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ABSTRACT OF THE DISSERTATION

Block patterns in permutations and words and generalized clusters

by

Ran Pan

Doctor of Philosophy in Mathematics

University of California, San Diego, 2016

Professor Jeffrey Remmel, Chair

Goulden and Jackson introduced a very powerful method to study the distri-

butions of certain consecutive patterns in permutations, words, and other combi-

natorial objects which is now called the cluster method. There are a number of

natural classes of combinatorial objects which start with either permutations or

words and add additional restrictions. These include up-down permutations, gen-

eralized Euler permutations, words without consecutive repeats, colored permu-

tations without consecutive repeated colors, Carlitz integer compositions, Young

tableaux, non-backtracking random walks, ordered set partitions, cycle structures

in permutations and so on. We develop an extension of the cluster method which

we call the generalized cluster method to study the distribution of certain con-

secutive patterns in such restricted combinatorial objects. The generalized cluster

xii



method enables us to express the generating function for distribution of a pattern

in such restricted combinatorial objects in terms of so-called generalized cluster

polynomials. Compared to the original problem, computing generalized cluster

polynomials is usually more tractable. We also generalize a multi-variate version

of both cluster method and generalized cluster method which is used to study joint

distribution of multiple patterns. We use combinatorial objects mentioned above

as concrete examples to illustrate our methods.
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Chapter 1

Introduction

In enumerative combinatorics, the study of pattern enumeration has mainly

focused on the following question.

Given some pattern and a class of objects, how many objects in
this class have exactly k many matches of such pattern?

The study of patterns in permutations and words is now a very active area of

combinatorics. There are two types of patterns that have been extensively studied.

For example, for classical patterns, one looks for subsequences in a permutation

σ = σ1 . . . σn which are order isomorphic to a given permutation τ = τ1 . . . τj. For

consecutive pattern matchings, one looks for a consecutive sequence in σ which is

order isomorphic to a given permutation τ . Research on patterns in permutations

and words started over a century ago. See for example, MacMahon’s work in [39].

More recently, researchers have defined a number extensions of pattern matching

conditions. For example, in a generalized pattern introduced in [61], one can

force only some elements of a pattern to occur consecutively. For example, an

occurrence of a 1-23 pattern in σ would mean that we are looking for a subsequence

1 ≤ a < b ≤ n − 1 such that σa < σb < σb+1. Thus the dash between 1 and 2

means that we allow the “1” of the subsequence to occur anywhere before the

“2” and “3” of the subsequence but the lack of dash between 2 and 3 means that

the “2” and the “3” of the subsequence must occur consecutively. There are now

a number of extensions of pattern matching conditions included barred patterns,

mesh patterns, and marked mesh patterns. See Kitaev’s book [33].

1
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In the last twenty years, there have been numerous articles on finding gener-

ating functions for the number of consecutive occurrences of a given pattern in

various sets of combinatorial objects such as permutations, words, colored permu-

tations, set partitions, ordered set partitions, lattice paths, and various types of

arrays. Goulden and Jackson [24] developed the so-called cluster method which

has been used by many authors to find such generating functions. Remmel and

his students have shown that many such generating functions arise by applying a

ring homomorphism on the ring of symmetric functions over infinitely many vari-

able x1, x2, . . . to simple symmetric function identities. This method is now called

the homomorphism method and is explained in the recent book by Mendes and

Remmel [44].

The main focus of this thesis is how one can extend the cluster method to

find generating functions for patterns in such objects where there are additional

restrictions on the objects. For example, in permutations, one can ask to find gen-

erating functions for the number of consecutive patterns in up-down permutations.

In words, one can ask to find generating functions for the number of consecutive

patterns in words that have no consecutive repeated letters, no consecutive re-

peated letters which are even, or no consecutive repeated letters which are odd.

In rectangular arrays, one can ask to find generating functions for the number of

consecutive patterns in standard tableaux, column strict tableaux, or row-strict

tableaux.

In this thesis, we develop a new method called the generalized cluster method

to handle such questions. Our work was inspired by the work of Remmel [55] who

defined generalized maximum packings as a way to find generating functions for the

number of consecutive patterns in up-down permutations. Generalized maximum

packings are a special case of what we call generalized clusters and we show that

our desired generating functions can be expressed in terms of certain polynomials

associated with generalized cluster.
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1.1 Pattern avoidance and matching

In this section, we shall briefly review various concepts and definitions from the

theory of pattern matching. We let Sn to denote the symmetric group. That is,

Sn is the set of bijections σ : {1, . . . , n} → {1, . . . , n} under composition. We shall

use the one-line notation for permutations. That is, we shall write σ = σ1 . . . σn if

σ(i) = σi for i = 1, . . . , n.

1.1.1 Classical permutation patterns

Given any sequence τ = τ1 . . . τn of positive integers which are pairwise distinct,

the reduction of τ is a permutation that results from replacing the i-th smallest

number in τ by i. We denote the reduction of τ by red(τ). For example, assume

τ = 2 6 5 and π = 3 4 9, then red(τ) = 1 3 2 and red(π) = 1 2 3. If two sequences

have the same reduction, we say they are order-isomorphic.

Definition 1.1. Given a permutation τ = τ1τ2 · · · τj ∈ Sj and a permutation

σ = σ1σ2 · · ·σn ∈ Sn, we say

1. τ occurs in σ if there exist indices 1 ≤ i1 < i2 < · · · < ij ≤ n such that

red(σi1σi2 · · ·σij) = τ,

2. σ avoids τ if there is no occurrence of τ in σ.

This type of pattern matching condition is often called classical pattern match-

ing. Note that the indices are not required to be contiguous. For example, assume

there are patterns τ = 1 3 2 and pattern π = 3 2 1, and the permutation is

σ = 1 3 4 2. Then σ has two occurrences of τ because red(1 3 2) =red(1 4 2) = τ ,

but σ avoids π.

Clearly, a classical permutation pattern could be regarded as reduction of sub-

sequence in a permutation. Classical pattern avoidance and matching in permu-

tations have been studied for over a century. Some instances and work about

this topic haven already be recorded in MacMahon’s classical book Combinatory

Analysis [39] in 1915. After 1965, Knuth’s work [35] on sorting permutations using
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various data structures inspired more and more researchers to focus their attention

to patterns in permutations. He showed that, for any τ ∈ S3, the number of per-

mutations in Sn avoid classical pattern τ is always given by n-th Catalan number,

that is, 1
n+1

(
2n
n

)
. Simon and Schmidt [57] were the first to systematically study

the problem of enumerating the number of permutations in Sn which avoid certain

patterns. Kitaev’s book [33] provides a good modern reference to the theory of

patterns in permutations and words.

Two permutations τ and π in Sj are said to beWilf-equivalent if for any n, the

number of permutations in Sn avoiding τ is equal to the number of permutations

in Sn avoiding π. They are said to be strongly Wilf-equivalent if for any n

and k, the number of permutations in Sn having exactly k occurrences of τ is

equal to the number of permutations in Sn having exactly k occurrences of π.

Clearly, strong Wilf-equivalence implies Wilf-equivalence. It is not true that Wilf-

equivalence implies strong Wilf equivalence. That is, the patterns 123 and 132 are

Wilf-equivalent, but in, the permutation σ = 1234 has 4 occurrences of the pattern

123, but there is no permutation in S4 which as 4 occurrences of 132.

One can easily extend our definitions to consider sets of permutations Γ.

Definition 1.2. Given a set of permutation Γ and a permutation σ = σ1σ2 · · ·σn ∈
Sn, we say

1. Γ occurs in σ if there exist indices 1 ≤ i1 < i2 < · · · < ij ≤ n such that

red(σi1σi2 · · ·σij) ∈ Γ,

2. σ avoids Γ if there is no occurrence of Γ in σ.

1.1.2 Consecutive patterns in permutations and words

Generalized permutation patterns were introduced in [61]. In a generalized

permutation pattern σ, some elements are required to be consecutive and some are

not. A dash is used to connect two elements that are not required to be consecutive.

For example although σ = 1 3 4 2 contains classical pattern 1 3 2 and generalized

pattern 1 3-2 but does not contain generalized pattern 1-3 2.
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Consecutive patterns are a special class of generalized patterns. In contrast

to classical patterns, all elements are required to be consecutive. A consecutive

occurrence of a permutation τ in a permutation σ is called a τ -match of σ.

Definition 1.3. Given a permutation τ = τ1τ2 · · · τj ∈ Sj and a permutation

σ = σ1σ2 · · ·σn ∈ Sn, we say

1. there is a τ-match starting at position i in σ, if there exists an integer i

such that

red(σiσi+1 · · ·σi+j−1) = τ,

2. σ consecutively avoids τ if σ does not have a τ -match.

We let τ -mch(σ) denote the number of τ -matches in σ.

For example, if τ = 1 2 3 and σ = 2 6 7 1 3 4 5, then there is τ -matches starting

at positions 1, 4 and 5 and therefore, τ -mch(σ) = 3. Naturally the definition above

can be extended to a set of patterns.

Definition 1.4. Given a set of permutations Γ and a permutation σ = σ1σ2 · · ·σn ∈
Sn, we say

1. there is a Γ-match at starting at position i in σ, if there exists an integer i

such that

red(σiσi+1 · · ·σi+j−1) ∈ Γ,

2. σ consecutive avoids Γ if σ does not have a Γ-match.

For a set of permutations Γ, we let

Γ-mch(σ) =
∑
τ∈Γ

τ -mch(σ)

denote the number of Γ-matches in σ.

To study pattern enumeration in permutations, we usually study the following

exponential generating function Aτ,S(x, t) for a given pattern τ and try to find an

expression or explicit formula for Aτ,S(x, t).

Aτ,S(x, t) := 1 +
∑
n≥1

tn

n!

∑
σ∈Sn

xτ -mch(σ). (1.1)
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Although systematic study on consecutive permutation patterns was not started

until 2003 [19], some basic statistics over permutations have been studied for a long

time. Suppose σ ∈ Sn,

Des(σ) = {i : σi > σi+1} des(σ) = |Des(σ)|,
Ris(σ) = {i : σi < σi+1} and ris(σ) = |Ris(σ)|.

Apparently, for σ ∈ Sn, des(σ) = 21-mch(σ) and ris(σ) = 12-mch(σ). Euler

first gave the explicit generating function for number of descents in permutations,

1 +
∑
n≥1

tn

n!

∑
σ∈Sn

xdes(σ) =
x− 1

x− e(x−1)t
.

Let i, j, k, and n be non-negative integers satisfying k ≥ 2, i, j ≥ 0. Let

Ci,j,ki+kn+j denote the set of permutations σ = σ1 . . . σi+kn+j in Si+kn+j with Des(σ) ⊆
{i, i+ k, . . . , i+ nk} and Ci,j,k

i+kn+j = |C
i,j,k
i+kn+j|. Thus permutations in Ci,j,ki+kn+j start

with an increasing block of size i followed by n increasing blocks of size k and

ending with an increasing block of size j. Given σ ∈ Ci,j,ki+kn+j, we let Risi,k(σ) =

{i+ sk : σi+sk < σi+sk+1} and risi,k(σ) = |Risi,k(σ)|.
We let E i,j,ki+kn+j denote the set of permutations σ ∈ Si+kn+j with Des(σ) =

{i, i+ k, . . . , i+ nk} and Ei,j,k
i+kn+j = |E

i,j,k
i+kn+j|. For any σ ∈ Si+kn+j, let

Risi,k(σ) = {s : 0 ≤ s ≤ n and σi+sk < σi+sk+1}

and risi,k(σ) = |Risi,k(σ)|. Then Ei,j,k
i+kn+j is the number of σ ∈ Ci,j,ki+kn+j such that

Risi,k(σ) = ∅. Thus permutations σ in E i,j,ki+kn+j have the same block structure as

permutations in Ci,j,ki+kn+j, but we require the additional restriction that for any two

consecutive blocks B and C, the last element of block B must be larger than the

first element of block C.

In the special case where k = 2, i = 0, and j = 2, E0,2,2
2n+2 is the number of

permutations in S2n+2 with descent set {2, 4, . . . , 2n}. These permutations with

alternating descents and ascents are classical up-down permutations (or alternating

permutations). André [2, 3] proved that

1 +
∑
n≥0

E0,2,2
2n+2

(2n+ 2)!
t2n+2 = sec t.
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Similarly, E0,1,2
2n+1 counts the number of odd up-down permutations and André

proved that ∑
n≥0

E0,1,2
2n+1

(2n+ 1)!
t2n+1 = tan t.

These numbers are also called the Euler numbers. When k ≥ 2, E0,j,k
kn+j are called

generalized Euler numbers. Mendes and Remmel [44] showed that

∑
n≥0

(
E0,0,3

3n

(3n)!
t3n +

E0,1,3
3n+1

(3n)!
t3n+1 +

E0,2,3
3n

(3n+ 2)!
t3n+2

)
=

3 + 2
√
3e

t
2 sin

(√
3t
2

)
e−t + 2e

t
2 cos

(√
3t
2

) .

One can all study generating functions for the number of consecutive occurrence

of a pattern in words. Let P = {1, 2, 3, . . .} denote the set of positive integers and

for any k ∈ P, let [k] = {1, 2, . . . , k}. A word of length n over alphabet [k] is

a sequence consisting of letters from the set {1, 2, 3, · · · , k}. The set of all such

words of length n is denoted by [k]n. The set of all words over alphabet [k] is

denoted by [k]∗, that is, [k]∗ =
∪

n≥0[k]
n.One can also define a natural notion of

reduction for words. That is, given a word u1 . . . uj in [k]∗ for some k ∈ P, we let

red(u) denote the word which results by replacing the i-th smallest letter in u by

i. For example, if u = 543364, then red(u) equals 321142. There are two types of

consecutive patterns in words, one uses exact matches and the other uses reduced

matches.

Definition 1.5. Given a word u = u1u2 · · ·uj ∈ Pj and a word w = w1w2 · · ·wn ∈
Pn, we say

1. there is an exact u-match starting at position i in w if there exists an

integer i such that

wiwi+1 · · ·wi+j−1 = u,

2. w exactly consecutively avoids u if w does not have an exact u-match.

The number of exact u-matches in w is denoted by u-Emch(w).

For example, suppose we have word w = 4 3 1 3 2 5 2 3 1 ∈ [5]9 and the pattern

u = 3 1, then u-Emch(w) = 2.
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Definition 1.6. Given a word u = u1 . . . uj such that red(u) = u and a word

w = w1w2 · · ·wn ∈ Pn, we say

1. there is a u-match starting at position i if there exists an integer i such that

red(wiwi+1 · · ·wi+j−1) = u,

2. w consecutively avoids u if w does not have an exact τ -match.

We let u-mch(w) denote the number of u-matches in w.

Given w = w1 . . . wn ∈ P∗, we let

Des(w) = {i : wi > wi+1}, des(w) = |Des(w)|,
Lev(w) = {i : wi = wi+1}, lev(w) = |Lev(w)|,
Ris(w) = {i : wi < wi+1} and ris(w) = |Ris(w)|.

1.1.3 Consecutive patterns in arrays

For our purposes, we shall picture a σ in Ci,j,ki+kn+j as an array F (σ) starting with

a column of size i, followed by n columns of size k, and ending with a column of size

j filled with the permutation σ so that one recovers σ by reading the elements in

each column from bottom to top and reading the columns from left to right. This

means that in each column, the numbers are increasing when read from bottom to

top. For example, the array associated with the permutation

σ = 2 5 6 8 9 1 7 10 4 11 12 3

in C2,1,312 is pictured in Figure 1.1. Elements of E i,j,ki+kn+j can be viewed as restricted

arrays where the top element of each column has to be bigger than the bottom

element in the column immediately to its right.

More generally, let Di,j,k
i+kn+j denote the diagram which consists of a column of

height i, followed by n columns of height k, and ending with a column of height j.

We let (s, t) denote the cell which is in the s-th column reading from left to right,

and the t-th row reading from bottom to top. For example, for the filling of D2,1,3
12

is pictured in Figure 1.1, the number 7 is in cell (3, 2).
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6 1 4 32

5 8

9

7

10 12

11

Figure 1.1: The array for an element of C2,1,312 .

Given an alphabet A ⊆ P, F i,j,k
i+kn+j,A denote the set of all fillings of Di,j,k

i+kn+j with

elements from A. We let WI i,j,ki+kn+j,A (SI i,j,ki+kn+j,A) be the set of all fillings of F of

Di,j,k
i+kn+j with elements of A such that the elements are weakly increasing (strictly

increasing) reading from bottom to top. The word w(F ) of any filling F ∈ F i,j,k
i+kn+j,A

is the word obtained by reading the columns from bottom to top and the columns

from left to right. For example, the words of the element F1 ∈ WI1,2,312,[5] and the

element F2 ∈ SI1,2,312,[5] are pictured in Figure 1.2. We let P i,j,k
i+kn+j denote the set of

all fillings of Di,j,k
i+kn+j with the elements of 1, . . . , i+ kn+ j such that the elements

are increasing reading from bottom to top in each column. Thus for any F ∈ P i,j,k
n ,

w(F ) ∈ Ci,j,ki+kn+j.

 w(     ) = 2 1 4 4 3 4 5 1 1 3 2 3
1 3 1 2

3

2

4 4 1

4 5 3

1F 1F

 w(     ) = 2 1 3 4 3 4 5 1 2 3 2 3
1 3 1 2

3

2

3 4 2

4 5 3

2F 2F

Figure 1.2: The words of elements of WI1,2,312 and SI1,2,312 .

In this paper, we will be mostly interested in patterns that occur between

columns of height k for elements ofWI i,j,ki+kn+j,P, SI
i,j,k
i+kn+j,P,WI

i,j,k
i+kn+j,[s], SI

i,j,k
i+kn+j,[s],

and P i,j,k
i+kn+j. These types of patterns were first studied by Harmse and Remmel

[27] for elements in P0,0,k
nk .

If F is any filling of a k×n-rectangle with positive integers, then we let red(F )

denote the filling which results from F by replacing the i-th smallest element of
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F by i. For example, Figure 1.3 demonstrates a filling, F , with its corresponding

reduced filling, red(F ).

2 3 

2 5 

5 9 

1 2 

1 3 

3 4 

Figure 1.3: An example of an F ∈ WI0,0,36 and red(F ).

If F ∈ F i,j,k
i+kn+j,P and 2 ≤ c1 < · · · < cs ≤ n + 1, then we let F [c1, . . . , cs] be

the filling of the k × s rectangle where the elements in column a of F [c1, . . . , cs]

equal the elements in column ca in F for a = 1, 2, . . . , s. We can then extend the

usual pattern matching definitions from permutations to elements of F i,j,k
i+kn+j,P as

follows.

Definition 1.7. Let P be an element of F0,0,k
kr,P and F ∈ F i,j,k

i+kn+j,P where r ≤ n.

Then we say

1. P occurs in F if there are 2 ≤ i1 < i2 < · · · < ir ≤ n + 1 such that

red(F [i1, . . . , ir]) = P ,

2. F avoids P if there is no occurrence of P in F ,

3. there is a P -match in F starting at position i if red(F [i, i + 1, . . . , i +

r − 1]) = P , and

4. F consecutively avoids P if F does not have P -matches.

Clearly, consecutive patterns for an array F can be regarded as block patterns

for w(F ). We note that P -matches are often referred to as consecutive pattern

matches of P . When i = j = 0 and k = 1, then P0,0,1
n = Sn, where Sn is the

symmetric group, and our definitions reduce to the standard definitions that have

appeared in the pattern matching literature. We note that Kitaev, Mansour, and

Vella [34] have studied pattern matching in matrices which is a more general setting

than the one we are considering for i = j = 0 in this paper.
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1.1.4 c-Wilf equivalence

c-Wilf equivalence is consecutive version of Wilf equivalence. We take column-

strict array patterns as an example. Given a pattern P ∈ P0,0,k
kj , we define gener-

ating functions as follows,

AP,P(x) := 1 +
∑
n≥1

tkn

(kn)!

∑
F∈P0,0,k

kn

xP -mch(F ).

Definition 1.8. Given two patterns P,Q ∈ P0,0,k
kj , we say P and Q are c-Wilf

equivalent if

AP,P(0, t) = AQ,P(0, t).

In the other words, two patterns P,Q ∈ P0,0,k
kj are c-Wilf equivalent if for any

n, the number of elements in P0,0,k
nj avoiding P consecutively is always equal to the

number of elements in P0,0,k
kn avoiding Q consecutively. A stronger equivalence is

called strong c-Wilf equivalence.

Definition 1.9. Given two patterns P,Q ∈ P0,0,k
kj , we say P and Q are strongly

c-Wilf equivalent if

AP,P(x, t) = AQ,P(x, t).

Clearly, strong c-Wilf equivalence implies c-Wilf equivalence and researchers

doubt c-Wilf equivalence also implies strong c-Wilf equivalence. In [47], Naka-

mura conjectured that if two permutations are c-Wilf equivalent then they are also

strongly c-Wilf equivalent. Harmse and Remmel gave a similar conjecture in [27]

when k ≥ 2 which generalized the conjecture for permutation patterns.

Conjecture 1.10. P,Q ∈ P0,0,k
kj are c-Wilf equivalent if and only if P and Q are

strongly c-Wilf equivalent.

The conjecture is still open and in fact, even to find the c-Wilf equivalence

classes for Sn is a difficult task. The number of equivalence classes in Sn is currently
known up to k = 6, and they are 1, 1, 2, 7, 25, 92 [47]. For instance, there are two

classes in S3, namely, {1 2 3, 3 2 1} and {1 3 2, 3 1 2, 2 1 3, 2 3 1}. The number

of equivalence classes in Sn is proved to be less than 1, 1, 2, 8, 32, 192, 1272, 10176,

90816, · · · (see [51]). The problem of finding the c-Wilf equivalence classes for

P0,0,k
kj is completely open.
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1.2 Ring homomorphism method

In this section, we review a remarkable approach, ring homomorphism method,

to obtain generating function for consecutive pattern enumeration.

There is a long line of research that uses certain homomorphisms from the ring

of symmetric functions Λ in infinitely many variable x1, x2, . . . to obtain results

about generating functions for permutation statistics. This line of research started

with the work of Brenti [8] who introduced a homomorphism ξ mapping Λ to

the polynomial ring Q[x] over the rationals Q that demonstrated a remarkable

connection between permutation enumeration and symmetric functions. Let the

elementary symmetric function en and the homogeneous symmetric function hn be

defined by ∑
n≥0

hnt
n =

∏
i≥1

1

1− xit
and∑

n≥0

ent
n =

∏
i≥1

1 + xit.

Then Brenti defined a ring homomorphism ξ : Λ→ Q[x] by setting for k ≥ 1,

ξ(ek) =
(x− 1)k−1

k!

and setting ξ(e0) = 1. Let pk =
∑

i≥1 x
k
i , denote the k-th power symmetric func-

tion. Also, for a permutation σ in the symmetric group Sn, let des(σ) and exc(σ)

denote the number of descents and excedences of σ, respectively. Then Brenti

proved

n!ξ(hn) =
∑
σ∈Sn

xdes(σ) and

n!

zλ
ξ(pλ) =

∑
σ∈Sn(λ)

xexc(σ) (1.2)

where if λ = (1m1 , 2m2 , . . . , nmn) is a partition of n, then Sn(λ) is the set of per-

mutations in Sn with cycle type λ and zλ =
∏n

i=1 i
mimi!.

Brenti’s proofs were mainly algebraic. However in [6], Beck and Remmel gave

combinatorial proofs of Brenti’s results that used the combinatorial interpreta-

tions of the entries of the connection matrices between various bases of symmetric
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function introduced by Eg̃eciog̃lu and Remmel [15]. These combinatorial proofs

suggested natural modifications of Brenti’s original homomorphism ξ that could be

used to obtain q-analogues of Brenti’s results [8] or to obtain similar permutation

enumeration results for other groups such as the hyperoctahedral group Bn [5] or

wreath products, Ck ≀Sn, of cyclic groups Ck with the symmetric group Sn [63]. For

example, Beck and Remmel [6] defined a homomorphism ξq : Λ→ Q(q)[x] by

ξq(ek) =
(x− 1)k−1q(

k
2)

[k]q!

where for a positive integer k, [k]q = 1 + q + · · ·+ qk−1 and

[k]q! = [k]q[k − 1]q · · · [1]q. They proved that

[n]q!ξq(hn) =
∑
σ∈Sn

xdes(σ)qinv(σ)

[n]q!ξq(pn) =
∑
σ∈Sn

xrise(σ)−f(σ)+1qcoinv(σ)
(
xf(σ) − (x− 1)f(σ)

)
(1.3)

where rise(σ) and coinv(σ) are the number of rises and coinversions of σ, respec-

tively, and f(σ) is the length of the last increasing sequence of σ when σ is written

in one-line notation.

Later, Harmse and Remmel applied this method to study pattern matching in

column-strict arrays [27], Jones and Remmel used this method to obtain left-to-

right minima and distribution of descents in permutations avoiding certain pat-

terns [29], and Duane and Remmel also studied minimal overlapping patterns in

colored permutations using this method [14]. More details about the homomor-

phism method and its history can be found in the book by Mendes and Remmel

[44].

Of particular interest to us is the work of Duane and Remmel [14] who intro-

duced the notion of minimally overlapping patterns in permutations, words, and

colored permutations. We will discuss these types of patterns in the next section.

1.2.1 Minimally overlapping patterns

One special class of patterns are called minimally overlapping patterns (some-

times also called non-overlapping patterns [7] [17]). For a pattern P of length n, if
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there does not exist an integer 1 < k < n such that the subpattern consisting of the

first k positions in P matches the subpattern consisting of the last k positions in

P , we say P is minimally overlapping or has minimal overlapping property.

Take permutation pattern as an example, suppose τ ∈ Sj, we say that τ has

the minimal overlapping property or τ is minimally overlapping if for any integer

m, 1 < m < j, we have

red(τ1τ2 · · · τm) ̸= red(τj−m+1 · · · τj−1τj).

Alternatively, τ ∈ Sj is minimally overlapping if the smallest n such that

there exists σ ∈ Sn such that τ -mch(σ) = 2 is 2j − 1. This means in any two

consecutive τ -matches in a permutation σ can share at most one position which

must necessarily be at the end of the first τ -match and the start of the second τ -

match. It follows that if τ ∈ Sj is minimally overlapping, then the smallest n such

that there exists a σ ∈ Sn such that τ -mch(σ) = k is k(j − 1)+ 1. A σ ∈ Sk(j−1)+1

such that τ -mch(σ) = k is called a maximum packing for τ .

Similarly, for column-strict arrays, pattern P ∈ P0,0,k
kj is minimally overlap-

ping if and only if for any integer m, 1 < m < j, the reduction of first m

columns of P is different from the reduction of last m columns of P , that is,

red(P [1, 2, · · · ,m]) ̸=red(P [j −m+ 1, j −m+ 2, · · · , j]).
Minimally overlapping patterns are nice because we are then able to define

maximum packings for minimally overlapping patterns in that we have a nice

expression for generating functions in terms of maximum packings. The definition

of maximum packings are discussed in next subsection.

Actually determining the percentage of minimally overlapping pattern among

all patterns of given length is itself is also a research topic. For example, Bóna [7]

found that the lower bound of percentage of minimally overlapping permutation

patterns in Sn is 3−e ≈ 0.2817 and showed that the percentage is convergent as the

length of permutations increases. The author and Remmel [52] extended Bóna’s

result to column strict arrays, generalized Euler permutations and standard Young

tableaux of rectangular shapes. Moreover, for arrays of height k where k ≥ 2,

regardless of number of columns, proportion of minimally overlapping patterns

converges to 1 very fast as k increases.
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Another fact worth mentioning fact is that it has been proved by Duane and

Remmel in the case where k = 1 and Harmse and Remmel in the case where k ≥ 2

that Conjecture 1.10 holds for minimally overlapping patterns in column-strict

arrays P0,0,k
kn . That is, the following result holds.

Theorem 1.11. Suppose P,Q ∈ P0,0,k
kj are minimally overlapping patterns, then P

and Q are strongly c-Wilf equivalent if and only if P and Q are c-Wilf equivalent.

1.2.2 Maximum packings

For minimally overlapping patterns, we are able to define its maximum pack-

ings. Take a minimally overlapping permutation pattern τ ∈ Sj as an example.

A permutation in Sk(j−1)+1 that has exactly k τ -matches is called a maximum

packings for τ and we letMPKτ,k(j−1)+1 = {σ ∈ Sk(j−1)+1 : τ -mch(σ) = k}. We

let mpτ,k(j−1)+1 = |MPKτ,k(j−1)+1|.
For example, τ = 1 3 2 is a minimally overlapping pattern in S3, then mpτ,5 = 3

becauseMPKτ,5 = {1 3 2 5 4, 1 4 2 5 3, 1 5 2 4 3}.
In [14], for a minimally overlapping pattern τ , Duane and Remmel showed that

the generating function Aτ,S(x, t) defined in Equation 1.1 can be expressed in terms

of mpτ,n.

Theorem 1.12. If τ ∈ Sj has the minimal overlapping property, then

Aτ,S(x, t) = 1 +
∑
n≥1

tn

n!

∑
σ∈Sn

xτ -mch(σ) =

1

1−
(
t+
∑

n≥1
tn(j−1)+1

(n(j−1)+1)!
(x− 1)nmpτ,n(j−1)+1

) . (1.4)

According to Theorem 1.12, we see that the number of maximum packings

mpτ,n(j−1)+1 determines Aτ,S(0, t) and also Aτ,S(x, t) is completely determined by

mpτ,n(j−1)+1, which indicates that Conjecture 1.10 holds for minimally overlapping

permutation patterns.

In [27], Harmse and Remmel extended Theorem 1.12 for column-strict arrays.

It has been shown that Conjecture 1.10 holds for minimally overlapping patterns

and the first and the last column of a minimally overlapping pattern determines
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which c-Wilf equivalence class it belongs to (see [12], [14], [16], and [27]). The

key to proving such results is to prove an analogue to Theorem 1.12. This was

done by Harmse and Remmel [27] who proved the following theorem for minimally

overlapping patterns in P0,0,k
kj .

Theorem 1.13. Suppose that k ≥ 2, j ≥ 2, and P ∈ P0,0,k
kj has the minimal

overlapping property. Then

AP,P(x, t) = 1 +
∑
n≥1

tkn

(kn)!

∑
F∈P0,0,k

kn

xP -mch(F ) =

1

1−
(

tk

k!
+
∑

n≥1
tn(j−1)+1

(k(n(j−1)+1))!
(x− 1)nmpP,n(j−1)+1

) . (1.5)

Therefore, to obtain the formula for generating functions we only need to com-

pute the number of maximum packings.

1.3 Cluster method

The cluster method, which is based on inclusion-exclusion principle, was first

introduced by Goulden and Jackson [23] [24] when they studied pattern matching

in words in 1979. It didn’t gain much attention at the beginning until Noonan and

Zeilberger re-emphasized importance of the cluster method in 1999 in [48]. Now

it has been widely utilized to solve pattern matching in permutations. Rawlings

[54] used cluster method to find enumeration formulas for permutation patterns in

form of 1 2 · · · m, 1 2 · · · (m−2) m (m−1) and 1 m (m−1) · · · 2. Elizalde and
Noy gave a more general discussion about permutation pattern matching using

cluster method in [19].

When we use ring homomorphism method for pattern matching, it’s required

that the pattern is minimally overlapping. However, the cluster method works

generally for arbitrary patterns although it might be very difficult in computation.
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1.3.1 Clusters

Given a permutation pattern τ ∈ Sj and a permutation σ ∈ Sn satisfying τ -

mch(σ) > 0, we mark some of the τ -matches in σ by putting ‘x’ on the top of the

first element in the match. We could even mark all of the τ -matches or none of

them. It’s apparent that for given a pattern τ ∈ Sj and a permutation σ ∈ Sn,
there are 2τ -mch(σ) distinct τ -marked σ’s. We letMSn,τ denote the set of all the τ -

marked permutations in Sn. For example, for pattern τ = 1 3 2 and σ = 1 4 2 5 3,

there are four distinct τ -marked σ’s, shown in Figure 1.4.

1 4 3 2 5 1 4 3 2 5 

x 

1 4 3 2 5 

x 

1 4 3 2 5 

x x 

Figure 1.4: Four τ -marked σ’s

A τ-cluster of length n for pattern τ ∈ Sj is a permutation σ in Sn such that

1. each element of σ is contained in some marked τ -matches and

2. any two consecutive marked τ -matches share at least one element.

We let mτ (σ) denote the number of marked τ -matches in σ. The set of all the

τ -clusters of size n is denoted by Cn,τ .
Accordingly we could extend the notion of clusters to arrays, such as P0,0,k

kn ,

WI0,0,kkn,A, SI
0,0,k
kn,A and even P i,j,k

i+kn+j. Details about these clusters will be discussed

in following chapters.

1.3.2 Cluster polynomials

Based on the cluster method, the exponential generating function Aτ,S(x, t) for

a pattern τ ∈ Sj can be expressed as (see [19])

Aτ,S(x, t) =
1

1−
(
t+
∑

n≥2Cτ,n(x− 1) t
n

n!

) , (1.6)

where Cτ,n(x) is so-called cluster polynomial. It was shown in [44] that (1.6) can

also be derived via the homomorphism method.
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A cluster polynomial for pattern τ of size n is defined as

Cτ,n(x) :=
∑

σ∈Cτ,n

xmτ (σ).

Hence, the problem of find generating functions is now converted to finding

formulas for corresponding cluster polynomials which is typically easier than to

find generating functions directly.

For example, assume τ = 1 2 3, then the cluster polynomials are as follows,

C123,3(x) = x

C123,4(x) = x2

C123,5(x) = x3 + x2

· · ·

C123,n(x) = x(C123,n−2(x) + C123,n−1(x)).

In the next section (1.6), we shall extend the concept of cluster polynomials to

arrays.

1.4 Patterns in restricted arrays

From the results above, we can see that we could use either the homomor-

phism method or the cluster method to find generating functions for the number

of consecutive occurrence of a pattern in permutations, arrays and various other

combinatorial objects. The main focus of this thesis is to extend the cluster method

to find generating functions for the number of consecutive occurrences of patterns

in various subclasses of permutations, words, and arrays. In the next subsection,

we shall discuss various natural examples of such subclasses.

1.4.1 Restricted arrays

Moreover, we could add various restrictions to arrays inWI i,j,ki+kn+j,P, SI
i,j,k
i+kn+j,P,

WI i,j,ki+kn+j,[s], SI
i,j,k
i+kn+j,[s], and P

i,j,k
i+kn+j. For example, suppose that i = j = 0 and

k ≥ 2. In this case, we label the columns of D0,0,k
n with 1, . . . , n, reading from left

to right, and the rows with 1, . . . , k, reading from bottom to top.
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1. Elements of E0,0,kkn are the elements F ∈ P0,0,k
kn such that satisfy the additional

restriction that F (s, k) > F (s+ 1, 1) for s = 1, . . . , n− 1.

2. Standard tableaux of shape nk are the elements F ∈ P0,0,k
kn such that satisfy

the additional restriction that F (s, r) < F (s+ 1, r) for s = 1, . . . , n− 1 and

r = 1, . . . , k.

3. Column strict tableaux of shape nk are the elements F ∈ SI0,0,kkn.P such that

satisfy the additional restriction that F (s, r) ≤ F (s+1, r) for s = 1, . . . , n−1
and r = 1, . . . , k.

4. Words with no consecutive repeated letters can be viewed at elementsWI0,0,1n,P

with the restriction that F (s, 1) ̸= F (s+ 1, 1) for s = 1, . . . , n− 1.

In each of these cases, one can describe our collection of elements as the set

of elements in WI i,j,ki+kn+j,P, SI
i,j,k
i+kn+j,P, WI

i,j,k
i+kn+j,[s], SI

i,j,k
i+kn+j,[s], or P

i,j,k
i+kn+j whose

consecutive columns satisfy a certain binary relation. That is, let R be some

binary relation R between pairs of columns of integers. Then we letWI i,j,ki+kn+j,P,R (

SI i,j,ki+kn+j,P,R ,WI
i,j,k
i+kn+j,[s],R , SI

i,j,k
i+kn+j,[s],R , P

i,j,k
i+kn+j,R) denote the set of all elements

F in WI i,j,ki+kn+j,P ( SI i,j,ki+kn+j,P, WI
i,j,k
i+kn+j,[s], SI

i,j,k
i+kn+j,[s], P

i,j,k
i+kn+j) such that for all

1 ≤ i < n, (F [i], F [i+ 1]) ∈ R. For example, consider the following relations R.

1. Let R is the relation that holds between a pair if columns of integers (C,D)

if and only if the top element of C is greater than the bottom element of D.

Then it is easy to see that E i,j,kkn equals P i,j,k
i+kn+j,R .

2. Let R is the relation that holds between a pair of columns of integers (C,D)

if and only if in the array CD, the rows are strictly increasing. Then it is

easy to see that set of standard tableaux of shape nk equals P0,0,k
kn,R and the

set of row tableaux of shape nk equals WI0,0,kkn,P,R .

3. Let R is the relation that holds between a pair of columns of integers (C,D)

of integers if and only if in the array CD, the rows are weakly increasing.

Then it is easy to see that the set of column strict tableaux of shape nk

equals SI0,0,kkn,P,R .
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4. Let R is the relation that holds between a pair of integers (a, b) if and only

if a ̸= b. Then it is easy to see that the set of words with no consecutive

repeated letters equals WI0,0,1n,P,R .

1.4.2 Generalized clusters

Although ring homomorphism method and cluster method can solve pattern

enumeration in permutations, words or arrays, they fail to deal with such objects

with restrictions.

Remmel [55] extended maximum packings to generalized maximum packings in

order to solve length-4 pattern matching in up-down permutations. As mentioned

in Chapter 1.4.1, up-down permutations of even lengths could be treated as a class

of two-row columns strict arrays with some special restrictions. In scenario of S4,
an up-down permutation of length 4 is always overlapping while if we think of an

up-down permutation of length 4 as an element in P0,0,2
4 , it is always a minimally

overlapping pattern.

Generalized maximum packing gives us an inspiration to solve pattern match-

ing in either permutations, words or arrays with customized restrictions. In this

dissertation, we develop a so-called generalized cluster method which enables

us to express the generating functions for pattern matching in restricted objects

in terms of so-called generalized cluster polynomials.

The main result of this paper will allow to find generating functions of P -

matches inWI i,j,ki+kn+j,P,R , SI
i,j,k
i+kn+j,P,R ,WI

i,j,k
i+kn+j,[s],R , SI

i,j,k
i+kn+j,[s],R , and P

i,j,k
i+kn+j,R .

We note that by varying the binary relation R, we can study the distribution of P -

matches in fillings with other types of restrictions such as elements of WI i,j,ki+kn+j,P,

SI i,j,ki+kn+j,P, WI
i,j,k
i+kn+j,[s], SI

i,j,k
i+kn+j,[s], or P

i,j,k
i+kn+j whose first row is strictly increas-

ing, reading from left to right, or elements WI i,j,ki+kn+j,P, SI
i,j,k
i+kn+j,P, WI

i,j,k
i+kn+j,[s],

SI i,j,ki+kn+j,[s], or P
i,j,k
i+kn+j whose elements in even rows are strictly increasing, reading

from left to right, and whose elements in odd rows are strictly decreasing, reading

from left to right.

Furthermore, we are also able to obtain a multi-variate generating function for

multiple pattern matchings by constructing generalized joint clusters. For instance,
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suppose we havem patterns, P1, P2, · · · , Pm, a multi-variate version of a generating

function is in form of

1 +
∑
n≥1

tn

n!

∑
F∈Rn

m∏
i=1

x
Pi-mch(F )
i , (1.7)

where Rn stands for a set of restricted combinatorial objects of size n.

1.5 Outline

In Chapter 2, we shall discuss clusters and generalized clusters for fillings of

diagrams of rectangular shapes, that is, D0,0,k
kn . Three examples are given and they

are patterns in words with no consecutive repeats, patterns in Young tableaux of

rectangular shapes and shortest loops in non-backtracking walks.

In Chapter 3, we discuss clusters and generalized clusters for fillings of D0,j,k
kn+j,

Di,0,k
i+kn+j and Di,j,k

i+kn+j respectively. We take up-down patterns in down-up per-

mutations as an example to further illustrate clusters and generalized clusters for

Di,j,k
kn+j.

In Chapter 4, we extend clusters and generalized clusters to a multi-variate

version and then we can study joint distribution of multiple patterns in restricted

combinatorial objects. For examples, we consider co-runs in restricted colored

permutations and multiple patterns of Carlitz integer compositions.

In Chapter 5, we extend the discussion to arrays of undetermined shapes. We

proved that the cluster and generalized cluster method still work for patterns in

such situation. For examples, we consider patterns in ordered set partitions and

patterns in cycle structures of permutations. It is also pointed out that clusters

and generalized clusters can be extended to arrays of undetermined shapes with

some partial restrictions.

Although generalized cluster method is a powerful method of find distributions

of patterns in various restricted combinatorial objects, we discuss its limitation in

the final chapter. We also discuss its connection to joint clusters and directions of

further research.

A portion of Chapter 1 has been published in Discrete Mathematics and The-

oretical Computer Science. R. Pan and J. B. Remmel, Asymptotics for mini-
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mal overlapping patterns for generalized Euler permutations, standard tableaux

of rectangular shapes, and column strict arrays, Discret. Math. and Theoretical

Computer Science, 18–2 (2016), # 6.



Chapter 2

Cluster and Generalized Clusters

for fillings of D
0,0,k
kn .

In this chapter, we shall describe cluster method and generalized cluster method

in a fundamental situation where only fillings of rectangular shapes are considered.

A few examples are given with details to explain how cluster and generalized cluster

method work for block patterns in fillings of D0,0,k
kn . Recall that D0,0,k

kn is a k × n

rectangular diagram. D0,0,3
18 is pictured in Figure 2.1 as an example.

Figure 2.1: D0,0,3
18 .

2.1 Main theorems

In this section, we shall describe the cluster method and our generalized cluster

method for fillings of D0,0,k
kn . We shall start with the special case of elements in

P0,0,k
kn .

We start by recalling the definition of clusters for permutations. Let τ ∈ Sj be a
permutation. Then for any n ≥ 1, we letMSn,τ denote the set of all permutations

23
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in σ ∈ Sn where we have marked some of the τ -matches in σ by placing an x at the

start of τ -match in σ. For example, suppose that τ = 1 3 2 and σ = 1 5 4 7 8 2 6 3.

Then there are two τ -matches in σ, one starting at position 1 and one starting at

position 6. Thus σ gives rises to four elements ofMS8,τ .

1 5 4 7 8 2 6 3
x

1 5 4 7 8 2 6 3

1 5 4 7 8
x

2 6 3
x

1 5 4 7 8
x

2 6 3

A τ -cluster is an element of σ = σ1 . . . σn ∈MSn,τ such that

1. every σi is an element of a marked τ -match in σ and

2. any two consecutive marked τ -matches share at least one element.

We let CMSn,τ denote the set of all τ -clusters in MSn,τ . Given a τ -cluster σ ∈
MSn,τ , we let mτ (σ) be the number of marked τ -matches in σ. For each n ≥ 1,

we define the cluster polynomial

Cn,τ (x) =
∑

σ∈CMSn,τ

xmτ (σ).

For example, we say that a permutation τ ∈ Sj is minimal overlapping if the

smallest n such that there exists a σ ∈ Sn where τ -mch(σ) = 2 is 2j − 1. This

means that two consecutive τ -matches in a permutation σ can share at most one

element which must be the element at the end of the first τ -match and the element

which is at the start of the second τ -match. In such a situation, the smallest

m such that there exists a σ ∈ Sm such that τ -mch(σ) = n is n(j − 1) + 1.

We call elements of σ ∈ Sn(j−1)+1 such that τ -mch(σ) = n maximum packings of

τ . We letMPn(j−1)+1 denote the set of maximum packings for τ in Sn(j−1)+1 and

mpn(j−1)+1,τ = |MPn(j−1)+1|. It is easy to see that if τ ∈ Sj is minimal overlapping,

then the only τ -clusters are maximum packings for τ where the start of each τ -

match is marked with an x. For example, τ = 132 is a minimal overlapping

permutation and it is easy to compute the number of maximum packings of size

2n+1 for any n ≥ 1. That is, if σ = σ1 . . . σ2n+1 is inMP2n+1,132, then there must

be 132-matches starting at positions 1, 3, 5, . . . , 2n − 1. It easily follows that for
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each i = 0, . . . , n− 1, σ2i+1 is smaller than σj for all j > 2i+ 1. Hence σ1 = 1 and

σ3 = 2. We then have 2n− 1 choices for σ3. Hence, it follows that

mp2n+1,132 = (2n− 1)mp2n−1,132 =
n−1∏
i=0

(2i+ 1).

Thus C2n+1,132(x) = xn
∏n−1

i=0 (2i+1) for all n ≥ 1 and C2n,132(x) = 0 for all n ≥ 1.

On the other hand, suppose that τ = 1234. It is easy to see that for any τ -

cluster in CMSn,τ where n ≥ 4, the underlying permutation must be the identity

permutation. Moreover, if σ = σ1 . . . σn ∈ CMSn,τ , then σ1 must be marked with

an x because σ1 must be an element in a marked τ -match and σn−3 must be marked

since σn must be an element of a marked τ -match. Thus for n = 7, we are forced

to mark 1 and 4,
x

123
x

4567.

However we free to mark either 2 or 3 with an x. Hence

C7,1234(x) = x2(1 + x)2.

Then Goulden and Jackson’s [24] proved the following theorem.

Theorem 2.1. Let τ ∈ Sj where j ≥ 2. Then

1 +
∑
n≥1

tn

n!

∑
σ∈Sn

xτ -mch(σ) =
1

1− t−
∑

n≥2
tn

n!
Cn,τ (x− 1)

.

It is easy to generalize this result to deal with elements of P0,0,k
nk . Suppose

that we are given a filling P ∈ P0,0,k
kr . For any n ≥ 1, we letMP0,0,k

kn,P denote the

set of all fillings F ∈ P0,0,k
nk where we have marked some of the P -matches in F

by placing an x on top of the column that start a P -match in σ. For example,

suppose that P =
4 6 5

1 2 3
and F ∈ P0,0,2

12 pictured in Figure 2.2. Then there are

two P -matches in F , one starting at column 1 and one starting at column 4. Thus

F gives rise to four elements ofMP0,0,2
12 . Given a F ∈ MP0,0,k

kn,P , we let mP (F ) be

the number of marked P -matches in F .

We can also extend the reduction operation to P -marked fillings. That is,

suppose P ∈ P0,0,k
jk and F is a filling of the k×n array with integers which strictly
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x

3 

8 

4 

11 

5 

10 

1 

7 

2 

12 

6 

9 

3 

8 

4 

11 

5 

10 

1 

7 

2 

12 

6 

9 

3 

8 

4 

11 

5 

10 

1 

7 

2 

12 

6 

9 

3 

8 

4 

11 

5 

10 

1 

7 

2 

12 

6 

9 

xx

x

Figure 2.2: P -marked fillings.

increasing in columns, reading from bottom to top, where we have marked some of

the P -matches by placing an x at the top of the column that starts a marked P -

match. Then by red(F ), we mean the element ofMP0,0,k
kn that results by replacing

the ith smallest element in F by i and marking a column in red(F ) if and only if

it is marked in F .

A P -cluster is a filling of F ∈MP0,0,k
kn,P such that

1. every column of F is contained in a marked P -match of F and

2. any two consecutive marked P -matches share at least one column.

1 

4 

3 2 

5 6 

1 4 3 2 

5 6 

7 

9 8 10 

x x 

1 4 3 2 

5 6 

7 

9 8 10 

x

TP Q

Figure 2.3: Q is a P -cluster but T is not.

In Figure 2.3, Q is a P -cluster while T is not a P -cluster.

We let CM0,0,k
kn,P denote the set of all P -clusters inMP0,0,k

kn,P . For each n ≥ 2, we

define the cluster polynomial

C0,0,k
kn,P (x) =

∑
F∈CM0,0,k

kn,P

xmP (F )

where mP (F ) is the number of marked P -matches in F . By convention, we let

C0,0,k
k,P (x) = 1.
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Theorem 2.2. Let P ∈ P0,0,k
jk where j ≥ 2. Then

1 +
∑
n≥1

tn

kn!

∑
F∈P0,0,k

kn

xP -mch(F ) =
1

1−
∑

n≥1
tkn

(kn)!
C0,0,k

kn,P (x− 1)
. (2.1)

Proof. Replace x by x+1 in (2.1). Then the left-hand side of (2.1) is the generating

function of mP (F ) over all F ∈MP0,0,k
kn,P . That is, it easy to see that

1 +
∑
n≥1

tn

kn!

∑
F∈P0,0,k

kn

(x+ 1)P -mch(F ) = 1 +
∑
n≥1

tn

kn!

∑
F∈MP0,0,k,P

kn

xmP (F ). (2.2)

Thus we must show that

1 +
∑
n≥1

tn

kn!

∑
F∈MP0,0,k

kn

xmP (F ) =
1

1−
∑

n≥1
tkn

(kn)!
C0,0,k

kn,P (x)
. (2.3)

Now
1

1−
∑

n≥1
tkn

(kn)!
C0,0,k

kn,P (x)
= 1 +

∑
m≥1

(∑
n≥1

tkn

(kn)!
C0,0,k

kn,P (x)

)m

. (2.4)

Taking the coefficient of tks

(ks)!
on both sides of (2.3) where n ≥ 1, we see that we

must show that∑
F∈MP0,0,k

sn

xmP (F ) =
∞∑

m=1

(
∞∑
n=1

tkn

(kn)!
C0,0,k

kn,P (x)

)m

| tks

(ks)!

=
s∑

m=1

(
s∑

n=1

tkn

(kn)!
C0,0,k

kn,P (x)

)m

| tks

(ks)!

=
s∑

m=1

∑
a1+a2+···+am=s

ai≥1

(
kn

ka1, . . . , kam

) m∏
j=1

C0,0,k
kaj ,P

(x). (2.5)

The right-hand side of (2.5) is now easy to interpret. First we pick an m such

that 1 ≤ m ≤ s. Then we pick a1, . . . , am ≥ 1 such that a1 + a2 + · · · + am = s.

Next the binomial coefficient
(

kn
ka1,...,kam

)
allows us to pick sets S1, . . . , Sm which

partition {1, . . . , ks} such that |Si| = kai for i = 1, . . . ,m. Finally the product∏m
j=1C

0,0,k
kaj ,P

(x) allows us to pick clusters Ci ∈ CM0,0,k
kai,P

for i = 1, . . . ,m with weight∏m
j=1 x

mP (Ci). Note that in the cases where ai = 1, we will interpret Ci as just a

column of height k filled with the numbers 1, . . . , k which is increasing, reading

from bottom to top.
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={1,3,5,8,10,15,18,24,27,30}1S 1C=
1 2 3 4 5 

10 9 8 7 6 

x x

={17,19}2S 2C

={4,7,12,13,20,21}3S

={25,26}5S 5C=
1 

2 

=
1 

2 

3C=
1 2 3 

6 5 4 

x

4C

x

={2,6,9,11,14,16,22,23,28,29}4S =
1 2 3 4 5 

10 9 8 7 6 

x xx

1 3 5 8 10 17 4 7 12 2 6 9 11 14 25 

22 16 26 29 28 23 21 20 13 30 27 24 18 15 19 

x x x xx

Figure 2.4: Construction for the right-hand side of (2.5).

For example, suppose that k = 2 and P =
6 5 4

1 2 3
. Then in Figure 2.4,

we have pictured S1, S2, S3, S4, S5 which partition {1, . . . , 30} and corresponding

clusters C1, . . . , C5. Then for each i = 1, . . . ,m, we create a clusterDi which results

by replacing the j in Ci by the jth element of Si. If we concatenate D1 . . . Dm

together, then we will obtain an element of Q ∈ MP0,0,k
kn,P . It is easy to see that

one can recover D1, . . . , D5 from Q. That is, given an element F ∈ MP0,0,k
kn,P , we

say that a marked subsequence F [i, i+ 1, . . . , j] is a maximal P -subcluster of F if

red(F [i, i+ 1, . . . , j]) is a P -cluster and F [i, i+ 1, . . . , j] is not properly contained

in a marked subsequence F [a, a + 1, . . . , b] such that red(F [a, a + 1, . . . , b]) is a
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P -cluster. In the special case where i = j and the column F [i] is not marked,

then we say that F [i] is maximal P -subcluster if F [i] is not properly contained

in a marked subsequence F [a, a + 1, . . . , b] such that red(F [a, a + 1, . . . , b]) is a

P -cluster. Thus D1, . . . , D5 are the maximal P -subclusters of Q. Of course, once

we have recovered D1, . . . , D5, we can recover the sets S1, . . . , S5 and the p-clusters

C1, . . . , C5.

In this manner, we can see that the right-hand side of (2.5) just classifies the

elements ofMP0,0,k
kn,P by its maximal P -subclusters which proves our theorem.

Next suppose that we are given a binary relation R between k × 1 arrays of

integers and a pattern P ∈ P0,0,k
kj .

Definition 2.3. We say that Q ∈ MP0,0,k
kn,P is a generalized P,R-cluster if we

can write Q = B1B2 · · ·Bm where Bi are blocks of consecutive columns in Q such

that

1. either Bi is a single column or Bi consists of r-columns where r ≥ 2, red(Bi)

is a P -cluster inMPkr,P , and any pair of consecutive columns in Bi are in

R and

2. for 1 ≤ i ≤ m − 1, the pair (last(Bi), f irst(Bi+1)) is not in R where for

any i, last(Bi) is the right-most column of Bi and first(Bi) is the left-most

column of Bj.

Let GC0,0,kkn,P,R denote the set of all generalized P,R-clusters which have n columns

of height k. For example, suppose that R is the relation that holds for a pair of

columns (C,D) if and only if the top element of column C is greater than the

bottom element of column D and P =
6 5 4

1 2 3
.

Then in Figure 2.5, we have pictured a generalized P,R-cluster with 5 blocks

B1, B2, B3, B4, B5.

Given Q = B1B2 . . . Bm ∈ GC0,0,kkn,P,R , we define the weight of Bi, ωP,R(Bi), to be

1 if Bi is a single column and xmP (red(Bi)) if Bi is order isomorphic to a P -cluster.
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x

1B 2B 3B 4B 5B

1 2 3 8 5 7 9 10 11 16 17 18 19 20 23 

25 21 24 28 27 26 29 22 12 30 15 14 13 6 8 

x x x xx

Figure 2.5: A generalized P,R-cluster.

Then we define the weight of Q, ωP,R(Q), to be (−1)m−1
∏m

i=1 ωP,R(Bi). We let

GC0,0,k
kn,P,R(x) =

∑
Q∈GC0,0,k

kn,P,R

ωP,R(Q). (2.6)

Then we have the following theorem.

Theorem 2.4. Let R be a binary relation on pairs of columns (C,D) of height

k which are filled with integers which are increasing from bottom to top. Let P ∈
P0,0,k

jk where j ≥ 2. Then

1 +
∑
n≥1

tkn

(kn)!

∑
F∈P0,0,k

kn,R

xP -mch(F ) =
1

1−
∑

n≥1
tkn

(kn)!
GC0,0,k

kn,P,R(x− 1)
. (2.7)

Proof. Replace x by x+1 in (2.7). Then the left-hand side of (2.7) is the generating

function of mP (F ) over all F ∈MP0,0,k
kn,P,R . That is, it easy to see that

1 +
∑
n≥1

tkn

(kn)!

∑
F∈P0,0,k

kn,R

(x+ 1)P -mch(F ) = 1 +
∑
n≥1

tkn

(kn)!

∑
F∈MP0,0,k

kn,P,R

xmP (F ). (2.8)

Thus we must show that

1 +
∑
n≥1

tkn

(kn)!

∑
F∈MP0,0,k

kn,P,R

xmP (F ) =
1

1−
∑

n≥1
tkn

(kn)!
GC0,0,k

kn,P,R(x)
. (2.9)

Now

1

1−
∑

n≥1
tkn

(kn)!
GC0,0,k

kn,P,R(x)
= 1 +

∑
m≥1

(∑
n≥1

tkn

(kn)!
GC0,0,k

kn,P,R(x)

)m

. (2.10)
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Taking the coefficient of tks

(ks)!
on both sides of (2.3) where n ≥ 1, we see that we

must show that

∑
F∈MP0,0,k

sn

xmP (F ) =
∞∑

m=1

(∑
n≥1

tkn

(kn)!
GC0,0,k

kn,P,R(x)

)m

| tks

(ks)!

=
s∑

m=1

(
s∑

n=1

tkn

(kn)!
GC0,0,k

kn,P,R(x)

)m

| tks

(ks)!

=
s∑

m=1

∑
a1+a2+···+am=s

ai≥1

(
ks

ka1, . . . , kam

) m∏
j=1

GC0,0,k
kaj ,P,r

(x).(2.11)

The right-hand side of (2.11) is now easy to interpret. First we pick an m such

that 1 ≤ m ≤ s. Then we pick a1, . . . , am ≥ 1 such that a1 + a2 + · · · + am = s.

Next the binomial coefficient
(

ks
ka1,...,kam

)
allows us to pick sets S1, . . . , Sm which

partition {1, . . . , ks} such that |Si| = kai for i = 1, . . . ,m. Finally the product∏m
j=1GC0,0,k

kaj ,P,R
(x) allows us to pick generalized P,R-clusters Gi ∈ GC0,0,kkai,P,R

for

i = 1, . . . ,m with weight
∏m

j=1 ωP,R(Gi). Note that in the cases where ai = 1,

our definitions imply that Ci is just a column of height k filled with the numbers

1, . . . , k which is increasing, reading from bottom to top.

For example, suppose that k = 2 and P =
6 5 4

1 2 3
. Suppose that R is

relation where, for any two columns C and D which filled with integers and are

strictly increasing in columns, (C,D) ∈ R if and only if the top element of C

is greater than the bottom elements of D. Then in Figure 2.6, we have pictured

S1, S2, S3, S4, S5 which partition {1, . . . , 30} and corresponding generalized P,R-

clusters G1, . . . , G5. For each i, we have indicated the separation between the

blocks of Gi by dark black lines. Then for each i = 1, . . . ,m, we create a cluster Ei

which results by replacing the j in Gi by the jth element of Si. If we concatenate

E1 . . . E5 together, then we will obtain an element of Q ∈MP0,0,k
kn,P . The weight of
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={1,3,5,8,10,15,18,24,27,30}1S 1G=
1 3 4 5 7

2 10 8 6 9 

={17,19}2S 2G

={4,7,12,13,20,21}3S

={25,26}5S 5G=
1 

2 

=
1 

2 

3G=
1 2 3 

6 5 4 

x

4G

x

={2,6,9,11,14,16,22,23,28,29}4S =
1 2 3 4 6 

10 9 8 5 7 

x x

1 5 8 10 18 17 4 7 12 2 6 9 11 16 25 

14 22 26 29 28 23 21 20 13 3 30 24 15 27 19 

x x

x

x

Figure 2.6: Construction for the right-hand side of (2.11).

Q equals
∏5

j=1 ωP,R(Gi) where

ωP,R(G1) = (−1)2x,

ωP,R(G2) = 1,

ωP,R(G3) = x,

ωP,R(G4) = (−1)1x2, and

ωP,R(G5) = 1.

In Figure 2.6, we have indicated the boundaries between the Gis by light lines.

We let HGCks,P,R denote the set of all elements that can be constructed in
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this way. Thus Q = E1 . . . Em is an element of HGCks,P,R if and only if for each

i = 1, . . . ,m, red(Ei) is a generalized P,R-cluster. Next we define a sign reversing

involution θ : HGCks,P,R → HGCks,P,R . Given Q = E1 . . . Em ∈ HGCks,P,R , look
for the first i such that either

1. the block structure of red(Ei) = B
(i)
1 B

(i)
2 . . . B

(i)
ki

consists of more than one

block or

2. Ei consists of a single block B
(i)
1 and (last(Bi), f irst(Ei)) is not in R.

In case (1), we let θ(E1 . . . Em) be the result of replacing Ei by two generalized

P,R-clusters, E∗
i and E∗∗

i where Ei∗ consists just of B
(i)
1 and E∗∗

i consists of

B
(i)
2 . . . B

(i)
ki
. Note that in this case

ωP,R(Ei) = (−1)ki−1

ki∏
j=1

ωP,R(B
(i)
j )

while

ωP,R(E
∗
i )ωP,R(Ei)

∗∗ = (−1)ki−2

ki∏
j=1

ωP,R(B
(i)
j ).

In case (2), we let θ(E1 . . . Em) be the result of replacing Ei and Ei+1 by the single

generalized P,R-cluster E = B
(i)
1 B

(i+1)
1 . . . B

(i+1)
ki+1

. Since (last(Bi), f irst(Ei)) is

not in R, B
(i)
1 B

(i+1)
1 . . . B

(i+1)
ki+1

reduces to a generalized P,R-cluster. In this case,

ωP,R(Ei)ωP,R(Ei+1) = (−1)ki+1−1ωP,R(B
(i)
1 )

ki+1∏
j=1

ωP,R(B
(i+1)
j )

while

ωP,R(E) = (−1)ki+1ωP,R(B
(i)
1 )

ki+1∏
j=1

ωP,R(B
(i+1)
j ).

If neither case (1) or case (2) applies, then we let θ(E1 . . . Em) = E1 . . . Em. For

example, suppose that R is the binary relation where, for any two columns C and

D, which filled with integers and are strictly increasing in columns, (C,D) ∈ R

if and only if the top element of C is greater than the bottom elements of D and

P =
6 5 4

1 2 3
. Then if Q = E1 . . . E5 is the generalized P,R-cluster pictured in
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Figure 2.6, then we are in case (1) with i = 1 since E1 consists of more than one

block. Thus θ(Q) results by breaking that generalized P,R-cluster into to two

clusters E∗
1 of size 1 and E∗∗

1 of size 4. θ(Q) is pictured in Figure 2.7.

x

1 5 8 10 18 17 4 7 12 2 6 9 11 16 25 

14 22 26 29 28 23 21 20 13 3 30 24 15 27 19 

x xx

Figure 2.7: The involution θ.

It is easy to see that θ is an involution. That is, if Q = E1 . . . Em is in case

(1) using Ei, then θ(Q) will be in case (2) using E∗
i and E∗∗

i . Similarly if Q =

E1 . . . Em is in case (1) using Ei and Ei+1, then θ(Q) will be in case (2) using

E = EiEi+1. It follows that if θ(E1 . . . Em) ̸= E1 . . . EM , then ωP,R(E1 . . . Em) =

−ωP,R(θ(E1 . . . Em)) so that the right-hand side of (2.11) equals

∑
Q=E1...Em∈HGCks,P,R,θ(Q)=Q

m∏
i=1

ωP,R(Ei).

Thus we must examine the fixed points of θ.

If Q = E1 . . . Em ∈ HGCks,P,R and θ(Q) = Q, then it must be the case

that each Ei consists of single column of weight 1 or it reduces to generalized

P,R-cluster Ei consisting of a single block B
(i)
1 whose weight is the weight of

red(B
(i)
1 ) as a P -cluster. Moreover, it must be the case that for all i = 1, . . .m− 1,

(last(Ei), f irst(Ei+1)) is in R. But this means for all j = 1, . . . , n−1, (Q[j], Q[j+

1]) is in R. That is, either Q[j] equals last(Ei) for some i or column j is contained

in one of the P -clusters Ei in which case (Q[j], Q[j + 1]) is in R by our definition

of generalized P,R-clusters. Thus any fixed point Q of θ is an elementMP0,0,k
ks,R .

Then just like our proof Theorem 2.2, it follows that E1, . . . , Em are just the maxi-

mal P -subclusters of an element in P0,0,k
ks,R . Vice versa, if T = F1 . . . Fr is an element

of P0,0,k
ks,R where F1, . . . , Fr are the maximal P -subclusters of T , then T = F1 . . . Fr
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is a fixed point of θ. Thus we have proved that the right-hand side of (2.11) equals∑
F∈MP0,0,k

ks

xmP (F )

which is what we wanted to prove.

It is quite easy to extend our results to consider pattern matching relative to

sets of elements in P0,0,k
kr . That is, let Γ ⊆ P0,0,k

kr and F ∈ F i,j,k
i+kn+j,P where r ≤ n.

Then we say

1. Γ occurs in F if there are 2 ≤ i1 < i2 < · · · < ir ≤ n + 1 such that

red(F [i1, . . . , ir]) ∈ Γ,

2. F avoids Γ if there is no occurrence of Γ in F , and

3. there is a Γ-match in F starting at position i if red(F [i, i+1, . . . , i+ r−
1]) ∈ Γ.

We let Γ-mch(F ) denote the number of Γ-matches in F .

We letMP0,0,k
kn,Γ denote the set of elements that arise by starting with an element

F of P0,0,k
kn and marking some of the Γ-matches in F by placing on x on the column

which starts the Γ-match. A Γ-cluster is a filling of F ∈MP0,0,k
kn,Γ such that

1. every column of F is contained in a marked Γ-match of F and

2. any two consecutive marked Γ-matches share at least one column.

We let CM0,0,k
kn,Γ denote the set of all Γ-clusters in MP0,0,k

kn,Γ. For each n ≥ 2, we

define the cluster polynomial

C0,0,k
kn,Γ (x) =

∑
F∈CM0,0,k

kn,Γ

xmΓ(F )

where mΓ(F ) is the number of marked Γ-matches in F . By convention, we let

C0,0,k
k,Γ (x) = 1. Then it is easy to modify the proof of Theorem 2.2 to prove the

following theorem.



36

Theorem 2.5. Let Γ ⊆ P0,0,k
kr where r ≥ 2. Then

1 +
∑
n≥1

tn

kn!

∑
F∈P0,0,k

kn

xΓ-mch(F ) =
1

1−
∑

n≥1
tkn

(kn)!
C0,0,k

kn,Γ (x− 1)
. (2.12)

Next suppose that we are given a binary relation R between k × 1 arrays of

integers and a set of patterns Γ ⊆ P0,0,k)
kr .

Definition 2.6. We say that Q ∈MP0,0,k
kn,Γ is a generalized Γ,R-cluster if we can

write Q = B1B2 · · ·Bm where Bi are blocks of consecutive columns in Q such that

1. either Bi is a single column or Bi consists of r-columns where r ≥ 2, red(Bi)

is a Γ-cluster in MPkr,Γ, and any pair of consecutive columns in Bi are in

R and

2. for 1 ≤ i ≤ m − 1, the pair (last(Bi), f irst(Bi+1)) is not in R where for

any i, last(Bi) is the right-most column of Bi and first(Bi) is the left-most

column of Bi.

Let GC0,0,kkn,Γ,R denote the set of all generalized Γ,R-clusters which have n columns

of height k. Given Q = B1B2 . . . Bm ∈ GC0,0,kkn,Γ,R , we define the weight of Bi,

ωΓ,R(Bi), to be 1 if Bi is a single column and xmΓ(red(Bi)) if Bi is order isomorphic to

a Γ-cluster. Then we define the weight ofQ, ωΓ,R(Q), to be (−1)m−1
∏m

i=1 ωΓ,R(Bi).

We let

GC0,0,k
kn,Γ,R(x) =

∑
Q∈GC0,0,k

kn,Γ,R

ωΓ,R(Q). (2.13)

Then we have the following theorem.

Theorem 2.7. Let R be a binary relation on pairs of columns (C,D) of height

k which are filled with integers which are increasing from bottom to top. Let Γ ⊆
P0,0,k

kr where r ≥ 2. Then

1 +
∑
n≥1

tkn

(kn)!

∑
F∈P0,0,k

kn,R

xΓ-mch(F ) =
1

1−
∑

n≥1
tkn

(kn)!
GC0,0,k

kn,Γ,R(x− 1)
. (2.14)

It is also easy to extend our results to find generating functions for consecutive

patterns in F0,0,k
kn,A,R , where A ⊆ P is some given alphabet.
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Recall that there are two types of pattern matching when we consider filling

where a given letter can occur more than once. Let Γ be a finite set of elements of

F0,0,k
kn,A,R such that red(P ) = P for all P in Γ and and let ∆ be an arbitrary set of

elements of F0,0,k
kn,A,R . Recall that P ∈ F0,0,k

kn,A,R has a Γ-match starting at column i

if there is a j > i such that redF ([i, i + 1, . . . , j]) ∈ Γ and has an exact ∆-match

starting at column i if there is a j > i such that F ([i, i + 1, . . . , j]) ∈ ∆. We

let Γ-mch(F ) denote the number of Γ-matches in F and ∆-Emch(F ) denote the

number of exact ∆-matches in F .

We letMF0,0,k
kn,A,Γ denote the set of elements with an element F of F0,0,k

kn,A where

we have marked some of the Γ-matches by placing an x on top of the column that

starts a Γ-match and let EMF0,0,k
kn,A,∆ denote the set of elements with an element F

of F0,0,k
kn,A where we have marked some of the exact ∆-matches by placing an x on

top of the column that starts a ∆-match. If P ∈ MF0,0,k
kn,A,Γ, we let mΓ(P ) denote

the number of marked Γ-matches in P and if Q ∈ EMF0,0,k
kn,A,∆, we let em∆(Q)

denote the number of marked exact ∆-matches in Q.

A Γ-cluster is a filling F ∈MF0,0,k
kn,A,Γ such that

1. every column of F is contained in a marked Γ-match of F and

2. any two consecutive marked Γ-matches share at least one column.

An exact ∆-cluster is a filling F ∈ EMF0,0,k
kn,A,∆ such that

1. every column of F is contained in a marked exact ∆-match of F and

2. any two consecutive marked exact ∆-matches share at least one column.

Let C0,0,k
n,Γ (x) denote the sum of xmΓ(C) over all Γ-clusters C of length n and

EC0,0,k
n,∆ (x) denote the sum of xemΓ(C) over all exact ∆-clusters C of length n.

Then we have the following analogues of Theorem 2.2

Theorem 2.8. Let Γ,∆ ⊆ F0,0,k
kr,A where r ≥ 2, A ⊆ P is some given alphabet, and

red(P ) = P for all P ∈ Γ. Then

1 +
∑
n≥1

tkn
∑

F∈F0,0,k
kn,A

xΓ-mch(F ) =
1

1− |A|kt−
∑

n≥r t
knC0,0,k

kn,Γ (x− 1)
, (2.15)
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and

1 +
∑
n≥1

tkn
∑

F∈F0,0,k
kn,A

x∆-Emch(F ) =
1

1− |A|kt−
∑

n≥r t
knEC0,0,k

kn,∆(x− 1)
, (2.16)

where |A| is the cardinality of alphabet A.

The proof of Theorem 2.8 is very similar to the proof of Theorem 2.2 so that

we will leave the details to the reader.

Next suppose that we are given a binary relation R between k × 1 arrays of

integers

Definition 2.9. We say that Q ∈ MF0,0,k
kn,A,Γ is a generalized Γ,R-cluster if we

can write Q = B1B2 · · ·Bm where Bi are blocks of consecutive columns in Q such

that

1. either Bi is a single column or Bi consists of r-columns where r ≥ 2, Bi is a

Γ-cluster in MF0,0,k
kr,A,Γ, and any pair of consecutive columns in Bi are in R

and

2. for 1 ≤ i ≤ m − 1, the pair (last(Bi), f irst(Bi+1)) is not in R where for

any i, last(Bi) is the right-most column of Bi and first(Bi) is the left-most

column of Bi.

We say that Q ∈MF0,0,k
kn,A,Γ is a generalized exact ∆,R-cluster if we can write

Q = B1B2 · · ·Bm where Bi are blocks of consecutive columns in Q such that

1. either Bi is a single column or Bi consists of r-columns where r ≥ 2, Bi is

an exact ∆-cluster in EMF0,0,k
kr,A,∆, and any pair of consecutive columns in Bi

are in R and

2. for 1 ≤ i ≤ m − 1, the pair (last(Bi), f irst(Bi+1)) is not in R where for

any i, last(Bi) is the right-most column of Bi and first(Bi) is the left-most

column of Bi.

Let GC0,0,kkn,A,Γ,R denote the set of all generalized Γ,R-clusters which have n

columns of height k. Given Q = B1B2 . . . Bm ∈ GC0,0,kkn,A,Γ,R , we define the weight of
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Bi, ωΓ,R(Bi), to be 1 if Bi is a single column and xmΓ(Bi) if Bi is order isomorphic to

a Γ-cluster. Then we define the weight ofQ, ωΓ,R(Q), to be (−1)m−1
∏m

i=1 ωΓ,R(Bi).

We let

GC0,0,k
kn,Γ,R(x) =

∑
Q∈GC0,0,k

kn,A,Γ,R

ωΓ,R(Q). (2.17)

Similarly, let EGC0,0,kkn,A,∆,R denote the set of all exact generalized ∆,R-clusters

which have n columns of height k. Given Q = B1B2 . . . Bm ∈ EGC0,0,kkn,A,∆,R , we

define the weight of Bi, eω∆,R(Bi), to be 1 if Bi is a single column and xemΓ(Bi)

if Bi is order isomorphic to an exact ∆-cluster. Then we define the weight of Q,

eω∆,R(Q), to be (−1)m−1
∏m

i=1 3ω∆,mthscrR(Bi). We let

EGC0,0,k
kn,A,∆,R(x) =

∑
Q∈EGC0,0,k

kn,A,∆,R

eω∆,R(Q). (2.18)

Then we the following theorem.

Theorem 2.10. Let R be a binary relation on pairs of columns (C,D) of height

k. Let Γ,∆ ⊆ F0,0,k
kr,A,R where r ≥ 2, A ⊆ P is some given alphabet, and red(P ) = P

for all P ∈ Γ. Then

1 +
∑
n≥1

tkn
∑

F∈F0,0,k
kn,A,R

xΓ-mch(F ) =
1

1−
∑

n≥1 t
knGC0,0,k

kn,A,Γ,R(x− 1)
. (2.19)

1 +
∑
n≥1

tkn
∑

F∈F0,0,k
kn,A,R

x∆-Emch(F ) =
1

1−
∑

n≥1 t
knEGC0,0,k

kn,A,∆,R(x− 1)
. (2.20)

The proof of Theorem 2.10 is very similar to the proof of Theorem 2.4 so that

we will leave the details to the reader.

2.2 Examples

The key to using either Theorems 2.4, 2.7, or 2.10 to compute explicit formulas

for our generating functions is to be able to compute generalized cluster polyno-

mials. In this section, we shall give several examples where we can compute the

required generalized cluster polynomials.
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2.2.1 Words with no consecutive repeats

We use words with no consecutive repeats as our first and fundamental example.

Suppose the alphabet is [k] = {1, 2, 3, · · · , k}, w = w1w2 · · ·wn is a word over [k].

According to our previous notations, the set of words of length n over [k] is denoted

by WI0,0,1n,[k] .

We say w has no consecutive repeated letters if wi ̸= wi+1 for any 1 ≤ i ≤ n−1.
Clearly, if we let R be the relation which holds on pairs of two elements (a, b) if

and only if a ̸= b, then the set of words without consecutive repeated letters of

length n over [k] equals WI0,0,1,Rn,[k] . It is easy to see that∣∣∣WI0,0,1,Rn,[k]

∣∣∣ = k(k − 1)n−1.

We start by considering some simple patterns first. First, we study the distri-

bution of descents in WI0,0,1n,[k] and WI
0,0,1,R
n,[k] . That is, we consider the following

two generating functions

Ades,[k](x, t) := 1 +
∑
n≥1

tn
∑

w∈WI0,0,1
n,[k]

xdes(w), (2.21)

and

Ades,[k],R(x, t) := 1 +
∑
n≥1

tn
∑

w∈WI0,0,1
n,[k],R

xdes(w). (2.22)

According to Goulden and Jackson’ cluster method for words, we have

Ades,[k](x, t) =
1

1− kt−
∑

n≥2 t
nCn,des(x− 1)

, (2.23)

where Cn,des(x) is the cluster polynomial for the pattern u=21. First, we need

to figure out the structures of u-clusters. It is easy to see for any F ∈ Cn,des, F
is a u-cluster if and only if F is a monotonically decreasing word over [k] and

mdes(F ) = n− 1. If follows that n, |Cn,21| =
(
k
n

)
. Then

Cn,21(x) =

(
k

n

)
xn−1

and hence

Ades,[k](x, t) =
1

1− kt−
∑

n≥2 t
n
(
k
n

)
(x− 1)n−1

=
x− 1

x− (t(x− 1) + 1)k
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As for Ades,[k],R(x, t), according to Theorem 2.10,

Ades,[k],R(x, t) =
1

1− kt−
∑

n≥2 t
nGCn,21(x− 1)

, (2.24)

where GCn,21(x) = is the generalized cluster polynomial for the pattern u = 21.

Suppose z = B1B2 · · ·Bm is a generalized u,R-cluster. Since the restriction

here is that no adjacent elements are the same, we have levels between blocks in

z. Therefore, z is a weakly decreasing sequence and there are m − 1 levels in z.

An example of a generalized u,R-cluster is pictured in Figure 2.8.

6 4 3 27 67 2

x x x x

2B 3B 4B1B

Figure 2.8: A generalized u-cluster of size 8 with 4 blocks.

Similar to Equation 2.30, we have

GCn,u(x) =
∑

1≤m≤n

(−1)m−1|GCmn,u|xn−m, (2.25)

where |GCmn,u| is the number of generalized u-clusters of size n with m blocks. Since

the size of the alphabet is k, m ≥ max{1, n+1− k}. |GCmn,u| can be counted easily

|GCmn,u| =
(
n− 1

m− 1

)(
k

n−m+ 1

)
and then we have the generalized cluster polynomials as follows,

GC1,u(x) = k

GC2,u(x) =

(
k

2

)
x− k

GC3,u(x) =

(
k

3

)
x2 − 2

(
k

2

)
x+ k

GC4,u(x) =

(
k

4

)
x3 − 3

(
k

3

)
x2 + 3

(
k

2

)
x− k

GC5,u(x) =

(
k

5

)
x4 − 4

(
k

4

)
x3 + 6

(
k

3

)
x2 − 4

(
k

2

)
x+ k

GC6,u(x) =

(
k

6

)
x5 − 5

(
k

5

)
x4 + 10

(
k

4

)
x3 − 10

(
k

3

)
x2 + 5

(
k

2

)
x− k

· · ·
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Then we just need to plug polynomials above into the generating function and

then we can get the result.

For example, suppose that the alphabet is [3], i.e., k = 3, then we can get

generalized cluster polynomials as follows,

GC1,u(x− 1) = 3

GC2,u(x− 1) = 3x− 6

GC3,u(x− 1) = x2 − 8x+ 10

GC4,u(x− 1) = −3x2 + 15x− 15

GC5,u(x− 1) = 6x2 − 24x+ 21

GC6,u(x− 1) = −10x2 + 35x− 28

· · ·

For n ≥ 3,

GCn,u(x− 1) = (−1)n−1

((
n− 1

2

)
x2 + (n2 − 1)x+

(
n+ 2

2

))
.

It is straightforward to check that∑
n≥3

(−1)n−1

(
n− 1

2

)
x2tn =

x2t3

(t+ 1)3
,

∑
n≥2

(−1)n−1(n− 1)(n+ 1)xtn =
xt2(t+ 3)

(t+ 1)3
,

∑
n≥1

(−1)n−1

(
n− 1

2

)
tn = 1− 1

(t+ 1)3
.

Then we obtained the following explicit formula of the generating function for

descents in words over [3] with no repeated letters:

Ades,[3],R(x, t) = − (t+ 1)3

t2x(tx+ t+ 3)− 1

= 1 + 3t+ (3x+ 3)t2 + (x2 + 10x+ 1)t3 + (12x2 + 12x)t4

+(6x3 + 36x2 + 6x)t5 + (x4 + 47x3 + 47x2 + x)t6 + · · · .

We end up this subsection with another example. Suppose the alphabet is

[k + 1] and the pattern u = 1 3 4 · · · k 2. Then we are interested in the following
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generating functions for distribution of reduced matches of u,

Au,[k+1](x, t) := 1 +
∑
n≥1

tn
∑

w∈WI0,0,1
n,[k+1]

xu-mch(w). (2.26)

and

Au,[k+1],R(x, t) := 1 +
∑
n≥1

tn
∑

w∈WI0,0,1
n,[k+1],R

xu-mch(w), (2.27)

where R holds for a pair (a, b) in [k + 1]2 if and only if a ̸= b.

Clearly, u is a minimally overlapping pattern and the length of a u-cluster can

only be either k or 2k − 1. That suppose that a1 . . . a2k−1 is a u-cluster. Then it

is easy to see that a1 < ak. But if ak ≥ 3, then we do not have a enough room in

[k + 1] to have an increasing sequence of length k − 1 starting at 3. Thus it must

be the case that a1 = 1 and ak . . . a2k−1 = 24 . . . (k + 1)3. Because u is minimally

overlapping, all the u-matches in a u-cluster have to be marked. Clearly there are

k+1 ways to fill a u-cluster of length k using elements from [k+1] and
(

k
k−1

)
= k−1

ways to fill a u-cluster of length 2k − 1 using elements from [k + 1]. Hence

Ck,u(x) = (k + 1)x and C2k−1,u(x) = (k − 1)x2.

Then

Au,[k+1](x, t) =
1

1− kt− (k + 1)(x− 1)tk − (k − 1)(x− 1)2t2k−1
. (2.28)

To compute generalized cluster polynomials in (2.27), we first need to figure

out structures of generalized u,R-clusters. It is obvious to see that for z ∈ GCn,u,R ,
the length of any block in z has to be 1, k or 2k − 1. From previous discussion,

there are k+1 different u-clusters of length k and k−1 u-cluster of length 2k−1. If
B1 . . . Bm is a generalized u,R-cluster, then we must have last(Bi) = first(Bi+1)

for all 1 ≤ ileqm − 1. If follows that in an arbitrary generalized u-cluster of any

length, there can at most two u-matches. That is, if there exists a generalized

u-cluster having three u-matches, the first number in the third u-match is at least

3 and then the largest number in the third u-match is at least k + 2 which is out

range of the alphabet [k + 1].
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Based on above discussion, we split generalized u-clusters of size n into 4 cases.

Case 1 is that there are only singleton blocks, Case 2 is that there is only one block

of length k, Case 3 is that there are two blocks of length k and Case 4 is that there

is there is one block of length 2k − 1.

Assume the size of the generalized cluster is n. In Case 1, there are only single-

ton blocks which contributes (−1)n−1(k+1) to the generalized cluster polynomial

GCn,u(x). In Case 2, n ≥ k and there are n−k singleton blocks and a block of size

k which is actually a u-cluster of length k. There are (n−k+1) ways to choose the

position of the block of length k and there are (k+1) different fillings of the cluster.

Therefore, the generalized clusters in Case 2 contribute (−1)n−k(n−k+1)(k+1)x

to the generalized cluster polynomial GCn,u(x) if n ≥ k. In Case 3, n ≥ 2k, there

are are n−2k singleton blocks and two blocks of size k. Clearly, there are
(
n−2k+2

2

)
to choose positions of these two clusters. We have k−1 different fillings of the first

u-cluster because the cluster must begin with 1 and end with 2. For the second

cluster, there is only one legal filling. Therefore, the generalized clusters in Case

3 contribute (−1)n−2k+1
(
n−2k+2

2

)
(k − 1)x2 to the generalized cluster polynomial

GCn,u(x) if n ≥ 2k In Case 4, there is a block of size 2k− 1 and n− 2k+1 single-

ton blocks which contributes (−1)n−2k+1(n − 2k + 2)(k − 1)x2 to the generalized

cluster polynomial GCn,u(x) if n ≥ 2k − 1.

Taking the sum of the polynomials obtained in each case, we have

1 ≤ n ≤ k − 1,

GCn,u(x) = (−1)n−1(k + 1).

k ≤ n ≤ 2k − 2,

GCn,u(x) = (−1)n−k(n− k + 1)(k + 1)x+ (−1)n−1(k + 1).

n ≥ 2k − 1,

GCn,u(x) = (n− 2k + 2)(k − 1)(−1)n−2k+1x2

+

(
n− 2k + 2

2

)
(k − 1)(−1)n−2k+1x2

+(n− k + 1)(−1)n−k(k + 1)x+ (−1)n−1(k + 1).



45

Then we can compute that

k−1∑
n=1

tnGCn,u(x) =
(k + 1)

(
(−1)ktk + t

)
t+ 1

,

2k−2∑
n=k

tnGCn,u(x) =(
(−t)k

(
kx− (−1)k

)
− (−1)kt2 + t

(
x− (−1)k

)
+ (−t)k+1

(
(1− k)x+ (−1)k

))
× (k + 1)tk−1

(t+ 1)2
,

∞∑
n=2k−1

tnGCn,u(x) =

(
−(−1)kk2(t+ 1)2x+ k

(
(−1)2kt2 + (−1)kt

(
2(−1)k − x

)
− (−1)kx

+(−1)2k + x2
)
+ (−1)kt2

(
(−1)k + x

)
+ (−1)kt

(
2(−1)k + x

)
+ (−1)2k − x2

)
× t2k−1

(t+ 1)3
.

Therefore,

Au,[k+1],R(x, t)

=
1

1−
∑

n≥1 t
nGCn,u(x− 1)

=
1

1−
k−1∑
n=1

tnGCn,u(x− 1)−
2k−2∑
n=k

tnGCn,u(x− 1)−
∞∑

n=2k−1

tnGCn,u(x− 1)

=
−t(t+ 1)3

(k − 1)(x− 1)2t2k + (k + 1)(t+ 1)(x− 1)tk+1 + (t+ 1)2t(kt− 1)
. (2.29)

Now we assume the alphabet is [4] and then the pattern u = 132. Then letting

k = 3 in (2.29), we have

Au,[4],R(x, t) = −
(t+ 1)3

t(t(t(2t(x− 1)(t(x− 1) + 2) + 4x− 1) + 5) + 1)− 1
.

A few initial terms are

1 + 4t+ 12t2 + (32 + 4x)t3 + (84 + 24x)t4 + (218 + 104x+ 2x2)t5

+(566 + 380x+ 26x2)t6 + (1468 + 1276x+ 172x2)t7

+(3808 + 4064x+ 860x2 + 16x3)t8 + · · · .
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Letting x = 0 and k = 3 in (2.29), we have the generating function for the

number of elements in WI0,0,1n,R avoiding 132 consecutively,

Au,[4],R(0, t) = − (t+ 1)3

2t5 − 4t4 − t3 + 5t2 + t− 1
= 1 + 4t+ 12t2 + 32t3 + 84t4 + 218t5 + 566t6 + 1468t7 + 3808t8

+9878t9 + 25622t10 + 66464t11 + 172400t12 + · · · .

Taking partial derivative of (2.29) with respect to x and letting x = 0, k = 3,

we have

∂Au,[4],R(x, t)

∂x

∣∣∣∣
x=0

=
4t3(t+ 1)3 (−t2 + t+ 1)

(−2t5 + 4t4 + t3 − 5t2 − t+ 1)2

= 4t3 + 24t4 + 104t5 + 380t6 + 1276t7 + 4064t8 + 12496t9

+37492t10 + 110404t11 + 320536t12 + 919976t13 + · · · ,

which is the generating function for the number of elements in WI0,0,1n,R having

exactly one u-match.

2.2.2 ‘N’-shaped pattern in standard Young tableaux of

shape n3

A standard Young tableau of shape nk is a filling of a k × n rectangular array

with integers 1, 2, 3, · · · , kn such that the elements increase from bottom to top in

each column and increase from left to right in each row. Here we adopt the French

notation of standard Young tableaux.

The set of all standard Young tableaux of shape nk is denoted by SYT (nk).

An element in SYT (23) is given in Figure 2.9. SYT (nk) can also be regarded as a

special subset of P0,0,k
kn equipped with some relation R. Here R is a binary relation

on a pair of two columns (C,D) of height k such that the i-th element in C is less

than the i-th element in D, for all 1 ≤ i ≤ k.

For a given pattern P ∈ SYT (jk), our goal is to compute the following gener-

ating function,

AP,SYT (x, t) := 1 +
∑
n≥1

tkn

(kn)!

∑
F∈SYT (nk)

xP -mch(F ),
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Figure 2.9: An element in SYT (23).

which according to Theorem 2.4, equals

AP,SYT (x, t) =
1

1−
∑

n≥1
tkn

(kn)!
GCkn,P (x− 1)

,

where GCkn,P (x) is generalized P -cluster polynomial. To compute GCkn,P (x), we

need to figure out the structure of generalized clusters.

Since the structures of P -clusters and generalized P -clusters depends on the

pattern P itself, we can use our methods to compute AP,SYT (x, t) for a simple

pattern P . Suppose we let P ∈ SYT (23) be the standard tableau pictured in

Figure 2.9. Before we can compute a formula of GC3n,P (x), we need to understand

the structure of P -clusters and generalized P -clusters.

Here the pattern P only consists of two columns, which implies that in an

arbitrary P -cluster, all P -matches must be marked. Otherwise two consecutive

marked P -matches don’t share a column, which violates the definition of P -clusters.

The number of columns in P -clusters could be any integer greater than or equal

to 2. If we use Hasse diagram to represent the partial ordering of pattern P , as

pictured in Figure 2.11, we see that it looks like capital letter ‘N’. It is easy to see

that there is only one P -cluster Q with n columns, namely, the i-th column of Q

must consists of the numbers 3i−2, 3i−1 and 3i, reading from bottom to top. For

example, a P -cluster of size 4 is pictured in Figure 2.11 whose first three columns

are marked ‘x’.

Next we consider the structures of generalized clusters. First we know each

block in a generalized cluster is either a single increasing column or a P -cluster.

Between blocks, the row increasing condition must be violated, that is, we fail to

observe row increasing condition in at least one row. For example, in Figure 2.10,

Q = B1B2B3B4 is a generalized cluster of 8 columns, where B1 is a cluster that has

two columns and B4 is a cluster having four columns. Between B1 and B2, in the
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base row, 12←→ 8 is not increasing, between B2 and B3, no rows are increasing,

and between B3 and B4, no rows are increasing. Thus Q satisfies the requirement

of being a generalized cluster.

2 

1 

5 

9 

6 

11 

16 

14 

17 

21 

19 

23 

7 

4 

10

13 

12 

22 

20 

8 

24 

15 

3 

18 

x x x 

Q

1B 2B 3B 4B

x 

Figure 2.10: Q = B1B2B3B4 is generalized cluster consisting of 4 blocks.

In general, suppose Q ∈ GC3n,P is a generalized cluster of size 3n which has m

blocks, and li is the number of columns in the i-th block. Since a block is either a

single column or a cluster and it’s known that a P -cluster can be any size greater

or equal to 6, clearly (l1, l2, · · · , lm) can be thought as an integer composition of

n. Since all P -matches have to be marked, in a block having li columns, there are

li − 1 many marked P -matches and then hence

mP (Q) =
∑

1≤i≤m

(li − 1) = n−m,

which implies the weight of Q, ω(Q) = (−1)B(Q)−1xn−B(Q), where B(Q) is the

number of blocks in Q. Based on these facts, we have

GC3n(x) =
∑

Q∈GC3n,P

ωP (Q) =
∑
L|=n

(−1)ℓ(L)−1|GC(L)n,P |x
n−ℓ(L)(Q), (2.30)

where L is composition of n, ℓ(L) is number of parts in l and GC(L)3n is the set of

all the generalized clusters whose blocks have sizes L = (l1, l2, · · · , lm). Therefore,
we only need to count the cardinality of the set GC(L)3n .

To count the number of generalized clusters, we use the so-called graphic

method which is based on counting linear extensions of posets. It has been a

widely utilized technique in many papers such as [19] [14] [27].

We use Hasse diagrams to represent the pattern P and P -clusters. For example,

two corresponding Hasse diagrams are drawn in Figure 2.11. According to the
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Figure 2.11: Pattern P , a P -cluster of length 4 and their corresponding Hasse
diagrams.

definition of generalized clusters, the restriction should be violated between blocks,

that is, arrows between blocks should be in the set C, as shown in Figure 2.12.

Then we can represent generalized clusters as Hasse diagrams. For instance, all

the generalized clusters with 8 columns whose such that the number of columns in

the blocks induce the composition L(2, 4, 1, 1) corresponding to the Hasse diagram

Dl in Figure 2.13. We let LE(Dl) denote the number of linear extensions of the

diagram Dl. Then we have

LE(Dl) = |GC(l)3n,P | (2.31)

and then according to Equation (2.30), we have

GCn(x) =
∑
l�n

(−1)m−1LE(Dl)x
n−m, (2.32)

where l = (l1, · · · , lm) is a composition of n.

C ={ },										,										,										,										,										,

Figure 2.12: The set of arrows between blocks.

C C C

Figure 2.13: Hasse diagram D(2,4,1,1)

The strategy of counting LE(Dl) is based on recursion and Inclusion-Exclusion

principle. We take D(2,4,1,1) in Figure 2.13 to demonstrate the computation. First
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we remove the rightmost C and then subtract the row-increasing case. We keep

this process until there is no ‘C’ in the diagrams. Figure 2.15 shows the results

after we remove 2 C’s from right to left. That is, the second line means that the

set of elements where C holds between the last two columns can be expressed as

the set of elements where there are no conditions imposed on the relative order of

the rows between the last two columns minus set of elements where the last two

column form a column strict tableau. For the first element in row 2, we can choose

the elements in the last column in
(
24
3

)
ways and we are reduced to considering a

diagram with 7 columns. The next row then shows how we can eliminate the second

C in each case. Eventually, we will reduce ourselves to a case where there are no C

and the blocks consists of patterns of the form pictured in Figure 2.14. In such a

case, we can represent the structure by a sequence of pairs (a1, b1, a2, b2, . . . , ar, br)

where we start out with a1 columns whose top element is bigger than the bottom

element of the next column, followed by b1 columns whose Hasse diagram is that

of standard tableaux of shape b31, then the top element of part corresponding to

b1 is larger than the bottom element of the next column which starts a sequence

of a2 columns whose top element is bigger than the bottom element of the next

column, followed by b2 columns whose Hasse diagram is that of standard tableaux

of shape b32, etc. For the diagram pictured at the top of Figure 2.14 is associated

with the sequence (3,4,4,4) and the diagram picutured at the bottom of Figure 2.14

is associated with the sequence (0,4,4,5). Given such a diagram corresponding to

(a1, b1, a2, b2, . . . , ar, br), we will say that ais correspond to the linear part of the

diagram and bis correspond to the standard part of the diagram. It is easy to see

that the number of linear extension of the diagram if just
∏r

i=1 fbi where fb is the

number of standard tableaux of shape b3. In this case, one can apply the hook

length formula of Frame, Robinson, and Thrall [20] for the number of standard

tableaux of shape λ to compute that

fb =
(3b)!∏b

i=1 i(i+ 1)(i+ 2)
.

For example, consider the Hasse diagram at the top of Figure 2.14. It is easy to

see that we must use the number 1, . . . , 9 to label the first linear part of 3 columns

which can be done in only one way. Then we must use the numbers 10, . . . , 21



51

to label the next four columns because the label of the right top-most element

of that block must be the largest element of the block and it is smaller than all

the remaining elements. Thus f4 ways to arrange the numbers 10, . . . , 21. Next

we must use the numbers 22, . . . , 33, to label the second linear part which can be

done in only one way. Finally we can use the numbers 34, . . . 45 to label the second

standard block which can be done in f4 ways.

Figure 2.14: The final structure of blocks in the inclusion-exclusion process.

Continuing on in this way, we can obtain a formula of LE(D(2,4,1,1)) which is

given by

LE(Dl) =

((
24

3, 3, 6

)
−
(
24

3, 3

)
f2

)
−
((

24

3, 6

)
f2 −

(
24

3

)
f2f2

)
(2.33)

−
((

24

6, 6

)
f2 −

(
24

6

)
f2f2

)
+

((
24

6

)
f3 − f2f3

)
, (2.34)

where fj is number of standard Young tableaux of shape j3 which can be computed

by hook-length formula.

C C C

= C C C C-

= C C(
24
3) C(

24
3)- - C+

Figure 2.15: Computing LE(D(2,4,1,1))

We can embed the Hasse diagrams whose linear extensions that we want to

compute in a larger class of Hasse diagrams where there are simple recursions

to compute the number of linear extensions. To this end, we define a new class
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of Hasse diagrams Γ(b1, b2, b3, · · · , br; c1, d1, c2, d2, c3, d3, · · · ), where the semicolon

separates the diagram into two parts at the rightmost C. That is, b1, b2, . . . , br

correspond to linear blocks which are separated by C, block br is followed by a

C which is turned is followed by a single block consisting of alternating linear

and standard parts. Here ci is the length of the i-th linear part to the right of

the rightmost C and di is the length of the i-th standard part to the right of the

rightmost C.

Then we set

Γ(b1, b2, b3, · · · , bm; 0, 0) = Γ(b1, b2, b3, · · · , bm−1; bm, 0) = D(b1,b2,··· ,bm). (2.35)

C C C C

Figure 2.16: D(2,4,1,1,2) = Γ(2, 4, 1, 1, 2; 0, 0) = Γ(2, 4, 1, 1; 2, 0)

Then there are natural recursions which split into two cases.

Case (i) If c1 = 0, then

LE(Γ(b1, b2, · · · , bm; 0, d1, c2, d2, · · · , ct, dt))

=

(
3
∑m

i=1 bi + 3
∑t

j=1(ct + dt)

3
∑m

i=1 bi

)
LE(Γ(b1, b2, · · · , bm−1; bm, 0))

t∏
j=1

fdj

−LE(Γ(b1, b2, · · · , bm−1; bm − 1, d1 + 1, c2, d2, · · · , ct, dt)).

That is, we can express the desired number of linear extensions as the number of

linear extensions where there is no relation imposed between the last block of bm

and the diagram of corresponding the pairs (0, d1, c2, d2, . . . ct, dt), in which case we

have
(3∑m

i=1 bi+3
∑t

j=1(ct+dt)

3
∑m

i=1 bi

)
ways to choose the set of labels for the last block and∏t

j=1 fdj ways to that set of labels to label the last block, minus the number of

linear extensions where the row increasing condition holds between the last column

of bm and the first column of d1. In the latter case, the last block corresponds to

the sequence (bm − 1, d1 + 1, c2, d2, . . . , ct, dt).

Figure 2.17 is an example of case (i).

LE(Γ(2, 4, 1; 0, 2, 1, 0)) =

(
30

9

)
f2LE(Γ(2, 4; 1, 0))− LE(Γ(2, 4; 0, 3, 1, 0)),



53

where f2 is the number of standard Young tableuax of shape 23.

C C C

= C C - C C

Figure 2.17: Recursion for Γ(2, 4, 1; 0, 2, 1, 0)

Case (ii) If c1 ̸= 0, then

LE(Γ(b1, b2, · · · , bm; c1, d1, c2, d2, · · · , ct, dt))

=

(
3
∑m

i=1 bi + 3
∑t

j=1(ct + dt)

3
∑m

i=1 bi

)
LE(Γ(b1, b2, · · · , bm−1; bm, 0))

t∏
j=1

fdj

−LE(Γ(b1, b2, · · · , bm−1; bm − 1, 2, c1 − 1, d1, c2, d2, · · · , ct, dt)).

Figure 2.18 is an example of case (ii).

LE(Γ(2, 4; 1, 2, 1, 0)) =

(
30

12

)
f2LE(Γ(2; 4, 0))− LE(Γ(2; 3, 2, 0, 2, 1, 0)).

That is, in this case, we can express the desired number of linear extensions

as the number of linear extensions where there is no relation imposed between the

last block of bm and the diagram of corresponding the pairs (c1, d1, c2, d2, . . . ct, dt),

in which case we have
(3∑m

i=1 bi+3
∑t

j=1(ct+dt)

3
∑m

i=1 bi

)
ways to choose the set of labels for

the last block and
∏t

j=1 fdj ways to that set of labels to label the last block, minus

the number of linear extensions where the row increasing condition holds between

the last column of bm and the first column of c1. In the latter case, the last block

corresponds to the sequence (bm − 1, 2, c1 − 1, d1, c2, d2, . . . , ct, dt).

For the base case, LE(Γ(∅; c1, d1, c2, d2, · · · , ct, dt)) =
∏t

j=1 fdj , where fi is the

number of standard Young tableaux of shape i3. Based on the recursion, we can

compute the number of linear extensions of DL for any composition of n. Then

using these recursions and dynamic programming, we can compute the generalized

cluster polynomials. The initial generalized cluster polynomials in this case are as
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C C

= -C C

Figure 2.18: Recursion for Γ(2, 4; 1, 2, 1, 0)

follows.

GC3(x) = 1

GC6(x) = x− 15

GC9(x) = x2 − 158x+ 882

GC12(x) = x3 − 1349x2 + 41909x− 133518

GC15(x) = x4 − 10900x3 + 1397961x2 − 19036766x+ 41627586

GC18(x) = x5 − 87355x4 + 41024174x3 − 1759633773x2 +

14037147012x− 23252213556

· · ·

Using these values in Theorem 2.4, we can compute the initial terms of AP,SYT (x, t).

In this case, we computed that

AP,SYT (x, t) = 1 +
t3

3!
+

(x+ 4)t6

6!

+
(x2 + 8x+ 33)t9

9!
+

(x3 + 12x2 + 82x+ 367)t12

12!

+
(x4 + 16x3 + 147x2 + 998x+ 4844)t15

15!

+
(x5 + 20x4 + 228x3 + 1957x2 + 13713x+ 71597)t12

18!
+ · · · .

In this example, although we are not able to obtain an explicit formula for the gen-

erating function AP,SYT (x, t), we convert the original problem to a more tractable

one which can be thought as a recursive problem over the set of all the integer

compositions.
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2.2.3 Shortest loops in non-backtracking random walks

A random walk on Z2 of length n is a path consisting of n random steps of the

form (1, 0), (−1, 0), (0, 1) or (0,−1). Clearly, a random walk can be represented

as word over alphabet {1, 1̄, 2, 2̄} if we denote (1, 0) by 1, (−1, 0) by 1̄, (0, 1) by 2

and (0,−1) by 2̄. For example, the random walk on Z2 of length 10 pictured in

Figure 2.19 corresponds to the word 1 2 1 2 1̄ 1̄ 2̄ 1̄ 2̄ 2̄. For convenience, let Wn,2

denote the set of words of length n over the alphabet {1, 1̄, 2, 2̄}.

Figure 2.19: The path corresponding to 1 2 1 2 1̄ 1̄ 2̄ 1̄ 2̄ 2̄.

More generally, a random walk of length n on a k-dimensional lattice Zd can

be regarded as a word of length n over the alphabet {1, 1̄, 2, 2̄, · · · , d, d̄}, where i

represents a forward unit step along the i-th axis and ī represents a backward unit

step along the i-th axis and . For convenience, let Wn,d denote the set of words of

length n over the alphabet {1, 1̄, 2, 2̄, · · · , d, d̄}.
A non-backtracking random walk is a walk which cannot visit the previous ver-

tex immediately. In other words, in the word corresponding to a non-backtracking

random walk on Zd, i and ī can not be adjacent in non-backtracking walks, for

1 ≤ i ≤ d. Clearly, non-backtracking walks are corresponding to a restricted class

of Wn,d. For convenience, let Wn,d denote the set of words of length n over the

alphabet {1, 1̄, 2, 2̄, · · · , d, d̄} where i and ī cannot be adjacent .

Non-backtracking walks and regular walks are different in several prospectives

such as non-backtracking walks mix faster. Note that the only situation where a

non-backtracking could revisit a lattice point is that it has a loop that ends at this

point.
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Here we apply generalized cluster method to enumeration of loops in non-

backtracking random walks. Although most problems about words could be han-

dled in a recursive manner, the generalized cluster method provides an easier al-

ternative approach to solve this problem.

Here we focus the discussion on shortest loops. Clearly, shortest loops on Zd

have length 4. For example, on Z2, there are 8 loops of length 4, namely, 121̄2̄,

21̄2̄1, 1̄2̄12, 2̄121̄, 2̄1̄21, 1̄212̄, 212̄1̄ and 12̄1̄2. For Zd, there are 8
(
d
2

)
loops of length

4.

Suppose that we want to keep track of the number of loops of the form 121̄2̄

of all non-backtracking walks of length n. Obviously, the is equivalent to finding

the number of exact matches of 121̄2̄ over all words of length n over the alpahbet

{1, 1̄, 2, 2̄ where 1 and 1̄ can never be adjacent and 2 and 2̄ can never be adjacent

By Theorem 2.10, the generating function has following formula

Au,Wd
(x, t) = 1 +

∑
n≥1

tn
∑

w∈Wn,d

xu-Emch(w) =
1

1−
∑

n≥1 EGCn(x− 1)tn
.

where

EGCn(x) =
∑

w∈EGCn

(−1)Bxemu(w)

and EGCn is the set of exact generalized clusters for u of size n.

Thus we must study the structure of exact generalized clusters. We can parti-

tions the exact generalized u-clusters into two groups in this case.

1. Type 1: All blocks are singleton cells

In this case, once the element in the first block is chosen and then the gener-

alized cluster is uniquely determined. It is because if the element in previous

block is i then the element in next block is forced to be ī, and vice versa, if

the element in previous block is ī then the element in next block is forced

to be i. An example is given in Figure 2.20. Note that it is also possible

that a Type 1 generalized cluster starts with ī, for 1 ≤ i ≤ d. The set of all

Type 1 exact generalized clusters of size n is denoted by EGC1n. If the size of
alphabet is 2d, then |EGC1n| = 2d.
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i i i i 

Figure 2.20: An example of Type 1 exact generalized u-cluster, where 1 ≤ i ≤ d

2. Type 2: There is a cluster of size 4.

First observe that there is only one exact u-cluster which consist of the

sequence 121̄2̄ where 1 is marked with an x. An exact generalized u-cluster

can not have more than one u-clusters because between blocks we can only

have either i followed by ī or ī followed by i. The set of all Type 1 exact

generalized u-clusters of size n is denoted by EGC2n. An example in EGC29
is drawn in Figure 2.21. It is not hard to see that the cardinality of GC2n is

n− 3 for n ≥ 4

1 2 2 2 

x 

1 2 1 2 1 

Figure 2.21: An example in EGC29

Then the corresponding exact generalized u-clusters polynomials are defined as

follows,

EGCJ
n(x) :=

∑
w∈GCJ

n

(−1)B(w)−1 xemu(w),

EGCJ(x, t) :=
∑
n≥1

tnEGCJ
n(x),

where J ∈ {1, 2}. Clearly, EGC1n and EGC2n are disjoint so that

EGCn =
⊎

J∈{1,2}

EGCJn

As discussed above, in a Type 1 generalized cluster of length n, there are n

singleton blocks and since |GC1n| = 2d, we have

EGC1
n(x) = (−1)n−1 · 2d,

and then hence

EGC1(x, t) =
∑
n≥1

tnGC1
n(x) =

∑
n≥1

tn(−1)n−1 · 2d = −2d
∑
n≥1

(−t)n =
2dt

1 + t
.
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As for Type 2 generalized clusters of length n, there are n− 4 singleton blocks

and exactly one block of size 4 and since |GC2n| = n− 3, we have

EGC2
n(x) = (−1)n−1(n− 3)x, for n ≥ 4

and then hence

EGC2(x, t) =
∑
n≥4

tnGC2
n(x)

=
∑
n≥4

tn(−1)n−1(n− 3)x

= −xt3
∑
n≥1

n(−t)n

=
xt4

(1 + t)2

Finally, we could get

Au,Wd
(x, t) =

1

1−GC1(x− 1, t)−GC2(x− 1, t)
(2.36)

=
1

1− 2dt
1+t
− (x−1)t4

(t+1)2

(2.37)

A few initial terms of expansion are

1 + 2dt+
(
−2d+ 4d2

)
t2 +

(
2d− 8d2 + 8d3

)
t3 +(

−1− 2d+ 12d2 − 24d3 + 16d4 + x
)
t4 +(

2− 2d− 16d2 + 48d3 − 64d4 + 32d5 − 2x+ 4dx
)
t5 +(

−3 + 10d+ 8d2 − 80d3 + 160d4 − 160d5 + 64d6 + 3x− 12dx+ 12d2x
)
t6

+ · · · .

Based on the formula for Au,Wd
(x, t) in Equation (2.36), we are able answer

some further question from an enumerative point of view, such as, how many

shortest loops in a random walk on Zd of length n do we expect to see in average?

Taking partial derivative of the generating function with respect to x and then

let x = 1, we have

∂Au,Wd
(x, t)

∂x

∣∣∣∣
x=1

= 8

(
d

2

)
t4

(1− (2d− 1)t)2

=
∑
n≥4

(n− 3)(2d− 1)n−4tn,
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where coefficients of tn is the total number of 121̄2̄ inWn,d. To answer the question,

we also need to use a fact that in a random walk, the number of any given shortest

loop are identically distributed. In other words, Au,Wd
(x, t) ≡ Av,Wd

(x, t) as long

as u and v are both loops of length 4. According to previous discussion, there are

2d(2d − 1)n−1 random walks in Wn,d and 8
(
d
2

)
different shortest loops. Then the

average number of shortest loops in a non-backtracking random walk of length n

is given by
8
(
d
2

)
(n− 3)(2d− 1)n−4

2d(2d− 1)n
=

2(d− 1)(n− 3)

(2d− 1)3
,

for n ≥ 3. For example, when d = 2, the average number of loops of length 4

in a non-backtracking random walk on Z2 of length n ≥ 4 is 2(n−3)
27

, that is, each

step after the third step contributes 2
27

loop in average. When d = 3, the average

number of loops of length 4 in a non-backtracking random walk on Z3 of length

n ≥ 4 is 4(n−3)
125

.

The contents of Chapter 2 are currently under preparation for submission.

Some portion is co-authored with J. B. Remmel. The dissertation author is the

author of this material.



Chapter 3

Clusters and Generalized Clusters

for fillings of D
i,j,k
i+kn+j.

In Chapter 2, we discussed clusters and generalized clusters for fillings of D0,0,0
kn

which are of rectangular shapes. In this chapter, we extend the methods toDi,j,k
i+kn+j

which are almost rectangular shapes but we allow the first and the last columns

have different heights. In following sections of this chapter, D0,j,k
kn+j, Di,0,k

i+kn and

Di,j,k
i+kn+j will be discussed respectively. For example, D0,0,4

20 , D2,0,4
18 , D0,3,4

19 and D2,3,4
21

are pictured in Figure 3.1.

Chapter 2

Chapter 3

Figure 3.1: Focus of Chapter 3.

60
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3.1 Clusters and Generalized Clusters for fillings

of D0,j,k
kn+j

In this section, we shall extend the generalized cluster method to deal with

various types of fillings of D0,j,k
kn+j, j ̸= k. Assume a set of patterns Γ ⊆ P0,0,k

kr , we

letMP0,j,k
kn+j,Γ denote the set of elements that arise by starting with an element F

of P0,j,k
kn+j and marking some of the Γ-matches in F by placing an ‘x’ on the column

which starts the Γ-match. Given an element F ∈MP0,j,k
kn+j,Γ, we let mΓ(F ) denote

the number of marked Γ-matches in F . Clearly, the last column of F cannot be

contained in any Γ-match because the heights do not agree.

To find an extension of Theorem 2.7 for these types of arrays, we need to define

a special type of generalized cluster which we call a generalized end-cluster. That

is, suppose that we are given a binary relation R on columns of integers and a set

of patterns Γ ⊆ P0,0,k
kr .

Definition 3.1. We say that Q ∈ MP0,j,k
kn+j,Γ is a generalized Γ,R-end-cluster if

we can write Q = B1B2 · · ·Bm where Bi are blocks of consecutive columns in Q

such that

1. Bm is a column of height j,

2. for i < m, either Bi is a single column or Bi consists of r-columns where

r ≥ 2, red(Bi) is a Γ-cluster inMPkr,Γ, and any pair of consecutive columns

in Bi are in R and

3. for 1 ≤ i ≤ m − 1, the pair (last(Bi), f irst(Bi+1)) is not in R where for

any i, last(Bi) is the right-most column of Bi and first(Bi) is the left-most

column of Bi.

Let GEC0,j,kkn+j,Γ,R denote the set of all generalized Γ,R-end-clusters which have

n columns of height k followed by a column of height j. Given Q = B1B2 . . . Bm ∈
GEC0,j,kkn+j,Γ,R , we define the weight of Bi, ωΓ,R(Bi), to be 1 if Bi is a single column

and xmΓ(red(Bi)) if Bi is order isomorphic to a Γ-cluster. Then we define the weight
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of Q, ωΓ,R(Q), to be (−1)m−1
∏m

i=1 ωΓ,R(Bi). We let

GEC0,j,k
kn+j,Γ,R(x) =

∑
Q∈GEC0,j,k

kn+j,Γ,R

ωΓ,R(Q) (3.1)

Let P0,j,k
kn+j,R denote the set of all elements F ∈ P0,j,k

kn+j such that the relation R

holds for any pair of consecutive columns in F . We letMP0,j,k
kn+j,Γ,R denote the set

of elements that arise by starting with an element F of P0,j,k
kn+j,R and marking some

of the Γ-matches in F by placing on x on the column which starts the Γ-match.

Then we have the following theorem.

Theorem 3.2. Let R be a binary relation on pairs of columns (C,D) which are

filled with integers which are increasing from bottom to top. Let Γ ⊆ P0,0,k
kr where

r ≥ 2. Then

∑
n≥0

tkn+j

(kn+ j)!

∑
F∈P0,j,k

kn+j,R

xΓ-mch(F ) =

∑
n≥0

tkn+j

(kn+j)!
GEC0,j,k

kn+j,Γ,R(x− 1)

1−
∑

n≥1
tkn

(kn)!
GC0,0,k

kn,Γ,R(x− 1)
. (3.2)

Proof. Replace x by x+1 in (3.2). Then the left-hand side of (3.2) is the generating

function of mΓ(F ) over all F ∈MP0,j,k
kn,+j,Γ,R . That is, it easy to see that

∑
n≥0

tkn+j

(kn+ j)!

∑
F∈P0,j,k

kn+j,R

(x+ 1)Γ-mch(F ) =
∑
n≥0

tkn+j

(kn+ j)!

∑
F∈MP0,j,k

kn+j,Γ,R

xmΓ(F ). (3.3)

Thus we must show that

∑
n≥0

tkn+j

(kn+ j)!

∑
F∈MP0,0,k

kn,Γ,R

xmΓ(F ) =

∑
n≥0

tkn+j

(kn+j)!
GEC0,j,k

kn+j,Γ,R(x)

1−
∑

n≥1
tkn

(kn)!
GC0,0,k

kn,Γ,R(x)
. (3.4)

Now

1

1−
∑

n≥1
tkn

(kn)!
GC0,0,k

kn,Γ,R(x)
= 1 +

∑
m≥1

(∑
n≥1

tkn

(kn)!
GC0,0,k

kn,Γ,R(x)

)m

. (3.5)

Taking the coefficient of tks+j

(ks+j)!
on both sides of (3.4) where s ≥ 0, we see that
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we must show that∑
F∈MP0,j,k

ks+j,R

xmΓ(F ) (3.6)

=

((
∞∑

m=1

(∑
n≥1

tkn

(kn)!
GC0,0,k

kn,Γ,R(x)

)m)
×(∑

n≥0

tkn+j

(kn+ j)!
GEC0,j,k

kn+j,Γ,R(x)

)∣∣∣∣∣
tks+j

(ks+j)!

=
∑

a+b=s,a,b≥0

(
ks+ j

ka, kb+ j

)( ∞∑
m=1

(∑
n≥1

tkn

(kn)!
GC0,0,k

kn,Γ,R(x)

)m)∣∣∣∣∣
tka

(ka)!

×

(∑
n≥0

tkn+j

(kn+ j)!
GEC0,j,k

kn+j,Γ,R(x)

)∣∣∣∣∣
tkb+j

(kb+j)!

=
∑

a+b=s,a,b≥0

(
ks+ j

ka, kb+ j

)
× a∑

m=1

∑
a1+a2+···+am=a

ai≥1

(
ka

ka1, . . . , kam

) m∏
i=1

GC0,0,k
kai,Γ,r

(x)

GEC0,j,k
kb+j,Γ,R(x)

=
∑

a+b=s,a,b≥0

a∑
m=1

∑
a1+a2+···+am=a

ai≥1

(
ks+ j

ka1, . . . , kam, kb+ j

)
×

GEC0,j,k
kb+j,Γ,R(x)

m∏
j=1

GC0,0,k
kaj ,Γ,r

(x). (3.7)

The right-hand side of (3.6) is now easy to interpret. First we pick non-negative

integers a and b such that a + b = s. Then we pick an m such that 1 ≤ m ≤ a.

Next we pick a1, . . . , am ≥ 1 such that a1 + a2 + · · ·+ am = a. Next the binomial

coefficient
(

ks+j
ka1,...,kam,kb+j

)
allows us to pick sets S1, . . . , Sm, Sm+1 which partition

{1, . . . , ks+j} such that |Si| = kai for i = 1, . . . ,m and |Sm+1| = kb+j. The factor

GEC0,j,k
kb+j,Γ,R(x) allows us to pick an a a generalized Γ,R-end-cluster Gm+1 of size

kb+ j with weight ωΓ,R(Gm+1). Note that in the cases where b = 0, our definitions

imply that Gm+1 is just a column of height j filled with the numbers 1, . . . , j which

is increasing, reading from bottom to top. Finally the product
∏m

j=1GC0,0,k
kaj ,Γ,R

(x)

allows us to pick generalized Γ,R-clusters Gi ∈ GC0,0,kkai,Γ,R
for i = 1, . . . ,m with
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weight
∏m

i=1 ωΓ,R(Gi). Note that in the cases where ai = 1, our definitions imply

that Gi is just a column of height k filled with the numbers 1, . . . , k which is

increasing, reading from bottom to top.

={1,5,8,10,15,18,24,27,30,32}1S 1G=
1 3 4 5 7

2 10 8 6 9 

2S

={4,7,12,13,20,21}3S

={25,26}5S 5G=
1 

2 

={17,19} 2G=
1 

2 

3G=
1 2 3 

6 5 4 

x

4G={2,6,9,11,14,16,22,23,28,29}4S =
1 2 3 4 6 

10 9 8 5 7 

x x

x

={3,31,33,34,35,36,37,38,39}6S 6G=
1 3 4 5 8

2 9 7 6

x

x

1 8 10 15 24 17 4 7 12 2 6 9 11 16 25 

14 22 26 29 28 23 21 20 13 5 32 27 18 30 19 

x xx

3 33 

3931 

34 

37

35 

36

38 

x

Figure 3.2: Construction for the right-hand side of (3.6).

For example, suppose that k = 2 and j = 1 and Γ = {P} where P =
6 5 4

1 2 3
.

Suppose that R is relation where for any two columns C and D which filled with

integers and are strictly increasing in columns, (C,D) ∈ R if and only if the top
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element of C is greater than the bottom element of D. Then in Figure 3.2, we

have pictured S1, S2, S3, S4, S5, S6 which partition {1, . . . , 39} and corresponding

generalized Γ,R-clusters G1, . . . , G5 and a general Γ,R-end-cluster G6. For each

i, we have indicated the separation between the blocks of Gi by dark black lines.

Then for each i = 1, . . . ,m + 1, we create a cluster Ei which results by replacing

the j in Gi by the jth element of Si. If we concatenate E1 . . . E6 together, then we

will obtain an element of Q ∈ MP0,j,k
ks+j,Γ. The weight of Q equals

∏6
j=1 ωΓ,R(Gi)

where

ωΓ,R(G1) = (−1)2x,

ωΓ,R(G2) = 1,

ωΓ,R(G3) = x,

ωΓ,R(G4) = (−1)1x2,

ωΓ,R(G5) = 1, and

ωΓ,R(G6) = x.

In Figure 3.2, we have indicated the boundaries between the Gis by light lines.

We let HGECks+j,Γ,R denote the set of all elements that can be constructed

in this way. Thus Q = E1 . . . EmEm+1 is an element of HGECks+j,Γ,R if and only

if for each i = 1, . . . ,m, red(Ei) is a generalized Γ,R-cluster and red(Em+1) is a

generalized Γ,R-end-cluster.

Next we define a sign reversing involution θ : HGECks+j,Γ,R → HGECks+j,Γ,R .

Given Q = E1 . . . EmEm+1 ∈ HGECks+j,Γ,R , look for the first i such that either

1. the block structure of red(Ei) = B
(i)
1 . . . B

(i)
ki

consists of more than one block

or

2. Ei consists of a single block B
(i)
1 and (last(Bi), f irst(Ei)) is not in R.

In case (1), if i ≤ m, we let θ(E1 . . . Em+1) be the result of replacing Ei

by two generalized Γ,R-clusters, E∗
i and E∗∗

i where Ei∗ consists just of B
(i)
1

and E∗∗
i consists of B

(i)
2 . . . B

(i)
ki
. If i = m + 1, we let θ(E1 . . . Em+1) be the
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result of replacing Em+1 by a generalized Γ,R-cluster, E∗
m+1 and a generalized

Γ,R-end-cluster E∗∗
m+1 where Em+1∗ consists just of B(m+1)

1 and E∗∗
m+1 consists of

B
(m+1)
2 . . . B

(m+1)
ki

. Note that in either case, ωΓ,R(Ei) = (−1)ki−1
∏ki

j=1 ωΓ,R(B
(i)
j )

while ωΓ,R(E
∗
i )ωΓ,R(Ei)

∗∗ = (−1)ki−2
∏ki

j=1 ωΓ,R(B
(i)
j ).

In case (2), if i < m, we let θ(E1 . . . Em+1) be the result of replacing Ei and

Ei+1 by the single generalized Γ,R-cluster E = B
(i)
1 B

(i+1)
1 . . . B

(i+1)
ki+1

. If i = m,, we

let θ(E1 . . . Em+1) be the result of replacing Em and Em+1 by the single generalized

Γ,R-end-cluster E = B
(m)
1 B

(m+1)
1 . . . B

(m+1)
ki+1

. In either case,

ωΓ,R(Ei)ωΓ,R(Ei+1) = (−1)ki+1−1ωΓ,R(B
(i)
1 )

ki+1∏
j=1

ωΓ,R(B
(i+1)
j )

while

ωΓ,R(E) = (−1)ki+1ωΓ,R(B
(i)
1 )

ki+1∏
j=1

ωΓ,R(B
(i+1)
j ).

If neither case (1) or case (2) applies, then we let θ(E1 . . . Em+1) = E1 . . . Em+1.

For example, suppose that R is the binary relation where for any two columns C

andD, which filled with integers and are strictly increasing in columns, (C,D) ∈ R

if and only if the top element of C is greater than the bottom elements of D and

Γ = {P} where P =
6 5 4

1 2 3
. Then if Q = E1 . . . E6 is the generalized Γ,R-

cluster pictured in Figure 3.2, then we are in case (1) with i = 1 since E1 consists of

more than one block. Thus θ(Q) results by breaking that generalized Γ,R-cluster

into to two clusters E∗
1 of size 1 and E∗∗

1 of size 4. θ(Q) is pictured in Figure 3.3.

x

1 8 10 15 24 17 4 7 12 2 6 9 11 16 25 

14 22 26 29 28 23 21 20 13 5 32 27 18 30 19 

x xx

3 33 

3931 

34 

37

35 

36

38 

x

Figure 3.3: The involution θ.

It is easy to see that θ is an involution. That is, if Q = E1 . . . Em+1 is in case

(1) using Ei, then θ(Q) will be in case (2) using E∗
i and E∗∗

i . Similarly if Q =
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E1 . . . Em+1 is in case (1) using Ei and Ei+1, then θ(Q) will be in case (2) using E =

EiEi+1. It follows that if θ(E1 . . . Em+1) ̸= E1 . . . Em+1, then ωΓ,R(E1 . . . Em+1) =

−ωΓ,R(θ(E1 . . . Em+1)) so that the right-hand side of (2.11) equals

∑
Q=E1...Em+1∈HGECks+j,Γ,R,θ(Q)=Q

m+1∏
i=1

ωΓ,R(Ei).

Thus we must examine the fixed points of θ.

If Q = E1 . . . Em+1 ∈ HGECks+j,Γ,R and θ(Q) = Q, then it must be the case

that for each i ≤ m, Ei consists of single column of weight 1 or it reduces to

generalized Γ,R-cluster Ei consisting of a single block B
(i)
1 whose weight is the

weight of red(B
(i)
1 ) as a Γ-cluster. Moreover, it must be the case that for all

i = 1, . . .m− 1, (last(Ei), f irst(Ei+1) is in R. Similarly, Em+1 must consists of a

single column of height j and (last(Em), Em+1) must be in R. But this means for

all j = 1, . . . , s, (Q[j], Q[j+1]) is in R. That is, either Q[j] equals last(Ei) for some

i or column j is contained in one of the Γ-clusters Ei in which case (Q[j], Q[j+1])

is in R by our definition of generalized Γ,R-clusters. Thus any fixed point Q of

θ is an elementMP0,j,k
ks+j,R . Then just like our proof Theorem 2.2, it follows that

E1, . . . , Em are just the maximal Γ-subclusters of an element in P0,j,k
kn,R . Vice versa,

if T = F1 . . . FrFr+1 is an element of P0,0,k
ks+j,R where F1, . . . , Fr are the maximal

Γ-subclusters of T and Fr+1 is the last column of height j, then T = F1 . . . Fr is a

fixed point of θ. Thus we have proved that the right-hand side of (3.6) equals∑
F∈MP0,j,k

ks+j ,R

xmΓ(F )

which is what we wanted to prove.

3.2 Clusters and Generalized Clusters for fillings

of Di,0,k
i+kn

In this section, we shall extend the generalized cluster method to deal with

various types of fillings of Di,0,k
i+kn, for i ̸= k. Let a set of patterns Γ ⊆ P0,0,k)

kr . We

letMP i,0,
i+kn,Γ denote the set of elements that arise by starting with an element F
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of P i,0,k
i+kn and marking some of the Γ-matches in F by placing on x on the column

which starts the Γ-match. Given an element F ∈MP i,0,k
i+kn,Γ, we let mΓ(F ) denote

the number of marked Γ-matches in F . Clearly, the first column of F cannot be

contained in any Γ-match because the heights do not agree.

To find an extension of Theorem 2.7 for these types of arrays, we need to

define a special type of generalized cluster which we call an start cluster. That

is, suppose that we are given a binary relation R on columns of integers a set of

patterns Γ ⊆ P0,0,k)
kr .

Definition 3.3. We say that Q ∈MP i,0,k
i+kn,Γ is a generalized Γ,R-start-cluster if

we can write Q = B1B2 · · ·Bm where Bi are blocks of consecutive columns in Q

such that

1. B1 is a single column of height i,

2. for 2 < a ≤ m, either Ba is a single column or Ba consists of r-columns

where r ≥ 2, red(Ba) is a Γ-cluster in MPkr,Γ, and any pair of consecutive

columns in Bi are in R and

3. for 1 ≤ i ≤ m − 1, the pair (last(Bi), f irst(Bi+1) is not in R where for

any j, last(Bj) is the right-most column of Bj and first(Bj) is the left-most

column of Bj.

Let GSCi,0,ki+kn,Γ,R denote the set of all generalized Γ,R-start-clusters which start

with a column of height i and which is followed by n columns of height k. Given

Q = B1B2 . . . Bm ∈ GSCi,0,ki+kn,Γ,R , we define the weight of Bi, ωΓ,R(Bi), to be 1 if

Bi is a single column and xmΓ(red(Bi)) if Bi is order isomorphic to a Γ-cluster. Then

we define the weight of Q, ωΓ,R(Q), to be (−1)m−1
∏m

i=1 ωΓ,R(Bi). We let

GSC i,0,k
i+kn,Γ,R(x) =

∑
Q∈GSCi,0,,k

i+kn,Γ,R

ωΓ,R(Q). (3.8)

Let P i,0,k
i+kn,R denote the set of all elements F ∈ P i,0,k

i+kn such that the relation R holds

for any pair of consecutive columns in F . We let MP i,0,k
i+kn,Γ,R denote the set of

elements that arise by starting with an element F of P i,0,k
i+kn,R and marking some of

the Γ-matches in F by placing on x on the column which starts the Γ-match.
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Then we have the following theorem.

Theorem 3.4. Let R be a binary relation on pairs of columns (C,D) which are

filled with integers which are increasing from bottom to top. Let Γ ⊆ P0,0,k
kr where

r ≥ 2. Then

∑
n≥0

ti+kn

(i+ kn)!

∑
F∈Pi,0,k

i+kn,R

xΓ-mch(F ) =

∑
n≥0

ti+kn

(i+kn)!
GSC i,0,k

i+kn,Γ,R(x− 1)

1−
∑

n≥1
tkn

(kn)!
GC0,0,k

kn,Γ,R(x− 1)
. (3.9)

Proof. Replace x by x + 1 in (3.9). Then as in our previous theorems, the left-

hand side of (3.2) becomes of mΓ(F ) over all F ∈MP i,0,k
kn,+j,Γ,R . As in our previous

theorems, it easy to see that∑
n≥0

ti+kn

(i+ kn)!

∑
F∈MPi,0,k

i+kn,Γ,R

xmΓ(F ). (3.10)

Thus we must show that

∑
n≥0

ti+kn

(i+ kn)!

∑
F∈MPi,0,k

kn,Γ,R

xmΓ(F ) =

∑
n≥0

ti+kn

(i+kn)!
GSCi,0,k

i+kn,Γ,R(x)

1−
∑

n≥1
tkn

(kn)!
GC0,0,k

kn,Γ,R(x)
. (3.11)

Taking the coefficient of ti+ks

(i+ks)!
on both sides of (3.11) where s ≥ 0, we see that
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we must show that∑
F∈MPi,0,k

i+ks,R

xmΓ(F ) (3.12)

=

((
∞∑

m=1

(∑
n≥1

tkn

(kn)!
GC0,0,k

kn,Γ,R(x)

)m)
×(∑

n≥0

ti+kn

(i+ kn)!
GSCi,0,k

i+kn,Γ,R(x)

))∣∣∣∣∣
ti+ks

(i+ks)!

=
∑

a+b=s,a,b≥0

(
i+ ks

ka, i+ kb

)( ∞∑
m=1

(∑
n≥1

tkn

(kn)!
GC0,0,k

kn,Γ,R(x)

)m)∣∣∣∣∣
tka

(ka)!

×

(∑
n≥0

ti+kn

(i+ kn)!
GSC i,0,k

i+kn,Γ,R(x)

)∣∣∣∣∣
ti+kb

(i+kb)!

=
∑

a+b=s,a,b≥0

(
i+ ks

ka, i+ kb

)
× a∑

m=1

∑
a1+a2+···+am=a

ai≥1

(
ka

ka1, . . . , kam

) m∏
j=1

GC0,0,k
kaj ,Γ,r

(x)

GSC i,0,k
i+kb,Γ,R(x)

=
∑

a+b=s,a,b≥0

a∑
m=1

∑
a1+a2+···+am=a

ai≥1

(
ks+ i

ka1, . . . , kam, i+ kb

)
×

GSC i,0,k
i+kb,Γ,R(x)

m∏
j=1

GC0,0,k
kaj ,Γ,r

(x). (3.13)

The right-hand side of (3.12) is now easy to interpret. First we pick non-

negative intergers a and b such that a + b = s. Then we pick an m such that

1 ≤ m ≤ a. Next we pick a1, . . . , am ≥ 1 such that a1+a2+ · · ·+am = a. Next the

binomial coefficient
(

ks+j
ka1,...,kam,kb+j

)
allows us to pick sets S1, . . . , Sm, Sm+1 which

partition {1, . . . , i+ks} such that |Si| = kai for i = 2, . . . ,m+1 and |S1| = i+kb.

The factor GSCi,0,k
i+kb,Γ,R(x) allows us to pick an a a generalized Γ,R-start-cluster

G1 of size i + kb with weight ωΓ,R(G1). Note that in the cases where b = 0, our

definitions imply that Gm+1 is just a column of height i filled with the numbers

1, . . . , i which is increasing, reading from bottom to top. Finally the product∏m
j=1GC0,0,k

kaj ,Γ,R
(x) allows us to pick generalized Γ,R-clusters Gi ∈ GC0,0,kkai,Γ,R

for
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p = 2, . . . ,m+1 with weight
∏m+1

p=2 ωΓ,R(Gp). Note that in the cases where ai = 1,

our definitions imply that Gi is just a column of height k filled with the numbers

1, . . . , k which is increasing, reading from bottom to top.

={1,5,8,10,15,18,24,27,30,32}2S 2G=
1 3 4 5 7

2 10 8 6 9 

3S

={4,7,12,13,20,21}4S

={25,26}5S 6G=
1 

2 

={17,19} 3G=
1 

2 

4G=
1 2 3 

6 5 4 

x

5G={2,6,9,11,14,16,22,23,28,29}5S =
1 2 3 4 6 

10 9 8 5 7 

x x

x

={3,31,33,34,35,36,37,38,39}1S 1G=
1 4 5 6

2 9 8 7

x

1 8 10 15 24 17 4 7 

21 20 5 32 27 18 30 19 

12 2 6 9 11 16 25 

14 22 26 29 28 23 13 

3 34 

3931 

35 

38

36 

37

33 x x xxx

3 

Figure 3.4: Construction for the right-hand side of (3.12).

For example, suppose that k = 2 and i = 3 and Γ = {P} where P =
6 5 4

1 2 3
.

Suppose that R is relation where for any two columns C and D which filled with

integers and are strictly increasing in columns, (C,D) ∈ R if and only if the top
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element of C is greater than the bottom element of D. Then in Figure 3.4, we have

pictured S1, S2, S3, S4, S5, S6 which partition {1, . . . , 39} and corresponding gener-

alized Γ,R-clusters G2, . . . , G6 and a generalized Γ,R-start-cluster G1. For each

i, we have indicated the separation between the blocks of Gi by dark black lines.

Then for each i = 1, . . . ,m + 1, we create a cluster Ei which results by replacing

the j in Gi by the jth element of Si. If we concatenate E1 . . . E6 together, then we

will obtain an element of Q ∈ MP i,0,k
i+ks,Γ. The weight of Q equals

∏6
j=1 ωΓ,R(Gi)

where

ωΓ,R(G1) = −x,

ωΓ,R(G2) = (−1)2x,

ωΓ,R(G3) = 1,

ωΓ,R(G4) = x,

ωΓ,R(G5) = (−1)1x2, and

ωΓ,R(G6) = 1.

In Figure 3.4, we have indicated the boundaries between the Gis by light lines.

We let HGSCks+j,Γ,R denote the set of all elements that can be constructed

in this way. Thus Q = E1 . . . EmEm+1 is an element of HGSCks+j,Γ,R if and only

if for each i = 1, . . . ,m, red(Ei + 1) is a generalized Γ,R-cluster and red(E1) is

a generalized Γ,R-start-cluster. Next we define a sign reversing involution θ :

HGSCks+j,Γ,R → HGSCks+j,Γ,R . Given Q = E1 . . . EmEm+1 ∈ HGACks+j,Γ,R , look

for the first i such that either

1. the block structure of red(Ei) = B
(i)
1 . . . B

(i)
ki

consists of more than one block

or

2. Ei consists of a single block B
(i)
1 and (last(Bi), f irst(Ei)) is not in R.

In case (1), if 2 ≤ i ≤ m + 1, we let θ(E1 . . . Em+1) be the result of replacing

Ei by two generalized Γ,R-clusters, E∗
i and E∗∗

i where Ei∗ consists just of B
(i)
1

and E∗∗
i consists of B

(i)
2 . . . B

(i)
ki
. If i = 1, we let θ(E1 . . . Em+1) be the result of

replacing E1 by a generalized Γ,R-start-cluster, E∗
1 and a generalized Γ,R-cluster
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E∗∗
1 where E1∗ consists just of B

(1)
1 and E∗∗

1 consists of B
(1)
2 . . . B

(1)
ki
. Note that

in either case, ωΓ,R(Ei) = (−1)ki−1
∏ki

j=1 ωΓ,R(B
(i)
j ) while ωΓ,R(E

∗
i )ωΓ,R(Ei)

∗∗ =

(−1)ki−2
∏ki

j=1 ωΓ,R(B
(i)
j ). In case (2), if 2 ≤ i ≤ m, we let θ(E1 . . . Em+1) be

the result of replacing Ei and Ei+1 by the single generalized Γ,R-cluster E =

B
(i)
1 B

(i+1)
1 . . . B

(i+1)
ki+1

. If i = 1,, we let θ(E1 . . . Em+1) be the result of replacing E1

and E2 by the single generalized Γ,R-start-cluster E = B
(1)
1 B

(2)
1 . . . B

(2)
ki+1

. In

either case, ωΓ,R(Ei)ωΓ,R(Ei+1) = (−1)ki+1−1ωΓ,R(B
(i)
1 )
∏ki+1

j=1 ωΓ,R(B
(i+1)
j ) while

ωΓ,R(E) = (−1)ki+1ωΓ,R(B
(i)
1 )
∏ki+1

j=1 ωΓ,R(B
(i+1)
j ). If neither case (1) or case (2)

applies, then we let θ(E1 . . . Em+1) = E1 . . . Em+1. For example, suppose that R is

the binary relation where for any two columns C and D, which filled with integers

and are strictly increasing in columns, (C,D) ∈ R if and only if the top element

of C is greater than the bottom elements of D and Γ = {P} where P =
6 5 4

1 2 3
.

Then if Q = E1 . . . E6 is the generalized Γ,R-cluster pictured in Figure 3.4, then

we are in case (1) with i = 1 since E1 consists of more than one block. Thus θ(Q)

results by breaking that generalized Γ,R-start-cluster into to two clusters E∗
1 of

size 1 and E∗∗
1 of size 2. θ(Q) is pictured in Figure 3.5.

1 8 10 15 24 17 4 7 

21 20 5 32 27 18 30 19 

12 2 6 9 11 16 25 

14 22 26 29 28 23 13 

3 34 

3931 

35 

38

36 

37

33 x x xxx

Figure 3.5: The involution θ.

As in our previous theorems, it is easy to verify that θ is an involution. More-

over, if θ(E1 . . . Em+1) ̸= E1 . . . Em+1, then

ωΓ,R(E1 . . . Em+1) = −ωΓ,R(θ(E1 . . . Em+1))

so that the right-hand side of (3.12) equals

∑
Q=E1...Em+1∈HGSCi+ks,Γ,R,θ(Q)=Q

m+1∏
i=1

ωΓ,R(Ei).
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Thus we must examine the fixed points of θ.

If Q = E1 . . . Em+1 ∈ HGSCi+ks,Γ,R and θ(Q) = Q, then it must be the case

that for each 2 ≤ i ≤ m+ 1, Ei consists of single column of weight 1 or it reduces

to generalized Γ,R-cluster Ei consisting of a single block B
(i)
1 whose weight is

the weight of red(B
(i)
1 ) as a Γ-cluster. Moreover, it must be the case that for

all i = 2, . . .m, (last(Ei), first(Ei+1) is in R. Similarly, E1 must consists of a

single column of height i and (E1, f irst(E2)) must be in R. But this means for all

j = 1, . . . , s, (Q[j], Q[j + 1]) is in R. That is, either Q[j] equals last(Ei) for some

i or column j is contained in one of the Γ-clusters Ei in which case (Q[j], Q[j+1])

is in R by our definition of generalized Γ,R-clusters. Thus any fixed point Q

of θ is an element MP i,0,k
i+ks,R . Then just like our proof Theorem 2.2, it follows

that E1, . . . , Em are just the maximal Γ-subclusters of an element in P0,0,k
i+ks,R . Vice

versa, if T = F1 . . . FrFr+1 is an element of P0,0,k
kn,R where F2, . . . , Fr are the maximal

Γ-subclusters of T and F1 is the initial column of height i, then T = F1 . . . Fr is a

fixed point of θ. Thus we have proved that the right-hand side of (3.12) equals∑
F∈MPi,0,k

i+ks,R

xmΓ(F )

which is what we wanted to prove.

3.3 Clusters and Generalized Clusters for fillings

of Di,j,k
i+kn+j.

In this section, we shall combine Section 3.1 and 3.2 to extend the generalized

cluster method to deal with various types of fillings ofDi,j,k
i+kn+j. Let a set of patterns

Γ ⊆ P0,0,k
kr . We let MP i,j,k

i+kn+j,Γ denote the set of elements that arise by starting

with an element F of P i,j,k
i+kn+j and marking some of the Γ-matches in F by placing

on x on the column which starts the Γ-match. Given an element F ∈MP i,j,k
i+kn+j,Γ,

we let mΓ(F ) denote the number of marked Γ-matches in F . Clearly, neither the

first or the last column of F is contained in a Γ-match.

To find an extension of Theorem 2.7 for fillings of D0,j,k
kn+j, we defined generalized

end clusters and for fillings ofDi,0,k
kn+i, we defined generalized start clusters. However,
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they are not enough to extend Theorem 2.7 for fillings of Di,j,k
i+kn+j. Next we define

a special type of generalized cluster which we call a generalized start-end cluster.

That is, suppose that we are given a binary relation R on columns of integers a

set of patterns Γ ⊆ P0,0,k)
kr .

Definition 3.5. We say that Q ∈ MP i,j,k
i+kn+j,Γ is a generalized Γ,R-start-end-

cluster if we can write Q = B1B2 · · ·Bm where Bi are blocks of consecutive columns

in Q such that

1. m ≥ 2,

2. B1 is a column of height i,

3. Bm is a column of height j,

4. for 1 < i < m, either Bi is a single column or Bi consists of r-columns where

r ≥ 2, red(Bi) is a Γ-cluster inMPkr,Γ, and any pair of consecutive columns

in Bi are in R and

5. for 1 ≤ i ≤ m − 1, the pair (last(Bi), f irst(Bi+1)) is not in R where for

any j, last(Bj) is the right-most column of Bj and first(Bj) is the left-most

column of Bj.

Let GSECi,j,ki+kn+j,Γ,R denote the set of all generalized Γ,R-start-end-clusters

which have n columns of height k between a column of height i and a column

of height j. Given Q = B1B2 . . . Bm ∈ GSECi,j,ki+kn+j,Γ,R , we define the weight of Bi,

ωΓ,R(Bi), to be 1 if Bi is a single column and xmΓ(red(Bi)) if Bi is order isomorphic to

a Γ-cluster. Then we define the weight ofQ, ωΓ,R(Q), to be (−1)m−1
∏m

i=1 ωΓ,R(Bi).

We let

GSEC0,j,k
kn+j,Γ,R(x) =

∑
Q∈GSECi,j,k

i+kn+j,Γ,R

ωΓ,R(Q). (3.14)

Let P i,j,k
i+kn+j,R denote the set of all elements F ∈ P i,j,k

i+kn+j such that the relation R

holds for any pair of consecutive columns in F . We letMP i,j,k
i+kn+j,Γ,R denote the

set of elements that arise by starting with an element F of P i,j,k
i+kn+j,R and marking

some of the Γ-matches in F by placing on ‘x’ on the column which starts the

Γ-match.
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Then we have the following theorem.

Theorem 3.6. Let R be a binary relation on pairs of columns (C,D) which are

filled with integers which are increasing from bottom to top. Let Γ ⊆ P0,0,k
kr where

r ≥ 2. Then

∑
n≥0

ti+kn+j

(i+ kn+ j)!

∑
F∈Pi,j,k

i+kn+j,R

xΓ-mch(F ) =

(∑
n≥0

ti+kn

(i+kn)!
GSC i,0,k

i+kn,Γ,R(x− 1)
)(∑

n≥0
tkn+j

(kn+j)!
GEC0,j,k

kn+j,Γ,R(x− 1)
)

1−
∑

n≥1
tkn

(kn)!
GC0,0,k

kn,Γ,R(x− 1)

+
∑
n≥0

ti+kn+j

(i+ kn+ j)!
GSECi,j,k

i+kn+j,Γ,R(x− 1). (3.15)

Proof. Without causing any ambiguity, as a subscript of many variables, Γ is

sometimes omitted for convenience. Replace x by x + 1 in (3.15). Then the left-

hand side of (3.2) is the generating function of mΓ(F ) over all F ∈MP i,j,k
i+kn,+j,Γ,R .

That is, it easy to see that∑
n≥0

ti+kn+j

(i+ kn+ j)!

∑
F∈Pi,j,k

i+kn+j,R

(x+1)Γ-mch(F ) =
∑
n≥0

ti+kn+j

(i+ kn+ j)!

∑
F∈MPi,j,k

i+kn+j,Γ,R

xmΓ(F ).

(3.16)

Thus we must show that

∑
n≥0

tkn+j

(kn+ j)!

∑
F∈MP0,0,k

kn,R

xmΓ(F ) =

(∑
n≥0

ti+kn

(i+kn)!
GSCi,0,k

i+kn,Γ,R(x)
)(∑

n≥0
tkn+j

(kn+j)!
GEC0,j,k

kn+j,Γ,R(x)
)

1−
∑

n≥1
tkn

(kn)!
GC0,0,k

kn,Γ,R(x)

+
∑
n≥0

ti+kn+j

(i+ kn+ j)!
GSEC i,j,k

i+kn+j,Γ,R(x). (3.17)



77

Now we rewrite the right-hand side of (3.17) as((∑
n≥0

tkn+j

(kn+ j)!
GSC i,0,k

i+kn,Γ,R(x)

)(∑
n≥0

tkn+j

(kn+ j)!
GEC0,j,k

kn+j,Γ,R(x)

)

×
∑
m≥0

(∑
n≥1

tkn

(kn)!
GC0,0,k

kn,Γ,R(x)

)m)

+
∑
n≥0

ti+kn+j

(i+ kn+ j)!
GSEC i,j,k

i+kn+j,Γ,R(x). (3.18)

Taking the coefficient of tks+j

(ks+j)!
on both sides of (3.18) where s ≥ 0, we see that we

must show that∑
F∈MPi,j,k

i+ks+j,R

xmΓ(F )

=

(((∑
n≥0

ti+kn

(i+ kn)!
GSCi,0,k

i+kn,Γ,R(x)

)(∑
n≥0

tkn+j

(kn+ j)!
GEC0,j,k

kn+j,Γ,R(x)

)

×
∑
m≥0

(∑
n≥1

tkn

(kn)!
GC0,0,k

kn,Γ,R(x)

)m)

+
∑
n≥0

ti+kn+j

(i+ kn+ j)!
GSEC i,j,k

i+kn+j,Γ,R(x)

)∣∣∣∣∣
ti+ks+j

(i+ks+j)!

=

 ∑
a+b+c=s,a,b,c≥0

b∑
m=1

∑
b1+b1+···+bm=b

bi≥1

(
i+ ks+ j

i+ ka, kb1, . . . , kbm, kc+ j

)
×

GSCi,0,k
i+ka,R(x) GEC0,j,k

kc+j,R(x)
m∏
j=1

GC0,0,k
kbj ,R

(x)

)
+GSECi,j,k

i+ks+j,R(x)

(3.19)

Now we interpret the right-hand side of (3.19). Different from interpretation of

(3.6) or (3.12), the plus sign in (3.19) offers us two ways to construct an array in

MP i,j,k
i+ks+j,R .

One way is via GSC, GEC and GC. First we pick non-negative integers a, b and

c such that a+ b+ c = s. Then we pick an m such that 1 ≤ m ≤ b. Next we pick

b1, . . . , bm ≥ 1 such that b1 + b2 + · · · + bm = b. Next the multinomial coefficient
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(
i+ks+j

i+ka,kb1,...,kbm,kc+j

)
allows us to pick sets S1, . . . , Sm, Sm+1, Sm+2 which partition

{1, 2, . . . , i + ks + j} such that |S1| = i + ka, |Sh+1| = kbh for h = 1, . . . ,m and

|Sm+2| = kc + j. The factor GSC i,0,k
i+ka,R(x) allows us to pick a generalized start-

cluster G1 of size i+ka with weight ωΓ,R(G1). Note that in the cases where a = 0,

our definitions imply that G1 is just a column of height i filled with the numbers

1, . . . , i which is increasing, reading from bottom to top. The factor GEC0,j,k
kc+j,R(x)

allows us to pick an a a generalized end-cluster Gm+2 of size kc + j with weight

ωΓ,R(Gm+2). Note that in the cases where c = 0, our definitions imply that Gm+2

is just a column of height j filled with the numbers 1, . . . , j which is increasing,

reading from bottom to top. Finally, the product
∏m

j=1GC0,0,k
kbh,R

(x) allows us to pick

generalized clusters Gh ∈ GC0,0,kkbh,R
for h = 2, . . . ,m+1 with weight

∏m
h=1 ωΓ,R(Gh).

Note that in the cases where bh = 1, our definitions imply that Gh is just a

column of height k filled with the numbers 1, . . . , k which is increasing, reading

from bottom to top.

Another way is via GSEC. The term GSECi,j,k
i+ks+j,R(x) allows us to have a

generalized start-end-cluster G∗ of size i + ks + j. Note that in the case where

s = 0, our definition implies that G∗ has two blocks and the first block is a single

column of height i and the second block is a single column of height j.

For example, suppose that i = 3, k = 2 and j = 1 and Γ = {P} where

P =
6 5 4

1 2 3
. Suppose that R is relation where for any two columns C and D

which filled with integers and are strictly increasing in columns, (C,D) ∈ R if

and only if the top element of C is greater than the bottom element of D. Then

in Figure 3.6, we have pictured S1, S2, S3, S4, S5, S6 which partition {1, . . . , 42}
and corresponding a general start-cluster G1, generalize clusters G2, . . . , G5 and

a general end-cluster G6. This is a construction for the right-hand side of (3.12)

via GSC, GEC and GC. For each h, we have indicated the separation between the

blocks of Gi by dark black lines. Then for each h = 1, . . . ,m + 1, we create a

cluster Ei which results by replacing the j in Gi by the jth element of Si. If we

concatenate E1 . . . E6 together, then we will obtain an element of Q ∈MP i,j,k
i+ks+j,Γ.
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={1,5,8,10,15,18,24,27,30,32}2S 2G=
1 3 4 5 7

2 10 8 6 9 

3S

={4,7,12,13,20,21}4S

={25,26,40,41,42}6S 6G=
1 

2 

={17,19} 3G=
1 

2 

4G=
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x
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x x

x

={3,31,33,34,35,36,37,38,39}1S 1G=
1 4 5 6
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12 2 6 9 11 16 25 

14 22 26 29 28 23 13 

3 34 

3931 

35 

38

36 

37

33 x x xxx
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Figure 3.6: Construction for the right-hand side of (3.12) via GSC, GEC and GC.

={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18}
*	
S

*	
G

1 4 5 6

2 

x3 

7 9

10 14 13 11 8 16 

15 18 12 

17

x

=

Figure 3.7: Construction for the right-hand side of (3.12) via GSEC.
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The weight of Q equals
∏6

h=1 ωΓ,R(Gh) where

ωΓ,R(G1) = (−1)2−1x,

ωΓ,R(G2) = (−1)3−1x,

ωΓ,R(G3) = (−1)1−1,

ωΓ,R(G4) = (−1)1−1x,

ωΓ,R(G5) = (−1)2−1x2, and

ωΓ,R(G6) = (−1)3−1.

In Figure 3.6, we have indicated the boundaries between the Gh’s by light lines.

In Figure 3.7, we have pictured S∗ = {1, 2, . . . , 18} and corresponding a general

start-end-cluster G∗. This is a construction for the right-hand side of (3.12) via

GSEC. Clearly, G∗ ∈MP i,j,k
i+ks+j,Γ. The weight of G∗

ωΓ,R(G∗) = (−1)6−1x2.

We let HGCi+ks+j,Γ,R denote the set of all elements that can be constructed via

GSC, GEC and GC, and let HGSECi+ks+j,Γ,R denote the set of all elements that

can be constructed via GSEC. We let

Hi+ks+j,Γ,R := HGCi+ks+j,Γ,R ∪ HGSECi+ks+j,Γ,R .

For convenience, the subscripts Γ and R are omitted in following discussion.

Then Q = E1 . . . Em+1Em+2 is an element of HGCi+ks+j,Γ,R if and only if m ≥
0, red(E1) is a generalized start-cluster, for each h = 1, . . . ,m, red(Eh+1) is a

generalized cluster and red(Em+2) is a generalized end-cluster. On the other hand,

Q = E1 is an element of HGSECi+ks+j if and only if red(E1) is a generalized

start-end-cluster.

Next we define a sign reversing involution θ : Hi+ks+j → HGECi+ks+j. We use

B
(h)
d to denote the d-th block in Eh.

If Q ∈ HGCi+ks+j, then we assume Q = E1 . . . Em+1Em+2, look for the first h

such that either
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Case (1). the block structure of red(Eh) = B
(h)
1 B

(h)
2 . . . B

(h)
kh

consists of more than one

block or

Case (2). Eh consists of a single block B
(h)
1 and (last(B

(h)
1 ), f irst(B

(h+1)
1 )) is not in R.

If Q ∈ HGSECi+ks+j, we assume Q = E1 and then

Case (3). the block structure of red(E1) = B
(h)
1 B

(h)
2 . . . B

(h)
kh

consists of more than one

block.

In Case (1), if h = 1, we let θ(E1 . . . Em+1Em+2) be the result of replacing

E1 by a generalized cluster E∗
1 and a generalized start-cluster E∗∗

1 where E∗
1 con-

sists just of B
(1)
1 and E∗∗

1 consists of B
(1)
2 . . . B

(1)
k1
. If 2 ≤ h ≤ m + 1, we let

θ(E1 . . . Em+1Em+2) be the result of replacing Eh by two generalized clusters E∗
h and

E∗∗
h where E∗

i consists just of B
(h)
1 and E∗∗

i consists of B
(h)
2 . . . B

(h)
kh

. If h = m+ 2,

we let θ(E1 . . . Em+1Em+2) be the result of replacing Em+2 by a generalized clus-

ter E∗
m+1 and a generalized end-cluster E∗∗

m+2 where E∗
m+2 consists just of B

(m+2)
1

and E∗∗
m+2 consists of B

(m+2)
2 . . . B

(m+2)
km+2

. Note that in any of these three situations

above,

ωΓ,R(Eh) = (−1)kh−1

ki∏
n=1

ωΓ,R(B
(h)
n )

while

ωΓ,R(E
∗
h)ωΓ,R(Eh)

∗∗ = (−1)kh−2

kh∏
n=1

ωΓ,R(B
(h)
n ) = −ωΓ,R(Eh).

In Case (1), it is obvious that θ(E1 . . . Em+1Em+2) is still an element in HGCi+ks+j.

In Case (2), if h = 1, we let θ(E1 . . . Em+1Em+2) be the result of replacing

E1 and E2 by a generalized start-cluster E = B
(1)
1 B

(2)
1 . . . B

(2)
k2
. If 2 ≤ h ≤ m,

we let θ(E1 . . . Em+1Em+2) be the result of replacing Eh and Eh+1 by a general-

ized cluster E = B
(h)
1 B

(h+1)
1 . . . B

(h+1)
kh+1

. If h = m + 1, we let θ(E1 . . . Em+1Em+2)

be the result of replacing Em+1 and Em+2 by a generalized end-cluster E =

B
(m+1)
1 B

(m+2)
1 . . . B

(m+2)
km+2

. In any of these three situations,

ωΓ,R(Eh)ωΓ,R(Eh+1) = (−1)kh+1−1ωΓ,R(B
(h)
1 )

kh+1∏
n=1

ωΓ,R(B
(h+1)
n )
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while

ωΓ,R(E) = (−1)kh+1ωΓ,R(B
(h)
1 )

kh+1∏
n=1

ωΓ,R(B
(h+1)
n ) = −ωΓ,R(Eh)ωΓ,R(Eh+1).

One particular situation in this case is that if Q = E1E2 and E1 has only one block,

then E1 and E2 will be combined, that is, θ(E1E2) is an element in HSEGCi+ks+j.

Except for this situation, θ(E1 . . . Em+1Em+2) is still an element in HGCi+ks+j.

In Case (3), note that for any Q ∈ HSEGCi+ks+j, Q itself is a generalized start-

end cluster which must have at least two blocks. Suppose Q = E1, then B
(1)
1 is a

single increasing column of height i and B
(1)
k1

is a single increasing column of height

j. Then we let θ(E1) be the result of replacing E1 by a generalized start-cluster E∗
1

and a generalized end-cluster E∗∗
1 where E∗

1 consists just of B
(1)
1 and E∗∗

1 consists

of B
(1)
2 . . . B

(1)
k1
. Clearly,

ωΓ,R(E1) = (−1)k1−1

k1∏
n=1

ωΓ,R(B
(1)
n )

while

ωΓ,R(E
∗
1)ωΓ,R(E1)

∗∗ = (−1)k1−2

k1∏
n=1

ωΓ,R(B
(1)
n ) = −ωΓ,R(E1).

Since θ(E1) has a generalized start-cluster and a generalized end-cluster, θ(E1) is

an element in HGCi+ks+j.

If neither Case (1), Case (2), or Case (3) applies, then we let θ(E1 . . . Em+2) =

E1 . . . Em+2.

According to the discussion above, now it is easy to see that θ : Hi+ks+j 7→
Hi+ks+j is a sign reversing involution. Then based on similar argument we used in

proof of Theorem 3.2 and 3.4, if Q = E1 . . . Em+2 and θ(Q) = Q, Q must be an

element inMP i,j,k
i+ks+j,Γ,R , which finishes the proof.

We can state analogues of Theorems 3.2, 3.4, and 3.6 in the case where are

study P -matches and exact P -matches where we are studying fillings of Di,j,k
i+kn+j

where we allow repeated entries. These analogues follow the same ideas that we

used to state an analogue of Theorem 2.2 in Theorem 2.8 and the analogue of

Theorem 2.7 in Theorem 2.10. Thus we shall not give the details here.
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3.4 Example

3.4.1 Up-down patterns in down-up permutations

We say a permutation σ = σ1σ2 · · ·σn ∈ Sn is an up-down permutation if

σ1 < σ2 > σ3 < σ4 > σ5 < · · · . More precisely, σ ∈ Sn is up-down if and only if

Des(σ) =
{
2k : ∀ integer k, 0 < k <

n

2

}
.

We let UDn denote the set of all the up-down permutations in Sn. We say a

permutation σ = σ1σ2 · · ·σn ∈ Sn is an down-up permutation if σ1 > σ2 < σ3 >

σ4 < σ5 > · · · . Similarly, a permutation σ ∈ Sn is down-up if and only if

Des(σ) =

{
2k + 1 : ∀ integer k, 0 < k <

n+ 1

2

}
.

We let DUn denote the set of all the up-down permutations in Sn.
It is easy to see

|UDn| = |DUn|

because for any σ = σ1σ2 · · · σn ∈ UDn, (n+1−σ1)(n+1−σ2) . . . (n+1−σn) ∈ DUn.

For example, σ = 2 6 1 4 3 5 ∈ UDn, then we see 5 1 6 3 4 2 ∈ DUn. The number

of up-down permutations is counted by Euler numbers and André [2, 3] proved

that

1 +
∑
n≥1

|UDn|
tn

n!
= tan t+ sec t.

Classical permutation patterns (i.e., non-consecutive patterns) in up-down per-

mutations have been studied in several papers. For example, [41] and [37] showed

that the number of up-down permutations that don’t contain τ as a classical pat-

tern is a Catalan number, for any τ ∈ S3. However, study on consecutive patterns

for up-down (down-up) permutations is still a relatively new topic. Remmel stud-

ied consecutive up-down patterns of length 4, namely, 1324, 2314, 2413, 1432 and

3412, in up-down permutations in [55]. In this subsection, we mainly use Theorem

3.4 and Theorem 3.6 to consider up-down patterns in down-up permutations.

Alternatively, down-up permutations can be represented by arrays. Consider a

binary relation R such that holds for a pair of columns (C,D) if and only if the top



84

element of column C is greater than the bottom element of column D, then P1,1,2
2n+2,R

is one-to-one corresponding to DU2n+2 and P1,0,2
2n+2,R is one-to-one corresponding to

DU2n+1. For any F ∈ P i,j,k
i+kn+j, let w(F ) be the sequence obtained by reading the

columns from bottom to top and then from left to right. Then it is easy to see that

if F is a filling in P1,0,2
2n+1,R (P1,1,2

2n+2,R), then w(F ) is an element in DU2n+1 (DU2n+2).

For example, an F ∈ P1,1,2
10,R and w(F ) is given in Figure 3.8.

F

w(    ) = 4 2 8 7 10 1 5 3 9 6

2

8

7

10

1

5

3

9

64

F

Figure 3.8: F ∈ P1,1,2
10,R and w(F ) ∈ DU10.

In this example, we shall consider an up-down pattern τ = 1 6 2 5 3 4 ∈ UD6

and consider the following generating function∑
n≥1

tn

n!

∑
σ∈DUn

xτ -mch(σ).

It is equivalent to consider the following two generating functions

AP (x, t) :=
∑
n≥0

t2n+1

(2n+ 1)!

∑
F∈P1,0,2

2n+1,R

xP -mch(F ), (3.20)

BP (x, t) :=
∑
n≥0

t2n+2

(2n+ 2)!

∑
F∈P1,1,2

2n+2,R

xP -mch(F ), (3.21)

where P =
6 5 4

1 2 3
∈ P0,0,2

0,0,2j. (3.20) and (3.21) are equivalent to generating

functions for the distribution of τ in down-up permutations of even length and

odd length respectively.

Then by Theorem 3.4,

AP (x, t) =

∑
n≥0

t2n+1

(2n+1)!
GSC1,0,2

2n+1,P,R(x− 1)

1−
∑

n≥1
t2n

(2n)!
GC0,0,2

2n,P,R(x− 1)
, (3.22)
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and by Theorem 3.6,

BP (x, t) =(∑
n≥0

t2n+1

(2n+1)!
GSC1,0,2

2n+1,P,R(x− 1)
)(∑

n≥0
t2n+1

(2n+1)!
GEC0,1,2

2n+1,P,R(x− 1)
)

1−
∑

n≥1
t2n

(2n)!
GC0,0,2

2n,P,R(x− 1)

+
∑
n≥0

t2n+2

(2n+ 2)!
GSEC1,1,2

2+2,P,R(x− 1). (3.23)

Observing that both AP (x, t) and BP (x, t) need generalized start-cluster poly-

nomials and generalized cluster polynomials, firstly we compute GC0,0,2
2n,P,R(x).

We shall start by discussing structures of P -clusters. We let C2n,P denote the

set of P -clusters consisting of n columns. Clearly n could be any integer greater

than 2. As a usual technique, we think of C2n,P as posets, represented by Hasse

diagrams. For example, the poset corresponding to P is pictured in the left-hand

side of Figure 3.9. To obtain the poset corresponding to C8,P , we superimpose

the diagram at the second column of itself, which is pictured in right-hand side of

Figure 3.9. It is clear that the two P -matches in C8,P have to be marked. It follows

that if

C2n(x) =
∑

Q∈C2n,P

xmP (Q),

then C6(x) = x and C8(x) = x2.

x x x

Figure 3.9: Poset for pattern P and C8,P .

In general, in a P -cluster C with n-columns, it easy to see that the cells in

the bottom row must be filled with 1, . . . , n, reading from left to right, and the

numbers in the top row must be filled with the numbers n + 1, . . . , 2n, reading

from right to left. That is, because any two consecutive marked P -matches in a

P -cluster must share at least one column, it follows that the elements in the first

row must be increasing, reading from left to right, and the numbers in the second
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row must be increasing, reading from right to left. Since every column must be in

a marked P -matches, it follows that column n − 2 must start a marked P -match

so that column n is part of marked P -match. This means that the elements in the

last column must be increasing, reading from bottom to top. Thus the underlying

Hasse diagram must be of the form pictured in Figure 3.10.

Figure 3.10: The Hasse diagram of a P -cluster.

Now if C is a P -cluster with n ≥ 5 columns, then there are two possibilities

that we have to consider. Because of the form of the Hasse diagram, there are P -

matches which start at columns 1, . . . , n− 2. We know that the P -match starting

at column n− 2 must be marked in C because the last column must be part of a

marked P -match. However it could be that (a) column n − 3 is start of marked

P -match in C or (b) column n−3 is not the start of marked P -match in C in which

case column n − 4 must be the start of a marked P -match in C. This situation

is pictured in Figure 3.11.where case (a) is pictured on the top left and case (b)

is pictured on the top right. In case (a), we can remove the last column and the

x on top of column n − 2 to obtain a cluster with n − 1 columns and in case (b)

we can remove the last two columns and the x on top of column n− 2 to obtain a

P -cluster with n− 2 columns. It follows that for n ≥ 5,

C2n(x) =
∑

Q∈C2n,P

xmP (Q) = x (C2n−4(x) + C2n−2(x)) .

However, there are multiple ways to mark P -matches in a cluster. Consider

the cluster polynomial C2n(x),

C2n(x) =
∑

Q∈C2n,P

xmP (Q).
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x x

x x x

x xx

x xx x

Figure 3.11: The recursions for P -clusters.

Thus we have proved that

C6(x) = x (3.24)

C8(x) = x2 (3.25)

C2n(x) = x (C2n−4(x) + C2n−2(x)) , for n ≥ 5. (3.26)

To compute GC0,0,2
2n,P,R(x), we need to figure structures of GC0,0,22n,P,R . Suppose

Q ∈ GC0,0,22n,P,R has m blocks, i.e., Q = B1B2 . . . Bm. For an array F , we use Col(F )

to denote the number of columns in Col(F ). Each Bi is either order isomorphic

to a P -cluster or a single column. We let GCCol=(b1,b2,...,bm) to denote the set of

generalized clusters such that Col(Bi) = bi. Given Col(Bi) for each 1 ≤ i ≤ m, we

can represent the filling for the set of such generalized clusters uniquely by Hasse

diagram. Since we are assuming that for any block (last(Bi), f irst(Bi+1) is not

in R, there must be an arrow directed from the top of the last column of Bi to

the bottom of the first column of Bi+1. We let Γ(b1, b2, . . . , bm) denote the Hasse

diagram corresponding to GCCol=(b1,b2,...,bm). For example, Γ(3, 1, 1, 5, 1) is pictured

in Figure 3.12.

It is clear that∑
Q∈GCCol=(b1,b2,...,bm)

ωP,R(Q) = (−1)m−1LE(Γ(b1, b2, . . . , bm))
m∏
i=1

C2bi(x), (3.27)

where LE(Γ(b1, b2, . . . , bm)) is the number of linear extensions of Γ(b1, b2, . . . , bm)

and by convention, we let C2(x) = 1. Therefore, to compute (3.27), we only
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1B 2B 3B 4B 5B

Figure 3.12: Γ(3, 1, 1, 5, 1).

need to count linear extensions of Γ(b1, b2, . . . , bm). Continue using Γ(3, 1, 1, 5, 1)

as example, the Hasse diagram in Figure 3.12 is actually a tree-like diagram, as

drawn in Figure 3.13, and then we can easily compute that

LE(Γ(3, 1, 1, 5, 1)) =

(
6

4

)(
18

2

)
.

That is, it is easy to see that the first four elements in the bottom row must be

labeled with 1, . . . , 4, reading from left to right, since there is a directed path from

these elements to any other elements in the poset. Once we remove these four

elements, the Hasse diagram becomes disconnected so that
(
18
2

)
ways to pick the

labels for the two elements above the element labeled with 4 on only one way to

label those two elements. Once we have picked those two elements a and b, the

next 10 elements must be the smallest elements of {1, . . . , 22} − {1, 2, 3, 4, , a, b}.
Once we remove those 10 elements, the Hasse diagram again becomes disconnected

so that there are
(
6
4

)
ways to pick the lables of the vertical segment and only one

way to order them.

Figure 3.13: Γ(3, 1, 1, 5, 1).
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In general, we see that

LE(Γ(b1, b2, . . . , bm)) =
m−1∏
i=1

(bm−i − 1 + 2
n∑

j=m−i+1

bi

bm−i − 1

)
and then hence

∑
Q∈GCCol=(b1,b2,...,bm)

ωP,R(Q) =

(−1)m−1C2bm(x)
m−1∏
i=1

(bm−i − 1 + 2
n∑

j=m−i+1

bi

bm−i − 1

)
C2bi(x). (3.28)

Since a generalized P -cluster can not have a block of 2 columns,

GC0,0,2
2n,P,R(x) =

n∑
m=1

∑
b1+···+bm=n

bi=1 or bi≥3

∑
Q∈GCCol=(b1,...,bm)

ωP,R(Q) =

n∑
m=1

∑
b1+···+bm=n

bi=1 or bi≥3

(−1)m−1C2bm(x)
m−1∏
i=1

(bm−i − 1 + 2
m∑

j=m−i+1

bi

bm−i − 1

)
C2bi(x).

Using computer programs, it is easy to obtain that

GC0,0,2
2,P,R(x) = 1

GC0,0,2
4,P,R(x) = −1

GC0,0,2
6,P,R(x) = 1 + x

GC0,0,2
8,P,R(x) = −1− 7x+ x2

GC0,0,2
10,P,R(x) = 1 + 22x− 10x2 + x3

GC0,0,2
12,P,R(x) = −1− 50x+ 2x2 − 14x3 + x4

GC0,0,2
14,P,R(x) = 1 + 95x+ 299x2 − 86x3 − 19x4 + x5

GC0,0,2
16,P,R(x) = −1− 161x− 1796x2 + 1705x3 − 377x4 − 25x5 + x6

· · · (3.29)

Next we compute GSC1,0,2
2n+1,P,R(x). Suppose Q ∈ GSC1,0,22n+1,P,R has m blocks,

i.e., Q = B1B2 . . . Bm. B1 has to be a block consisting of one element, and for
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2 ≤ i ≤ m, each Bi is either order isomorphic to a P -cluster or a single column.

We let GSCCol=(1,b2,...,bm) to denote the set of generalized start-clusters such that

Col(Bi) = bi. Given Col(Bi) for each 2 ≤ i ≤ m, we can represent the filling for the

set of such generalized start-clusters uniquely by Hasse diagram. Arrows between

blocks should agree with R. We let ΓS(1, b2, . . . , bm) denote the Hasse diagram

corresponding to GSCCol=(1,b2,...,bm). For example, ΓS(1, 3, 1, 1, 5, 1) is pictured in

Figure 3.14.

2B 3B 4B 5B 6B1B

Figure 3.14: ΓS(1, 3, 1, 1, 5, 1).

It is clear that∑
Q∈GSCCol=(1,b2,...,bm)

ωP,R(Q) = (−1)m−1LE(ΓS(1, b2, . . . , bm))
m∏
i=1

C2bi(x). (3.30)

By comparing Figure 3.12 and 3.14, we see that

LE(ΓS(1, b2, . . . , bm)) = LE(Γ(b2, . . . , bm)).

Therefore, for n ≥ 1,

GSC1,0,2
2n+1,P,R(x) =

n+1∑
m=1

∑
1+b2+···+bm=n+1

bi=1 or bi≥3

∑
Q∈GSCCol=(1,b2,...,bm)

ωP,R(Q)

= −GC0,0,2
2n,P,R(x),
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and GSC1,0,2
1,P,R(x) = 1. Then by (3.29), we have

GSC0,0,2
1,P,R(x) = 1

GSC0,0,2
3,P,R(x) = −1

GSC0,0,2
5,P,R(x) = 1

GSC0,0,2
7,P,R(x) = −1− x

GSC0,0,2
9,P,R(x) = 1 + 7x− x2

GSC0,0,2
11,P,R(x) = −1− 22x+ 10x2 − x3

GSC0,0,2
13,P,R(x) = 1 + 50x− 2x2 + 14x3 − x4

GSC0,0,2
15,P,R(x) = −1− 95x− 299x2 + 86x3 + 19x4 − x5

GSC0,0,2
17,P,R(x) = 1 + 161x+ 1796x2 − 1705x3 + 377x4 + 25x5 − x6

· · · (3.31)

Then replacing GC0,0,2
2n,P,R(x−1) and GSC1,0,2

2n+1,P,R(x−1) in (3.20) by expressions

in (3.29) and (3.31), we have

AP (x, t) = t+
2

3!
t3 +

16

5!
t5 +

266 + 6x

7!
t7 +

7623 + 303x+ 9x2

9!
t9

+
333475 + 19557x+ 695x2 + 10x3

11!
t11 + · · · .

Next we compute GEC0,1,2
2n+1,P,R(x). Suppose Q ∈ GEC0,1,22n+1,P,R has m blocks,

i.e., Q = B1B2 . . . Bm. Bm has to be a block consisting of one element, and for

1 ≤ i ≤ m − 1, each Bi is either order isomorphic to a P -cluster or a single

column. We let GECCol=(b1,...,bm−1,1) to denote the set of generalized end-clusters

such that Col(Bi) = bi. Given Col(Bi) for each 1 ≤ i ≤ m − 1, we can represent

the filling for the set of such generalized end-clusters uniquely by a Hasse diagram.

Since we are assuming that for any block (last(Bi), f irst(Bi+1)) is not in R, there

must be an arrow directed from the top of the last column of Bi to the bottom

of the first column of Bi+1. We let ΓE(b1, . . . , bm−1, 1) denote the Hasse diagram

corresponding to GECCol=(b1,...,bm−1,1). For example, ΓE(3, 1, 1, 5, 1, 1) is pictured in

Figure 3.15.

Similarly, we have
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1B 2B 3B 4B 5B 6B

Figure 3.15: ΓE(3, 1, 1, 5, 1, 1).

LE(ΓE(b1, b2, . . . , 1)) =
m−1∏
i=1

(
bm−i + 2

∑m−1
j=m−i+1 bi

bm−i − 1

)
.

Then

GEC0,1,2
2n+1,P,R(x) =

n∑
m=1

∑
2b1+···+2bm−1+1=2n+1

bi=1 or bi≥3

∑
Q∈GECCol=(b1,...,bm−1,1)

ωP,R(Q) =

n∑
m=1

∑
2b1+···+2bm−1+1=2n+1

bi=1 or bi≥3

(−1)m−1C2bm(x)
m−1∏
i=1

(bm−i + 2
m−1∑

j=m−i+1

bi

bm−i − 1

)
C2bi(x).

Using computer programs, we have

GEC0,1,2
1,P,R(x) = 1

GEC0,1,2
3,P,R(x) = −1

GEC0,1,2
5,P,R(x) = 1

GEC0,1,2
7,P,R(x) = −1− 3x

GEC0,1,2
9,P,R(x) = 1 + 13x− 4x2

GEC0,1,2
11,P,R(x) = −1− 34x+ 19x2 − 5x3

GEC0,1,2
13,P,R(x) = 1 + 70x68x2 + 28x3 − 6x4

GEC0,1,2
15,P,R(x) = −1− 125x− 789x2 + 531x3 + 41x4 − 7x5

GEC0,1,2
17,P,R(x) = 1 + 203x+ 3551x2 − 3973x3 + 2195x4 + 59x5 − 8x6

· · · (3.32)

Finally we shall compute GSEC1,1,2
2n+2,P,R(x). Suppose Q ∈ GSEC

1,1,2
2n+2,P,R has m

blocks, i.e., Q = B1B2 . . . Bm. Because of the definition of generalized start-end

clusters, m ≥ 2. B1 as well as Bm has to be a block consisting of one element, and
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for 2 ≤ i ≤ m− 1, each Bi is either order isomorphic to a P -cluster or a single col-

umn. We let GECCol=(1,b2,...,bm−1,1) to denote the set of generalized start-end-clusters

such that Col(Bi) = bi. Given Col(Bi) for each 2 ≤ i ≤ m − 1, we can represent

the filling for the set of such generalized start-end-clusters uniquely by a Hasse di-

agram. Arrows between blocks should agree with R. We let ΓSE(1, b2, . . . , bm−1, 1)

denote the Hasse diagram corresponding to GSECCol=(1,b2,...,bm−1,1). For example,

ΓSE(1, 3, 1, 1, 5, 1, 1) is pictured in Figure 3.16.

2B 3B 4B 5B 6B1B 7B

Figure 3.16: ΓSE(1, 3, 1, 1, 5, 1, 1).

Comparing Figure 3.15 and 3.16, it is easy to see that

LE(ΓSE(1, b2, . . . , bm−1, 1)) = LE(ΓE(b2, . . . , bm−1, 1)),

and then hence

GSEC1,1,2
2n+2,P,R(x) = −GEC0,1,2

2n+1,P,R(x).

Based on (3.32),

GSEC1,1,2
2,P,R(x) = −1

GSEC1,1,2
4,P,R(x) = 1

GSEC1,1,2
6,P,R(x) = −1

GSEC1,1,2
8,P,R(x) = 1 + 3x

GSEC1,1,2
10,P,R(x) = −1− 13x+ 4x2

GSEC1,1,2
12,P,R(x) = 1 + 34x− 19x2 + 5x3

GSEC1,1,2
14,P,R(x) = −1− 70x− 68x2 − 28x3 + 6x4

GSEC1,1,2
16,P,R(x) = 1 + 125x+ 789x2 − 531x3 − 41x4 + 7x5

GSEC1,1,2
18,P,R(x) = −1− 203x− 3551x2 + 3973x3 − 2195x4 − 59x5 + 8x6

· · · (3.33)
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Then substituting GC0,0,2
2n,P,R(x − 1), GSC1,0,2

2n+1,P,R(x − 1), GEC0,1,2
2n+1,P,R(x − 1)

and GSEC1,1,2
2n+2,P,R(x−1) in (3.20) by expressions obtained in (3.29), (3.31), (3.32)

and (3.33), we have

BP (x, t) =
1

2!
t2 +

5

4!
t4 +

61

6!
t6 +

1358 + 27x

8!
t8 +

48806 + 1611x+ 86x23

10!
t10

+
2561283 + 133803x+ 6734x2 + 65x3

12!
t12 + · · · .

Adding AP (x, t) and BP (x, t), we can get distributions of pattern 123654 in

down-up permutations,

t+
1

2!
t2 +

2

3!
t3 +

5

4!
t4 +

16

5!
t5 +

61

6!
t6 +

266 + 6x

7!
t7 +

1358 + 27x

8!
t8

+
7623 + 303x+ 9x2

9!
t9 +

48806 + 1611x+ 86x2

10!
t10 + · · · .

The contents of Chapter 3 are currently under preparation for submission.

Some portion is co-authored with J. B. Remmel. The dissertation author is the

author of this material.



Chapter 4

Joint Clusters and Generalized

Joint Clusters

In this chapter, we extend the notions P -clusters and generalized P -clusters for

a single pattern P to joint cluster and generalized joint clusters for a sequence of

patterns P1, . . . , Pm. Our goal here is different from finding generating functions for

the number of Γ-matches where Γ = {P1, . . . , Pm}. We are interested in computing

generating functions where the variable xi keeps track of the number of Pi-matches

for each i. For example, if we have patterns P1, P2, · · · , Pm, then the multi-variate

generating function for these patterns in P0,0,k
kn is

1 +
∑
n≥1

tkn

(kn)!

∑
F∈P0,0,k

kn

m∏
i=1

x
Pi-mch(F )
i .

Similarly, if we are given some binary relation R on a pairs of columns, then the

multi-variate generating function for these patterns in P0,0,k
kn,R is

1 +
∑
n≥1

tkn

(kn)!

∑
F∈P0,0,k

kn,R

m∏
i=1

x
Pi-mch(F )
i .

In Section 4.1, we state and prove theorems for joint clusters and generalized

joint clusters. In Section 4.2, several examples are given with details to show

how joint and generalized joint clusters work. In Section 4.3, we discuss joint and

generalized joint clusters for fillings of Di,j,k
i+kn+j.

95
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4.1 Main theorems

For convenience, we use pattern matching in P0,0,k
nk and P0,0,k

nk,R to state and prove

theorems. But obviously, the idea of joint and generalized joint clusters still hold

for WI0,0,kkn , SI0,0,kkn and other fillings.

We start by adapting the notion of marked matches for multiple patterns.

Previously, we let MSn,τ denote the set of permutations in Sn where we have

marked some of the τ -matches in the permutation by placing an ‘x’ at the start

of τ -match. Similarly, we let MSn,(u1,u2,··· ,um) denote the set of permutations in

Sn where we have marked some of the um-matches in the permutation by placing

an ‘xm’ at the start of um-match. For a permutation σ, the number of distinct

(u1, u2, ·, um)-marked σ is
∏m

i=1 2
ui-mch(σ). For example, suppose u1 = 1 2 3 and

u2 = 3 2 1, for σ = 6 1 3 7 2 8 5 4 9, there is a u1-match at position 2 and a

u2-match at position 6, there for there are total 4 marked permutations, pictured

in Figure 4.1.

6 1 3 7 2 8 5 4 9

2x

6 1 3 7 2 8 5 4 9

1x 2x

6 1 3 7 2 8 5 4 9 6 1 3 7 2 8 5 4 9

1x

Figure 4.1: (u1, u2)-marked σ.

Note that it is also possible that a position has more than one label. Suppose

u3 = 1 2, two examples inMS9,(u1,u2,u3) are pictured in Figure 4.2.

6 1 3 7 2 8 5 4 9

1x 2x

6 1 3 7 2 8 5 4 9

1x 2x
3x

3x 3x
3x

Figure 4.2: Two examples inMS9,(u1,u2,u3)

A joint (u1, u2, · · · , um)-cluster is an element σ = σ1 . . . σn ∈MSn,(u1,u2,··· ,um)

such that

1. every σi is an element contained in a marked uj-match in σ, for some 1 ≤
j ≤ m and
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2. any two consecutive marked matches share at least one element.

Since Sn is actually P0,0,1
n , it is easy to generalize this definition to deal with

elements of P0,0,k
nk . Suppose that we are given patterns P1, P2, · · · , Pm. For any

n ≥ 1, we let MP0,0,k
kn,(P1,P2,··· ,Pm) denote the set of all fillings F ∈ P0,0,k

nk where we

have marked some of the Pj-matches in F by placing an ‘xj’ on top of the column

that starts a Pj-match in F . We use mPj
(F ) to denote the number of marked

Pj-matches in F .

Then a joint (P1, P2, · · · , Pm)-cluster is an element F ∈ MP0,0,k
kn,(P1,P2,··· ,Pm)

such that

1. every column of F is contained in a marked Pj-match in F , for some j,

1 ≤ j ≤ m and

2. any two consecutive marked matches share at least one column.

For convenience, we shall refer to joint (P1, · · · , Pm)-clusters as just (P1, · · · , Pm)-

clusters.

Let CM0,0,k
kn,(P1,··· ,Pm) denote the set of all (P1, · · · , Pm)-clusters inMP0,0,k

kn,(P1,··· ,Pm).

For each n ≥ 2, we define the multi-variate cluster polynomial

C0,0,k
kn,(P1,··· ,Pm)(x1, · · · , xm) :=

∑
F∈CM0,0,k

kn,(P1,··· ,Pm)

m∏
i=1

x
mPi

(F )

i , (4.1)

where mP (F ) is the number of marked P -matches in F . By convention, we let

C0,0,k
k,(P1,··· ,Pm)(x1, · · · , xm) = 1.

Then we have the multi-variate version of Theorem 2.2.

Theorem 4.1. Let Pi ∈ P0,0,k
jik

where ji ≥ 2 and 1 ≤ i ≤ m. Then

1 +
∑
n≥1

tkn

kn!

∑
F∈P0,0,k

kn

m∏
i=1

x
Pi-mch(F )
i =

1

1−
∑

n≥1
tkn

(kn)!
C0,0,k

kn,(P1,P2,··· ,Pm)(x1 − 1, x2 − 1, · · · , xm − 1)
. (4.2)
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Proof. The strategy is similar to the proof of Theorem 2.2. Replace x by x+ 1 in

(4.2). Then the left-hand side of (4.2) is the generating function of mPi
(F ) over

all F ∈MP0,0,k
kn,(P1,··· ,Pm). That is, it easy to see that

1 +
∑
n≥1

tn

kn!

∑
F∈P0,0,k

kn

m∏
i=1

(xi + 1)Pi-mch(F ) =

1 +
∑
n≥1

tn

kn!

∑
F∈MP0,0,k

kn,(P1,··· ,Pm)

m∏
i=1

x
mPi

(F )

i . (4.3)

Thus we must show that

1 +
∑
n≥1

tn

kn!

∑
F∈MP0,0,k

kn,(P1,··· ,Pm)

m∏
i=1

x
mPi

(F )

i =

1

1−
∑

n≥1
tkn

(kn)!
C0,0,k

kn,(P1,P2,··· ,Pm)(x1, x2, · · · , xm)
. (4.4)

Rewriting the right-hand side of (4.4) as

1

1−
∑

n≥1
tkn

(kn)!
C0,0,k

kn,(P1,··· ,Pm)(x1, · · · , xm)
=

1 +
∑
h≥1

(∑
n≥1

tkn

(kn)!
C0,0,k

kn,(P1,··· ,Pm)(x1, · · · , xm)

)h

and taking coefficients of tks

(ks)!
on both sides of (4.4) where n ≥ 1, we see that we

must show that ∑
F∈MP0,0,k

sn,(P1,··· ,Pm)

m∏
i=1

x
mPi

(F )

i

=
∞∑
h=1

(
∞∑
n=1

tkn

(kn)!
C0,0,k

kn,(P1,··· ,Pm)(x1, · · · , xm)

)h
∣∣∣∣∣∣

tks

(ks)!

=
s∑

h=1

(
s∑

n=1

tkn

(kn)!
C0,0,k

kn,(P1,··· ,Pm)(x1, · · · , xm)

)h
∣∣∣∣∣∣

tks

(ks)!

=
s∑

h=1

∑
a1+···+ah=s

ai≥1

(
kn

ka1, . . . , kah

) h∏
j=1

C0,0,k
kaj ,(P1,··· ,Pm)(x1, · · · , xm). (4.5)
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The right-hand side of (4.5) is now easy to interpret. First we pick an h such

that 1 ≤ h ≤ s. Then we pick a1, . . . , ah ≥ 1 such that a1 + a2 + · · · + ah = s.

Next the multinomial coefficient
(

kn
ka1,...,kah

)
allows us to pick sets S1, . . . , Sh which

partition {1, . . . , ks} such that |Si| = kai for i = 1, . . . , h. Finally the product∏h
i=1 C

0,0,k
kai,(P1,··· ,Pm)(x1, · · · , xm) allows us to pick clusters Ci ∈ CM0,0,k

kai,(P1,··· ,Pm) for

i = 1, . . . , h with weight
∏h

i=1

∏m
j=1 x

mPj
(Ci)

j . Note that in the cases where ai = 1,

we will interpret Ci as just a column of height k filled with the numbers 1, . . . , k

which is increasing, reading from bottom to top.

={1,3,5,8,10,15,18,24,27,30}1S 1C=
1 2 3 4 5 

10 9 8 7 6 

={17,19}2S 2C

={4,7,12,13,20,21}3S

={25,26}5S 5C=
1 

2 

1x 1x2x

1x 1x2x 1x

=
1 

2 

3C=
1 2 3 

6 5 4 

4C

1x

={2,6,9,11,14,16,22,23,28,29}4S =
1 2 3 4 5 

10 9 8 7 6 

1 3 5 8 10 17 4 7 12 2 6 9 11 14 25 

22 16 26 29 28 23 21 20 13 30 27 24 18 15 19 

2x 2x
1x

2x 2x
1x

Figure 4.3: Construction for the right-hand side of (4.5).

For example, suppose that k = 2, P1 =
6 5 4

1 2 3
and P2 =

8 7 6 5

1 2 3 4
. Then
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in Figure 4.3, we have pictured S1, S2, S3, S4, S5 which partition {1, . . . , 30} and

corresponding clusters C1, . . . , C5. Then for each i = 1, . . . ,m, we create a cluster

Di which results by replacing the j in Ci by the jth element of Si. If we concatenate

D1 . . . Dm together, then we will obtain an element of Q ∈ MP0,0,k
kn,(P1,P2)

. It is

easy to see that one can recover D1, . . . , D5 from Q. That is, given an element

F ∈MP0,0,k
kn,(P1,P2)

, we say that a marked subsequence F [i, i+1, . . . , j] is a maximal

(P1, P2)-subcluster of F if red(F [i, i + 1, . . . , j]) is a (P1, P2)-cluster and F [i, i +

1, . . . , j] is not properly contained in a marked subsequence F [a, a+ 1, . . . , b] such

that red(F [a, a+1, . . . , b]) is a (P1, P2)-cluster. In the special case where i = j and

the column F [i] is not marked, then we say that F [i] is maximal (P1, P2)-subcluster

if F [i] is not properly contained in a marked subsequence F [a, a + 1, . . . , b] such

that red(F [a, a+ 1, . . . , b]) is a (P1, P2)-cluster. Thus D1, . . . , D5 are the maximal

(P1, P2)-subclusters of Q. Of course, once we have recovered D1, . . . , D5, we can

recover the sets S1, . . . , S5 and the (P1, P2)-clusters C1, . . . , C5.

In this manner, we can see that the right-hand side of (4.5) just classifies the

elements ofMP0,0,k
kn,(P1,··· ,Pm) by its maximal (P1, · · · , Pm)-subclusters which proves

our theorem.

Next suppose that we are given a binary relation R between k × 1 arrays of

integers and patterns P1, P2, · · · , Pm where Pi ∈ P0,0,k
kji

, 1 ≤ i ≤ m. Given our

definition of joint clusters, we can easily modify the definition of generalized P -

clusters given in Definition 2.3 to generalized joint (P1, . . . , Pm)-clusters.

Definition 4.2. Given patterns P1, P2, · · · , Pm, we say that Q ∈ MP0,0,k
kn,(P1,··· ,Pm)

is a generalized joint (P1, · · · , Pm),R-cluster if we can write Q = B1B2 · · ·Bh

where Bi are blocks of consecutive columns in Q such that

1. either Bi is a single column or Bi consists of r-columns where r ≥ 2, red(Bi)

is a (P1, · · · , Pm)-cluster in MP0,0,k
kn,(P1,··· ,Pm), and any pair of consecutive

columns in Bi are in R and

2. for 1 ≤ i ≤ h − 1, the pair (last(Bi), first(Bi+1)) is not in R where for

any j, last(Bj) is the right-most column of Bj and first(Bj) is the left-most

column of Bj.
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For convienence, a generalized joint (P1, · · · , Pm),R-clusters will be refered to

a just a generalized (P1, · · · , Pm)-cluster.

Let GC0,0,kkn,(P1,··· ,Pm),R denote the set of all generalized (P1, · · · , Pm),R-clusters

which have n columns of height k. For example, suppose that R is the relation

that holds for a pair of columns (C,D) if and only if the top element of column

C is greater than the bottom element of column D, P1 =
6 5 4

1 2 3
and P2 =

8 7 6 5

1 2 3 4
. Then in Figure 4.4, we have pictured a generalized (P1, P2)-cluster

with 5 blocks B1, B2, B3, B4, B5.

1B 2B 3B 4B 5B

2x 1x
2x

1x
2x

1x

1 2 3 8 5 7 9 10 11 16 17 18 19 20 23 

25 21 24 28 27 26 29 22 12 30 15 14 13 6 8 

1x 1x

Figure 4.4: A generalized (P1, P2)-cluster.

Given Q = B1B2 . . . Bh ∈ GC0,0,kkn,(P1,··· ,Pm),R , we define the weight of Bi,

ω(P1,··· ,Pm),R(Bi) :=

1, if Col(Bi) = 1,∏m
j=1 x

mPj
(red(Bi))

j , if Col(Bi) ≥ 2,

where Col(Bi) is the number of columns in Bi. Then we define the weight of Q,

ω(P1,··· ,Pm),R(Q), to be (−1)h−1
∏h

i=1 ω(P1,··· ,Pm),R(Bi). We let

GC0,0,k
kn,(P1,··· ,Pm),R(x1, · · · , xm) :=

∑
Q∈GC0,0,k

kn,(P1,··· ,Pm),R

ω(P1,··· ,Pm),R(Q), (4.6)

which is called generalized joint cluster polynomial.

Then we have the following theorem which is the multi-variate version of The-

orem 2.4.

Theorem 4.3. Let R be a binary relation on pairs of columns (C,D) of height

k which are filled with integers which are increasing from bottom to top. Given
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patterns P1, P2, · · · , Pm where Pi ∈ P0,0,k
kji

, ji ≥ 2, for 1 ≤ i ≤ m, then

1 +
∑
n≥1

tkn

(kn)!

∑
F∈P0,0,k

kn,R

m∏
i=1

x
Pi-mch(F )
i =

1

1−
∑

n≥1
tkn

(kn)!
GC0,0,k

kn,(P1,··· ,Pm),R(x1 − 1, · · · , xm − 1)
.

It is quite straightforward to modify the proof of Theorem 2.4 to prove theorem

Theorem 4.3. Thus we shall not give the details.

Moreover, it is quite easy to extend Theorem 4.1 and Theorem 4.3 to consider

multiple sets of patterns. In other words, suppose we have Γ1,Γ2, · · · ,Γm where

Γi itself is a set of patterns, then

1 +
∑
n≥1

tkn

kn!

∑
F∈P0,0,k

kn

m∏
i=1

x
Γi-mch(F )
i =

1

1−
∑

n≥1
tkn

(kn)!
C0,0,k

kn,(Γ1,··· ,Γm)(x1 − 1, · · · , xm − 1)
,

and given some binary relation R, we have

1 +
∑
n≥1

tkn

(kn)!

∑
F∈P0,0,k

kn,R

m∏
i=1

x
Γi-mch(F )
i =

1

1−
∑

n≥1
tkn

(kn)!
GC0,0,k

kn,(Γ1,··· ,Γm),R(x1 − 1, · · · , xm − 1)
.

By modifying Equation (4.1) and (4.6) accordingly, one can easily figure out the

definitions of C0,0,k
kn,(Γ1,··· ,Γm)(x1, · · · , xm) and GC0,0,k

kn,(Γ1,··· ,Γm),R(x1, · · · , xm).

It is worth mentioning that joint clusters and generalized joint clusters still

hold for other fillings of D0,0,k
kn and even Di,j,k

i+kn+j. Discussion about joint clusters

and generalized joint clusters for Di,j,k
i+kn+j can be found in Section 4.3.

So far we only discussed joint and generalized joint clusters for reduced pattern

matching. One can convince themselves that Theorem 4.1 and Theorem 4.3 still

hold for joint exact patterns. With some modifications, the formulas in Theorem

4.1 and Theorem 4.3 still work even though some of the patterns are reduced

patterns and some are exact patterns.
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4.2 Examples

In this section, we take colored permutations and integer compositions as ex-

amples to further illustrate joint clusters and generalized joint clusters.

4.2.1 Bi-runs in restricted colored permutations

A k-colored permutation of length n can be thought as an element in wreath

product Ck ≀ Sn of cyclic group Ck and symmetric group Sn. We will use Ck ≀ Sn
to denote the set of k-colored permutations of length n. For convenience, we use

a two-row array to represent a colored permutation where the base row stands

for the permutation and the top row stands for the corresponding colors. Thus a

colored permutation in Ck ≀ Sn can be thought of as a special filling of D0,0,2
2n . In

Figure 4.5, a 5-colored permutation of length 9 is pictured as an example.

2 5 9 1 3 7 4

1 2 1 5 2 4 1

6 8

3 4

Figure 4.5: An element in C5 ≀ S9

Minimal overlapping patterns in colored permutations has been studied by Du-

ane and Remmel in [14] using maximum packings which is based on ring homomor-

phism method. In this subsection, we would like to extend to multiple overlapping

patterns for colored permutations and also a class of colored permutations with

specific restrictions.

A run in a permutation or a word is just an consecutive increasing subsequence

of length greater than or equal to 2. The distribution of runs in permutations and

words have been the subject of many papers in the literature. A run of length l

can be thought as a 1 2 · · · l-match in a permuation or a word. In this subsection,

we shall explore the enumeration of bi-runs in colored permutations and restricted

colored permutations.

Definition 4.4. For a colored permutation (σ,w) ∈ Ck ≀Sn, we say there is a bi-run

of length l at position i if
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1. red(σiσi+1 · · ·σi+l−1) = 1 2 3 · · · l and

2. red(wiwi+1 · · ·wi+l−1) = 1 2 3 · · · l.

Throughout this subsection, for the sake of convenience, an l-run is short for a

bi-run of length l. The number of l-runs in colored permutation (σ,w) is denoted

by l-rn(σ,w). As for the 5-colored permutation in Figure 4.5, σ = 2 5 9 1 3 7 4 6 8

and w = 1 2 1 5 2 4 1 3 4. 2-rn(σ,w) = 4 because there are 2-runs at positions 1,

5, 7 and 8. 3-rn(σ,w) = 1 because there is a 3-run at position 7. Clearly, for any

(σ,w) ∈ Ck ≀ Sn, l-rn(σ,w) has to be zero if l > min(k, n).

For colored permutations (σ,w), there is a natural restricted subclass which

consists of the all the colored permutations (σ,w) where w has no consecutive

repeated letters. Thus we shall consider the binary relation R where R holds for

consecutive pairs (σ), wi), (σi+1, wi+1)) if and only if wi ̸= wi+1. The set of all

such restricted colored permutations in Ck ≀ Sn is denoted by Ck ≀ Sn. Actually the

example in Figure 4.5 is also an element in C5 ≀ S9
Our focus is on computing the following two generating functions which count

colored permutations and restricted colored permutations by the number of bi-

runs.

Abi-run,Ck≀S(x2, x3, x4, · · · , xk, t) := 1 +
∑
n≥1

tn

n!

∑
(σ,w)∈Ck≀Sn

k∏
l=2

x
l-rn(σ,w)
l

Abi-run,Ck≀S(x2, x3, x4, · · · , xk, t) := 1 +
∑
n≥1

tn

n!

∑
(σ,w)∈Ck≀Sn

k∏
l=2

x
l-rn(σ,w)
l

It is clear that, in above formulas, the subscript of variable xl is up to k because

for any m > k, m-rn(σ,w) ≡ 0.

Based on Theorem 4.1, we have

Abi-run,Ck≀S(x2, x3, x4, · · · , xk, t) =
1

1− kt−
∑

n≥2
tn

n!
Cn(x2 − 1, x3 − 1, · · · , xk − 1)

,

(4.7)

where Cn(x2, x3, · · · , xk) is the (2-run, 3-run, · · · , k-run)-cluster polynomial, and

by Theorem 4.3,

Abi-run,Ck≀S(x2, x3, x4, · · · , xk, t) =
1

1−
∑

n≥1
tn

n!
GCn(x2 − 1, x3 − 1, · · · , xk − 1)

,

(4.8)
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where GCn(x2, x3, · · · , xk) is the generalized (2-run, 3-run, · · · , k-run)-cluster poly-
nomial. Thus we only need to compute the cluster and generalized cluster polyno-

mials in order to obtain our desired generating functions.

Throughout this subsection, we use k = 4 as our running example. That is, we

want to study joint distributions of 2-runs, 3-runs and 4-runs in C4 ≀ Sn and C4 ≀ S.
In this case, we shall refer to the corresponding clusters and generalized clusters

as bi-run clusters and generalized bi-run clusters.

First let us work on bi-runs enumeration for unrestricted 4-colored permuta-

tions.

Before we could compute bi-run cluster polynomials, we shall figure out the

structure of the bi-run clusters. Because each column in a bi-run cluster has to be

contained in some marked run, the filling of a bi-run cluster of n columns itself has

to be an n-run, but there could be multiple ways to label it. A labeling polynomial

is the sum of weights for different labelings of an n-run. Let Ln(x2, x3, x4) be the

labeling polynomial for an n-run cluster. Clearly, the base row of an n-run must

be unique while there are
(
4
n

)
ways to choose colors. This gives us

Cn(x2, x3, x4) =

(
4

n

)
Ln(x2, x3, x4).

In Figure 4.6, a 3-run (σ,w) = (1 2 3, 1 3 4) is pictured and in order to make

(σ,w) be a cluster, there are 5 ways to label marked runs. Then we can compute

the labeling polynomial L3(x2, x3, x4)

L3(x2, x3, x4) = x3 + x2x3 + x2
2x3 + x2x3 + x2

2 = x2
2 + (x2 + 1)2x3

1 2 3 

1 3 4 

x 3

1 2 3 

1 3 4 

x 3

x 2

1 2 3 

1 3 4 

x 3

x 2
x 2

1 2 3 

1 3 4 

x 3

x 2
x 2

1 2 3 

1 3 4 

x 2 x 2

Figure 4.6: 5 different labelings of a 3-run-cluster in C4 ≀ S3

The bi-run cluster with two columns can have only one label, namely, ‘x2’.

Hence L2(x1, x2, x3) = x2. For a cluster of 3 columns, we have shown that L3 =
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x2
2+(x2+1)2x3 according to Figure 4.6. For a cluster of size 4, we split discussion

into three cases. Case 1 is the case where the first column is contained in a marked

4-run. The labeling polynomial for this case is (x2 + 1)3(x3 + 1)2x4 because there

are at most three marked 2-runs and two marked 3-runs. Case 2 is the case

where the first column is not included in a marked 4-run and the second column

is labeled. This means that the first column has label x3, x2, or both x2 and x3.

Since the second column is labeled with either x2 or x3 or both, the marked second

column will automatically ensure that the remaining marked columns meet the

condition to be a bi-run cluster. Thus the bi-run clusters in case 2 contributes

(x2 + x3 + x2x3)L3(x2, x3, x4) to the labeling polynomial. Case 3 is the case where

the first column is not included in a marked 4-run and the second column has no

label. This means that the first column must be marked with x3 but it could also

be marked with x2 or not. Moreover, the 3 column must be marked with x2. Thus

the bi-run clusters in case 3 contribute x2(x2 + 1)x3 to the labeling polynomial.

Thus,

L4(x2, x3, x4) = (x2 + 1)3(x3 + 1)2x4 + (x2 + x3 + x2x3)L3(x2, x3, x4)

+x2(x2 + 1)x3

= (x2 + x2
2)x3 + (x2 + x3 + x2x3)

(
x2
2 + (1 + x2)

2x3

)
+(1 + x2)

3(1 + x3)
2x4 (4.9)

Then we can compute Cn(x2, x3, x4) for 2 ≤ n ≤ 4 as

C2(x2, x3, x4) =

(
4

2

)
L2(x2, x3, x4) = 6x2

C3(x2, x3, x4) =

(
4

3

)
L3(x2, x3, x4) = 4x2

2 + 4(1 + x2)
2x3

C4(x2, x3, x4) =

(
4

4

)
L4(x2, x3, x4)

= (x2 + x2
2)x3 + (x2 + x3 + x2x3)

(
x2
2 + (1 + x2)

2x3

)
+(1 + x2)

3(1 + x3)
2x4
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Substituting Cn(x2, x3, x4) in Equation (4.7) by above expressions, we have

Abi-run,C4≀S(x2, x3, x4, t) =
1

1−
∑

n≥1
tn

n!
Cn(x2 − 1, x3 − 1, x4 − 1)

=

24
(
24− 96t− 72(x2 − 1)t2 − 16(x2

2x3 − 2x2 + 1)t3

−(3x2 + x3
2x

2
3x4 − 2x2

2x3 − x2
2 − 1)t4

)−1
.

A few initial terms of the expansion are

1 + 4t+
1

2!
(13 + 3x2)t

2 +
1

3!
(244 + 136x2 + 4x2

2x3)t
3

+
1

24
(3031 + 2771x2 + 215x2

2 + 126x2
2x3 + x3

2x
2
3x4)t

4 + · · ·

By manipulating the explicit generating function above, we could derive various

results, some of which are not known before. For example,

Abi-run,C4≀S(1, 0, 0, t)

= − 24

t4 − 16t3 + 96t− 24

= 1 + 4t+
32

2!
t2 +

380

3!
t3 +

6017

4!
t4 +

119080

5!
t5 +

2828000

6!
t6 +

78354920

7!
t7

+
2481104710

8!
t8 +

88384565640

9!
t9 + · · · ,

which counts the number of 4-colored permutations that don’t have a 3-run.

Abi-run,C4≀S(1, 1, 0, t)− Abi-run,C4≀S(1, 0, 0, t)

= 24

(
1

t4 − 96t+ 24
+

1

t4 − 16t3 + 96t− 24

)
=

4

3!
t3 +

126

4!
t4 +

3760

5!
t5 +

119680

6!
t6 +

4166680

7!
t7 +

159156480

8!
t8

+
6649359360

9!
t9 + · · · ,

which counts the number of 4-colored permutations that have at least one 3-run

but don’t have a 4-run.

∂Abi-run,C4≀S(x2, 1, 1, t)

∂x2

∣∣∣∣
x2=1

=
3t2

(1− 4t)2

=
6

2!
t2 +

144

3!
t3 +

3456

4!
t4 +

92160

5!
t5 +

2764800

6!
t6 +

92897280

7!
t7

+
3468165120

8!
t8 + · · · ,
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which counts the total number of 2-runs in all the 4-colored permutations of length

n. It is not hard to see that the coefficient of tn

n!
is equal to 3(n−1) ·4n−2 ·n!, which

implies that the average number of 2-runs in a random 4-colored permutation is

3(n− 1) · 4n−2 · n!
|C4 ≀ Sn|

=
3(n− 1) · 4n−2 · n!

4n · n!
=

3n− 3

16
.

Next we shall work on joint distributions of bi-runs in restricted 4-colored

permutations C4 ≀ Sn. Here we restrict that adjacent colors has to be different, i.e.,

for any (σ,w) ∈ C4 ≀ Sn, wi ̸= wi+1 for 1 ≤ i ≤ n− 1.

According to Equation (4.8), we only need to compute GCn(x2, x3, x4). Instead

of computing GCn(x2, x3, x4) for different n directly, we divide generalized bi-run

clusters GCn into several types based on different structures of bi-runs.

First let us review the definition for generalized bi-run clusters of C4 ≀ Sn for

bi-runs. We say (σ,w) ∈ C4 ≀ Sn is a generalized bi-run cluster of size n if (σ,w)

can be written as (σ,w) = B1B2 · · ·Bl where

1. Bi is either a single column or a bi-run cluster and

2. the last element of the color row (top row) in block Bi is equal to the first

color element in block Bi+1 for 1 ≤ i < l.

From previous discussion with respect to bi-runs in C4 ≀ Sn, we know there are at

most 3 2-runs in a generalized bi-run cluster. Then we have seven different types

of generalized bi-run clusters based on choices on bi-run clusters.

1. Type 1 generalized bi-run clusters: In this type of generalized bi-run clusters,

there are only singleton blocks, that is, each block contains only one column.

The set of such generalized bi-run clusters of columns n is denoted by GC1n,
for n ≥ 1. An example in GC14 is pictured in Figure 4.7, where σ = σ1σ2σ3σ4

is an arbitrary element in S4 and 1 ≤ i ≤ 4.

2. Type 2 generalized bi-run clusters: This type of generalized bi-run clusters

contains exactly one block of size 2. The set of such generalized bi-run

clusters of n columns is denoted by GC2n, for n ≥ 2. An example in GC25
is pictured in Figure 4.8, omitting labelings, where σ = σ1σ2σ3σ4σ5 is an

arbitrary element in S5 satisfying σ3 < σ4, and 1 ≤ i < j ≤ 4.
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i i i i 

σ1 σ2 σ3 σ4

Figure 4.7: An example in GC14, where 1 ≤ i ≤ 4.

i i j 

σ1 σ2 σ5σ3 σ4

i j<

<

Figure 4.8: An example in GC25, omitting labelings.

3. Type 3 generalized bi-run clusters: this type of generalized bi-run clusters

contains exactly one block of size 3. The set of such generalized bi-run

clusters of n columns is denoted by GC3n, for n ≥ 3. An example in GC36
is pictured in Figure 4.9, omitting labelings, where σ = σ1σ2σ3σ4σ5σ6 is an

arbitrary element in S6 satisfying σ2 < σ3 < σ4, and 1 ≤ i < j < k ≤ 4.

i 
1 5 62 3

i <
<

j
4

<

<

k k k

Figure 4.9: An example in GC36, omitting labelings.

4. Type 4 generalized bi-run clusters: this type of generalized bi-run clusters

contains exactly two blocks of size 2. The set of such generalized bi-run

clusters of n columns is denoted by GC4n, for n ≥ 3. An example in GC47 is

pictured in Figure 4.10, omitting labelings, where σ = σ1σ2σ3σ4σ5σ6σ7 is an

arbitrary element in S7 satisfying σ3 < σ4, σ6 < σ7, and 1 ≤ i < j < k ≤ 4.

5. Type 5 generalized bi-run clusters: this type of generalized bi-run clusters

contains exactly one block of size 4. The set of such generalized bi-run
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i i j 

1 2 53 4

i j<

< 6 7

k<
<

j

Figure 4.10: An example in GC47, omitting labelings.

clusters of n columns is denoted by GC5n, for n ≥ 4. An example in GC57 is

pictured in Figure 4.12, omitting labelings, where σ = σ1σ2σ3σ4σ5σ6σ7 is an

arbitrary element in S7 satisfying σ3 < σ4 < σ5 < σ6.

2 3 4 1 

σ3 σ4< σ5< σ6< σ7

4 

σ1 σ2

1 1 

Figure 4.11: An example in GC57, omitting labelings.

6. Type 6 generalized bi-run clusters: this type of generalized bi-run clusters

contains exactly three blocks of size 2. The set of such generalized bi-run

clusters of n columns is denoted by GC6n, for n ≥ 6. An example in GC610 is pic-
tured in Figure 4.12, omitting labelings, where σ = σ1σ2σ3σ4σ5σ6σ7σ8σ9σ10

is an arbitrary element in S10 satisfying σ3 < σ4, σ6 < σ7 and σ8 < σ9.

σ1 σ2 σ5σ3 σ4< σ6 σ7< σ8 σ9<

2 3 1 2 2 1 1 3 4 

σ10

4 

Figure 4.12: An example in GC610, omitting labelings.

7. Type 7 generalized bi-run clusters: this type of generalized bi-run clusters

contains exactly one block of size 2 and exactly one block of size 3. Note

that we didn’t specify the order of the 2-column block and 3-column block,
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which means we need take two possibilities into account where one is that

2-run is to left of the 3-run and the other possibility is that 2-run is to the

right of the 3-run. The set of such generalized bi-run clusters of size n is

denoted by GC7n, for n ≥ 5. An example in GC79 is pictured in Figure 4.13,

omitting labelings, where σ = σ1σ2σ3σ4σ5σ6σ7σ8σ9 is an arbitrary element

in S9 satisfying σ3 < σ4, σ6 < σ7 < σ8.

σ1 σ2 σ5σ3 σ4<

1 2 2 1 1 

σ9

4 

σ6 σ7< σ8<

2 3 4 

Figure 4.13: An example in GC79, omitting labelings.

Then we defined the corresponding generalized joint bi-run clusters polynomials

are defined as follows,

GCJ
n(x2, x3, x4) :=

∑
(σ,w)∈GCJ

n

(−1)B(σ,w)−1 x
m2-rn(σ,w)
2 x

m3-rn(σ,w)
3 x

m4-rn(σ,w)
4 ,

GCJ(x2, x3, x4, t) :=
∑
n≥1

tn

n!
GCJ

n(x2, x3, x4),

where J ∈ {1, 2, 3, 4, 5, 6, 7}, B(σ,w) is the number of blocks in (σ,w) andml-rn(σ,w)

denotes the number of marked l-runs in (σ,w). Clearly, GCJn are disjoint sets, i.e.,

GCn =
⊎

J∈{1,2,··· ,7}

GCJn

and then

GCn(x2, x3, x4) =
∑

J∈{1,2,··· ,7}

GCJ
n(x2, x3, x4)

Then we shall discuss GCJn and compute GCJ
n for each J.

For any arbitrary (σ,w) ∈ GC1n, there are no bi-runs because w1 = w2 = · · · =
wn and σ could be any permutation in Sn. There are 4n! Type 1 generalized bi-run

clusters of size n and then we have

GC1
n(x2, x3, x4) =

∑
(σ,w)∈GCJ

n

(−1)B(σ,w)−1x0
2x

0
3x

0
4 = 4(−1)n−1n!,
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and

GC1(x2, x3, x4, t) =
∑
n≥1

tn

n!
GC1

n(x2, x3, x4) = −4
∑
n≥1

(−t)n =
4t

1 + t
.

For any arbitrary (σ,w) ∈ GC2n, there are exactly one 2-run which has to be

marked here, and no other bi-runs. Apparently, there are n − 1 blocks in (σ,w),

which means we have n−1 choices for the position of the 2-run. We have
(
4
2

)
ways

to choose colors. The permutation could be arbitrary except for the two elements

in the 2-run where the two elements have to be increasing. Therefore, there are

(n− 1)
(
4
2

)(
n
2

)
(n− 2)! Type 2 generalized bi-run clusters of size n, which implies

GC2
n(x2, x3, x4) =

∑
(σ,w)∈GC2

n

(−1)B(σ,w)−1x1
2x

0
3x

0
4 = 3(−1)n−2(n− 1)n!x2.

Then

GC2(x2, x3, x4, t) =
∑
n≥2

tn

n!
GC2

n(x2, x3, x4)

=
∑
n≥2

tn

n!
3(−1)n(n− 1)n!x2

= 3x2t
∑
n≥1

n(−t)n

=
3x2t

2

(1 + t)2
.

For any arbitrary (σ,w) ∈ GC3n, there are exactly one 3-run and no other bi-

runs. Apparently, there are n − 2 blocks in (σ,w), which means we have n − 2

choices for the position of the 3-run. We have
(
4
3

)
ways to choose colors. The

permutation could be arbitrary except for the three elements in the 3-run where

the three numbers have to be increasing. Therefore, there are (n−2)
(
4
3

)(
n
3

)
(n−3)!

Type 3 generalized bi-run clusters of size n. Because there are multiple ways to

mark bi-runs in a 3-run, which is given by L3(x2, x3, x4), which implies

GC3
n(x2, x3, x4) = 4(−1)n−3(n− 2)

(
n

3

)
(n− 3)!L3(x2, x3, x4)

=
2

3
(−1)n−3(n− 2)n!L3(x2, x3, x4).
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Then

GC3(x2, x3, x4, t) =
∑
n≥3

tn

n!
GC3

n(x2, x3, x4)

= L3(x2, x3, x4)
∑
n≥3

tn

n!

2

3
(−1)n−3(n− 2)n!

= −2

3
L3(x2, x3, x4)

∑
n≥3

(n− 2)(−t)n

=
2 L3(x2, x3, x4) t

3

3(1 + t)2

=
2 (x2

2 + (x2 + 1)2x3) t
3

3(1 + t)2
.

For any arbitrary (σ,w) ∈ GC4n, there are exactly two blocks of size 2 and no

other bi-runs. Apparently, there are n− 2 blocks in (σ,w), which means we have(
n−2
2

)
choices for the position of the 2-runs. We have

(
4
3

)
ways to choose colors.

The permutation could be arbitrary except for the elements in the w-run where

the numbers have to be increasing. Therefore, there are
(
n−2
2

)(
4
3

)(
n
2

)(
n−2
2

)
(n − 4)!

Type 4 generalized bi-run clusters of size n. Because the two 2-runs have to be

labeled with ‘x2’, which implies

GC4
n(x2, x3, x4) = 4(−1)n−3

(
n− 2

2

)(
n

2

)(
n− 2

2

)
(n− 4)!x2

2

= (−1)n−3

(
n− 2

2

)
n! x2

2.

Then

GC4(x2, x3, x4, t) =
∑
n≥4

tn

n!
GC4

n(x2, x3, x4)

= x2
2

∑
n≥4

(−1)n−3

(
n− 2

2

)
tn

= −x2
2

∑
n≥4

(
n− 2

2

)
(−t)n

= − x2
2t

4

(1 + t)3
.

For any arbitrary (σ,w) ∈ GC5n, there are exactly one block of 4 columns.

Apparently, there are n − 3 blocks in (σ,w), which means we have n − 3 choices
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for the position of the 4-run. Since all colors must be used in Type 5 generalized

bi-run clusters, we have only 1 ways to choose colors. The permutation could be

arbitrary except for the four elements in the 4-run where the four numbers have

to be increasing. Therefore, there are (n− 3)
(
n
4

)
(n− 4)! Type 5 generalized bi-run

clusters of size n. Because there are multiple ways to label marked bi-runs in a

4-run, which is given by L4(x2, x3, x4), which implies

GC5
n(x2, x3, x4) = 4(−1)n−4(n− 3)

(
n

4

)
(n− 4)! L4(x2, x3, x4)

=
1

24
(−1)n(n− 3)n! L4(x2, x3, x4).

Then

GC5(x2, x3, x4, t) =
∑
n≥4

tn

n!
GC5

n(x2, x3, x4)

=
1

24
L4(x2, x3, x4)

∑
n≥4

(n− 3)(−t)n

= −−t
3

3
L4(x2, x3, x4)

∑
n≥1

n(−t)n

=
L4(x2, x3, x4) t

4

24(1 + t)2
,

where L4(x2, x3, x4) is given by Equation (4.9).

For any arbitrary (σ,w) ∈ GC6n, there are exactly three blocks of 2 columns and

no other bi-runs. Apparently, there are n − 3 blocks in (σ,w), which means we

have
(
n−3
3

)
choices for the positions of the three 2-runs. Since all colors must be

used in Type 6 generalized bi-run clusters, we have only 1 ways to choose colors.

The permutation could be arbitrary except for the four elements in the 2-runs

where the numbers have to be increasing. Therefore, there are
(
n−3
3

)
n! 1

23
Type 6

generalized bi-run clusters of size n. Because all 2-runs have to be labeled with

‘x2’, which implies

GC6
n(x2, x3, x4) = (−1)n−4

(
n− 3

3

)
n!

1

23
x3
2

=
1

8
(−1)n

(
n− 3

3

)
n! x3

2.
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Then

GC6(x2, x3, x4, t) =
∑
n≥6

tn

n!
GC6

n(x2, x3, x4)

=
x3
2

8

∑
n≥6

(
n− 3

3

)
(−t)n

=
x3
2 t6

8(1 + t)4
.

For any arbitrary (σ,w) ∈ GC7n, there are exactly one block of 2 columns and

one block of three columns and no other blocks containing bi-runs. Apparently,

there are n − 3 blocks in (σ,w), which means we have (n − 3)(n − 4) choices for

the positions of the 2-column block and 3-column block. Since all colors must be

used in Type 7 generalized bi-run clusters, we have only 1 ways to choose colors.

The permutation could be arbitrary except for the elements in the bi-runs where

the numbers have to be increasing. Therefore, there are 1
2!

1
3!
(n− 3)(n− 4)n! Type

7 generalized bi-run clusters of size n. Because a 2-run has to be labeled with ‘x2’

and a 3-run has labeling polynomial L3(x2, x3, x4), which implies

GC7
n(x2, x3, x4) = (−1)n−4 1

2!

1

3!
(n− 3)(n− 4)n!x2L3(x2, x3, x4)

=
1

12
(−1)n(n− 3)(n− 4)n! x2L3(x2, x3, x4).

Then

GC7(x2, x3, x4, t) =
∑
n≥5

tn

n!
GC7

n(x2, x3, x4)

=
x2L3(x2, x3, x4)

12

∑
n≥5

(n− 3)(n− 4)(−t)n

= −x2L3(x2, x3, x4) t
5

6(1 + t)3

= −(x3
2 + x2(x2 + 1)2x3) t5

6(1 + t)3
.
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Finally, we obtain the generating function for bi-runs in C4 ≀ Sn as follows,

Abi-run,C4≀S(x2, x3, x4, t)

=
1

1−
∑

n≥1
tn

n!
GCn(x2 − 1, x3 − 1, x4 − 1)

=
1

1−
∑

J∈{1,2,··· ,7} GCJ(x2 − 1, x3 − 1, x4 − 1, t)

=
24(1 + t)4

24(1 + t)4 −GC(x2, x3, x4, t)
,

where

GC(x2, x3, x4, t) = 96t+ (360− 72x2) t
2 +

(
416− 112x2 − 16x2

2x3

)
t3

+
(
161− 59x2 + 25x2

2 − 30x2
2x3 − x3

2x
2
3x4

)
t4

+
(
6− 10x2 + 18x2

2 − 16x2
2x3 + 4x3

2x3 − 2x3
2x

2
3x4

)
t5

+
(
2x2

2 − 3x3
2 − 2x2

2x3 + 4x3
2x3 − x3

2x
2
3x4

)
t6.

A few initial terms in expansion of Abi-run,C4≀S(x2, x3, x4, t) are

1 + 4t+
1

2!
(6x2 + 18)t2 +

1

3!

(
4x2

2x3 + 100x2 + 112
)
t3

+
1

4!

(
x3
2x

2
3x4 + 94x2

2x3 + 191x2
2 + 1371x2 + 935

)
t4

+
1

5!

(
30x3

2x
2
3x4 + 460x3

2x3 + 1640x2
2x3 + 7090x2

2 + 19950x2 + 9710
)
t5 + · · · .

By manipulating the generating functionAbi-run,C4≀S(x2, x3, x4, t) above, we could

derive various results, some of which are not known before. For example,

Abi-run,C4≀S(1, 0, 0, t)

= − 24(t+ 1)2

t4 − 16t3 + 72t2 + 48t− 24

= 1 + 4t+
24

2!
t2 +

212

3!
t3 +

2497

4!
t4 +

36750

5!
t5 +

649130

6!
t6 +

13376160

7!
t7

+
315015190

8!
t8 +

8346046800

9!
t9 + · · · ,

which counts the number of restricted 4-colored permutations that don’t have a
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3-run.

Abi-run,C4≀S(1, 1, 0, t)− Abi-run,C4≀S(1, 0, 0, t)

=
48(t− 8)t3(t+ 1)2

(t4 − 72t2 − 48t+ 24) (t4 − 16t3 + 72t2 + 48t− 24)

=
4

3!
t3 +

94

4!
t4 +

2100

5!
t5 +

49900

6!
t6 +

1297800

7!
t7 +

37023840

8!
t8

+
1155336000

9!
t9 + · · · ,

which counts the number of 4-colored permutations in C4 ≀ Sn that have at least

one 3-run but don’t have a 4-run.

∂Abi-run,C4≀S(x2, 1, 1, t)

∂x2

∣∣∣∣
x2=1

=
3t2

(1− 3t)2

=
6

2!
t2 +

108

3!
t3 +

1944

4!
t4 +

38880

5!
t5 +

874800

6!
t6 +

22044960

8!
t8

+
617258880

8!
t8 + · · · ,

which counts the total number of 2-runs in all the restricted 4-colored permutations

of length n. It is easy to see that the average number of 2-runs in a random colored

permutation in C4 ≀ Sn is

(n− 1) · 3n−1 · n!
|C4 ≀ S|

=
(n− 1) · 3n−1 · n!

4 · 3n−1 · n!
=

n− 1

4
.

Although there are many similar interesting results derived from our generating

function for bi-runs, we will not expand the discussion here.

4.2.2 Exact patterns in Carlitz integer compositions

An integer composition w of n is a sequence of positive integers whose sum

is equal to n, denoted by w � n. The length of w is the number of parts in w,

denoted by Len(w). For example, w = 2 1 1 3 � 7 has four parts. It is well-known

that the number of compositions of n into k parts is(
n− 1

k − 1

)
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and the total number of compositions of n is 2n−1. We denote the set of all the

integer compositions of n by Ln.

Consecutive patterns in integer compositions, as a research topic, has been

studied for a while (see [21] [22] [42]). However, not much work has been done on

pattern enumeration in restricted compositions.

A well-known class of restricted of restricted composition is called Carlitz com-

positions, first introduced by Carlitz [10] and then further studied by Knopfmacher

and Prodinger [36]. A Carlitz composition is a composition where adjacent parts

have to be different. In other words, Carlitz compositions are integer compositions

equipped with a binary relation R which requires adjacent elements to be differ-

ent. For example, w = 2 1 2 is a Carlitz composition of 5 while u = 2 2 1 is not a

Carlitz composition. We use CLn to denote the set of all Carlitz compositions of

n and

CL :=
⊎
n≥1

CLn.

For any w ∈ CL, the number of parts of w is denoted by Len(w) and the sum of

elements in w is denoted by Sum(w). For example, suppose w = 2 3 1 2 ∈ CL,
Len(w) = 4 and Sum(w) = 2 + 3 + 1 + 2 = 8.

This subsection is mainly focused on exact pattern matching in Carlitz composi-

tions. Exact patterns are actually subwords in a integer composition. For example,

suppose the pattern u = 1 2, then in a Carlitz composition w = 2 1 2 3 4 3 1 2 � 18,

there are two exact u-matches, i.e., u-Emch(w) = 2.

In general, we are interested in following generating function

A(u1,··· ,um),CL(x1, · · · , xm, q, t) :=

1 +
∑
w∈CL

(
m∏
i≥1

x
ui-Emch(w)
i

)
qSum(w)tLen(w), (4.10)

where q is used to keep track of sum of the compositions and t is used to keep

track of the number of parts in w.
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One can easily modifiy the proof of Theorem 4.3 to prove that

Au1,··· ,um,P(x1, · · · , xm, q, t) =

1

1−
∑

n≥1EGCn,u1,...,um(x1 − 1, · · · , xm − 1, q)tn
, (4.11)

where EGCn,u1,...,um(x1, x2, · · · , xm, q) is exact generalized joint (u1, u2, · · · , um)-

clusters polynomial of size n in which q is an additional variable we use to keep

track of sum of elements in the corresponding exact generalized (u1, u2, · · · , um)-

cluster.

Before being able to compute polynomial EGCn,u1,...,um(x1, · · · , xm), we must

study the structure of exact (u1, u2, · · · , um)-clusters and exact joint generalized

(u1, u2, · · · , um)-clusters.

Given compositions u1, u2, · · · , um, an exact joint (u1, u2, · · · , um)-cluster of

length n is a composition w consisting of n parts such that

1. each part of w is contained in some marked exact (u1, u2, · · · , um)-matches

and

2. any two consecutive marked exact (u1, u2, · · · , um)-matches share at least

one part.

For our running example in this subsection, we let u1 = 12, u2 = 123 and

u3 = 3. In Figure 4.14, v is a (u1, u2, u3)-cluster of length 2, q is a (u1, u2, u3)-cluster

of length 3 while s is not a (u1, u2, u3)-cluster because marked u1-match and marked

u3-match do not share parts. More precisely, mu1(v) = 1, mu2(v) = mu3(v) = 0

and mu1(q) = mu2(q) = mu3(q) = 1.

x 3

1 2 

x 1

3 

x 3

v q

1 2 3 

x 1

x 2

s

1 2 3 

x 2

Figure 4.14: v and q are clusters while s is not.

Next we consider exact generalized joint (u1, u2, · · · , um)-clusters. A composi-

tion w is called an exact generalized joint (u1, u2, · · · , um)-cluster of length n for
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Carlitz compositions if we can write w = B1B2 · · ·Bj where Bi are blocks such

that

1. Bi is a joint (u1, u2, · · · , um)-cluster or a single element

2. for 1 ≤ i < j, the last part of Bi is equal to the part of Bi+1. In other words,

if we combine blocks Bi and Bi+1, we do not have a Carlitz composition.

As pictured in Figure 4.15, w and r are both exact generalized joint (u1, u2, u3)-

clusters of length 9, where Sum(w) = 14, mu1(w) = 1, and mu2(w) = mu3(w) = 0,

and Sum(r) = 20, mu1(r) = mu2(r) = 1 and mu3(r) = 3. We let GCn denote the

set of all the exact generalized joint (u1, u2, u3)-clusters of length n.

B

1 1 1 2 

x 1

2 

2 B3 B4

1 

B1

w

1 1

B1 B2

3 3 

B4 B5

3 

B6

r

x 3

1 2 3 

x 1

x 2

3 

B7

x 3 x 3

2 2 2 

B3

B5 B6 B7 B8

Figure 4.15: w, r ∈ GC9.

Next, we shall continue using u1 = 1 2, u2 = 1 2 3 and u3 = 3 as the patterns to

demonstrate how we compute the generalized joint cluster polynomials and then

hence obtain the generating functions.

The generalized joint cluster polynomials that we are interested in is

GCn(x1, x2, x3, q) :=
∑

w∈GCn

(−1)B(w)−1 x
mu1 (w)
1 x

mu2 (w)
2 x

mu3 (w)
3 qSum(w),

where B(w) is the number of blocks in w and mui
(w) is the number of exact

matches of ui which are marked with xi.

Regardless of labellings, there are only three types of exact (u1, u2, u3)-clusters,

namely, u1-cluster, u2-cluster and u3-cluster, pictured in Figure 4.16. It is because



121

1 2 3 1 2 3 

u 1-cluster u 2-cluster u 3-cluster

Figure 4.16: Three types of (u1, u2, u3)-clusters

all these three patterns are impossible to be concatenated and then hence each

type of cluster contains exactly one pattern.

Since an exact generalized joint (u1, u2, u3)-cluster consists of singletons and

exact joint (u1, u2, u3)-clusters, there are only four types of exact generalized joint

(u1, u2, u3)-clusters. Note that the restriction of Carlitz compositions is that adja-

cent parts have to be different and therefore, to violate this restriction, we must

last element of any block is equal to the first element of the next block.

• Type 1 exact generalized joint (u1, u2, u3)-clusters are the ones which contain

exactly one u1-cluster, as pictured in Figure 4.17 (omitting labellings). The

set of such exact generalized joint (u1, u2, u3)-clusters of length n is denoted

by GC1n.

1 2 2 2 21 1 1 

Figure 4.17: Type 1 generalized clusters.

• Type 2 exact generalized joint (u1, u2, u3)-clusters are the ones that con-

tain exactly one u2-cluster, as pictured in Figure 4.18 (omitting labellings).

Note that in Type 2 exact generalized joint (u1, u2, u3)-clusters, there could

be marked u3-matches. The set of such exact generalized joint (u1, u2, u3)-

clusters of length n is denoted by GC2n.

• Type 3 exact generalized joint (u1, u2, u3)-clusters are the ones that contain

at least one u3-cluster but no u1-clusters or u2 clusters, as pictured in Figure

4.19. In other words, there is at least one ‘3’ in this type of generalized
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1 2 3 1 1 1 3 3 3 

Figure 4.18: Type 2 generalized clusters.

clusters is marked. The set of such generalized clusters of length n is denoted

by GC3n.

3 3 3 

Figure 4.19: Type 3 generalized clusters.

• Type 4 exact generalized joint (u1, u2, u3)-clusters are the ones that do not

contain any clusters, as pictured in Figure 4.20 where i can be any positive

integer, including 3. When i = 3, not marked ‘3’ with x3 is allowed. The set

of such exact generalized joint (u1, u2, u3)-clusters of length n is denoted by

GC4n.

i i i 

Figure 4.20: Type 4 generalized clusters.

We then set

GCJ
n(x1, x2, x3, q) :=

∑
w∈GCJ

n

(−1)B(w)−1 x
mu1 (w)
1 x

mu2 (w)
2 x

mu3 (w)
3 qSum(w),(4.12)

GCJ(x1, x2, x3, q, t) :=
∑
n≥1

tnGCJ
n(x1, x2, x3, q), (4.13)

where J ∈ {1, 2, 3, 4}. Clearly, GCJn are disjoint sets, i.e.,

GCn =
⊎

J∈{1,2,3,4}

GJn
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and then ∑
n≥1

tnGCn(x1, x2, x3, q) =
∑
n≥1

tn
∑

J∈{1,2,3,4}

GCJ
n(x1, x2, x3, q)

=
∑

J∈{1,2,3,4}

GCJ(x1, x2, x3, q, t).

Next we shall consider GCJn and compute GCJ
n for each J.

For an arbitrary w ∈ GC1n, w contains one ‘1 2’, l1 many singletons of ‘1’ and

l2 many singletons of ‘2’ such that

2 + l1 + l2 = n, for l1 ≥ 0, l2 ≥ 0,

and then

Sum(w) = 1 + 2 + l1 + 2l2 = 3 + l1 + 2l2,

which gives us for n ≥ 2,

GC1
n(x1, x2, x3, q) =

∑
l1+l2=n−2,l1,l2≥0

(−1)l1+l2 x1q
3+l1+2l2

= (−1)n−2x1q
3+n−2

n−2∑
l2=0

ql2

= (−1)nx1
qn+1 − q2n

1− q
.

Thus

GC1(x1, x2, x3, q, t) =
∑
n≥2

tnGC1
n(x1, x2, x3, q)

=
∑
n≥2

tn(−1)nx1
qn+1 − q2n

1− q

=
x1q

3

1− q

(
t2
∑
n≥0

(−qt)n − qt2
∑
n≥0

(−q2t)n
)

=
x1q

3

1− q

(
t2

1 + qt
− qt2

1 + q2t

)
=

x1q
3t2

(1 + qt) (1 + q2t)
. (4.14)
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Now we move to computation of GC2(x1, x2, x3, t). For an arbitrary w ∈ GC2n,
w contains one ‘1 2 3’, l1 many singletons of ‘1’ and l3 many singletons of ‘3’ such

that

3 + l1 + l3 = n, for l1 ≥ 0, l3 ≥ 0,

and then

Sum(w) = 1 + 2 + 3 + l1 + 3l3 = 6 + l1 + 3l3.

Unlike the Type 1 exact generalized joint (u1, u2, u3)-clusters, Typer 2 exact gen-

eralized joint (u1, u2, u3)-clusters contains a block ‘1 2 3’ which could be marked in

several different ways. It is easy to see that 1 must be marked with x2, but then

we can mark 1 with either x2 or not and mark 3 with either x3 or not. THus the

labeling polynomial for u2 is (x1+1)x2(x3+1). For each singleton of ‘3’, we could

either mark it with ‘x3’ or not.

Then for n ≥ 3, we have

GC2
n(x1, x2, x3, q)

=
∑

l1+l3−n−3,l1,l3≥0

(−1)l1+l3 (x1 + 1)x2(x3 + 1)(x3 + 1)l3q6+l1+3l3

= (−1)n−3q6+n−3(x1 + 1)x2(x3 + 1)
n−3∑
l3=0

((x3 + 1)q2)l3

=
(x1 + 1)x2(x3 + 1)(−q)n+3 (1− ((x3 + 1)q2)n−2)

1− (x3 + 1)q2
.

Hence

GC2(x1, x2, x3, q, t) (4.15)

=
∑
n≥3

tnGC2
n(x1, x2, x3, q)

=
∑
n≥3

tn
(x1 + 1)x2(x3 + 1)(−q)n+3 (1− ((x3 + 1)q2)n−2)

1− (x3 + 1)q2

=
(x1 + 1)x2(x3 + 1)q6t3

1− (x3 + 1)q2

(∑
n≥0

(−qt)n − (x3 + 1)q2
(
−(x3 + 1)q3t

)n)

=
(x1 + 1)x2(x3 + 1)q6t3

1− (x3 + 1)q2

(
1

1 + qt
− (x3 + 1)q2

1 + (x3 + 1)q3t

)
=

(x1 + 1)x2(x3 + 1)q6t3

(1 + qt) (1 + (x3 + 1)q3t)
(4.16)
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Next we shall compute GC3(x1, x2, x3, q, t). For an arbitrary w ∈ GC3n, w only

contains n singleton ‘3’ blocks. Each ‘3’ block is either marked or not but at least

one block has to be marked. Thus

GC3
n(x1, x2, x3, q) = (−1)n−1 ((1 + x3)

n − 1) q3n.

Hence,

GC3(x1, x2, x3, q, t) =
∑
n≥1

tn GC3
n(x1, x2, x3, q)

=
∑
n≥1

tn(−1)n−1 ((1 + x3)
n − 1) q3n

= −
∑
n≥1

(
−(x3 + 1)q3t

)n − (−q3t)n

= −
(
−(x3 + 1)q3t

1 + (x3 + 1)q3t
− −q3t

1 + q3t

)
=

x3q
3t

(1 + q3t) (1 + (x3 + 1)q3t)
(4.17)

Finally we shall compute GC4(x1, x2, x3, q, t). For an arbitrary w ∈ GC4n, w has

no marked (u1, u2, u3)-matches, which implies

x
mu1 (w)
1 x

mu2 (w)
2 x

mu3 (w)
3 = 1.

Since elements in each block in w are identical, say the element in the block is k,

then Sum(w) = kn, which gives

GC4
n(x1, x2, x3, q) =

∑
w∈GC4

n

(−1)B(w)−1x
mu1 (w)
1 x

mu2 (w)
2 x

mu3 (w)
3 qSum(w)

= (−1)n−1
∑
k=1

qkn

= − (−q)n

1 + qn
.

Hence

GC4(x1, x2, x3, q, t) =
∑
n≥1

tn GC4
n(x1, x2, x3, q)

= −
∑
n≥1

tn
(−q)n

1 + qn

= −
∑
n≥1

(−qt)n

1 + qn
(4.18)
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Taking sum of Equation (4.14), (4.15), (4.17) and (4.18), plugging into the

generating function A12,123,3,CL(x1, x2, x3, q, t), we have

A12,123,3,CL(x1, x2, x3, q, t)

=
1

1−
∑

n≥1 t
n ·GCn(x1 − 1, x2 − 1, x3 − 1)

=
1

1−
∑

J∈{1,2,3,4} GCJ(x1 − 1, x2 − 1, x3 − 1, q, t)

=
1

1−GC(x1 − 1, x2 − 1, x3 − 1, q, t)
,

where

G(x1 − 1, x2 − 1, x3 − 1, q, t)

=
∑

J∈{1,2,3,4}

GCJ(x1 − 1, x2 − 1, x3 − 1, q, t)

=
(x3 − 1)q3t

(1 + q3t) (1 + x3q3t)
+

x1(x2 − 1)x3q
6t3

(1 + qt) (1 + x3q3t)
+

(x1 − 1)q3t2

(qt+ 1) (1 + q2t)
−
∑
n≥1

(−qt)n

1 + qn
.

A few initial terms in the expansion are

A12,123,3,CL(x1, x2, x3, q, t)

= 1 + tq + tq2 + (t2 + x1t
2 + x3t)q

3 + (t+ x1t
3 + 2x3t

2)q4

+(t+ 2t2 + x1t
3 + 2x3t

2 + x3t
3)q5

+(t+ 4t2 + t3 + x1t
4 + x2

1t
4 + 4x3t

3 + x1x3t
3 + x1x2x3t

3)q6

+ · · · .

Coefficients of qn describe distribution of patterns in all the Carlitz composi-

tions of n. For example, coefficient of q4 is (t+ x1t
3 + 2x3t

2), which means in P5,

there is one Carlitz composition having one part avoiding u1, u2 and u3, namely

4, one Carlitz composition having three parts, exactly one u1-match and no other

matches, namely 121, and two Carlitz compositions having two parts, exactly one

u3-match and no other matches, namely 13 and 31.

The generating function A12,123,3,CL(x1, x2, x3, q, t) gives us many interesting

results, some of which lead to integer sequences that haven’t been recorded on
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OEIS [49]. For example,

A12,123,3,CL(1, 1, 0, q, 1)

=
1

1 + q3

q3+1
−
∑

n≥1
qn

qn+1

=
1

1−
∑

n≥1, n ̸=3
qn

qn+1

= 1 + q + q2 + 2q3 + 2q4 + 4q5 + 8q6 + 13q7 + 20q8 + 32q9 + 51q10

+82q11 + 137q12 + 224q13 + 362q14 + 588q15 + · · · ,

where the coefficients of qn in A12,123,3,P(1, 1, 0, q, 1) is the the number of Carlitz

compositions of n that do not contain ‘3’ as a part, and they are 1, 1, 2, 2, 4, 8,

13, 20, 32, · · · , for n ≥ 1.

Another example is

A12,123,3,CL(1, 0, 1, q, 1)− A12,123,3,CL(0, 0, 0, q, 1)

=
1

1 + q6

q4+q3+q+1
−
∑∞

n=1
qn

qn+1

− 1

1 + q3

q3+1
+ q3

q3+q2+q+1
−
∑∞

n=1
qn

qn+1

= 2q3 + 3q4 + 4q5 + 7q6 + 12q7 + 24q8 + 48q9 + 89q10 + 152q11

+268q12 + 478q13 + 852q14 + 1524q15 + 2699q16 + · · · ,

the coefficients of qn in A12,123,3,CL(1, 0, 1, q, 1) − A12,123,3,CL(0, 0, 0, q, 1) is the the

number of Carlitz compositions of n that contain ‘1 2’ or ‘3’ but do not contain

subword ‘1 2 3’, and they are 2, 3, 4, 7, 12, 24, 48, 89, · · · , for n ≥ 3.

Furthermore, since t is used to keep track of number of parts in compositions,

if we substitute t by 1 and −1 respectively and take difference of the two functions,

we are able to get the generating function for the number of Carlitz compositions

of n that have odd number of parts, contain ‘1 2’ or ‘3’ but do not contain subword
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‘1 2 3’.

1

2
A12,123,3,CL(1, 0, 1, q, 1)−

1

2
A12,123,3,CL(0, 0, 0, q, 1)

−1

2
A12,123,3,CL(1, 0, 1, q,−1) +

1

2
A12,123,3,CL(0, 0, 0, q,−1)

=
1/2

1 + q6

q4+q3+t+1
−
∑∞

n=1
qn

qn+1

− 1/2

1 + q3

q3+1
+ q3

q3+q2+q+1
−
∑∞

n=1
qn

qn+1

− 1/2

1− q4(q6+q5+2q4+q2−q−1)
q7−q4−q3+1

−
∑∞

n=1
qn

qn+1

+
1/2

1 + q3(q(2q−1)+2)
q5+q3+q2+1

−
∑∞

n=1
qn

qn+1

= q3 + q4 + 2q5 + 5q6 + 5q7 + 12q8 + 25q9 + 41q10 + 78q11 + 137q12

+236q13 + 426q14 + 764q15 + · · · ,

where coefficient of qn is the number of Carlitz compositions of n that have odd

number of parts, contain ‘1 2’ or ‘3’ but do not contain subword ‘1 2 3’.

There are many other interesting integer sequences derived from this generating

function, but we shall not pursue such results here.

4.3 Joint clusters and generalized joint clusters

for Di,j,k
i+kn+j.

We can also extend joint clusters and generalized joint clusters to fillings of

Di,j,k
i+kn+j, for i, j ̸= k.

Suppose that we have m patterns {Ps ∈ P i,j,k
i+kns+j}1≤s≤m and a given binary

relation R, we consider the following generating function,

A(P1,...,Pm),P,R(x1, . . . , xm, t) := 1 +
∑
n≥1

tkn

(kn)!

∑
F∈Pi,j,k

i+kn+j,R

m∏
s=1

xPs-mch(F )
s . (4.19)

Similar to Section 3.3, but we define joint versions of generalized start, end,

and start-end clusters. First we let MP i,j,k
i+kn+j,(P1,...,Pm) denote the set of fillings

F ∈ P i,j,k
i+kn+j where we have marked some of the Ps-match in F by placing an ‘xs’

on the top of the column that starts a Ps-match in F , for 1 ≤ s ≤ m.

Definition 4.5. Q ∈ MP0,j,k
kn+j,(P1,...,Pm) is a generalized (P1, . . . , Pm),R-end-

cluster if we can write Q = B1B2 · · ·Bh where Bs are blocks of consecutive
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columns in Q such that

1. Bh is a column of height j,

2. for 1 ≤ s < h, either Bs is a single column or Bs consists of r-columns where

r ≥ 2, red(Bs) is a (P1, . . . , Pm)-cluster in MPkr,(P1,...,Pm), and any pair of

consecutive columns in Bs are in R and

3. for 1 ≤ s ≤ h − 1, the pair (last(Bs), f irst(Bs+1)) is not in R where for

any s, last(Bs) is the right-most column of Bs and first(Bs) is the left-most

column of Bs.

Let GEC0,j,kkn+j,(P1,...,Pm),R denote the set of all generalized

(P1, . . . , Pm),R-end-clusters which have n columns of height k followed by a col-

umn of height j. We let

GEC0,j,k
kn+j,(P1,...,Pm),R(x1, . . . , xm) :=

∑
Q∈GEC0,j,k

kn+j,(P1,...,Pm),R

(−1)B(Q)−1

m∏
s=1

xmPs (Q)
s ,

(4.20)

where B(Q) the number of blocks in Q and mPs(Q) is the number of Ps-matches

in in Q which are marked with an xs.

Definition 4.6. Q ∈MP i,0,k
i+kn,(P1,...,Pm) is a generalized (P1, . . . , Pm),R-start-

cluster if we can write Q = B1B2 · · ·Bh where Bs are blocks of consecutive

columns in Q such that

1. B1 is a column of height i,

2. for 1 < s ≤ h, either Bs is a single column or Bs consists of r-columns where

r ≥ 2, red(Bs) is a (P1, . . . , Pm)-cluster in MPkr,(P1,...,Pm), and any pair of

consecutive columns in Bs are in R and

3. for 1 ≤ s ≤ h − 1, the pair (last(Bs), f irst(Bs+1)) is not in R where for

any s, last(Bs) is the right-most column of Bs and first(Bs) is the left-most

column of Bs.
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Let GSCi,0,ki+kn,(P1,...,Pm),R denote the set of all

generalized (P1, . . . , Pm),R-start-clusters which have a column of height i followed

by n columns of height k. We let

GSC i,0,k
i+kn,(P1,...,Pm),R(x1, . . . , xm) :=

∑
Q∈GSCi,0,k

i+kn,(P1,...,Pm),R

(−1)B(Q)−1

m∏
s=1

xmPs (Q)
s ,

(4.21)

where B(Q) the number of blocks in Q and mPs(Q) is the number of Ps-matches

in in Q which are marked with an xs.

Definition 4.7. Q ∈MP i,j,k
i+kn+j,(P1,...,Pm) is a generalized (P1, . . . , Pm),R-start-

end-cluster if we can write Q = B1B2 · · ·Bh where h ≥ 2 and Bs are blocks of

consecutive columns in Q such that

1. B1 is a column of height i,

2. Bh is a column of height j,

3. for 2 ≤ s ≤ h − 1, either Bs is a single column or Bs consists of r-columns

where r ≥ 2, red(Bs) is a (P1, . . . , Pm)-cluster in MPkr,(P1,...,Pm), and any

pair of consecutive columns in Bs are in R and

4. for 1 ≤ s ≤ h − 1, the pair (last(Bs), f irst(Bs+1)) is not in R where for

any s, last(Bs) is the right-most column of Bs and first(Bs) is the left-most

column of Bs.

Let GSECi,0,ki+kn+j,(P1,...,Pm),R denote the set of all generalized (P1, . . . , Pm),R-

start-clusters which have a column of height i followed by n columns of height k

and then followed by a column of height j. We let

GSEC i,j,k
i+kn+j,(P1,...,Pm),R(x1, . . . , xm) :=

∑
Q∈GSECi,j,k

i+kn+j,(P1,...,Pm),R

(−1)B(Q)−1

m∏
s=1

xmPs (Q)
s ,

(4.22)

where B(Q) the number of blocks in Q and mPs(Q) is the number of Ps-matches

in in Q which are marked with an xs.

Then we have following theorems.
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Theorem 4.8. Given a binary relation R and patterns P1, . . . , Pm , then

∑
n≥0

tkn+j

(kn+ j)!

∑
F∈P0,j,k

kn+j,R

m∏
s=1

xPs-mch(F )
s =

(∑
n≥0

tkn+j

(kn+j)!
GEC0,j,k

kn+j,(P1,...,Pm)R(x1 − 1, . . . , xm − 1)
)

1−
∑

n≥1
tkn

(kn)!
GC0,0,k

kn,(P1,...,Pm),R(x1 − 1, . . . , xm − 1)
(4.23)

Theorem 4.9. Given a binary relation R and patterns P1, . . . , Pm , then

∑
n≥0

ti+kn

(i+ kn)!

∑
F∈Pi,0,k

i+kn,R

m∏
s=1

xPs-mch(F )
s =

(∑
n≥0

ti+kn

(i+kn)!
GSC i,0,k

i+kn,(P1,...,Pm)R(x1 − 1, . . . , xm − 1)
)

1−
∑

n≥1
tkn

(kn)!
GC0,0,k

kn,(P1,...,Pm),R(x1 − 1, . . . , xm − 1)
(4.24)

Theorem 4.10. Given a binary relation R and patterns P1, . . . , Pm , then

∑
n≥0

ti+kn+j

(i+ kn+ j)!

∑
F∈Pi,j,k

i+kn+j,R

m∏
s=1

xPs-mch(F )
s =

1

1−
∑

n≥1
tkn

(kn)!
GC0,0,k

kn,(P1,...,Pm),R(x1 − 1, . . . , xm − 1)

×

(∑
n≥0

ti+kn

(i+ kn)!
GSC i,0,k

i+kn,(P1,...,Pm),R(x1 − 1, . . . , xm − 1)

)

×

(∑
n≥0

tkn+j

(kn+ j)!
GEC0,j,k

kn+j,(P1,...,Pm)R(x1 − 1, . . . , xm − 1)

)

+
∑
n≥0

ti+kn+j

(i+ kn+ j)!
GSECi,j,k

i+kn+j,(P1,...,Pm),R(x1 − 1, . . . , xm − 1). (4.25)

The contents of Chapter 4 are currently under preparation for submission.

Some portion is co-authored with J. B. Remmel. The dissertation author is the

author of this material.



Chapter 5

Clusters and Generalized Clusters

for undetermined shapes

Previous chapters are mainly focused on various fillings of rectangular shapes

(i.e., D0,0,k
kn ) or almost rectangular shapes (i.e., Di,j,k

i+kn+j). However, the idea of clus-

ters and generalized clusters can be extended to irregular shapes or even unknown

shapes naturally.

In next section, corresponding theorems for undetermined shapes shall be stated

and proved. Then in Section 5.2, two examples will be given to illustrate how

clusters and generalized clusters work for undetermined shapes. In Section 5.3,

we discuss clusters and generalized clusters for undetermined shapes with partial

restrictions.

5.1 Main theorem

In this section, we let Dn denote the diagrams consisting n cells. Obviously, the

number of columns is at least one and at most n. We use Dn,k to denote the set of

diagrams in Dn having k columns. Clearly, for i, j ≥ 1, Di,j,k
i+kn+j ⊆ Di+kn+j,n+2 ⊆

Di+kn+j. As pictured in Figure 5.1, T1 ∈ D12,6 ⊆ D12 and T2 ∈ D11,4 ⊆ D11.

We let Pn (Pn,k) denote the set of all fillings of Dn (Dn,k) with the elements

of 1, 2, 3 . . . , n such that the elements are increasing reading from bottom to top

in each column. Thus for any F ∈ Pn,k, w(F ) is a permutation in Sn satisfying

132
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2T1T

Figure 5.1: T1 ∈ D12,6 ⊆ D12 and T1 ∈ D11,4 ⊆ D11.

des(w(F )) < k. Note that the correspondence here actually is not a bijection and

counterexamples are given in Figure 5.2. Similarly, we let Fn,A (Fn,k,A) denote the

set of all fillings of Dn (Dn,k) with the elements from the alphabet A. Accordingly,

let WIn,A and WIn,k,A (SIn,A and SIn,k,A) denote the set of all fillings of Dn

(Dn,k) respectively with the elements from the alphabet A such that elements are

weakly (strictly) increasing in each column reading from bottom to top. In this

chapter, for convenience of stating and proving theorems, major emphasis is on

Pn but theorems and methods still hold for pattern matching in Fn,A, WIn,A and

SIn,A.

2F1F

1

7

2

3

6

10

5

8

9

11

4

1

7

2

3

4

6

10

5

8

9

11

w(      ) = w(      ) =1F 2F 1 7 2 3 4 6 10 5 8 9 11

Figure 5.2: F1, F2 ∈ P11,4, w(F1) = w(F2) but F1 ̸= F2.

Due to the uncertainty of shapes, patterns are also allowed to be very flexible.

Patterns could be associated to shapes of several consecutive columns or partial

ordering of elements in consecutive columns. For instance, we might want to keep

track of variety of quantities such as the number of columns of height 1 in Pn or

Fn,A, the number of pairs of adjacent columns satisfy the condition that the first

element in the left column is greater than the second element in the right column,
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the number of pairs of adjacent columns that have the same height, the number of

times we observe row-increasing condition between two columns, etc..

Generally speaking, a consecutive pattern can be understood as a condition

occurring in columns or between consecutive columns. The number of pattern

matches in a filling F of Dn is the number of times we observe this condition in F .

For some given pattern P and for n ≥ 1, we let MPn,P denote the set of all

fillings F ∈ Pn where we have marked some of the P -matches in F by placing an

‘x’ on top of the column that start a P -match in F .

Then as in previous sections, a P -cluster of size n is a filling F inMPn,P such

that

1. every column of F is contained in a marked P -match of F and

2. any two consecutive marked P -matches share at least one column.

Due to flexibility of patterns, it is possible that a P -cluster has only one column

or even one cell. We let CMn,P denote the set of all P -clusters in MPn,P . We

define the cluster polynomial for n ≥ 1,

Cn,P (x) =
∑

F∈CMn,P

xmP (F )

where mP (F ) is the number of marked P -matches in F .

Theorem 5.1. Given some pattern P , then

1 +
∑
n≥1

tn

n!

∑
F∈Pn

xP -mch(F ) =
1

1−
∑

n≥1
tn

n!
(Cn,P (x− 1) + |Pn,1|)

(5.1)

=
1

2− et −
∑

n≥1
tn

n!
Cn,P (x− 1)

, (5.2)

where Cn,P (x) is P -cluster polynomial with respect to Pn.

Proof. First, the equality between (5.1) and (5.2) is easy to understand. For any

F ∈ Pn,1, F has to be a single column of height n with fillings of 1, 2, . . . , n, reading

from bottom to top. Then |Pn,1| = 1 and hence,∑
n≥1

tn

n!
|Pn,1| =

∑
n≥1

tn

n!
= et − 1.
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If we replace x by x+ 1 in equation (5.1), we get

1 +
∑
n≥1

tn

n!

∑
F∈Pn

(x+ 1)P -mch(F ) =
1

1−
∑

n≥1
tn

n!
(Cn,P (x) + |Pn,1|)

(5.3)

As before, the left-hand side of (5.3) is the generating function of mP (F ) over all

F ∈MPn,P .Tthat is,

1 +
∑
n≥1

tn

n!

∑
F∈Pn

(x+ 1)P -mch(F ) = 1 +
∑
n≥1

tn

n!

∑
F∈MPn,P

xmP (F ). (5.4)

Thus we must show that

1 +
∑
n≥1

tn

n!

∑
F∈MPn,P

xmP (F ) =
1

1−
∑

n≥1
tn

n!
(Cn,P (x) + |Pn,1|)

. (5.5)

Next we rewrite the right-hand side of Equation (5.5) in form of power series as

follows,

1

1−
∑

n≥1
tn

n!
(Cn,P (x) + |Pn,1|)

= 1 +
∑
m≥1

(∑
n≥1

tn

n!
(Cn,P (x) + |Pn,1|)

)m

. (5.6)

Taking the coefficients of ts

s!
on both sides of Equation (5.5) where n ≥ 1, we see

that we must show that∑
F∈MPs,P

xmP (F ) =
∞∑

m=1

(
∞∑
n=1

tn

n!
(Cn,P (x) + |Pn,1|)

)m∣∣∣∣∣
ts

s!

=
s∑

m=1

(
s∑

n=1

tn

n!
(Cn,P (x) + |Pn,1|)

)m∣∣∣∣∣
ts

s!

=
s∑

m=1

∑
a1+···+am=s

ai≥1

(
s

a1, . . . , am

) m∏
j=1

(
Caj ,P (x) + |Paj ,1|

)
. (5.7)

The right-hand side of (5.7) is now easy to interpret. We pick an m such that

1 ≤ m ≤ s. Then we pick a1, . . . , am ≥ 1 such that a1 + a2 + · · · + am = s.

Next the multinomial coefficient
(

s
a1,a2,...,am

)
allows us to pick sets S1, S2, . . . , Sm

which partition {1, 2, . . . , s} such that |Si| = ai for i = 1, 2, . . . ,m. Finally the

product
∏m

j=1

(
Caj ,P (x) + |Paj ,1|

)
allows us to pick either a P -cluster of size ai or

a single column of height ai, for 1 ≤ i ≤ m. More precisely, Cai,P (x) is P -cluster
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polynomial of size ai, that is, weighted sum of all P -clusters of size ai. A single

column of height aj are not allowed to have any marked matches (otherwise it

would be a cluster), so weighted sum of them is just cardinality of single columns

of height ai.

Exploiting the same argument of maximal P -subclusters in proof of Theorem

2.2 finishes the proof here, which will not be elaborated again here.

As for Fn,A, SIn,A andWIn,A, the idea and proof of Theorem 5.1 still hold and

the difference is that now the generating function is ordinary instead of exponential

because the fillings are words over A instead of permutations.

Theorem 5.2. Given some pattern P , then

1 +
∑
n≥1

tn
∑

F∈Fn,A

xP -mch(F ) =
1

1−
∑

n≥1 t
n (Cn,P (x− 1) + |Fn,1,A|)

(5.8)

where Cn,P (x) is P -cluster polynomial with respect to Fn,A.

Given some given pattern P , then

1 +
∑
n≥1

tn
∑

F∈WIn,A

xP -mch(F ) =
1

1−
∑

n≥1 t
n (Cn,P (x− 1) + |WIn,1,A|)

, (5.9)

where Cn,P (x) is P -cluster polynomial with respect to WIn,A.
Given some pattern P , then

1 +
∑
n≥1

tn
∑

F∈SIn,A

xP -mch(F ) =
1

1−
∑

n≥1 t
n (Cn,P (x− 1) + |SIn,1,A|)

, (5.10)

where Cn,P (x) is P -cluster polynomial with respect to SIn,A.

Next, suppose we want to study arrays which satify some extra restrictions

between pairs of adjacent columns. Let R is a binary relation between two adjacent

columns whose heights are not necessary the same. For example, we could restrict

that two adjacent columns are forced to have different heights or the base element

in a column must be greater than the top element in the next column. The set of

fillings in Pn (Pn,k) that satisfy the binary relation R is denoted by Pn,R (Pn,k,R).

As introduced in previous chapters, generalized clusters are suitable dealing with

arrays with restrictions. Here we have the same definition for generalized clusters.
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Let MPn,P be the set of fillings in Pn such that we mark some of P -matches.

We say Q ∈ MPn,P is a generalized P,R-cluster of size n if we can write Q =

B1B2 . . . Bm where Bi are blocks such that

1. Bi is either a single column or is order isomorphic to a P -cluster and R holds

between any pair adjacent columns in Bi and

2. for 1 ≤ i ≤ m− 1, (last(Bi), f irst(Bi+1)) is not in R.

The set of generalized clusters of size n is denoted by GCn,P,R . Accordingly, gener-
alized cluster polynomials GCn,P,R(x) are defined in the same manner as previously

defined. We let ωP,R(Q) =
∏m

i=1 x
mP (Bi) and let

GCn,P,R(x) =
∑

Q∈GCn,P,R

(−1)B(Q)−1ωP,R(Q),

where B(Q) is the number of blocks in Q.

Let Pn,R denote the set of elements Q of Pn such that R holds for any two

consecutive columns in Q. t Then we have following theorem.

Theorem 5.3. Let R be a binary relation on all pairs of adjacent columns. For

a given pattern P ,

1 +
∑
n≥1

tn

n!

∑
F∈Pn,R

xP -mch(F ) =
1

1−
∑

n≥1
tn

n!
GCn,P,R(x− 1)

. (5.11)

The proof is essentially the same as proof of Theorem 2.4 so that we shall not

give the details.

In fact, there are natural analogues of Theorems 5.1 and 5.3 in this setting. In

Section 5.2, we shall provide and example that uses the multi-variate version of

Theorem 5.3.

5.2 Examples

Examples in this section will show how we use Theorem 5.1 and 5.3 to find

generating functions for arrays whose columns have unknown heights.
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5.2.1 Singletons and patterns in ordered set partitions

Throughout this subsection, we still use [n] to denote the set {1, 2, · · · , n} for
convenience. A set partition of [n] is a set of disjoint subsets of [n] whose union is

[n]. Usually, we call a subset in a set partition a block. Since in this paper blocks

are an exclusive term in generalized clusters, we just call elements in set partition

subsets to avoid confusion. The total number of set partitions of [n] is given by

the n-th Bell number, Beln, which has following recursion

Beln =
n∑

k=0

(
n

k

)
Belk

and exponential generating function∑
n≥0

Beln
n!

tn = ee
t−1.

Note that we don’t distinguish the order of subsets in a set partition. For example,

there are five partitions of [3], namely,

{{1, 2, 3}} , {{1, 2}, {3}} , {{1, 3}, {3}} ,

{{1}, {2, 3}} , {{1}, {2}, {3}} .

Usually, we list elements in each subset in an increasing order. The first (least)

element in a subset is called opener and the last (largest) element in a subset

is called closer. In a set partition, we list subsets, by their openers, also in an

increasing order.

Also, it is well-known that the number of set partitions of [n] having k subsets

is given Sterling number of the second kind, denoted by
{
n
k

}
. For n ≥ 1

n∑
k=1

{
n

k

}
= Beln.

In contrast to set partitions of [n], if orders of subsets are taken into account,

we get a list of ordered disjoint subsets whose union is [n], which is called an

ordered set partition of [n]. We use OSPn to denote the set of all the ordered set
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partitions of [n]. The total number of ordered set partitions of [n] is given by the

n-th Fubini number, Fubn, which has following recursion,

Fubn =
n∑

k=1

(
n

k

)
Fubn−k

and exponential generating function∑
n≥0

Fubn
n!

tn =
1

2− et
.

It can be also expressed in terms of Stirling numbers of the second kind,

n∑
k=1

k!

{
n

k

}
= Fubn.

People sometimes think ordered set partitions as permutations with some pre-

scribed descent set. As mentioned in Section 1.1.3, given information on descent

sets, permutations can be represented in form of column-strict arrays whose shapes

are not necessary to be rectangular. More precisely, for any F ∈ OSPn, we can

represent F as an element in Pn. An example in OSP9 is pictured as an element

in P9 in Figure 5.3.

2 1 

4 

5 7 

8 

9

3 {{2},{1,4},{5},{7,8,9},{3}}

Figure 5.3: An ordered set partition of [9] and its array representation.

In [56], Remmel and Wilson used stars to indicate connectives of elements in

ordered set partitions, that is, elements in a subset are connected by stars. Then

the example in Figure 5.3 can be expressed as

2 1∗4 5 7∗8∗9 3.

We call such permutations starred ascent permutations. More precisely, σ =

σ1σ2 · · ·σn is a starred ascent permutation if we mark some of ascents in σ by stars.

We let S∗
n denote the set of starred ascent permutations.
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Statistics on ordered set partitions has been a popular topic especially in recent

years, such as [28, 31, 62, 56]. Throughout this subsection, different from patterns

in other examples in previous sections, we shall consider more abstract patterns.

For example, we could consider a singleton as our pattern, that is, we are interested

in enumerating the number of singletons in ordered set partitions, and equivalently,

how many columns have only one row. For p ∈ OSPn, we use Sgt(p) to denote the

number of singletons in p. Assume p = {{2}, {1, 4}, {5}, {7, 8, 9}, {3}} ∈ OSP9,

then Sgt(p) = 3. Actually, to some extent, to enumerate singletons or subsets of

any giving size is similar to subword pattern in integer compositions. However, we

could also consider other permutation patterns such as ascents.

We compute distribution of singletons in OSPn and consider following gener-

ating function

ASgt,OSP(x, t) := 1 +
∑
n≥1

tn

n!

∑
p∈OSPn

xSgt(p),

and according to Theorem 5.1,

ASgt,OSP(x, t) =
1

2− et −
∑

n≥1
tn

n!
Cn,Sgt(x− 1)

, (5.12)

where Cn,Sgt(x) is cluster polynomial of size n.

Based on the definition of cluster polynomial, a cluster polynomial is sum of

weights for all clusters. Clearly, here the only feasible cluster is a single column of

height 1. Therefore,

Cn,Sgt(x) =

x, for n = 1

0, for n ≥ 2.

Then

ASgt,OSP(x, t) =
1

2− et − C1,Sgt(x− 1)
=

1

2− et − (x− 1)t
.

As mentioned, since OSPn can be regarded as starred ascent permutations S∗
n,

it also allows to us to consider permutation patterns. For σ ∈ S∗
n, elements in σ

could be starred or non-starred and therefore, here we could consider permutation

patterns with specification of starred positions.

For example, assume σ ∈ S∗
n, we say there is a 1∗2∗-match in σ at position i if

σi < σi+1 and both σi and σi+1 are starred. For convenience, we use underscore
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‘ ’ to indicate gaps that don’t have stars. We say there is a 1∗2 -match in σ at

position i if σi < σi+1 and σi is starred while σi+1 is non-starred. We say there is

a 1 2 -match in σ at position i if σi < σi+1 and both σi and σi+1 are not starred.

12 -match can be recognized as a set of patterns, that is, 12 = {1 2 , 1∗2 }. A

12∗-match in σ at position i means σi < σi+1, σi+1 has a star and σi−1 has no star

if σi−1 exists.

For the remainder of this subsection, we shall consider the pattern 1 2 . Assume

σ = 2 1∗4 5 7∗8∗9 3, then 1 2 -mch(σ) = 1 because there is a 1 2 -match at

position 3. To clarify connections between OSPn, Pn and S∗
n, we interpret 1 2

for OSPn and Pn. We see that for σ ∈ S∗
n, a 1 2 pattern in σ means that in the

ordered set partition corresponding to σ, we observe an ascent between a closer

and the adjacent opener and the opener has to be a singleton element, which is

also equivalent to that for Pn, we observe the top element in a column is less

than the element in next column which is forced to be a singleton column. For

convenience, we denote such a pattern for Pn by P . Singleton column pattern is,

in fact, 1 in sense of starred patterns, denoted by Q. Then we consider following

joint generating function,

AP,Q,P(x, y, t) := 1 +
∑
n≥1

tn

n!

∑
F∈Pn

xP -mch(F )yQ-mch(F ).

Then by the multi-variate analogue of Theorem 5.1,

AP,Q,P(x, y, t) =
1

2− et −
∑

n≥1
tn

n!
Cn,(P,Q)(x− 1, y − 1)

.

Before computing Cn,(P,Q)(x, y), we need to figure out the structures of (P,Q)-

clusters. For convenience, we let Cn,k,(P,Q) denote the set of (P,Q)-clusters of

size n having k columns and let Cn,k,(P,Q)(x, y) denote the corresponding cluster

polynomial.

Suppose F ∈ Cn,1,(P,Q), F has to be a single column of height 1 and has to be

labeled with ‘y’. Then

Cn,1,(P,Q)(x, y) =

y, for n = 1,

0, for n ≥ 2,
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and thus ∑
n≥1

tn

n!
Cn,1,(P,Q)(x, y) = yt. (5.13)

Suppose F ∈ Cn,2,(P,Q), then F has a marked P -match, which implies the second

column is a singleton while the first column can be of any height including 1.

Clearly, the filling of F is unique. Singleton column can be either marked with ‘x’

or not. Then

Cn,2,(P,Q)(x, y) =


0, for n = 1,

x(y + 1)2, for n = 2,

x(y + 1), for n ≥ 3,

and thus∑
n≥1

tn

n!
Cn,2,(P,Q)(x, y) =

t2

2
x(y + 1)2 +

∑
n≥3

tn

n!
x(y + 1)

=
t2

2
x(y + 1)2 + x(y + 1)

(
et − 1− t− t2

2

)
.

In general, for k ≥ 2, suppose F ∈ Cn,k,(P,Q), then F is forced to have exactly

k− 1 P -matches and all columns are of height 1 except the first column can be of

any height including 1. Clearly, the filling of F is unique. Singleton column can

be either marked with ‘x’ or not. Then

Cn,k,(P,Q)(x, y) =


0, for n ≤ k − 1,

xk−1(y + 1)k, for n = k,

xk−1(y + 1)k−1, for n ≥ k + 1,

and thus∑
n≥1

tn

n!
Cn,k,(P,Q)(x, y) =

tk

k!
xk−1(y + 1)k +

∑
n≥k+1

tn

n!
xk−1(y + 1)k−1. (5.14)



143

Combining (5.13) and (5.14) and letting z = x(y+1) for convenience, we have∑
n≥1

tn

n!
Cn,(P,Q)(x, y)

=
∑
n≥1

tn

n!
Cn,1,(P,Q)(x, y) +

∑
k≥2

∑
n≥1

tn

n!
Cn,k,(P,Q)(x, y)

= yt+
∑
k≥2

tk

k!
xk−1(y + 1)k +

∑
k≥2

∑
n≥k+1

tn

n!
xk−1(y + 1)k−1

= yt+
1

x

∑
k≥2

(x(y + 1)t)k

k!
k +

∑
n≥3

tn

n!

n−2∑
k=1

(x(y + 1))k

= yt+
ezt − zt− 1

x
+
∑
n≥3

tn

n!

z − (z)n−1

1− z

= yt+
ezt − zt− 1

x
+

z

1− z

∑
n≥3

tn

n!
− 1

z − z2

∑
n≥3

(zt)n

n!

= yt+
ezt − zt− 1

x
+

z
(
et − 1− t− t2

2

)
1− z

−
ezt − 1− zt− z2t2

2

z − z2
.

Therefore,

A(P,Q),P(x, y, t) =

(x− 1)y((x− 1)y − 1)

et(x− 1)y + (y(−xy + y + 1)− 1)et(x−1)y + xy((x− 1)y − 2) + y + 1
. (5.15)

A few initial terms of A(P,Q),P(x, y, t) are

1 + yt+
t2

2!

(
xy2 + y2 + 1

)
+

t3

3!

(
x2y3 + 4xy3 + xy + y3 + 5y + 1

)
+
t4

4!

(
x3y4 + 11x2y4 + x2y2 + 11xy4 + 18xy2 + xy + y4 + 17y2 + 7y + 7

)
+ · · · .

By manipulating the formula in (5.15), we could derive various results. For

example,

∂A(P,Q),P(0, y, t)

∂y

∣∣∣∣
y=1

=
(1− t) sinh(t) + (t− 2) cosh(t) + 2

2(sinh(t)− 1)2
,

which is the exponential generating function for the total number of singleton

columns in arrays in Pn that don’t have pattern P . For n ≥ 1, the numbers are

1, 2, 8, 45, 293, 2254, 20024, 200891, 2246471, . . ..
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If we set x = 0, y = 1 in (5.15), we have

A(P,Q),P(x, y, t) =
2

e−t − et + 2
=

1

1− sinh t
,

which is the exponential generating function for the number of arrays in Pn avoid-

ing P , also the number of ordered set partitions such that we don’t see an ascent

between a subset and a singleton subset immediately following it and it also the

number of starred ascent permutations avoiding 1 2 .

It turns out that 2
e−t−et+2

= 1
1−sinh t

is also the exponential generating function

of ordered set partitions that don’t have subsets of even sizes. Because of the

trivial bijection between OSPn and Pn, it is natural to ask if we can prove this

fact bijectively. Clearly we can partitions the Pn into three sets, NEPn which is

the set elements of Pn that have no even columns, BPn which is the set of elements

of Pn which have both even column and an occurrence of the pattern P , and P̂n

which is the set of elements of elements of Pn which have no occurrence of pattern

P but has columns of even height. Similarly, we can partition Pn into three sets,

NPPn which is the set elements of Pn no occurrence of pattern P , BPn which is

the set of elements of Pn which have both and even column and an occurrence of

the pattern P , and P̄n which is the set of elements of elements of Pn which have

no columns of even height but has at least an occurrence of the pattern P . Clearly

to show that |NEPn| = |NPPn|, we need only show that |P̄n| = |P̂n|.
We can define a bijection Φ : P̄n 7→ P̂n as follows, for F ∈ P̄n, we scan columns

in F from right to left, if j-th column has an even height, we remove the closer (i.e.,

top element) from the column and insert in between j-th column and (j + 1)-th.

Obviously, in j-th column of the new array. This will create at P -match. Note

that if j+1-st column has height 1, then since F has no P -matches it must be that

the element in column j + 1 is less than top element of column j so that we can

not create a new P between the two columns of height 1 that are now the j +1-st

and j + 2-nd elements of Φ(F ). We keep doing this until there are no columns of

even heights. It is possible that we can create some new P -matches in the process

in the case where the height of the j-th column is 2 and the height of the j − 1-st

column is 1 and the element in the j−1-column is less than the bottom element of

j-th column. However, one sees that the only way that we can create consecutive
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sequence of P -matches consisting of columns of height 1 in Φ(F ) is if we started

with consecutive sequence of r columns of height 2 such that top element of any

column is less than the bottom of the next column. If the column preceding this

column is a column of height 1 whose element is less than bottom element of the

next column, we will produce a sequence of 2r + 1 columns of height 1 such that

there is a P -match between any two consecutive columns and we will produce a

sequence of 2r columns of height 1 such that there is a P -match between any two

consecutive columns, otherwise. Nevertheless, the array we finally we obtain is an

array in P̂n. An example is pictured in Figure 5.4. When we apply the inverse

Φ−1 to the new array we just got in P̂n, we scan columns of the array from left to

right, if we see a P -match at j-th column, we put the (j + 1)-th column, actually

a singleton, on the top of the j-th column. We know there were no columns of

even heights. However, after one element was put on the top of the j-th column,

now the j-th column has an even number of rows. We keep doing this until there

are no P -matches. It is easy to check by our remarks above that we recover the

original array F in this process.

3 

8 

1 

5 

10

4 6 

7 

9

11 

12 

2 3 2 8 1 

5 

10

4 6 

7 

9

12 11 

Φ :

Figure 5.4: Φ maps an array in P̄n to an array in P̂n.

However, in general, the number of arrays in Pn having k P -matches is not equal

to the number of arrays in Pn having k columns of even heights. Take P3 as a

counterexample, there is one array that has two P -matches, namely, {{3}, {2}, {1}}
but there does not exist any array that has two subsets of even sizes.

Besides regular ordered set partitions, we also consider the distribution of pat-

tern P in restricted ordered set partitions. Thinking of order set partitions at

elements of Pn, R be the relation that holds between two columns C and D of in-

tegers, which increase from bottom to top, if either C or D has height greater than

1 or C and D both have height 1 and the element in C is bigger than the element
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of D. Thus R requires that we have to see a descent between two adjacent single-

ton subsets in an ordered set partition if there exist adjacent singletons, which is

equivalent to that we see a descent between two adjacent singleton columns in an

array in Pn, and also equivalent to avoiding 1 2 in a starred ascent permutation.

We denote the subset of OSPn (Pn, S∗
n) equipped with relation R by OSPn,R

(Pn,R , S∗
n,R).

We still consider the previous pattern P and Q which are 1 2 and 1 , respec-

tively, in sense of starred starred permutations. Next we shall study

A(P,Q),P,R(x, y, t) := 1 +
∑
n≥1

tn

n!

∑
F∈Pn,R

xP -mch(F )yQ-mch(F ).

By the multi-variate analogue of Theorem 5.3, we have

A(P,Q),P,R(x, y, t) =
1

1−
∑

n≥1
tn

n!
GCn,(P,Q),R(x− 1, y − 1)

. (5.16)

We will partition the generalized joint (P,Q)-R-clusters into three types. Type

1, Type 2, and Type 3 are described below. A key fact to observe is that this

scenario is that (P,Q)-clusters with more than 2 columns cannot appear in a

generalized joint (P,Q)-R-clusters because in a (P,Q)-clusters with k columns

where k ≥ 3, we must end with a sequence of k − 1 columns of height 1 and the

numbers in these columns must be increasing, reading from left to right. However,

to be part of a generalized joint (P,Q)-R-cluster, the number must decrease in

consecutive singletons to meet the condition R. For convenience, we let GCJn,(P,Q),R

denote the Type J generalized joint (P,Q)-R-clusters and let GCJ
n,(P,Q),R(x, y)

denote the corresponding generalized joint (P,Q)-R-cluster polynomial. Also, let

GCJ(x, y, t) :=
∑
n≥1

tn

n!
GCJ

n,(P,Q),R(x, y).

1. Type 1 generalized joint (P,Q)-R-clusters are those clusters that have only

one column. If the height of the column is 1, it can be either marked with

‘y’ or not. Then

GC1
n,(P,Q),R(x, y) =

y + 1, for n = 1,

1, for n ≥ 2,
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and

GC1(x, y, t) = yt+ et − 1.

2. Type 2 generalized joint (P,Q)-R-clusters are those cluster that have more

than one block, but where each block is a column of height 1. To violate

R, the numbers in the blocks must be increasing, reading from left to right.

Then for n ≥ 2

GC2
n,(P,Q),R(x, y) = (−1)n−1(y + 1)n

and

GC2(x, y, t) =
∑
n≥2

tn

n!
(−1)n−1(y + 1)n

= −
∑
n≥2

(−(y + 1)t)n

n!

= 1− (y + 1)t− e−(y+1)t

3. Type 3 generalized joint (P,Q)-R-clusters are those generalized joint (P,Q)-

R-clusters which have more than one column and at least one column of

height ≥ 2. Suppose that B1 . . . Bm is such a generalized joint (P,Q)-R-

cluster. Then for each 1 ≤ i < m, R does hold for the pair consisting of

the last column of Bi and the first column of Bi+1. We claim that no Bi

can consist of a single of height greater than 1 since then either if i ≥ 2,

then the last column of Bi and first column of Bi automatically satisfy R.

Similarly, if i = 1, then B1 and the first column of B2 automatically satisfy

R. Thus the only columns of height ≥ 2 must be part of (P,Q)-clusters and

this means the the cluster must have the form pictured on the left in Figure

5.5. That is, the (P,Q)-cluster must start with a column C1 of height ≥ 2

and a column C2 of height 1 where the top element of C1 is bigger than the

element in column C2. Moreover this (P,Q) must be B1 since if it equal to

Bi for i ≥ 2, then the last column of Bi−1 and the first column of Bi would

satisfy R. It is then easy to see that the only possibilities for B2, . . . , Bm

are that they consist of a single column and the elements in C2, B2, . . . , Bm

must be increasing reading from left to right. This means that the filling of
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B1 . . . , Bm is unique. That is, the Hasse diagram of B1, . . . , Bm are of the

form pictured in Figure 5.5. The first column must be marked with an x, but

there remaining columns could be marked with a y or not. It follows that

GC3
n,(P,Q),R(x, y) =

n−1∑
k=2

x(y + 1)n−k(−1)n−k−1

= x(y + 1)
n−1∑
k=2

(−y − 1)n−k−1

= x(y + 1)
1− (−y − 1)n−2

1− (−y − 1)

=
x(y + 1)

2 + y
− x

(2 + y)(1 + y)
(−y − 1)n.

1B 2B 3B1B 2B1B

Figure 5.5: Examples of Type 3 generalized clusters.

Then

GC3(x, y, t) =
∑
n≥3

tn

n!
GC3

n,(P,Q),R(x, y)

=
x(y + 1)

2 + y

∑
n≥3

tn

n!
− x

(2 + y)(1 + y)

∑
n≥3

(−y − 1)ntn

n!

=
xe−t(y+1)

(
(y + 1)2et(y+2) − (y + 2)et(y+1)(ty + t+ y)− 1

)
(y + 1)(y + 2)

.

Finally we are able to compute the generating function

A(P,Q),P,R(x, y, t)

=
1

1−GC1(x− 1, y − 1, t)−GC2(x− 1, y − 1, t)−GC3(x− 1, y − 1, t)

=
y(y + 1)ety

−yety+t(xy + 1) + (y + 1)ety(x(ty + y − 1) + 1) + x+ y2 + y − 1
. (5.17)
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The first few terms of this series are

1 + yt+
1

2

(
1 + y2

)
t2 +

1

6

(
1 + 5y + xy + y3

)
t3 +

1

24

(
7 + 7y + xy + 17y2 + 7xy2 + y4

)
t4 +

1

120

(
21 + 79y + 21xy + 31y2 + 9xy2 + 49y3 + 31xy3 + y5

)
t5 +

1

720

(
141 + 301y + 71xy + 549y2 + 301xy2 + 20x2y2+

111y3 + 49xy3 + 129y4 + 111xy4 + y6
)
t6 + · · · .

Setting x = 0 and y = 0 in (5.17) gives

A(P,Q),P,R(0, 1, t) =
2et

1 + 2et − e2t
.

This is the generating function ordered set partitions with no P -matches. The first

few terms of this series is

1, 1, 2, 7, 32, 181, 1232, 9787, 88832, 907081, . . .

which is sequence A0006154 in the OEIS [49]. This all counts the number of

ordered set partitions of {1, . . . , n} into only odd parts.

We could also compare the number of P -matches and Q-matches.

lim
y=1

A(P,Q),P,R

(
1

y
, y, t

)
− lim

y=0
A(P,Q),P,R

(
1

y
, y, t

)
=

t(t+ 2)− 4 cosh(t) + 4

(t(t+ 4)− 4et + 6) (t− 2 sinh(t) + 1)
,

which is generating function for the number of ordered set partitions in OSPn,R

having more Q-matches than P -matches. For n ≥ 1, they are 1, 1, 6, 32, 200,

1552, 13748, 138406, 1558488, . . ..

If we take the partial derivative of A(P,Q),P,R(x, y, t) and then set x = 0 and

y = 1, we will get the number of ordered set partitions in Pn,R which has exactly

one P -match. This give the generating function

2et(1− e2t − 2tet

(1− 2et − e2t)2
.

There are many other new sequences derived from (5.17) but we would not discuss

here.
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5.2.2 Patterns in cycle structures of permutations

Suppose that σ is a permutation in Sn with k cycles L1L2 . . . Lk, we shall always

write cycle Li in form of Li = (c1,i, c2,i, . . . , cpi,i) where c1,i is the smallest element

in Li and pi is the length of Li. We arrange cycles of σ by increasing the smallest

element in each cycle. For example, the two-line notation and the cyclic notation

for σ = 3 6 1 4 2 5 7 9 8 10 ∈ S10 are as follows,

σ =

(
1 2 3 4 5 6 7 8 9 10

3 6 1 4 2 5 9 7 8 10

)
= (1 3)(2 6 5)(4)(7 9 8)(10).

In [30], Jones and Remmel studied the joint distribution of number of cycles and

the number of cycle descents for permutations that avoid certain cycle patterns.

The number of cycles in σ is denoted by Cyc(σ). The number of cycle descents in

a cycle Li, denoted by Cdes(Li), is defined as Cdes(Li) = des(Li)+1. The number

of cycle descents in a permutation is sum of cycle descents in all the cycles. In

the example above, Cdes(σ) = Cdes(L1) + Cdes(L2) + Cdes(L3) + Cdes(L4) +

Cdes(L5) = 1 + 2 + 1 + 2 + 1 = 7.

Clearly, cycle descents can be regarded as descents within each cycle. In this

subsection, we would use generalized cluster method to compute joint distribution

of number of cycles and simple patterns between adjacent cycles. We say that

there is a cycle rise at i-th cycle if max(Li) < min(Li+1). We let Crise(σ) denote

the number of cycle rises in σ. For previous example, Cyc(σ) = 5 and Crise(σ) = 2

because max(L3) = 4 < 7 = min(L4) and max(L4) = 9 < 10 = min(L5). Our goal

in this subsection is to compute the following generating function:

1 +
∑
n≥1

tn

n!

∑
σ∈Sn

xCrise(σ)yCyc(σ). (5.18)

Similar to treatment used for ordered set partitions, to apply generalized cluster

method, we have to represent cycle structures in form of an array. A straightfor-

ward way to do this is to put elements of Li in i-th column of an array from

bottom to top. An example is given in Figure 5.6. Note that different from previ-

ous theorems and examples, here arrays are even not necessary to be column-strict

increasing.
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(1 3)(2 6 5)(4)(7 9 8)(10)

1 

3 

2 

6 

5

4 

 

7 

9 

8

10 

Figure 5.6: σ and its array representation.

We let Kn (Kn,k) denote the set of fillings of Dn (Dn,k) with the elements of

1, 2, 3, . . . , n such that in each column, the bottom element is the smallest.

For F ∈ Kn, we use Col(F ) to denote the number of columns in F , F [j] to

denote the j-th column and F (i, j) to denote the element in i-th row, reading from

bottom to top, and j-th column, reading from left to right. Next we let relation R

be base-row increasing, that is, F (1, i) < F (1, i + 1) for 1 ≤ i < Col(F ). Clearly,

Kn,R is bijective to Sn and Kn,k,R is bijective to Sn with k cycles.

Next we define pattern P , that is, cycle rise, for arrays. For F ∈ Kn,R , we

say there is a P -match at position j if max(F [j]) < min(F [j + 1]). Equivalently,

there is a P -match at position j if and only if max(F [j]) < F (1, j+1). Clearly, P -

matches in F ∈ Kn,R are equivalent to cycle rises in Sn. The number of P -matches

is denoted by P -mch(F ). We also define a trivial pattern Q which is used to keep

track of the number of columns. In a (P,Q)-marked arrays, each column is either

marked Q-match or not.

Then we can rewrite the generating function (5.18) as follows,

1 +
∑
n≥1

tn

n!

∑
σ∈Sn

xCrise(σ)yCyc(σ) = 1 +
∑
n≥1

tn

n!

∑
F∈Kn,R

xP -mch(F )yQ-mch(F ). (5.19)

Although Kn are not column-strict arrays, Theorem 5.3 still holds. Then the

right-hand side generating function in (5.19) has following formula

1 +
∑
n≥1

tn

n!

∑
F∈Kn,R

xP -mch(F )yCol(F ) =
1

1−
∑

n≥1
tn

n!
GCn,(P,Q),R(x− 1, y − 1)

. (5.20)

Before computing GCn,(P,Q),R(x, y), let us figure out the structures of (P,Q)-

clusters. First, we see an array F in Kn,k,R is a P -cluster if max(F [j]) < F (1, j+1)

for all 1 ≤ j < k where all columns have to be labeled with ‘x’ except the last

column. Then, a (P,Q)-cluster is
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1. either a single column marked with ‘y’

2. or a P -cluster where each column is free to be marked with ‘y’ or not.

Next we consider generalized joint (P,Q)-R-clusters. An array H ∈ Kn is a

generalized joint (P,Q)-R-cluster of size n if we can writeH asH = B1B2 · · ·BB(F )

where Bi are blocks such that

1. for 1 ≤ i ≤ B(H), Bi is either a single column without any labeling or

order-isomorphic to (P,Q)-cluster and

2. the base element in the last column of Bi is greater than the base element in

the first column of Bi+1, for for 1 ≤ i ≤ B(H)− 1,

where B(H) is the number of blocks in H. We denote the set of generalized (P,Q)-

clusters of size n by GCn,(P,Q),R . By definition of generalized cluster polynomial,

GCn,(P,Q),R(x, y) =
∑

H∈GCn,(P,Q),R

(−1)B(H)−1xmP (H)ymQ(H).

In the remainer of the this subsection, we will focus on how to compute

GCn,(P,Q),R(x, y). As one may see from previous examples, for partial ordering

sets, we usually represent them in form of Hasse diagrams and then count the

linear extensions of these diagrams.

A column of height pi in a generalized cluster can be represented as height 1

directed (pi − 1)-ary tree whose number of linear extensions is (pi − 1)! because

the base element must be the smallest element while there are no conditions for

the other elements. A column of height 5 is pictured in Figure 5.7

Figure 5.7: A column of height 5 and its Hasse diagram.
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In a P -cluster F , all elements in i-th column are less than the base element in

(i + 1)-th column, and hence in the corresponding Hasse diagram, all the leaves

in i-th tree are pointing to the root of (i + 1)-th tree. For a P -cluster with k

columns whose heights are (p1, p2, . . . , pk), the number of linear extensions of the

corresponding Hasse diagram is
∏k

i=1(pi − 1)!. The Hasse diagram corresponding

to a P -cluster with three columns whose heights are 5, 2, 4 is pictured in Figure

5.8, and the number of linear extensions is 4!1!3! = 144.

Figure 5.8: A P -cluster whose column heights are 5, 2, 4.

Now assume a generalized cluster H has m blocks and each block has ki

columns, for 1 ≤ i ≤ m and we let pi,j denote the height of the i-th column

in j-th block, and let GC([p1,1, p2,1, . . . , pk1,1], [p1,2, . . . , pk2,2], . . . , [p1,m, . . . , pkm,m])

denote the set of such generalized clusters. It is clear that the sum of this nested

list is just the size of the generalized cluster. Then there are
∏m

j=1

∏kj
i=1(pi,j − 1)!

ways to extend all the tree-like Hasse diagrams in linear orderings. After single

columns and clusters are straightened out, Hasse diagrams of generalized clusters

become easier to handle which will allows us to prove some simple recursions.

Keep in mind that the arrows between blocks should from right to left. We use

Γ([s1, pk1,1], [s2, pk2,2], . . . , [sm, pkm,m]), where sj =
∑kj−1

i=1 pi,j to denote the straight-

ened Hasse diagram corresponding to GC([p1,1, . . . , pk1,1], . . . , [p1,m, . . . , pkm,m]).
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Clearly,

|GC([p1,1, p2,1, . . . , pk1,1], [p1,2, . . . , pk2,2], . . . , [p1,m, . . . , pkm,m])| = m∏
j=1

kj∏
i=1

(pi,j − 1)!

LE(Γ([s1, pk1,1], [s2, pk2,2], . . . , [sm, pkm,m])). (5.21)

For example, the set of generalized clusters GC([3, 2], [4], [1, 2, 1], [2, 2]) and its

straightened diagram Γ([3, 2], [0, 4], [3, 1], [2, 2]) are drawn in Figure 5.9.

1B 2B 3B 4B

Figure 5.9: GC([3, 2], [4], [1, 2, 1], [2, 2]) and Γ([3, 2], [0, 4], [3, 1], [2, 2]).

Applying Inclusion-Exclusion to the rightmost right-to-left arrow in the straight-

ened Hasse diagram Γ([s1, pk1,1], . . . , [sm, pkm,m], we can compute the number of its

linear extensions recursively. One Inclusion-Exclusion step is pictured in Figure

5.10 as an example, and for this example,

LE(Γ([3, 2], [0, 4], [3, 1], [2, 2])) =(
17

4

)
LE(Γ([3, 2], [0, 4], [3, 1]))−

(
4

4

)
LE(Γ([3, 2], [0, 4], [3, 5])). (5.22)
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Figure 5.10: Recursion of LE(Γ([3, 2], [0, 4], [3, 1], [2, 2])).

In general,

LE(Γ([s1, pk1,1], [s2, pk2,2], . . . , [sm, pkm,m])) =(∑n
j=1(sj + pkj ,j)

sm + pkm,m

)
× LE(Γ([s1, pk1,1], . . . , [sm−1, pkm−1,m−1]))

−
(
pkm,m − 1 + sm + pkm,m

sm + pkm,m

)
×LE(Γ([s1, pk1,1], . . . , [sm−1, pkm−1,m−1+sm+pkm,m]))

(5.23)

Although the formula seems long, the computation is indeed fairly tractable.

To compute GCn,(P,Q),R(x, y), we first need to generate all subsets

GC([p1,1, p2,1, . . . , pk1,1], [p1,2, . . . , pk2,2], . . . , [p1,m, . . . , pkm,m])

satisfying
∑m

j=1

∑kj
i=1 pi,j = n. Clearly, there are 3n−1 such subsets of GCn in total,

because we have three ways to extend a generalized cluster of size n to another of

size n+ 1:

1. put the new element on the top of the last column in the last block

2. put the new element as a new column inserted in end of the last block

3. put the element as a new column in a new block.

Therefore, we could generate subsets of GCn easily in manner of breath first

search and then run the Inclusion-Exclusion recursion dynamically. For the weights
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of generalized clusters, keep in mind that, it is actually equal to

(−1)B(H)xCol(H)−B(H)(y + 1)Col(H)

because each column is marked with ‘x’ except the last column in each block and

each column can be either marked with ‘y’ or not.

Generalized polynomial GCn,(P,Q),R(x, y) for n = 1, 2, . . . , 7 are listed as follows,

GC1 = (y + 1)

GC2 =

(
1

x

)T (
1 −1
0 1

)(
y + 1

(y + 1)2

)

GC3 =


1

x

x2


T 

2 −3 1

0 2 −4
0 0 1




y + 1

(y + 1)2

(y + 1)3



GC4 =


1

x

x2

x3


T 

6 −11 6 −1
0 5 −19 11

0 0 3 −11
0 0 0 1




y + 1

(y + 1)2

(y + 1)3

(y + 1)4



GC5 =



1

x

x2

x3

x4



T 

24 −50 35 −10 1

0 16 −89 94 −26
0 0 9 −72 66

0 0 0 4 −26
0 0 0 0 1





y + 1

(y + 1)2

(y + 1)3

(y + 1)4

(y + 1)5



GC6 =



1

x

x2

x3

x4

x5



T 

120 −274 225 −85 15 −1
0 64 −468 687 −348 57

0 0 31 −410 734 −302
0 0 0 14 −218 302

0 0 0 0 5 −57
0 0 0 0 0 1





y + 1

(y + 1)2

(y + 1)3

(y + 1)4

(y + 1)5

(y + 1)6


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GC7 =

1

x

x2

x3

x4

x5

x6



T 

720 −1764 1624 −735 175 −21 1

0 312 −2818 5154 −3630 1098 −120
0 0 126 −2444 6431 −5058 1191

0 0 0 52 −1462 4152 −2416
0 0 0 0 20 −585 1191

0 0 0 0 0 6 −120
0 0 0 0 0 0 1





y + 1

(y + 1)2

(y + 1)3

(y + 1)4

(y + 1)5

(y + 1)6

(y + 1)7


We observe that the first row in each coefficient matrix of GCn,(P,Q),R is signed

Stirling number of the first kind. It is because that coefficients in each first row

counts the the number generalized clusters having no marked P -matches, that is,

each block is a cycle. Therefore, the first row counts permutations by the number

of cycles which is exactly the interpretation of Stirling number of the first kind.

The first row in coefficient matrix of GCn

GC1 1
GC2 1 -1
GC3 2 -3 1
GC4 6 -11 6 -1
GC5 24 -50 35 -10 1
GC6 120 -274 225 -85 15 -1

We observe that the last column in each coefficient matrix of GCn,(P,Q),R is

signed Eulerian number. It is because that coefficients in each first row counts

the number generalized clusters where all columns are of height one. We know,

inside a given block, there is forced to be an ascent between columns and for

adjacent blocks, there is forced to be a descent between blocks. Therefore, it

counts permutations by the number of descents which is exactly the interpretation

of Eulerian numbers.

The last column in coefficient matrix of GCn

GC1 1
GC2 -1 1
GC3 1 -4 1
GC4 -1 11 -11 1
GC5 1 -26 66 -26 1
GC6 -1 57 -302 302 -57 1
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Elements on the main diagonal of each matrix count permutations where el-

ements each cycle forms an interval by the number of cycles. This triangle is

recorded in OEIS ([49]) as A084938.

The main diagonal in coefficient matrix of GCn

GC1 1
GC2 1 1
GC3 2 2 1
GC4 6 5 3 1
GC5 24 16 9 4 1
GC6 120 64 31 14 5 1

It is easy to see that if we can compute GCn,(P,Q),R(x − 1, y − 1) for n ≤ k,

we can plug those values into our formula for 1 +
∑

n≥1
tn

n!

∑
σ∈Sn

xCrise(σ)yCyc(σ) to

compute the initial values of these series. In this case, we have computed that the

first few initial terms of this series are

1 +
∑
n≥1

tn

n!

∑
σ∈Sn

xCrise(σ)yCyc(σ)

= 1 + yt+
t2

2!
(y + xy2) +

t3

3!
(2y + y2 + 2xy2 + x2y3)

+
t4

4!
(6y + 6y2 + 5xy2 + 3xy3 + 3x2y3 + x3y4)t4

+
t5

5!
(24y + 34y2 + 16xy2 + 3y3 + 23xy3 + 9x2y3 + 6x2y4 + 4x3y4 + x4y5)

+ · · · .

Setting x = 0 and y = 1, the coefficients of tn

n!
are number of permutations

avoiding cycle rises,

1 + t+
t2

2!
+

3t3

3!
+

12t4

4!
+

61t5

5!
+

372t6

6!
+

2639t7

7!
+

21328t8

8!
+

193403t9

9!

+
1944730t10

10!
+

21478849t11

11!
+

258520960t12

12!
+ · · · ,

which is approximately equal to

1 + 1.000 t+ 0.500 t2 + 0.500 t3 + 0.500 t4 + 0.508 t5 + 0.517 t6 + 0.524 t7

+0.529 t8 + 0.533 t9 + 0.536 t10 + 0.538 t11 + 0.540 t12 + · · ·+ 0.542 t15

+ · · ·+ 0.543 t20 + · · ·+ 0.546 t40 + · · ·+ 0.546 t60 + · · ·+ 0.546 t100 + · · ·
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By observing coefficients above, we could ask, does the percentage of permu-

tations avoiding cycle rises in Sn converge to some value between 54% and 55%?

We shall leave this as on open problem.

5.3 Clusters and generalized clusters for unde-

termined shapes with restrictions

Now suppose shapes are not totally undetermined but are partially restricted.

Similar to Chapter 3, we assume it is forced that the first column has height i and

the last column has height j. For n ≥ 0, We let Di,j
i+n+j denote the set of diagrams

such that the first column has i rows and the last column has j columns, and the

total number of cells is i+ n+ j. Except for the first and the last column, heights

of the other columns are undetermined. For example, two elements in D2,3
12 are

pictured in Figure 5.11. i = 0 means the first column has no restriction and j = 0

means the last column has no restriction.

2T1T

Figure 5.11: Two elements in D2,3
12 .

Similar to Theorem 3.6, it is necessary to define so-called start-clusters, end-

clusters and start-end-clusters. Suppose F i,j
i+n+j,A is the set of filling of Di,j

i+n+j

with elements from the alphabet A. Given some pattern P , we let MF i,j
i+n+j,A,P

be the set of elements in F i,j
i+n+j,A such that we mark some of P -matches. Note

that since the pattern could be very flexible, even the first or the last column could

be contained in some marked P -match. Then we define various types of clusters.
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1. We say F ∈ MF0,0
n,A,P is a P -cluster of size n if every column in F is

contained in some marked P -match and any consecutive marked P -matches

share at least one column. We let C0,0n,A,P denote the set of P -cluster of size

n.

2. We say F ∈MF i,0
i+n,A,P is a P -start-cluster of size i+n if every column in F

is contained in some marked P -match and any consecutive marked P -match

share at least one column. We let SCi,0i+n,A,P denote the set of P -start-cluster

of size i+ n.

3. We say F ∈MF0,j
n+j,A,P is a P -end-cluster of size n+j if every column in F

is contained in some marked P -match and any consecutive marked P -match

share at least one column. We let EC0,jn+j,A,P denote the set of P -end-cluster

of size n+ j.

4. We say F ∈MF i,j
i+n+j,A,P is a P -start-end-cluster of size i+n+ j if every

column in F is contained in some marked P -match and any consecutive

marked P -match share at least one column. We let SECi,ji+n+j,A,P denote the

set of P -start-cluster of size i+ n+ j.

Then we define cluster polynomials as follows,

C0,0
n,A,P (x) :=

∑
F∈SCi,0

n,A,P

xP -mch(F )

SCi,0
i+n,A,P (x) :=

∑
F∈SCi,0

i+n,A,P

xP -mch(F )

EC0,j
n+j,A,P (x) :=

∑
F∈EC0,j

n+j,A,P

xP -mch(F )

SECi,j
i+n+j,A,P (x) :=

∑
F∈SECi,j

i+n+j,A,P

xP -mch(F )

Then we have following theorems.

Theorem 5.4. Given some pattern P ⊆ F0,0
r,A and i ≥ 1,∑

n≥1

tn
∑

F∈F i,0
i+n,A

xP -mch(F ) =

∑
n≥0 t

i+nSCi,0
i+n,A,P (x− 1)

1−
∑

n≥1 t
n
(
C0,0

n,A,P (x− 1) + |Fn,0
n,A|
) .
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Theorem 5.5. Given some pattern P ⊆ F0,0
r,A and j ≥ 1,∑

n≥1

tn
∑

F∈F0,j
n+j,A

xP -mch(F ) =

∑
n≥0 t

n+jEC0,j
n+j,A,P (x− 1)

1−
∑

n≥1 t
n
(
C0,0

n,A,P (x− 1) + |Fn,0
n,A|
) .

Theorem 5.6. Given some pattern P ⊆ F0,0
r,A and i, j ≥ 1,∑

n≥1

tn
∑

F∈F i,j
i+n+j,A

xP -mch(F ) =

(∑
n≥0 t

i+nSCi,0
i+n,A,P (x− 1)

) (∑
n≥0 t

n+jEC0,j
n+j,A,P (x− 1)

)
1−

∑
n≥1 t

n
(
C0,0

n,A,P (x− 1) + |Fn,0
n,A|
) +∑

n≥0

ti+n+jSECi,j
i+n+j,A,P (x− 1). (5.24)

Now if we are given some binary relation R, to study the distribution of patterns

in arrays with R, we need to define generalized R-start-clusters, generalized R-

end-clusters and generalized R-start-end-clusters.

Suppose F i,j
i+n+j,A,R is the subset of F i,j

i+n+j,A,R satisfying R. Then we define

various types of generalized clusters as follows.

We say Q ∈MF0,0
n,A,P is a generalized P,R-cluster of size n if we can write

Q = B1B2 . . . Bm where for 1 ≤ h ≤ m, Bh are blocks such that

1. Bh is either a single column or P -cluster in which any pair of consecutive

columns satisfies R, and

2. for 1 ≤ h ≤ m−1, the pair (last(Bh), f irst(Bh+1)) is not in R where for any

h, last(Bh) is the right-most column of Bh and first(Bh) is the left-most

column of Bh.

Let GC0,0n,A,P,R denote the set of all generalized P,R-clusters of size n. We define

the weight of Q, to be

ωP,R(Q) = (−1)m−1xmP (Q).

We let

GC0,0
n,A,P,R(x) :=

∑
Q∈GC0,0

n,A,P,R

ωP,R(Q).

We say Q ∈ MF i,0
i+n,A,P is a generalized P,R-start-cluster of size i + n if

we can write Q = B1B2 . . . Bm where for 1 ≤ h ≤ m, Bh are blocks such that
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1. B1 is a P -start-cluster in which any pair of consecutive columns satisfies R,

2. for 2 ≤ h ≤ m, Bh is either a single column or P -cluster in which any pair

of consecutive columns satisfies R, and

3. for 1 ≤ h ≤ m−1, the pair (last(Bh), f irst(Bh+1)) is not in R where for any

h, last(Bh) is the right-most column of Bh and first(Bh) is the left-most

column of Bh.

Let GSCi,0i+n,A,P,R denote the set of all generalized P,R-start-clusters of size i+ n.

We define the weight of Q, to be

ωP,R(Q) = (−1)m−1xmP (Q).

We let

GSC i,0
i+n,A,P,R(x) :=

∑
Q∈GSCi,0

i+n,A,P,R

ωP,R(Q).

We say Q ∈MF0,j
n+j,A,P is a generalized P,R-end-cluster of size n+ j if we

can write Q = B1B2 . . . Bm where for 1 ≤ h ≤ m, Bh are blocks such that

1. Bm is a P -end-cluster in which any pair of consecutive columns satisfies R,

2. for 1 ≤ h ≤ m − 1, Bh is either a single column or P -cluster in which any

pair of consecutive columns satisfies R, and

3. for 1 ≤ h ≤ m−1, the pair (last(Bh), f irst(Bh+1)) is not in R where for any

h, last(Bh) is the right-most column of Bh and first(Bh) is the left-most

column of Bh.

Let GEC0,jn+j,A,P,R denote the set of all generalized P,R-end-clusters of size n + j.

We define the weight of Q, to be

ωP,R(Q) = (−1)m−1xmP (Q).

We let

GEC0,j
n+j,A,P,R(x) :=

∑
Q∈GEC0,j

n+j,A,P,R

ωP,R(Q).
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We say Q ∈ MF i,0
i+n,A,P is a generalized P,R-start-end-cluster of size

i+n+j if Q has at least two blocks, that is, we can write Q = B1B2 . . . Bm, m ≥ 2

where for 1 ≤ h ≤ m, Bh are blocks such that

1. B1 is a P -start-cluster in which any pair of consecutive columns satisfies R,

2. Bm is a P -end-cluster in which any pair of consecutive columns satisfies R,

3. for 2 ≤ h ≤ m − 1, Bh is either a single column or P -cluster in which any

pair of consecutive columns satisfies R, and

4. for 1 ≤ h ≤ m−1, the pair (last(Bh), f irst(Bh+1)) is not in R where for any

h, last(Bh) is the right-most column of Bh and first(Bh) is the left-most

column of Bh,

or if Q only has one block, that is, we can write Q = B1, and B1 is a P -start-end-

cluster of size i+ n+ j.

Let GSECi,ji+n+j,A,P,R denote the set of all generalized P,R-start-end-clusters of

size i+ n+ j. We define the weight of Q, to be

ωP,R(Q) = (−1)m−1xmP (Q).

We let

GSEC i,j
i+n+j,A,P,R(x) :=

∑
Q∈GSECi,j

i+n+j,A,P,R

ωP,R(Q).

Then we have following theorems.

Theorem 5.7. Given some pattern P ⊆ F0,0
r,A, a binary relation R and i ≥ 1,

∑
n≥1

tn
∑

F∈F i,0
i+n,A,R

xP -mch(F ) =

∑
n≥0 t

i+nGSCi,0
i+n,A,P,R(x− 1)

1−
∑

n≥1 t
n
(
GC0,0

n,A,P,R(x− 1)
) .

Theorem 5.8. Given some pattern P ⊆ F0,0
r,A, a binary relation R and j ≥ 1,

∑
n≥1

tn
∑

F∈F0,j
n+j,A,R

xP -mch(F ) =

∑
n≥0 t

n+jGEC0,j
n+j,A,P,R(x− 1)

1−
∑

n≥1 t
n
(
GC0,0

n,A,P,R(x− 1)
) .
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Theorem 5.9. Given some pattern P ⊆ F0,0
r,A, a binary relation R and i, j ≥ 1,

∑
n≥1

tn
∑

F∈F i,j
i+n+j,A,R

xP -mch(F ) =

(∑
n≥0 t

i+nGSC i,0
i+n,A,P,R(x− 1)

) (∑
n≥0 t

n+jGEC0,j
n+j,A,P,R(x− 1)

)
1−

∑
n≥1 t

n
(
GC0,0

n,A,P,R(x− 1)
)

+
∑
n≥0

ti+n+jGSEC i,j
i+n+j,A,P,R(x− 1). (5.25)

Essentially we can prove the theorems above by combining the proof of Theorem

3.6 and proof of Theorem 5.3.

We can also prove multi-variate analogues of all these theorems. Also we can

extend theorems above to consider patterns in P i,j
i+n+k,R , where P

i,j
i+n+j,R is the set

of fillings of Di,j
i+n+j with elements from {1, 2, . . . , i + n + j} such that elements

in each columns are increasing from bottom to top and also satisfies R. In this

situation, the resulting generating functions are exponential generating functions

rather than ordinary generating functions.

The contents of Chapter 5 are currently under preparation for submission.

Some portion is co-authored with J. B. Remmel. The dissertation author is the

author of this material.



Chapter 6

Conclusion and further research

In this final chapter, we will discuss some of the limitations of generalized cluster

method, the connection between generalized clusters and joint clusters, and some

questions for research in the future.

6.1 Limitation of generalized cluster method

In this thesis, we developed a powerful method, which we called the general-

ized cluster method, to find generating functions for the number of consecutive

occurrence of a pattern or sequence of patterns in various classes of combinatorial

objects. This method is quite general and can be adapted to handle a large range

of combinatorial objects beyond the ones that we considered in this thesis.

However, the generalized cluster method also inherits the limitations of the

cluster method. The main limitation is due to the fact that in many cases, finding

explicit formulas or recursions for the cluster polynomials or the generalized cluster

polynomials is extremely difficult. In many examples, the computation of cluster

polynomials or generalized cluster polynomials require that we find the number of

linear extensions of a class of posets. However, the general problem of counting

the number of linear extensions of a poset is known to be a very difficult problem.

Indeed, in [9], Brightwell and Winkle showed that in general, it is #P-complete to

count linear extensions.

Thus while the generalized cluster method is a powerful tool, it may not be the
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best tool to compute generating function of the number of consecutive occurrence

of a given pattern is every situation. For example, suppose we let F0,0,2
2n denote the

set of fillings of D0,0,2
2n with elements in {1, 2, . . . , 2n}. Let R be the relation that

holds for a pair of column (C,D) of height 2 if and only if the base element in C

is less than the base element in D and the top element in C is also less than the

top element in D. Thus the elements F ∈ F0,0,2
2n in which every consecutive pair

of columns in F satisfies R are the ones that are increasing in rows, reading from

left to right. Clearly,

|F0,0,2
2n,R | =

(
2n

n

)
.

For example, the six elements in F0,0,2
4,R are pictured in Figure 6.1.

P1 P2 P3 P4 P5 P6

3 

2 1 

4 2 

3 1 

4 1 

3 2 

4 2 

4 1 

3 1 

4 2 

3 1 

4 3 

2 

Figure 6.1: The six elements in F0,0,2
4,R .

Suppose we want to compute the generating function

1 +
∑
n≥1

t2n

(2n)!

∑
F∈F0,0,2

2n,R

xPj-mch(F ).

By Theorem 2.4, we have

1 +
∑
n≥1

t2n

(2n)!

∑
F∈F0,0,2

2n,R

xPj-mch(F ) =
1

1−
∑

n≥1
t2n

(2n)!
GC0,0,2

2n,Pj ,R
(x− 1)

.

We can calculate GC0,0,2
2n,Pj ,R

(x) by counting linear extensions of certain Hasse dia-

grams. Details of computation will not be given here, but the kinds of computations

that one needs are similar to kinds of computations that we carried out in Section

2.2.2. We were unable to find a recursive formula for the required generalized joint

cluster polynomials in the case where we wanted to compute the multi-variate

generating function

1 +
∑
n≥1

t2n

(2n)!

∑
F∈F0,0,2

2n,R

6∏
j=1

x
Pj -mch(F )
j .
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In fact, in this case, counting the number of linear extensions seemed no easier

than directly counting the number pattern matches in F0,0,2
2n,R .

However, the author and Jeff Remmel found an alternative way to find the

distributions of patterns {Pj}1≤j≤6 without using the generalized cluster method.

In [53], we defined so-called paired patterns for lattice paths. There is a trivial

bijection between F0,0,2
2n,R and the set of all grand Dyck paths from (0, 0) to (n, n).

The bijection is quite simple. We simply require that if k is in the base row of

F , then k-th step in the corresponding path is an east step, and otherwise, it is a

north step. Via this bijection, the six patterns P1, P2, . . . , P6 can be represented

by six grand Dyck paths from (0, 0) to (2, 2), as drawn in Figure 6.2.

P1 P2 P3 P4 P5 P6

3 

2 1 

4 2 

3 1 

4 1 

3 2 

4 2 

4 1 

3 1 

4 2 

3 1 

4 3 

2 

Figure 6.2: The six elements in F0,0,2
4,R and their corresponding paths.

In [53], we proved that

1. the number of P1-match in F ∈ F0,0,2
2n,R is the number of east steps below the

sub-diagonal y = x− 1 in the corresponding path

2. the number of P2-match in F ∈ F0,0,2
2n,R is the number of times the correspond-

ing path bounce off the diagonal y = x to the right

3. the number of P3-match in F ∈ F0,0,2
2n,R is the number of times the correspond-

ing path cross the diagonal y = x horizontally.

By symmetry, there are similar interpretations for P4, P5 and P6. Based on these

facts, we were able to obtain direct recursions for the number of occurrences of the

patterns Pi which allowed us to compute the ordinary generating function for the

number of occurrences of these patterns in grand Dyck paths. For example, we



168

proved that the ordinary generating function for the number of occurrences of the

patterns P2 and P4 has following explicit formula

1 +
∑
n≥1

tn
∑

F∈F0,0,2
2n,R

x
P2-mch(F )
2 x

P4-mch(F )
4

=
(x2 − 2)

(
−1 +

√
1− 4t

)
+ 2(x2 − 1)t

x4

(
−1 +

√
1− 4t

)
+ x2

(
2 +

(
−1 +

√
1− 4t

)
+ 3x4 − x4

√
1− 4t

)
t
.

However, in this case, we could not directly compute the corresponding generalized

joint cluster polynomials to find an exponential generating function for the number

of occurrences of the patterns P2 and P4.

6.2 Connections between joint clusters and gen-

eralized clusters

In Chapter 4, we defined natural analogues of clusters and generalized clusters

in the case where we want to keep track of the occurrence of several consecutive

patterns at the same time. This lead us to define joint clusters and generalized joint

clusters. The main point that we want to make in this subsection is that one can use

joint clusters to compute the same type of generating functions that we computed

by the generalized cluster method. That is, in the setting of generalized clusters, we

considered binary relations R between pairs of consecutive columns and we wanted

to consider only those fillings in which any two consecutive columns satisfied R.

Another way to obtain the same set of fillings, is to consider complement of R,

¬R. ¬R can always be translated to some 2-column consecutive pattern or some

set of 2-column consecutive patterns. Then we just need to find the multi-variate

generating function of the number of consecutive occurrences of the pattern P =

P1 that we are interested in plus the number of of occurrences of the patterns

P2, . . . , Pk that correspond to ¬R and, then set all the variables xi for i = 2, . . . , k

equal to 0.

For example, suppose the pattern is P =
3 4

1 2
and R is a relation that holds

between a pair of columns (C,D) of height 2 which are increasing, reading from
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bottom to top, if and only if the top element in C is greater than the base element

in D. Suppose we are interested in distribution of pattern P in P0,0,2
2n,R . In this case,

there is a single pattern corresponding ¬R, namely, R =
2 4

1 3
. By Theorem 2.4,

1 +
∑
n≥1

t2n

(2n)!

∑
F∈P0,0,2

2n,R

xP -mch(F ) =
1

1−
∑

n≥1
t2n

(2n)!
GC2n,P,R(x− 1)

.

And by Theorem 4.1,

1 +
∑
n≥1

t2n

(2n)!

∑
F∈P0,0,2

2n

xP -mch(F )yR-mch(F ) =
1

1−
∑

n≥1
t2n

(2n)!
C2n,(P,R)(x− 1, y − 1)

.

Thus it follows that∑
F∈P0,0,2

2n,R

xP -mch(F ) =
∑

F∈P0,0,2
2n

xP -mch(F )0R-mch(F ),

which implies

GC2n,P,R(x− 1) = C2n,(P,R)(x− 1, 0− 1) = C2n,(P,R)(x− 1,−1).

A more straightforward way to understand this fact is that when we compute

C2n,(P,R)(x,−1), we are considering joint (P,R)-clusters where we place ‘x’ on

marked P -matches and ‘−1’ instead of ‘y’ on marked R-matches. It is not hard to

see that this labeling will lead to generalized P,R-clusters.

6.3 Directions for further research

In this thesis, we only explored restrictions on combinatorial objects which

corresponding to simple binary relations R between pairs of consecutive columns.

However, we could consider more general restrictions such as the ones that arise by

insisting that any k consecutive columns in a filling satisfies a k-ary relation where

k ≥ 3. One cannot compute the generating function for the number of consecutive

occurrences of a pattern P in the set of fillings which meet such a restriction by a

direct application of generalized cluster method. However, in principle, we could
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modify joint cluster, as described in our discussion in Section 6.2, to compute such

generating functions. That is, we could represent ¬R as some pattern or a set

of patterns, denoted by N . Then we could joint (P,N)-cluster polynomials where

marked N -matches have the label ‘−1’. We call joint (P,N)-clusters with such

labeling by negative P,R-clusters, denoted by NCn,P,R . Then we define

NCn,P,R(x) :=
∑

F∈NCn,P,R

ωP,R(x),

where ωP,R(x) is product of all the labels of F .

For example, suppose that we wanted to compute the generating function of

the distribution of ascents in Sn where the ternary relation R holds on three

consecutive elements (a, b, c) such that a, b, c is not a monotonically increasing

sequence. Then N = 123 and P = 12. An example of negative P,R-cluster of

length 7 is given in Figure 6.3.

1 2 3 4 5 6 7 

‐1 x ‐1 ‐x x

Figure 6.3: An example of negative P,R-cluster of length 7.

In this case, negative cluster polynomials are easy to compute,

NC1,(P,R)(x) = 1,

NC2,(P,R)(x) = x,

and

NCn,(P,R)(x) = −(x+ 1)Nn−2,(P,R)(x)−Nn−1,(P,R)(x), for n ≥ 3.

In general, computing negative cluster polynomials with respect to relation

R which involves more than two columns is much more difficult than computing

generalized clusters. Thus a natural problem for further research is to develop

methods to handle restrictions involving k-ary relations R where k ≥ 2 by breaking

the problem into various sub-problems which are easier to compute. Another

direction of further research is to compute generating functions where we keep track

of more information such as keeping track of the number of consective occurrences
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of a pattern P plus keeping track of inversions, co-inversions or the major index

in w(F ). This should lead to natural q-analogues of many of the results of this

thesis.

A portion of Chapter 6 is has been submitted to a special volume on Lattice

Path Combinatorics and Applications in the Springer “Developments in Mathemat-

ics Series”. R. Pan and J. B. Remmel, Paired patterns in lattice paths, submitted.
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