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Abstract

This paper develops a theoretical framework for studying contract and en-
forcement in settings of complete, but unverifiable, information. The main
point of the paper is that the consideration of renegotiation necessitates for-
mal examination of other technological constraints, especially those having to
do with the timing and nature of inalienable productive decisions. The main
technical contributions include (a) results that characterize of the sets of imple-
mentable state-contingent payoffs under various assumptions about renegotia-
tion opportunities, and (b) a result establishing conditions under which, when
trading opportunities are durable and trade decisions are reversible, station-
ary contracts are optimal. The analysis refutes the validity of the “mechanism
design with ex post renegotiation” program, it demonstrates the validity of
other mechanism design models in dynamic environments, and it highlights
the need for a more structured game-theoretic framework. JEL Classification:
C70, D74, K10.
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Economic models of contract have yielded important insights regarding the na-
ture of contractual imperfections, optimal contractual form, and contractual scope.
Many of the insights derive from mechanism design analysis, which strips away insti-
tutional details to focus on just a few fundamental ingredients. Mechanism design is
an abstract and elegant methodology. The mathematical elegance comes at a cost,
however, to the extent that real institutions and technology limit the formation and
enforcement of contracts.
Researchers have rightly turned their attention to the actual constraints that

institutions impose, in an attempt to clarify our understanding of contractual imper-
fections and to inform the design of enforcement systems. One issue that has received
a great deal of attention is the possibility that parties can renegotiate in the midst of a
contractual relationship. Hart and Moore’s (1988) seminal article shows how renego-
tiation following specific investments can greatly inhibit the parties’ ability to attain
an efficient outcome. Recently, theorists have attempted to incorporate renegotiation
constraints into otherwise standard mechanism design analysis. Maskin and Moore
(1999) developed the basic mechanism design with ex post renegotiation (MDER) pro-
gram, which assumes that parties can renegotiate the contractually-specified outcome
after sending messages to an external enforcer. Maskin and Moore’s methodology and
characterization results have been widely accepted and employed.1

In this paper, I study how renegotiation opportunities interact with the productive
technology of contractual relationships. Specifically, I do two things. First, I show
that, in order to adequately address renegotiation, we must account for the technol-
ogy of trade. In other words, our models must explicitly describe the timing and
nature of productive actions. Second, I develop a general analytical framework and I
characterize the set of implementable outcomes under a variety of assumptions about
when renegotiation can take place. My main technical result is that, for most envi-
ronments in which trade decisions can be reversed, stationary contracts are optimal
and implementability does not depend on the degree to which trading opportunities
are durable.
My results do not challenge the legitimacy of mechanism design theory for the

study of contract. However, my results reveal that the application of mechanism
design theory can be seriously flawed if one does not incorporate the proper techno-
logical constraints. Indeed, I show that a segment of the contract theory literature
has such a flaw. Specifically, I find that the popular MDER program never accurately
describes the scope of contracting; this program can only be justified on the basis of
unreasonable incompleteness assumptions that are hidden in the current literature.

1The MDER program builds from Maskin’s (1999) seminal contribution on Nash implementation
(without renegotiation). The literature contains numerous, high-profile papers that adopt the MDER
program, including the important work of Che and Hausch (1999), Edlin and Reichelstein (1996),
Segal (1999), and Segal and Whinston (2000).
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On the other hand, I show that the “mechanism design with interim renegotiation”
(MDIR) program, which assumes that renegotiation occurs only before parties send
messages to an external enforcer, is justified in some settings.
To see the main idea behind my research, consider the mechanism design ideal.

The mechanism design program starts with a set of players, a set of states (describing
the informational setting), a set of outcomes (describing those things players care
about that can be controlled publicly), and a specification of preferences over states
and outcomes. For a contractual setting, the outcome is usually assumed to describe
verifiable trade decisions, which an external enforcement authority can compel. Then
the scope of enforceable contracts is given by the set of mechanisms (game forms).
The goal of contracting is to implement the players’ preferred state-contingent value
function, which either helps them share risk or gives them the incentive to make
investments that influence the state.
Within this mechanism design framework, institutional constraints are best mod-

elled as a limit on the class of mechanisms. To represent the “ex post renegoti-
ation” constraint, for example, theorists have focused on game forms with a final
outcome-renegotiation stage, where the players always negotiate–with fixed bargain-
ing weights–to an ex post efficient outcome, subject to some contractually-specified
default outcome. Ex post renegotiation is a convenient modeling component, be-
cause the resulting constrained mechanism design problem can be easily transformed
into a standard unconstrained problem. To get the unconstrained representation,
one simply redefines the players’ payoffs over outcomes to be the post-renegotiation
payoffs.2

The problem with abstract assumptions such as “ex post renegotiation” is that,
because they have no direct institutional foundation, they are difficult to interpret.
Questions such as “Does renegotiation occur before or after verifiable trade deci-
sions?” and “How does an external enforcer compel a particular trade decision when
players can renegotiate ex post?” have no clear answers. To provide answers to these
questions, and to understand the effect of renegotiation opportunities, one must sort
out the timing of trade, enforcement, and renegotiation. This requires dispensing
with the treatment of verifiable trade decisions as “public.”
My framework has a more detailed theoretical foundation than is common in the

literature. I develop a structured, game-theoretic model that explicitly accounts for
the following essential elements: (a) the timing and nature of individual, inalien-
able decisions; (b) the manner in which the external enforcer compels behavior; and
(c) at what times the parties have the opportunity to renegotiate their contract.3

2On a technical level, ex post renegotiation also creates useful theoretical regularities. Segal and
Whinston’s (2000) differential analysis takes advantage of these.

3My approach is thus allied with that of Hart and Moore (1988), MacLeod and Malcomson
(1993), and Nöldeke and Schmidt (1995), who model individual trade decisions. I elaborate on this
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With these elements in place, one can clearly describe and interpret renegotiation
constraints. Regarding (a), observe that, in reality, most trade decisions are inalien-
able; for example, a buyer and a seller cannot instruct the court to deliver the good
that they wish to exchange.4 Thus, on (b), courts do not enforce trading outcomes
by actually making the trade decisions for the contracting parties. Rather, enforce-
ment occurs via transfers and penalties that courts compel conditional on the parties’
verifiable, individual trade decisions.5

The key observation–which is obvious once trade decisions are formally modelled–
is that there are two ways of building options into contracts. First, a contract can
trigger externally enforced transfers on the basis of whether a party sends a partic-
ular verifiable message before the trading opportunity. Second, the trade decisions
themselves may serve as options, with the externally enforced transfer simply a func-
tion of the parties’ behavior.6 There is no practical difference between using these
two types of options in the absence of renegotiation opportunities. However, when
renegotiation is possible, its effect depends on whether it can occur (i) before the
parties send messages or (ii) between the message phase and when the parties make
trade decisions. In the former case, renegotiation affects implementability exactly as
characterized by the MDIR program. In the latter case, message-based options are
subject to renegotiation. Parties can avoid the detrimental consequences of renego-
tiation by using trade decisions as options, but the technology of trade limits the
scope of this scheme. Implementability in this case is not characterized by any of the
literature’s standard mechanism design programs.
The following section contains the analysis of an extended example, in which the

contracting parties face a nondurable trading opportunity. The example introduces
my modeling framework and it illustrates my basic points. I examine three different
settings that are distinguished by when, if ever, the contracting parties can renegotiate
their contract. I characterize the set of implementable state-contingent payoff vectors

in the next section.
4Or, at least, the court would not honor such a request. In a mechanism design model, inalienable

trade decisions imply a constraint on the class of mechanisms. For example, suppose that, in a
particular trading relationship, the seller must decide whether to deliver intermediate good A, good
B, or nothing. Then, the mechanism must be a game form in which the seller makes this decision
at some point. Because the decision is inalienable, we cannot have a mechanism that specifies only,
say, the “good A” and “nothing” outcomes (so that the seller is not allowed to choose “good A”).

5Specific performance, for instance, is a court order to act (under penalty of contempt) rather
than the court taking the action on behalf of the contracting party.

6Mechanism design models study options of the first type; more structured models, such as
Nöldeke and Schmidt’s (1995), focus on the second type. The law treats option generally, as a limit
on a parties “power to revoke an offer” (Section 25, Restatement (Second) of Contracts; see Barnett
1999). In addition to more conventional forms, options are implicitly created by liquidated damage
provisions and standard breach remedies. (A party has the option of breaching and then paying the
damage amount.)
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for each setting and I relate them to the set identified by the standard mechanism
design programs from the literature.
Sections 2-5 define and analyze my general modeling framework. Section 2 de-

scribes a “period” of interaction, in which the contracting parties form and renegotiate
their contract, make trade decisions, and interact with the external enforcer. In Sec-
tion 3, I derive necessary conditions for the implementation of state-contingent payoff
vectors under various assumptions about when the parties can renegotiate.
In Section 4, I explain how to model settings in which the trading opportunities are

durable and trade decisions are reversible. In such settings, the parties interact over
an infinite number of periods. The parties can make any particular trade decision
in one period and then reverse it in a future period. Parties can write long-term
contracts and they can renegotiate at various dates within a period.
Section 5 contains my technical results. I provide a theorem that ranks by inclusion

the sets of implementable state-contingent payoffs under various assumptions about
renegotiation. This result formalizes for a very general environment what the example
of Section 1 demonstrates. I then present the main result–that for most of the
settings studied here, stationary contracts are always optimal. This result implies
that the parties’ long-term contracting problem can be reduced to a simple static
problem, which has important positive and normative implications and clarifies the
proper use of mechanism design theory. The optimality of stationary contracts further
implies that the extent of durability is irrelevant to the contracting problem, which
gives a useful benchmark for future theoretical work.
Section 6 comprises two examples that further clarify the shortcomings of the

MDER program while confirming, with qualifications, that hold-up is indeed a prob-
lem in some contractual relationships. Section 7 contains concluding remarks.
Numerous authors have argued for the kind of research reported herein. Hurwicz

(1994) speaks of the importance of incorporating institutional constraints into de-
sign problems–a step that, for the most part, has yet to be taken in any general,
compelling way. He suggests that institutional constraints should be represented as
limiting design to a class of game forms, whereby the “ ‘desired’ game form [is em-
bedded in what he calls] the ‘natural’ game form” (p.12). My framework may be
interpreted as this natural game form. Anderlini, Felli, and Postlewaite (2001), Segal
and Whinston (2000), and others recognize the need to study technological and insti-
tutional constraints in contracting environments. Furthermore, the contract theory
literature has seen several debates regarding renegotiation and its relation to mes-
sages and productive actions.7 Against this backdrop, my message should be clearly

7For example, Nöldeke and Schmidt (1995) point out that Hart and Moore’s (1988) underinvest-
ment problem disappears if the parties’ individual trade decisions are verifiable, rather than just
partially verifiable. Edlin and Hermalin (2000) argue that Nöldeke and Schmidt (1998) and Bernheim
and Whinston (1998) incorrectly model the timing of options, investment, and renegotiation–that,
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understood: To make sense of modeling choices and to have an instructive debate, we
must use a theoretical framework that explicitly accounts for the technology of trade
and enforcement.

1 An Example

Consider a simple contractual setting, featuring a buyer, a seller, and an external en-
forcement authority (the court). To be concrete, imagine that the buyer is a masonry
supply company that hopes to gain new customers at a regional trade show. The
seller is an advertisement agency. The buyer wishes to hire the seller to develop an
advertising package for the trade show.
The parties’ payoffs depend on (a) specific investments, (b) whether the buyer

adopts the advertisement package that is developed by the seller, and (c) monetary
transfers. The parties’ investments determine the state of the relationship θ. Suppose
that θ ∈ {H,L}, where H indicates the “high” state–meaning the advertising package
will be successful–and L denotes the “low” state–where the advertisement will not
be successful. The buyer’s decision to adopt the advertisement can also be described
as “the buyer consummates the trade” or “the buyer accepts delivery.”
Above any instantaneous investment costs, the payoffs are defined as follows. In

state H, if the buyer adopts the advertisement package and makes a monetary transfer
p to the seller, then the buyer gets 5− p and the seller gets 3 + p. The buyer’s value
of 5 here is the profit generated by a successful advertisement. The seller’s value of 3
reflects the extra profit the advertising agency will receive from future clients due to
its public success with the masonry firm. In state H, if the buyer decides not to adopt
the advertisement package yet transfers p to the seller, then the buyer gets −p and
the seller gets p. In state L, the advertisement package is worthless to both the buyer
and the seller; in this case, regardless of whether the buyer adopts the advertisement,
the buyer obtains −p and the seller obtains p.
Assume that the state is jointly observed by the contracting parties but that it

cannot be verified to the external enforcement authority. On the other hand, the
trade decision and any messages sent by the parties are verifiable. The trade decision
in this simple example is the individual choice of the buyer as to whether to adopt
the advertisement for the trade show. The trading opportunity is nondurable–that
is, the buyer’s decision of whether to adopt the advertisement cannot be reversed.8

because of ex post renegotiation following opportunities to exercise an option, hold-up is a severe
problem. I comment on this in the Conclusion. In work that criticizes Hart and Moore’s analysis
of incomplete contracts, Lyon and Rasmusen (2001) argue that parties should, in reality, be able to
rescind and change option orders after an opportunity for renegotiation expires. See also MacLeod
(2001) on renegotiation and the timing of the resolution of uncertainty.

8The buyer must make his trade decisions just before the trade show begins. Once the trade
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Buyer and seller establish a contract.
Unverifiable investments determine the state.

[Possible renegotiation of the contract.]
Parties send verifiable messages..

[Possible renegotiation of the contract.]
Buyer makes a verifiable decision whether to adopt.
External enforcer compels a transfer.

Date 1
2
3
4
5
6
7

Figure 1: Stages of the relationship in the example.

Finally, the external enforcer’s role is to compel transfers between the parties on the
basis of verifiable information, as specified by the parties’ contract.

Modeling the Contractual Relationship

To model this contractual setting, I examine a class of game forms that explicitly
account for (a) the timing and nature of individual, inalienable decisions, (b) the
manner in which the external enforcer compels behavior, and (c) the opportunities
parties’ have to renegotiate their contract.9 Specifically, I suppose that the parties
interact over seven dates, as shown in Figure 1.
At Date 1, the buyer and the seller form a contract, which specifies a court-

enforced transfer p that is to be compelled at Date 7, conditional on verifiable events.
At Date 2, investments are made and the state θ is realized. I do not bother modeling
the actual investment decisions, or the investment costs, because the analysis will only
concern how future payoffs (after Date 2) can be conditioned on the state.
At Date 4, the parties send verifiable messages. The trading opportunity occurs

at Date 6. Here, the buyer individually decides whether or not to adopt the adver-
tisement. Finally, at Date 7, the court automatically obtains the parties’ contract,
observes the messages (from Date 4) and the buyer’s trade decisions (from Date 6),
and compels a transfer p from the buyer to the seller as directed by the contract.10

show ends, there is no use for the advertisement and there is no way to undo the advertisement if it
was adopted.

9Thus, like Hart and Moore (1988), I explicitly model the trade decisions and the external
enforcer’s role. In this example and in my general model, the trade decisions are fully verifiable,
as is commonly assumed in the “complete contract” theory literature. Hart and Moore (1988) and
MacLeod and Malcomson (1993) study settings in which trade decisions are only partially verifiable.
Nöldeke and Schmidt (1995) study the variant of Hart and Moore’s model in which the trade decisions
are fully verifiable.
10I assume that the contract cannot direct the court to burn the parties’ money by, say, transferring

it to a third party. This assumption is justified by both an institutional reality–courts do not enforce
penalties–and a renegotiation opportunity–the contracting parties would recontract just before the
court acts. Regarding the assumption that verifiable information is automatically transmitted to
the external enforcer, see Bull and Watson (2001) and Bull (2001).
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The payoffs are then as described above.
The contracting parties may have the opportunity to renegotiate their contract

at Date 3 and/or Date 5. In a renegotiation phase, the parties replace their existing
contract with a new one. I assume that the new contract maximizes their joint payoff
in the current state (over all feasible contracts) and that it divides the surplus of rene-
gotiation equally between them. In other words, renegotiation is resolved according
to standard bargaining solutions such as the Nash solution. The disagreement point
is defined by the payoffs the parties would have received were they to continue under
their original contract.11 If the parties renegotiate, then their new contract is the one
submitted to the external enforcer at Date 7.
To have a successful relationship, the parties must design a contract at Date 1

that will align their incentives to invest at Date 2. This critically depends on how the
payoffs from Date 3 can be made contingent on the state. For example, suppose that
only the seller makes an investment at Date 2. Suppose the seller chooses between a
large investment, at an immediate monetary cost of 5, and a small investment, which
costs 0. In this case, efficiency requires that the seller make the large investment at
Date 2 and that the buyer adopt the advertisement at Date 6, for a total joint payoff
of (5 + 3) − 5 = 3. However, the seller will not have the incentive to invest unless
the difference between his transfer in state H and his transfer in state L is at least 2.
That is, from the beginning of Date 3, his payoff in state H must be at least 5 greater
than is his payoff in state L.
A state-contingent value function is a function v : {H,L} → R2 that gives the

parties’ payoffs from the beginning of Date 3. The essential contract theory analysis
involves determining the set of implementable state-contingent value functions. The
results depend, of course, on our theory of behavior at Dates 3 through 6 and whether
renegotiation is possible. Using the example, I next review how analysis is normally
done by contract theorists and I demonstrate why we must pay closer attention to
the technology of trade.

Forcing Contracts and Mechanism Design

In the example, the buyer’s trade decision is verifiable, so we can think of the
external enforcer as forcing the buyer to take the particular action that the contract
directs. This can be done using a forcing contract, which specifies a large transfer from
the buyer to the seller in the event that the buyer does not take the contractually-
specified action. For instance, the buyer can be forced to adopt the advertisement

11Fixed bargaining weights capture the idea that renegotiation activity is non-contractible, so
that the parties can exercise bargaining power and hold each other up during the relationship.
This assumption is realistic for many applied settings and it is a key ingredient of most recent
contract models in the literature. It is standard in the literature to model renegotiation using a
cooperative game solution, although in some papers, such as Hart and Moore (1988) and MacLeod
and Malcomson (1993), theorists analyze a non-cooperative model of bargaining.
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by a contract that specifies a transfer of p̂ if the buyer adopts and p̂+ 6 if the buyer
does not adopt, for any given p̂. Regardless of the state, the buyer then has a strict
incentive to adopt the advertisement. With this contract, the outcome of Dates 6
and 7 will be adoption of the advertisement and a transfer of p̂.
Forcing contracts lie implicitly behind the literature’s treatment of verifiable deci-

sions as public (essentially alienable). The traditional view is that, because the buyer’s
trade decision is verifiable and can therefore be forced, we might as well assume–for
modeling simplicity and elegance–that it can be taken out of the buyer’s hands. In
the mechanism design framework, the buyer’s trade decision thus becomes an element
of the abstract outcome, which the mechanism compels as a function of the parties’
messages. Then one can perform standard mechanism design analysis, justified by
the fact that the full scope of implementable values can be achieved by conditioning
the outcome on the Date 4 messages.12 The mechanism design problem is defined by
the set of states (here H and L), the set of outcomes (here monetary transfers and
whether the advertisement is adopted), and the specification of payoffs. Implementa-
tion means that a state-contingent value function arises from equilibrium play in the
mechanism.13

Mechanism Design with Interim Renegotiation (MDIR)

I first perform the analysis of the example for the case in which renegotiation
occurs only at Date 3, which is after parties observe the state but before the contrac-
tual mechanism is played. I call this the interim renegotiation case. To calculate the
set of implementable state-contingent value functions in this setting, we can focus
on forcing contracts. Thus, the external enforcer can impose any transfer p from
the buyer to the seller, and the enforcer can also force the buyer to adopt or not
adopt the advertisement. If the enforcer compels adoption, then the payoff vector is
(5− p, 3 + p) in the high state and (−p, p) in the low state. If the enforcer compels
the buyer not to adopt, then the payoff vector is (−p, p) regardless of the state.
By the revelation principle, we can constrain attention to direct-revelation mech-

anisms. These are game forms in which the players individually submit reports of
the state (at Date 4) and then the external enforcer compels the prescription of a
mapping from the space of message profiles to the space of outcomes.
Because renegotiation only occurs before the message phase, the contract may

12Most models in the mechanism design and contract theory literature implicitly associate verifi-
ability with forcing contracts. Some game theory models, such as that of Bernheim and Whinston
(1998), also take this view.
13Throughout this paper, I focus on “implementation” in the weak sense of not requiring unique-

ness of equilibrium in each state. I find this a reasonable notion for contractual settings. Regardless
of your view about this, however, much of my analysis concerns settings with “ex post renegotia-
tion,” in which multiplicity is not a problem. Furthermore the multiplicity issue should be tackled
with a theory of the self-enforced component of contract. See the Conclusion on this point.
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lead to an ex post inefficient outcome in some state, for some message profiles. How-
ever, renegotiation at Date 3 implies that, in both states, an ex post efficient outcome
occurs in equilibrium. To incorporate renegotiation, we constrain attention to mech-
anisms that specify adoption when (H,H) is the message profile. We can further
limit attention to mechanisms that specify no adoption when message profiles (H,L)
and (L,H) are sent, because this makes for the most relaxed incentive constraints.
Let pθθ denote the transfer specified by the mechanism for message profile (θ, θI), for
θ, θI ∈ Θ.
The game form implies a message game for each state, as pictured below.

– ,  p pHH HH – ,  p pHL HL

– ,  p pLH LH – ,  p pLL LL

5 – ,  3 + p pHH HH – ,  p pHL HL

– ,  p pLH LH 5 – ,  3 + p pLL LL

H

L

H L H L

H

L

B
S

B
S

Message game in state L Message game in state H

We look for equilibria with truthful reporting. For truthful reporting to be a Nash
equilibrium in each state, it must be that pLH ≤ pLL ≤ pHL, 5 − pHH ≥ −pLH , and
3 + pHH ≥ pHL. Combining these inequalities yields

pLL + 5 ≥ pHH ≥ pLL − 3,

which implies that the set of implementable state-contingent value functions in the
MDIR setting is:

v :{H,L}→ R2 v(L) = (α,−α), v(H) = (5 + α− β, 3− α+ β),

for any α ∈ R and β ∈ [−3, 5] . (1)

In each payoff vector, I list the buyer’s payoff first.

Mechanism Design with Ex Post Renegotiation (MDER)

I next turn to the case in which renegotiation occurs at Date 5. That is, parties can
renegotiate after sending messages (playing their part of the mechanism) but before
the external enforcer imposes the outcome. This is the ex post renegotiation case. I
first calculate how standard mechanism design theory is used to characterize the set
of implementable values–the mechanism design with ex post renegotiation program.
The basic methodology is ascribed to Maskin and Moore (1999) and has been applied
widely by many theorists. Incidentally, it is worth noting that, if renegotiation is
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possible at Date 5, then implementability is not affected by whether renegotiation
can also occur at Date 3.14

The simplest way of performing the MDER analysis is to redefine the mechanism
design problem by internalizing the renegotiation activity. Specifically, maintaining
the set of states and outcomes, we can respecify payoffs to incorporate the renego-
tiation. For example, consider the outcome in which no transfer is made and the
advertisement is not adopted. In the standard model without renegotiation, this out-
come would yield the payoff vector (0, 0) in both states. However, if renegotiation
can occur at Date 5, the parties would change the contract in state H; they would
specify that the advertisement be adopted and that the surplus be divided equally
(by selecting a transfer of p = 1). Thus, with ex post renegotiation, the payoff vector
of the “no transfer, no adoption” outcome in state H is (4, 4).
As with the interim renegotiation case, we look at direct-revelation mechanisms

and truthful-reporting equilibria. We can assume that the mechanism specifies “adop-
tion of the advertisement” when the report profile is (H,H) and when is it (L,L).15

Furthermore, it is easy to verify that the incentive constraints are most relaxed if
“no adoption” is specified for report profile (L,H) and “adoption” is specified for
profile (H,L). Note that the mechanism would be renegotiated in state H in the off-
equilibrium case in which the buyer reports L while the seller reports H. Internalizing
the renegotiation activity, a game form implies the following message games in the
two states.

– ,  p pHH HH – ,  p pHL HL

– ,  p pLH LH – ,  p pLL LL

5 – ,  3 + p pHH HH 5 – ,  3 + p pHL HL

4 – ,  4 + p pLH LH 5 – ,  3 + p pLL LL

H

L

H L H L

H

L

B
S

B
S

Message game in state L Message game in state H

As in the previous subsection, pθθ denotes the transfer specified by the mechanism
for message profile (θ, θI).
For truthful reporting to be a Nash equilibrium in each state, it must be that

pLH ≤ pLL ≤ pHL, 5 − pHH ≥ 4 − pLH , and 3 + pHH ≥ 3 + pHL. Combining these
14Renegotiation at Date 5 implies ex post efficiency in both states, which means there is no surplus

to be obtained from earlier renegotiation.
15Any incentive-compatible mechanism that specifies “no adoption” when the report profile is

(H,H) will be renegotiated in the H state. One can alter the mechanism so that the renegotiated
outcome is specified for (H,H), without affecting the incentive conditions. This is the “renegotiation-
proofness principle” in action (see Brennan and Watson, 2001).
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inequalities yields
pLL + 1 ≥ pHH ≥ pLL.

The set of implementable state-contingent value functions for the MDER program is
thus:

v :{H,L}→ R2 v(L) = (α,−α), v(H) = (5 + α− β, 3− α+ β),

for any α ∈ R and β ∈ [0, 1] . (2)

Note that the opportunity to renegotiate at Date 5, specifically following out-of-
equilibrium message profiles, causes a refinement in the set of implementable values
relative to the case of interim renegotiation.

Trade Decisions as Options

Everything that the mechanism design program identifies to be implementable
can be achieved, in practice, with forcing contracts. However, there is no reason to
expect that parties would limit themselves to forcing contracts and, therefore, there
is no reason to limit our theoretical analysis to such contractual forms. I next show
that, when there is ex post renegotiation, the set of implementable values significantly
expands when parties depart from forcing contracts and, instead, use trade decisions
as options.
Suppose that at Date 1 the parties write the following contract: If the buyer

adopts the advertisement, then he must pay pI+β to the seller; if the buyer does not
adopt, then he pays pI; further, the external enforcer is instructed to ignore messages
sent at Date 4. For β ∈ (0, 5), this is not a forcing contract–that is, it neither
compels the buyer to adopt the advertisement in both states, nor compels the buyer
to not adopt the advertisement in both states. Instead, this is an option contract,
but one that uses the buyer’s trade decision, rather than the buyer’s message, as the
way to exercise the option. With β ∈ [0, 5], the buyer has the incentive to adopt the
advertisement in state H and not to adopt in state L. From Date 6, this contract
yields a payoff vector of (5 − pI − β, 3 + pI + β) in state H and (−pI, pI) in state
L. Because the contract leads to the efficient trade decision in each state, it would
not be renegotiated at either Date 5 or Date 3. The contract thus implements value
(5− pI − β, 3 + pI + β) in state H and (−pI, pI) in state L.
Clearly, by using the trade decision as an option, the parties are able to reduce

the detrimental effect of renegotiation at Date 5. Because the trading opportunity is
nondurable, there is no way for the parties to reverse it through renegotiation after
Date 6. The parties could use a more complicated contract that involves transfers
contingent on both trade decisions and messages. However, in this example, more
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complicated contracts cannot improve on the scope of the simple option scheme de-
scribed in the preceding paragraph. Thus, the set of implementable state-contingent
value functions in the case of ex post renegotiation is:

v :{H,L}→ R2 v(L) = (α,−α), v(H) = (5 + α− β, 3− α+ β),

for any α ∈ R and β ∈ [0, 5] . (3)

Preliminary Comments on Ex Post Renegotiation

With the results of the example in hand, it is worthwhile to take stock and reflect
a bit before proceeding with the general analysis.
Note that, in the case of ex post renegotiation, there is a discrepancy between

the set of implementable value functions and the strictly smaller set identified by the
MDER program. The MDER program misses how trade decisions can be used as
options, precisely because the MDER program treats trade decisions as part of the
abstract, public “outcome.”16 For this reason, we should reject the MDER program
as incorporating implicit assumptions about contractual incompleteness. We should
instead focus on structured models that incorporate the technology of trade and
enforcement, and, where appropriate, on the MDIR program.
In response to my assertion, a mechanism design theorist might be inclined to

conclude that I am mis-applying the MDER program. The theorist would argue that,
if we think the trading opportunity is nondurable (and so trade decisions can be used
as options without being reversed by renegotiation), then the set of implementable
values is actually characterized by the MDIR program. Segal and Whinston (2000)
and others take this position. However, the argument is flawed in two respects.
First, the MDIR program actually does not characterize the set of implementable

value functions for the case of renegotiation at Date 5. Comparing Expressions 1
and 3, the MDIR program supports β numbers between −3 and 5, while only num-
bers between 0 and 5 can be supported with ex post renegotiation. The problem is
that, in designing option contracts, the fixed technology of trade is not as flexible as
are messages. Thus, neither the MDER nor the MDIR programs accurately model
the masonry example with ex post renegotiation. The renegotiation opportunity, in
a sense, occurs “in the middle of the mechanism.” To analyze this renegotiation op-
portunity, one must examine the structured model that explicitly accounts for the
technology of trade and external enforcement. In fact, mechanism design method-
ology is applicable, but it relies on precise modeling of the technology of trade. In
particular, one cannot view the “outcome” as merely a specification of the transfer

16This suggests a more nuanced view of Bernheim and Whinston’s (1998) “strategic ambiguity,”
whereby external enforcement can mold incentives without forcing any particular action profile.
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and the trade decision. Rather, an “outcome” must indicate the trade decisions and
transfers that result in the different states, given the technology of trade and the
instructions for the external enforcer. My general model makes this formal.
Second, if one argues that the MDER program is inappropriate for settings with

nondurable trading opportunities, one still must justify applying the program to set-
tings with durable trading opportunities. You might think that the MDER program
characterizes settings in which trade decisions are reversible–for example, a good
delivered at time t can be returned at some future date tI–and where renegotiation
can occur between times at which trade decisions can be made and reversed. How-
ever, if trade decisions can be made at times t and tI then the parties should be able
to write a long-term contract that covers both times. Thus, we still have a setting
of “renegotiation within the mechanism” and we still need a structured model to ac-
count for the timing of trade decisions and renegotiation opportunities. My general
model incorporates these dynamic features and, as I prove in Section 5, it confirms
in general the failure of the MDER program to describe reality.

2 The Main Ingredients of

the General Framework

In this section, I describe in detail the main components of my general model of
contract. Relative to the example of Section 1, the general model has an arbitrary
trading technology and it also adds the following elements: (i) a verifiable, public
random variable, (ii) additional renegotiation opportunities, and (iii) an externally
enforced “continuation value,” which I use to model durability of the trading oppor-
tunity. The analysis in this section and the next assumes a fixed set of continuation
value functions. This set is treated as endogenous in Sections 4 and 5.
There are two contracting parties, whom I call “players.” Unverifiable events are

captured by the state θ, which I assume is an element of some set Θ. In the relation-
ship’s trading and enforcement phase, the players make verifiable trade decisions and
the external enforcer compels transfers and a state-contingent continuation value.
The trade decisions are represented as a ∈ A. The externally enforced transfer is
denoted y = (y1, y2), where yi is the monetary transfer to player i. I assume y ∈ R2

0,
where

R2
0 ≡ {y ∈ R2 | y1 + y2 = 0}.

Regarding the justification for such “balanced transfers,” recall footnote 10. The
continuation value function is given by x :Θ→ R2. I assume that x is an element of
some set X and that, for every θ ∈ Θ, max{x1(θ) + x2(θ) | x ∈ X} exists.
The players receive payoffs as a function of the state and the outcome of the

trading and enforcement phase. I assume that the payoffs are additive in money,
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Players establish a contract.
Unverifiable events determine the state, .θ

[Possible renegotiation of the contract.]
Players send verifiable messages, m.
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[Possible renegotiation of the contract.]

[Possible renegotiation of the contract.]

Trading/
enforcement

phase

Figure 2: A contractual relationship.

with the non-monetary component given by a function u :A×Θ→ R2. I also include
a discount factor δ, which measures the players’ relative preferences over immediate
and future gains. In state θ, with decision a, transfer y, and continuation value
function x, the payoff vector is

(1− δ) [u(a | θ) + y] + δx(θ).

I assume that u is bounded.
The contractual relationship runs over ten dates, as shown in Figure 2. At odd-

numbered dates, the players make joint contracting decisions–establishing a contract
at Date 1 and possibly renegotiating it later. At even-numbered dates through Date 8,
the players make joint observations and they make individual decisions–jointly ob-
serving the state at Date 2, sending verifiable messages at Date 4, jointly observing
a random variable at Date 6, and making trade decisions at Date 8. At Date 10, the
external enforcer compels transfers and the continuation value function.

Trading and Enforcement Phase

Dates 6 through 10 compose the trading and enforcement phase, which I now
describe in more detail. At Date 6, the players jointly observe the draw q of a public
random variable µ, which has support Q. The draw is verifiable. It will be sufficient to
assume that Q = [0, 1] and that µ is the uniform distribution. The players’ behavior
and external enforcement may be conditioned on q; otherwise, the draw has no direct
affect on payoffs.
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At Date 8, the players make inalienable trade decisions, which I assume are si-
multaneous and independent. Player i selects ai ∈ Ai. Thus, A = A1 ×A2. I assume
A is finite. The trade decisions are verifiable.
At Date 10, the external enforcer compels the transfer y and the continuation

value function x. These are conditioned on the verifiable draw q, on the verifiable
trade decision a, and on the message profile m, as specified by the players’ contract.
To focus on interaction in the trading and enforcement phase, at this point I take the
message profile as fixed. Thus, I write y = ŷ(q, a) and x = x̂(q, a) as the transfer and
the continuation value function that are specified by the contract for the contingency
in which q is the draw and a is the trade profile. The functions ŷ and x̂ are called
the externally enforced components of the players’ contract.
I shall, without loss of generality, ignore the possibility of renegotiation at Dates 7

and 9. Because players are risk-neutral, the effects of allowing renegotiation at Date 7
(just after draw q) are identical to the effects of allowing it only at Date 5 (just
before draw q), which I study in the next section. The justification behind ignoring
renegotiation at Date 9 at this point is that it will be covered by the analysis in
Sections 4 and 5.17

Given the state θ and the draw q, the externally enforced components of the
contract define a trading game, where the space of action profiles is A and the payoffs
are given by

(1− δ) [u(· | θ) + ŷ(q, ·)] + δx̂(q, ·)(θ).
I focus on pure strategy Nash equilibria of the trading game. Let â(q, θ) denote the
equilibrium action profile that is chosen by the players in state θ following draw q.
Taking the expectation over the random draw, the players’ expected payoff vector in
state θ is given by

w(θ) ≡ {(1− δ) [u(â(q, θ) | θ) + ŷ(q, â(q, θ))] + δx̂(q, â(q, θ))(θ)} dµ(q). (4)

The function w thus gives the state-contingent payoff vectors that can be achieved by
the appropriate choice of the externally enforced components ŷ and x̂ and equilibrium
selection â.
I use the term outcome for any function from Θ to R2. Think of an outcome,

therefore, as a state-contingent payoff that results from interaction in the trading
and enforcement phase; this should be differentiated from the “trade outcome,” which
only describes the physical trade decision and monetary transfer. The function w that
is defined above is an outcome.
Forcing contracts work in this general model just as they did in the example. For

instance, suppose the players want to have continuation value function x∗ and they
want to force themselves to play action profile a∗, regardless of the state. This can
17See the last paragraph in Section 4.
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accomplish by specifying x̂ and ŷ as follows. First, let x̂(q, a) ≡ x∗ for all q and a.
Second, let L be an upper bound on |ui(a | θ)|, for i = 1, 2. Then, to induce a∗, one
can define ŷ so that (i) for each a = (ai, a

∗
j) for which ai W= a∗i , we have ŷi(q, a) = −L

and ŷj(q, a) = L; and (ii) ŷ(q, a) = (0, 0) for every other profile a, for all q. That
is, each player is punished for not taking his part of the prescribed trade action.
Obviously, then, a∗ is the only Nash equilibrium of the trading game, in every state.

Definition 1: Externally enforced components ŷ and x̂ are called forcing if, for
every q, there is a unique Nash equilibrium of the trading game �A, (1 − δ)[u(· |
θ) + ŷ(q, ·)] + δx̂(q, ·)(θ)X and this equilibrium is independent of the state.

Let W (X, δ) be defined as the set of achievable outcomes, given X and δ, and
let W F (X, δ) be the subset of W that can be supported using externally enforced
components that are forcing. That is,

Definition 2: The setW (X, δ) contains w if and only if there are contracted transfer
and continuation value functions ŷ and x̂, and there is a function â :Q × Θ → A,
such that

(i) Equation 4 is satisfied and

(ii) â(q, θ) is a Nash equilibrium of �A, (1−δ)[u(· | θ)+ŷ(q, ·)]+δx̂(q, ·)(θ)X,
for every θ ∈ Θ and q ∈ Q.

The set W F (X, δ) contains w if and only if there are forcing components ŷ, and x̂
and a function â :Q×Θ→ A, such that (i) and (ii) are satisfied for every θ ∈ Θ and
q ∈ Q.
The following lemma identifies a useful property of the setsW (X, δ) andW F (X, δ).

Lemma 1: W (X, δ) andW F (X, δ) are closed under constant transfers. For example,
if w ∈W (X, δ) and if α ∈ R2

0 is a constant transfer, then w+α ∈W (X, δ) as well.
Proof: The result follows from the fact that one can add a constant transfer

α ∈ R2
0 to any given function ŷ without altering the players’ incentives in the trading

phase in any state. Q.E.D.

Contracted Mechanisms

The players’ contract specifies a mechanism, which maps messages sent at Date 4
to outcomes induced in the trading and enforcement phase.18 The revelation prin-
ciple applies in the following sense. We can restrict attention to direct-revelation
18One way of describing a mechanism is to explicitly write y as a function of m, q, and a. Equiv-

alently, one can isolate the trading and enforcement phase by writing y as a function of q and a,
noting how y induces an outcome in W , and then thinking of the contract as a mapping from the
messages to W . I adopt the latter characterization because it minimizes the amount of notation
needed for the analysis.
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mechanisms, each of which is defined by a message space M ≡ Θ2 and a function
f :M →W (X, δ). With such a mechanism, at Date 4 the parties simultaneously and
independently report the state. For any report profile m, the mechanism specifies
an element f(m) ∈ W (X, δ), which then determines the payoffs conditional on the
state. We can concentrate on equilibria of the mechanism in which the parties report
truthfully.19

Renegotiation

Renegotiation can occur at Dates 3, 5, 7, and 9, depending on what one assumes. I
have already addressed renegotiation at Dates 7 and 9, so now I focus on renegotiation
at Dates 3 and 5. We can think of these times as possible opportunities for the players
to discard their originally specified f mapping and replace it with another mapping f I.
I model renegotiation by supposing that the players divide the renegotiation surplus
according to fixed bargaining weights π1 and π2, which are nonnegative and sum to
one. The generalized Nash bargaining solution and several other common bargaining
solutions have this representation.
To be more precise, define

γ(θ, X, δ) ≡ max
w∈W (X,δ)

w1(θ) + w2(θ),

which is the maximal joint payoff that can be obtained in state θ. This joint payoff
can also be written

γ(θ, X, δ) = (1− δ)max
a∈A

[u1(a | θ) + u2(a | θ)] + δmax
x∈X

[x1(θ) + x2(θ)],

because it can be achieved by using a forcing contract. An outcome w is called
efficient in state θ if w1(θ) + w2(θ) = γ(θ,X, δ); otherwise, the outcome is inefficient
in state θ.
Suppose the original mechanism (M,f) would lead to outcome w in state θ. If

w is inefficient in state θ, then the players have a joint incentive to renegotiate the
mechanism. The renegotiation surplus is

r(w, θ,X, δ) ≡ γ(θ, X, δ)− w1(θ)− w2(θ).

The players will select a new mapping f I that induces an efficient outcome. Further,
the surplus will be divided according to the players’ bargaining weights, so that
player i obtains wi(θ) + πir(w, θ, X, δ).

19Regarding multiplicity of equilibria, recall footnote 13.
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3 Implementation Conditions Given X

A state-contingent value function is a function v : Θ → R2 that gives the players’
expected payoff vector from the start of Date 3, as a function of the state. The players’
contractual objective is to implement the particular function v of their choice. In this
section, I define and characterize the set of implementable value functions, given a
fixed set of continuation value functions X. I group the analysis into three categories,
distinguished by whether the players have the opportunity to renegotiate at Dates 3
and 5. The characterization lemmas in this section are all straightforward variations
of well-known theorems from the contract theory literature–in particular, due to
Maskin (1999), Maskin and Moore (1999), and Moore and Repullo (1988). I provide
the proofs of the first two lemmas; the others are proved similarly.

No Renegotiation

First consider the setting in which the players cannot renegotiate. A mechanism
(M, f) implies, for each state θ, a message game in which the players engage at Date 4.
The message game has action profiles given by M and payoffs defined by f(·)(θ). For
this setting, implementability is defined as follows.

Definition 3: A mechanism (M, f) is said to implement value function v if, for
each state θ, there is an equilibrium of the message game that leads to the payoff
vector v(θ). Value function v is said to be implementable if there is a mechanism
that implements it.

Let ΛN(X, δ) be the set of implementable value functions, under the assumption
that the players cannot renegotiate.

Lemma 2: v ∈ ΛN(X, δ) if and only if (i) for every θ ∈ Θ, there is an outcome
wθθ ∈ W (X, δ) such that wθθ(θ) = v(θ); and (ii) for every pair of states θ, θI ∈ Θ,
there is an outcome wθθ ∈W such that v1(θ

I) ≥ wθθ1 and v2(θ) ≥ wθθ
2 .

Proof: For any direct-revelation mechanism (Θ2, f), define wθ1θ2 ≡ f(θ1, θ2) for
all θ1, θ2 ∈ Θ. Observe that truthful reporting is a Nash equilibrium if and only if
wθθ1 ≥ wθ1θ1 and wθθ2 ≥ wθθ22 , for every θ ∈ Θ and all θ1, θ2 ∈ Θ. Combining this fact
with the definition of implementability produces the result. Q.E.D.

Interim Renegotiation

Next consider the setting in which renegotiation is possible at Date 3 but not at
Date 5. In other words, the players can renegotiate between the time that they jointly
learn the state and when the message game is played. In this setting, implementability
requires an additional condition–that the equilibrium of the message game is efficient
in every state. Let ΛI(X, δ) denote the set of implementable value functions when
there is interim renegotiation.
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Lemma 3: v ∈ ΛI(X, δ) if and only if (i) v1(θ)+ v2(θ) = γ(θ,X, δ) for every θ ∈ Θ;
and (ii) for every pair of states θ, θI ∈ Θ, there is an outcome wθθ ∈ W (X, δ) such
that v1(θ

I) ≥ wθθ1 and v2(θ) ≥ wθθ
2 .

Proof: First note that v ∈ ΛI(X, δ) implies v1(θ) + v2(θ) = γ(θ, X, δ) for every
θ ∈ Θ. This is because if, at Date 3, the players anticipate getting an inefficient
outcome in a given state, then they would renegotiate the mechanism to obtain an
efficient outcome. Next note that, if a state-contingent value function v satisfies
v1(θ) + v2(θ) = γ(θ,X, δ), then there is an outcome wθθ ∈ W (X δ) such that wθθ1 =
v1(θ) and w

θθ
2 = v2(θ). This follows from Lemma 1. Furthermore, observe that the

players cannot gain from renegotiating at Date 3 in state θ if they anticipate that
their messages will lead to an efficient outcome. Given these facts, the proof follows
the same steps used to prove Lemma 2. Q.E.D.

Ex Post Renegotiation

Finally, consider the case in which renegotiation is possible at Date 5–between
the time the players send messages and the beginning of the trading and enforcement
phase. The idea is that the players interact in the contracted mechanism, which leads
to an outcome w. But then, just before the outcome would be induced, the players
can renegotiate to obtain a different outcome. In this setting, renegotiation implies
efficient outcomes in every state and after every message profile in the mechanism.
To characterize implementability for this setting, we must incorporate renegotia-

tion into the definition of an outcome. The set of ex post renegotiation outcomes is
defined as

Z(X, δ) ≡ z :Θ→ R2 there is an outcome w ∈W (X, δ)

such that z(θ) = w(θ) + πr(w, θ,X, δ) for every θ ∈ Θ .

An ex post renegotiation outcome is a state-contingent payoff vector that results
when, in every state, the players renegotiate from an outcome in W (X, δ). One can
analyze mechanism design in the setting of ex post renegotiation by simply replacing
W (X, δ) with Z(X, δ)–that is, by thinking of the mechanism as a mapping from M
to Z(X, δ), rather than a mapping from M to W (X, δ). If we constrain attention to
forcing contracts, then the set of ex post renegotiation outcomes is

ZF (X, δ) ≡ z :Θ→ R2 there is an outcome w ∈W F (X, δ)

such that z(θ) = w(θ) + πr(w, θ, X, δ) for every θ ∈ Θ .

Note that all elements of Z and ZF are efficient in every state.
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Let ΛEP (X, δ) be the set of implementable value functions when there is ex post
renegotiation and let ΛEPF (X, δ) be the subset of value functions that are sup-
ported using forcing contracts. The popular MDER program studies precisely the
set ΛEPF (X, δ). As discussed in Section 1, this program identifies ΛEPF (X, δ) rather
than ΛEP (X, δ) since it treats trading decisions as alienable and public.

Lemma 4: v ∈ ΛEP (X, δ) if and only if (i) for every θ ∈ Θ, there is an outcome
zθθ ∈ Z(X, δ) such that zθθ(θ) = v(θ); and (ii) for every pair of states θ, θI ∈ Θ, there
is an outcome zθθ ∈ Z(X, δ) such that v1(θI) ≥ zθθ1 and v2(θ) ≥ zθθ2 .

Lemma 5: v ∈ ΛEPF (X, δ) if and only if (i) for every θ ∈ Θ, there is an outcome
zθθ ∈ ZF (X, δ) such that zθθ(θ) = v(θ); and (ii) for every pair of states θ, θI ∈ Θ,
there is an outcome zθθ ∈ ZF (X, δ) such that v1(θI) ≥ zθθ1 and v2(θ) ≥ zθθ2 .

4 Durability of the Trading Opportunity

Many contractual relationships have durable trading opportunities. For example, a
retail firm may contract with a computer software company to design and install
specialized software for inventory control. The software will generate for the retailer
a flow of value over time, starting as soon as the software is installed. Suppose the
software can be installed as early as in January; furthermore, if the seller fails to
install the software in January, it can still be installed in February, or March, or
later. However, if it is installed in, say, March, then the buyer will not obtain the
value of the software in January or February.
Durability implies that the trade decisions are at least partially reversible. For

example, the seller’s decision not to install the software in January can be reversed
by installing the software in February. Sometimes, trade decisions are fully reversible.
For instance, if the seller installs the software in January, then perhaps the software
can be uninstalled at any future time.
This section concerns contractual settings with durable, fully reversible trading

opportunities. To model durability and reversibility, I suppose that the players in-
teract over an infinite number of discrete “periods,” starting in Period 1.20 In each

20Jackson and Palfrey (2001) analyze a dynamic model that is, on first glance, similar to the
one I study here. Their model differs in important respects, however. It assumes that players can
unilaterally impose a default decision in each period, which gives players more power than would be
appropriate for a model of most contractual settings. It also abstracts from inalienable trade deci-
sions, durability, and reversibility. Interestingly, though, the proof of their result for nondiscounted
environments has a stationarity feature that foretells of the importance of stationarity in my model.
For another interesting, but less related, modeling exercise, see Kalai and Ledyard (1997). MacLeod
and Malcomson’s (1993) basic model also has a dynamic trading opportunity but they focus on sta-
tionary contracts; these authors also examine a multi-period contracting environment with a state
variable that follows a Markov process, and again impose a restriction on the class of contracts.
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period, play proceeds as in Figure 2: the players send messages as prescribed by a
contractual mechanism, the players make trade decisions, and the external enforcer
compels the transfers that the players’ contract prescribes. The state, which is real-
ized at Date 2 of Period 1, is fixed for the entire game. Thus, Dates 1 and 2 occur
only in Period 1; these dates are skipped in all other periods.
Preferences are given by the discounted and normalized sum of per-period payoffs,

calculated using discount factor δ. Thus, in state θ, the payoff vector from Date 3 in
Period 1 is

(1− δ)
∞

t=1

δt−1 u(at | θ) + yt ,

where {at, yt}∞t=1 denotes the sequence of trade decisions and monetary transfers. I
represent reversibility by assuming that the trade decision that is taken in one period
does not constrain trade decisions taken in succeeding periods and it has no direct
effect on the payoffs in future periods. For example, if the players make trade decision
a in the current period, then they can reverse it by selecting any other trade decision
aI in the next period. An infinite sequence of trade decision a means that a is never
reversed. The discount factor measures the degree of durability; setting δ close to 1
means a highly durable trading opportunity, whereas the opposite is captured with δ
close to 0.
The players can write long-term contracts that condition the transfer in a given

period on the entire verifiable history–messages, trade decisions, and draws in the
current period and in previous periods. From a given period, a contract’s implications
for the future can be summarized by the implied continuation value function. Thus,
instead of keeping track of the transfers a contract prescribes for future periods (as
well as the induced behavior), one can simply specify the continuation value function.
Because the contracting environment is stationary (due to reversibility), the set of
feasible continuation value functions is independent of the reference period and is
equal to the set of implementable value functions. That is, X will give the set of
possible state-contingent payoffs from Date 3 in any period; for Period 1 in particular,
X is the set of implementable value functions. To analyze long-term contracts, I
therefore adopt a recursive formulation, whereby X is endogenously determined.
To identify the set of implementable value functions, a fixed point condition is

added to the analysis from preceeding sections. Borrowing a term from Abreu, Pearce,
and Stacchetti (1986), I say that a set X of value functions has the self-generation
property with respect to ΛN if X ⊂ ΛN (X, δ). Self-generation with respect to ΛI ,
ΛEP , and ΛEPF are defined analogously. Let V N(δ), V I(δ), V EP (δ), and V EPF (δ)
be the sets of implementable value functions for the settings of, respectively, no
renegotiation, interim renegotiation, ex post renegotiation, and ex post renegotiation
with forcing contracts.
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Definition 4: V N (δ) is defined as the maximal set of value functions that has the
self-generation property with respect to ΛN . V I(δ), V EP (δ), and V EPF (δ) are defined
as the maximal sets of value functions that have the self-generation property with
respect to ΛI , ΛEP , and ΛEPF , respectively.

This definition completes the construction of my general modeling framework.
I conclude this section with a two comments on the general model. First, note

that any setting with a nondurable trading opportunity, including the example in
Section 1, can be analyzed as a special case of the general model with δ = 0.
Second, I wish to expound on the possibility of renegotiation at Date 9, an issue

of which I earlier deferred discussion. Having renegotiation at Date 9 is equivalent
to assuming that renegotiation can occur at Date 3. This is because, given balanced
transfers, the only way for the players to realize a joint gain through renegotiation
at Date 9 is to alter the continuation value function. The continuation value in one
period is just the discounted value from the start of the next period, so renegotiation
at the end of one period has the same effect as does renegotiation at the start of
the next period. Note that my analysis does leave out one case: that in which non-
balanced transfers are allowed and the players never can renegotiate. I have not
included this case because it seems unrealistic and uninteresting and, furthermore, it
is simple to analyze.

5 Characterization Results

In this section, I partially characterize and compare the sets V N(δ), V I(δ), V EP (δ),
and V EPF (δ). The results presented in this section are proved in the Appendix.

Existence and Inclusion

I begin with an existence result.

Theorem 1: V EPF (δ), V EP (δ), V I(δ), and V N(δ) are well-defined and non-empty.

Existence is proved by finding a set that has the self-generation property and then
recognizing that the Λ mappings are monotone.
To get an idea of what the implementable sets contain, note that they are bounded

in that
v1(θ) + v2(θ) ≤ max

a∈A
[u1(a | θ) + u2(a | θ)]

for every v ∈ V N(δ) ∪ V I(δ) ∪ V EP (δ) ∪ V EPF (δ). This is because the joint value
v1(θ)+v2(θ) is achieved by a discounted sequence of trade decisions and, furthermore,
balanced transfers do not affect the joint value. In fact, the upper bound is attained.
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For example, consider the case of ex post renegotiation with forcing contracts and
suppose the players agree to a contract that forces them to select some arbitrary
trade decision aI in each period. Then if aI is inefficient in the actual state, the
players will renegotiate their contract so that an efficient trade decision is selected.
Thus, if v ∈ V EPF (δ) then

v1(θ) + v2(θ) = max
a∈A

[u1(a | θ) + u2(a | θ)]

for every state θ. This result also holds for the sets V EP (δ) and V I(δ). In the
Appendix, I formalize this analysis in terms of the Λ mappings.
The following extension of Lemma 1 shows that the players can freely divide value

in ways that are constant across states.

Lemma 6: The sets V N(δ), V I(δ), V EP (δ), and V EPF (δ) are all closed under con-
stant transfers.

For example, take any v ∈ V I(δ) and a constant α ∈ R2
0, and define v

I :Θ → R2 so
that vI(θ) = v(θ) + α for each θ ∈ Θ. Then vI ∈ V I(δ) as well.
The next result ranks the sets of implementable value functions by inclusion. The

result confirms in general what the example in Section 1 demonstrated.

Theorem 2: V EPF (δ) ⊂ V EP (δ) ⊂ V I(δ) ⊂ V N(δ) and, in general, none of these
sets are equal.

In words, interim renegotiation restricts the set of implementable state-contingent
value functions. Ex post renegotiation implies a further restriction. Limiting atten-
tion to forcing contracts implies still a smaller set.

Stationarity and Durability

I next report my main results, which establish the efficacy of stationary contracts
and the relation between durability and implementation. For the definition of sta-
tionary contracts, let P(R2) denote the set of subsets of R2.

Definition 5: Take as given a function Λ∗ : P(R2) × [0, 1) → P(R2). A state-
contingent value function v is called supported by a stationary contract with
respect to Λ∗ and δ, if v ∈ Λ∗({v}, δ).
In other words, stationarity means v can be supported by a contract that specifies the
same continuation value function (that is, itself) in the following period, regardless
of behavior in the current period. If this is the case, the transfer function y can be
chosen to condition only on the verifiable events of the current period. Stationary
contracts are thus simple in that they can be expressed as the repeated application
of a short-term contract.
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An issue of both practical and theoretical interest is the extent to which nonsta-
tionary contracts can improve on the scope of stationary contracts. For example, by
making the continuation value function depend on the players’ behavior, it may be
possible to support a wider range of state-contingent values than can be done oth-
erwise. Surprisingly, for most of the settings I analyze, nonstationary contracts offer
no advantage.

Theorem 3: In all settings, except possibly in the case of ex post renegotiation, all
implementable value functions are supported by stationary contracts. More precisely,
for each k ∈ {EPF, I,N} and every δ ∈ [0, 1), every value function v ∈ V k is
supported by a stationary contract with respect to Λk and δ.

The intuition behind this theorem runs as follows. Constrain attention to forcing
transfers (which is justified when k = EPF , k = I, or k = N) and ex post or interim
renegotiation. Suppose we have a long-term contract that implements value function
v. Contingent on message profile m sent in the first period, the contract specifies
a distribution over trade outcomes in the first period and continuation values from
the start of the second period. Because of renegotiation, the continuation values
are efficient in every state. Thus, renegotiation in the first period can be viewed
as adjusting the first-period trade outcome, while keeping the continuation values
unchanged.
Applying this logic to characterize the continuation values from Period 2, Period 3,

and so on, we can write v in terms of a random sequence of trade outcomes over time,
from which the players renegotiate. The sequence of trade outcomes depends only
on the message profile m, while renegotiation also depends on the actual state θ. A
stationary contract can achieve the same state- and message-contingent payoffs by
specifying a random trade outcome that, repeated each period, matches the random
sequence of trade outcomes. The construction relies on the random draw q. Such
a construction may not be possible in the case of ex post renegotiation without the
constraint to forcing transfers because, when using trade decisions as options, the
players’ incentives at Date 8 are sensitive to the continuation values.
On the applied side, this theorem establishes that optimal contracts can always

take a very simple, stationary form, whereby the players interact in the same way in
each period. On the technical side, the theorem shows that the analysis of long-term
contracting reduces to selecting a one-period mechanism that is repeated over time.
That is, players choose a long-term contract that requires them to play the same
short-term mechanism in each period.
Theorem 3 leads to

Theorem 4: V EPF (δ), V I(δ), and V N (δ) are all constant in δ.

This result states that, except possibly for the case of ex post renegotiation, the
set of implementable value functions does not depend on the degree to which the
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trading opportunity is durable. Thus, we can write V EPF , V I , and V N without
the δ argument. The powerful implication for contract analysis is that, for settings
with no renegotiation, interim renegotiation, and ex post renegotiation with forcing
contracts, the dynamic contracting problem reduces to a standard “static” problem
(with δ = 0).

Summary

The results of this section can be summarized as follows. Take as given a contrac-
tual setting with reversible trade decisions. Note that reversibility is vacuous if the
trading opportunity is nondurable (δ = 0).

(a) Ex post renegotiation: If the players can renegotiate just after
sending messages (at Date 5 in each period), then the set of implementable
state-contingent value functions is V EP (δ). This set generally depends on
δ.

(b) Interim renegotiation: If, in each period, the players can renego-
tiate before sending messages but not after (that is, at Date 3 but not
Date 5), then the set of implementable value functions is V I .

(c) No renegotiation: If the players cannot renegotiate, then the set of
implementable value functions is V N .

Note that, when there is ex post renegotiation, the implementable set depends on the
technology of trade and on the discount factor.
The results lead to two important conclusions. First, the standard MDIR pro-

gram and the no-renegotiation mechanism-design program are valid to study a wide
range of contractual settings. Second, to understand contractual imperfection and
implementability in settings where players can renegotiate ex post, it is critical that
we explicitly address the technology of trade. The popular MDER program does not
accurately characterize contractual scope. Instead, one must evaluate V EP (δ), which
depends on the technology of trade and the degree of durability.

6 Two More Examples

To further demonstrate how the proper accounting of the technology of trade im-
proves our understanding of contractual imperfections, I present two more examples.
The first involves a “cross investment,” whereas the second features a pure “self in-
vestment.”
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Efficient Cross-Investments

Consider a contractual setting with cross investments–which Che and Hausch
(1999) call “cooperative investments.”21 A buyer (player 1) and a seller (player 2)
contract to trade one unit of an intermediate good; the parties interact over time in
a setting of durability and reversibility. At Date 2 in Period 1, the seller makes an
investment θ ≥ 0, at immediate cost θ, which enhances the buyer’s value of trade.
At Date 8 in each period, the buyer can accept or reject delivery of the good.22 If he
accepts then he obtains (1− δ)σ(θ) in the current period, minus any transfer p made
to the seller. In this event, the seller gets p. (I assume the seller’s investment does not
affect his delivery cost, which I normalize to zero.) If the buyer rejects delivery then
both parties obtain zero in the current period, except for any transfer made between
them.
I assume that σ is strictly increasing and σ(0) > 0, which means accepting delivery

is always ex post efficient. The efficient investment θ∗ solves maxθ σ(θ)− θ. I assume
the maximum exists and is positive. I also assume that the parties can renegotiate
ex post (at Date 5) in each period, and that they have equal bargaining weights.
This model is a special case of Che and Hausch’s (1999) model of cooperative

investments and ex post renegotiation. Che and Hausch study the forcing contract
set V EPF and they show that the hold-up problem severely restricts implementability.
In fact, for the model here, they prove that the “null contract”–specifying no trade–
is best; further, the parties are doomed to a situation in which the seller invests less
than θ∗.
A very different picture emerges when trade decisions are used as options. In fact,

as shown below, V EP contains the value function v∗ defined by v∗2(θ) = σ(θ∗) for all
θ ≥ θ∗ and v∗2(θ) = σ(θ)/2 for θ < θ∗. Remember that this state-contingent value
function gives the payoff vector from Date 3 and does not include the sunk investment
cost. With the contract that implements v∗, the seller’s Period 1/Date 2 investment
decision is to maximize v∗2(θ)− θ. Clearly, the seller optimally selects investment θ∗

and efficiency is achieved.
Here is a stationary contract that implements v∗. The parties direct the external

enforcer to, in each period, compel a transfer of (1 − δ)σ(θ∗) from the buyer to the
seller if and only if the buyer accepts delivery; otherwise, there is no transfer. The
external enforcer ignores the parties’ messages and all behavior in previous periods.
Note that, under this transfer function, the buyer will accept delivery in a given
period if and only if θ ≥ θ∗.
If the seller chooses θ ≥ θ∗ then the parties never renegotiate the contract and the

21I avoid using the term “cooperative” here because I think it can easily be confused with “coop-
erative behavior” and can be misleading.
22If the buyer accepts delivery in one period and then rejects it in the next, this is interpreted as

the buyer returning the good.
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buyer accepts delivery in each period. In this case, the seller obtains σ(θ∗) from Date 3
of Period 1. On the other hand, if the seller chooses some θ < θ∗ then, anticipating
rejection, the parties will renegotiate. The disagreement point of renegotiation is
the contract’s continuation value v∗, which satisfies v∗1(θ) + v

∗
2(θ) = σ(θ). Thus, the

renegotiation surplus is the gain from trade in the current period, or (1 − δ)σ(θ),
which the parties divide equally. This division implies that v∗2(θ) = σ(θ)/2.
Efficient investment incentives in this example are due to technology of trade. If

some other technology existed, such as if the seller makes the trade decision, then
efficiency may not result and Che and Hausch’s conclusions may, at least partially,
reemerge. However, in the least, this example shows that cross investment may not
be as problematic as the literature suggests.

Complexity and Hold-up

Next consider an example with pure self investment, along the lines of Segal (1999)
and Hart and Moore (1999). This example will reiterate these authors’ main point–
that hold-up problems can exist even in cases of pure self investment–and show that
the insight is still valid when one properly accounts for the technology of trade. The
degree of the hold-up problem is sensitive to the technology of trade.
A buyer (player 1) and a seller (player 2) contract on a nondurable trading op-

portunity, so δ = 0. As with the previous example, the state represents the seller’s
Date 2 investment, which is observed by the buyer but is not verifiable. The seller
can either invest “high,” which yields state H, or invest “low,” yielding state L. The
high investment entails a cost c, which is immediately paid by the seller and is not
included in the u specification below. Low investment is costless. Clearly, the seller
will have an incentive to invest high only if the difference between what he expects
to obtain in states H and L weakly exceeds c.
The buyer makes the trade decision at Date 8, which is either ah or al. The utility

function u is defined by: u(ah | H) = (10, 0), u(al | H) = (22,−22), u(ah | L) = (0, 0),
and u(al | L) = (10,−8). Note that this is an example of self investment, because, if
the optimal trade decision is made (ah in state H, al in state L), the seller’s investment
only affects his own cost (0 in state H, 8 in state L).23 Assume that c ∈ (0, 8), which
means that high investment is efficient. Also assume that the players can renegotiate
ex post and that the buyer has all of the bargaining power during renegotiation.
The analysis of forcing contracts runs as follows. By the revelation principle, one

can focus on contracts that force ah at price pH when the message profile is (H,H),
and force al at price pL when the message profile is (L,L). The contract specifies either

23I use the term “self investment” as the literature does, although I would not say that it is an
accurate description of the contracting environment. Although the optimal trade decision has the
“self investment” flavor, the seller’s investment affects the buyer’s payoff of the suboptimal trade
decision. Segal (1999) uses the term “complex” to describe such trading environments.
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ah or al when the message profile is (L,H), that is, when the buyer reports L and the
seller reports H. Consider these cases separately.
First, suppose that the contract forces ah at price p̂ when the message profile is

(L,H). For truthful reporting to be an equilibrium of the message game in both states,
it must be that player 1 has no incentive to send message L in state H and player 2
has no incentive to send message H in state L. If player 1 deviates in state H, then
there would be no renegotiation (because ah is still specified). Player 1 thus reports
truthfully in state H if and only if

10− pH ≥ 10− p̂.
If player 2 deviates in state L, then the players would renegotiate the contractually-
specified trade decision, but player 1 would get all of the surplus. Player 2 thus
reports truthfully in state L if and only if

pL − 8 ≥ p̂.
Combining the two inequalities yields the constraint pL ≥ pH + 8.
Second, suppose that the contract forces al at price p̂ when the message profile

is (L,H). In this case, renegotiation would occur if player 1 reports L in state H, but
renegotiation would not occur if player 2 reports H in state L. Equilibrium conditions
for the message game are

10− pH ≥ 12− p̂+ 10
and

pL − 8 ≥ p̂− 8,
which simplify to pL ≥ pH + 22.
Clearly, then, player 2’s payoff in state L must be at least as high as is his payoff

in state H, which means no forcing contract induces the seller to invest high. In
fact, with ex post renegotiation, no contract (forcing or non-forcing) can induce high
investment.
To see why non-forcing contracts cannot improve on forcing contracts in this

example, consider the scope of non-forcing contracts. Suppose that, given a particular
message profile, the contract specifies a price of ph if the buyer chooses trade decision
ah and a price of pl if the buyer chooses trade decision al. This is necessarily a forcing
contract either if pl − ph > 12 (in which case player 1 has the incentive to choose ah
in both states) or if pl − ph < 10 (in which case player 1 has the incentive to choose
al in both states). One can easily confirm that if pl − ph ∈ [10, 12] then player 1 has
the incentive to select ah in state L and to select al in state H. There are no values
of pl and ph that give player 1 the incentive to select ah in state H and al in state L.
Thus, there is only one type of non-forcing contractual provision: that which has

pl− ph ∈ [10, 12]. This leads to payoff vector (22− pl, pl− 22) in state H and (ph, ph)

29



in state L. Suppose that this contractual provision is specified for the message profile
(L,H). Then, if (L,H) is sent, the players would renegotiate to obtain the efficient
trade decision. This implies the payoff vector (22 − pl + 10, pl − 22) in state H and
(ph + 2, ph) in state L. The equilibrium conditions for the message game are thus

10− pH ≥ 22− pl + 10

and
pL − 8 ≥ ph.

Combining these inequalities with pl − ph ∈ [10, 12], we obtain pL ≥ pH + 18. Again,
player 2’s payoff in state L must be higher than it is in state H, implying that he does
not have the incentive to invest high.

7 Conclusion

I have demonstrated that, to appropriately study institutional constraints, the analy-
sis of contract must start with an understanding of the technology of trade. When
parties can renegotiate just before making trade decisions, this technology greatly
affects implementability. Thus, researchers should take a structured, game-theoretic
approach to studying contract and enforcement. Researchers must be clear about
exactly what is verifiable, the nature and timing of inalienable decisions, and how
external enforcement occurs.
My analysis here has implications for the applicability of popular mechanism de-

sign models. Some theorists, including Segal and Whinston (2000), have stated that
future work in applied contract theory will be geared toward discovering whether
it is the MDER or MDIR program that is the “right” model of any particular set-
ting. I find that this objective is in error. The MDER program under-represents the
true scope of implementability. Contracting parties can often overcome contractual
imperfections–to motivate efficient cross investment, for example–even when they
have the opportunity to renegotiate just before making trade decisions. In settings
with durable trading opportunities and reversibility, parties can effectively deal with
the specter of renegotiation by writing long-term contracts. Finally, I emphasize
that the mechanism design methodology is still applicable and useful, as long as one
correctly defines the outcome set. Unfortunately, differential methods may be less
applicable than is currently thought.24

I conclude that the MDER program makes hidden assumptions of contractual
incompleteness. It can be justified on the basis of a restriction to forcing contracts or,
possibly, by assuming that trade decisions are only partially verifiable. It can also be

24When trade decisions are used as options, we lose the constant-sum condition that underlies the
analysis of Segal and Whinston (2001).
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justified, in a durability setting, on the basis of a restriction to short-term contracts.
By “short-term contracts,” I mean contracts that specify a transfer function for the
current period, but specify nothing for future periods (not even that the message
game and transfer of the current period is repeated in future periods). I can think
of no ready defense of these incompleteness assumptions, just as I see no reason to
believe that parties would limit themselves to forcing or short-term contracts.25

I believe that theorists who idealize the “complete contract” view ought to under-
stand the contractual incompleteness inherent in their own models. I have nothing
against the complete contract ideal, in theory, although I find it is not widely ap-
plicable. After all, real contracting parties usually face all sorts of technological and
institutional constraints. Indeed, an opportunity for parties to renegotiate–one that
cannot be controlled by external enforcement–is an incompleteness restriction that
many scholars find important and that lies at the heart of most recent contract theory.
I simply point out that understanding this incompleteness relies on understanding the
technology of trade.
My analysis also has practical relevance. In the least, it should remind us that, to

some extent, messages are a theoretical construct. While we sometimes do observe
contracts that require parties to send verifiable messages (in real estate transactions,
for example), we also often see option contracts that merely specify transfers on
the basis of productive decisions (in some procurement settings, for example). Where
trading opportunities are durable, we often observe contracts with stationary terms.26

There are myriad promising opportunities for fruitful research on contracting with
institutional constraints. Given the importance of the technology of trade, the analy-

25My message can be further illustrated in the context of Edlin and Hermalin’s (2000) debate with
Nöldeke, G. and K. Schmidt (1998). In their discussion of whether a party could let an option expire
and then renegotiate from scratch, Edlin and Hermalin appeal to the “outside option principle,”
whereby the outside option implies an inequality constraint on the outcome of negotiation rather
than serving as the disagreement point. While there are bargaining models that justify treating
outside options in this way, these models blur the distinction between verifiable trade decisions
and noncontractible renegotiation opportunities. If parties can exercise trade-based options in the
process of renegotiating, then either trade decisions are really not fully verifiable or the opportunity
to renegotiate can be partially controlled by the external enforcer (because he can observe a party’s
actions whenever an option can be exercised–which, for example, would be in every round of an
alternating-offer bargaining game). Edlin and Hermalin may have one of these justifications in mind,
or they may be thinking of an institutional constraint that limits the time in which an option may be
exercised. In any case, I assert that one must model the timing of renegotiation and trade in order
to understand exactly what is being assumed. Note that, in my framework, the non-contractible
renegotiation opportunity is separated in time from the verifiable trade decisions, so that a party
cannot delay the trading opportunity by refusing to make an agreement at the time of renegotiation.
Other modeling approaches may be useful for comparison.
26For example, many construction contracts include a term such as “The contractor’s fee is reduced

by $X for every day following date Y that he fails to complete the project.” The law recognizes
long-term contracts just as it does shorter-term ones.
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sis of specific contractual settings seems in order. Further, the notions of durability
and reversibility deserve extended study. My work on durability reported here only
addresses the specialized environment in which trade decisions are fully reversible.
We should develop a better understanding of how limited reversibility influences con-
tractual scope. Overall, it may be worthwhile to revisit some of the literature’s basic
concepts from a more detailed institutional foundation.27 In conjunction with Watson
(2001), which seeks to clarify the notion of contract in games, my general framework
may be a good starting point for future work.

27Bull and Watson (2001), for example, study the notion of verifiability as it relates to evidence
disclosure in an enforcement system. Schwartz and Watson (2001) study contract and enforcement
when contracts are costly to form and renegotiate; they relate the costs to actual legal rules.
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A Appendix: Proofs

In this appendix, I restate and prove the theorems found in Section 5. I begin with
Theorems 1 and 2, which I prove together.

Theorem 1: V EPF (δ), V EP (δ), V I(δ), and V N(δ) are well-defined and non-empty.

Theorem 2: V EPF (δ) ⊂ V EP (δ) ⊂ V I(δ) ⊂ V N(δ) and, in general, none of these
sets are equal.

Proof: First note that Λk is monotone, for all k ∈ {EPF,EP, I,N}. That is,
X I ⊂ X implies Λk(X I, δ) ⊂ Λk(X, δ). This implies that V k(δ) is well-defined, for all
k ∈ {EPF,EP, I,N}.
Next note that ΛEPF (X, δ) ⊂ ΛEP (X, δ), which follows from ZF (X, δ) ⊂ Z(X, δ).

From Lemmas 2 and 3, we have ΛI(X, δ) ⊂ ΛN(X, δ). The renegotiation-proofness
principle (see Brennan and Watson 2001) implies that ΛEP (X, δ) ⊂ ΛI(X, δ). Using
the monotone property and the definitions of V EPF (δ), V EP (δ), V I(δ), and V N (δ),
we have the inclusion statement of Theorem 2. The example analyzed in Section 1
proves the claim of unequal sets.
To prove that the implementable sets are non-empty in general, let aI be an

arbitrary member of A and define vI by

vI(θ) ≡ u(aI | θ) + π max
a∈A

[u1(a | θ) + u2(a | θ)]− u1(aI | θ)− u2(aI | θ)
for every θ. This is the value function that would result if the players renegotiated over
the infinite sequence of trade decisions, with the disagreement point given by decision
aI chosen in each period. One can easily confirm (with a contract that forces aI and
no transfer in the current period, regardless of messages) that vI ∈ ΛEPF ({vI}, δ),
regardless of δ. Thus, {vI} has the self-generation property with respect to ΛEPF ,
and so V EPF (δ) W= ∅. The inclusion property implies that the other sets are also
non-empty. Q.E.D.

This proof and the discussion in Section 5 make it clear that, for each k ∈
{EPF,EP, I,N},

γ(θ, V k(δ), δ) ≡ max
a∈A

[u1(a | θ) + u2(a | θ)].
This justifies redefining γ and r as

γ(θ) ≡ max
a∈A

[u1(a | θ) + u2(a | θ)]
and

r(w, θ) ≡ γ(θ)− w1(θ)− w2(θ).
I use these definitions for the remainder of this appendix. I also state the following
lemma for reference.
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Lemma 7: If v ∈ V EPF (δ) V EP (δ) V I(δ), then v1(θ) + v2(θ) = γ(θ), for all
θ ∈ Θ.
To prove Theorems 3 and 4, I use the following four results.

Lemma 8: Suppose v ∈ V EPF (δ) and consider the direct-revelation mechanism that
implements v in the current period–this mechanism maps message profiles into el-
ements of ZF (V EPF (δ), δ). Then for every message profile m ∈ Θ2, there exist dis-
tributions α ∈ ∆A and φ ∈ ∆V EPF (δ) such that, for each state θ, the payoff vector
contingent on m in state θ is

(1− δ)
a∈A

[u(a | θ) + πr(u(a | ·), θ)]α(a) + δ vIdφ(vI).

In the case of interim renegotiation, the payoff vector can be written

(1− δ)
a∈A

u(a | θ)α(a) + δ vIdφ(vI),

for some α ∈ ∆A and φ ∈ ∆V I(δ).
Proof: Consider any v ∈ V EPF (δ). Contingent on m, in state θ the players obtain

a payoff given by w(θ) + πr(w, θ), where w ∈W F (V EPF (δ), δ) depends on m. Recall
that w(θ) is given by Equation 4 on page 16, for an appropriately defined transfer
function ŷ, a continuation value function x̂, and a behavior function â. Let φI be the
distribution over V EPF (δ) implied by x̂(·, â(·, θ)) and µ.
From Lemma 7, every vI in the support of φI is efficient. Thus, the renegotiation

surplus derives entirely from a gain achieved in the current period. Since the players
divide this surplus according to their bargaining weights, relative to the disagreement
point given by w, we can express the payoff vector as:

w(θ) + πr(w, θ) = (1− δ) [u(â(q, θ) | θ) + ŷ(q, â(q, θ)) + πr(u(â(q, θ) | ·), θ)] dµ(q)
+δ vIdφI(vI). (5)

The first and last terms in the first integral can be written

(1− δ)
a∈A

[u(a | θ) + πr(u(a | ·), θ)]α(a),

for some α ∈ ∆A (since the trade decision may be conditioned on q). Regarding the
second term, define

y ≡ (1− δ) ŷ(q, â(q, θ))dµ(q).
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Note that y is balanced.
From Lemma 6, we know that vI + y ∈ V EPF (δ) for every vI ∈ V EPF (δ). Thus,

there is a distribution φ ∈ ∆V EPF (δ) such that

δ vIIdφ(vII) = δ vIdφI(vI) + y.

Substituting this into Equation (5) yields the conclusion of the theorem.
For the case of interim renegotiation, where v ∈ V I(δ), the proof is simpler.

Lemma 6 allows the externally enforced transfer to be merged into the continuation
payoff. Q.E.D.

Lemma 9: There is a number L such that, for both i = 1, 2, every δ, every two states
θ, θI ∈ Θ, and every v ∈ V I(δ), |vi(θ)− vi(θI)| < L.

Proof: Recalling the definitionW from Section 2, and recalling that u is bounded,
we see that there is a number LI such that, for both i = 1, 2, every two states θ, θI ∈ Θ,
and every w ∈ W , |wi(θ) − wi(θI)| < LI. Combining this with the implementation
conditions of Lemma 3, it is not difficult to confirm the result. Q.E.D.

Lemma 10: Consider any v ∈ V EPF (δ) V I(δ). For each state θ, there is a se-
quence {αt}∞t=1 ⊂ ∆A and a balanced constant transfer yθ such that

v(θ) =
∞

t=1

δt−1(1− δ)
a∈A

[u(a | θ) + πr(u(a | ·), θ)]αt(a) + yθ.

Proof: First take the case of ex post renegotiation. Recursive application of
Lemma 8, using message profile (θ, θ), establishes the following. There are sequences
{αt}∞t=1 ⊂ ∆A and {φt}∞t=2 ⊂ ∆V I(δ) such that, for every positive integer T ,

v(θ) =
T

t=1

δt−1(1− δ)
a∈A

[u(a | θ) + πr(u(a | ·), θ)]αt(a) + δT vIdφT+1.

As T → ∞, the summation term converges. Thus, the integral term also converges.
Further, because of discounting and bounded utilities, the limit of the integral term,
which defines yθ, is balanced.
The same argument can be used for the case of interim renegotiation, which has

efficient outcomes in equilibrium. In this case, one can focus on forcing transfers
because there is no renegotiation at Date 5 in each period. Q.E.D.
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Lemma 11: Consider any v ∈ V EPF (δ). For any two states θ, θI ∈ Θ there is a
sequence {αt}∞t=1 ⊂ ∆A and a balanced constant transfer yθθ such that

v1(θ
I) ≥

∞

t=1

δt−1(1− δ)
a∈A

[u1(a | θ) + π1r(u(a | ·), θ)]αt(a) + yθθ1

and

v2(θ) ≥
∞

t=1

δt−1(1− δ)
a∈A

[u2(a | θ) + π2r(u(a | ·), θ)]αt(a) + yθθ2 .

A similar result holds in the case of interim renegotiation. For v ∈ V I(δ), the condi-
tions are

v1(θ
I) ≥

∞

t=1

δt−1(1− δ)
a∈A

u1(a | θ)αt(a) + yθθ1
and

v2(θ) ≥
∞

t=1

δt−1(1− δ)
a∈A

u2(a | θ)αt(a) + yθθ2 .

Proof: This lemma is also proved by recursive application of Lemma 8, using
message profile (θ, θI). First consider the case of ex post renegotiation. From Lemma 8
and that the players report truthfully in the equilibrium of the message game, there
exist α1 ∈ ∆A and φ2 ∈ ∆V EPF such that

v1(θ
I) ≥ (1− δ)

a∈A
[u1(a | θ) + π1r(u(a | ·), θ)]α1(a) + δ vI1dφ

2(vI)

and
v2(θ) ≥ (1− δ)

a∈A
[u2(a | θ) + π2r(u(a | ·), θ)]α1(a) + δ vI2dφ

2(vI).

Applying the same argument for each vI, again for message profile (θ, θI), establishes
the following. There are sequences {αt}∞t=1 ⊂ ∆A and {φt}∞t=2 ⊂ ∆V EPF (δ) such
that, for every positive integer T ,

v1(θ
I) ≥

T

t=1

δt−1(1− δ)
a∈A

[u1(a | θ) + π1r(u(a | ·), θ)]αt(a) + δT vI1dφ
T+1

and

v2(θ) ≥
T

t=1

δt−1(1− δ)
a∈A

[u2(a | θ) + π2r(u(a | ·), θ)]αt(a) + δT vI2dφ
T+1.

As T →∞, the summation terms converge. Lemma 9 implies that

δT vIdφT+1
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converges and its limit is balanced. Define yθθ to be the limit of this term.
The same steps can be used in the interim renegotiation case; in this case, one can

focus on forcing transfers because there is no renegotiation at Date 5 in each period.
Q.E.D.

With these results in hand, I restate and prove the stationarity theorem.

Theorem 3: In all settings, except possibly in the case of ex post renegotiation, all
implementable value functions are supported by stationary contracts. More precisely,
for each h ∈ {EPF, I,N} and every δ ∈ [0, 1), every v ∈ V h is supported by a
stationary contract with respect to Λh and δ.

Proof: Consider any v ∈ V EPF . Define a stationary contract as follows. In each
period, let the continuation value function be v, regardless of the players’ behavior
in the period. Specify a forcing transfer function that duplicates the payoffs given
by Lemmas 10 and 11, multiplied by (1 − δ), in the current period. Specifically, for
message profile (θ, θ), the mechanism specifies a transfer of (1−δ)yθ and a randomized
trade decision defined by the distribution αθθ, where

αθθ ≡ (1− δ)
∞

t=1

δt−1αt,

with {αt}∞t=1 given by Lemma 10. Likewise, for any message profile (θ, θI) with θ W= θI,
the mechanism specifies a transfer of (1 − δ)yθθ and a randomized trade decision
defined by Lemma 11. The randomization is achieved using the public draw q.
One can readily verify that reporting truthfully is a Nash equilibrium of the im-

plied message game. Note that renegotiation occurs at Date 5, so the actual payoffs
are given by the expression in Lemma 10.
The proof for the case of interim renegotiation is similar. The above steps are not

necessary for the proof of the no renegotiation case. It is obvious that, without rene-
gotiation, V N (δ) ⊂ V N(0). Further, any value function in V N(0) can be implemented
in an environment of δ > 0 using a “scaled down” stationary contract. Q.E.D.

The final theorem of Section 4 is

Theorem 4: V EPF (δ), V I(δ), and V N(δ) are all constant in δ.

Proof: Consider any v ∈ V EPF (δ) and any δI ∈ [0, 1). To support v under discount
factor δI, we can use the same stationary contract that implements v under δ. To see
this, note that we can ignore continuation payoffs in the calculation of renegotiation
outcomes in a given period. Since the continuation payoff is a constant function of
the state, this cancels out in the analysis of incentives in the message phase. The
current-period payoff terms are scaled up or down (depending on whether δI > δ),
but the incentives to report truthfully do not change. The same method of proof
establishes the result for any v ∈ V I(δ); as with the preceding results, we can focus
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on forcing transfers. That V N (δ) is constant in δ follows from the statements at the
end of the proof of Theorem 3. Q.E.D.
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