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Objective: Our goal was to evaluate the association of APOE with amyloid deposition,
cerebrospinal fluid levels (CSF) of Aβ, tau, and p-tau, brain atrophy, cognition and cognitive
complaints in E-MCI patients and cognitively healthy older adults (HC) in the ADNI-2
cohort.

Methods: Two-hundred and nine E-MCI and 123 HC participants from the ADNI-2 cohort
were included. We evaluated the impact of diagnostic status (E-MCI vs. HC) and APOE
ε4 status (ε4 positive vs. ε4 negative) on cortical amyloid deposition (AV-45/Florbetapir
SUVR PET scans), brain atrophy (structural MRI scans processed using voxel-based
morphometry and Freesurfer version 5.1), CSF levels of Aβ, tau, and p-tau, and cognitive
performance and complaints.

Results: E-MCI participants showed significantly impaired cognition, higher levels of
cognitive complaints, greater levels of tau and p-tau, and subcortical and cortical atrophy
relative to HC participants (p < 0.05). Cortical amyloid deposition and CSF levels of Aβ

were significantly associated with APOE ε4 status but not E-MCI diagnosis, with ε4
positive participants showing more amyloid deposition and lower levels of CSF Aβ than
ε4 negative participants. Other effects of APOE ε4 status on cognition and CSF tau levels
were also observed.

Conclusions: APOE ε4 status is associated with amyloid accumulation and lower CSF
Aβ, as well as increased CSF tau levels in early prodromal stages of AD (E-MCI) and
HC. Alternatively, neurodegeneration, cognitive impairment, and increased complaints are
primarily associated with a diagnosis of E-MCI. These findings underscore the importance
of considering APOE genotype when evaluating biomarkers in early stages of disease.

Keywords: apolipoprotein E (APOE), early mild cognitive impairment (E-MCI), Florbetapir/AV-45/Amyvid, positron

emission tomography (PET), magnetic resonance imaging (MRI), cerebrospinal fluid (CSF), Alzheimer’s disease

neuroimaging initiative (ADNI)

INTRODUCTION
Alzheimer’s disease (AD) is the most common age-related neu-
rodegenerative disease, featuring cognitive decline, accumulation
of amyloid plaques and neurofibrillary tangles, and extensive neu-
rodegeneration (Alzheimer’s Association, 2011; McKhann et al.,
2011). The most commonly accepted prodromal AD stage is

mild cognitive impairment (MCI), which is characterized by
clinically-relevant cognitive dysfunction in the absence of signif-
icant interference with daily functioning (Petersen et al., 1999;
Albert et al., 2011). Amnestic MCI features marked memory
impairments which are predictive of progression to clinical AD.
Recently, MCI patients have been classified into two forms based
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on severity: early MCI (E-MCI) and late MCI (L-MCI). Relative
to an age-appropriate normative level, E-MCI patients show an
approximately 1–1.5 standard deviation (SD) decline in memory,
while L-MCI patients show a 1.5 SD or greater decline. These
designated cut-offs for E-MCI and L-MCI have not been fully
explored to date. However, the identification of participants with
a 1–1.5 SD deficit in memory as E-MCI may be more sensitive for
identifying participants in the earliest stages of cognitive decline.
However, the specificity of these diagnostic criteria has yet to be
determined and may be lower than the L-MCI cut-offs, allowing
participants with more diverse causal factors of cognitive decline
(other than prodromal AD) to be included in this diagnostic cat-
egory. Future studies examining these clinical criteria and clinical
and pathological outcomes of identified E-MCI patients relative
to L-MCI patients will be important for understanding the cogni-
tive changes observed in these patients. Importantly, these new
guidelines provide an opportunity to evaluate the role of AD
biomarkers and other potential disease-causing factors in a very
early clinical stage. In fact, a recent study demonstrated increased
amyloid binding measured using [18F]Florbetapir positron emis-
sion tomography (PET) in patients with E-MCI relative to HC,
but no alterations in metabolism as assessed using [18F]FDG PET
(Wu et al., 2012).

The most common genetic variant associated with late-onset
AD is the apolipoprotein E (APOE) ε4 allele (Corder et al., 1993;
Bertram et al., 2010). The presence of an ε4 allele confers a
significantly higher likelihood of developing AD. APOE genotype
is also associated with AD biomarkers, with the presence of
an APOE ε4 allele associated with greater amyloid deposition
(Drzezga et al., 2009; Morris et al., 2010; Fleisher et al., 2011), a
higher degree and faster rate of neurodegeneration (Moffat et al.,
2000; Caroli and Frisoni, 2010), alterations in brain function
and glucose metabolism (Bookheimer et al., 2000; Bondi et al.,
2005; Langbaum et al., 2009), changes in cerebrospinal fluid
(CSF) measures of amyloid and tau (Vemuri et al., 2010; Tosun
et al., 2011), as well as more impaired cognition (Mayeux et al.,
2001; Farlow et al., 2004; Caselli et al., 2011) in patients with
L-MCI and AD and cognitively healthy older adults (HC).
However, the role of APOE genotype in E-MCI has not been
assessed. Therefore, the goal of this study is to evaluate the effect
of APOE ε4 status on amyloid deposition, neurodegeneration,
and cognition in patients diagnosed with E-MCI, the earliest
clinically-defined prodromal stage of AD.

MATERIALS AND METHODS
ALZHEIMER’S DISEASE NEUROIMAGING INITIATIVE (ADNI)
ADNI was launched in 2004 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration
(FDA), pharmaceutical companies, and non-profit organiza-
tions, as a multi-year public-private partnership. The Principal
Investigator is Michael W. Weiner, MD, VA Medical Center and
UCSF. ADNI is a longitudinal study, ultimately including more
than 1200 participants (aged 55–90) recruited from over 50 sites
across the United States and Canada. Further information can be
found at http://www.adni-info.org/ and in previous reports (Jack
et al., 2010; Jagust et al., 2010; Petersen et al., 2010; Saykin et al.,

2010; Trojanowski et al., 2010; Weiner et al., 2010). Appropriate
Institutional Review Boards approval occurred at each ADNI site
and informed consent was obtained from each participant or
authorized representative.

PARTICIPANTS
Participants were selected if they were designated as E-MCI or HC
(continuing participants or newly enrolled) at the initial visit of
the ADNI-GO or ADNI-2 phases and had APOE genotype data.
The sample included 209 E-MCI patients and 123 HC. Patients
were diagnosed with E-MCI using criteria described in the
ADNI-2 procedures manual (http://www.adni-info.org/). Briefly,
patients were diagnosed with E-MCI using the following criteria:

1. Subject must have a subjective memory concern as reported by
subject, study partner, or clinician.

2. Abnormal memory function documented by scoring within
the education adjusted ranges on the Logical Memory II sub-
scale (Delayed Paragraph Recall, Paragraph A only) from the
Wechsler Memory Scale—Revised (the maximum score is 25):

a. 9–11 for 16 or more years of education.
b. 5–9 for 8–15 years of education.
c. 3–6 for 0–7 years of education.

3. Mini-Mental State Exam score between 24 and 30 (inclusive)
(Exceptions may be made for subjects with less than 8 years of
education at the discretion of the project director).

4. Clinical Dementia Rating = 0.5; Memory Box score must be at
least 0.5.

5. General cognition and functional performance sufficiently
preserved such that a diagnosis of Alzheimer’s disease cannot
be made by the site physician at the time of the screening visit.

In addition, all participants met ADNI inclusion and exclu-
sion criteria which have been described previously (Weiner et al.,
2010) and can be found at http://www.adni-info.org/.

APOE genotyping for all participants was performed as
previously described (Saykin et al., 2010). In the present study,
we sought to evaluate the impact of the presence or absence of
an APOE ε4 allele on imaging and non-imaging phenotypes.
Therefore, all participants were divided into two groups based on
APOE ε4 status, including participants with one or more ε4 allele
(APOE ε4 positive (ε4+); 85 E-MCI, 30 HC) and participants
without an ε4 allele (APOE ε4 negative (ε4−); 124 E-MCI, 93
HC).

CLINICAL AND NEUROPSYCHOLOGICAL ASSESSMENTS
All clinical and neuropsychological test performance data for
included participants was downloaded from the ADNI clinical
data repository on the Laboratory of Neuro Imaging (LONI) site.
Specifically, we evaluated participant performance on the Mini-
Mental State Exam (MMSE), Alzheimer’s Disease Assessment
Scale (ADAS), Montreal Cognitive Assessment (MoCA; Total and
all sub-scores), Rey Auditory Verbal Learning Test (RAVLT; Total
score, delayed recall score, delayed recognition score), Weschler’s
Logical Memory Scale—Revised (LM; Immediate and Delayed),
Clock Drawing Test (CDT), Trailmaking Test A and B (TMT-A,
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TMT-B), Boston Naming Test (BNT), Animal Fluency, and the
American National Adult Reading Test (ANART). We also evalu-
ated clinical measures, including a measure of dementia severity
[Clinical Dementia Rating Scale (CDR), Sum of Boxes score],
general functioning [Functional Assessment Questionnaire
(FAQ)], depression [Geriatric Depression Scale (GDS)], and
stroke/vascular incident history (Modified Hachinski Scale).
Cognitive complaints were assessed using the Measure of
Everyday Cognition (E-Cog) from both the patient and an
informant. The total level of complaints on the E-Cog (overall
and within each domain) for both the participant and the
informant were assessed as percentage of items endorsed as either
“2 = questionably or occasionally worse,” “3 = consistently a
little worse,” or “4 = consistently much worse.” Items endorsed
as “9 = I don’t know” were excluded.

STRUCTURAL MRI SCANS
All available baseline 3 Tesla structural magnetic resonance imag-
ing (MRI) scans were downloaded from LONI for included
E-MCI and HC participants. Scans were corrected prior to down-
load as previously described (Jack et al., 2008, 2010). Most par-
ticipants had a minimum of two scans from the baseline visit.
All available scans were processed using voxel-based morphom-
etry (VBM) implemented in Statistical Parametric Mapping 8
(SPM8) (Ashburner and Friston, 2000) and Freesurfer version
5.1 (Dale et al., 1999; Fischl et al., 1999), as described in pre-
vious reports (Dale et al., 1999; Fischl et al., 1999; Ashburner
and Friston, 2000; Risacher et al., 2009, 2010) and briefly
below:

VBM
Scans were co-registered to a T1-weighted template, segmented
into grey matter (GM), white matter (WM), and CSF compart-
ments with bias correction, unmodulated normalized to Montreal
Neurologic Institute (MNI) space as 1 × 1 × 1 mm voxels, and
smoothed with an 8 mm Gaussian kernel. All scans underwent
extensive quality control. Mean GM density was extracted from
all available baseline scans for target regions of interest (ROIs)
using MarsBaR (Brett et al., 2002). Since most participants had
two or more baseline MRI scans, an average GM density measure
was calculated for each ROI using the mean GM density values
extracted from each of the available baseline scans. Eighteen par-
ticipants (5 HC ε4−, 2 HC ε4+, 5 E-MCI ε4−, 6 E-MCI ε4+)
were excluded from the GM density analyses for missing data or
failed processing.

Automated parcellation
Freesurfer version 5.1 was used to extract volumetric and cortical
thickness measures. Similar to the VBM ROI data, values from all
available baseline scans were averaged to create a mean volumetric
or cortical thickness value for each ROI. Seven participants (2 HC
ε4−, 1 HC ε4+, 2 E-MCI ε4−, 2 E-MCI ε4+) were excluded from
the cortical thickness and volumetric analyses for incomplete data
or failed processing.

AMYLOID PET SCANS ([11C]FLORBETAPIR)
Pre-processed [11C]Florbetapir PET scans (Coregistered,
Averaged, Standardized Image and Voxel Size, Uniform

Resolution) were downloaded from LONI (http://adni.loni.ucla.
edu/). Before download, images were averaged, aligned to a
standard space, re-sampled to a standard image and voxel size,
smoothed to a uniform resolution and normalized to a cerebellar
GM reference region resulting in standardized uptake value ratio
(SUVR) images as previously described (Jagust et al., 2010). After
downloading, the images were aligned to each participant’s same
visit MRI scan and normalized to MNI space as 2 × 2 × 2 mm
voxels using parameters from the MRI segmentation. The
normalized scans were evaluated for the effect of APOE ε4 status
on a voxel-wise basis using a two-sample t-test, masked using a
whole-brain mask, and covaried for age, gender, education, and
handedness. Significant results were displayed at a voxel-wise
threshold of p < 0.01 [family-wise error (FWE) correction for
multiple comparisons] with a minimum cluster size (k) of 50
voxels. SPM8 was used for all processing and voxel-wise analysis.
Mean regional SUVR values were also extracted for target ROIs
using MarsBaR. Fourteen participants (6 HC ε4−, 5 HC ε4+, 3
E-MCI ε4−) were excluded from [11C]Florbetapir analyses for
missing scan data or failed processing.

CSF BIOMARKERS
Levels of amyloid-beta 1-42 (Aβ), total tau, and phosphory-
lated tau (p-tau) were measured from all available CSF samples
as previously described (Shaw et al., 2009, 2011; Trojanowski
et al., 2010). CSF data was downloaded from the LONI site and
extracted for all included participants. Of the 332 included par-
ticipants, 44 participants (25 E-MCI and 19 HC) were missing all
CSF data. 4 additional participants (2 E-MCI, 3 HC) were missing
CSF tau data and 2 additional HC participants were missing CSF
p-tau data. Furthermore, participants with CSF levels outside 3
SDs above or below the mean were excluded, including 6 E-MCI
participants with tau levels more than 3 SDs above the mean and
2 E-MCI participants with p-tau levels more than 3 SDs above the
mean. Thus, the final samples for CSF analyses included 288 par-
ticipants in the CSF Aβ analysis, 278 participants in the CSF tau
analysis, and 284 participants in the CSF p-tau analysis.

STATISTICAL ANALYSES
We evaluated the effect of diagnosis and APOE ε4 status on
demographics, cognition, cognitive complaints, amyloid depo-
sition, atrophy, and CSF biomarkers using two-way analysis
of covariance (ANCOVA) for continuous variables and a chi-
square test for categorical variables implemented in SPSS 19.0
(SPSS, Inc., Chicago, IL). Specifically, the effect of diagnosis
(HC vs. E-MCI), APOE ε4 status (ε4+ vs. ε4−), and the inter-
action of diagnosis and ε4 status on performance on clinical
and psychometric tests, cognitive complaints, amyloid deposi-
tion (mean SUVR from target ROIs), CSF levels of Aβ, tau,
and p-tau, and brain atrophy (volume, cortical thickness, and
GM density from target ROIs) were assessed. All ANCOVA
analyses were covaried for age, gender, education, and hand-
edness. The analysis of neurodegenerative measures was also
covaried for total intracranial volume (ICV). The frequency
of having one or more APOE ε4 alleles was also compared
between diagnostic groups (HC vs. E-MCI) using a chi-square
test.
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RESULTS
DEMOGRAPHICS, PSYCHOMETRIC PERFORMANCE, AND COGNITIVE
COMPLAINTS
Significantly more E-MCI were APOE ε4+ than HC (p = 0.003),
with 85 of 209 E-MCI participants (40.7%) showing one or
more ε4 alleles relative to only 30 of 123 HC participants
(24.4%). Demographics and psychometric performance variables
for E-MCI and HC participants stratified by APOE ε4 status are
shown in Table 1. The effect of diagnosis, ε4 status, and the inter-
action between diagnosis and ε4 status are displayed. Age was
significantly different between diagnostic groups (p < 0.05) but
not APOE ε4 groups. A significant interaction between diagno-
sis and ε4 status on LM Immediate and Delayed performance
was observed, with ε4+ HC showing worse performance on both
measures than ε4− HC participants but no difference by ε4 sta-
tus in E-MCI participants. A trend for a significant interaction on
the MoCA delayed recall sub-score (p = 0.05) was also observed,
again with a significant effect of ε4 status in HC but not E-MCI
participants. Finally, a marginally significant interaction of diag-
nosis and ε4 status for informant complaints in the visuospatial
domain (p = 0.05) was also seen, with ε4 status having an effect
only in E-MCI participants.

Significant effects of diagnosis on the CDR-SB, FAQ, Modified
Hachinski Total, and GDS were observed (p < 0.05), with
E-MCI participants showing a greater CDR-SB, as well as higher
scores on the FAQ, Modified Hachinski, and GDS. Differences

in psychometric performance by diagnosis were observed for
nearly every test (p < 0.05), except for the RAVLT Delayed
Recognition, CDT (Total and Copy Scores), and the MoCA
language, executive-visuospatial function, and attention sub-
scores. Significant differences in cognitive complaints from
both the participant and the informant by diagnosis were also
observed in all domains (p < 0.001). In all cases, E-MCI partic-
ipants had worse cognition and more cognitive complaints than
HC participants.

Vascular risk factors and/or stroke history was significantly
different by APOE ε4 status (p < 0.05), with ε4+ participants
showing lower Modified Hachinski Total scores. In addition,
ε4 status was significantly associated with performance on a
number of psychometric tests, including the ADAS Total score,
MoCA Total score, RAVLT Total score, and the MoCA nam-
ing and attention sub-scores (p < 0.05). The effect of ε4 status
was also significant at a trend level for TMT-A (p = 0.05). For
these comparisons, ε4+ participants demonstrated worse perfor-
mance than ε4−.

VOXEL-BASED COMPARISONS OF AMYLOID DEPOSITION
ε4+ E-MCI showed significantly greater amyloid deposition
upon voxel-wise analysis than ε4− (Figure 1; voxel-wise thresh-
old: p < 0.01 (FWE), k = 50 voxels). The most significant clus-
ter was observed in the left orbitofrontal cortex (Figure 1A).
Additional significant clusters were observed in the medial frontal

FIGURE 1 | Voxel-wise association of APOE ε4 status and amyloid

deposition in E-MCI participants. Greater cortical amyloid deposition was
observed in APOE ε4+ (n = 85) relative to APOE ε4− (n = 121) E-MCI
participants. Significant clusters were observed in the medial and lateral
frontal lobes (A), anterior and posterior cingulate (B), and lateral temporal

lobes. Surface renderings show the diffuse pattern of significant clusters
(C). All analyses were covaried for age, gender, education, and handedness
and a voxel-wise threshold of p < 0.01 (FWE correction for multiple
comparisons) and minimum cluster size (k) of 50 voxels was considered
significant.
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lobe/anterior cingulate cortex, the right orbitofrontal cortex,
and the posterior cingulate/precuneus (Figure 1B). The surface
rendering also reflects the widespread pattern of significant dif-
ferences with significant clusters throughout the frontal, pari-
etal, and temporal lobes (Figure 1C). No significant clusters
were observed in the reverse comparison (ε4− > ε4+; data not
shown).

ROI COMPARISONS OF AMYLOID DEPOSITION
ROI results were consistent with voxel-wise findings demonstrat-
ing significantly greater global and regional amyloid deposition
in ε4+ relative to ε4− E-MCI participants in the global cortex,
mean frontal lobe, anterior cingulate, and precuneus (Figure 2).
A significant effect of ε4 status (p < 0.001) but not diagno-
sis was observed in all ROI measures, with ε4+ participants
showing greater amyloid than ε4− participants regardless of diag-
nosis (HC or E-MCI). Overall, amyloid PET results indicate
that ε4+ individuals showed greater amyloid deposition than
ε4− regardless of cognitive impairment in the earliest stages of
decline.

ROI COMPARISONS OF NEURODEGENERATION
Hippocampal neurodegeneration (volume and GM density) was
associated with diagnosis (p < 0.001; Figures 3A,B) but not
APOE ε4 status. E-MCI participants showed more hippocam-
pal atrophy than HC. However, a significant interaction effect of
diagnosis and ε4 status on mean temporal lobe cortical thickness
was observed (p = 0.008; Figure 3C), with ε4+ HC participants
showing thicker mean temporal lobes than all other groups. Mean
temporal lobe GM density was also significantly associated with
diagnosis (p = 0.005) and ε4 status (p = 0.047; Figure 3D), as
E-MCI patients showed smaller mean temporal lobe GM den-
sity than HC and ε4− participants showed smaller mean temporal
lobe GM density than ε4+ participants.

CSF LEVELS OF Aβ, TAU, AND p-tau
CSF levels of Aβ, tau, and p-tau were significantly affected by
diagnosis and APOE ε4 status (Figure 4). Levels of CSF Aβ

were significantly associated with ε4 status (p < 0.001), with
ε4+ participants showing lower levels of Aβ than ε4− partici-
pants (Figure 4A). CSF tau levels were significantly affected by

FIGURE 2 | Regional effects of APOE ε4 status on amyloid deposition in

E-MCI and HC participants. A significant effect of APOE ε4 status on
regional amyloid deposition was observed (p < 0.001), including in the global
cortical mean amyloid (A), mean bilateral frontal lobes (B), anterior cingulate

(C), and precuneus (D). In all evaluated regions, APOE ε4+ E-MCI (n = 85)
and HC (n = 25) participants showed a higher mean standardized uptake
value ratio (SUVR) than APOE ε4− E-MCI (n = 121) and HC (n = 87)
participants. No significant effect of diagnostic status was observed.
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FIGURE 3 | Temporal lobe atrophy is associated with APOE ε4 status

and diagnostic group in E-MCI and HC participants. A significant effect of
diagnosis on neurodegeneration in the temporal lobe was observed
(p < 0.05), including in hippocampal volume (A) and grey matter (GM) density
(B), mean temporal lobe cortical thickness (C), and mean temporal lobe GM
density (D). In all evaluated regions, E-MCI participants showed more
temporal lobe atrophy than HC participants. In addition, APOE ε4 status was
significantly associated with mean temporal lobe GM density, with APOE
ε4− participants showing smaller mean temporal lobe GM density than

APOE ε4+ participants. Finally, a significant interaction effect of diagnosis
and APOE ε4 status was observed in mean temporal lobe cortical thickness,
with ε4− HC participants showing thicker mean temporal lobes than all other
groups. All analyses were covaried for age, gender, education, handedness,
and total intracranial volume (ICV). The total number of participants for each
analysis is indicated on each graph (Panels A–D). Note: Thirteen participants
were excluded from the GM density analyses, but not the cortical thickness
and volumetric analyses, for failed VBM segmentation (3 HC ε4−, 2 HC ε4+,
4 E-MCI ε4−, 4 E-MCI ε4+).

both diagnosis (p = 0.041) and ε4 status (p < 0.001; Figure 4B).
E-MCI patients had higher tau levels than HC participants and
ε4+ participants had higher levels than ε4− participants. Finally,
an interaction between diagnosis and ε4 status on p-tau was also
observed (p = 0.046), primarily driven by a higher level of p-tau
in ε4+ HC and E-MCI participants (Figure 4C).

DISCUSSION
This study provides a comprehensive evaluation of the impact
of APOE ε4 status on cognition, cognitive complaints, amy-
loid deposition, neurodegeneration, and CSF Aβ, tau, and p-tau
levels in E-MCI and HC. As expected, we observed a signifi-
cant association of diagnosis with clinical and cognitive status.
Furthermore, diagnosis was associated with neurodegeneration
and CSF tau and p-tau levels but not with amyloid deposition.

Cognitive performance, amyloid deposition, temporal lobe atro-
phy, and CSF tau and p-tau levels were significantly associated
with ε4 status, with ε4+ participants showing poorer cognition,
less temporal lobe atrophy, and higher CSF tau and p-tau levels.
ε4+ participants also showed greater cortical amyloid deposition
and lower CSF Aβ levels. Finally, an interaction between diagno-
sis and ε4 status was observed for memory performance, temporal
lobe cortical thickness, and CSF p-tau levels. Overall, the results
suggest that APOE ε4 status impacts AD-related pathological and
clinical changes in E-MCI and HC.

The effect of APOE genotype on amyloid deposition has been
shown previously, including in middle-aged and older cognitively
healthy adults, as well as patients with L-MCI and AD (Drzezga
et al., 2009; Shaw et al., 2009; Morris et al., 2010; Fleisher et al.,
2011; Tosun et al., 2011). Biochemically, APOE genotype has
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FIGURE 4 | Effects of APOE ε4 status and diagnosis on CSF protein

levels in E-MCI and HC participants. Diagnostic group and APOE ε4
status significantly affected CSF levels of Aβ (A), total tau (B), and p-tau
(C). CSF Aβ was significantly associated to APOE ε4 status (p < 0.001),
with APOE ε4+ E-MCI and HC participants showing lower levels of Aβ

than APOE ε4− E-MCI and HC participants, regardless of diagnosis. Total
tau levels were significantly affected by both diagnosis (p < 0.05) and
APOE ε4 status (p < 0.001), with E-MCI patients showing higher total tau

levels than HC participants and APOE ε4+ showing higher levels than
APOE ε4− participants. Finally, an interaction between diagnostic status
and APOE ε4 status on CSF p-tau levels was also observed (p < 0.05),
primarily driven by a higher level of p-tau in APOE ε4+ HC and E-MCI
participants relative to APOE ε4− HC and E-MCI participants. The total
number of participants in each analysis is shown for each graph (Panels
A–C). Note: See text for description of participants excluded from the
CSF analysis.

been shown to affect Aβ clearance rate, with the APOE ε4 iso-
form showing significantly slower clearance (Deane et al., 2008;
Castellano et al., 2011; Holtzman et al., 2012). The lack of diag-
nostic effect on amyloid deposition in this study suggests that
in the earliest stages of cognitive change, APOE ε4 status has a
stronger relationship to amyloid deposition than cognitive status.

The additional findings of a diagnostic effect on cognition,
cognitive complaints, neurodegeneration, and CSF tau and p-tau
levels underscore the importance of E-MCI as a diagnostic entity.
Thus, this report has notable clinical implications, particularly
in the potential implementation and utilization of E-MCI as a
clinical diagnostic entity. Patients with E-MCI show changes in
cognition and selected biomarkers, suggesting that these individ-
uals may have a higher likelihood of clinical progression. The
association of cognition and complaints to atrophic changes,
rather than amyloid levels, supports E-MCI as an intermediate
stage with pathology beyond amyloid accumulation.

These results further support the Jack et al. model of AD
biomarkers, suggesting that changes in cognition and neurode-
generation occur after measurable amyloid accumulation (Saykin
et al., 2010; Jack et al., 2011). Additionally, APOE ε4 genotype
may alter the hypothesized sigmoidal curves, in particular amy-
loid accumulation. These results also indicate the importance
of genetic background in determining likelihood and extent of
amyloid accumulation, even in preclinical stages, which may be
particularly important in clinical trial enrollment. Further, in the
era of personalized medicine, the implications of APOE geno-
type disclosure to patients in a clinical setting must be carefully
considered, given the impact of APOE on AD risk and amyloid
deposition (Green et al., 2009; Roberts et al., 2011).

The observed greater temporal lobe cortical thickness and
GM density in ε4+ participants, particularly in HC, is some-
what unexpected and may be related to the modest sample size
of the ε4+ HC group. However, previous studies have observed
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increased cortical thickness, including in middle-aged APOE ε4
positive participants (Espeseth et al., 2008), in cognitively HC
who are transitioning to become CSF Aβ biomarker positive
(Fortea et al., 2011), and in asymptomatic patients positive for
a PSEN1 mutation more than 9 years prior to the clinical onset
(Fortea et al., 2010). Thus, future studies including longitudi-
nal follow-up with an expanded sample will be important in
determining the significance of this finding.

The present study has a few notable limitations. First, we eval-
uated the effect of APOE ε4 status on AD biomarkers in only HC
and E-MCI rather than across the disease spectrum. Although our
goal was to evaluate APOE in the earliest stages of AD, future stud-
ies assessing the full clinical spectrum are warranted. In addition,
we did not evaluate all known biomarkers of AD, including FDG
PET or advanced MRI techniques (i.e., diffusion tensor imaging,
resting-state functional MRI, etc.). These measures are available
in subsets of the ADNI-GO/2 cohort and thus, future studies eval-
uating these measures would augment the findings of the present
report. Thirdly, genome-wide genetic data for this cohort was
recently released. Future studies assessing other variants may pro-
vide information about the role of genetics in very early stages of
AD. Finally, the present study evaluates only cross-sectional mea-
sures. Future studies using longitudinal and clinical outcome data
will allow assessment of the role of APOE in progression of HC
and E-MCI.

In summary, we assessed the role of APOE ε4 status on clin-
ical and cognitive measures, cognitive complaints, and imaging
and CSF biomarkers in HC and E-MCI participants from the
ADNI-GO/2 cohort. We determined that APOE ε4 status is asso-
ciated with increased amyloid deposition in both HC and E-MCI,
while diagnostic category is associated with measures of cog-
nition and cognitive complaints, as well as neurodegeneration.
Therefore, we conclude that APOE is an important mediator of
amyloid pathology in the earliest stages of AD-associated clinical
decline.
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