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Abstract

EP67 is a second-generation, human C5a-derived decapeptide agonist of C5a Receptor 1 (C5aR1/

CD88) that selectively activates mononuclear phagocytes over neutrophils to potentiate protective 

innate and adaptive immune responses while potentially minimizing neutrophil-mediated toxicity. 

Pro7 and N-methyl-Leu8 (Me-Leu8) amino acid residues within EP67 likely induce backbone 

structural changes that increase potency and selective activation of mononuclear phagocytes over 

neutrophils vs. first-generation EP54. Low coupling efficiency between Pro7 and Me-Leu8 and 
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challenging purification by HPLC, however, greatly increase scale-up costs of EP67 for clinical 

use. Thus, the goal of this study was to determine whether replacing Pro7 and/or Me-Leu8 with 

large-scale amenable amino acid residues predicted to induce similar structural changes 

(cyclohexylalanine7 and/or leucine8) sufficiently preserves EP67 activity in primary human 

mononuclear phagocytes and neutrophils. We found that, depending on the secreted cytokine and 

mononuclear phagocyte, EP67 analogs had (i.) similar or lower (29 to 39%) potency and similar, 

increased (9.5 to 45%), or decreased (5 to 23%) efficacy for IL-6 and TNF-α secretion from 

mononuclear phagocytes and (ii.) similar potency and similar or decreased (21% to 24%) efficacy 

for myeloperoxidase secretion from human neutrophils without affecting selective activation of 

human mononuclear phagocytes. Thus, replacing Pro7 and/or Me-Leu8 with large-scale amenable 

amino acid residues predicted to induce similar structural changes is a suitable strategy to 

overcome scale-up challenges with EP67.
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Immunization has eliminated or greatly reduced the incidence of over 30 infectious diseases 

caused by bacterial and viral pathogens including CRS, diptheria, Haemophilus influenzae, 

hepatitis A, hepatitis B (acute), influenza, measles, mumps, pertussis, pneumococcus 

(invasive), polio (paralytic), rotavirus, rubella, smallpox, tetanus, and varicella 1–2. There is 

also clinical evidence that vaccine administration within a critical period of time after 

pathogen exposure can minimize or prevent infectious diseases caused by hepatitis A virus, 

hepatitis B virus, measles virus, mumps virus, varicella zoster virus, rabies virus, and 

smallpox virus by increasing the rate and magnitude of protective innate and/or adaptive 

immune responses 3. Despite this success, licensed vaccines are unavailable (e.g., S. aureus, 

M. tuberculosis, L. monocytogenes, HIV, CMV, and RSV) or only partially effective (e.g., 

influenza virus, B. pertussis) for at least 35 bacterial and viral pathogens that are suitable 

targets for vaccine development 2, 4–6. Furthermore, only a single partially effective licensed 

vaccine is available for protozoan pathogens (P. falciparum) and no licensed vaccines are 

available for fungal pathogens 7–8.

A key requirement for licensed vaccines is the ability to safely generate long-lived, 

pathogen-specific adaptive immune responses that reduce, control, and clear pathogen from 
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the site of infection (i.e., protective adaptive immune responses) above threshold levels that 

correlate with elimination or significant decrease in the incidence of infectious disease in a 

given population 9–12. The majority of licensed vaccines are proposed to prevent infectious 

disease primarily by generating one or more subsets of long-lived memory B-cells that 

maintain or quickly establish sufficient levels of neutralizing antibodies against pathogens 

with surface antigens that do not change over time 13–15. Many pathogens without licensed 

vaccines, however, have hypervariable surface antigens, multiple strains, and/or short 

extracellular phases that additionally require the generation long-lived protective CD4+ 

and/or CD8+ memory T-cells 16–19.

Vaccines composed of live-attenuated bacterial, fungal, protozoan, or viral pathogens that 

safely mimic natural infection are the most likely to generate adequate levels of long-lived 

protective memory B-cells and T-cells against the wild-type pathogen by sufficiently 

activating macrophages and dendritic cells, prolonging antigen presentation by antigen-

presenting cells (APC), and inducing the most appropriate protective adaptive immune 

responses 18. Live-Attenuated vaccines, however, are (i.) limited to pathogens that increase 

protection after natural infection and can be grown in culture, (ii.) are difficult to establish 

for most bacterial pathogens, (iii.) take a long time to develop, (iv.) are rarely safe and 

stable, (v.) may not cross-protect against other pathogenic strains, (vi.) are not suitable for 

pregnant women or immunocompromised patients, and (vii.) may revert to wild-type 

virulence (e.g., poliovirus) 18, 20–22. Non-replicating vaccines composed of killed (bacteria) 

or inactivated (virus) pathogens (Killed-Inactivated vaccines) can potentially overcome the 

safety issues of Live-Attenuated vaccines but not the remaining limitations 18. Killed-

Inactivated vaccines are also less immunogenic than Live-Attenuated vaccines, provide a 

shorter duration of protection, and do not generate appreciable levels of CD8+ T-cells. 

Although precipitating Killed-Inactivated vaccines into micrometer-sized particulates by 

adsorption to pre-formed aluminum hydroxide or aluminum phosphate particulate gels 

(alum adjuvant) increases antibody titers, it does not increase the generation of long-lived 

CD8+ T-cells and may polarize toward Th2 adaptive immune responses that are potentially 

less effective against bacterial, fungal, viral, and protozoan pathogens 23.

The limitations of Live-Attenuated and Killed-Inactivated vaccines and desire for well-

defined vaccines with more predictable activity have led to the development of vaccines 

composed of one or more immunogens from the pathogen that are targeted by protective 

antibody and T-cell responses after infection (subunit and recombinant vaccines) 8, 20, 24. 

Recombinant vaccines also allow incorporating protein immunogens engineered to generate 

more potent and broadly protective memory B-cells and T-cells 25. Subunit and recombinant 

vaccines, however, require the inclusion of immunostimulant molecules to generate long-

lived adaptive immune responses because they lack immunostimulatory molecules from the 

wild-type pathogen to sufficiently activate macrophages, dendritic cells, and recruited 

inflammatory monocytes (mononuclear phagocytes) at the vaccine administration site 18. 

There is also a growing interest in using immunostimulant molecules to increase the rate and 

magnitude of protective innate immune responses after pathogen exposure in combination 

with conventional antimicrobial drugs (adjunct immunotherapy) 26. As such, numerous 

immunostimulant molecules are being developed to safely activate mononuclear phagocytes 

through well-defined signaling pathways 23.
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Given their role in the potentiation of innate and adaptive immune responses against 

bacterial, fungal, protozoan, and viral infections 27–28, the majority of immunostimulant 

molecules are currently derived from pathogen-associated molecular pattern molecules 

(PAMPs) that activate mononuclear phagocytes through cell-associated pattern recognition 

receptors (PRRs) 29–30. Two PAMP-derived PRR agonists that stimulate PRRs from the 

Toll-Like Receptor (TLR) family, CpG 1018 (TLR9) and Monophosphoryl Lipid A (TLR4), 

are also the first immunostimulant molecules to be included alone (CpG 1018) or in 

combination with other adjuvants (Monophosphoryl Lipid A) in licensed vaccines 31. The 

large number of PRRs and differences in adaptive immune responses generated by 

individual PRRs, however, may complicate identifying individual or combinations of PRR 

agonists that simultaneously increase the generation of long-lived B-cells, CD4+, and CD8+ 

T-cells 32.

In contrast to PAMPs, the Complement System is a less exploited but equally important host 

defense against bacterial, fungal, protozoan, and viral infections 30, 33–34. Activation of the 

Complement System by foreign microbes at the site of infection through Classical, 

Alternative, or Lectin pathways initiates a proteolytic cascade of C proteins that converges 

on the production of three immunostimulatory complement peptides, C3a, C4a, and C5a 

(originally described as anaphylatoxins) 35 from inactive C3, C4, and C5, respectively, that 

are immediately metabolized into less potent des Arg forms lacking C-terminal Arg, and the 

concurrent formation of membrane attack complexes (MAC) 36. These products then 

“complement” host immunity by increasing local and systemic inflammation, opsonization 

of microbes, direct lysis of bacteria, clearance of immune complexes and apoptotic cells 

from tissues, and the generation of short-lived and long-lived memory B-cells and T-cells 
36–37.

The most potent complement peptide, C5a, is a 74-residue glycopeptide that exhibits a 

number of ideal immunostimulatory activities including the receptor-mediated activation of 

monocytes and macrophages through C5a receptor 1 (C5aR1/CD88) 38 and the generation of 

long-lived adaptive immune responses 39–40. C5a, however, is also a principal mediator of 

local and systemic inflammation through its ability to activate and recruit neutrophils, induce 

spasmogenesis, increase vascular permeability, and stimulate the secretion of secondary 

inflammatory mediators from a wide range of cell types 41. Furthermore, many diseases 

caused by chronic inflammation have been linked to C5a and neutrophils 42–43 and C5a-

activated neutrophils directly damage endothelial and mesothelial tissues 44–45. As such, 

C5aR1 agonists that selectively activate mononuclear phagocytes over neutrophils are likely 

to be safer than indiscriminate C5aR1 agonists 46.

To begin developing complement peptide-derived immunostimulants (CPDI), we first 

identified the last 10 amino acid residues from the C-terminus activation region of human 

C5a (C5a65-74: Ile65-Ser66-His67-Lys68-Asp69-Met70-Gln71-Leu72-Gly73-Arg74) as the 

minimal pharmacophore required for stimulating Guinea pig ileal contraction (surrogate for 

activation of mammalian macrophages) but 5-orders of magnitude less potent than native 

human C5a (155 μM vs. 8.7 nM) 47. Screening for amino acid residue substitutions within 

C5a65-74 that selectively increase contraction of human umbilical arteries (surrogate for 

activation of human macrophages) 48 over the secretion of β-glucuronidase from human 
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polymorphonuclear leukocytes (PMN) (surrogate for activation of human neutrophils), we 

identified EP54 ([Tyr65Phe67Pro69Pro71D-Ala73]C5a65-74) (Table 1) as a first-generation, 

C5a-derived decapeptide agonist of C5aR1 that selectively increases the potency of C5a65-74 

775-fold in human umbilical arteries (155 μM to 200 nM) but only ~64-fold in human PMN 

(>300 μM to 4.7 μM) (UA/PMN selectivity = 34) 49. Importantly, systemic immunization 

with EP54 directly conjugated to the C-terminal of peptide epitopes increases epitope-

specific antibodies and CD8+ T-cells in mice (Ab, CD8+ T-cells) and rabbits (Ab), indicating 

that EP54 is an immunostimulant molecule that increases the generation of B-cell and T-cell 

adaptive immune responses 39, 50.

Pro amino acid residue substitutions at positions 5 and 7 (Positions 69 and 71 in C5a65-74) 

(Table 1) likely contribute to the immunostimulatory potency and mononuclear phagocyte 

selectivity of EP54 by extending the peptide backbone but eliminate potential side-chain 

contributions by the substituted Asp5 and Gln7 residues 49, 51–52. Given that adding methyl 

groups to backbone amide nitrogen atoms extends the peptide backbone without removing 

contributions of adjacent side-chains, we next screened N-methylated backbone analogs of 

EP54 and identified a second-generation C5a-derived decapeptide agonist of C5aR1, EP67 

([Tyr65Phe67Pro71Me-Leu72D-Ala73]C5a65-74) (Table 1), as a more potent and mononuclear 

phagocyte-selective immunostimulant molecule that increases the potency of C5a65-74 1107-

fold in human umbilical arteries (155 μM to 140 nM) but only ~1.6-fold in human PMN 

(>300 μM to 190 μM) (UA/PMN selectivity = 2951) 53.

Systemic immunization with EP67 directly conjugated to whole protein 38, peptide epitopes 
50, or attenuated pathogens 54–55 generates Th1- and Th17-biased adaptive immune 

responses in young and old mice 56. Respiratory immunization with EP67 directly 

conjugated to peptide epitopes alone 57–58 or indirectly conjugated to encapsulated protein 

vaccines on the surface of biodegradable nanoparticles 11 also increases the generation of 

long-lived mucosal and systemic memory CD8+ T-cells and subsequent protection against 

primary respiratory challenge in mice. Furthermore, combination respiratory/systemic 

immunization with EP67 directly conjugated to an amphipathic polymer solubilizer (APol) 

combined with CpG and Montanide increases the magnitude and quality of B-cell and T-cell 

adaptive immune responses generated by a protective APol-solubilized membrane protein 

and subsequent protection of naïve mice against primary respiratory challenge with C. 
trachomatis 59. In addition to acting as a systemic and mucosal adjuvant, respiratory 

administration of EP67 alone within a 24-hour window before or after respiratory challenge 

also increases protection of naïve mice against primary mucosal infection with influenza 60.

Although EP67 is a promising candidate for the development of novel vaccines and adjunct 

immunotherapies, inefficient coupling efficiency between Pro7 and Me-Leu8 (Positions 71 

and 72 in C5a65-74) (Table 1) and challenging purification by HPLC greatly increase scale-

up costs for clinical use. Pro7 and Me-Leu8, however, likely induce structural changes to the 

peptide backbone of EP67 that increase potency and selectivity over first-generation EP54 
53. As such, we wanted to determine if we could overcome the scale-up challenges of EP67 

by replacing Pro7 and/or Me-Leu8 with large-scale amenable amino acid residues that 

induce similar structural changes and, consequently, preserve the activity of EP67.
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The NMR structure of C5a alone or as a part of inactive C5 is a four-helix core stabilized by 

three disulfide bridges 35 that consists of a receptor recognition region and a C-terminus 

activation region that contains the minimal pharmacophore, C5a65-74 35. Crystallographic 

and NMR studies show that the C-terminus activation region has an alpha-helical structure 

when part of C5 but an extended, flexible structure when part of C5a 35, 61. Recent Cryo-EM 

studies further show that the receptor recognition region retains its alpha-helical structure 

when part of C5, whereas the C-terminus activation region likely changes conformation 

following conversion to C5a because it is not held in place by the disulfide bridges 62. These 

data suggest that the more potent form of C5a65-74, in contrast to the helical structure 

observed in C5, is an extended, flexible structure that more effectively engages the activation 

site of C5aR1.

The major cluster view and RMSD trace of C5a65-74 alone vs. an alpha-helical structure 

from de novo structure prediction showed long periods of low RMSD to the major cluster, 

suggesting that C5a65-74 maintains an alpha-helical backbone conformation in solution 

(Figure 1). In contrast to C5a65-74, although [Cha7Leu8]EP67 is masked in the major cluster 

view (Figure 1A), RMSD traces suggest that EP67 has a more flexible structure in solution 

that is maintained by replacing Pro7 with the bulky trans-amino acid residue 

cyclohexylalanine (Cha) and/or replacing Me-Leu7 with Leu (Figure 1B). Thus, we 

hypothesized that replacing Pro7 and/or N-methyl Leu8 with Cha and/or Leu amino acid 

residues, respectively, will not adversely affect the activity of EP67. To test this hypothesis, 

we compared EP67 potency, efficacy, and selective activation of human mononuclear 

phagocytes (monocytes, unpolarized (M0)-monocyte-derived macrophages, immature 

monocyte-derived dendritic cells) over human neutrophils with Cha7 / Leu8 analogs of 

EP67.

RESULTS AND DISCUSSION

Replacing Pro7 with Cha and/or N-methyl Leu8 with Leu selectively affects the potency and 
efficacy of EP67 in primary human mononuclear phagocytes

To determine if replacing Pro7 and/or N-methyl Leu8 with large-scale amenable amino acid 

residues predicted to induce similar structural changes affects the potency and efficacy of 

EP67 in human mononuclear phagocytes, we replaced Pro7 with Cha ([Cha7]EP67), Me-

Leu8 with native Leu ([Leu8]EP67), or Pro7 and Me-Leu8 with Cha and native Leu, 

respectively ([Cha7Leu8]EP67) (Table 1), determined purity (Table S4), and confirmed the 

molecular mass (Table S5) and amino acid residue composition (Table S6) of each purified 

peptide. We then prepared human CD14+ / CD14+CD16+ monocytes (MC) (>97% purity by 

flow cytometry, not shown), unpolarized human monocyte-derived macrophages (M0-

MDM), and immature human monocyte-derived dendritic cells (MDDC) from the whole 

blood of healthy, human adult male donors (Figure 2) and compared dose-dependent 

secretion of IL-1β, IL-6, and TNF-α after treating with pooled human C5a desArg (parent 

molecule), EP54, EP67, or EP67 analogs for 24 h. IL-1β, IL-6, and TNF-α are characteristic 

surrogate markers for the activation of mononuclear phagocytes because they are secreted by 

activated tissue-resident macrophages, dendritic cells, and recruited inflammatory 
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monocytes during the early stages of infection to drive acute inflammation in support of 

innate and adaptive immune responses 33, 63.

Sigmoidal dose-response curves were observed for IL-1β secretion from MC, M0-MDM, 

and MDDC over the concentration range of human C5a desArg (Figure S1), whereas IL-1β 
was not detected after treatment with up to 1 mM EP54, EP67, or EP67 analogs (not shown). 

In contrast to IL-1β, sigmoidal dose-response curves were observed for IL-6 and TNF-α 
secretion from MC, M0-MDM, and MDDC over the concentration ranges of C5a desArg 

(Figure 3, black circles), EP54 (Figure 3, black squares), EP67 (black triangles), and EP67 

analogs (Figure 3, colored open symbols). This suggests the current C5a-derived 

immunostimulants, in contrast to the C5a/C5a desArg parent molecule, do not stimulate the 

secretion of IL-1β from human mononuclear phagocytes. Given that C5aR1 is a G protein-

coupled receptor (GPCR), one possibility is that EP67 and EP67 analogs act as “biased 

agonists” of C5aR1 in mononuclear phagocytes that stabilize unique active C5aR1 

conformations which alter the extent of Gα and β-Arrestin coupling, the rate of GTP 

binding by Gα, G-protein turnover, activation of downstream signaling targets, and GPCR 

regulation compared to C5a/C5a desArg 64. This possibility is supported by the recent 

discovery of a hexapeptide (C5apep) with high affinity for C5aR1 that exhibits biased 

agonism of neutrophil migration relative to C5a through decreased β-Arrestin coupling and 

C5aR1 receptor trafficking 65.

The EC50 of EP67 in MC, M0-MDM, and MDDC (Figure 4A, black triangles) ranged from 

14.6- to 89.5-fold greater than C5a desArg (Figure 4A, black circles), whereas EC50 for 

EP54 (Figure 4A, black squares) ranged from 22.5- to 123.3-fold greater than C5a desArg, 

depending on the secreted cytokine and mononuclear phagocyte (Table S1). Furthermore, 

the EC50 of EP67 (Figure 4A, black triangles) was similar to the EC50 of EP54 (Figure 4A, 

black squares), with the exception of TNF-α secretion from MC (35% less) (121 ± 

[−0.2,+0.3] [95% CI] vs. 186 [−0.2,+0.3] nM) and IL-6 secretion from M0-MDM (47% less) 

(167 ± [−0.3,+0.3] [95% CI] vs. 317 [−0.9,+1] nM) (Table S1). Similar magnitudes of 

potencies for recombinant human C5a (EC50 5 nM), EP67 (EC50 140 nM), and EP54 (EC50 

220 nM) were reported for the contraction of human umbilical arteries (surrogate for 

activation of human macrophages) 53.

The EMAX of EP67 (Figure 4B, black triangles), with the exception of a similar EMAX for 

TNF-α from M0-MDM, ranged from 6 to 27% lower than C5a desArg (Figure 4B, black 

circles), whereas the EMAX of EP54 (Figure 4B, black squares) ranged from 24 to 47% 

lower than C5a desArg depending on the secreted cytokine and mononuclear phagocyte 

(Table S1). Thus, EP67 and EP54 are both partial agonists for activating human 

mononuclear phagocytes compared to pooled human C5a desArg.

The EMAX of EP67 (Figure 4B, black triangles) was 23.6% to 34% greater than the EMAX of 

EP54 (Figure 4B, black squares) also depending on the secreted cytokine and mononuclear 

phagocyte. These results indicate that the potency of EP67 is similar or greater than EP54 

depending on the secreted cytokine and mononuclear phagocyte, whereas the efficacy of 

EP67 for IL-6 and TNF-α secretion is greater than EP54 in human mononuclear phagocytes.
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[Cha7]EP67 (Figure 4A, red open circles) did not affect the EC50 of EP67 (Figure 4A, black 

triangles) for IL-6 and TNF-α from MC, decreased EC50 for IL-6 (29%) but not TNF-α 
from M0-MDM, and did not affect EC50 for IL-6 and TNF-α from MDDC. [Leu8]EP67 

(Figure 4A, green open squares) did not affect the EC50 of EP67 for IL-6 and TNF-α from 

MC, M0-MDM, or MDDC. [Cha7Leu8]EP67 (Figure 4A, blue open triangles) did not affect 

the EC50 of EP67 for IL-6 and TNF-α from MC, decreased EC50 for IL-6 (31%) without 

affecting EC50 for TNF-α from M0-MDM, and did not affect EC50 for IL-6 but decreased 

EC50 for TNF-α (39%) from MDDC. Thus, [Cha7]EP67 selectively increases EP67 potency 

in M0-MDM without affecting potency in MC or MDDC, [Leu8]EP67 does not affect EP67 

potency in MC, M0-MDM, or MDDC, and [Cha7Leu8]EP67 selectively increases EP67 

potency in M0-MDM and MDDC without affecting potency in MC (Table 2).

[Cha7]EP67 (Figure 4B, red open circles) did not affect the EMAX of EP67 (Figure 4B, black 

triangles) for IL-6 but increased EMAX for TNF-α (9.5%) from MC and decreased EMAX for 

IL-6 and TNF-α from M0-MDM (9.5%, 16%) and MDDC (5.2%, 16.6%). [Leu8]EP67 

(Figure 4B, green open squares) decreased the EMAX of EP67 for IL-6 (9.3%) without 

affecting EMAX for TNF-α from MC, did not affect EMAX for IL-6 but decreased EMAX for 

TNF-α (23%) from M0-MDM, and, surprisingly, greatly increased EMAX for IL-6 and TNF-

α from MDDC (41%, 45%) to levels similar (IL-6) or greater (TNF-α) than C5a desArg 

(Figure 4B, black circles). [Cha7Leu8]EP67 (Figure 4B, blue open triangles) did not affect 

the EMAX of EP67 for IL-6 and TNF-α from MC, but decreased EMAX for IL-6 and TNF-α 
from M0-MDM (21%, 21%) and MDDC (16%, 10%), respectively. Thus, [Cha7]EP67 

selectively increases EP67 efficacy in MC but decreases efficacy in M0-MDM and MDDC, 

[Leu8]EP67 selectively decreases EP67 efficacy in MC and M0-MDM but significantly 

increases efficacy in MDDC, whereas [Cha7Leu8]EP67 does not affect EP67 efficacy in MC 

but decreases efficacy in M0-MDM and MDDC.

In summary (Table 2), (i.) [Cha7]EP67 does not affect potency but selectively increases 

EP67 efficacy in MC, selectively increases potency but decreases EP67 efficacy in M0-

MDM, and does not affect potency but decreases EP67 efficacy in MDDC (ii.) [Leu8]EP67 

does not affect potency in MC, M0-MDM, or MDDC but selectively decreases EP67 

efficacy in MC and M0-MDM and greatly increases efficacy in MDDC and (iii.) 

[Cha7Leu8]EP67 does not affect EP67 potency or efficacy in MC, selectively increases 

potency but decreases EP67 efficacy in M0-MDM, and selectively increases potency but 

decreases EP67 efficacy in MDDC. Thus, replacing Pro7 with Cha and/or N-methyl Leu8 

with Leu affects the potency and efficacy of EP67 depending on the secreted cytokine and 

human mononuclear phagocyte. These observations, like the inability to stimulate the 

secretion of IL-1β at up to 1 mM, are consistent with the possibility that EP67 and EP67 

analogs act as biased agonists of C5aR1 in mononuclear phagocytes compared to C5a 

desArg.

Replacing Pro7 with Cha and/or Me-Leu8 with Leu does not affect potency but selectively 
decreases the efficacy of EP67 in primary human neutrophils

To determine if replacing Pro7 with Cha and/or Me-Leu8 with Leu affects the potency and 

efficacy of EP67 in human neutrophils (NP), we isolated human neutrophils (NP) from the 
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whole blood of healthy, human adult male donors (>94% purity by flow cytometry, not 

shown) (Figure 2) then compared dose-dependent secretion of myeloperoxidase (MPO) from 

NP after treating with pooled human C5a desArg, EP54, EP67, or EP67 analogs for 24 h 

(Figure 5). Sigmoidal dose-response curves were observed for MPO secretion from NP over 

the concentration ranges of C5a desArg, EP54, EP67, and EP67 analogs (Figure 5A).

The EC50 of EP67 for MPO secretion from NP (Figure 5B, black triangle) was 22,857-fold 

greater than C5a desArg (Figure 5C, black circle) (160 [−17,+20] µM vs. 7 ± 1 nM [95% 

CI]), whereas the EC50 of EP54 (Figure 5B, black square) was 3000-fold greater (21 [−3,+4] 

µM vs. 7 ± 1 nM [95% CI]) (Table S2). The EMAX of EP67 for MPO secretion from NP 

(Figure 5C, black triangle) was also 62.4% less than C5a desArg (Figure 5C, black circle) 

(3.5 ± 0.1 [95% CI] vs. 9.3 ± 0.3 ng/mL), whereas the EMAX of EP54 (Figure 5C, black 

square) was 39.8% less (5.6 ± 0.2 [95% CI] vs. 9.3 ± 0.3 ng/mL) (Table S2). Furthermore, 

the EC50 for EP67 was 7.6-fold greater than EP54 (160 [−17,+20] [95% CI] vs. 21 [−3,+4] 

µM) and the EMAX was 60% less than EP54 (3.5 ± 0.1 [95% CI] vs. 5.6 ± 0.2 ng/mL) in NP 

(Table S2). Similar potencies for MPO secretion from human PMNs (surrogate for activation 

of human neutrophils) were reported for recombinant human C5a (EC50 6 μM), EP54 (EC50 

4.4 μM), and EP67 (EC50 190 μM) 53. Thus, consistent with previous studies, (i.) the 

potency of EP67 and EP54 is well below the potency of human C5a desArg in human 

neutrophils and (ii.) EP67 is less potent and efficacious in human neutrophils than EP54.

None of the EP67 analogs (Figure 5B, colored open symbols) affected the EC50 of EP67 for 

MPO secretion from NP (Figure 5B, black triangle). In contrast, [Cha7]EP67 (Figure 5C, red 

open circle) and [Cha7Leu8]EP67 (Figure 5C, blue open triangle) decreased the EMAX of 

EP67 (Figure 5C, black triangle) for MPO secretion by 20% (2.8 ± 0.1 [95% CI] vs. 3.5 ± 

0.2 ng/mL) and 26% (2.6 ± 0.1 [95% CI] vs. 3.5 ± 0.2 ng/mL), respectively (Table S2), 

whereas [Leu8]EP67 (Figure 5C, green open square) had a similar EMAX compared to EP67. 

Thus, replacing Pro7 with Cha and/or N-methyl Leu8 with Leu does not affect EP67 potency 

but selectively decreases efficacy in human neutrophils (Table 2). These observations, like 

differences in potency and efficacy observed in mononuclear phagocytes, are consistent with 

the possibility that EP67 and EP67 analogs act as biased agonists of C5aR1 in both 

mononuclear phagocytes and neutrophils compared to C5a desArg.

Replacing Pro7 with Cha and/or Me-Leu8 with Leu does not affect selective activation of 
primary human mononuclear phagocytes over human neutrophils by EP67

To determine if replacing Pro7 with Cha and/or Me-Leu8 with Leu affects the selective 

activation of human mononuclear phagocytes over human neutrophils, we compared the 

selective stimulation of IL-6 or TNF-α secretion from human MC, M0-MDM, and MDDC 

over secretion of MPO from human NP 24 h after treatment with EP54, EP67, or EP67 

analogs vs. pooled human C5a desArg (Figure 6). The selectivity of EP67 for stimulating 

MC, M0-MDM, and MDDC over NP vs. C5a desArg (Figure 6, black triangles) ranged from 

302 to 1413, whereas the selectivity of EP54 vs. C5a desArg (Figure 6, black squares) 

ranged from 23 to 126, depending on the secreted cytokine and mononuclear phagocyte 

(Table S3). Furthermore, selectivities of EP67 (Figure 6, black triangles) were 9- to 15-fold 

greater than EP54 (Figure 6, black squares) within the same cell type, again depending on 
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the secreted cytokine and mononuclear phagocyte (Table S3). Thus, EP67 selectivity for 

stimulating human mononuclear phagocytes over human neutrophils vs. pooled human C5a 

desArg is lower than the selective activation of human umbilical artery contraction 

(surrogate for activation of human macrophages) over human PMNs (surrogate for activation 

of human neutrophils) but still much greater than EP54. A much higher selectivity for 

stimulating the contraction of human umbilical arteries activation over MPO secretion from 

human PMNs was reported for EP67 (2951), whereas a similar low selectivity was reported 

for EP54 (34) 53. This may be due to differences between EP67 activity in whole tissues vs. 

isolated cells.

None of the EP67 analogs (Figure 6, colored open symbols) affected the selectivities of 

EP67 for stimulating IL-6 or TNF-α secretion from MC (Figure 6A), M0-MDM (Figure 

6B), or MDDC (Figure 6C) over stimulating the secretion of MPO from NP (Figure 6C, 

black triangles) (Table S3). Thus, replacing Pro7 with Cha and/or N-methyl Leu8 with Leu 

does not affect the selective activation of human mononuclear phagocytes over human 

neutrophils by EP67 vs. pooled human C5a desArg.

CONCLUSION

We found that that replacing Pro7 with Cha and/or Me-Leu8 with Leu (i.) selectively affects 

EP67 potency and efficacy depending on the human mononuclear phagocyte and secreted 

cytokine, (ii.) does not affect EP67 potency but selectively decreases efficacy in human 

neutrophils, and (iii.) does not affect selective activation of human mononuclear phagocytes 

over human neutrophils. Thus, replacing Pro7 and Me-Leu8 with large-scale amenable 

amino acid residues predicted to induce similar structural changes is a suitable strategy to 

overcome scale-up challenges with EP67.

METHODS

Experimental Methods

Peptide synthesis, purification, and characterizations—Using an AAPPTEC Apex 

396 Synthesizer, all peptides were assembled on preloaded Fmoc-Arg(pbf)-Wang resin using 

Fmoc-amino acid derivatives and N-(dimethylamino)-1H-1,2,3-triazolo-[4,5-b]pyridin-1-

ylmethylene]-N-methylmethanaminium hexafluorophosphate N-oxide (HATU) in the 

presence of excess DIEA. A solution of piperidine in DMF (1/4, v/v) was used to remove the 

Fmoc-group. Peptides were cleaved from the resin and freed of sidechain protecting groups 

by stirring the peptide-resin in a mixture of TFA (87.5%), phenol (5%), water (5%), and 

triisopropylsilane (2.5%) for 2h at room temperature. Crude products were purified by 

preparative reversed-phase high performance liquid chromatography (RP-HPLC) on C18-

bonded silica columns under optimized gradient elution conditions employing 0.25N 

triethylammonium phosphate, pH 2.25 (buffer A) and a mixture of buffer A and acetonitrile 

(3/2, v/v, buffer B) 66. Peptides were loaded onto the same column, previously equilibrated 

with a mixture of 10 mM hydrochloric acid and acetonitrile (95/5, v/v), and quickly eluted 

by raising the amount of acetonitrile in the eluent to 60% over 30 minutes to produce the 

hydrochloride salt.
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Peptide purity was determined by analytical reversed-phase HPLC using three different 

columns with the same gradient elution conditions: an ACE 5 C18-300 column (250 x 4.6 

mm, 5 μm, 300 Å pore size, catalog number ACE-221-2546), ACE 5 Phenyl-300 column 

(250 x 4.6 mm, 5 μm, 300 Å pore size, catalog number ACE-225-2546) and ACE 5 CN-300 

column (250 x 4.6 mm, 5 μm, 300 Å pore size, catalog number. ACE-224-2546) from MAC-

MOD Analytical Inc. (Chadds Ford, PA). Solvent A was water containing 0.1% 

trifluoroacetic acid (TFA, v/v) and solvent B was a mixture of acetonitrile and water (3/2, 

v/v) containing 0.1 % TFA. Peptides were eluted from the columns by increasing the 

percentage of solvent B from 5 to 100% over 50 minutes and column effluent was 

continuously monitored at 214 nm. Peptide masses were measured on an Orbitrap Fusion 

Lumos from ThermoScientific (Waltham MA) and with ≤ 0.5 ppm error (Mass Spectrometry 

and Proteomics Core Facility at the University of Nebraska Medical Center). Amino acid 

compositions of all peptides were determined using a Hitachi 8800 Amino Acid Analyzer 

after being subjected to vapor-phase hydrolysis in constant boiling 6M hydrochloric acid for 

24 hours (Protein Structure Core Facility at the University of Nebraska Medical Center).

Peptide structure prediction—PEP-FOLD 67 was used to generate the initial 

conformation of C5a65-74. Analogs of C5a65-74 were generated in YASARA 

(www.yasara.org) and refined for 500 ps using the built-in md_refine macro. Each refined 

structure was then used in a 50 ns molecular dynamics (MD) simulation. All molecular 

dynamics simulations and post-analysis used Desmond 68 as bundled with the Schrodinger 

software suite. Each peptide was placed in a cubic box with periodic boundaries. No 

dimension of the box was allowed closer than 12 Angstroms to allow the peptides room to 

unfold. The box was filled with TIP4P water and neutralized by adding the appropriate Na+ 

or Cl− ions. Salt concentration in the box was set to 0.05 M NaCl. All simulations first used 

Schrodinger’s built in relaxation protocol before the main MD run. The main 50 ns MD run 

was an NPT ensemble with temperature at 298K and pressure at 1 atm. Noose-Hoover chain 

and Martyna-Tobias-Klein were the thermostat and barostat methods, respectively. The 

average structure of the major cluster of each trajectory was then extracted for comparison in 

YASARA.

Isolation of human monocytes and neutrophils from human whole blood—
Fresh whole blood [1 unit = 450 mL] was drawn from healthy human male donors (aged 19–

40 years) into vacutainer bags containing EDTA (Innovative Research, USA). CD14+, 

CD14+/CD16+ monocytes were isolated from whole blood [180 mL/donor] using magnetic 

StraightFrom® Whole Blood CD14 MicroBeads (Miltenyi Biotec, Germany) according to 

the manufacturer’s protocol and counted (Auto T4, Nexcelom). Isolated monocytes were 

plated in 24-well plates [1x106 cells/well] (BD Biosciences) with complete culture medium 

(CCM) [1 mL] [RPMI 1640, 2 mM L-glutamine, 1% autologous plasma, 1 mM sodium 

pyruvate, 0.1 mM non-essential amino acids, 1x vitamins, 100 U/mL penicillin G, 100 

μg/mL streptomycin sulfate; Invitrogen, USA] and incubated [37°C / 5%CO2]. After 2 h, 

media was aspirated and adherent cells were washed 2X with sterile D-PBS [1 mL] [“PBS” 

without Ca2+ or Mg2+, GE Healthcare Life Sciences: SH30028.02] before (i.) adding CCM 

alone [1 mL] or CCM containing increasing concentrations of the indicated 

immunostimulant and incubating for 24 h, or (ii.) adding CCM [1 mL] containing the 
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required concentrations of factors for differentiation into macrophages or dendritic cells over 

6 days (described below).

Neutrophils were isolated from the same donors [10 mL of blood/donor] using the 

MACSxpress® Whole Blood Neutrophil Isolation Kit, a MACSmix™ Tube Rotator, and a 

MACSxpress Separator (Miltenyi Biotec, Germany) according to the manufacturer’s 

protocol and counted (Auto T4, Nexcelom). Isolated neutrophils were plated in 24-well 

plates [1x106 cells/well] with CCM [1 mL] and incubated [37°C / 5%CO2]. After 2 h, media 

was aspirated and adherent cells were washed 2X with sterile D-PBS [1 mL] before adding 

CCM alone [1 mL] or CCM containing increasing concentrations of the indicated 

immunostimulant.

The purity of isolated monocytes and neutrophils was determined on the day of isolation by 

staining cells with recombinant CD14-PE-Vio615, CD-15APC, and CD-16PE human 

antibodies (Miltenyi Biotec, Germany) before and after separation and analyzing by flow 

cytometry. Isolated cells [1x106] were resuspended in cell staining buffer (BD Biosciences) 

[0.100 mL] and containing the indicated antibodies [5 μL/each antibody]. Cells were gently 

mixed, incubated in the dark [2–8 °C, 10 min.], pelleted [300 RC, RT, 10 min], resuspended 

in staining buffer [1 mL], pelleted [300 RCF, RT, 10 min.], and resuspended in FACS 

staining buffer [0.5 mL] for analysis by flow cytometry. Cells were analyzed on a BD LSR II 

flow cytometer (Becton and Dickinson, La Jolla, CA) with BD High Throughput Sampler. 

Flow cytometer was compensated using single stained cells, maximum number of events 

were acquired and analyzed by FlowJo software (Tree Star, Ashland, OR, USA).

Generation of unpolarized human monocyte-derived macrophages (M0-MDM) 
and immature human monocyte-derived dendritic cells (MDDC)—Unpolarized 

human monocyte-derived macrophages (M0-MDM) were generated by culturing freshly 

isolated monocytes in 24-well plates [1×106 cells/well] with CCM [1 mL] containing 

recombinant human M-CSF (rhM-CSF, Miltenyi Biotec) [50 ng/mL] for three days, 

replacing half the media [0.5 mL] from each well with fresh CCM [0.5 mL] and rhM-CSF 

[50 ng/mL], and incubating for another 3 days 69. Immature human monocytes-derived 

dendritic cells (MDDC) were generated in the same manner as M0-MDM but incubated with 

CCM containing recombinant human IL-4 (rhIL-4, Miltenyi Biotec) [50 ng/mL] and 

recombinant human GM-CSF (Miltenyi Biotec) [160 ng/mL] 70. On Day 7, media was 

aspirated, cells were washed once with warm, sterile PBS [37°C], and incubated [37°C / 

5%CO2] with CCM [1 mL] containing the indicated immunostimulant for 24 h.

Potency of EP67 analogs in human mononuclear phagocytes and neutrophils
—Mononuclear phagocytes (MC, M0-MDM, MDDC) or NP were plated in 24-well plates 

[1x106 cells/well] as described above and incubated [37°C / 5%CO2] with CCM [1 mL] 

containing serial concentrations of C5a desArg, EP54, EP67, or EP67 analogs. After 24 h, 

average concentrations of IL-1β, IL-6, and TNF-α [± SD] (n=2 wells from 3 independent 

donors) in the media of mononuclear phagocytes or average concentrations of 

myeloperoxidase (MPO) [± SD] (n=2 wells from 3 independent donors) in the media of NP 

were determined by ELISA (BioLegend, USA). The average maximal concentration of 

secreted protein (EMAX / “efficacy”) and molar concentration of peptide that stimulated 50% 
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EMAX (EC50 / “potency”) [± 95%CI] was then calculated by fitting the dose-response data 

with a four-parameter dose-response curve where Y=Min + (xHillslope)*(Max-Min)/

(xHillSlope + EC50
HillSlope) (Graphpad Prism 8).

Selective activation of human mononuclear phagocytes over neutrophils—
Average selective activation of the indicated mononuclear phagocyte vs. activation of NP [± 

propagated 95% CI] (n=3 independent donors) by EP54, EP67, and EP67 analogs relative to 

C5a desArg (“selectivity”) was calculated as [antilog ((−ΔC5a desArg mononuclear 

phagocyte) - (−ΔC5a desArg NP))] where ΔC5a desArg = pD2 (C5a desArg) - pD2 (peptide) 

and pD2 = −log (EC50[M]) for IL-6 and TNF-a secretion from the indicated mononuclear 

phagocyte or MPO secretion from NP 53. The selectivity of human C5a desArg was set to a 

value of 1 using this equation because it is equipotent in mononuclear phagocytes and NP. 

Thus, the greater the selectivity value, the greater the selective activation of mononuclear 

phagocytes over neutrophils relative to C5a desArg.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

APC:
antigen-presenting cells

C5a:
complement component 5a

C5aR1/CD88:
C5a Receptor 1

Cha7:
cyclohexylalanine7 amino acid residue in EP67

CPDI:
complement peptide-derived immunostimulant(s)
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EP54:
1st generation decapeptide agonist of C5aR1

EP67:
2nd generation decapeptide agonist of C5aR1

GPCR:
G protein-coupled receptor

Me-Leu8:
N-methyl-Leu8 amino acid residue in EP67

M0-MDM:
unpolarized immature (M0)-monocyte-derived macrophages

MAC:
membrane attack complex

MC:
monocytes

MDDC:
immature monocyte-derived dendritic cells

Mononuclear phagocytes:
monocytes, macrophages, and dendritic cells

MPL:
Monophosphoryl Lipid A

PAMPs:
pattern associated molecular patterns

PMNs:
polymorphonuclear cells

PRRs:
pattern recognition receptors

RMSD:
root-mean-square deviation of atomic positions

TLR:
toll-like receptor family
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FIGURE 1. De novo peptide structure prediction and comparison of C5a65-74, EP67, and EP67 
analog conformations.
(A) Major cluster view and (B) RMSD traces of C5a65-74, EP67, and EP67 analogs from an 

alpha-helical structure were generated by PEP-FOLD. Analogs were generated in YASARA 

and refined for 500 ps using the built-in md_refine macro. Each refined structure was then 

used in a 50 ns molecular dynamics (MD) simulation. All molecular dynamics simulations 

and post-analysis used Desmond as bundled with the Schrodinger software suite. Peptides 

were placed in a cubic box with periodic boundaries. No dimension of the box was allowed 

closer than 12 Angstroms to allow the peptides room to unfold. The box was filled with 

TIP4P water and neutralized by adding appropriate Na+ or Cl− ions. Salt concentration in 

the box was set to 0.05 M NaCl. All simulations first used Schrodinger’s built in relaxation 

protocol before the main MD run. The main 50 ns MD run was an NPT ensemble with 

temperature at 298K and pressure at 1 atm. Noose-Hoover chain and Martyna-Tobias-Klein 

were the thermostat and barostat methods, respectively. The average structure of the major 

cluster of each trajectory was then extracted for comparison in YASARA.
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FIGURE 2. Experimental design for determining immunostimulant activity in primary human 
mononuclear phagocytes and neutrophils.
Monocytes (MC) and neutrophils (NP) were isolated from the whole blood of healthy, 

human adult male donors using Miltenyi magnetic anti-CD14 MicroBeads and 

MACSxpress® Whole Blood Neutrophil Isolation Kits, respectively. Isolated NP were 

plated for 2 h before treatment, whereas isolated CD14+/CD14+CD16+ MC were plated for 

2 h before immunostimulant treatment or differentiated into M0-monocyte-derived 

macrophages (M0-MDM) (human GM-CSF 6 d) or immature monocyte-derived dendritic 

cells (MDDC) (human GM-CSF/IL-4 for 7 d) before treatment. For potency studies, cells 

were incubated with increasing concentrations of the indicated immunostimulant for 24 h 

and concentrations of IL-6 and TNF-α [MC, M0-MDM, MDDC] (Figure 3) or 

myeloperoxidase (MPO) [NP] (Figure 5) released into cell culture media was determined by 

ELISA. For kinetic studies, MC, M0-MDM, and MDDC were incubated with the EC50 of 

the indicated immunostimulant in the respective cell type and concentrations IL-6 and TNF-

α released into cell culture media were determined after 6, 12, 24, and 48 h by ELISA.
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Figure 3. Dose response of IL-6 and TNF-α secretion from primary human monocytes, M0-
monocyte-derived macrophages, and immature monocyte-derived dendritic cells after treatment 
with human C5a desArg, EP54, EP67, or EP67 analogs for 24 h.
Human monocytes (MC), unpolarized M0-monocyte-derived macrophages (M0-MDM), and 

immature monocyte-derived dendritic cells (MDDC) were prepared from the whole blood of 

healthy, human adult male donors (Figure 2). Cells (1 x 106) were then treated with 

increasing concentrations of human C5a desArg pooled from the blood of multiple donors 

(black circles), 1st-generation EP54 (black squares), 2nd-generation EP67 (black triangles), 

[Cha7]EP67 (red open circles), [Leu8]EP67 (green open squares), or [Cha7, Leu8]EP67 (blue 

open triangles). After 24 h, average concentrations (± SD) (n=2 replicates from 3 blood 

donors) of IL-6 or TNF-α secreted into the cell culture media of human monocytes (A & D), 

M0-MDM (B & E), or MDDC (C & F) were determined by ELISA and fit with a four-

parameter dose-response curve where Y=Min + (xHillslope)*(Max-Min)/(xHillSlope + 

EC50
HillSlope).
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Figure 4. Comparison of potencies and efficacies for IL-6 and TNF-α secretion from primary 
human mononuclear phagocytes after treatment with human C5a desArg, EP54, EP67, or EP67 
analogs for 24 h.
Average (A) EC50 (potencies) and (B) EMAX (efficacies) ±95% CI for IL-6 and TNF-α were 

calculated (Table S1) from dose response curves of IL-6 and TNF-α secretion from human 

monocytes (MC), M0-monocyte-derived macrophages (M0-MDM), and monocyte-derived 

dendritic cells (MDDC) after treatment for 24 h (Figure 3). 0.05 level of statistical difference 

vs. aEP67 (black triangles) for the indicated cytokine and cell type.
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Figure 5. Comparison of potencies and efficacies for myeloperoxidase secretion from primary 
human neutrophils after treatment with human C5a desArg, EP54, EP67, or EP67 analogs for 24 
h.
(A) Human neutrophils (NP) were prepared from the whole blood of healthy, human adult 

male donors (Figure 2). NP were then treated with increasing concentrations of human C5a 

desArg pooled from the blood of multiple donors (black circles), EP54 (black squares), 

EP67 (black triangles), [Cha7]EP67 (open red circles), [Leu8]EP67 (open green squares), or 

[Cha7, Leu8]EP67 (open blue triangles). After 24 h, average concentrations (± SD) (n=2 

replicates from 3 blood donors) of myeloperoxidase (MPO) secreted into cell culture media 

were determined by ELISA and fit with a four-parameter dose-response curve where Y=Min 

+ (xHillslope)*(Max-Min)/(xHillSlope + EC50
HillSlope). Average (B) potencies (Log EC50) and 

(C) efficacies (EMAX) ±95% CI for MPO secretion (Table S2) were calculated from MPO 

dose response curves. a0.05 level of statistical difference vs. EP67.

Alshammari et al. Page 23

ACS Infect Dis. Author manuscript; available in PMC 2020 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Comparison of selective activation of primary human mononuclear phagocytes vs. 
human neutrophils after treatment with human C5a desArg, EP54, EP67, or EP67 analogs for 24 
h.
Average selectivities ± propagated 95% CI for stimulating the secretion of IL-6 or TNF-α 
from human (A) MC, (B) M0-MDM, or (C) MDDC over secretion of MPO from human 

neutrophils (NP) were calculated from respective EC50 values after treatment for 24 (Table 

S3).
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