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High spatial resolution magnetic x-ray spectromicroscopy at x-ray photon energies near the cobalt

L3 resonance was applied to probe an amorphous 50 nm thin SmCo5 film prepared by off-axis

pulsed laser deposition onto an x-ray transparent 200 nm thin Si3N4 membrane. Alternating gradi-

ent magnetometry shows a strong in-plane anisotropy and an only weak perpendicular magnetic an-

isotropy, which is confirmed by magnetic transmission soft x-ray microscopy images showing over

a field of view of 10 lm a primarily stripe-like domain pattern but with local labyrinth-like

domains. Soft x-ray ptychography in amplitude and phase contrast was used to identify and charac-

terize local magnetic and structural features over a field of view of 1 lm with a spatial resolution of

about 10 nm. There, the magnetic labyrinth domain patterns are accompanied by nanoscale struc-

tural inclusions that are primarily located in close proximity to the magnetic domain walls. Our

analysis suggests that these inclusions are nanocrystalline Sm2Co17 phases with nominally in-plane

magnetic anisotropy. VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4942776]

Understanding and controlling the spatial correlations

between magnetic and structural heterogeneity lies at the

heart of diverse magnetic technologies that find wide ranging

applications, from power generation, transmission, and con-

version to nanoscale magnetic devices in sensor and infor-

mation technologies.1–4 These correlations are of particular

interest for non-collinear spin configurations in magnetic

materials, which are proposed for emerging low power infor-

mation processing technologies.5,6 Such spin textures con-

ventionally occur at the boundary between magnetic

domains, but are also important at magnetic interfaces, near

magnetic nanostructures, and in topological textures like

skyrmions. To understand these textures at relevant length

scales will require developing and deploying microscopy

techniques that offer sub-10 nm spatial resolution in three

dimensions combined with high sensitivity to vector

magnetization.7

X-ray magnetic microscopies, including x-ray photoemis-

sion electron microscopy (X-PEEM), x-ray holography

(XRH), and Fresnel zone plate (FZP) based full field and

scanning x-ray techniques (MTXM and STXM), have been

developed over the past two decades.8,9 In coherent diffraction

imaging (CDI)10 and ptychography,11–13 speckle-diffraction

patterns are recorded with high numerical aperture detectors,

and phase retrieval algorithms14,15 are used to recover real

space phase and amplitude images at a spatial resolution well

below the incident x-ray spot size (about 50–70 nm). Soft

x-ray ptychography has recently achieved 3 nm resolution on

high-contrast non-magnetic test objects13 and 10 nm resolu-

tion on heterogeneous micron-sized particles with chemical

sensitivity.16

Magnetic soft x-ray microscopies, specifically X-PEEM17

and MTXM,18 offer the requisite sensitivities for 3D magnetic

imaging, but studies to date have achieved typically only

20–25 nm resolution, which is not sufficient to probe charac-

teristic spatial scales of magnetic inhomogeneities in many

systems.19

Here, we report the application of resonant soft x-ray pty-

chography, an emerging, robust variant of x-ray CDI,10 to

probe an amorphous SmCo5 thin film that exhibits perpendicu-

lar magnetic anisotropy (PMA).20 We combined polarization-

dependent ptychography with dichroic scattering contrast near

the Co L3 absorption edge to produce high-resolution phase

and amplitude images with element-specific contrast to distin-

guish magnetic and structural textures. Applying a Fourier

Ring Correlation (FRC) analysis to estimate both the structural

and magnetic resolution, we find both to be �10 nm. Using

this emerging magnetic imaging technique, we measure the

magnetic domain labyrinth in the SmCo5 film and observe a

correlation between nanoscale structural inclusions and the

magnetic domain structure. Polarized x-ray absorption spec-

troscopy suggests that these inclusions are nanocrystalline

Sm2Co17 phases with nominally in-plane magnetic anisotropy.

The 50 nm thick SmCo5 film sample used in this study

was grown by off-axis pulsed laser deposition (PLD) in

0.1 mbar Ar background pressure onto a heated x-ray trans-

parent 200 nm thick Si3N4 membrane (Tsubstrate¼ 400 �C).

The SmCo5 layer was sandwiched between a 7 nm thin Cr

buffer and cover layers for oxygen protection. While
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similarly prepared PLD SmCo5 films deposited under UHV

conditions crystallize directly upon deposition on a heated

Si3N4/Si substrate and develop a preferred in-plane texture

(c-axis in the film plane),21,22 these films remain x-ray amor-

phous due to the lower kinetic energy of the material plasma

and obtain a perpendicular magnetic anisotropy.

Alternating gradient magnetization loops shown in

Fig. 1(a) indicate a pronounced in-plane anisotropy with a

much weaker PMA. Whereas the former leads to a dominant

stripe domain pattern, a strong PMA yields a labyrinth do-

main pattern. Magnetic transmission soft x-ray microscopy

(Fig. 1(b)) covering a field of view of several lm with a spa-

tial resolution of about 25 nm shows indeed a magnetic do-

main structure that resembles both, a primarily stripe-like

domain pattern, that locally vary towards a more labyrinth-

like domain structure.

To obtain further insight into the local spin structure,

ptychographic imaging was performed using the experimen-

tal setup described previously13 and located at beamline

11.0.2 of the Advanced Light Source, as shown schemati-

cally in Fig. 1(c). All results presented here were recorded in

zero magnetic field with the film in the as-prepared demag-

netized state and at ambient temperature. A monochromat-

ized, transversely coherent, and circularly polarized soft

x-ray beam with �90% degree of polarization tuned near the

Co L3 edge at 778.6 eV was focused using an FZP lens at

normal incidence onto the SmCo5 film. The FZP had a 60 nm

outer zone width and provided an approximately 75 nm focal

spot on the sample. Diffraction patterns were collected in a

transmission geometry using a 1300� 1340 pixel charge

coupled device (CCD) detector placed 60 mm downstream

of the sample. Ptychography scans consisted of collecting

20� 20 diffraction patterns at 50 nm spacing in orthogonal

directions. Two diffraction patterns with 10 ms and 400 ms

exposure times were collected at each scan point to measure

regions of higher signal at low momentum transfer and lower

signal at high momentum transfer, respectively. These were

combined to extend the dynamic range of the measurements,

thereby improving the spatial resolution.13

A typical diffraction pattern is shown in Fig. 1(d). The

intensity profile is not radially symmetric, which is again

indicative of a non-symmetric component to the scattering

textures. To modulate the magnetic contrast (X-ray magnetic

circular dichroism, XMCD) at each scan point, independent

measurements were performed using left and right circular

polarization. This enabled to distinguish magnetic and

charge textures by combining those polarization dependent

phase and amplitude images. Finally, measurements were

performed at three photon energies, specifically at 778.0 eV

just below the L3 absorption edge to provide dominant (mag-

netic) phase contrast, at the absorption maximum at 778.6 eV

to provide dominant (magnetic) absorption contrast, and

above the main absorption white line at 780 eV, where the

imaginary part of the refractive index d has crossed zero to

provide inverted magnetic phase contrast.23,24 Ptychographic

reconstructions of phase and amplitude images were per-

formed using 300 iterations of the standard methods in the

SHARP ptychography package.25,26 The values of the reso-

nant contribution to the real and imaginary parts of the re-

fractive index derived from our ptychographic analysis at the

three photon energies are in very good agreement with those

derived from holographic imaging with better spectral sam-

pling though with poorer spatial resolution.24

Figs. 2(a)–2(f) show the reconstructed amplitude and

phase images collected at the three photon energies all with

left circular polarization. Figs. 2(e) and 2(f) are different

sample positions than (a)–(d), and the inversion in phase

contrast noted above is readily apparent by noting that the

amplitude and phase contrast are the same above the edge

but opposite below the edge. The SmCo5 magnetic domains

exhibit a labyrinthine structure as expected for a PMA film,

with an average domain width of 76.5 nm. The domain

FIG. 1. (a) Magnetic hysteresis loop of

the SmCo5 film for in-plane and out-of-

plane contributions. (b) Magnetic trans-

mission soft x-ray microscopy image

taken at BL 6.1.2 at the Advanced

Light Source in Berkeley showing

stripe-like domains with local distor-

tions into labyrinth domains as well as

dark inclusions. (c) Schematics of the

ptychography setup at beamline 11.0.2

at the STXM branch at the Advanced

Light Source. A Fresnel-Zone-Plate

(FZP) focuses the x-ray beam through

an order-sorting-aperture (OSA) onto

the SmCo5 thin film sample. Coherent

diffraction patterns are collected on a

charge coupled device detector. (d)

Example of a single diffraction pattern

showing experimental data of SmCo5

sample.
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patterns were reconstructed with high reproducibility from

independent measurements. Fig. 2(g) shows the difference of

right and left circular polarized phase images collected at

780 eV, i.e., above the resonant energy, where both ampli-

tude and phase contrast are similar. As the XMCD contrast

changes its sign with opposite polarization, this difference

image isolates features with a component of magnetization

along the photon propagation direction.23,24 As expected for

perpendicular magnetic anisotropy, the observed features are

the domain labyrinth. The dark spots (¼“inclusions”) appa-

rent in the individual images in Figs. 2(a)–2(f) are mostly

absent in the difference phase image. In contrast, Fig. 2(h)

shows the sum of the same two phase images as in Fig. 2(g),

which mimics an image collected with linear polarization

where the signal is quadratic in magnetization and the mag-

netic contrast of the domain labyrinth should be small. The

magnetic domains are indeed barely visible, while the scat-

tering from the inclusions is enhanced. This suggests that the

inclusions are dominated by charge scattering, though they

may be ferromagnetic but with in-plane anisotropy which is

not visible in the experimental geometry used here; we will

return to this issue below. A powerful aspect of polarization-

dependent soft x-ray microscopy is this straightforward sepa-

ration of features associated with magnetic and charge

scattering.

The spatial resolution achieved with ptychography is not

determined purely by the numerical aperture of the detector

because it depends crucially on the measured signal at high

spatial frequency, which depends strongly on the sample’s

scattering contrast, as well as any systematic perturbations to

the data, i.e., sample positioning errors, drift, or unstable illu-

mination. This needs careful consideration specifically for

magnetic systems, where the charge-scattered signal is

significantly stronger than magnetic scattered signal,27 and

one might expect the corresponding resolutions to be differ-

ent. To estimate our structural and magnetic resolution inde-

pendently, we applied an FRC analysis28 separately to the

Fourier transforms of Figs. 2(g) and 2(h). The FRC measures

the spatial frequency dependence of the cross-correlation

of diffracted intensity from two independently measured

and reconstructed datasets. In our case, we reconstructed

“separate” images from a single ptychography scan using

even- and odd-numbered 2D scan positions. This approach

ensured perfect registry of the resulting images, but provided

a conservative estimate of the true resolution because only

half of the total available data were used in each image. The

resulting FRC results are shown in Fig. 3; the spatial fre-

quency where these curves cross a threshold is the estimated

resolution. A slight shift to lower frequency for magnetic rel-

ative to charge scattering does indeed suggest that our reso-

lution is slightly better for charge than magnetic features.

That the shift is small is probably related to the fact that scat-

tered intensity depends much more strongly on spatial fre-

quency than sample contrast.29 The reported numerical

resolution depends on the criterion applied to the FRC

curves; a threshold of 0.5 suggests charge and magnetic reso-

lution of 12 and 10 nm, respectively, while the half-bit

threshold places them both near 7 nm.

FIG. 2. Reconstructed amplitude (a)–(c) and phase (d)–(f) components of three x-ray energies of SmCo5 thin film sample in transmission geometry. (a) and (d)

are reconstructions at x-ray energy of 778 eV; (b) and (e) are reconstructions at x-ray energy of 778.6 eV; and (c) and (f) are reconstructions at x-ray energy of

780 eV. Red open circle and square (with red zoomed open square) indicate the inclusions present in the thin film sample. Note that in (d), the inclusions have

opposite contrast (white color), indicating that the phase contrast is reversed compared to phase contrast in (f). The gray-scale bar is in the range of �0.2 to

0.5 rad. The phase component of the refractive index changes sign when going through the absorption component maximum. (g) Difference of left and right

polarized reconstructed phase images at 780 eV x-ray energy taken at the position shown in (c) and (f). The gray-scale bar is in the range of �0.4 to 0.4 rad. (h)

Sum of left and right polarized reconstructed phase images at 780 eV x-ray energy. The gray-scale bar is in the range of 0 to 1.2 rad.
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Achieving this high spatial resolution offers the ability

to estimate the domain wall (DW) width in this high anisot-

ropy system. Measuring along cuts perpendicular to the DWs

in Fig. 2(g), the convolution of our magnetic resolution with

the actual DW width results to that the experimental DW

width is on average about 15 nm. The width of a DW D can

be calculated by D� p�(A/KU), with A being the exchange

constant and KU the anisotropy constant. D can range from a

few nanometers for hard magnets, such as Nd2Fe14B,30 to

tens of nanometers for soft magnetic materials, e.g., permal-

loy (Fe20Ni80)30 or CoFe/Pd multilayers.31 The in-plane and

out-of-plane magnetization loops shown in Fig. 1(a) for the

SmCo5 thin film studied here allow J and KU to be estimated

and the actual domain wall width is predicted to be �10 nm,

in agreement with expectations given our spatial resolution.

The nature of the inclusions in Fig. 2 can be investigated

in greater detail using the inherent spectroscopic sensitivity of

x-ray microscopies, such as scanning transmission X-ray mi-

croscopy (STXM), full-field transmission X-ray microscopy,

X-ray photoemission microscopy, or diffraction imaging

based x-ray microscopies.8 While the films are deposited with

a nominal SmCo5 composition, the equilibrium Sm-Co phase

diagram is complex, and therefore crystalline compounds off

the nominal film composition might nucleate during growth.

Spectroscopic STXM measurements at the Co L edges show

with a spatial resolution of about 20 nm systematically signifi-

cant differences above and below the Co edge indicative of a

chemical modification at those inclusions. A quantitative anal-

ysis of the ptychography images in Fig. 2 indicates �23% and

�50% higher absorption on the inclusions than on the domain

labyrinth at 778 eV and 780 eV, respectively. For comparison,

the calculated non-resonant difference in absorption between

crystalline SmCo5 and Sm2Co17 is�19%,32 which is comfort-

ably close to the measured pre-edge difference at 778 eV. The

composition of the inclusions is consistent with Sm2Co17,

which is the lowest temperature congruently melting phase

adjacent to the nominal film composition.

Many of the inclusions appear to have an internal struc-

ture, suggesting that the inclusions cluster after nucleation or,

more likely, nearby nucleation events are spatially correlated,

e.g., by stress in the film during growth. The smallest

observed structures, either embedded in an inclusion or iso-

lated, have a size of �12 nm. Finally, several of the inclusions

are partly bordered by a ring of apparently lower x-ray

absorption and, therefore, of lower cobalt concentration; a

good example is provided in the inset in Fig. 2(c). The width

of these rings is near the limit of our spatial resolution and

might also be artifacts of the ptychographic reconstruction.

However, the rings are consistent with short-range diffusion

from the SmCo5 film to grow a nucleated, cobalt-rich nano-

crystalline phase, e.g., Sm2Co17.

We now turn our attention to the interaction between

magnetic and structural heterogeneities. In particular, we

observe that the inclusions tend to avoid overlapping with a

DW or vice versa, the DW is repelled from those inclusions.

Interestingly, we found the DW to be in close proximity to the

inclusions. This affinity between a DW and inclusion points

to a spin canting and suggests that the inclusions might be

magnetic but with in-plane magnetization. Such a configura-

tion would be consistent with the lack of magnetic contrast

for the inclusions observed in Fig. 2(g). A more careful exam-

ination of Fig. 2(g) indicates that some of these inclusions are

faintly visible, suggesting that their magnetization vectors

might be slightly canted into or out of film plane. Assuming

that this is true, a complex spin structure would exist at the

interface of these inclusions, though presently we lack the re-

solution to measure such features in detail. Of course, the pos-

sible deficit in cobalt concentration around the inclusions

noted above might also provide a mechanism to pin domain

walls. It is worth noting that a recent magnetic soft x-ray spec-

tromicroscopy reported a reduced L3/L2 value at the DW in a

(Co 0.3 nm/Pt 0.5 nm)� 30 multilayer film with pronounced

PMA, which also indicates a more complex spin texture inside

the DW.33

Collecting these ideas, a proposed explanation is that the

inclusions are nanocrystalline Sm2Co17 particles that

nucleated during film growth and that have nearly in-plane

magnetization. The presence of cobalt-rich nanocrystals then

requires a surrounding region of lower cobalt concentration,

reflecting the complexity of the reaction, diffusion, and

nucleation processes involved in film growth. Further valida-

tion of a detailed model like this will benefit from higher re-

solution and 3D tomographic reconstructions, which is

expected to become available in the future.

In conclusion, we have applied an emerging, high resolu-

tion soft x-ray microscopy technique to study the nanoscale

FIG. 3. (a) FRC resolution analysis.

From the analysis, the 0.5 threshold

determines a spatial resolution of

11 nm, the half-bit threshold determines

the spatial resolution of 8 nm, and this

is applied to both pure magnetic and

pure charge reconstructed images dis-

played in Figs. 2(g) and 2(h).
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magnetic and structural properties of thin SmCo5 films.

Ptychography with circularly polarized x-rays retrieved both

absorption and phase contrast images of the magnetic domain

structure and structural inclusions in thin films of SmCo5.

This approach provides an emerging experimental tool for

high-resolution characterization of nanostructured magnetic

systems with high spectroscopic sensitivity to local magnetic

and structural heterogeneities. We proposed a simple model

to understand the inclusions and their interaction with mag-

netic domain walls. With the promise of emerging ultrahigh

brightness soft x-ray sources, our results point to similar stud-

ies with even higher resolution and spectral sensitivity, which

will allow the full 3D spin structure near a magnetic nano-

structure to be determined with few-nanometer resolution.
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