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Constructing internal diagrammatic proofs from external logic diagrams
Yuri Sato, Koji Mineshima, and Ryo Takemura

Department of Philosophy, Keio University
{sato, minesima, takemura}@abelard.flet.keio.ac.jp

Abstract

Internal syntactic operations on diagrams play a key role in
accounting for efficacy of diagram use in reasoning. How-
ever, it is often held that in the case of complex deductive
reasoning, diagrams can serve merely as an auxiliary source
of information in interpreting sentences or constructing mod-
els. Based on experiments comparing subjects’ performances
in syllogism solving where logic diagrams of several different
forms are used, we argue that internal manipulations of dia-
grams, or what we call internal constructions of diagrammatic
proofs, actually exist, and that such constructions are naturally
triggered even for users without explicit prior knowledge of
their inference rules or strategies.
Keywords: External representation; Diagrammatic reasoning;
Logic diagram; Deductive reasoning

Introduction
People have tried to enhance reasoning abilities by the use of
artificial devices since ancient times. In particular, symbol
manipulation is a distinctive tool-use of human beings. Cer-
tainly, symbolic logic may be considered to be a tool for de-
ductive reasoning. However, it should be noted that symbolic
logic (e.g., first-order logic) is not always a usable system for
untrained people. By contrast, visual-spatial representations
are considered to be much more intuitive and effective for
novices’ actual reasoning. Consequently, over the past few
decades, many researchers have shown an interest in the ef-
ficacy of diagrammatic reasoning (e.g. Allwein & Barwise,
1996; Glasgow, Narayanan, & Chandrasekaran, 1995).

An important assumption in the study of diagrammatic rea-
soning is that diagrams are syntactic objects to be manipu-
lated in certain ways; we make an inference about a diagram
itself, transforming it into another form or combining it with
other diagrams. Such syntactic manipulations of diagrams
play a crucial role in accounting for their efficacy in deduc-
tive problem solving. For example, consider the following
process of checking the validity of a syllogism using Euler
diagrams.

D1 : All A are B

D2 : No C are B

Therefore, No C are A
D1

A
B

D2

C B

j ¼

D3

C B
A

Figure 1: A diagrammatic proof of syllogism All A are B, No C are
B; therefore No C are A with Euler diagrams.

The premise All A are B is represented by D1, and the premise
No C are B by D2. By unifying D1 with D2, we can obtain di-
agram D3. Here the exclusion relation holds between circles
A and C, from which we can extract the correct conclusion

“No C are A”. In what follows, we call such a syntactic ma-
nipulation of diagrams to derive a conclusion of deductive
reasoning a construction of a diagrammatic proof. The point
here is that by unifying two diagrams in premises and ob-
serving the topological relationship between the circles, one
can automatically read off the correct conclusion. Shimojima
(1996) calls this a “free ride” property, and shows that it can
be seen to exist in other kinds of diagram use in reasoning
and problem solving.

In general, a deductive reasoning task would be easy if
it could be replaced with a task of constructing a concrete
diagrammatic proof. Typically, such a construction is sup-
posed to be triggered by external diagrams and carried out
internally, without actual drawing or movement of physical
objects. However, the existence of such internal manipula-
tions of diagrams has been the subject of controversy (see,
e.g. Schwartz, 1995). Indeed, it is widely held that diagrams
can serve merely as a memory-aid or an auxiliary source of
information in deductive problem solving. Thus, Larkin and
Simon (1987) argue that reasoning is largely independent of
ways of representing information, hence diagrams are less
beneficial in reasoning. Bauer and Johnson-Laird (1993) dis-
cuss efficacy of diagrams in deductive reasoning with double
disjunction and argue that diagrams are used to keep track
of alternative models, as postulated in mental model the-
ory. Also in many logic textbooks, diagrams are used to de-
pict models and aid understanding of logical representations,
rather than as objects of syntactic manipulations.

In view of this situation, it is of central importance to in-
vestigate whether internal manipulations of diagrams really
exist in actual reasoning with diagrams. Trafton and Trick-
ett (2001) argue that there are mental processes of “spatial
transformations” to extract information from graphs or visu-
alization, based on an analysis of how expert scientists col-
lect data in their researches. Shimojima and Fukaya (2003)
and Shimojima and Katagiri (2008) argue for the existence of
“inference by hypothetical drawing”, internal transformations
of external diagrams, based on eye-tracking data of subjects
working with position diagrams in transitive inferential tasks.
In this paper, we focus on more complex deductive reasoning
tasks, namely, syllogistic reasoning tasks, and on the effects
of logic diagrams externally given therein. We present evi-
dence for the existence of internal constructions of diagram-
matic proofs, on the basis of experiments comparing subjects’
performances in syllogism solving where logic diagrams of
several different forms are given. Our claim is consistent with
the influential view in the study of external representations
in general, namely, that (a) external representations can be
used without being interpreted, and that (b) they can change
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the nature of tasks, namely, tasks with and without external
representations are completely different from users’ point of
view (see Zhang & Norman, 1994; Scaife & Rogers, 1996).

The efficacy of logic diagrams has been investigated in the
context of the studies of logic teaching method (Stenning,
1999; 2002; Dobson, 1999). In these studies, subjects are
provided with substantial training in ways of manipulating
diagrams. In contrast to this, our interest is in the question
whether diagrams can be useful for those who are not trained
in rules or strategies of diagrammatic deductive reasoning.
This question is important because, in contrast to logical for-
mulas in symbolic logic, logic diagrams in general have been
expected to be much more intuitive and effective for novices’
reasoning, not for experts’ nor for machine reasoning. In view
of the complexities of solving processes of deductive reason-
ing (e.g. Levesque, 1988), it is interesting to ask whether
logic diagrams can have this surprising property.

Logic diagrams have also been studied in the field of for-
mal diagrammatic logic since the 1990s (e.g. Shin, 1994;
Howse, Stapleton & Taylor, 2005), and inference systems for
various diagrams such as Euler and Venn diagrams have been
developed. Currently, however, there are few empirical re-
searches to investigate their cognitive foundations. Our study
is also intended to provide a bridge between logical and cog-
nitive studies of diagrammatic reasoning.

Cognitive model for reasoning with diagrams
Typical examples of deductive reasoning problems with ex-
ternal logic diagrams are shown in Figure 2.

All B are A.

All C are B.

B
A

C
B

(Therefore, All C are A)

All B are A.

All C are B.

(Therefore, All C are A)

Figure 2: Examples of syllogistic reasoning tasks with diagrams

Here a syllogism is presented with logic diagrams (Euler and
Venn diagrams). How can such diagrams contribute to check-
ing the validity of a deductive argument? Let us first hypoth-
esize a cognitive model of deductive problem solving with
diagrams. The model is shown in Figure 3. This model high-
lights two roles of diagrams in deductive reasoning.

Regarding sentential reasoning, we assume a standard two-
staged framework in natural language semantics (see, e.g.
Blackburn & Bos, 2005), according to which sentences are
first associated with semantic information, and then the valid-
ity of the argument is checked using some inferential mech-
anisms (such as model-theoretical or proof-theoretical ones).
The details and precise nature of such linguistic comprehen-
sion and inference are not our concern here.

Diagrams are also associated with semantic information,
but at the same time they are syntactic objects to be manip-
ulated in reasoning processes. We distinguish two ways in
which diagrams can be effective in deductive reasoning.

Figure 3: Cognitive model for diagrammatic reasoning

Interpretational efficacy Firstly, diagrams can help fix the
correct interpretations of sentences and thereby avoid deduc-
tive reasoning errors due to misinterpretation. For example, a
sentence “All A are B” is sometimes misinterpreted as equiva-
lent to “All B are A”. This is known as illicit conversion error
in the literature (e.g. Newstead & Griggs, 1983). Subjects
presented with diagrams such as the ones in Figure 2 could
immediately see that the diagrams corresponding to these two
sentences are topologically different, and hence deliver dif-
ferent semantic information. In our model, such processes
are formulated as processes of matching the semantic infor-
mation obtained from diagrams with the one obtained from
sentences. In this case, the validity of an argument is checked
based on the same kind of process as the one in linguistic rea-
soning. Here diagrams are used in a static way, merely as a
record of information (Barwise & Etchemendy, 1991).

Inferential efficacy Secondly, and more importantly, dia-
grams can play a crucial role in reasoning processes them-
selves. More specifically, the solving processes of deductive
reasoning tasks can be replaced with internal manipulations
of diagrams. In other words, one can check the validity of
a deductive argument by means of constructions of diagram-
matic proofs. The above model assumes that such construc-
tions are conducted through a proof-theoretical component of
diagrammatic reasoning. If a task of constructing diagram-
matic proofs consists of simple and intuitive steps, it is ex-
pected to be more tractable than usual linguistic inferences.

It seems to be generally agreed that logic diagrams have in-
terpretational efficacy. For example, Stenning (2002) argues
that (a)symmetricity of diagrams can aid processing of the
meaning of quantified sentences in syllogisms. Mineshima,
Okada, Sato, and Takemura (2008) presented experimental
evidence for such interpretational effects, based on a com-
parison of the performances of syllogistic solving tasks with
and without Euler diagrams. In what follows, we assume that
logic diagrams can have interpretational efficacy, and investi-
gate whether they can have inferential efficacy as well.

General Hypothesis

Based on the above model, we propose the following general
hypothesis: (1) logic diagrams can have inferential efficacy,
that is, internal constructions of diagrammatic proofs occurs
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in deductive reasoning with external logic diagrams, and (2)
certain diagrams would naturally trigger such constructions
so that even users without explicit prior knowledge of infer-
ence rules or strategies could correctly manipulate diagrams.

One way to test our hypothesis is to compare performances
of deductive problem solving with several distinct diagrams
which are equivalent in semantic information but are of dif-
ferent forms, namely, ones that have a form suitable for dia-
grammatic proof constructions and ones that do not. A basic
assumption here is that the existence of internal constructions
depends on the forms of diagrams given, and on the simplic-
ity or naturalness of the required diagrammatic proofs. If sub-
jects’ performance with diagrams of a form suitable for dia-
grammatic proof constructions would be significantly better,
it could count as evidence for the existence of such construc-
tions in subjects’ reasoning.

To test the claim in (2), subjects in our experiments were
presented with instructions on the meaning of categorical
sentences and diagrams used, but not with any instruction
on rules or strategies of constructing diagrammatic proofs.
We expect that if certain diagrams have inferential efficacy,
it would be exploitable based on their natural properties or
constraints, rather than extra conventions. In other words,
processes of constructing diagrammatic proofs as postulated
in our cognitive model could be conducted without explicit
knowledge of the underlying rule or strategies; such internal
constructions could be naturally triggered based on the cor-
rect understanding of the meaning of diagrams.

Task Analysis
Conventional devices in Euler and Venn diagrams
In our experiment, we use the following three types of dia-
grams: Euler diagrams, Venn diagrams having two circles,
which we call “2-Venn diagrams”, and Venn diagrams hav-
ing three circles, which we call “3-Venn diagrams”. Typical
examples are shown in Figure 4.

D1

A
B

D2 D3

Figure 4: Representations of All A are B in Euler diagram (D1),
2-Venn diagram (D2), and 3-Venn diagram (D3).

Euler diagrams used in our experiment are the ones intro-
duced in Mineshima et al. (2008). Our system has the fol-
lowing features: (i) it uses a named point ‘x’ to indicate the
existence of objects; (ii) it adopts a convention of crossing,
according to which two circles which are indeterminate with
respect of their relationship are put to partially overlap each
other. Consequently, a single categorical statement can be
represented by just a single diagram (see D7 in Figure 5).
This contrasts with another version of Euler system, which re-
quires more than one diagrams to represent some categorical
sentences, and hence has the well-known problem of combi-
natorial complexities (see chapter 4 of Johnson-Laird, 1983).

D4

A B

D5

A B

D6

B
A

D7

A B
x

Figure 5: The diagrams corresponding to “Some A are not B” in
traditional Euler system (D4, D5 and D6) and the one in our Euler
representation system (D7)

In Venn diagrams, every circle partially overlaps each other,
as in D2 and D3 in Figure 4 and D5 in Figure 5. Such dia-
grams do not convey any specific information about circles,
hence are subject to the convention of crossing. Meaning-
ful relations among circles are then expressed using a novel
device, shading, by the convention that a shaded region de-
notes an empty set. For example, the statement “All A are B”
is represented as D2 or D3 in Figure 4. Note that the same
information can also be conveyed by the Euler diagram D1.
Furthermore, 3-Venn diagrams use a link to connect points,
which represent the disjunctive information about a point (see
Dv

4 and Dv
5 in Figure 7 below).

Constructions of diagrammatic proofs

We compare syllogism solving tasks using these three types
of diagrams in terms of difficulties in constructing the corre-
sponding diagrammatic proofs. Deductive reasoning gener-
ally requires combining information in premises. Such a task
could naturally be replaced by a task of combining presented
diagrams. We expect that an inference process of combining
diagrams is relatively easy to access, and accordingly, that
an internal construction of a diagrammatic proof is naturally
triggered if it consists only of such combining processes.

Reasoning with Euler diagrams As an illustration, con-
sider a syllogism All B are A, Some C are B; therefore Some
C are A. A solving process of this syllogism using Euler dia-
grams is shown in Figure 6.

All B are A.

De
1

B
A

Some C are B.

De
2

C Bx

s +Unification

De
3

C
A

Bx

Some C are A.

Figure 6: A proof of syllo-
gism using Euler diagrams.

All B are A.

Dv
1

Some C are B.

Dv
2

C Bx

? ?additionaddition

Dv
3 Dv

4

A
xx
B

C

s +
superposition

Dv
5

Some C are A.

Figure 7: A proof of syllogism
using Venn diagrams.

In general, a diagrammatic proof of a syllogism with Euler
diagrams consists of a step of combining premise diagrams,
which we call a unification step. It is expected that unification
steps are relatively easy to access, so that such constructions
of diagrammatic proofs are naturally triggered.
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Reasoning with 2-Venn diagrams A solving process in 2-
Venn diagrams is illustrated in Figure 7, where the premise
All B are A is represented by Dv

1, and the premise Some C are
B by Dv

2. Since these two diagrams contain a different cir-
cle, in order to combining them while preserving the syntax
of Venn diagrams, one needs to accommodate their circles. In
this case, circle C is added to Dv

1, and A to Dv
2. Then, by super-

posing the shaded region of Dv
3 on Dv

4, one obtains diagram
Dv

5, from which the conclusion “Some C are A” can correctly
be read off. Here we can see that a solving process in 2-Venn
diagrams consists of two steps, which we call addition and
superposition. Note that a process of combining Euler dia-
grams, namely unification, can exploit the movements of cir-
cles as in Figure 6, whereas a process of combining Venn di-
agrams, namely superposition, operates on premise diagrams
with the same number of circles, and hence does not involve
any movement of circles.

Reasoning with 3-Venn diagrams If we start the proof
with the 3-Venn diagrams Dv

3 and Dv
4 in Figure 7, we can

skip the steps of adding a circle as required in the case of
2-Venn diagrams. The only step needed is the superposition
step, which is expected to be relatively easy to access.

Predictions
Intuitively, 2-Venn diagrams seem to be relatively difficult to
handle in solving syllogisms. For in order to construct di-
agrammatic proofs from 2-Venn diagrams, one has to know
the relevant inference rules and strategies in advance. More
specifically one has to know the successive processes of
adding a circle and superposing two diagrams, as indicated
in Figure 7. We expect that those who are ignorant of such
a solving strategy could not appeal to concrete manipulations
of the diagrams. They seem to have to draw a conclusion
solely based on usual linguistic inference, with the help of
semantic information obtained from 2-Venn diagrams.

To test this point, we introduce set-theoretical expressions
corresponding to Venn diagrams, such as A∩B = /0 for “All
A are B” and A∩B 6= /0 for “Some A are B”, as a control con-
dition. We assume that they could only contribute to inter-
preting premises of syllogisms. Thus, they are used to check
whether the effects of Euler, 3-Venn, and 2-Venn diagrams
are interpretational or not.

In contrast to 2-Venn diagrams, both Euler diagrams and
3-Venn diagrams seem to be relatively easy to handle even
for those users who are not trained to manipulate them in syl-
logism solving. The essential steps involved are unification
and superposition steps. Given the fact that deductive reason-
ing generally requires combining the information in premises,
these processes seem to be natural enough so that they would
be immediately accessible to users. We expect that users
could exploit natural constraints of diagrams and extract the
right rules to draw a conclusion from Euler diagrams and 3-
Venn diagrams themselves.

We will say that diagrammatic representations are self-
guiding if the constructions of diagrammatic proofs are au-

tomatically triggered even for subjects without explicit prior
knowledge of inferential rules or strategies. Then, our
hypothesis amounts to saying that in syllogistic reasoning
tasks, Euler diagrams and 3-Venn diagrams are self-guiding,
whereas 2-Venn diagrams are not.

Based on these considerations, we predict that the perfor-
mance in syllogism solving would be better when subjects use
Euler diagrams or 3-Venn diagrams than when they use sym-
bolic (set-theoretical) representations. We also predict that
there would be little difference between the performance with
2-Venn diagrams and with the symbolic representations.

Method
Subjects are provided with instructions on the meanings of di-
agrams and then required to solve syllogistic reasoning tasks
with diagrams. We conducted a pretest to check whether sub-
jects understood the instructions correctly. The pretest was
designed mainly to see whether subjects correctly understood
the conventional devices of each diagram, in particular, the
convention of crossing in both Euler and Venn diagrams and
shading and linking in Venn diagrams.

Participants

365 undergraduates (mean age 19.78± 2.69 SD) in six intro-
ductive philosophy classes took part in the experiments. They
gave a consent to their cooperation in the experiments, and
were given small reward after the experiments. The subjects
were native speakers of Japanese. The sentences and instruc-
tions were given in Japanese. The subjects were divided into
four groups: Symbolic, 2-Venn, 3-Venn, and Euler groups.
The four groups in this order consisted of 90, 95, 114, and
66 students, respectively. From each we excluded 26, 27, 35,
3 students (those who gave up before the end), respectively.
It is notable that fewer students in the Euler group gave up
compared to the other three groups.

Materials

The experiment was conducted in the booklet form.

Pretest The subjects of all groups were presented with ten
representations (ten diagrams or ten set-theoretical expres-
sions). They were asked to choose, from a list of five pos-
sibilities, all sentences which correspond to a given represen-
tation. The highest possible score on the pretest of the Sym-
bolic group was ten and the cutoff point was set to be five.
The highest possible score on the pretests of the 2-Venn, 3-
Venn, and Euler groups was twelve, because there were two
correct answers in two of the ten problems. Their cutoff point
was set to be eight. These cutoff points were chosen care-
fully, based upon the results of our pilot experiments. The to-
tal time in Symbolic, 2-Venn and Euler groups was 5 minutes.
The total time in the 3-Venn group was 6 minutes, since the
instruction was longer than those of the other three groups.
Before the pretest, the subjects in each group were presented
with three examples.
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Syllogistic reasoning tasks The subjects in the Symbolic
group were given syllogisms with set-theoretical representa-
tions (such as the one in Figure 8). The subjects in the 2-Venn
group were given syllogisms with Venn diagrams having two
circles in premises (such as the one in Figure 9). The sub-
jects in the 3-Venn group were given syllogisms with Venn
diagrams having three circles in premises (such as the one in
Figure 10). The subjects in the Euler group were given syl-
logisms with Euler diagrams (such as the one in Figure 11).
We gave 31 syllogisms in total, out of which 14 syllogisms
had a valid conclusion and 17 syllogisms had no valid con-
clusion. The subjects were presented with two premises and
were asked to choose, from a list of five possibilities, a sen-
tence corresponding to the valid conclusion. The list consists
of All-, No-, Some-, Some-not, and NoValid. The subject-
predicate order of each conclusion was CA. The test was a
20-minute power test, and each task was presented in random
order (10 patterns were prepared). Before the test, the exam-
ples in Figure 8, 9, 10, and 11 were presented to each group.

All B are A.

All C are B.

B∩A = /0

C∩B = /0

1. All C are A.
2. No C are A.
3. Some C are A.
4. Some C are not A.
5. None of them.

Correct answer: 1

Figure 8: Example of reason-
ing task of Symbolic group

All B are A.

All C are B.

1. All C are A.
2. No C are A.
3. Some C are A.
4. Some C are not A.
5. None of them.

Correct answer: 1

Figure 9: Example of reason-
ing task of 2-Venn group

All B are A.

All C are B.

1. All C are A.
2. No C are A.
3. Some C are A.
4. Some C are not A.
5. None of them.

Correct answer: 1

Figure 10: Example of rea-
soning task of 3-Venn group

All B are A.

All C are B.

B
A

C
B

1. All C are A.
2. No C are A.
3. Some C are A.
4. Some C are not A.
5. None of them.

Correct answer: 1

Figure 11: Example of rea-
soning task of Euler group

Procedure
All four groups were first given 1 minute 30 seconds to read
one page instructions on the meaning of categorical sen-
tences. In addition, the Symbolic group was given 2 min-
utes to read two pages instructions on the meaning of set-
theoretical representations. The 2-Venn and Euler groups
were given 2 minutes to read two pages instructions on the
meaning of diagrams. The 3-Venn group was given 3 minutes
to read two pages instructions on the meaning of diagrams.
Before the pretest, all groups were given 1 minute 30 seconds
to read two pages instructions on the pretest. Finally, before
the syllogistic reasoning test, all four groups were given 1

minute 30 seconds to read two pages instructions, in which
the subjects were warned to choose only one sentence as an-
swer and not to take a note. These time limits were set based
upon the results of our pilot experiments.

Results and Discussion
Pretest
In the Symbolic group, 39 students scored less than 5 on the
pretest. In the 2-Venn group, 38 students scored less than 8
on the pretest. In the 3-Venn group, 41 students scored less
than 8 on the pretest. In the Euler group, 18 students scored
less than 8 on the pretest. These students are excluded from
the following analysis.

Syllogistic reasoning tasks
Figure 12 shows the average accuracy rates of the total 31
syllogisms in each group. The rate for the Euler group was
85.2%, the rate for the 3-Venn group was 75.2%, the rate for
the Venn group was 66.6%, and the rate for the Symbolic
group was 58.7%.
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Figure 12: The average accuracy rates of 31 total syllogisms in the
Symbolic, 2-Venn, 3-Venn, and Euler groups (error-bar refers to SD).

These data were subjected to a one-way Analysis of Variance
(ANOVA). There was a significant main effect, F (3, 134) =
13.680. p < .001. Multiple comparison tests by Ryan’s pro-
cedure yield the following results: (i) There was a significant
difference between the Symbolic group and the Euler group,
F (1, 68) = 5.935, p < .001. (ii) There was a significant dif-
ference between the Symbolic group and the 3-Venn group,
F (1, 61) = 3.578, p < .005. (iii) There was no significant dif-
ference between the Symbolic group and the 2-Venn group.
(iv) There was a significant difference between the 2-Venn
group and the Euler group, F (1, 68) = 4.397, p < .001. (v)
There was no significant difference between the 2-Venn group
and the 3-Venn group. (vi) There was a significant difference
between the 3-Venn group and the Euler group, F (1, 81) =
2.537, p < .05. It should be noted that if we include those
subjects who failed the pretest, we still obtain similar results
in each comparison: for (i), (iv) and (v), there were signif-
icant differences, p < .001; for (ii), there was a significant
difference, p < .01; for (iii) and (v), there were no significant
differences.
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The results show that the performances of the Euler group
and the 3-Venn group were better than that of the Symbolic
group. This provides evidence for our hypothesis that Euler
and 3-Venn diagrams have inferential efficacy and are self-
guiding in the sense specified above. This means that as far
as these diagrams are concerned, the internal constructions
of diagrammatic proofs exist, and they can be naturally trig-
gered for subjects without prior knowledge of inference rules
or strategies. By contrast, there was little difference between
the performance of the 2-Venn group and that of the Symbolic
group. This suggests that 2-Venn diagrams have only inter-
pretational efficacy, and are not self-guiding in our sense.

The results shown in Figure 12 indicate that the perfor-
mance of Euler group was better than that of 3-Venn group. In
particular, there was a significant difference with respect to a
particular type of syllogism, namely, invalid syllogisms hav-
ing an existential sentence as one of their premises. The data
was subjected to a 4 × 2 ANOVA. As a main result, (i) there
was a significant difference between this type of syllogisms
in the 3-Venn group (57.8%) and the other types in the same
group (83.4%), F (1, 134) = 29.434. p < .001. (ii) there was
a significant difference between this type of syllogism in the
3-Venn group (57.8%) and that in the Euler group (84.2%), F
(1, 81) = 4.926. p < .005. (iii) there was no significant dif-
ference between this type of syllogisms in the 3-Venn group
(57.8%) and that in the Symbolic group (48.8%).

The relative difficulty in syllogism solving with 3-Venn di-
agrams could seem to be attributed to the difficulty in the pro-
cess of drawing a conclusion from an internally constructed
diagram. Such a process of extracting information may be
formulated as a process of deletion. A deletion step in an Eu-
ler diagrammatic proof (as illustrated to the left in Figure 13)
is simple in that it only requires to remove a circle without
adjusting any other part of the diagram.

D1 C
A

Bx

?Deletion

Some C are A.

D2 C
A

x

D3

?Deletion

Some C are A.

D4

A
x

C

D5

?Deletion

No Valid.

D6

A
xx

C

Figure 13: Deletion steps in Euler and Venn diagrams.

By contrast, deletion steps in 3-Venn diagrammatic proofs are
somewhat complicated. Especially, in the step from D5 to D6
in Figure 13, which is an instance of invalid syllogisms hav-
ing an existential sentence as one of its premise, one has to
remove a circle and shading and to leave a linking point at the
same region. Such complexities in deletion steps seem to re-
flect complexities of the processes of observing conclusions,
and hence cause the difficulty in this type of syllogisms.

If our analysis is correct, the complexity of diagrams could
make difficult the processes of extracting information. On the
other hand, our results of the total 31 syllogisms suggest that
3-Venn diagrams have inferential efficacy, while 2-Venn dia-
grams do not. This in turn suggests that conventional devices

such as shading and linking points could facilitate the pro-
cesses of combining information by means of superposition
of two diagrams. Thus, we could say that the availability of
the process of combining information in diagrams depends on
the complexity of the inference processes involved, whereas
the availability of the process of extracting information in dia-
grams depends on the complexity of the conventional devices
involved. Stenning and Oberlander (1995) point out that effi-
cacy of diagrams can be ascribed to “specificity” of diagram-
matic representations, and argue that diagrams could be effec-
tive because of their limited expressive power, in particular of
the inability to express indeterminate or disjunctive informa-
tion. In view of this, our findings are particularly interesting
since they show that conventional devices to deal with inde-
terminacy sometimes facilitate internal manipulations of dia-
grams, hence contribute to their efficacy.
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