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Type Ia Supernova Intrinsic Magnitude Dispersion and the Fitting of

Cosmological Parameters

A. G. Kim

Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

agkim@lbl.gov

ABSTRACT

I present an analysis for fitting cosmological parameters from a Hubble Diagram of a
standard candle with unknown intrinsic magnitude dispersion. The dispersion is deter-
mined from the data themselves, simultaneously with the cosmological parameters. This
contrasts with the strategies used to date. The advantages of the presented analysis are
that it is done in a single fit (it is not iterative), it provides a statistically founded and
unbiased estimate of the intrinsic dispersion, and its cosmological-parameter uncertain-
ties account for the intrinsic dispersion uncertainty. Applied to Type Ia supernovae, my
strategy provides a statistical measure to test for sub-types and assess the significance
of any magnitude corrections applied to the calibrated candle. Parameter bias and dif-
ferences between likelihood distributions produced by the presented and currently-used
fitters are negligibly small for existing and projected supernova data sets.

Subject headings: Supernovae: Data Analysis and Techniques

1. Introduction

The homogeneous nature of Type Ia supernovae (SNe Ia) makes them a popular tool for
measuring cosmological distances. After empirical corrections based on light curve shape, color, and
spectral features, the absolute magnitude (or distance modulus) of a supernova can be determined to
∼ 0.12 mag (Guy et al. 2007; Jha et al. 2007; Conley et al. 2008; Bailey et al. 2009). SNe Ia have been
used to successfully measure the expansion rate of the universe (the Hubble Constant; Freedman
et al. 2001; Riess et al. 2009), discover its accelerated expansion (Riess et al. 1998; Perlmutter et al.
1999), and measure the properties of the dark energy responsible for that acceleration (Hicken et al.
2009; Amanullah et al. 2010).

The small scatter in the peak brightness of SN Ia luminosities is inferred from the small
residuals in their Hubble Diagrams (Kowal 1968); the intrinsic supernova magnitude dispersion is
measured from differences between observed magnitudes and those predicted by the cosmological
model, e.g. the linear Hubble law for low redshift. Although there are theoretical explanations for
this dispersion including intrinsic progenitor properties, circumstellar dust, and viewing angle (see
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e.g. Kasen 2006; Goobar 2008; Wang et al. 2003), in practice the amount of dispersion is determined
empirically from the data themselves.

The luminosity dispersions of supernova subsets are statistics that can be used to compare
and identify SN Ia subclasses. The prevailing belief is that the intrinsic luminosity of an individual
supernova, including line-of-sight effects, is encoded non-trivially within a finite set of physical and
geometric parameters. The “intrinsic” dispersion arises from our lack of observational access to all
those parameters and incomplete knowledge of how to exploit those that are available. It is possible
that SN Ia subclasses with different average luminosities are responsible for some of the intrinsic
dispersion seen in current data. Correlations between supernova light curves and spectral features
(Benetti et al. 2005; Bailey et al. 2009; Wang et al. 2009; Foley & Kasen 2010) and host galaxy
(Sullivan et al. 2010; Lampeitl et al. 2010) give evidence that SNe Ia need to be modeled in finer
detail using an expanded suite of data. Likelihood surfaces of intrinsic dispersion for supernova
subsets provide a statistical measure to test whether data are best described by a single intrinsic
dispersion.

This paper presents the methodology for simultaneously fitting for the intrinsic dispersion and
the cosmological parameters that specify the dynamics of the cosmic expansion. Although I present
straightforward textbook likelihood analysis, it has yet to be applied on supernova-cosmology data.
My approach contrasts with that of Shafieloo et al. (2010), who suggest using Monte Carlo analysis
of statistics that are insensitive to the intrinsic dispersion. This paper is organized as follows:
§2 presents the likelihood equation and contrasts it with the commonly used method. Results of
simulations are given in §3 that show the quantitative differences between the results of the two
analyses. I finish with conclusions in §4.

2. The Likelihood

Given a set of measured quantities µi with covariance C at known points zi and a model
F (zi; θ) for the corresponding true values parameterized by θ, the Gaussian likelihood L can be
expressed as

L ≡ −2 lnL

= ln det C + (µ− F (z; θ))TC−1(µ− F (z; θ)) (1)

neglecting the irrelevant 2π term. For a supernova-cosmology analysis µi and zi correspond to the
estimators for the distance modulus and redshift of supernova i. The function F is the theoretical
prediction for the distance modulus as a function of redshift and a set of cosmological parameters,
e.g. ΩM , ΩDE , and w.

The covariance matrix gives the deviation of all possible measurements for all possible super-
novae from the mean distance moduli at the given redshifts; C not only has a contribution from
measurement uncertainty in supernova magnitudes, Cm, but also from the fact that supernovae
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are drawn from a population with intrinsic magnitude dispersion. Assuming that all supernovae
are independently drawn from the same luminosity function with unknown dispersion, the total
covariance matrix is C = Cm + σ2

I I making C a function of the model parameter σ2
I . I take the

intrinsic scatter to be parameterized by the variance, not the standard deviation.

The determination of the best-fit and confidence regions for the parameters follows the standard
procedure of minimizing and mapping isocontours on the surface of Eqn. 1.

The prevalent supernova-cosmology analysis proceeds differently. The intrinsic supernova vari-
ance is not treated as a fit parameter: the first term in the log-likelihood in Eqn. 1 is ignored, some
initial guess of σ2

I is included in C, and the χ2 (the second term in Equation 1) is minimized to get
the best-fit parameters. Then holding those parameters fixed, the value of σ2

I that gives χ2/dof = 1
is determined. This process is repeated until the fits converge to stationary values. Alternatively,
this process is applied to a low-redshift subsample from which a σ2

I is measured as the dispersion
from the linear Hubble law, and is inserted in the data covariance matrix of the full sample. The
closeness of the resulting χ2/dof to unity checks the consistency between the dispersion of the
training and full sets.

3. Simulation

I simulate experiments specified by the number of supernovae they produce, either N = 50 or
1000 uniformly distributed from 0.08 ≤ z ≤ 0.8, and the distance modulus measurement uncertainty
per supernova σs, either 0.05, 0.1, 0.2, or 0.02 + 0.025z mag. The data are supplemented with an
additional 100 SNe at z = 0.05 each with a measurement uncertainty of 0.02 mag. The measurement
covariance is Cm,ij = δijσ

2
s . The supernovae have an intrinsic dispersion of σI = 0.1 mag. The

set of experimental realizations for each case is generated with the same random-number generator
seed. All experiments occur in a flat ΛCDM universe with ΩM = 0.27 and w = −1.

The data from each realized experiment are analyzed in two ways. First, the data are fit using
the full Equation 1 to a model with a flat-universe dark-energy cosmology with constant equation
of state parameterized by ΩM and w, and an intrinsic supernova dispersion σ2

I . This is referred to
as the lnL fit. Second, the data are initially fit to the cosmological model but holding σ2

i = 0 fixed.
Then, holding the best-fit cosmological parameters fixed, the value of σ2

i that gives χ2/dof = 1 is
calculated. This process is repeated twice more starting with the updated values of σ2

I ; I find that
the fit results converge after three iterations. These are referred to as the χ2 fits.

For each type of experiment, I generate an ensemble of realizations each analyzed using the lnL
and iterated χ2 fits. For the N = 50 experiments I generate 5000 realizations and for the N = 1000
experiments, 1000 realizations. The fitting is performed with the MIGRAD minimization of the
Minuit (James & Roos 1975) implementation in ROOT (Antcheva et al. 2009). The parameter
confidence intervals are taken directly from the extrema of the Lmin+1 contours (using the MINOS
function call); the contours can be asymmetric around the extrema so my quoted uncertainties are
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half the interval length.

In terms of the fit, the cosmology model is pathological when w = 0 and the dark energy
is dynamically indistinguishable from non-relativisitic matter. The minimization can fail if the
maximum likelihood approaches w = 0 and the parameter-uncertainty determination may fail
when w = 0 falls within the accepted confidence region. Given that the input cosmology has
w = −1, the fitter encounters this condition with regularity only when the data quality is poor.
This is seen in Figure 1, which shows the histogram of the best-fit w from the lnL fit of the N = 50,
σI = 0.2 run. The open curve represents fits that succeeded in getting the asymmetric uncertainties
in ΩM , the shaded curve represents those that failed. The other runs with more SNe and/or lower
measurement uncertainty produce significantly fewer or no such failures. In my analysis I include
only those realizations with successful uncertainty determination; the exclusion of the failed fits is
not expected to bias distributions of parameter uncertainties nor the determination of σ2

I .

The χ2 fits converge to stable values by the third iteration. For example in the N = 50,
σs = 0.2 run, the distribution of the shift in σ2

I between the second and third iterations has a mean
of 5.8× 10−8 and an RMS of 1.8× 10−7, both small compared to the input σ2

I = 0.01.

For each N–σs pair I calculate the averages of the cosmological-parameter uncertainties and
the best-fit and uncertainties for the intrinsic-dispersion parameter. To directly compare the two
fitters, I also calculate the mean and RMS of the difference in the uncertainties they return. The
results are given in Table 1.

The distributions are skewed by amounts that depend on the statistic and the experimental
configuration. It is well known that parameter confidence regions are not elliptical and that the
size of the region depends on where the best fit falls (Weller & Albrecht 2002). In addition, as seen
in Figure 1, the fitter fails preferentially in the tail of the distribution where w = 0 is favored. The
asymmetries are therefore accentuated when parameter uncertainties are large; among the cases
considered in this paper the ΩM fits of the N = 50 runs and the w fit of the N = 50, σs = 0.2 run
are particularly affected. In these extreme cases, the quoted averages should be interpreted with
care.

Both the lnL and χ2 fits return asymmetric σ2
i distributions. The asymmetry is more pro-

nounced when the lnL fits have higher σ(σ2
I ) and the corresponding χ2-fit distributions are even

more skewed. For larger N and/or as σs decreases the averages of the lnL-fit distribution approach
the input intrinsic dispersion. The averages of the χ2-fit distribution also approach the input as
σs decreases but the bias remains when going from N = 50 to N = 1000. To illustrate, Figure 2
plots for the N = 50, σs = 0.2 run histograms of σ2

I from both fits. The two distributions are
different and while both are asymmetric that of the the χ2-fit has a broader tail. Table 1 gives
〈σ2
I,lnL〉 = 0.00985 and 〈σ2

I,χ2〉 = 0.01009. Figure 3 shows the corresponding histograms for the
N = 1000, σs = 0.2 run, and a histogram of the differences in the intrinsic dispersions from the
two fits, σ2

I,χ2 − σ2
I,lnL. Here the asymmetry is subtle and is more clearly seen in the differences,

and 〈σ2
I,lnL〉 = 0.00998 approaches the input 0.001 whereas 〈σ2

I,χ2〉 = 0.01011 remains offset.
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Fig. 1.— The histogram of the best-fit w from the lnL fit of the N = 50, σI = 0.2 run, the one
with largest parameter uncertainties among the cases considered in this study. The open curve
includes fits that succeed in determining the uncertainties in ΩM , the shaded curve includes those
that fail. The fitter often fails when the solution converges toward w = 0.
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Table 1: The averages of the cosmological-parameter uncertainties and the best-fit and uncertainties
for the intrinsic-dispersion parameter for all the simulated data sets. Also tabulated are the average
and RMS of the parameter uncertainties subtracted by those of the logL fits (denoted by ∆). The
data are analyzed either with the ln det C term in Eqn. 1 (denoted by lnL) or without and holding
σ2
I fixed . For the latter case, results are given for one or three iterations (denoted by χ2

1 and χ2
3

respectively).

N σs Fit 〈σ(ΩM )〉 〈∆σ(ΩM )〉 RMS(∆σ(ΩM )) 〈σ(w)〉 〈∆σ(w)〉 RMS(∆σ(w)) 〈σ2
I 〉 〈σ(σ2

I )〉

50

0.05

lnL 0.191 . . . . . . 0.311 . . . . . . 0.00990 0.00126

χ2
1 0.080 -0.11794 0.1506 0.091 -0.22015 0.0337 0.01008 . . .

χ2
3 0.205 0.00101 0.0019 0.312 0.00129 0.0018 0.01003 . . .

0.1

lnL 0.243 . . . . . . 0.360 . . . . . . 0.00992 0.00137

χ2
1 0.127 -0.11839 0.2486 0.120 -0.23983 0.0357 0.01011 . . .

χ2
3 0.260 0.00121 0.0094 0.360 0.00101 0.0050 0.01005 . . .

0.2

lnL 0.267 . . . . . . 0.458 . . . . . . 0.00985 0.00144

χ2
1 0.179 -0.14510 0.2027 0.186 -0.26416 0.0366 0.01012 . . .

χ2
3 0.332 0.00264 0.0386 0.452 0.00105 0.0118 0.01009 . . .

slope

lnL 0.266 . . . . . . 0.396 . . . . . . 0.00988 0.00137

χ2
1 0.157 -0.12438 0.2123 0.162 -0.23292 0.0397 0.01012 . . .

χ2
3 0.283 0.00107 0.0145 0.395 0.00095 0.0062 0.01006 . . .

1000

0.05

lnL 0.040 . . . . . . 0.087 . . . . . . 0.01000 0.00052

χ2
1 0.017 -0.02280 0.0035 0.037 -0.04995 0.0032 0.01003 . . .

χ2
3 0.040 0.00003 0.0000 0.087 0.00006 0.0001 0.01002 . . .

0.1

lnL 0.050 . . . . . . 0.109 . . . . . . 0.00999 0.00076

χ2
1 0.031 -0.01944 0.0095 0.062 -0.04632 0.0059 0.01008 . . .

χ2
3 0.050 0.00004 0.0003 0.109 0.00009 0.0005 0.01003 . . .

0.2

lnL 0.081 . . . . . . 0.167 . . . . . . 0.00998 0.00123

χ2
1 0.074 -0.00670 0.3741 0.088 -0.07885 0.0114 0.01023 . . .

χ2
3 0.081 0.00008 0.0013 0.167 0.00016 0.0024 0.01011 . . .

slope

lnL 0.057 . . . . . . 0.116 . . . . . . 0.01000 0.00076

χ2
1 0.035 -0.02110 0.0096 0.065 -0.05052 0.0063 0.01007 . . .

χ2
3 0.057 0.00003 0.0005 0.116 0.00007 0.0011 0.01004 . . .
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Fig. 2.— The histograms of σ2
I as determined by the lnL (solid) and χ2 (dashed) fits for N = 50

and σs = 0.2. The distributions are slightly asymmetric with broader tails at larger values. The
lnL fits fail more frequently than χ2 fits, for direct comparison both histograms include realizations
that succeed in both fits.
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Fig. 3.— The top plot shows histograms of σ2
I as determined by the lnL (solid) and χ2 (dashed)

fits for N = 1000 and σs = 0.2. Unlike the N = 50, σs = 0.2 case, both fitting methods succeed
for all realizations. The bottom plot shows the histogram of their difference σ2

i,χ2 − σ2
i,lnL with the

best-fit Gaussian overplotted. Note that the distribution is slightly asymmetric with all the points
on the right-side tail falling well above the Gaussian curve.
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Though not directly applicable to the cases simulated for this paper, I point out that when
all supernovae have the same measurement uncertainty the distribution of intrinsic dispersions
that give χ2/dof = 1 is known trivially. An experiment with a realized χ2

R for an input intrinsic
dispersion σ2

I0 has an inferred intrinsic dispersion

σ2
I =

(σ2
s + σ2

I0)
dof

χ2
R − σ2

s .

The σ2
I distribution thus corresponds directly with the χ2 distribution. This does not apply to the

experiments simulated in this paper that have a low-redshift set of supernovae with measurement
uncertainty that differs from those of the high-redshift set.

The best-fit cosmological parameters differ for the two fitters only when they deduce different
intrinsic dispersions. As seen in Table 1 and the example shown in Figure 3, the σ2

I ’s returned by
the two fits agree with little bias within expected measurement uncertainties. I confirm that the fits
also find similar optimal ΩM and w. Figure 4 shows histograms for ΩM,χ2−ΩM,lnL and wχ2−wlnL

from the representative N = 1000 and σs = 0.2 run. The both are highly peaked around zero with
ranges much smaller than the statistical measurement uncertainty.

In an individual realization of an experiment the covariance between the intrinsic dispersion
and the cosmological parameters in the lnL fits can be non-zero. This is illustrated by a typical
realization of a N = 1000 and σs = 0.1 experiment; the correlation coefficients between σ2

I and ΩM

and w are −0.018 and 0.019 respectively. The corresponding 1- and 2-σ confidence regions in Ω–σ2
I

and w–σ2
I space are shown in Figure 5. The likelihood is pronouncedly asymmetric for ΩM and w,

whereas it is close to symmetric in σ2
I . The χ2 fits do not provide an uncertainty for the intrinsic

dispersion nor their propagated effect on the other parameters.

The average parameter uncertainties for a given run must differ between fitters. The minimum
of L in the lnL fit is less than (or equal to) the minimum χ2 so LminlnL +1 ≤ Lminχ2 +1, the conditions
that define the 1-σ contours. Also, the extra σ2

I dimension in the lnL fit opens room for a broader
range of acceptable cosmological-parameter values to be contained within the confidence region.

Except for the ΩM uncertainties in the N = 50 runs, both fits give similar average uncertainties
in the cosmological parameters. On a per-realization level, the average and RMS of the difference
between the χ2 and lnL fits (〈∆σ(ΩM )〉, RMS(∆σ(ΩM )), 〈∆σ(w)〉, and RMS(∆σ(w))in Table 1)
are small compared to the uncertainties themselves. The distributions of the difference in parameter
uncertainties between the third χ2-fit iteration and the lnL fit σ(wa) are shown in Figure 6 for the
case of N = 1000 and σs = 0.02. Although they both are close to Gaussian, there is a slight excess
in the high end (corresponding to larger χ2- or smaller lnL-fit uncertainties) just as is the case in
the distribution of σ2

I differences shown in Figure 3.

Amanullah et al. (2010) have shown that supernova samples from different observatories exhibit
different intrinsic magnitude dispersions. I run the N = 1000, σs = 0.1 case fitting for two intrinsic
dispersion parameters, one for the nearby z = 0.05 set and another for the higher-redshift set.
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Fig. 4.— Histograms of the difference in the best-fit parameters returned by the χ2 and lnL fitters,
ΩM,χ2 − ΩM,lnL (top) and wχ2 − wlnL (bottom), for the N = 1000 and σs = 0.02 experiment.
Overplotted on each are the Gaussian best-fits to the data.



– 11 –

MΩ
0.15 0.2 0.25 0.3 0.35

2 Iσ

0.0095

0.01

0.0105

0.011

0.0115

0.012

0.0125

w
-1.2 -1.1 -1 -0.9 -0.8

2 Iσ

0.0095

0.01

0.0105

0.011

0.0115

0.012

0.0125

Fig. 5.— The ΩM–σ2
I (top) and w–σ2

I (bottom) 1- and 2-σ confidence regions for one realization
of a N = 1000 and σs = 0.1 experiment. The parameters have small 0.019 correlation.



– 12 –

ln(L)
)

M
Ω(σ-

3
2χ

)
M

Ω(σ
-0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008

0

20

40

60

80

100

120

140

160

ln(L)
(w)σ-

3
2χ

(w)σ
-0.01 -0.005 0 0.005 0.01

0

10

20

30

40

50

60

70

80

90

Fig. 6.— Histograms of the difference in the parameter uncertainties returned by the χ2 and lnL
fitters, σ(ΩM )χ2−σ(ΩM )lnL (top) and σ(w)χ2−σ(w)lnL (bottom), for the N = 1000 and σs = 0.02
experiment. Overplotted on each are the Gaussian best-fits to the data.
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The fitters return averages for the intrinsic dispersion uncertainties, 〈σ(σ2
I )〉, of 0.00148 for low

redshift and 0.00090 for high redshift. These numbers provide a quantitative measure of how well
possible systematic differences between the two populations could be resolved. For comparison,
〈σ(σ2

I )〉 = 0.00076 when a single σ2
I is fit for all supernovae.

4. Conclusions

I have shown how to fit for cosmological parameters with SNe Ia when the intrinsic dispersion of
the standard candle is unknown. My standard likelihood function has not been used in cosmological
analysis to date. I show via simulation that, on average, our likelihood function is maximal at the
values of the input parameters including the intrinsic dispersion. The presented and previously
used iterative fitting methods do not give biases in the best-fit cosmological parameters and any
differences in a single experiment are due to realization scatter. The fitter methods do return
different intrinsic dispersions and parameter uncertainties. The procedure presented here has the
advantage that it includes the covariance of the intrinsic dispersion with the other parameters in
its error propagation, and the fit is done in a single iteration.

The methodology can be extended to cases where multiple dispersion parameters are fit. I
present an example taking the low- and high-redshift sets as being drawn from different magni-
tude distributions. The same approach can be used to check whether different supernova subsets
(tagged for example by redshift, host-galaxy characteristics or spectral features) exhibit statistically
significant differences in their population characteristics.

The approach is appropriate for any analysis that uses a statistic for which the tracer has an
intrinsic dispersion that must be determined from the data. For example, in weak gravitational
lensing the measurement of correlated shear is obscured by the unknown intrinsic shape of individual
galaxies. The intrinsic dispersion in galaxy ellipticities can be made a fit parameter determined
simultaneously with those of cosmological interest.

Inclusion of the likelihood-function normalization when fitting is not new to astronomy nor
cosmology; Wheaton et al. (1995) showed its importance in shot-noise-dominated photometry and
it is retained in other cosmological analyses (see e.g. Bridle et al. 2002; Taylor & Kitching 2010).
Holsclaw et al. (2010) do include a fit parameter in the data covariance for their supernova analysis
although there it serves as a hyperparameter of the Gaussian-process prior on w(z). Kessler et al.
(2010) include the normalization term; though containing no fit parameters it is needed to directly
compare the χ2’s derived from different light-curve models.

This paper gives a simplified view of how the standard candle nature of SNe Ia is used in
cosmology analysis. SNe Ia are in fact calibrated candles; independent observables (light-curve
shape, colors, spectral features) are correlated with peak absolute magnitude to correct and lower
the dispersion in distance determinations. I advocate that intrinsic dispersion be measured as a fit
parameter from the data simultaneously with the magnitude-correction and cosmological parame-
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ters. This provides a new perspective in how we search for magnitude corrections that make SNe
Ia better calibrated candles. In the past we have sought parameterized magnitude corrections that
minimize distance dispersion; we can now seek corrections and their inferred intrinsic dispersions
that are most consistent with observations and are statistically favored over having no correction.
Application of this technique to real SN data sets is the subject of ongoing work.

I acknowledge fruitful discussions with Eric Linder, David Rubin, and Ramon Miquel. This
work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.
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their employees, makes any warranty, express or implied, or assumes any legal responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process dis-
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ing by the United States Government or any agency thereof, or The Regents of the University of
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