a mapping from the space of generator mechanisms to the space of phenomena. The inductive
method starts with the phenomena and works backward to the generators in an attempt to discover an
inverse mapping from range to domain. The synthetic method, in contrast, works forward from domain
to range. Its constraints and criteria sit primarily in the domain. It should be clear that neither method is
superior. An inductive model will provide a better fit to the data and a better extrapolation of that data if
the experimental conditions are kept the same. The synthetic model will provide a hypothesis for the
“machine” that is believed to generate the data. An inductive model allows one to make claims about the
data. The synthetic model allows one to make claims about the mechanism. Synthetic modeling requires
knowledge of the function of the referent, of plausible mechanisms for that function, and of relevant
observables by which the analog and the referent will be measured. For the in silico models described
here, considerable histological, physiological, experimental, and operational knowledge is already
available. That is a key reason for selecting the above-mentioned i vitro model as a starting place.
Because the effort required to build a model of the EMD type is nontrivial, it is essential that the
operation of the device and its modular components be verified over a wide, physiologically realistic
range before undertaking exploratory experimentation. This report also presents results of experiments
designed to provide that verification.

3. Methods
3.1 EMD Structure and Design

The EMD described below is intended to mimic essential aspects of the Caco-2 in vitro cell culture
system that, in turn, is a biological model built to represent the mature epithelia lining the villi of the
small intestine, and enable study of the permeability of that barrier. Caco-2 cells are typically grown to
confluence on the microporous membrane insert of the transwell diffusion system (Fig. 1). Thereafter the

! Physiome Project: http://www.physiome.org/



system is used as an experimental model, primarily in drug transport studies. The chamber of the
transwell insert represents the apical side, the intestinal lumen. The well, into which the insert fits,
represents the basolateral side of villi adjacent to the intestinal capillaries. The structure of the EMD
mimics these essential features along with the permeable membranes of the Caco-2 cell monolayer and
aspects of intracellular biochemical systems.

The EMD represents a vertical column section through the entire transwell system with an arbitrary
width. This section is sliced virtually into five stacked segments. Each slice is subdivided into 10,000
elements (100 x 100 2D grids). New spaces can be added by plugging in new grids. That can be done
without interfering with the function of the existing spaces or having to re-engineer the EMD. The
horizontal resolution can be increased in two ways: increase the number of grid subdivisions (e.g., from
100” to 200%), or decrease the width of the virtual column section to which the EMD maps. G/ represents
the apical lumen compartment and a portion of the fluid in the transwell cell culture insert. G2 represents
apical membranes of cells and the junctions between them viewed from the apical side. G3 represents the
intracellular space. G4 represents basolateral membranes and the junctions between cells viewed from
the basolateral side. Within G2 and G4, a parameter controls the prevalence of tight junctions between
cells. Currently, at the start of each in silico experiment, 0.1% of grid points in each of these two spaces
are chosen randomly and assigned to be junctions; the remaining 99.9% represent cell membrane
(Artursson et al. 2001). G5 represents a portion of the basolateral compartment and the fluid in the cell
culture well. These spaces accommodate the other components of the system. Drug molecules are
represented as objects’ that can move within and among spaces. A typical DRUG® object represents more
than one drug molecule. The transporters embedded in the cell membranes are modeled as immobile
objects. They are assigned randomly to the G2 and/or G4 spaces. Because there may be several
transporters within the area of cell membrane represented by one grid point, each TRANSPORTER object
may represent more than one transporter. Objects representing transporters can interact with mobile
DRUGS in their immediate vicinity. Additional objects or agents, e.g., metabolic enzymes, networks that
control the level of expression of transporters, or other cellular components, can be specified and added as
needed.

G3

Figure 1. In vitro and in silico experimental devices to study intestinal drug transport. Caco-2 in vitro
transwell system: A: apical compartment; B: basolateral compartment; C: epithelial cell monolayer; F:
filter; V: a vertical column section through the transwell system. Epithelio-mimetic device (EMD):
GI-GS5: 2D grid spaces representing the indicated components of the referent in vitro transwell system.

? Objects within the EMD can be either simple, passive objects or agents. The latter are capable of interacting with their
environment and scheduling their own activities.

* When referring to the in silico counterpart of a compound, a drug, a biological component, such as “membrane,” or a cell
component such as “transporter,” we use SMALL CAPS.



The different shading of the G4 grid locations illustrates that individual grid locations in any of the five
spaces can have different properties (see the text for additional detail).

The in silico device is intended to be exercised and measured during the course of experimentation in
the same way as its referent in vitro experimental system. Consequently, within the computational
framework (Fig. 2) one needs an agent to manage the in silico experiments. In the EMD we refer to that
agent as the Experiment Agent. It is the in silico counterpart to the researcher conducting wetlab
experiments. The Data Model holds data taken from the referent system and the Reference Model is an
existing mathematical model that has been widely accepted to represent some system behaviors. In each
in silico experiment, the Experiment Agent reads inputs from the Parameter Manager and transfers that
information to the experimental device, the EMD. The simulation results are collected in the Data
Management Module and processed in the Statistical Observer Module. We built the EMD framework
using the JAVA layer of the Swarm platform (Gilbert et al. 2002).
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Figure 2. The Computational framework of the EMD. Additional detail is provided in the text. The
Experiment Agent manages the in silico experiments. It controls all of the other components in the
framework.

3.2 Passive Transport in the EMD

Within each grid space, at any step, a free DRUG can move to an adjacent, less-crowded location
within that grid space. Such movement is governed by a biased random walk. Transition of a DRUG from
one space to another is governed by its location (e.g., being at a tight junction or near a lipoid membrane
structure), its assigned physicochemical properties, and environmental conditions, including the
concentration gradient across the simulated cell monolayer, pH, etc. The simulation of permeation during
experiments takes into account the influence of the concentration gradient along with three interrelated
physicochemical properties: lipophilicity, degree of ionization (calculated from pH and pK,), and
molecular size. We assume that small (< 200 Dalton) hydrophilic compounds having partition
coefficients (P) less than 2 can pass through cell monolayers only by passive paracellular transport via
aqueous pores. For those more hydrophobic compounds no larger than 1000 Daltons, passive
transcellular transport is a function of the unionized fraction. We assume that transport increases with
increasing logP values (increasing lipophilicity) up to 2.5~3.5, and declines thereafter (Camenisch et al.
1998a; Wils et al. 1994). Molecular weight (MW) is used as the simplified molecular size descriptor and

is related to the in silico diffusion coefficient (Dg,p): Dgyp < 1/(MW). In these studies we assume n =

1 in the bilayer and 0.6 elsewhere (Walter et al. 1986; Xiang et al. 1993). We also assume that entering
the bilayer from an aqueous space is the rate-limiting step, influenced by the above factors, whereas
exiting the bilayer is fast with a 50% chance.



3.3 Carrier-Mediated Transport and Efflux

In our current EMD, we have implemented a generic class called TRANSPORTER, which can be
located in either membrane space and can transport in either or both directions. TRANSPORTER is
designed to function as diagramed in Fig. 3. If a DRUG substrate is located at the grid point adjacent to
the free binding site, binding can occur with a probability that depends on their affinity. Binding triggers
a conformational change (TRANSPORTER’s “door” opens) so that the DRUG can cross from one side of the
bilayer to the other. At the next time step TRANSPORTER releases the DRUG and then reverts to its free
state. P-gp is modeled as a distinct type of TRANSPORT called PGP. In this study PGP is confined to G2
and is parameterized to only transport DRUGS out of the simulated cell interior to G/.

3.4 Design of In Silico Experiments and Data Analysis

In Table 1 the parameters of the EMD are grouped into three categories: 1) the in silico transwell
system, including CELL and TRANSPORTER characteristics; 2) the physicochemical and biochemical
properties assigned to DRUGS; and 3) the in silico experimental conditions. The in silico transwell system
is designed to study and document DRUG transport from either direction. When G/ is designated as the
donor compartment, the EMD simulates apical-to-basolateral (A to B) transport; when G5 is designated
as the donor compartment, the EMD simulates B to A transport. The simulated concentration-time profile
is recorded at each time step for all five spaces. Additional observations of interest are also recorded for
use in subsequent analyses. Examples include the number of DRUGS passing through CELL-CELL
junctions and the number of occupied TRANSPORTERS. In this study, in silico experiments are run under a
sink condition, i.e., until = 10% of DRUGS have transported from the donor space (G/ or G5) to the
receiver space (G5 or GI). The initial flux rates are calculated by dividing the number of DRUGS in the
receiver space by elapsed time steps. We calculate in silico apparent permeation coefficient: P,

=(dQJ/ds)/(axc,), where dQ/ds is the initial flux rate, a is the area of the first MEMBRANE space contacted
(either G2 or G4, which are the same in this report), and ¢, is the initial concentration (dose) of DRUGS in
G1 or G5 at time step 0.

Because of the stochastic nature of the EMD simulations, repeated measurements of a behavior of
interest, such as flux rates, will differ between trails. During exploratory modeling, we prefer to make
decisions or draw conclusions about mechanistic issues using relatively small sample sizes, e.g., results
from 5-10 Monte Carlo simulations. To build confidence that central limit theorem results can apply to
the EMD behaviors, most of the experimental results reported here are based on at least 30-50 trials.

>
v V4
4 A LN
D near Yes
active site @ v Vi
4
Membrane D enters receiver;
is T-door closed;
D released from T

D enters
membrane

Figure 3. A flowchart diagram for the carrier-mediated transport component. D: a DRUG object; T: a
TRANSPORTER object. The algorithm is designed according to the schematic in the insert. Triangle:
DRUG; notched and open white boxes: different TRANSPORTER states. Binding between T and D is
probabilistic and is controlled by the simulation parameter transSoluteAffinity.



Table 1. Parameters of the EMD

Category Name Description Values
. worldXSize The X x Y dimension of GI — G5 100 x 100
5 worldYSize
% tightJunctions Tight junction area as % MEMBRANE space area 0.1
3 minTransporters Minimum density of TRANSPORTER 10
2 maxTransporters Maximum density of TRANSPORTER 80
& apiBasoRatio TRANSPORTER density ratio (A to B) >1
§ minPgps Minimum PGP density 10
i maxPgps Maximum PGP density 30
- cellular_pH Simulated G3 (CYTOPLASM) pH 72~7.4
molecularWeight MW (molecular weight) 100 ~ 1200
= qi acid DRUG is a weak acid or weak base TorF
538 pKa DRUG’s pKq 6.50r 13.5
.g Qg- % logP Logarithm of partition coefficient 2~4
% Tc: E ionDiffusion Permeation due to ionized form of DRUG (%) 0~1
.g é = substrateOfTransporter ~ DRUG is a substrate of TRANSPORTER or not Tor F
2“ %’ transSoluteAlffinity DRUG-TRANSPORTER binding affinity 0~0.5
R~ § substrateOfPgp DRUG is a substrate of PGP or not TorF
pgpSoluteAffinity DRUG-PGP binding affinity 0~0.75
g numSolutes Initial concentration in donor compartment 500 ~ 8000
S ;g glpH Simulated G (apical) pH 5~8
53 % gVpH Simulated G5 (basolateral) pH 7.4
o a2bDirection Donor is G/ or G5 TorF
4. Results

4.1 Factors Influencing Passive Transport

When an in vitro transwell system is functioning properly, the passive transport of compounds
studied is directly proportional to their concentrations in the donor compartment over a wide
concentration range. We expect simulated passive transport in the EMD to behave similarly. To verify
that this is the case for both passive transcellular and paracellular transport we evaluated permeability in
the EMD for two hypothetical weak basic DRUGS, both having pK3 = 6.5 and MW = 150. DRUG I is
hydrophobic with logP = 2; DRUG II is hydrophilic with logP = 0.2. The in silico pH of G/, G3, and G5
was fixed at 7.4, unless otherwise noted. At that pH both DRUGS are 11.18% ionized. Experiments were
conducted to measure initial flux rates for a wide range of initial concentrations. The results for both
transport routes are presented in Fig. 4. Higher initial concentrations resulted in proportionally higher
rates of permeation for both DRUG I and 1II, as expected. At each concentration, transcellular transport is
faster than paracellular transport due to the 1000-fold smaller available surface area of the paracellular
route.
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Figure 4. A scatter plot of in silico experimental results. The flux rate across in silico monolayers is
plotted vs. the amount of DRUG added to the donor space. The data shown are the means of 50 and 30
Monte Carlo simulations respectively for each initial concentration of two hypothetical drugs:
hydrophobic DRUG I and hydrophilic DRUG II; R* values of the two linear regressions are 0.99 and
0.96 respectively. Reasonable linear relationships are observed when the initial amounts added are
between 2000 and 7000 DRUG objects, the current range of interest.

A modification of Fick's law, dQ/dt = AC (D x P x A)/Ax, has been used successfully to represent
passive transport across cell membranes (Avdeef 2001), where dQ/dt is the flux or permeation rate, A is

the area of membrane through which solutes pass, AC is the concentration gradient, and Ax is the
thickness of membrane. From this equation, we can see that flux is expected to be positively correlated
with both partition coefficient P and diffusion coefficient D, as well as being proportional to the initial
concentration. To verify that those relationships can be observed in the EMD, we did a series of A to B
transport experiments to examine the influence of simulated lipophilicity and molecular size on simulated
passive transport. Experiments were conducted in the absence of transporters using identical doses (2000
DRUGS) of five sets of hypothetical DRUGS having MW values of 100, 150, 300, 500, and 700, and logP
values ranging from very hydrophilic (logP = — 2) to very hydrophobic (logP = 4). In each case the in
silico experimental results were used to calculate an in silico permeability. Those values were then
plotted vs. partition coefficient. For DRUGS with logP values less than 3.5, sigmoidal curves were
observed (Fig. 5) that have shapes similar to those reported in Camenisch et al. (1998a; 1998b). For
DRUGS with larger MW values, the curves were shifted to lower permeabilities, as expected. Four
patterns were observed, consistent with those observed in Caco-2 transwell system (Camenisch et al.
1996). DRUGS with small logP values (< 0) were too hydrophilic to significantly cross MEMBRANES
unaided, so the passive paracellular pathway dominated for six DRUGS having MW =< 150. For more
hydrophobic DRUGS, paracellular transport quickly became negligible, and transcellular permeability
increased with increasing lipophilicity. For those DRUGS having logP between 2.5 and 3.5, the expected
permeability plateaus were reached. For highly hydrophobic DRUGS (logP > 3.5), permeability decreased
with further increases in lipophilicity.
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Figure 5. A log-log plot of in silico experimental results. Simulated initial permeability is plotted as a
function of lipophilicity for five sets of drugs having the indicated molecular weights.

Each portion of the human gastrointestinal tract typically experiences a different range of pH. For
example, the interior of the major absorptive part of small intestine, the duodenum, typically has pH
values in the range of 6.0~6.5, which favors absorption of weak base drugs. Consequently, it is important
that we be able to explore simulated transport under a variety of pH conditions. We explored pH-
dependent passive transport in the EMD using a simulation of a potent opioid analgesic drug, alfentanil:
MW =416, logP = 2.16, and pK, = 6.5 (weak base). At pH = 5.0 alfentanil is mostly ionized; at pH = 8.0
it is mostly unionized. We conducted multiple Monte Carlo experiments at each of nine different G/ pH
values ranging from 5.0 to 8.0. The pH in G3 was kept constant at 7.4. The results in Fig. 6A indicate a
linear relationship between the in silico permeability and unionized fraction. We observed a nonlinear
relationship between the in silico permeability and the pH value in the donor space (Fig. 6B). Both sets
of experimental results are quite similar to the reported in vitro results for alfentanil permeability (Palm et
al. 1999).
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unionized fraction in the apical compartment or the G/ space. The regression line for the in silico
results (R* = 0.97) is shown. B: permeability as a function of the pH in the apical compartment or the
G1 space.

4.2 Modeling Saturable Kinetics for a Protein Mediated Process in the EMD

Within the EMD, at the software level, components such as TRANSPORTER, PGP, etc., are intended to
function as modules that can be added or removed as needed, and even used in different biomimetic
models simulating different aspects of biology. As modules, their behavior and function should be
independently verified. Thereafter, a test can be done to verify expected function after the module is
inserted into the EMD (or any other model).

Both the carrier-mediated transport module and the efflux module are designed to simulate an
interaction between PROTEINS and DRUGS that follows simple Michaelis-Menten kinetics. The actual units
of variables and parameters in a typical Michaelis-Menten model are not the same as those governing the
discrete event, continuous time process. We can, however, verify that the latter can serve as a model for the
former by demonstrating that the two models generate similar output under similar operating conditions.
We carried out such comparisons over a wide range of variable and parameter values. Examples are
provided in Fig. 7. We analyzed the kinetics at a low (25) and a high (150) ratio of DRUGS to PROTEINS. In
the Michaelis-Menten model the magnitude of this ratio controls the shape of the time series. If the
concentration of the DRUG relative to the PROTEIN is relatively small, then there is always free PROTEIN and
the time course of product formation exhibits first-order kinetics. If the relative concentration is large, then
there will be less free PROTEIN and the time course of product formation will begin to exhibit zero-order
kinetics. In Fig. 7, the left pair of graphs shows the continuous concentration-time output from the
Michaelis-Menten model implemented in Matlab. The right pair of graphs shows the output of the discrete
event model implemented in the EMD. Each step in the EMD simulation corresponded to approximately
0.033 time unit in the mathematical model. The kinetic profile for both sets of data, at a small and large
ratio of DRUGS to PROTEINS, exhibited similar patterns.
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Figure 7. Simulated results from the classical Michaelis-Menten mechanism are compared for two

model types. The mechanism: E+ S PN ES <h spLE ; S is substrate, E is protein (an enzyme),
k, k.,

ES is the intermediate complex, and P is product. A and C: simulated output from the equation form
(ODE) of the Michaelis-Menten model implemented in Matlab. B and C: the above mechanism
implemented in the EMD (discrete event, discrete space, continuous time). A and B: the S/E ratio =
25. C and D: the S/E ratio = 150. In the ODE model: k;=1,k =1, k,=10, and k,=0.01. The EMD
simulations used 40 E, each having the highest binding probability (1.0) with S.
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4.3 Carrier-Mediated Transport

For each in silico experiment the total number of TRANSPORTERS was determined by a random draw
from a uniform distribution that had limits specified by the parameters minTransporters and
maxTransporters. A portion of these objects was then assigned to the apical (G2) or basolateral (G4)
membrane spaces according to the parameter apiBasoRatio, which specifies the density ratio of
transporters in these two membranes. That ratio controls DRUG transport kinetics. Note that in studies of
A to B carrier-mediated transport under the sink condition there is always more DRUG in G/ than in G3.
Therefore, there will be more substrate for the TRANSPORTER embedded in G2 than in G4. For this
reason, we studied the disappearance rate of DRUG III (MW = 1200 Daltons) from G/ space in A to B
transport experiments. We limited the number of TRANSPORTERS in G2 to 10 to 80, and did 100 Monte
Carlo simulations. In each simulation, 2000 DRUGS were added to the G/ space at time zero and their
transSoluteAffinity was set to 0.5. The initial transport rates were plotted against the number of
TRANSPORTERS in G2. A linear relationship exhibiting a large correlation was observed (Fig. 8A).

We also did a series of similar experiments by changing the initial dose added to G/ while limiting
the number of TRANSPORTERS in G2 to be either 15 or 27. The transport rate increased slowly with
higher drug dose and had a tendency to reach a maximum. We used a nonlinear least square algorithm to
fit the simulated transport rate vs. dose data to a traditional Michaelis-Menten model and the results are
shown in Fig. 8B. For the simulations with 27 TRANSPORTERS in G2, the fitted V,, =9.17 = 0.08, and
K., =7019 + 107; for the simulations with 15 TRANSPORTERS in G2, the fitted V. = 5.14 £ 0.05, and K,,,
=7113 = 121. The binding affinity between a TRANSPORTER and a DRUG corresponds to K, in the
Michaelis-Menten model. The value of the maximum transport rate depends on both the number of
TRANSPORTERS and their affinity for DRUG, as expected. Taken together, the results verify that the
functioning of the TRANSPORTER module mimics simple Michaelis-Menten kinetics over the conditions
studied.

0 " 20 | 40 60 80
Number of TRANSPORTERS in G2

Transport Rate

0 T T
0 2,000

4,000 6,000 8,000

Initial DRUG Amount in G1

Figure 8. Scatter plots of the disappearance rate of DRUG III from G/ in A to B transport experiments.
DRUG III’s MW is 1200 Dalton, well above the limit for passive transport. A: Results show a linear
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relationship between DRUG disappearance rate and the number of TRANSPORTER objects in G2. For
each of 100 Monte Carlo simulations, 2000 DRUGS were randomly placed in G/ at t = 0. For each
experiment, the number of TRANSPORTERS in G2 was determined by a random draw from a uniform
distribution having a minimum of 10 and a maximum of 80. The fit shown is a straight line with an
intercept of zero. B: Results show a saturable relationship between the disappearance rate and the
number of DRUGS initially placed in GI. Solid squares: 27 G2 TRANSPORTERS; open squares: 15 G2
TRANSPORTERS. The data are shown as mean = S.D. from 50 Monte Carlo simulations. In both cases
the solid curve is the result of fitting the Michaelis-Menten ODE model to the data using a nonlinear
least square algorithm.

4.4 Efflux Changes Drug Transport

To test if a higher affinity and/or a larger number of PGP objects in the G2 space can change the
transport activity across the in silico monolayer, we created two “analogs” of DRUG I, DI.1 and DI.2,
which are exclusive substrates of PGP. They have pgpSoluteAffinity of 0.5 and 0.75, respectively. As a
non-substrate of PGP, DRUG I did not, of course, demonstrate any significant difference between A to B
and B to A transport. For DI.1 and DI.2 net transport across the monolayer in the B to A direction
increased relative to DRUG I, whereas that in the A to B direction decreased. The difference in transport
in the two directions was statistically significant (Fig. 9), verifying that the function of PGP module
mimics the behavior of apical membrane efflux transporters in vitro. Moreover, having a higher PGP
affinity and/or density resulted in more dramatic changes in both directions.

0.40
DRUG | DI1 DI.1 DI.2
0.35 - b
S
0.30
2 t
©
& 025 t
e
=
TR
0.20
0.15
0.10 - —
Not a Pgp numPgps numPgps numPgps
Sunstrate =10 =30 =30

Figure 9. A bar graph showing the influence of efflux transport on the simulated flux rates of three
hypothetical DRUGS. Their physicochemical properties are the same (DRUG I in the text). DRUG binding
affinities for PGP are O for DRUG I, 0.5 for DI.1, and 0.75 for DI.2. The number of PGP in G2 was 10 or
30. 2000 DRUGS were initially placed in the donor space. Solid bars: simulated A to B transport. Shaded
bars: simulated B to A transport. The data are shown as mean + S.D. from 30 Monte Carlo simulations.
=+ Significantly different from A to B transport for that condition (Welch test, p < 0.01).

Digoxin, a weak acid (pK, = 13.5) cardiac drug, is an exclusive substrate of P-gp in human
enterocytes. Because of its relatively large MW (781 Daltons) and low logP (1.14), its passive transport
is slow. That, combined with active efflux transport from the intracellular space back to the intestinal
lumen, dramatically retards its absorption. We simulated digoxin transport in the EMD and compared the
time-course of the in silico experiments with that observed in the in vitro experiments using CYP3A4-
transfected Caco-2 cells (Cummins et al. 2001). Digoxin’s physicochemical properties were assigned to
DIGOXIN in an EMD having a PGP density ranging from 10 to 30. We set the PGP—DIGOXIN affinity to be
0.5, and ran 30 15,000-time-step Monte Carlo simulations for each transport direction with a dose of 4000
DIGOXIN objects. Figure 10 shows the simulated transepithelial flux of DIGOXIN across in silico

* We used the Welch modified two-sample t-test instead of the standard t-test because we assumed that the variances of the A to
B transport data and the B to A transport data were not necessarily equal.
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monolayers together with the in vitro data taken from Cummins et al. (2001). Transport in the B to A
direction greatly exceeded that in the A to B direction. This difference in directional transport is more
than those seen for DI.1 and DI.2 (Fig. 9) because the physicochemical properties of DI.1 and DI.2 favor
much faster passive transport and thus shorter intracellular residency time. Having relatively fast passive
transport dilutes the influence of efflux transport. When the in silico results were mapped to the in vitro
results, as shown in Fig. 10, we saw that each simulation step corresponded to approximately 0.56
seconds in the in vitro experiments. The efflux ratio (the [B to A]/[A to B] flux ratio) was about eight in
this EMD and was about five in the in vitro system. The higher in silico efflux ratio can be decreased to
about five by either decreasing the PGP density in the system or decreasing the binding affinity between
DIGOXIN and PGP. In future experiments, where model validation has become an objective, PGP density
and PGP-DIGOXIN affinity will likely be among the parameters adjusted.
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Figure 10. Time series plots show the amount of digoxin and its in silico analog transported in both
directions in an in vitro transwell system and in an EMD. In vitro experiments: the filled and open
squares (top and right axes) are the upper and lower mean values from a set of four different in vitro
experiments that measured the initial flux of digoxin (30 nM) across CYP3A4-transfected Caco-2
cells. The data are from Cummins et al. (2001). Filled squares: B to A transport. Open squares: A to
B transport. The [B to A]/[A to B] efflux ratio is about five. In silico experiments: the two curves
(bottom and left axes) are the mean values at each time step of 30 Monte Carlo experiments that
measured the flux of DIGOXIN for B to A transport (dark line) and A to B transport (gray line),
respectively. The [B to A]/[A to B] efflux ratio is about eight.

5. Discussion

Our goal is to have useful, extensible EMDs that are suitable for experimentation, where functional
components can be plugged together to study and better understand the details of the multiple interacting
mechanisms that influence drug absorption. We have developed and successfully tested a synthetic EMD
that has flexible, discrete event, discrete space, and continuous time features. The assembled biomimetic
components exhibit mechanistic details that are typically abstracted away in the inductive models. We
have demonstrated that the behaviors of the EMD successfully represent aspects of three drug transport
processes within the in vitro Caco-2 system: passive, carrier-mediated, and efflux transport. The
verification experiments have focused on patterns of transport under the sink condition rather than on the
generation of predictions for specific compounds, in part because pattern identification and pattern
matching are essential parts of our method.

Experimentation with synthetic models is expected to work synergistically with wetlab experiments
to provide researchers with a richer set of options to select among the mechanisms that are hypothesized
to cause observed transport phenomena. The EMD also provides modular methods for representing the
spatial organization of mechanistic details. That spatial organization is an important feature of biological
reality that is too often missing from traditional inductive models. This new class of models makes
possible the extension of experimental biology into the in silico computational domain. That extension
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represents important progress in bridging the gap between the wetlab models and traditional
computational models.

Currently, the entire intracellular space is represented by only one 2D grid (G3). When required,
relevant intracellular objects can be assigned randomly within that space. That low-resolution
representation is adequate to account for the simple transport phenomena being considered here. A more
spatially complicated mechanism that, for example, may need consideration of the transcellular
arrangement of objects between the basolateral and apical sides of the cell, will require enabling more
space. The problem can be solved by treating G3, and all the functionality that it contains, as a modular
submodel within the EMD, which can be unplugged and replaced with another submodel designed to
mesh properly with the rest of the EMD. The replacement module can be one that has a higher resolution.
A requirement will be that each new module can generate the same behaviors as G3, relative to the rest of
the EMD, for identical EMD parameter settings. Of course, because of the additional resolution, the new
submodel is expected to enable the EMD to generate behaviors that are beyond those of the current EMD
implementation. For example, one can use a submodel that is simply an ordered set of n (n > 1) 2D grids.
If having additional spatial regions in a submodel is more important, in order, for example, to
accommodate a larger number of subcellular components into the mechanisms being represented, then
one can designate a subset of G3 grid points as indexes to separate G3 subspaces. A G3 subspace could
represent a membrane compartment (Eason et al. 1999) or a vesicle, for example. Each G3 subspace can
be a new 2D grid of any desired size. This technique allows one to do coarse and fine spatial operations
at the same time. Alternatively, an indexed G3 subspace can be a continuous rather than discrete
subspace of any desired capacity.

As stated earlier, we have shown that an EMD is both feasible and practicable for representing an in
vitro biological system. However, that is just one use, and one small step toward our goal. The
expectation is that EMD models will be used to explore in vitro experimental options, as well as answer
what-if questions. Therefore, in designing the model and its components we do not want to restrict
attention to just one cell type, e.g., Caco-2 cells. Numerous cell types are used to study drug absorption
(Bohets et al. 2001). The components of our models need to be sufficiently flexible and adaptable to
represent a layer of any cell type or even a layer that contains different cell types. Nor do we want to
restrict attention to mimicking only transwell and similar devices. Important transport studies are done
using tissue sections and lengths of whole intestine (Amidon et al. 1981). We can therefore anticipate
using in silico epithelial cells that have been validated against in vitro data as components in a larger
model representing a portion of the intestine, for example. Such flexibility and adaptability is already
designed into the prototype. EMD components can be reconfigured with new components to construct
and perform experiments on representations of a variety of systems.

The transport of a large number of compounds has been studied in vitro. Using these data, it should
be possible to “train” each of the components within an EMD to recognize the physicochemical and
biochemical properties of different drug-like objects. Following training, the components could, when
confronted with a new object, adjust their parameters appropriately and automatically to accommodate the
specific individual properties of the new compound, so that their aggregate system behavior would
reasonably match the experimental data for a given, known compound. Once that is achieved for a
variety of compounds, we can then dose the “educated” EMD with a new “compound”, for which
physicochemical and other properties are available or can be estimated. Our expectation is that we can
have a measured degree of confidence that the EMD generated absorption properties will provide a
reasonable prediction of expected absorption properties in the system of interest, possibly even before the
compound is synthesized.

By striving to achieve these properties collectively, rather than in sequence, we will move closer to
our goal. By striving to deliver the above properties, the resulting EMDs will have more in common with
synthetic in vitro and some in situ and in vivo laboratory models, such as tissue cultures and perfused
tissues, than current mathematical models.
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