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Significance

Adjusting vs. retaining global 
measures in analysis of brain MRI 
data has been a long-standing 
question and can have important 
implications for genomic studies 
of the cortex. Adjusting for global 
measures ensures that results 
for regions of interest are not 
confounded by overall larger 
brain size. However, adjusting for 
globals may throw away 
important signal when total and 
regional measures are 
correlated. We show that 
retaining vs. adjusting for global 
brain measures in genomic 
studies impacts gene discovery, 
particularly for fronto-parietal 
cortex. Understanding the 
genetic factors that contribute to 
expanded association areas in 
the human brain, such as the 
prefrontal cortex, can help 
provide mechanistic insight into 
higher human cognition and its 
unique development compared 
to other species.
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NEUROSCIENCE

Larger cerebral cortex is genetically correlated with greater 
frontal area and dorsal thickness
Carolina Makowskia,1 , Hao Wanga, Anjali Srinivasana, Anna Qia , Yuqi Qiub, Dennis van der Meerc, Oleksandr Freic, Jingjing Zoud, Peter M. Visschere, 
Jian Yangf , and Chi-Hua Chena,1
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Human cortical expansion has occurred non-uniformly across the brain. We assessed 
the genetic architecture of cortical global expansion and regionalization by comparing 
two sets of genome-wide association studies of 24 cortical regions with and without 
adjustment for global measures (i.e., total surface area, mean cortical thickness) 
using a genetically informed parcellation in 32,488 adults. We found 393 and 756 
significant loci with and without adjusting for globals, respectively, where 8% and 
45% loci were associated with more than one region. Results from analyses without 
adjustment for globals recovered loci associated with global measures. Genetic factors 
that contribute to total surface area of the cortex particularly expand anterior/frontal 
regions, whereas those contributing to thicker cortex predominantly increase dorsal/
frontal-parietal thickness. Interactome-based analyses revealed significant genetic 
overlap of global and dorsolateral prefrontal modules, enriched for neurodevelop-
mental and immune system pathways. Consideration of global measures is important 
in understanding the genetic variants underlying cortical morphology.

genomics | structural MRI | genome-wide association studies | population genetics |  
fronto-parietal cortex

The human cerebral cortex has undergone an extraordinary expansion compared to other 
mammalian species, mirroring the development of many complex traits unique to mod-
ern-day humans. The cerebral cortex is a layered, folded sheet of gray matter, and its size 
can be measured by surface area tangentially and thickness radially, with differential neu-
rodevelopmental programs shaping and regulating these two cortical measures (1). The 
product of these two measures roughly corresponds to measures of cortical volume (2). 
Surface area expansion in humans, particularly in functionally unique association areas, 
has undergone a 2,000-fold increase relative to mice, compared to an only threefold 
increase in cortical thickness (3). The prefrontal cortex in particular may have dispropor-
tionately expanded in humans compared to non-human primates (4). Evidence for dis-
proportionate scaling of prefrontal surface area with total brain size has also been shown 
through in vivo MRI within humans, particularly in youth (5). Motivated by this latter 
study and findings of cortical expansion observed across species, here we study phenotypic 
variation of the cortex captured by genetic information in humans. Differentiating between 
the genetic variants linked to regionalization and global size of the cortex in humans may 
give us insights into the functional specialization required in development to define unique 
brain regions that are important to our understanding of cognition and brain disorders.

Shared genetic influences between local and global measures of cortical anatomy are 
suggested by neuroimaging studies of genetic disorders and twins. For example, genetic 
conditions, such as large mutations caused by copy number variants (CNVs), have quite 
profound effects on both global and regional brain morphology and contribute to several 
neurodevelopmental conditions (6). Similarly, quantitative genetic analyses obtained from 
twin-based heritability estimates have suggested genetic overlap between regional surface 
area/thickness and global measures (7). However, it is unknown which genetic variants 
contribute to this overlap and how these genetic variants shape global and regional brain 
development. A study by Shin et al. began to address this question of the different infor-
mation that can be gleaned from the genetic architecture of global compared to regional 
features of the cortex, where they carried out genome-wide association studies (GWAS) 
in 23,000 individuals on the top two principal components of cortical surface area data 
(8). As expected, the first principal component largely captured global features of the 
cortex, whereas the second principal component captured occipital/visual cortex-specific 
surface area. According to this study, the genetic architecture of the first two principal 
components differentially associated with complex traits, such that the first “global” com-
ponent seemed to map onto the genetic architecture of general cognitive and learning 
ability, whereas the second “regional” occipital component had higher genetic correlations 
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with psychiatric disorders. It remains to be seen how the genetic 
architecture of global surface area compares and contrasts with 
other regions of the brain, particularly association cortical regions 
subserving complex or higher cognitive function (e.g., executive 
function, memory). Additionally, cortical thickness also shows 
unique regionalization patterns which shape the functional 
boundaries of the brain (9).

In this study, we assessed the relationship between global meas-
ures (e.g., total surface area and mean cortical thickness across the 
brain) and regional patterns of genetically informed brain morphol-
ogy, where brain regions were defined by hierarchical clustering of 
twin data as presented by our group previously (10–12). The genet-
ically informed brain parcellations applied to this study adhere to 
known genetic patterning of the cortex, including anterior/posterior 
and dorsal/ventral developmental axes of surface area and cortical 
thickness, respectively. To do so, we compared genetic variants and 
genes associated with 12 surface area and 12 cortical thickness 
regions from two sets of GWAS, with and without adjustment for 
global brain measures. Global adjustment is typically done in brain 
imaging studies to account for the fact that some individuals will 
have larger morphological features simply due to having a larger 
brain. We employed an interactome-based gene mapping approach 
to investigate the genetic overlap or separation in genes associated 
with global measures and different brain regions. Rather than the 
traditional approach of focusing on individual genes, network 
approaches focus on genes in the context of their molecular inter-
actions (interactome) that may more realistically reflect complex 
biological pathways of polygenic traits (13). We expect that global 
measures will have higher genetic overlap with association areas 
(e.g., prefrontal cortex) compared to primary sensory cortices (e.g., 
occipital cortex), given the disproportionate expansion of associa-
tion regions that contribute to the protracted course of human brain 
development and, in turn, higher cognitive function.

Results

Sample. Our discovery sample included brain imaging and genetic 
data from 32,488 individuals (mean age = 64.2 [range: 45.1 to 
81.8, SD: 7.5], %female=52.2) from the UK Biobank. We also 
included a sample of 9,136 children from the Adolescent Brain 
Cognitive Development (ABCD) Study® to assess generalizability 
of our findings. See Dataset S1 for demographics and descriptives 
of the regional brain data.

GWAS Analyses and Workflow. Twelve regions of interest were 
extracted per hemisphere based on two genetically informed atlases 
for cortical thickness and surface area. These atlases have been 
previously developed by our group (10, 11), using a data-driven 
fuzzy clustering technique to identify parcels of the human cortex 
that are maximally genetically correlated based on the MRI scans 
of over 400 twins.

All GWAS analyses were carried out on pre-residualized brain 
phenotypes, adjusted for age, sex, scanner site, a proxy of scan 
quality (FreeSurfer’s Euler number) (14), presence of a brain dis-
order, and the first 10 genetic principal components. See 
SI Appendix, Supplementary Methods and Results Materials and 
Methods for more details. We denote one set of analyses as GWASr 
for regional associations, which also adjusts for global measures 
(i.e., total surface area, mean whole brain thickness) in the pre-re-
sidualized regional brain phenotypes, and the second set of 
regional associations as GWASg+r, which includes global measures 
(i.e., does not adjust for globals). We also include GWAS of global 
measures (i.e., total cortical surface area, mean whole brain cortical 
thickness), which we denote as GWASg. Thus, in total we analyzed 

50 GWAS (24 GWASg+r, 24 GWASr, 2 GWASg). See Fig. 1A 
for a visualization of these different GWAS analyses.

Global Measures are Significantly Associated with Regional 
Phenotypes. We first estimated the effects of the two global 
measures and chosen covariates (age, sex, scanner, brain diagnosis, 
Euler number, 10 PCs) on our cortical phenotype data using 
four sets of tests. See SI Appendix, Supplementary Methods and 
Results Materials and Methods  for more details on these tests. 
AIC and BIC values were both smaller across all phenotypes in 
the full model compared to the reduced model which excluded 
global measures, suggesting that the full model including global 
surface area/thickness provided a significantly better fit to the 
cortical phenotype data. ANOVA F tests provided a similar 
conclusion, where the null hypothesis that the simpler (reduced) 
model is as good as the full model was rejected for all phenotype 
models. Finally, Least Absolute Shrinkage and Selection Operator 
(LASSO) consistently selected the global measures as an important 
contributor to our models for each cortical phenotype. We also 
ran LASSO easing restrictions and allowing the operator to select 
from all other 15 covariates in the model. This approach showed 
that age, sex, and the Euler number (a proxy of image quality) 
were important contributors to our models for nearly all cortical 
phenotypes, and scanner contributed notably to about half of the 
phenotypes. See Dataset S2.

Fig. 1. Methods workflow. Panel A: Three sets of GWAS on GWAS of global 
measures (GWASg), GWAS of 24 brain regions adjusting for global measures 
(GWASr) and GWAS of 24 brain regions not adjusting for global measures 
(GWASg+r). Panels B and C: Two sets of genetic correlation analyses with LDSC. 
Panel D: Interactome-based mapping of gene lists comparing GWASg and 
GWASg+r phenotypes. For select phenotype pairs, functional profiling was 
then carried out with g:Profiler for functional interpretation of meaningful 
gene clusters within the Venn Diagram, for example i. cell cycle-related 
annotations; ii. inflammatory pathways, such as processes involving Nuclear 
Factor Kappa B (NF-κB).

http://www.pnas.org/lookup/doi/10.1073/pnas.2214834120#supplementary-materials
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GWAS of Cortical Phenotypes for both GWASr and GWASg+r. 
We compared the number of significant loci associated with 
our cortical phenotypes for GWASr (Datasets S3 and S4) and 
GWASg+r (Datasets S3 and S5). In our latest work on the same 
sample (12), we reported 393 significant loci associated with our 
24 cortical phenotypes, after clumping with PLINK (15) (r2 = 0.1, 
distance = 250 kb) and thresholding at P < 5e-8, of which 361 loci 
had unique rsIDs (i.e., 8% duplicated loci). Further, for GWASg 
we found 27 and 20 variants significantly associated with total 
cortical surface area and mean cortical thickness, respectively. For 
GWASg+r, we obtained 756 significant loci across the 24 cortical 
phenotypes, of which 419 were unique; in other words, 45% 
were duplicated loci with the same rsIDs, due to the recounting 
of loci underlying global measures. Significant loci from GWASg 
that were also associated with multiple brain regions are listed 
in Dataset S6. Across the unique genome-wide significant loci 
for GWASr and GWASg+r, 267 and 225 were found to be LD-
independent by clumping all phenotypes together in PLINK (15) 
(r2 = 0.1, distance = 250 kb). Miami plots comparing these two 
GWAS approaches, as well as number of hits per region, can be 
found in Fig. 2 A and B for area and thickness, respectively.

Extending our previous work to assess generalizability of results 
from GWASr to an independent sample (12), we also incorporated 
a neurodevelopmental sample of diverse ancestry using ABCD 
Study data. We show that the majority of genome-wide significant 
SNPs from our discovery cohort are still significant after including 
ABCD Study participants in a meta-analysis (Dataset S7). We also 
found high correspondence between samples as indexed by sign 
concordance rate (GWASr: 0.93, P < 2.2e-16; GWASg+r: 0.88, 

P < 2.2e-16; GWASg: 0.86, P = 7.43e-06). The proportion of 
significant SNPs from the UK Biobank (UKB) sample that 
remained significant at P < 0.05 were as follows for the three 
GWAS methods: GWASr proportion: 0.57, P = 0.0097; 
GWASg+r: 0.41, P = 3.03e-05; and GWASg: 0.30, P = 0.02.

Gene set analysis results for both GWASr and GWASg+r can 
be found in Fig. 3 A and B, respectively (Datasets S8 and S9). 
Gene set analysis with GWASg+r revealed additional terms, par-
ticularly for surface area, related to cancer pathways (which can 
also be interpreted as pathways linked to canonical cell cycle path-
ways), neurogenesis, and longevity, that were not found in 
GWASr. Additionally, the cancer-associated terms were also asso-
ciated with the GWASg results of total surface area. Many of these 
enrichments remained significant after filtering the background 
gene sets for genes expressed in the brain based on the Human 
Protein Atlas (16), suggesting many of the biological pathways 
uncovered are specific to brain tissue. SNP-based heritability range 
estimates from LDSC are as follows and can be found in Dataset 
S10: GWASr, area from 0.23 to 0.36; GWASr, thickness from 
0.15 to 0.25; GWASg+r, area from 0.35 to 0.39; GWASg+r, thick-
ness from 0.21 to 0.31. Consistent with previous work, after 
regressing out globals, heritability estimates significantly drop on 
average by 0.09 (25.3%) and 0.07 (25.6%) for area and thickness, 
respectively. This can be compared to a drop of ~0.2 (50%) and 
~ 0.1 (27%) using twin heritability estimates (7).

As has been shown previously (8, 17), we observed large effects 
in global surface area for loci within the 17q21.31 inversion 
region. This signature on chromosome 17 was seen across all 12 
surface area phenotypes for GWASg+r analyses but not for 

Fig. 2. Miami plots colored by atlas region for Panel A. surface area and Panel B. cortical thickness. Top half of Miami plot for GWASr and bottom half for GWASg+r. 
Manhattan plots for global surface area and mean cortical thickness are included in the top right of each panel. A number of significant loci (defined by plink, r2 = 0.1, 
250 kb) for each analysis are included in each subplot. Numeric and colored labels on brain maps correspond to the same number/color of each subplot.
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GWASr, emphasizing the additional signal that global brain meas-
ures offer in detecting genetic loci shaping the brain. The most 
significant loci associated with any particular region also varied 
by approach; for GWASr, the strongest signal was detected for 
rs7182018 (P = 2.2e-60, variance explained 0.83%) associated 
with pars opercularis area within 15q14; for GWASg+r, 
rs55751924 (P = 1.33e-61, variance explained 0.84%) associated 
with anteromedial temporal area on 17q21.31; and for GWASg, 
rs593720 (P = 4.94e-33, variance explained 0.44%) associated 
with total surface area also within 17q21.31. Intriguingly, we did 
not see a strong signal on 15q14 associated with global area, 
despite its contribution to the surface area of pars opercularis of 
the inferior frontal cortex. For mean cortical thickness, the strong-
est association was found with rs694611 (P = 2.10e-17, variance 
explained 0.22%) on chromosome 3, a genetic locus that was also 
found to be significantly associated with the thickness of most 
phenotypes in GWASg+r. This SNP lies within the RPSA gene, 
which has recently been shown to have an important role in early 
cortical development, particularly for dendritic spine morphology 
and cortical layering (18).

Comparing Genetic Architectures to quantitatively assess the 
Contribution of Global Measures.
Comparing GWASg with GWASg+r. We calculated LD score regression 
(LDSC)-based genetic correlations (rg) between GWAS of each 
global measure (GWASg: total surface area and mean thickness) 
and GWASg+r results for the 24 cortical phenotypes to better 
understand the contribution of global measures to regional brain 
morphology (Fig.  1B). As can be seen in Fig.  4A, the highest 
genetic and phenotypic correlations with global area were found 
with anterior/frontal regions; and for global thickness, highest 
correlations were with dorsal regions, specifically fronto-parietal 
(rg and phenotypic correlation ranges, respectively, for i) global 
area with regional area: 0.80 to 0.93, 0.82 to 0.92; ii) global 

thickness with regional thickness 0.71 to 0.92, 0.69 to 0.88; all 
P’s < 4e-4) (Fig. 4A and Dataset S11). We also ran this genetic 
correlation analysis for a subsample of the ABCD dataset (N 
= 5,360 of predominantly European ancestry) (Dataset  S11), 
finding similar trends in genetic correlations (e.g., highest 
correlations between total surface area and anterior regions and 
lowest for occipital area). Note the small sample size of ABCD 
yields more noise in genetic correlation estimates, thus cautious 
interpretation is warranted. SI Appendix, Fig. S1 shows the genetic 
and phenotypic correlations between global area and regional 
thickness (rg range: −0.20 to −0.55; phenotypic r range: −0.08 to 
−0.39) and global thickness and regional area (rg range: −0.26 to 
−0.36; phenotypic r range: −0.08 to −0.20; all P’s < 4.e-4). There 
was strong correspondence between corresponding genetic and 
phenotypic correlations (SI Appendix, Fig. S2).
Comparing GWASr and GWASg+r results. We also used LDSC to 
compute genetic correlations between GWASr and GWASg+r 
results for each of the 24 brain regions as another way of 
understanding and visualizing the genetic contributions of global 
measures to regional brain morphology. Genetic correlation 
results can be found in Fig. 4B and Dataset S10, where we find 
genetic correlations between GWASr and GWASg+r of the same 
phenotypes range from 0.26 to 0.57 for surface area and 0.39 to 
0.69 for cortical thickness (mean rg: 0.49, mean SE: 0.042, all P’s < 
4e-7). Generally, there were higher genetic correlations for cortical 
thickness compared to surface area, and higher associations were 
found for primary sensory/motor regions compared to association 
cortex and frontal regions. This approach gave expected results, with 
a reversal of patterns shown in the section above. For example, of the 
area phenotypes, occipital area has the highest rg between GWASr 
and GWASg+r but lowest rg between GWASg and GWASg+r, 
suggesting that occipital area is least affected by adjustment for total 
surface area. In other words, genetic factors that influence occipital 
area are less similar than those that influence total surface area.

Fig. 3. Bonferroni-corrected terms from gene set analysis (P < 0.05, unless otherwise specified) for Panel A. GWASr (adapted from ref. 12) and Panel B. GWASg+r. 
Bars are color-coded by cortical region, where the region numbers included in the legend correspond to region numbers in Fig. 2. Results above the horizontal 
black line represent surface area regions and regions below for cortical thickness. Hashtags (#) in Panel B reflect terms that are also significantly associated 
with global surface area. For readability, only terms with Bonferroni-corrected P < 0.01 are displayed in Panel B. See full list of Bonferroni-corrected terms  
(P < 0.05) in Dataset S9.
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For completeness, we also looked at the phenotypic correlations 
between all 24 regions comparing GWASr and GWASg+r, which 
can be found in Fig. 4B. We have previously published the phe-
notypic correlations for GWASr (11, 12, 19). Notably, much more 
uniform phenotypic correlation structures emerge when globals 
are not regressed out, likely due to the shared global genetic var-
iants underlying many regions. Specifically, we observe largely 
positive correlation structures within a trait (e.g., one area region 
with another area region), but negative correlations across traits 
(e.g., one area region with a thickness region) (Fig. 4B).

Overlap in Genetic Modules between Global and Regional Brain 
Measures. We carried out a network separation analysis adapted 
from Menche et al. (20) to see whether the genes underlying global 
measures (i.e., from GWASg) were overlapping or separated from 
genes underlying regional brain measures (i.e., from GWASg+r). 
This network approach was motivated by the idea that genes of 
polygenic traits do not operate in isolation, but in combination 
and interaction with other genes. We harnessed data from a 
protein–protein interaction network or “interactome” present in 
the STRING database (21) and define genetic modules based on 
the premise that protein products of genes that are associated with 
a particular trait tend to interact with each other and converge 
on related biological and functional networks, rather than being 
randomly spread throughout the interactome (20, 22). We assessed 
the degree of overlap in genetic modules from GWASg compared 
to GWASg+r by calculating separation (SAB) and mean shortest 
distance (dAB) between each global (A) and regional brain region 
(B) pair. Calculations for these metrics are outlined in Materials 
and Methods. 

We used Multi-marker Analysis of GenoMic Annotation 
(MAGMA) to define genes included in the genetic modules for 
global and regional phenotypes. SNPs were selected that were 
within exonic, intronic, and untranslated regions as well as SNPs 

within 50 kb upstream and downstream of the gene, a window 
size that has been used in previous cortical GWAS (17). A sum-
mary of associated MAGMA genes is included in Dataset S12, 
and lists of genes and statistics are found in Datasets S13 and S14 
for GWASr, GWASg, and GWASg+r. Consistent with the genetic 
correlation patterns, genetic modules between global and regional 
phenotypes, for both area and thickness, showed significant over-
lap, as demonstrated by negative separation values (sAB z-scores, 
area range: −3.84 to −14.70; thickness range: −4.13 to −14.51; all 
p’s < 2e-5). See Dataset S15 for separation and shortest distance 
statistical results. Overlap in genetic modules was particularly high 
between global area and area of prefrontal regions (e.g., orbitof-
rontal, pars opercularis), as well as between global thickness and 
thickness of fronto-parietal regions (e.g., dorsolateral prefrontal, 
inferior parietal), consistent with genetic correlation results pre-
sented in Fig. 4A. Genes that were mapped by MAGMA but not 
found in the STRING interactome database are excluded and 
listed in Dataset S16; the function of many of these excluded genes 
remains largely unknown as they are pseudogenes or non-coding 
RNA genes. The genetic overlap between global (GWASg) and 
regional measures (GWASg+r) is displayed for two exemplary pairs 
in Fig. 5: i) global surface area and dorsolateral prefrontal area and 
ii) global thickness and dorsolateral prefrontal thickness. 
Functional profiling of gene lists from each separate module (e.g., 
brain region) and overlapping genes was completed with g:Profiler 
(23) and revealed many overlapping genes were important in 
immune function and early neurodevelopmental processes. 
Network figures were created using Cytoscape (24) (Fig. 1D).

In addition to using gene lists generated by MAGMA, we also 
computed separation statistics using genes mapped by Functional 
Mapping and Annotation of Genome-Wide Association Studies 
(FUMA), which includes intergenic mapping (Datasets S18–S20). 
On average, about 55% of MAGMA genes were found to be 
overlapping with the FUMA mapped genes, where the lowest 

Fig. 4. Phenotypic and genotypic relationships. Panel A: Genetic (top two rows) and phenotypic (bottom two rows) correlations between global measures 
(GWASg for genetic correlations) and regional measures not adjusting for global measures (GWASg+r for genetic correlations). Panel B: Lower triangle of matrix 
displays phenotypic correlations when globals are regressed out, whereas upper triangle shows phenotypic correlations when globals are not regressed out 
during pre-residualization. The diagonal labels reflect genetic correlations between GWASr and GWASg+r results, which are also depicted in the blue color bar 
to the right of the matrix.

http://www.pnas.org/lookup/doi/10.1073/pnas.2214834120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214834120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214834120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214834120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214834120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214834120#supplementary-materials
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overlap was found for pars opercularis area with 11.1% overlap 
and the highest for motor-premotor thickness with 84.5% overlap 
(Dataset S21). Of these overlapping genes, on average 66% of 
genes were identified through positional mapping in FUMA. 
Although there is no complete overlap between MAGMA and 
FUMA gene lists, our separation results yield similar results and 
interpretation across both gene mapping methods (Dataset S15).

Finding Common Genetic Loci between the Two Sets of Analyses. 
In addition to assessing overlap in genetic modules between traits 
with an interactome-based mapping approach, we also compared 
the list of significant loci (clumped with PLINK (15) with r2 = 0.1, 
distance = 250 kb, P < 5e-8) between GWASr and GWASg+r. We 
first identified common SNPs based on shared rsID by region, 
which identified 31 SNPs. Given that significant SNPs in LD 
with the identified SNPs may also be shared between analyses, 
we also proceeded to use conditional and joint (COJO) analysis 
(25) of GWAS summary statistics implemented in Genome-wide 
Complex Trait Analysis (GCTA) to map shared SNPs for each 
cortical phenotype. We defined SNPs as being shared between 
the two approaches as those that were no longer genome-wide 
significant (i.e., P > 5e-8) in GWASg+r when conditioned on 
the significant loci defined by the GWASr analysis of region k. 
There were 70 SNPs identified through this approach, signifying 
the most “regional” SNPs, which were mapped to genes involved 
in immune-related pathways and cellular function. These SNPs 
are presented in Dataset S17, and associated gene set results in 
SI Appendix, Fig. S3. As an additional approach to quantifying 
overlap between the three GWAS methods (GWASr, GWASg+r, 
and GWASg), we compared lists of SNPs which included those 
in high LD (r2 > 0.8) within 5 Mb of the main genome-wide 
significant SNPs for each of the area and thickness phenotypes 
(SI Appendix, Figs. S4 and S5). These results show patterns of 
both unique and overlapping genetic variants across methods 
underlying all regions and highlight in particular larger overlap 
between anterior/frontal regions and global surface area.

Sensitivity Analyses. To ensure our genetic correlation estimates 
were not biased by the inclusion of a given region of interest 
in our global measure, we estimated the genetic correlation 
between GWASg+r for dorsolateral prefrontal area and GWASg 

for a modified global surface area measure where we excluded 
dorsolateral prefrontal area from the calculation. Results were 
highly similar (rg between dorsolateral prefrontal and original global 
measure: 0.93 [s.e.: 0.013]; rg between dorsolateral prefrontal and 
modified global measure excluding dorsolateral prefrontal area: 
0.91 [s.e.: 0.0093]). Finally, to address the possibility that some 
regions scale nonlinearly with the global brain measure, we re-ran 
all GWASr after log-transforming both the regional and global 
measures. Across the 24 regions, we found that genetic correlations 
between these newly generated log-transformed results and our 
original results approximated 1 (Dataset S22). Given the very 
high genetic overlap between the two methods, we can conclude 
that our original approach of treating global measures as a linear 
covariate is appropriate for our research question.

Discussion

This work shows the importance of considering global cortical 
measures in understanding the genetic variants underlying cortical 
morphology. Total surface area and mean cortical thickness are 
important contributors to phenotypic variation across all 24 brain 
phenotypes as identified by various statistical model fits, including 
LASSO. We show that human cortical area expansion is most 
associated with anterior/frontal expansion, and thicker cortex is 
most associated with dorsal/fronto-parietal thickening across indi-
viduals. The lowest genetic overlap was found between total surface 
area and occipital area, concordant with previous reports using 
transcriptome data in humans (26, 27) and non-human primates 
(28) to show that the genetic patterning of the visual cortex is 
most distinct from other cortical regions. Given the higher genetic 
overlap we found between global measures and association cortex 
(e.g., fronto-parietal regions), we investigated this further with a 
database of protein–protein interactions to understand the bio-
logical pathways that may contribute to the unique expansion of 
brain regions subserving cognitive functioning. Our interac-
tome-based approach highlights the important information that 
can be gleaned from looking at the interactions between gene 
products rather than individual gene lists to assess shared genetic 
architecture and, in turn, shared biological mechanisms, between 
two traits. Further, mapping such gene networks and their inter-
actions can help us pinpoint specific functional modules that are 

Fig. 5. Venn Diagrams of overlap in genetic modules for two exemplary pairs. Panel A: global surface area and dorsolateral prefrontal cortical area, and Panel B: 
global thickness and dorsolateral prefrontal thickness. Nodes in the graph represent genes, and edges (gray lines) represent connections between genes as 
defined by the STRING interactome.

http://www.pnas.org/lookup/doi/10.1073/pnas.2214834120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214834120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214834120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214834120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214834120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2214834120#supplementary-materials
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important in understanding and treating neuropsychiatric disor-
ders (22, 29, 30). Finally, our study harnesses the strengths of 
using genetically informed cortical atlases (10, 11, 31), where we 
have shown that area measures of these cortical regions have higher 
heritability and discoverability compared to other atlases in pre-
vious work (12, 32). These genetically informed atlases represent 
a parsimonious set of cortical genetic regions or units that can be 
confidently defined given the current spatial resolution of MRI, 
as the boundaries and number of regions were data-driven and 
entirely determined by clustering algorithms. These cortical 
regions are relatively large compared to other atlases but still 
remain biologically plausible given that arealization is primarily 
genetically determined by signaling molecules and morphogens, 
which show a large spatial distribution in animal models (1, 33).

Our work highlights both pros and cons for the use of global 
measures in GWAS models. The benefits of adjusting for global 
brain measures allow us to identify variants associated with 
regional measures relative to global measures. On the other hand, 
adjusting for global measures may reduce signals of interest, espe-
cially for regions such as the prefrontal cortex that are highly 
genetically correlated with global measures. Indeed, the strong 
impact of global brain measures on regional brain results has been 
demonstrated in association with many copy number variants (6), 
which some of our common variants may also tag. Adjustment 
for global measures may also introduce a potential collider bias in 
the case that global measures along with genetic variants directly 
affect regional morphology (34); exploration of more complex 
statistical models to capture the potential bidirectional relationship 
between regional and global cortical morphology is warranted in 
future studies.

Many of the overlapping genes that were linked to both global 
and regional brain measures seem to be important in regulating 
immune function. The immune system has increasingly been rec-
ognized as a key player in early brain development (35, 36). In 
particular, the convergence of neurodevelopmental and immune 
function processes in brain regions with protracted developmental 
trajectories (e.g., prefrontal cortex) (37, 38) may help us contex-
tualize our results of the genetic mechanisms contributing to the 
unique expansion of these brain regions. Indeed, we found genes 
involved in immunoregulation to be shared between surface area 
of the brain globally and dorsolateral prefrontal cortex regionally, 
such as the NF-κB pathway which responds to brain injury but 
also plays a role in brain plasticity and neurogenesis (39). The role 
of the immune system, particularly microglia and other cytokines, 
in early prefrontal cortical development is thought to be impor-
tant in shaping excitatory/glutamatergic neural circuits, where 
disruptions can confer later vulnerability to known neurodevel-
opmental disorders such as autism and schizophrenia (40). We 
also found overlapping genes between global area and dorsolateral 
prefrontal cortex involved in GABAergic signaling, and for the 
growth factor receptor EGFR, which plays an important role in 
maintaining the progenitor pool in early brain development at a 
time when both neuronal and glial cells are being generated (41). 
The functional profiling of these overlapping genes is consistent 
with the hypothesis that immune genes involved in prefrontal 
cortical development contribute to synaptic pruning and myelin 
growth events (42).

Shared genes (e.g., EIF4G1, PSMD2, RPSA, WNT3, WNT9B) 
between global thickness and dorsolateral prefrontal thickness 
revealed an intriguing overlap in processes involved in Slit/Robo 
and WNT signaling, important for axon guidance and anterior/
posterior patterning of the cortex, respectively (1, 43). Collectively, 
these genes were also tied to molecular processes of dopaminergic 
differentiation, which provides an additional layer of evidence that 

may help contextualize our finding from gene set analyses sug-
gesting enrichment for genes involved in tangential migration 
underlying dorsolateral prefrontal thickness.

Our results showcase how adjusting for global brain measures 
in GWAS models can change the interpretation of the biological 
pathways underlying regional brain morphology. Our gene set 
analyses exemplify this, with common and unique biological pro-
cesses associated with each region between the two GWAS 
approaches. Notably, the common processes are related to neu-
rodevelopment. On the other hand, we find a large proportion of 
gene set terms associated with cancer and cell signaling pathways 
underlying many of our brain phenotypes in GWAS analyses that 
retain the global signal (e.g., do not adjust for global measures), 
which overlaps with the gene set terms enriched for global surface 
area (indexed by hashtags # in Fig. 3B). Several genes contributed 
to these cell signaling pathways, which are also observed in data-
bases related to cancer, such as FOXO3, PIK3CD, AKT3, and 
TCF7L1. These genes are relevant to neurodevelopment as they 
are involved in general cell cycle maintenance processes, such as 
TCF7L1 for regulation of cell cycle genes (44), and PIK3CD play-
ing a role in signaling cascades involved in cell growth, survival, 
and proliferation (45).

Our findings also highlight the importance of studying inver-
sion polymorphisms, particularly on 17q21.31, when mapping 
brain morphology. Consistent with Shin et al.’s GWAS findings 
of the first principal component explaining a large proportion 
of variance in surface area data (8), we also found an enrichment 
of SNPs associated with global surface area located on chromo-
some 17. Global expansion of the brain and association cortex 
in early development could be enriched for genes linked to the 
17q21.31 inversion region. For instance, we see six shared genes 
in this inversion polymorphism region between global and dor-
solateral prefrontal area (i.e., SPPL2C, MAPT, STH, KANSL1, 
ARL17B, LRRC37A), which together are involved in morphol-
ogy of apical dendritic contacts and, in turn, neuronal commu-
nication. Four of these six genes show stronger effects (i.e., 
explain more variance) in dorsolateral prefrontal area compared 
to global area, supporting the idea that genes in the 17q21.31 
inversion region may contribute to the disproportionate expan-
sion of prefrontal cortical regions.

Genetic correlations between global measures and individual 
brain regions recapitulated cortical hierarchy and complemented 
our previous work (10–12) and that of others showing dispropor-
tionate expansion of association cortical areas with larger brain 
size (5). We show once again an anterior/posterior gradient of 
genetic correlations with total surface area and regional area, 
alongside a dorsal/ventral pattern of correlations with mean cor-
tical thickness and regional thickness. The latter thickness gradient 
has also been independently demonstrated in a twin study of cor-
tical topological organization (46). Altogether our results suggest 
the important role of global measures in understanding this known 
cortical hierarchical structure.

We acknowledge several limitations in our current study. Firstly, 
we include several covariates in our models that do correlate with 
global brain measures, namely age and sex. It is well-established 
that males tend to have larger brain size, thus regressing out sex 
may contribute to removal of some global effects, even in our 
GWASg+r models. Including age as a covariate may also have a 
similar effect, especially for cortical thickness, although the major-
ity of our discovery sample is within an age range that precedes 
steep declines in cortical thinning, and our results still hold when 
including a neurodevelopmental sample in a meta-analysis. 
Secondly, our discovery sample is of European descent, although 
we have previously shown and demonstrate once again in this 
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work, that GWAS results largely replicate in a sample of diverse 
ancestry. Thirdly, we acknowledge that our interpretation of results 
is impacted by our chosen gene mapping strategy and interactome 
database selection. The method we used, MAGMA, links genes 
based on their spatial proximity to a SNP, but may not always be 
the most relevant gene (47), although there have been reports for 
specific traits where the likelihood of the nearest gene being causal 
is high (48). Accurate gene mapping is a challenge in the field of 
genetics more broadly (49), but we have included results from 
other gene mapping strategies in our supporting information to 
offer readers resources from other tools, and found that these 
alternative mapping strategies provided similar interpretation of 
results.

Given that many brain imaging and genetics studies of struc-
tural brain features regress out global measures (50, 51), this study 
provides a more nuanced view of how global measures add to our 
interpretation of the genetics underlying brain morphology. The 
overlap in genetic architecture between global measures and mul-
tiple distributed brain regions could also be further elucidated 
with multivariate methods in future work, given its success in 
boosting discovery of novel genetic variants underlying cortical 
morphology (52–54). Understanding global as compared to 
regional patterns of cortical morphology can have important 
implications for our understanding of higher cognitive function 
(55) and, in turn, psychiatric and neurological disorders that 
impact such cognitive processes.

Materials and Methods

Sample. Imaging and genomics data were taken from participants of the UK 
Biobank (UKB) population cohort, obtained from the data repository under 
accession number 27412 (56–59). All participants gave written informed consent 
(59). The composition, setup, and data gathering protocols of the UKB have been 
extensively described elsewhere (56–58). For this study, White Europeans were 
selected that had undergone the neuroimaging protocol. We excluded individuals 
with bad structural scan quality as indicated by an age and sex-adjusted Euler 
number (14) more than three SDs lower than the scanner site mean. Our final 
sample included 32,488 individuals (mean age = 64.2 [range: 45.1 to 81.8, 
SD: 7.5], %female = 52.2).

We also conducted an additional analysis to see whether results generalize to 
a neurodevelopmental cohort. Neurodevelopmental data came from 9 to 10-y-
old children from the ABCD Study (abcdstudy.org) (60, 61). The ABCD Study is 
an ongoing longitudinal multisite study within the United States that is publicly 
available through the National Institute for Mental Health (NIMH) Data Archive 
(NDA). Exclusion criteria include 1) lack of English proficiency; 2) presence of 
severe sensory, neurological, medical, or intellectual issues that would interfere 
with the child’s ability to comply with the protocol; and 3) an inability to complete 
an MRI scan at baseline. Baseline data from ABCD release 2.0.1 were used. We 
included all individuals with imaging and genomics data that passed quality 
control (N = 9,136; mean age = 9.93 [range: 9.0 to 10.9, SD = 0.62], % female: 
47.6, % European descent: 58.7, % admixed: 41.3). Each site obtained approval 
from their Institutional Review Board, and all participants underwent verbal and 
written consent/assent. All information relevant to the ABCD Study is outlined 
in SI Appendix.

MRI Processing and Atlas Definition. T1-weighted scans were collected from 
three scanning sites throughout the United Kingdom on identical Siemens Skyra 
3T scanners with a 32-channel receive head coil. The UKB core neuroimaging 
team has published extensive information on the applied scanning protocols 
and procedures (58). The T1 scans were obtained from the UKB data repositories 
and stored locally at the secure computing cluster of the University of Oslo. The 
standard “recon-all -all” processing pipeline of Freesurfer v5.3 was applied to 
perform automated surface-based morphometry segmentation (62). Both sur-
face area and cortical thickness are defined at the vertex level, with surface area 
extracted from the white surface, and cortical thickness calculated as the distance 
between the white surface and pial surface.

Twelve regions of interest were extracted per hemisphere based on two genet-
ically informed atlases for cortical thickness and surface area. These atlases have 
been previously developed by our group, using a data-driven fuzzy clustering 
technique to identify parcels of the human cortex that are maximally genetically 
correlated based on the MRI scans of over 400 twins. No spatial information was 
used in creating the atlases. The only information used in deriving the parcels was 
the genetic correlations of cortical thickness or surface area among all vertices. 
More details can be found in our previous work (10, 11). We combined cortical 
phenotypes across hemispheres, as we have previously presented (12).

Before running the GWAS on each measure, we regressed out age, sex, scan-
ner site, a proxy of scan quality (FreeSurfer´s Euler number) (14), and the first 
10 genetic principal components from each measure. We also regressed out 
whether or not the individual had a brain diagnosis based on ICD10 diagnos-
tic information collected by the UKB (https://biobank.ndph.ox.ac.uk/showcase/
field.cgi?id=41202). Individuals were classified as having a brain diagnosis if 
they met criteria for at least one class F (mental and behavioral disorders) or 
class G (disorders of the nervous system) diagnosis, with the exception of G56-
carpal tunnel syndrome, which is an extremely common condition and thus we 
did not consider it as a neurological diagnosis. Approximately, 8% of our UKB 
sample were classified as having a mental/behavioral or neurological disorder. 
Subsequently, we applied a rank-based inverse normal transformation to the 
residuals of each measure, ensuring normally distributed input into each GWAS.

We denote one set of analyses as GWASr for regional associations only after 
adjusting for global measures (i.e., total surface area, mean whole brain thickness) 
in the pre-residualized phenotypes, and the second set as GWASg+r, which does 
not adjust for globals (Fig. 1A).

Contributions of Global Measures to Model Fits per Phenotype. Four sets 
of tests were used to compare model fits when including and excluding global 
measures for our cortical phenotypes. These models all included the 15 covariates 
outlined above (age, sex, scanner, brain diagnosis, Euler number, 10 PCs). First, 
the Akaike Information Criterion (AIC) was applied (63). AIC is often used by step-
wise variable selection models and estimates the relative amount of information 
lost by a given model. We then applied the Bayesian information criterion (BIC) 
(64), which is another criterion for comparing regression models. For both AIC 
and BIC, the smaller the value, the better the model. Next we used an ANOVA F 
test, which compares a full model and its reduced model, with the null hypothesis 
that the simpler (reduced) model is as good as the full model. Finally, we applied 
the Least Absolute Shrinkage and Selection Operator (LASSO) (65), which uses 
cross-validation to calculate the mean square error (MSE) for every combination 
of predictors and then selects the best regression model with the minimum MSE. 
We first fixed all 15 covariates or predictors, to see if LASSO would select the global 
variable (mean thickness or total surface area) into the best model. Finally, this 
restriction was released to allow LASSO to select from all 16 predictors.

Genotype Quality Control and Imputation. The UKB v3 imputed data were 
used, which has undergone extensive quality control procedures as described by 
the UKB genetics team (59). After converting the BGEN format to PLINK binary 
format, additional standard quality check procedures were carried out, including 
removal of single nucleotide polymorphisms (SNPs) with low imputation qual-
ity scores, filtering out individuals with more than 10% missingness, SNPs with 
more than 5% missingness, and SNPs failing the Hardy-Weinberg equilibrium 
test at P = 1*10−6. A minor allele frequency threshold of 0.01 was used, leaving 
7,853,566 SNPs. To further account for population substructure, we used results 
from UKB-specific principal components analysis (PCA), which were generated 
with flashPCA (66).

GWAS of Cortical Phenotypes for both GWASr and GWASg+r. We used fast-
GWA implemented in GCTA (67), a mixed linear model-based tool, that controls 
for population stratification by principal components and takes into account 
relatedness using a sparse genetic relationship matrix. This method extends 
linear mixed model-based association analysis for use of biobank-scale data in 
a resource-efficient manner. The genome-wide significant loci were defined by 
clumping in PLINK (15) (r2 = 0.1, distance = 250 kb) and thresholded at P < 5e-8. 
Hits corrected for multiple comparisons can be found in our previous work (12) 
and in Dataset S3.

We then computed genetic correlations using LDSC (68) per region between 
GWASg and GWASg+r (Fig. 1B). We also computed genetic correlations per region 

https://www.abcdstudy.org
http://www.pnas.org/lookup/doi/10.1073/pnas.2214834120#supplementary-materials
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=41202
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=41202
http://www.pnas.org/lookup/doi/10.1073/pnas.2214834120#supplementary-materials
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between GWASr and GWASg+r summary statistics, where only the former set of 
GWAS regresses out the global signal (Fig. 1C).

Functional Follow-Up with FUMA. We used the web tool Functional Mapping 
and Annotation of Genome-Wide Association Studies (FUMA) (https://fuma.
ctglab.nl/) (69) to conduct a generalized gene set analysis using MAGMA within 
FUMA (70) to generate gene lists from GWASr and GWASg+r results, as well as 
gene lists for global area and thickness. For each gene, SNPs were selected that 
were within exonic, intronic, and untranslated regions as well as SNPs within 50 
kb upstream and downstream of the gene, a window size that has been used 
in previous cortical GWAS (17). We used the 19,241 protein-coding genes in 
MAGMA in our main analysis. The gene-based P-value was calculated based on 
the mean of the summary statistic (χ2 statistic) of GWAS for the SNPs in a gene 
(70). The P-value significance threshold was determined using the Bonferroni 
method, 0.05 divided by the number of genes (19,241), which is 2.6 × 10−6. 
The genes for GWASr and the global measures have been previously reported 
in Makowski et al. (12). Gene set enrichment analysis using MAGMA genes was 
carried out with 15,485 gene sets from MsigDB v6.2. An additional analysis was 
carried out filtering the background gene sets for genes expressed in the brain 
using the Human Protein Atlas (16) (http://proteinatlas.org).

We also used FUMA to annotate significant SNPs from GWASr, GWASg, 
and GWASg+r, using positional, eQTL, and chromatin interaction mapping. 
Summaries and details of these gene lists can be found in SI Appendix (MAGMA: 
Datasets S12–S14; FUMA: Datasets S18–S20). Additional information on these 
three mapping strategies is as follows:

i. �Positional mapping of SNPs, whereby SNPs within a 10 kB window from 
known protein-coding genes in the human reference assembly (GRCh37/
hg19) are mapped;

ii. �eQTL mapping whereby allelic variations at a SNP are significantly linked to 
expression of a gene, where we considered eQTLs within cortical structures 
from GTEx v8, the UK Brain Expression Consortium (http://www.braineac.org/), 
the Common Mind Consortium (71), and PsychENCODE (72) (http://resource.
psychencode.org);

iii. �Chromatin interaction mapping, to assess interactions between chromatin 
state within 200 bp accessible for transcription and other regions of the 3D 
genome, using data from dorsolateral prefrontal cortex and neural progenitor 
cells (GSE87112), PsychENCODE, and adult and fetal cortex (73).

Identifying Overlap in Gene Modules between Global and Regional GWAS 
Results. We quantified the genetic overlap between global area/thickness and 
each of the brain regions using the human protein interactome from STRING 
(a database of protein–protein interaction networks) (21) and the genes we 
identified through MAGMA for each phenotype to create genetic modules for 
each brain trait. This network-based mapping approach can provide more biolog-
ically meaningful information compared to simply looking at overlapping genes 
between two traits. STRING consists of both physical and functional interactions, 
derived through co-expression, biological knowledge databases, and computa-
tional techniques. Interactions are scored based on accumulation of different 
types of evidence (21). In our analysis, we used interactions classified as “high 
confidence” (combined score > 0.7), for the human interaction version 11.0, 
containing 17,185 proteins and 420,534 interactions (20).

We assessed whether the genes underlying global measures were overlapping 
or separated from genes underlying regional brain measures (i.e., from GWASg+r) 
by using a network separation analysis adapted from Menche et al. (20). First, we 
calculated the mean shortest distance, dAB, between each global (A) and regional 
brain region (B) pair, as well as the shortest distance between genes within each 
of the brain phenotype modules (dAA and dBB). To take into account the size of each 
individual module, we calculated separation (SAB) between global and regional 

module pairs with the following formula: SAB = dAB − ((dAA + dBB)/2). To assess 
whether global and regional genes demonstrated more significant overlap than 
expected by chance, 500 random gene sets with network degree-matched genes 
(i.e., genes with the same number of interactions) as the initial test set were 
generated to yield a distribution from which test statistics could be calculated 
from, similar to work from our group (22) and others (20). In addition to using 
gene lists generated by MAGMA, we also computed separation statistics using 
genes mapped by FUMA, which includes intergenic mapping (Datasets S18–S20). 
Visualization of results was done through Cytoscape (24), and functional profiling 
was completed with g:Profiler (23) (Fig. 1D).

Data, Materials, and Software Availability. All data needed to evaluate 
the conclusions in the paper are present in the paper and/or the SI Appendix. 
UKB data were provided by the public UK Biobank resource. All researchers 
who wish to access the research resource must register with UK Biobank by 
completing the registration form in the Access Management System (https://
www.ukbiobank.ac.uk/enable-your-research/register). ABCD Study data (https://
abcdstudy.org) were processed from the raw structural imaging data held in 
the NDA. The ABCD data repository grows and changes over time. The ABCD 
data used in this report came from ABCD Collection Release 2.0.1, which can 
be found as an NDA Study with DOI: 10.15154/1504041 (74). Brain imaging 
phenotypes derived from this collection can be found in the NDA Study with 
DOI: 10.15154/1523026 (75).  Imaging and genomics data were taken from 
participants of the UKB population cohort, obtained from the data repository 
under accession number 27412 (76).
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