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Abstract

Modeling the Acute Effects of Exercise on Insulin-Glucose Dynamics
by
Spencer Frank
Doctor of Philosophy in Engineering - Mechanical Engineering
University of California, Berkeley

Professor Andrew Szeri, Chair

Only four grams of glucose are present in an adult’s blood stream at any moment in time.
This amount of glucose can be burned up in only 10 minutes during exercise. To maintain
glucose homeostasis, the human body has an outstanding control system that utilizes several
hormones, mainly insulin. Unfortunately, in type 1 diabetes (T1D), this control system is
faulty because the pancreas no longer secretes insulin. Those with T1D must manually dose
and inject insulin to survive. Exercise drastically changes the needed insulin dose, and an
overdose can be fatal. An artificial pancreas that can autonomously and safely adjust the
insulin dose would greatly improve the lives of those with T1D.

This dissertation focuses on the development of a novel pharmacokinetics model of
insulin-glucose dynamics that is specifically designed to include the effects of exercise. We
model five primary glucoregulatory phenomena that are sensitive to exercise. To validate the
model we compare predictions to data from four cohorts of human subjects studied during
controlled clinical exercise trials. We also carry out several test cases to demonstrate the
effects of exercise intensity and duration on blood glucose levels. The model provides in-
sight into insulin dosing during exercise and can be used to improve model predictive control
algorithms in the artificial pancreas.
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Block diagram showing the primary effects of exercise on insulin and glucose
dynamics. The insulin subsystem model will be derived in Chapter 2 and the
Glucose subsystem model will be derived in Chapter 3. Red arrows indicate the
phenomena that are dependent on exercise intensity £. . . . . . . . .. ... ..
Comparison of blood glucose levels for a non-diabetic and diabetic subject. The
BG of the nondiabetic subject (blue line) rises with the ingestion of breakfast
at 7:00 AM, peaks around 250 [mg/dL], and then decreases quickly to the green
region. Two more noticeable bumps can be seen for lunch and dinner, but these
are short lived. In comparison, the T1D subject (red line), has very large swings
in BG throughout the day, averaging 200 [mg/dL] and experiencing two mild
hypoglycemia episodes at 12:00 PM and and 9:00 PM. . . . ... ... ... ..
(left) Typical insulin concentration profile that results from multiple daily injec-
tions. Ideally, four doses would be given per day: one for breakfast (B), one
for lunch (L), one for supper (S) and one long acting insulin dose given at bed-
time (HS, Hora Somni) to provide basal insulin. Adapted from [13], without
permission. (right) Typical pen injection. From [14], used without permission

(left) Typical infusion profiles for continuous subcutaneous insulin infusion (CSII,
a.k.a. pump therapy (PT)). Notice that the basal levels are adjusted throughout
the day, giving the patient more flexibility to achieve optimal background insulin
concentrations. In the bottom frame different types of bolus infusion profiles are
shown. A ‘standard’ profile gives an entire meal bolus up front, while an ‘long
extended’ profile gives the insulin over an extended period, when a meal contains
significant fat that tales longer to digest [15], used without permission. (right)
Typical insulin pump with subcutaneous infusion set. The infusion set contains a
small cannula that sits about 0.5-1 inch below the skin. From [16], used without
PETIMISSION . . . . . . v v e e e
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Examples of the tools for measuring BG. (left) Urine glucose test strips. (center)
Finger-stick BG (FSBG) meter. (right) Continuous glucose monitor (CGM). The
CGM consists of a sensor (white patch), a transmitter (round and grey), and a
receiver (blue device placed in pocket). Urine test strips for BG measurement
have been replaced by FSBG meters. FSBG meters may suffer a similar demise
as CGMs become more comfortable, more accurate, and more affordable. Newer
CGMs no longer require calibration with FSBG meters. Images from [18-20],
used without permission. . . . . . . . . . ...
Two typical CGM readouts as seen in the Dexcom application on the iPhone.
The left shows the case where a CGM reading is high. The right shows the case
where a CGM reading is low. Measurements are reported in 5 minute increments.
CGM has revolutionized treatment for T1D, and has been shown to significantly
improve treatment outcomes[21, 22]. . . .. ..o
The three main components of an artificial pancreas are a continuous glucose
monitor, an insulin pump, and a control algorithm. These three components
work together to close the loop, allowing for automated insulin delivery that
effectively replaces the pancreas. Images from [23], used without permission.

Glucose traces from several days of CGM measurements show the prolonged and
acute effects of exercise on hypoglycemia. On Wednesday (green) and Thursday
(magenta) the subject exercised in the late afternoon (2:00 PM and 4:00 PM,
respectively). The acute effects of exercise caused mild hypoglycemia during
exercise on both days, reaching a nadir near 70 [mg/dL] about 30 minutes after
the commencement of exercise(around 3:00 PM and 6:00 PM). Glucose levels
rebounded because of a snack and then due to the prolonged effects of exercise
began to drop again, reaching hypoglycemic levels around 11:00 PM (Thursday)
and 9:00 PM (Wednesday). Image from [17], used without permission.. . . . . .
Glucose is controlled by a complex network involving the brain, muscle, digestive
tract, and fatty tissue. Image taken from [36], used without permission. . . . . .
As basal glucose levels, roughly four grams of glucose are in your circulatory
system [36]. Under fasting and resting conditions four grams (equivalent of one
glucose tablet) is taken up by the body every 25 minutes. Each organ has different
glucose requirements. Numbers taken from [45]. . . . . . .. ... ... ... ..
The one compartment model of glucose represents the conservation of mass of
glucose in the circulatory system. m is the total mass of glucose in the system, G
is the total concentration of glucose in the system, V' is the volume of distribution
of glucose in blood plasma, R, the total rate of appearance of glucose into the
bloodstream, and Ry is the total rate of disappearance of glucose out of the
bloodstream. . . . . . . . ...
The tracer(q open circles) and tracee() closed circles) system. Both species
occupy the same volume. Note that both the tracer and tracee particles are
evenly distributed per the model well-mixed assumption. . . . . . . . . ... ..
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Typical measured rate of meal appearance (Ra,eq) and endogenous glucose pro-
duction (EGP) for an average healthy (non-diabetic) resting subject and an av-
erage healthy exercising subject. Meal ingestion for each group occurs at t = 0.
The exercising group has four 15 minute exercise bouts from t=120-195 shown
by shaded regions. Raeq during fasting is 0 [mg/min|. Upon ingestion of the
meal Ra,eq rapidly increases to a maximum near 500 [mg/min], and then slowly
declines over the next 6 hours to nearly 0. EGP starts at 155 [mg/min] and after
meal ingestion it is suppressed to nearly 0 in both cases. In the resting case EGP
slowly rises back to basal levels over the following few hours, however, in the
exercising case it rapidly increases to 200 [mg/min] during the exercise period.
Vertical lines are SEM. . . . . . . .. ..
Meal Glucose Insulin Model (GIM) proposed in [59] and [60]. The block diagram
shows several subsystems. In a subject with type 1 diabetes, the beta-cell subsys-
tem is irrelevant, and is instead replaced with the subcutaneous insulin infusion
subsystem described in [60]. The GIM model is one of the most comprehensive
and well-validated insulin-glucose models available. Image taken from [60], used
without permission. . . . . . . . . ..
The GIM model is centered around two subsystems, the glucose subsystem and
the insulin subsystem. The two glucose compartments represent the rapidly equi-
librating tissues (G,) and the slowly equilibrating tissues (G;). These can be
thought to represent glucose in the circulatory system and glucose in the insulin-
dependent peripheral tissues such as muscle and adipose tissue. The two insulin
compartments represent insulin in the liver and insulin in the circulatory system.
There is also a third insulin compartment X (not depicted), that represents in-
sulin action on peripheral glucose uptake. Image taken from [59], used without
PErMISSION. . . . . . v v o e e e e e e e e e e
Exercise model included Meal Glucose-Insulin Model of Type 1 Diabetes. Curves
show the effects of the various exercise variables Y Z and W on insulin-dependent
uptake (U;q). For full definition of the variables, see [1, 61]. Figure taken from
[61], used without permission. . . . . .. .. ...
Schematic of 8 compartment glucose model of Sorensen [64]. . . . . .. ... ..

The focus of this chapter will be on the insulin model (unshaded region). The
rate that insulin moves between regions depends on the exercise intensity E (red
arrows). The glucose model in the shaded region will be presented in Chapter 3.
A multiscale approach is used to model insulin-kinetics. . . . . . . . . ... ...
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(left) Abstract schematic of the proposed insulin model. (right) Physiological
representation of model. The model consists of three distinct domains: the sub-
cutaneous (SC) domain, the circulatory system (CS) domain, and the skeletal
muscle (SM) domain. The human silhouette illustrates that each domain exists
at a different volume scale: the SC domain consists of only tissue in the vicinity
of the infusion site, and is order of milliliters, the CS domain is order of a few
liters, the SM domain is order of tens of liters. The SM domain contains both
the SM tissue and the SC tissue that is not in the vicinity of the infusion site.
Capillaries and ISF are both contained in the SC and SM domains, and each
have their own separate dynamics. c¢ is the concentration in the SC ISF, which
we integrate over to obtain C. Insulin is infused into the SC tissue where the total
mass is C, then it diffuses into the absorbing capillaries where its concentration is
ba, then is convected into the CS where its concentration is I, then is convected
into the SM delivering capillaries were its concentration is by, and finally diffuses
into the SM ISF where its concentration is S. Arrows show insulin clearance
directly from the CS by the liver and kidneys. Clearance also occurs in the SM
tissue by insulin degradation. Blood flows at a tissue perfusion rate of Q! and
Q% through the SC tissue and SM tissue, respectively. . . . . . . .. ... .. ..
(left) Schematic of flow in a capillary. Blood enters from the left at uniform ve-
locity U and concentration initial concentration b|;. Dy is the diffusion coefficient
in blood plasma. L, R, and P are the capillary length, radius, and permeability,
respectively. The outer vessel walls is assumed to have a uniform drug concen-
tration ¢(r,t), evaluated at a fixed r and ¢. (right) Zoomed out view of a single
capillary in the subcutaneous (SC) domain, hence b, instead of the general b.
The light blue in the background represents the region of drug wetted SC tissue
with homogeneous capillaries (red pipes) uniformly distributed. Each capillary
can be thought to act as a local mass-exchanger with inlet concentration b,|; and
exit concentration b,|.. By integrating over the entire volume of drug-wetted SC

tissue, V465 we obtain the total drug absorbed from the SC tissue per unit time,

Car o o e
The blood flow relationship to be used in the proposed insulin absorption and
delivery model. Tissue perfusion rate Q! is assumed to be linearly dependent on
exercise intensity E. Q% the flow rate in skeletal muscle (SM), is much more
sensitive to exercise than the flow rate in subcutaneous (SC) tissue Q! indicated
by a 20-fold increase, compared to a mere 2-fold increase. Note that we have
assumed 40% hematocrit and so QY =0.6Q. . . . . . . . . ... ... ... ...
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Results of Renkin [91] showing how PS increases due to muscle contractions
caused by electrical stimulation. In the bottom frame PS nearly doubles during
muscle contractions. Renkin attributed this to the recruitment of capillaries “We
conclude that the increase in PSJ...Jproduced during metabolic vasodilatation [is]
brought about by an increase in the capillary surface area effectively in contact
with flowing blood]...]it appears most likely that this change is brought about by
the opening of precapillary sphincters which are closed under resting conditions.”
Figures from three studies showing the effects of exercise on capillary recruitment,
as quantified by changes in microvascular blood volume (MBV). All studies indi-
cate that MBV more than doubles during exercise, with only limited differences
between light and heavy exercise. The ratios of MBV during exercise to MBV
at rest are plotted in Figure 2.8 and used to fit parameters v and Ry. (left) [92]
Recruitment is 115% after exercise as assessed by MBV and independently by
the rate of 1-methylxanthine (MX) metabolism (another proxy for recruitment)
in rat hindlimb adductor muscles. (center) [99] MBV is shown to increase roughly
240% during light and 163% during heavy forearm exercise in humans. (right)
[94] MBV in the human forearm is shown to increase 91% during light and 118%
during heavy forearm exercise. Figures are used without permission. . . . . . . .
The relationship between capillary recruitment and exercise intensity is assumed
to be a saturable process. The black dots are derived from the experimental
results of various studies on capillary recruitment[92, 93, 100], which are summa-
rized in Figure 2.7. Recruitment f,; is defined to be zero at rest (£ = 0) and is
fit to data to find R4 and v in Equation 2.44. f; rapidly increases to a plateau

viii

95

value of Ry = 1.46, indicating a 146% increase in capillary density during exercise. 57

Insulin permeability surface area (PS?, Equations 2.45 and 2.46) and kinetic
rate (k!, Equations 2.37 and 2.38) are plotted vs. exercise intensity £. Exercise-
induced capillary recruitment rapidly increases PS’ reaching a plateau value at at
only E = 0.25. The plateau exists because there is a finite reservoir of capillaries
in the tissue and once they are all fully perfused then surface area can no longer
increase. PS] plateaus at a higher value because the delivering skeletal muscle
(SM) capillaries have a higher recruitment factor than the absorbing subcutaneous
(SC) capillaries. The absorption rate k! and delivery rate k] rates both increase
very similarly to PSS because insulin kinetics are surface area limited, not flow
limited. k! does not plateau as quickly as k) because Q! is significantly lower
than Q} during exercise, and thus k! remains partly flow limited. . . . ... ..
Timeline for the mixed-meal tolerance test (MMTT) T1D resting protocol (T1DR,
top) and the T1D exercising protocol (T1DR, bottom). At time 0 the subjects in
T1DR ingested a 50 [g] CHO mixed-meal and the subjects in T1DE ingested 75
[g]. The insulin bolus was infused through an insulin pump at time 0, with bolus
size calculated according to the subject’s normal insulin-to-carb ratio. The T1DR
group rested throughout the entire study period. The T1DE group exercised at
50% VO0s,,,,, for four 15 minute exercise periods, starting at minute 120. . . . . .



2.11

2.12

Simulated insulin concentration for an average resting (left) and exercising pa-
tient (right). Inputs U(t) and E are shown in the top frames. Measured insulin
concentration data is shown as a dot with standard deviation (/44,). Predictions
of insulin concentrations in the plasma I (solid lines) and skeletal muscle inter-
stitial fluid S (dotted lines) are shown in the bottom frames. 15 minute exercise
bouts with 5 minute breaks are shown as shaded regions. Both cases closely fol-
low the data, with a slight underestimation of peak plasma insulin concentration.
Upon the commencement of exercise at minute 120 the I, rises from 22 to 29,
and maintains until exercise ends at minute 195. Similarly during exercise I rises
30% from 25 [pU/mL] to 32 [pU/mL]. This increase is a result of the enhanced
absorption rate k! associated with capillary recruitment. A significant increase
in S is also predicted, increasing 60% from 13 [pU/mL] to 21 [pU/mL] over the
entire exercise period. This is due to the enhanced delivery rate k} associated
with capillary recruitment in the SM. This predicted increase in S has significant
implications on glucose metabolism, potentially leading to hypoglycemia during
EXEICISC. .+ v v v v e e e
(left) Calculated insulin extraction fraction ef! from the resting (T1DR, blue
line) and exercising (T1DE, orange line) simulations. (right) Corresponding in-
sulin delivery mass flow rate ;. Resting ef! is 10%. Upon meal ingestion e f!
temporarily increases to nearly 15% because of an increase in I. During the ex-
ercise periods (shaded regions) of the T1IDE group, the ef! drops as low as 1.5%.
This is a result of the 10-fold increase in Q%, which cuts the transit time by a
factor of 10, thus decreasing the arteriovenous (A-V) difference. But the A-V
difference does quite drop by a factor of 10 because because capillary recruitment
increases PS} by 150%. Hence, even with the significant drop in ef! during
exercise, the magnitude of S, still increases 2-3 fold during exercise. This huge

X

increase in Sy is responsible for the 60% increase in S shown in Figure 2.11(right). 69



2.13 The timing of exercise with respect to the bolus has a significant impact on peak

3.1

3.2
3.3

3.4

insulin S and glucose uptake (GU). (left) Five test cases with moderate (E = 0.5)
45 minute exercise periods were simulated (solid lines). For comparison a resting
case was simulated (black dotted line). The exercise case from t=(-300, -255),
shows an increase in S from 5.5 to 10 [U/mL] and corresponds to exercise under
basal insulin conditions. For the exercise case from t=(30, 75) S increases from 10
to 25 [pU/mL], indicating that when exercise occurs shortly after the bolus, the
effects on S are profound. As more time is put between the bolus and the exercise
bout, the effect on S is diminished. (right) Peripheral GU was estimated with
Equation 2.69 from the shaded AUC regions shown on the left. For the exercising
case from (-300, -255),, GU is 3.7 [g], a 1.2 [g] increase over the resting case. In
comparison, for the exercising case from (30, 75) GU is 9 [g], an increase of 3.6
[g] over the resting case. The sooner the exercise bout occurs after the bolus, the
more significant the increase in predicted peripheral GU. These estimates of GU
do not account for synergistic effects of insulin and exercise [40], which may make
exercise effects on GU even more profound. . . . . . ... ... ... ... ...

The focus of this chapter will be on the glucose subsystem model (unshaded
region). There are three direct effects (red arrows) of exercise E on glucose-
dynamics. There are also 2 indirect effects of E' (dotted red arrows, from insulin)
on glucose-dynamics. The insulin model in the shaded region was presented in
Chapter 2. . . . . . . e
A multiscale approach is used to model glucose-dynamics. . . . . . . .. .. ..
(left) Abstract schematic of the proposed glucose model. (right) Physiological
representation of model. The model consists of two distinct domains: the circula-
tory system (CS) domain, and the skeletal muscle (SM) domain (the SM domain
also includes subcutaneous tissue). The human silhouette illustrates which re-
gion each domain represents in the human body. Capillaries and ISF are both
contained in the SM domain, and each are modeled separately. The life of glu-
cose proceeds as follows: glucose is either absorbed from the GI tract (Raeq)
or is released from the liver (EGP) and enters the CS. Glucose in the CS, at
concentration G, is then either delivered to the brain, gut, kidney, or heart and
metabolized, or taken up by the liver. Alternatively, glucose in the CS is delivered
to SM by capillaries, which have blood flow rate )4 and glucose concentration
ga- Glucose in the SM domain, at concentration H, is taken up (cleared) by cells.
Schematic of insulin-sensitive cell with a cell membrane that is permeable to
glucose. ¢ is the flux across the cell membrane. x is the positive direction toward
the center of the cell. H and H,., are the glucose concentrations inside and
outside the cell. P,..; is the permeability of the cell membrane to glucose. S is
the insulin concentration outside the cell and F is the exercise intensity (shown
as muscle contraction); both are shown as modulators of P... P. is assumed
to depend on S and F in an additive fashion. . . . . . ... ... 0000

83
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(left) Schematic of flow in a capillary. Blood enters from the left at uniform
velocity U and initial concentration gq4|;. D, is the diffusion coefficient of glucose
in blood plasma. L, R, and P are the capillary length, radius, and permeability,
respectively. The outside of the vessel wall is assumed to be wetted with a uniform
drug concentration H(t). (right) Mass transfer from a single capillary from a bed
of homogeneous capillaries in the skeletal muscle (SM) domain. Each capillary
can be thought to act as a local mass-exchanger with inlet concentration g4|; and
exit concentration gy4|.. By integrating over the entire volume of SM tissue V&
and therefore all capillaries in the SM, we obtain the total drug delivered to the
SM tissue from the CS per unit time, Ha. .« « « v o o oo
Typical measured rate of meal appearance (Ra,eq) and endogenous glucose pro-
duction (EGP) for an average healthy (non-diabetic) resting subject and an av-
erage healthy exercising subject. Meal ingestion for each group occurs at t = 0.
The exercising group has four 15 minute exercise bouts from t=120-195 shown
by shaded regions. Rapeq during fasting is 0 [mg/min|. Upon ingestion of the
meal Ra,eq rapidly increases to a maximum near 500 [mg/min], and then slowly
declines over the next 6 hours to nearly 0. There is not a significant difference
in Ra,,.q between the resting and exercising subject. On the other hand, there
is a profound difference in EGP during exercise. EGP is initially 155 [mg/min]
and is rapidly suppressed upon meal ingestion. In the resting group it slowly
rises back to basal levels as glucose levels and insulin levels return back to basal.
In contrast, during exercise EG P rapidly increases, reaching a maximum of 210
[mg/min| (35 % above basal). This rapid increase in EGP is an important effect
to include in a model of glucose metabolism during exercise. Vertical lines are

The EGP model is plotted (solid and dashed lines) vs. exercise intensity E. The
model is defined in Equations 3.23 and 3.24 and parameters are identified by
fitting to data from [35, 39], where EG P was measured at 30% (open circles) and
60% (closed circles) V0o, . . Notice that after prolonged exercise (>120 [min])
the EGPyy, drops off drastically, while the model stays constant. This is due
to depletion of glycogen stores. The derived EGP model is not valid beyond 2-3
hours because it assumes sufficient glycogen storage for conversion to glucose.

The extended segment (dotted line) indicates where the model is no longer valid.

Relationship between total rate of glucose uptake in the skeletal muscle RGUgnry
and exercise intensity E, at basal glucose H, and basal insulin S,. Equation 3.45
is shown (blue line), and the slope r$,, = 860 is fit to all aggregated data (35,
39, 40, 129, 130], excluding the £ = 0.9 data point. As an example, at 50% FE,
if all else is held constant, RGUsy,.,, would rise by 430 [mg/min|, 10-fold over
resting RGU. . . . . . . .

X1
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3.14

The blood flow relationship to be used in the proposed glucose model. Tissue
perfusion rate in the skeletal muscle (Q),) is assumed to be linearly dependent on
exercise intensity (£) and increases 20-fold at high-intensity exercise. Relationship
taken from [84]. . . .. Lo
Results of Renkin [91] showing how PS increases due to muscle contractions
caused by electrical stimulation. In the bottom frame PS nearly doubles during
muscle contractions. Renkin attributed this to the recruitment of capillaries “We
conclude that the increase in PS ... ... produced during metabolic vasodilatation
[is] brought about by an increase in the capillary surface area effectively in contact
with flowing blood... ... it appears most likely that this change is brought about by
the opening of precapillary sphincters which are closed under resting conditions.”
Three studies showing the effects of exercise on capillary recruitment, as quan-
tified by changes in microvascular blood volume (MBV). All studies show that
capillary density more than doubles during exercise, with only limited differences
between light and heavy exercise. The ratios of MBV during exercise to MBV at
rest are plotted in Figure 3.12 and used to fit parameters v and Ry. (left) [92]
Recruitment is 115% after exercise as assessed by MBV and independently by
the rate of 1-methylxanthine (MX) metabolism (another proxy for recruitment)
in rat hindlimb adductor muscles. (center) [99] MBV is shown to increase roughly
240% during light and 163% during heavy forearm exercise. (right) [94] MBV in
the human forearm is shown to increase 91% during light and 118% during heavy
forearm exercise. Figures are used without permission. . . . . . .. .. ... ..
The relationship between capillary recruitment and exercise intensity is assumed
to be a saturable process. The black dots are derived from the experimental
results of various studies on capillary recruitment [92, 93, 100], which are sum-
marized in Figure 3.11. Recruitment f; is defined to be zero at rest (E = 0) and
is fit to data to find R; and v in Equation 3.48. f; rapidly increases to a plateau

Xil

99

value of Ry = 1.46, indicating a 146% increase in capillary density during exercise. 101

Permeability surface area (Equation 3.47) rapidly increases with exercise, reaching
a plateau value at at only £ = 0.25. The plateau exists because there is a
finite reservoir of capillaries in the tissue and once they are all fully perfused
then surface area can no longer increase. The delivery rate k5 (Equation 3.32)
increases similarly to PSY. This is expected because during exercise, at high
perfusion rates @4, glucose delivery is surface area (diffusion) limited rather than
flow limited, and so is mainly dependent on PSS. . . . . . ... ... ... ...
Timeline for the mixed-meal tolerance test (MMTT) resting protocol and exer-
cising protocol. Each test was done using only healthy (non-diabetic) subjects.
At time 0 the subjects in the resting group ingested a 50 [g] CHO mixed-meal
and the subjects in exercising group ingested 75 [g]. The resting group rested
throughout the entire study period. The exercise group exercised at 50% VO0,, ..
for four 15 minute exercise periods, starting at minute 120. . . . . . . . .. . ..



3.15

3.16

3.17

Postprandial (meal at ¢ =0 [min]) measured plasma insulin concentration g,
(dots) and predicted (blue line) skeletal muscle insulin concentration S vs. time
for a resting subject (left) and exercising subject (right). The grey bars indicate
the four 15 minute exercise periods. Notice that plasma insulin concentration
rapidly declines during the exercise period, reaching near basal levels by ¢t =200
[min]. On the other hand, for the resting group, the insulin concentration falls
at a slower rate. The observation that insulin concentrations quickly drop during
exercise is consistent with previous observations that insulin production by the
pancreas is suppressed during exercise [134]. This reaction helps prevent hypo-
glycemia by reducing the insulin concentration in insulin-sensitive tissues. . . . .
Postprandial (meal at ¢ =0 [min]) glucose concentrations vs. time for a resting
subject (left) and exercising subject (right). Gaa, (dots) and G (black line) are
the measured and predicted plasma glucose concentrations. H (blue line) is the
predicted SM glucose concentration. The grey bars indicate the four 15 minute
exercise periods. There is strong agreement between the model plasma predictions
(G and measurements G4,:,. Measurements for H are not available for comparison.
In both groups, prior to exercise G and H take nearly identical trajectories. After
exercise G gq1, drops into hypoglycemic territory in less than 10 minutes. For the
resting group, hypoglycemia does not occur, and glucose does not reach basal
levels until t =160 [min]. For the resting group, the lowest predicted G and H were
approximately 85 [mg/dL] and 70 [mg/dL]. In comparison, the exercising group
had a nadir of 70 [mg/dL], and 40 [mg/dL]. This indicates that H is more sensitive
to exercise than G, likely for two reasons: (1) glucose uptake occurs directly in the
SM tissue and thus immediately decreases H, and (2) the counteracting increase
in EGP occurs in the CS compartment immediately increasing G. . . . . . . . .
Extraction fraction (ef) is predicted to increase following a meal and drop signif-
icantly during exercise. The figure shows predicted extraction fraction vs. time
for a resting subject (left) and an exercising subject (right). The grey bars indi-
cate the four 15 minute exercise periods. In both groups the extraction fraction
at basal is approximately 3.5 %, consistent with measurement [45, p. 219]. Upon
meal ingestion, the extraction fraction increases to nearly 8 % due to the the
increased G — H gradient. In the exercising group, the extraction fraction drops
considerably during exercise due to the sharply increased blood flow (@4 increases
nearly 10-fold during exercise). This is because the exchange time is decreased
10-fold This predicted drop in the extraction fraction is in contradiction to mea-
surements [40] and may represent a weakness of the model to accurately predict
glucose exchange between the CS and SM compartments. . . . . . . . .. .. ..
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3.18

3.19

3.20

3.21

4.1

Glucose delivery rate (Hy) significantly increases during exercise. The figure
plots predicted Hy vs. time for a resting subject (left) and an exercising subject
(right). The grey bars indicate the four 15 minute exercise periods. Initially
Hq = 45 [mg/min], equal to the basal SM uptake rate. In both groups upon meal
ingestion, H,4 rapidly increases to nearly 200 [mg/min|. In the resting group,
H, slowly drops back to basal levels because the G-H gradient decreases after
the initial rapid rise. In the exercising group H, sharply increases, peaking at
350 [mg/min]. This significant increase is attributed to increases in: capillary
surface area (tissue recruitment), tissue perfusion rate (higher blood flow), and
an enhanced G — H gradient caused by a significant increase in glucose demand
in exercising muscle. The plateau value of H,; during exercise occurs when the
delivery rate equals glucose demand. . . . . . . . . ... ... ... ... ...
The relationship between glucose delivery mass flow rate H, and extraction frac-
tion ef over the period ¢ = 0 to 360 [min], ¢ is a parameter. During rest (blue
line), when flow Q4 and permeability surface area PSS are assumed fixed, an
increase in the ef causes a monotonic increase in H,. In the exercising group
(orange line), both Q4 and PS¢ increase due to increased blood perfusion and
capillary recruitment. Because of the significant increase in ()4 the exchange time
is less, causing a decrease in ef (movement to the top left). The prediction that
ef decreases during exercise is not consistent with previous observations [40]. . .
Glucose production and uptake vs. time for a resting subject (left) and an ex-
ercising subject (right). Measured glucose inputs are shown as positive dotted
lines. Glucose uptake is shown as negative solid lines. The grey bars indicate the
four 15 minute exercise periods. Prior to exercise the corresponding input and
uptake mechanisms for each group are similar. After exercise commences at t =
120, the trajectories of each group begin to deviate. Although exercise does not
seem to significantly affect Ra,eq, EG P is significantly affected. Both are nearly
0 at t = 120 [min], but exercise increases EGP to 210 [mg/min| in about an hour.
This increase in EG P counteracts the significant exercise-induced increase in the

rate of glucose uptake in skeletal muscle (RGUsp,.o ), Preventing hypoglycemia.

EGP response to a mixed meal tolerance test. (top) EGP during exercise. (bot-
tom) EGP with exercise periods from minute 120 to minute 195. Grey region
represents exercise period. Notice the strong agreement between the model £GP
(which was identified from independent data) and EGPyuq- - -« « o o o o ..

The focus of this chapter will be on coupling the insulin subsystem model to the
glucose subsystem model, and then validating the model for a T1D subject by
comparing model outputs with measurements. The solid red lines are the direct
effects of exercise and the dotted-lines are the indirect effects that result from the
coupling of the models. . . . . . . . . . ...
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4.2

4.3

4.4

4.5

4.6

5.1

5.2

9.3

Timeline for the mixed-meal tolerance test (MMTT) T1D resting protocol (T1DR,
top) and the T1D exercising protocol (T1DR, bottom). At time 0 the subjects in
T1DR ingested a 50 [g] CHO mixed-meal and the subjects in T1DE ingested 75
[g]. The insulin bolus was infused through an insulin pump at time 0, with bolus
size calculated according to the subject’s normal insulin-to-carb ratio. The T1DR
group rested throughout the entire study period. The T1DE group exercised at
50% V0, for four 15 minute exercise periods, starting at minute 120. . . . . .
Results of validation test on a resting T1D subject. (top) Inputs insulin infusion
rate U and exercise intensity . (middle top) Insulin predictions. (middle bot-
tom) Glucose predictions. (bottom) Endogenous glucose production predictions.
Overall agreement is good, with only small discrepancies. . . . .. .. ... ..
The calculated individual contributions of each mechanism of glucose produc-
tion and uptake for the validation test on a resting T1D subject. Positive is
production, negative is uptake. The dotted line for Ra,,., indicates an input.

Results of validation test on an exercising T1D subject. (top) Inputs insulin in-
fusion rate U and exercise intensity E. (middle top) Insulin predictions. (middle
bottom) Glucose predictions. (bottom) Endogenous glucose production predic-
tions. Exercise periods are indicated by grey regions. Note that EGP measure-
ments had significant error, and were linearly scaled so that the basal level was
155 [mg/min]. . . . ..
The calculated individual contributions of each mechanism of glucose production
and uptake for the validation test on a exercising T1D subject. Positive is pro-
duction, negative is uptake. The dotted line for Ra,,., indicates an input. The
predictions for skeletal muscle glucose uptake during exercise (RGUsnpop) are
likely significantly overestimated. . . . . . . . . . .. ... oL

Baseline simulation for comparison with subsequent test cases. (top) Inputs in-
sulin infusion rate U and exercise intensity F. (middle top) Insulin predictions.
(middle bottom) Glucose predictions. (bottom) Glucose production is positive
and uptake is negative. . . . . . ...
Early exercise causes rapid glucose uptake in the skeletal muscle, but the drop
in GG is not significant because glucose is still rapidly being absorbed from the
GI tract (Rameqr). (top) Inputs insulin infusion rate U and exercise intensity E.
(middle top) Insulin predictions. (middle bottom) Glucose predictions. (bottom)
Glucose production is positive and uptake is negative. . . . . . . . . .. ... ..
Glucose concentration significantly drops during exercise period. (top) Inputs
insulin infusion rate U and exercise intensity F. (middle top) Insulin predictions.
(middle bottom) Glucose predictions. (bottom) Glucose production is positive
and uptake is negative. . . . . . ... Lo oL
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5.4

5.5

5.6

5.7

5.8

9.9

5.10

Timing, not just exercise intensity, has a significant impact on G. (top) Inputs
insulin infusion rate U and exercise intensity F. (middle top) Insulin predictions.
(middle bottom) Glucose predictions. (bottom) Glucose production is positive
and uptake is negative. . . . . . ... Lo oL
During a fast, G drops during exercise until FG P increases sufficiently to match
skeletal muscle glucose uptake(RGUsgpzr.)- (top) Inputs insulin infusion rate U
and exercise intensity £. (middle top) Insulin predictions. (middle bottom) Glu-

cose predictions. (bottom) Glucose production is positive and uptake is negative.

More intense exercise leads to less hypoglycemia than light exercise. (top) Plasma
glucose concentration G for various levels of exercise. (bottom) EGP for various
levels of exercise. Blue line is resting, red line is 25% V0,,., yellow line 50%
VO0,,,.., purple line is 75% VO0q, . . . . . .« . .
A lower level of EGP is needed to maintain essentially the same G as in the
continuous exercise test case (See Figure 5.6). (top) Plasma glucose concentration
G for various levels of exercise. (bottom) EGP for various levels of exercise. Blue
line is resting, red line is 25% VO0s, ., yellow line 50% V0, ., purple line is 75%
VO0s,,,,.- There are 5 minutes of rest between each 10 minute exercise bout.

A higher exercise intensity leads to a greater drop in G. (top) Plasma glucose
concentration G for various levels of exercise. (bottom) EGP for various levels
of exercise. Blue line is resting, red line is 25% VO0,, ., yellow line 50% V0, _,
purple line is 75% VO0s, .. Exercise begins 60 minutes after meal ingestion. . . .
Late exercise has a more significant effect on G than does early exercise. (top)
Plasma glucose concentration G for various levels of exercise. (bottom) EGP for
various levels of exercise. Blue line is resting, red line is 25% V0, ., yellow line
50% VO0y, .., purple line is 75% VO0,, . . Exercise begins 150 minutes after meal
Ingestion. . . . . . . L
Capillary recruitment is turned off and thus blunts SM glucose uptake and in-
creases FG P, which increases the predicted GG. This can be seen by comparing
this test case to test case 9 where recruitment is turned on (Figure 5.9). (top)
Plasma glucose concentration G for various levels of exercise. (bottom) EGP for
various levels of exercise. Blue line is resting, red line is 25% V0, ., yellow line
50% VO0s,,,., purple line is 75% V0,,,,.. Exercise begins 150 minutes after meal
ingestion. Capillary recruitment is turned off, so there is no increase in blood
flow and no increase in capillary surface area associated with exercise. . . . . . .
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during exercise is with the T1D patient. No such rise in I;gp is present in the
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(top right) Average T1D patient with exercise from t=120-195 min.(bottom left)
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Chapter 1

Introduction to Type 1 Diabetes and
Insulin-Glucose Dynamics

Overview

Only four grams of glucose exist in an adult’s blood stream at any moment in time. This
amount of glucose can be burned up in only 10 minutes during exercise. To prevent glucose
levels from falling too low, causing dizziness and fainting, the human body has an outstanding
control system that utilizes several hormones to signal the liver to replenish the body with
stored glucose in order to maintain glucose homeostasis. Unfortunately, in type 1 diabetes
(T1D), this control system is faulty because the pancreas is damaged by an autoimmune
response and it can no longer produce the most important regulatory hormone, insulin.
Consequently, subjects with T1D must inject insulin to survive. Unfortunately, even with
careful insulin dosing, glucose control is often erratic, causing adverse health effects. A
panacea for persons with T1D would be a machine that can rigorously calculate the correct
insulin dose and infuse it automatically. This machine is known as the artificial pancreas.

One of the great challenges in the development of the artificial pancreas is how the
controller should respond to exercise [1, 2]. Exercise causes significant changes to insulin-
glucose dynamics, seen schematically in Figure 1.1. These exercise-induced changes confound
insulin-dosing because there is a significant time-lag associated with the control input -
injected insulin. The ramifications are significant - if a dose is given prior to exercise,
without accounting for the exercise-induced changes to insulin-glucose dynamics, the dose
could be fatal. This makes safe dosing calculations a critical component of a robust and safe
artificial pancreas.

Dissertation Objective: To include the acute effects of exercise in a model of insulin-
glucose dynamics. This model will provide insight into insulin-dosing during exercise and
can be used to inform model predictive control (MPC) algorithms for the artificial pancreas.

This introductory chapter gives the requisite background information for understanding
the context, challenges, and contributions of the insulin-glucose modeling work that makes up
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this dissertation. In Section 1.1 we will introduce the disease and provide information about
disease demographics, treatment methods, and complications. Next, Section 1.2 explains
the challenges of exercising with T1D. Then, Section 1.3 will go over some of the fundamen-
tal concepts that govern insulin-glucose dynamics. Section 1.4 will go over tracer methods
for measuring glucose metabolism, which are important for obtaining model inputs. Next,
Section 1.5 will summarize previous mathematical models that describe insulin-glucose dy-
namics. Finally, Section 1.6 will conclude by summarizing how the modeling work presented
in this dissertation addresses the insulin dosing challenges associated with acute exercise.

Exercise Induces Acute Changes to Insulin-Glucose Kinetics
— Direct Effect ---# Indirect Effect

Insulin Subsystem E Glucose Subsystem

) (Exercise Intensity)
lInsulln Dose

c Increases endogenous Meal Absorption
Insulin in glucose production l
Subcutaneous Chap. 3
Tissue G
¥ Liver Glucose in
Enhances rate of insulin | | Circulatory
absorption Chap. 2 i System
Y L IS
I I alters net liver | Enhances rate of glucose
.. glucose uptake | delivery Chap. 3
Insulin in Chap. 3 >
Circulatory
System
Y il
<_ .
Enhances rate of insulin Glucose in
delivery Chap. 2 Skeletal Muscle

cose uptake Chap. 3

Enhances rate of glu- ’l
A

S promotes glucose uptake in skeletal muscle
Chap. 3

Figure 1.1: Block diagram showing the primary effects of exercise on insulin and glucose dynamics. The
insulin subsystem model will be derived in Chapter 2 and the Glucose subsystem model will be derived in
Chapter 3. Red arrows indicate the phenomena that are dependent on exercise intensity FE.

1.1 Background on Type 1 Diabetes

Type 1 Diabetes (T1D) affects all segments of the population, the youth to the elderly
and across all demographics and ethnicities. According to the Center for Disease Control
(CDC)[3] and the Juvenile Diabetes Research Foundation (JDRF)[4]:

e 1.25 million Americans are living with T1D
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e 40,000 people are diagnosed with T1D each year in the U.S.
e 5 million people in the U.S. are expected to have T1D by 2050.
e $14 billion T1D-associated annual healthcare costs in the U.S.

e T1D is associated with an estimate loss of life-expectancy of up to 13 years

Persons with T1D are characterized mainly by one thing - an inability of the pancreas
to produce insulin. T1D is an autoimmune disease, meaning that the afflicted person’s own
immune system attacks the pancreas’ insulin-producing beta cells. With functional beta cells
almost completely destroyed within a year of diagnosis, a diabetic can no longer produce
insulin. This is problematic because insulin is the hormone that allows the human body to
utilize glucose. Without insulin, a person will slowly whither, losing all the fat on the body,
and producing potentially fatal ketone toxicity known as diabetic ketoacidosis (DKA). To
survive, persons with T1D must inject insulin to replace the insulin that would normally be
produced by the pancreas.

Treatment of T1D revolves mainly around one thing - dosing insulin correctly. However,
insulin dosing is multi-factorial. Persons with T1D often report insulin doses changing
moderately day to day depending on stress levels [5], time of day [6, 7], activity levels [2,
8-11], food type, and even altitude (the author, who also struggles with T1D, recalls insulin
requirement reduced by 50% on a day spent in the Sierra Nevada Mountains in Lake Tahoe,
CA at 8000 ft elevation). The problem with dosing variability is that dosing incorrectly has
very significant acute short term and long term health effects. These manifest themselves
into three main groups of complications:

e Hypoglycemia - Hypoglycemia is an acute condition of low concentration of glucose
in the blood, < 70 [mg/dL|. This condition typically occurs when a diabetic subject
has injected too much insulin and as a result, the cells in the body absorb too much
glucose from the blood, thereby reducing concentrations to levels too low for the body
to operate normally. The condition can also result from high levels of physical ex-
ertion, where CHOs are burned more rapidly than they are replaced by endogenous
glucose sources. Early warning signs of hypoglycemia are dizziness, shakiness, and
cold sweats. Untreated hypoglycemia can lead to seizure and loss of consciousness. In
rare extreme cases it can be fatal. If caught early, treating hypoglycemia is as easy as
drinking a sugary beverage or eating glucose tablets. At later stages, a patient may
lose consciousness and one of the only ways to raise glucose levels is by injection of the
hormone glucagon, signaling the liver to release stored glucose and rapidly raise BG
concentrations.

e Hyperglycemia - Hyperglycemia is the condition of high concentration of glucose in
the blood, > 190 [mg/dL|. This conditions is common in people with diabetes and is
typically caused by eating foods that contain high levels of carbohydrates (CHO) (sug-
ars, starches) and not taking enough insulin to metabolize the ingested CHO. Chronic
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hyperglycemia, if left untreated, can lead to many long term comorbidities such as
kidney, neural, and cardiovascular complications[12]. In T1D patients, Hyperglycemia
is treated by administering insulin.

e Diabetic Ketoacidosis (DKA) - Extreme hyperglycemia can lead to an acute life threat-
ening condition called Diabetic Ketoacidosis. DKA is a serious complication that oc-
curs when your body no longer produces enough insulin, and results in very high levels
of blood acids called ketones. A lack of insulin causes this condition because without
insulin many cells cannot absorb glucose to use as energy. Without the ability to utilize
glucose, the body instead burns fat for fuel, of which ketones are a byproduct. If the fat
burning rate is rapid enough the result is a high level of ketones in the blood, which can
cause ketoacidosis. Symptoms of DKA are frequent urination, extreme thirst, weight
loss, nausea, and fatigue. Untreated ketoacidosis can cause diabetic coma, which can
be fatal [12]. Replacement of insulin is the only way to avoid and treat DKA.

Glucose Variability

In principle, diabetes seems easy to treat - inject the right amount of insulin so that glu-
cose can stay in normal ranges (euglycemia). This avoids hyperglycemia, DKA, and hy-
poglycemia. However, in practice, this is an extremely difficult task because (1) the acute
effects of exercise on insulin-glucose dynamics and (2) the long time-lag of injected insulin.
Any person with T1D can attest that controlling BG levels with insulin injections is ex-
tremely difficult, frustrating, and sometimes seems hopeless. To demonstrate the difficultly
it is illustrative to look at BG levels for a non-diabetic and a person with T1D on insulin
therapy. Figure 1.2 shows the typical BG levels over the course of a day.

The light red shading represents the hyperglycemic (>190 [mg/dL]) and the hypoglycemia(<70
mg/dL]) regions. The green shading shows the safe region between 70 and 190 [mg/dL].
At first look, it is obvious that the T1D subject averages a much higher BG level than the
nondiabetic subject. It is common for T1D subjects to average BG of 200 [mg/dL]. The
average BG for a nondiabetic is around 100 [mg/dL].

Consider the individual glucose traces for each case. The BG of the nondiabetic subject
(blue line) rises with the ingestion of breakfast at 7:00 AM, peaks around 250 [mg/dL], and
then decreases quickly to the green region. Two more noticeable bumps can be seen for lunch
and dinner, but these are short lived. At nighttime the BG levels are remarkably stable.

In comparison, the T1D subject (red line) has very large swings in BG throughout the
day. The subject starts the day already in the red region at 200 [mg/dL]. Blood glucose
continues to rise until about an hour after breakfast. This rise is a common occurrence
in T1D subjects called the ‘dawn phenomenon.” The day’s first large bolus of insulin is
given around 8:30 AM and kicks in at 9:00 AM, rapidly decreasing BG levels from 10:00
AM to 12:00 PM. Then, approaching hypoglycemia around noon, the subject ingests lunch,
and the BG levels rise from 70 to 300 [mg/dL] in only one hour and then slowly reduce
until settling around 180 [mg/dL]. Around 6:00 PM the subject eats dinner, resulting in a
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Figure 1.2: Comparison of blood glucose levels for a non-diabetic and diabetic subject. The BG of the
nondiabetic subject (blue line) rises with the ingestion of breakfast at 7:00 AM, peaks around 250 [mg/dL],
and then decreases quickly to the green region. Two more noticeable bumps can be seen for lunch and
dinner, but these are short lived. In comparison, the T1D subject (red line), has very large swings in BG
throughout the day, averaging 200 [mg/dL] and experiencing two mild hypoglycemia episodes at 12:00 PM
and and 9:00 PM.

small spike up to 210 [mg/dL], followed by a rapid fall in BG from 7:00 PM to 9:00 PM,
culminating in a mild hypoglycemic event with BG of 60 [mg/dL]. The subject then recovers
from the hypoglycemic event with a small snack of CHO. Around 10:00 PM, the BG rapidly
rises again, probably as a result of the glucose in the dinner becoming available 4 hours
after ingestion (if the meal contained a high level of fat, this is not uncommon). The BG
stabilizes at midnight at a high level of 200 [mg/dL]| and the subject stays in the red range
the remainder of the night.

The BG comparison paints a very unsettling picture for the diabetic subject. In one
day there were two hypoglycemic events and the average BG level still ended up around 200
[mg/dL]. This level is far too high. If these high levels continue over many years complications
such as neuropathy, retinopathy, kidney disease, and a host of other cardiovascular problems
are imminent. This exemplifies the type of unpredictability that diabetic subjects must deal
with on a daily basis. To prevent each day from looking like this, diabetics must eat right,
dose insulin correctly, and exercise. Unfortunately, even the most diligent diabetics often
have days like that depicted in Figure 1.2. It is for this reason that technology for improving
treatment for type 1 diabetes continues to be a hot topic of research.

Insulin Therapy

There are generally two methods of treatment for administering insulin: Multiple Daily
Injection (MDI) therapy and continuous subcutaneous insulin infusion (CSII, a.k.a insulin-
pump therapy (PT)).

With MDI therapy, the subject often administers several doses of insulin daily through
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Figure 1.3: (left) Typical insulin concentration profile that results from multiple daily injections. Ideally,
four doses would be given per day: one for breakfast (B), one for lunch (L), one for supper (S) and one long
acting insulin dose given at bedtime (HS, Hora Somni) to provide basal insulin. Adapted from [13], without
permission. (right) Typical pen injection. From [14], used without permission

subcutaneous injections. Usually a patient administers an additional dose of long acting
insulin once a day that lasts for 24 hours. This long-acting insulin provides a background or
basal level of insulin that ideally keeps a subject at a stable euglycemic glucose level during
fasting conditions. Euglycemic means at a normal level of glucose, generally about 90-100
[mg/dL].

On top of basal insulin, the subject administers a rapid-acting bolus of insulin to metab-
olize the glucose contained in a meals and snacks. The combination of the basal and bolus
injections typically results in insulin concentrations like those shown in Figure 1.3. Note
that the insulin concentration depicted is highly idealized, and correction insulin doses are
frequently given between meals to bring glucose levels closer to normal. [t is not uncommon
for T1D subjects to administer a total of §-10 injections per day.

The other popular treatment methodology is continuous subcutaneous insulin infusion
(CSII, a.k.a pump therapy (PT)). PT involves wearing an insulin pump 24 hours a day so
that insulin can be continuously infused. However, PT still requires the patient to make all
dosing decisions, and is not automated. PT insulin is infused in the subcutaneous tissue
through an ‘infusion set’ that typically lasts three days.

One advantage of existing PT is that only one type of insulin is infused, rapid-acting
insulin. Small background infusion rates provide the basal insulin. Then at mealtime, the
user informs the pump of the number of CHO being ingested and the pump suggests an
insulin bolus based on simple calculations. After confirming the calculations the user directs
the pump to infuse the insulin. A typical daily pump infusion profile is shown in Figure 1.4.

Certain pump features are available that allow the user more freedom in the way the
insulin is infused. For example all the insulin does not need to be given given upfront at
mealtime, it can be spread out over a longer ‘extended wave’ (Figure 1.4), where part of the
insulin is given at meal time and part is given a few hours later. This gives the user more
freedom to change the infusion profiles for different types of meals. For example, pizza, due
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Figure 1.4: (left) Typical infusion profiles for continuous subcutaneous insulin infusion (CSII, a.k.a. pump
therapy (PT)). Notice that the basal levels are adjusted throughout the day, giving the patient more flexibility
to achieve optimal background insulin concentrations. In the bottom frame different types of bolus infusion
profiles are shown. A ‘standard’ profile gives an entire meal bolus up front, while an ‘long extended’ profile
gives the insulin over an extended period, when a meal contains significant fat that tales longer to digest
[15], used without permission. (right) Typical insulin pump with subcutaneous infusion set. The infusion
set contains a small cannula that sits about 0.5-1 inch below the skin. From [16], used without permission

to high fat content, can take up to eight hours to digest. Insulin works over only four hours,
so to account for the mismatch of insulin availability in blood and digestion rates the user
can direct the pump to give 50% of insulin now, and 50% four hours later, so that insulin will
continuously work the entire eight hours that the pizza is being digested. Some examples of
different pump bolus profiles are shown in Figure 1.4

Insulin pumps are gradually becoming more popular, especially with the recent advances
in diabetes technology that have incorporated continuous glucose monitoring (CGM) into
insulin pumps, displaying glucose measurements every 5 minutes on the pump screen. This
combination of therapy is called sensor augmented pump (SAP) therapy and has been shown
to be superior to MDI and CSII [17]. This integration of continuous glucose measurements
into the pump has also made closing the loop possible, where insulin is dosed automatically in
response to glucose excursions. The first partially automated insulin pump (a.k.a. artificial
pancreas) reached the market in spring of 2017. It called the Medtronic 670G and is a
hybrid-closed loop system that can automatically adjust basal insulin rates, though meal
boluses are still manually inputted by the user. More details on the artificial pancreas will
be given in the next section.

Glucose Monitoring

Accurate glucose monitoring is critically important to diabetes management. The correct
dose of insulin is based not just on the amount of CHO being ingested, but also on the
current BG level. Before dosing insulin at mealtime, a subject needs to check BG levels to
determine whether they should give a larger dose (if BG is higher than normal) or a lower
dose (if BG is lower than normal). Even a 10 % error in the insulin dose amount can lead to
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Figure 1.5: Examples of the tools for measuring BG. (left) Urine glucose test strips. (center) Finger-stick BG
(FSBG) meter. (right) Continuous glucose monitor (CGM). The CGM consists of a sensor (white patch),
a transmitter (round and grey), and a receiver (blue device placed in pocket). Urine test strips for BG
measurement have been replaced by FSBG meters. FSBG meters may suffer a similar demise as CGMs
become more comfortable, more accurate, and more affordable. Newer CGMs no longer require calibration
with FSBG meters. Images from [18-20], used without permission.

unsafe glucose levels. Having an accurate glucose measurement makes a dosing calculation
much easier.

Glucose monitoring technology has advanced at a steady pace over the past four decades.
Only 40 years ago, urine test strips were the standard method to of BG measurement. This
technology was very crude by today’s standard. A patient would urinate on a test strip, then
compare the color to the spectrum printed on the packaging. This would give an estimate
of what the BG levels were a few hours prior. An example of a urine test strip is shown in
Figure 1.5 (left).

In the early 1980s, the first in-home finger-stick BG (FSBG) test strips were introduced,
revolutionizing treatment for patients with T1D. The technology has steadily improved to
today’s sleek, tiny, and reliable FSBG meters. An example of a FSBG monitor is shown
in Figure 1.5 (middle). A finger-stick BG meter involves pricking the finger with a needle,
obtaining a drop of blood, and placing it on a test strip that is inserted into a small electronic
reader. These meters are fairly accurate, with errors required to be less than 20% according
to the International Organization for Standardization. For most all practical situations, 20%
error is sufficiently accurate for persons with T1D to make treatment decisions. A person
with T1D can take up to 10 readings daily.

Recently, a revolutionary new technology has come to fruition - the continuous glucose
monitor (CGM). This technology uses an implantable wire to continuously measure glucose
levels, providing a reading every 5 minutes. An example of a CGM is shown in Figure 1.5.
CGMs have revolutionized treatment for persons with T1D. With a CGM, BG readings
are reported on a receiver (or smartphone) every 5 minutes, 24 hours a day. This feature
provides information that can warn a person with T1D of impending hypoglycemia, or wake
up a patient if they experience a nighttime low. The frequent sampling of CGM has also,
for the first time, enabled users to make dosing decisions based not just on current values of
BG, but also recent trends in BG (is BG rising or falling at the moment?). A typical CGM
readout is shown in Figure 1.6.
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Figure 1.6: Two typical CGM readouts as seen in the Dexcom application on the iPhone. The left shows the
case where a CGM reading is high. The right shows the case where a CGM reading is low. Measurements
are reported in 5 minute increments. CGM has revolutionized treatment for T1D, and has been shown to
significantly improve treatment outcomes[21, 22].

Figure 1.7: The three main components of an artificial pancreas are a continuous glucose monitor, an
insulin pump, and a control algorithm. These three components work together to close the loop, allowing for
automated insulin delivery that effectively replaces the pancreas. Images from [23], used without permission.

The Future of Treatment - The Artificial Pancreas

Insulin pumps are becoming more reliable, and continuous glucose monitors more accurate.
The natural next step is to close the loop by using real-time glucose measurements to make
dosing decisions so that insulin can be infused automatically. This closed loop system is
known as the artificial pancreas (AP). The system consists of three main components: a
CGM, an insulin pump, and a control algorithm. A schematic of an AP system is shown in
Figure 1.7.

An AP system would work by continuously dosing insulin based on a CGM reading. In a
perfect world, where insulin works immediately upon injection and CGM readings are 100%
accurate, the AP would be a relatively easy single-input (insulin) and a single output (BG
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concentration) control problem. However, as is always the case in the real world, the problem
is never that simple. There are various limitations and challenges of the AP. Some of the
main challenges are:

e [nsulin time-lag. Subcutaneously injected insulin does not reach the bloodstream until
20-30 minutes after administration. After injection it works in the body for 3-4 hours.
In this time, glucose levels can change, food can be ingested, or exercise can happen -
all which affect what the optimal prior insulin dose should have been.

o [nsulin sensitivity is highly variable. How much insulin to inject changes day-to-day
and hour-to-hour depending on exercise, stress, and food type.

e Fzxercise. Physical activity can rapidly lower BG levels potentially causing dangerous
hypoglycemia. Because of this people with T1D need to be extremely careful both
during exercise [2, 24] and in the several hour period following exercise [9].

e Mechanical Failures. Like all mechanical devices, parts sometimes fail. The insulin
infusion cannula can become clogged, the tubing can kink, the insulin pump itself
can malfunction, and the insulin can deteriorate. Any of these failures can be life
threatening for a person that depends on an AP to keep them alive, and hence even
with a fully automated AP system, the patient would need to remain vigilant.

Despite the many challenges, significant progress has been made over the past two decades
in the medical community. Recently, the world’s first partially automated insulin pump was
released, the Medtronic 670g [25].

Some of the most important research work being done to develop the AP is by Kovatchev
[26], Damiano [27], Hovorka [28], Doyle [29] as well as many other dedicated researchers. The
potential benefits of an AP system are tremendous. Already, clinical study after clinical study
have shown significant improvements to glucose control, and reduction in hypoglycemia [26,
27, 29].

However, despite the significant progress, there are still many challenges to the devel-
opment of a fully autonomous system. Many of these challenges have to do with the acute
effects of exercise on glucose metabolism [24].

1.2 Exercise and Type 1 Diabetes

Exercise poses significant challenges for people with T1D. On one hand, exercise has been
shown to improve glucose control and overall health, and thus it is recommended for T1D
by the American Diabetes Association (ADA) [30]. On the other hand, exercise can cause
dangerous hypoglycemia, which in some rare cases has caused death [2, 31].

The ability to control glucose concentrations during and after exercise is considered a
major hurdle to closed-loop control (CLC) [24]. This is because the control system needs to
administer robustly an appropriate amount of insulin before, during, and following exercise.
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Figure 1.8: Glucose traces from several days of CGM measurements show the prolonged and acute effects
of exercise on hypoglycemia. On Wednesday (green) and Thursday (magenta) the subject exercised in the
late afternoon (2:00 PM and 4:00 PM, respectively). The acute effects of exercise caused mild hypoglycemia
during exercise on both days, reaching a nadir near 70 [mg/dL] about 30 minutes after the commencement
of exercise(around 3:00 PM and 6:00 PM). Glucose levels rebounded because of a snack and then due to the
prolonged effects of exercise began to drop again, reaching hypoglycemic levels around 11:00 PM (Thursday)
and 9:00 PM (Wednesday). Image from [17], used without permission.

The ‘appropriate’ amount of insulin, however, is not always clear. Even if carbohydrates are
counted correctly and insulin is scaled back in anticipation of exercise, the glucose response
can be highly variable, often resulting in hypoglycemia. As a result, to avoid hypoglycemia
diabetics typically need to ingest carbohydrates during and after exercise as well as adjust
their basal insulin levels. Still, even if great care is taken, hypoglycemia is common and
often occurs during exercise and/or several hours afterwards while the subject is asleep [32,
33].

This inability to determine accurately the correct dose of insulin when exercise is involved
stems from the observation that exercise significantly alters several metabolic processes in
the body. These effects can be roughly broken into two groups: prolonged and acute exercise
effects. Figure 1.8 demonstrates hypoglycemia episodes that are caused by both the acute
effects of exercise (sharp drop in glucose during exercise) and the prolonged effects of exercise
(post-exercise delayed hypoglycemia). See Figure 1.8 caption for detailed explanation.

Prolonged Effects of Exercise in Type 1 Diabetes

Prolonged exercise effects can cause hypoglycemia up to 48 hours following exercise [2, 9].
This is made clear by the observation that insulin sensitivity (S7), a measure of the ability
of insulin to stimulate the uptake of glucose and suppress endogenous glucose production, is
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greatly enhanced due to a bout of exercise, increasing two-fold in healthy subjects undergoing
moderate exercise [10]. This means that if a person with T1D vigorously exercises late in
the day, and neglects to scale back their insulin basal rates prior to bedtime, they may fall
into severe hypoglycemia [17] while asleep.

Fortunately, these prolonged effects can be readily handled in the AP because the system
can automatically scale back insulin based on feedback from a continuous glucose monitor.
In fact, one of the main benefits of the recently released Medtronic 670G hybrid-closed loop
system is its ability to use effectively CGM measurement feedback to prevent nighttime
hypoglycemia and hyperglycemia [34].

Acute Effects of Exercise in Type 1 Diabetes

The acute effects of exercise on glucose kinetics are much harder to control than the pro-
longed effects. This is because insulin injected through the subcutaneous route experiences
a significant time-lag before it acts to lower glucose levels. Rapid-acting insulin (the typical
insulin used in a insulin pump) takes 20-30 minutes to start promoting glucose uptake and
remains in the system for 3-4 hours. The problem is that if a person with T1D exercises
only an hour after injection then glucose will be taken up due to the exercise itself and the
insulin that is present in the body. The combination of the two glucose-lowering effects can
rapidly lead to dangerous hypoglycemia. This presents a major problem for effective and
safe CLC during exercise.

There are several acute effects of exercise on glucose metabolism. Each effect is shown
schematically in Figure 1.1. There are three direct effects (solid red lines), two direct effects
on insulin (solid red lines) which cause two indirect effects (dotted red lines) on glucose
metabolism. The effects are said to be indirect because they alter insulin kinetics, which
then in-turn alters glucose kinetics. These five main effects are:

1. Exercise increases endogenous glucose production (EGP). To keep up with glucose
demand, the rate that the liver releases glucose increases [35, 36].

2. Ezercise enhances the rate of glucose delivery to skeletal muscle. To keep up with
glucose demand in skeletal muscle, capillaries dilate and blood flow increases, so glucose
can be delivered to muscle at a higher rate [37, 38].

3. Exercise enhances the rate of glucose uptake in skeletal muscle. Glucose is one of the
primary sources of fuel during exercise and is rapidly oxidized in skeletal muscle [35,

39, 40].

4. Ezercise causes capillary vasodilation which enhances the rate of insulin absorption
from the subcutaneous injection site [41, 42]. This causes an increase in plasma insulin
concentration altering glucose uptake in the liver, muscle and other insulin-sensitive
tissues.
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5. Exercise causes capillary vasodilation and enhances the rate of insulin delivery to skele-
tal muscle [43]. This causes the insulin concentration in skeletal muscle to rise, pro-
moting glucose uptake [44].

1.3 The Physiology of Insulin-Glucose Dynamics

Glucose metabolism is a complex process in the human body. Glucose enters the circulatory
system either by absorption through the digestive tract, or when fasting or exercising, by
release from endogenous storage, mainly the liver. Through the circulatory system glucose is
delivered throughout the body, where its fate is determined by tissue demand and hormonal
signaling. Figure 1.9 illustrates the complex network that governs glucose control in the
human body.

glucose '\p)

‘ Lines of Communication ‘

/

Figure 1.9: Glucose is controlled by a complex network involving the brain, muscle, digestive tract, and fatty
tissue. Image taken from [36], used without permission.

The circulatory system in an adult contains roughly four grams of glucose at any moment
in time [36]. Under fasting and resting conditions the whole-body rate of glucose uptake
is 155 [mg/min] in an average person. This means that 4 grams of glucose turns over
every 25 minutes. Figure 1.10 shows the size of a 4 gram glucose tablet and the respective
contributions of different tissue groups. Of the 155 [mg/min] of glucose uptake, about 45 %
goes to the brain, 30 % to the skeletal muscle and periphery, 20 % to the liver and kidneys,
and the remaining 5 % to other organs [45]. Because of the constant uptake, blood glucose
must be continuously replenished via endogenous sources (liver glucose release) or exogenous
sources (meal ingestion).
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Figure 1.10: As basal glucose levels, roughly four grams of glucose are in your circulatory system [36]. Under
fasting and resting conditions four grams (equivalent of one glucose tablet) is taken up by the body every
25 minutes. Each organ has different glucose requirements. Numbers taken from [45].

Because glucose is such an important fuel in the body, it must be continuously supplied
to organs at a high concentration, typically about 90-100 [mg/dL]. Glucose is judiciously
regulated through a complex hormonal system. The two primary hormones are insulin,
which promotes glucose uptake, and glucagon, which promotes glucose production (release
into bloodstream). These counter-regulatory hormones are both secreted from the pancreas.

With respect to insulin, tissues fall into two groups: insulin-sensitive and insulin-independent
tissues. The main insulin-sensitive tissues are the liver and the peripheral tissue (skeletal
muscle and fat). The glucose uptake in these tissues is dependent on the insulin concentra-
tion in the tissue. Glucose uptake in insulin-independent tissues, such as the brain, is largely
insensitive to insulin concentration. Thus different tissues types are independently affected
by hormones. A model of glucose uptake in the body must model insulin-independent and
insulin-dependent tissues independently.

The variation in the digestion rate of ingested glucose adds another layer of complexity.
Fatty foods are generally digested at a slower rate than foods made up of simple carbohy-
drates. This makes estimation of the ingested glucose absorption rate (i.e. rate of meal
appearance Ra,eq ) difficult to predict. Without an accurate estimation of Raeq, glucose
levels in the postprandial state are difficult to predict. Isotopic tracers may be employed in
a clinical environment to to estimate Rapeqr, as will be shown in Section 1.4 [46-53].

Considering the individual behavior of many tissue types, the number of hormones, the
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variation in digestion rate, and the non-linear nature of many metabolic processes, it may
seem like an intractable problem to model insulin-glucose dynamics quantitatively. We thus
ease into modeling all the complexities by starting with the simplest possible model, the one
compartment model of glucose metabolism.

1.3.1 The One Compartment Model of Glucose Metabolism

The one compartment model of glucose metabolism is a single compartment of constant
volume representing the circulatory system. In actuality glucose occupies more than one
compartment [51], but the one compartment assumption is valid under certain circumstances
(i.e. steady state) and allows for the simplest possible mathematical representation.

Assumption 1 (One compartment) Glucose occupies a single compartment with a fized
volume (usually taken to be the plasma volume of the circulatory system). Once a glucose
molecule leaves the compartment it never re-enters.

The single compartment model contains a mass of glucose m that is directly proportional
(through the volume V') to the glucose concentration in the system G

m=V-G. (1.1)
In the one compartment model we assume that the system is well-mixed.

Assumption 2 (Well-mixed) A compartment is considered well mized when the concen-
tration of a material does not vary spatially throughout the compartment (i.e. no spatial
derivatives). This means that no matter where the blood is sampled the concentration of
glucose will be the same.

This assumption is valid when the rate of species transport and dispersion throughout the
system is fast in comparison to the time-scale of a species leaving the system. For example
an intravenous injection of a drug distributes throughout the circulatory system in a matter
of minutes but is typically present in plasma for hours. The implication is that if we wish to
study the overall metabolism of the drug it is probably not important to consider the short-
term spatial variation of drug concentration that is present after the initial injection. Indeed
the well-mixed assumption is made out of convenience - we only need one time derivative to
describe the rate of change of the system and do not need to account for spatial derivatives.
The fluxes in the compartment are called rate of appearance R, and rate of disappearance
R,.

The one compartment description can be written mathematically as

dm

— =R, — Ry. 1.2

v ; (12)
In words, 1.2 says that the change in the mass of glucose in the compartment is equal to the

rate glucose enters the compartment minus the rate glucose leaves the compartment. Using
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m=GeV

Figure 1.11: The one compartment model of glucose represents the conservation of mass of glucose in the
circulatory system. m is the total mass of glucose in the system, G is the total concentration of glucose in
the system, V is the volume of distribution of glucose in blood plasma, R, the total rate of appearance of
glucose into the bloodstream, and R, is the total rate of disappearance of glucose out of the bloodstream.

the relation 1.1, and assuming that volume is fixed in time we can rewrite 1.2 as

dG
VEZ —R, - R 1.3
dt d (1.3)

which is the general one compartment model governing the concentration of glucose in the
bloodstream.

Equation 1.3 can be given more granularity, also more physiological meaning, by account-
ing for the specific sources and sinks that are contained within R,. Specifically, the human
body has two sources of glucose: exogenous glucose which includes the rate of appearance
of orally ingested glucose in the circulation Ra,,., and (in certain experiments in diabetes
research) infused glucose F' which typically comes from an intravenous infusion. Endoge-
nous glucose comes from sources within the body - primarily the liver and of secondary
importance the kidneys [53]. Endogenous glucose is usually written as FGP for Endogenous
Glucose Production. Written mathematically Equation 1.3 becomes

dG
VE = Rameal + F + EGP — Rd. (14)

In most cases the infused glucose F' is a tracer and is small compared to other sources (only
about 2% of R,) and therefore is neglected in most calculations.
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With Equation 1.4 we have a basic model of glucose metabolism. With this model
we can study the effects that insulin, demographics, and other physiological signals have
on glucose metabolism, in particular R;. However, to make these inferences we need to
be able to measure the other terms in the model: G, Raeq, FGP. Measuring G can be
achieved through the use of readily available glucose measurement devices, but measurement
of Ra,eq; and EGP is much more involved because these fluxes cannot be measured directly.
Rather, we can indirectly measure these fluxes using isotopic tracers. These methodologies
are outlined in the next section.

1.4 Measurement of Glucose Flux using Isotopic
Tracers

1.4.1 Glucose Flux Measurements Guide Model Development

In order to develop a model of glucose dynamics, it is important to have measurements of
glucose fluxes. These measurements allow for the estimation of model parameters such as
the distribution volume V' and metabolic clearance rates r. Measurements can also be used
as direct inputs to candidate models to provide predictions that can be directly compared
with measured outputs. Typically, in the development of glucose models the measured rate
of ingested meal absorption (i.e. rate of meal appearance Ra.q) is given as an input. The
model then predicts the glucose concentration in blood plasma G for direct comparison with
concentration measurements. The degree to which the predicted concentration agrees with
the measured concentration is an indication of model accuracy.

To evaluate the models that will be developed in this dissertation we need measurements
of glucose inputs and outputs. This section summarizes the theory of isotopic tracers, the
most popular and accurate measurement methodology for studying glucose dynamics.

1.4.2 Theory of Isotopic Tracers

Consider a glucose molecule: it enters the bloodstream at some unknown time, it is present
in the bloodstream for a finite (but unknown) amount of time, and eventually it leaves the
bloodstream at an unknown time. By measuring the concentration of glucose in the blood-
stream, GG, we are only made aware of how many glucose molecules are in the bloodstream
at a given time, but we still have no idea how many molecules are entering or exiting the
bloodstream at that time - we are unaware of the flux.

Now consider a special glucose molecule, a tracer. We send these special molecules into the
bloodstream and they move around just like all the other glucose molecules: they circulate
at the same rate, exit the bloodstream at the same rate, and are converted to energy at the
same rate. In scientific terms these tracers are metabolically identical to all the other glucose
molecules. What makes these tracers special is that they are slightly heavier (by molecular
weight) and/or radioactive. Because of this small (but measurable) difference we are able
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to detect their numbers among the entire glucose population. Moreover, if we specify how
quickly they are infused into the bloodstream then we can calculate how quickly they leave
the bloodstream by using mass conservation. Then, finally, because they are metabolically
identical to the entire glucose population, we can leverage the information they provide to
learn about all the other glucose molecules. This is the essence of a tracer.

Definition 1 (Tracer, q) A substance that is externally introduced into the system at a
known rate, F, and can provide quantitative information about the system as a whole. In
our case the tracer is a glucose molecule that has a heavier and/or radioactive carbon atom.
Its concentration is denoted G.

Definition 2 (Tracee, Q) A substance that is naturally occurring in the system. It is the
substance that we wish to learn about by extrapolating information gathered from the tracer.
In our case, this is the naturally occurring glucose. Its concentration is denoted G.

In order for a substance to be considered a tracer it must have the following properties [52,
Ch. 2]

Property 1 (Tracer properties)
1. It is detectable by an observer
2. Its introduction into the system does not perturb the system being studied

3. It is indistinguishable with respect to the properties of the tracee being studied (i.e.
metabolically identical [49])

To clarify how we can utilize tracers to quantify glucose metabolism, consider the one
compartment model described by Equation 1.3. We may apply this model to the tracer and
tracee systems separately to obtain two ODEs

dG,

—2=F_—-R 1.5
dt 4o (1-5)

dGo

T - RaQ - RdQ. (16)

The two equations are shown schematically in Figure 1.12. V' is the same for each system
because they both occupy the same circulatory system. The subscripts represent the tracer
q or tracee () system. F'is the imposed infusion rate of the tracer ¢ and has replaced the
rate of appearance of the tracer R,, .

Our two equations describing the tracer and tracee system still have three unknowns:
Rq,, R,,, and RdQ. Thus we need one more equation to complete the system. The missing



CHAPTER 1. INTRODUCTION TO TYPE 1 DIABETES AND INSULIN-GLUCOSE
DYNAMICS 19

equation relates the mass in the system to the flux in the system. We define the mass fraction
of our tracer and tracee to be

Ya = anj—qmq B GQC—:l—q G, (1.7)
we = mQW—Li-qu - GQGf G, (1.8)
Note that
1 =w,+ wg (1.9)
m = mg +mg (1.10)
G =G, + Gy. (1.11)

Now, if we continue with the well mixed assumption and further assume that the tracer is
metabolically identical to the tracee, then the mass leaving the system of each species (tracer
and tracee) is simply the mass fraction times the total mass leaving the system 1

Ry, = wym (1.12)
RdQ = wgm (1.13)
)
F o—p] ¢ OGQ . Gq °
° [ ] [o) ® [ ] ° L > qu
° o °
° °
° o °C o .
L4 e © L4 o
® 0o, o o —> R,
RaQ. b e ©
° eV

Figure 1.12: The tracer(gq open circles) and tracee(Q closed circles) system. Both species occupy the same
volume. Note that both the tracer and tracee particles are evenly distributed per the model well-mixed
assumption.
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eliminating m we have

=~ 22p, (1.14)

Wy

Ry

Q

Equation 1.14 is called the tracer indistinguishably assumption. It can stated equivalently
as a probability [52, pp. 19]:

Assumption 3 (Isotopic indistinguishably a.k.a. metabolically identical) The prob-
ability that a particle that leaves the system is a tracer is equal to the probability that a particle
i the system is a tracer. Mathematically this is stated as

qu mq

— 1.15
R4, + Ra, Mg+ mq ( )

To get our desired expression, that is to calculate Ry, we substitute Equation 1.14 and 1.5

into 1.6. After some manipulations, and defining the tracer to tracee ratio as z = g—; we

obtain the well-known Steele Equation [51]
F GQ dz
Ro, = . Vv P (1.16)
Equation 1.16 gives a way to calculate R,, directly under the assumptions of a well mixed,
metabolically identical, single pool model of glucose. This is the model that is used through-
out the vast literature of isotopic tracers in order to elucidate information about many
metabolites [7, 46, 50, 54].

In order to utilize Equation 1.16 a researcher needs to be able to measure G, Gg, and V/
for a given input F. Typically V is assumed to have a certain value measured from previous
studies. However, this is problematic for two reasons: (1) there is large patient variability
of V and (2) glucose in fact occupies more than one compartment which is contrary to our
model assumption [51]. This assumption is almost always problematic when one hopes to
quantify R,, accurately from Equation 1.16 and sometimes leads to large errors. A “pool-
fraction” p is sometimes used to correct for this one-compartment assumption [46], so V
would be replaced by pV, effectively decreasing the volume of distribution to decrease error.
However the value of p is difficult to measure and changes with time. These problems are
largely overcome by clamping z. This means that the tracers are infused in a manner such
that z is nearly constant. This causes the second term in 1.16 to drop out. The process of
clamping z will be discussed in the coming sections.

1.4.3 Tracer Measurements and Methodologies

In the previous section it was explained how a researcher with a measurement for the tracer
to tracee ratio z can calculate R,, using Equation 1.16. However, no mention was made
about how to obtain a measurement for z. This section is devoted to explaining how these
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measurements are obtained. For the purposes of this discussion, we will limit ourselves to
only glucose tracers. For the curious reader, many important details on tracer methodologies
can be found in [46, 49, 52, 53].

Glucose contains three elements: hydrogen, carbon, and oxygen. In its natural form
glucose contains two isotopes of carbon, G['?C] and G[**C| with natural abundances of 98.9%
and 1.1%, respectively. Other carbon isotopes may exist in a glucose molecule, however these
are in very small quantities. In addition to carbon isotopes, other elements can be used to as
labels for tracers: deuterium G[*H| and tritium G[>H| are commonly used. For the purposes
of this discussion we will limit ourselves to the three isotopes that are most commonly utilized
for glucose tracers: two stable forms of glucose (G['**C| and G[?H]) and one radioactive form

(G[H]).

Stable isotopic tracers, G['*C|, G[*H]|

Because the abundance of G['?C] is so high relative to G['*C], it is possible to create an
enriched quantity of glucose that has a much higher abundance of G[**C] than naturally
occurs. This enriched quantity of glucose is used as the tracer. Another commonly used
stable isotopic tracer is the G[*H]|, a.k.a. deuterium. This tracer is typically introduced
in the use of the triple tracer technique [46]. A mass spectrometer is used to measure the
abundances of G[**C] and G[*H]. With these measurements we can calculate the tracer to
tracee ratio z so that we may obtain R,, from Equation 1.16.

Radioactive isotopic tracers, G[*H]

Radioactive glucose isotopes only occur naturally in minute quantities. It is for this reason
that they make excellent tracers, as their mass does not need to be taken into account when
calculating enrichment. The concentration of G[H] in the bloodstream is found by using a
scintillation counter.

1.4.4 Tracer Variables

There are several commonly used tracer variables. Which variable is the sensible choice to use
depends on whether the tracer is stable or radioactive and specifically which measurements
are available.

For stable tracers the tracer to tracee ratio z is used. For radioactive tracers the specific
activity sa is used. Each of these variables aim to quantify the same thing, namely they are
some measurement of the ratio of tracer to tracee in the system. Once z or sa is obtained,
it is input into Equation 1.16 to estimate the glucose flux.

Typically, z and sa are not directly measurable and are rather derived from directly
measurable quantities such as the isotopic ratio r, isotopic abundance a, or enrichment e.
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Definition 3 (Tracer to tracee ratio, z) The ratio of the mass of the tracer to the mass
of the tracee in a system

__mlt) _ Gy
mo) ~ Golt)’

z is the most useful way to describe stable isotope data because it is the direct input for
Equation 1.16. z is time dependent and is measured in the blood plasma. There are two
other variables that are identical to z in their mathematical definition, but instead are used
to describe the ratios in the meal and the infused tracer (the latter is only relevant if the
tracer is not 100% pure).

(1.17)

Definition 4 (Tracer to tracee ratio of the meal, ttr,,..;) The ratio of the mass of the
tracer to the mass of the tracee, in the meal prior to ingestion

Hrmear = —dmeal (1.18)
QOeal

Definition 5 (Tracer to tracee ratio of the infused tracer, ttr;,r) The ratio of the mass
of the tracer to the mass of the tracee, in the prepared infusate

my.
iy = —onl (1.19)

Since z cannot be directly measured it is derived from a mass-spectrometer measurement

of the isotopic ratio r, isotopic abundance a, or in some cases the isotopic enrichment e.
These related variables are defined as

Definition 6 (Isotopic ratio, r) The ratio of the mass of one isotopic species (I) to an-
other species (II)

_ My +mg, _ Gy + Go,

Mgy + M@y, GQU + GQU

(1.20)

Where I and I denote two distinct isotopic species, each present in both the tracer
q and the tracee @), i.e. Gy, is the glucose concentration of the isotopic species [ in the
tracer q. The reason why it is necessary to define both z and r is because there is always
a finite amount of each isotope I and I that naturally occurs in the tracee and the tracer
(a tracer is never 100% pure). Even if z is zero because there is no tracer present, r would
not be because of naturally occurring isotope. For example, natural glucose is 98.9% G['2C]
and 1.1%G[*®*C]. So the isotopic ratio in this case would be ry = 1.1/98.9 = 0.01112, but
because there is no tracer present z = 0. Another way of expressing an isotopic measurement
is through the isotopic abundance a. a is a nearly identical measurement to the isotopic ratio
except that it is the ratio of one isotopic species to the total mass, rather than the ratio of
one isotopic species to another.
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Definition 7 (Isotopic abundance, a) The ratio of the mass of one isotopic species to
the total mass of the system

_ Mg, + Mg, _ GtH + GQI
m G '

(1.21)

or alternatively
r

a= )
1+

(1.22)

A very commonly used derivative of  and a is called the enrichment of a substance e

Definition 8 (Isotopic enrichment, ¢) The abundance of an isotopic species above its

natural level
T N

— . 1.23
]_+T 1+7’N ( )

e=a—ay =

Enrichment is the most commonly used measurement for expressing stable isotope data [52].
Meal enrichment, €,,¢q, and infusate enrichment, e;,¢, can also be defined.

It is necessary to convert a measurement of e to z in order to calculate the tracer flux
from Equation 1.16. To do this the following equation can be used [52, Chap. 2, pg. 33| with
either Puns or Pumeaql

e

2 (1.24)

"~ Pujy—e
Where Pu;,s is the purity of the infusate tracer, defined as the actual mass of tracer
divided by the tracer sample mass (between 0 and 1, usually very close to 1). This formula
can also be used for the tracer in the meal by replacing Pu;ns by Ptpeq. Additionally, it
can be used to convert between t7y,eq OF U7, and €pmeqr O €ipf.
z and e are used for stable isotopes. When radioactive isotopes are used a similar variable
to z is defined, known as specific activity sa

Definition 9 (Specific activity, sa) Radioactivity per unit total mass

vmg, vG, measured dpm
sa = = =

m G G

(1.25)

The units of sa are typically disintegrations per minute (dpm) per mass, which is the
number of atomic disintegrations a scintillation counter measures in a minute divided by the
total mass of the sample. Given a particular radioactive tracer the dpm only depends on
the total mass of the tracer. Hence the mass of a tracer is related to the measured number
of dpm by a simple proportionality constant v. This relationship is measured dpm = vm,.

sa is typically used in an identical way as z because sa ~ z due to the mass of the
radioactive tracer being very small in comparison to the tracee. For this reason z in Equation
1.16 can be replaced by sa with negligible error
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P Godlsa)

R
sa sa dt

o = (1.26)

Equation 1.16 should be used for stable tracers and Equation 1.26 should be used for
radioactive tracers.

For a more complete discussion of each of the aforementioned tracer variables see [52,
Ch. 2].

1.4.5 State of the Art in Tracer Methodology

Various methodologies have been developed to assess glucose metabolism quantitatively.
The single tracer methodology is rather limited due to its inability to differentiate between
exogenous and endogenous sources of glucose. The dual-tracer and triple-tracer methods
give the experimenter more control over z (or sa) reducing errors as well as allowing for the
differentiation of endogenous and exogenous glucose. Hence these latter methods are the
most popular.

Single Tracer Methodology

The single tracer methodology is typically employed under non-physiological conditions when
glucose is not ingested orally, but rather infused intravenously; unlabeled natural glucose
G is infused intravenously at a specified rate R, , the rate of appearance from exogenous
sources. During this type of test R, replaces Ra,., because the subject is in a fasting
state. Thus, the only other source of natural glucose is EGP. By mass conservation R,,, the
rate of appearance of the tracee, is then

Ray = Ra.,, + EGP (1.27)

Gezo

Now a tracer, for instance radioactive G[>H], is infused at a known rate Fsy simultane-
ously with the unlabeled glucose G that comes from the R, ., infusion. We now utilize the
radioactive tracer Steele Equation 1.26 where sa = G[*H|/G

Fsy G d(sa)
R, ——H _yZ 1.28
@ sa sa dt ( )

We can substitute Equation 1.27 into 1.28 to obtain an expression for EGP
Fsy v G d(sa)

EGP = - R

o
sa sa dt exe

(1.29)

V' can be assumed to be the population average, however its high variability can potentially
lead to significant errors. Even more profound errors occur because the single compartment
assumption in the derivation of the Steele equation breaks down. This could be corrected
by including a “pool-fraction” p [49, 51], which represents a ‘fraction’ of the glucose space.



CHAPTER 1. INTRODUCTION TO TYPE 1 DIABETES AND INSULIN-GLUCOSE
DYNAMICS 25

pV would be considered the volume of the plasma compartment, however the correct value
of p is also known to vary greatly from patient to patient. For this reason it is more sensible
to “clamp” sa, by carefully infusing Fsy and R,_,, to obtain a nearly constant sa. When sa
is clamped in this way d(sa)/dt ~ 0. In this way we circumvent the need to know V, and
utilize the ideal clamp version of equation 1.29

oy
sa

EGP =" _R (1.30)

Qexo

This clamp formula can also be used without any infusion R, . This would allow for the
quantification of EGP under steady state and fasting conditions.

The main limitation of this single tracer methodology is that Ra,,.q; for an orally ingested
meal cannot be quantified because a single tracer cannot distinguish between endogenous
and exogenous glucose. If a researcher desires to measure both, at a minimum two tracers

must be included. This technique is known as the Dual Tracer Methodology.

Dual Tracer Methodology

In the dual tracer methodology one tracer is embedded in the meal and the other is infused
intravenously. The second tracer is used to trace the first tracer and the first tracer is used
to trace the total glucose in the meal.

The two tracers typically used are G[*3C] and G[*H] [46]. The G['3C] is embedded in
the meal prior to ingestion at a known ttr,,.q (= 0.04 —0.05). The G[H] tracer is infused
intravenously at a specified rate Fsp.

It is a two step process to calculate Ra,,.q in the dual tracer method. First, we determine
the rate of appearance of the G['*C] glucose via the use of the radioactive Steele Equation
1.26

F G[BCO] d(samea
Rep = —2— =V 7€) d(sameatyr) (1.31)
SUAmealyr SUmealyr dt
where sa,eal,, in this case is defined as
@ (1.32)

SAmealyr = G[lSC]

where meal is for meal rate of appearance and 27 is for dual-tracer method. Note, the
G[H] tracer can be infused at a rate similar to the anticipated rate of appearance of G[*3C],
Ras,,, to minimize changes in $ameaty, [49] and thus minimize the error that comes from the
second term in 1.31.

Second, we divide the resulting R,,, c by the meal enrichment e,,., and use Equation
1.24 (assuming purity is 1) to obtain Raeq

a13C 1
Rameal = = Ra13c(
€meal

— +1). 1.33
ttrmeal i ) ( )
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This step essentially takes into account that only a small portion of the meal contains the
G[3C] tracer. If the meal was 100% G[*C] then the second step would not be necessary.

Now, to calculate EGP we need to determine the glucose that solely comes from endoge-
nous sources. To do this, we break the overall rate of appearance of glucose, Ray, into its
constitutive parts

~0
Rajo; = Rapmeas + EGP + Es7i. (1.34)

Fsp is eliminated because it is very small relative to the other terms. We may rearrange this
equation and solve for EGP

EGP = Ratot — Rameal. (135)
With this relation we can solve for EGP if we know Ra;; and Ra,.q. We already know
Raeq from equation 1.33, so to find Ray,; we create a new tracer variable [46]

3
H
SQtotyp = % (1.36)

where tot is for total rate of appearance and 27 is for dual-tracer method.
In the identical way as before with Ra,,.q;, we now utilize the radioactive Steele Equation
1.26 but with sae,, to determine Rayy
G d(satotQT)

Pon . (1.37)

SQotyr SQiotyr dt

Rayo =

With this relationship we can solve for EGP using 1.35.

Because the same tracer G[*H] is used to create the two tracer variables (Samear,, and
SQiotyy ), they cannot be controlled independently. Thus it is impossible to hold both variables
near constant resulting in significant errors. This is the primary weakness of the dual-tracer
technique. By introducing one more tracer it becomes possible, by modulating infusion rates
of each tracer, to achieve simultaneously nearly constant sa for both tracers.

Triple Tracer Methodology

The most advanced and accurate method for measurement of postprandial glucose metabolism
is the triple tracer method. The triple tracer method is similar to the dual tracer method
described previously. In fact, Ra,,.q is calculated identically as in the dual tracer method
(Equation 1.31 to 1.33). The key difference from the dual to the triple tracer method is that
a third tracer is included to aid in the accurate assessment of EGP.

The third tracer is typically a glucose molecule labeled with deuterium, 2H [46]. Tt is
referred to as G[*H] and is a stable isotope so its mass must be accounted for.

To utilize the third tracer, we begin with equation 1.11 and break up G, into the three
tracers G[**C], G[*H], and G[*H]. Also, we break up G¢ into the natural glucose from the

meal Gy, ., and the natural glucose from endogenous sources G

al natgcp

G = Gratyny + Gratpepr + G[°C) + GPH| + G[°H| (1.38)

meal
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G[?H] is negligible because it is a radioactive tracer and is delivered in very small quantities.
G["C], G[*H] are measurable by mass spectrometry. G4, ., can be obtained from the
simple expression

l

G[13C]

na - . 1.
G tmeal ttrmeal ( 39)
Gratpep can now be solved for
13
Crstpar = G — D apic] - opa] (1.40)
meal

We define a new tracer variable zggp,, that utilizes this new endogenous glucose concen-
tration Gpat,gp (31 is for three tracers)

GP’H
REGP3y = G[—] (1-41)
natgpgp
Once again utilizing the Steele Equation 1.16 we get
pap = 21y Cratper Hzpcrg) (1.42)

2EGPyr 2EGPyr dt

So why is this an improvement over the dual tracer methodology? Because we can control
the concentration of G[*H]| glucose through its infusion rate Fzy and therefore minimize the
changes in zpgp,,.. This reduces errors in our calculation of EGP by making the second (and
more uncertain term) in Equation 1.42 smaller.

1.4.6 Typical Measurement Results Using Tracer Methodology

Example triple-tracer measurements of Ra,,.q and EGP are shown in Figure 1.13. Two
studies, a resting study (blue) and an exercising study (orange), are plotted in each frame.
Raeq is calculated from Equation 1.33 and EGP is calculated from Equation 1.42. The
grey areas show the exercise periods, which only correspond to the exercise study.
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Figure 1.13: Typical measured rate of meal appearance (Rapeq;) and endogenous glucose production (EGP)
for an average healthy (non-diabetic) resting subject and an average healthy exercising subject. Meal inges-
tion for each group occurs at ¢ = 0. The exercising group has four 15 minute exercise bouts from t=120-195
shown by shaded regions. Raeq; during fasting is 0 [mg/min]. Upon ingestion of the meal Ra,eq rapidly
increases to a maximum near 500 [mg/min], and then slowly declines over the next 6 hours to nearly 0. EGP
starts at 155 [mg/min] and after meal ingestion it is suppressed to nearly 0 in both cases. In the resting case
EGP slowly rises back to basal levels over the following few hours, however, in the exercising case it rapidly
increases to 200 [mg/min] during the exercise period. Vertical lines are SEM.

1.5 Previous Mathematical Models of Insulin-Glucose
Dynamics

The types of models used to represent insulin-glucose dynamics range from minimal to
intricate. We have reviewed three of the most popular and well-studied models.

1.5.1 Oral Minimal Model of Glucose Kinetics

The oral minimal model (OMM) [55, 56] is a model of insulin-glucose dynamics that can
be used to assess a subject’s insulin sensitivity (S7) from a glucose tolerance test. It has
also been used as a basic model of glucose metabolism for predictive purposes [1, 57]. It is a
nonlinear lumped parameter model of whole body glucose metabolism and is made up of two
equations. Equation 1.43 is a single compartment model that governs insulin action (X), as
variable that describes the ability of insulin to promote glucose uptake and suppress glucose
production by the liver. Equation 1.44 is a single compartment model that governs glucose
dynamics in plasma. The model equations are
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dX
pT —poX +ps(L — 1) (1.43)
dG Rameal

= _54(G -Gy — XG +

— (1.44)

The variables are X and glucose concentration in plasma (G). The inputs are the mea-
sured insulin concentration in plasma (/) and the rate of meal appearance (Rameq). The con-
stants are basal glucose concentration (Gy) in plasma, basal insulin concentration in plasma
(1), glucose effectiveness (S¢), i.e. the ability of glucose itself to promote glucose uptake
and suppress its own production per volume of distribution (typically set to a population
averaged value of Sg = 0.014 [1/min] [56]), and V¢ is the volume of distribution of glucose
in the body (set to a population average value of V¢ = 1.7 [dL/kg] [56]). The parameters p,
and p3 are also treated as constants, however they are unknown and to-be-determined. The
ratio of p3 to p, times V¢, define whole-body SI

S1="2ye (1.45)
P2

The units of ST are [dL/kg/min per xU/mL]. The parameter can be defined as the insulin
action on lowering glucose concentration per unit insulin concentration.

Addition of Exercise into the OMM

Even though there are very strict assumptions that limit the validity of the OMM, a few
attempts have been made to include exercise effects [1, 58]. Both attempts utilized a similar
approach, with additional terms added to the OMM to account for the increase in peripheral
glucose uptake and the increase in hepatic glucose production. These additional terms
included several parameters, which were identified using nonlinear least-squares.

Model Review

The intended use of the OMM is to assess a subject’s ST for diagnostic purposes. The model
is too simplified to be used for predictive purposes, except in the most restricted cases. This
is because of the many model assumptions: insulin and glucose start from and return to
basal levels, the parameters of the model are constant throughout the study, glucose is a one
compartment model, and that insulin action in the liver and glucose are grouped together.
Also, because the model structure is so limited (by design), it cannot easily be amended to
add the effects of exercise.

To the credit of its creators, the model has been extremely useful for its intended purpose
- to diagnose diabetes. Many types of glucose tolerance tests can be analyzed through
identifying SI via least-squares curve fitting.
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In an effort to further simply estimation of SI, the author has solved the OMM analyti-
cally. The analytical method has been validated vs. the numerical least-squares method and
is presented in Appendix B of this dissertation.

The exercise additions to the OMM by Roy and Breton [1, 58] are problematic for various
reasons. First, many assumptions in the OMM are violated when exercise commences. The
authors do not account for the observations that glucose effectiveness and insulin-sensitivity
change during exercise. Next, liver uptake and peripheral uptake are lumped together, so
the main effect of enhanced peripheral uptake cannot be accounted for individually. Sev-
eral parameters were added to the model with the exercise addition, and these parameters
were identified through nonlinear least-squares, rather than directly from physiology. This
makes the value of the parameters questionable and they may not accurately describe the
mechanism for which they are intended.

1.5.2 Meal Glucose Insulin Model of Type 1 Diabetes

Cobelli and Dalla Man et al. have produced one of the most comprehensive and best-
validated models of insulin-glucose dynamics, known as the Meal Glucose-Insulin Model
(GIM). The model was initially described for healthy and type 2 diabetic subjects in [59].
Shortly thereafter, a T1D module was added [60]. A few years later a physical activity module
was added [61]. The GIM is the foundation of the UVa/Padova Type 1 Diabetes simulator,
approved by the FDA for preclinical trials in 2009 [62].

The basis of the GIM consists of a two compartment model of glucose, and a two com-
partment model of insulin. Note that notation was adopted from the original article [59],
and thus the nomenclature section of this dissertation should not be referenced to describe
this particular model. A block diagram describing the GIM is shown in Figure 1.14.

The glucose subsystem consists of a two compartment model (see Figure 1.15)

dG,

= EGP(t) + Ra(t) + Uy(t) — E(t) — k1G)p + k2 Gy (1.46)
dG

Ef=—m@+h%—bﬁ (1.47)
G:%; (1.48)

where G, is the mass of glucose in the plasma and rapidly equilibrating tissues, G; is the
mass of glucose in the slowly equilibrating tissues, G is the plasma glucose concentration,
EGP is the endogenous glucose production, Ra is the rate of glucose appearance in plasma,
FE is renal extraction, and U;; and Uy are the insulin-independent and insulin-dependent
glucose utilizations, respectively.

The insulin model consists of two base compartments (see Figure 1.15), plus one remote
compartment representing insulin action in the interstitial fluid (not depicted). The insulin
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Figure 1.14: Meal Glucose Insulin Model (GIM) proposed in [59] and [60]. The block diagram shows several
subsystems. In a subject with type 1 diabetes, the beta-cell subsystem is irrelevant, and is instead replaced
with the subcutaneous insulin infusion subsystem described in [60]. The GIM model is one of the most
comprehensive and well-validated insulin-glucose models available. Image taken from [60], used without
permission.

concentration in the liver, periphery, and interstitial fluid is described by

% = —(my +ms(t)) - I, + maoI, + S(1) (1.49)
% = —(ma +my) - I, + my, (1.50)

I % (1.51)
% = —pov X +pov - (I — I). (1.52)

I; and I, are the insulin masses in plasma and in liver. I is the plasma insulin concentration
and I, is basal. X is the ‘insulin-action’ or concentration, given as [pmol/L], on glucose
utilization in the periphery. Insulin-dependent glucose uptake (Ujq) is dependent on the
glucose concentration G; and X and is assumed to be saturable in a Michaelis-Menten
manner. Parameters V,, and K, are dependent on X

Vin(X) - Gy

Uy = 2l =t
CT K (X) + G,

(1.53)
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In Equation 1.49, S(¢) is insulin secretion from beta-cells. For the purposes of this
dissertation, we are focusing on type 1 diabetes, and thus we are not interested in the insulin
secretion module of the GIM. Instead we are interested in the insulin infusion model that
was proposed in a later publication [60] as an addition to the GIM.

The insulin infusion model consists of two ODEs that track the mass of monomeric (I5.)
and the mass of nonmonomeric (I5.;) insulin

dl,,.
— = (ks + kar) - Lr + TIR(2) (1.54)
dlch
= kqlse1 — kaolseo. 1.
dt d 1 2 2 ( 55)

kg is the rate of dissociation. k,; and k., are the rate constants of nonmonomeric and
monomeric insulin absorption into the circulatory system.
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Addition of Exercise into Meal Glucose-Insulin Model of Type 1 Diabetes

An addition to the GIM to include the effects of physical activity was introduced by Dalla
Man and Breton [1, 61]. They chose to include the effects of exercise directly into their
expression for insulin-dependent glucose uptake, shown here as Equation 1.53. Of the three
candidate models for exercise-enhanced insulin-dependent glucose uptake, the one they chose
is defined as

Vo (L+8Y)+ Vi - T4+ aZ - W) - (X + 1) — Vil
Kn (1=7Z - W-(X—1)) + G, '

This model adjusts the Michaelis-Menten constants V,, and K,, by relating them to
variables X, Y, Z, and W. X is the familiar insulin action (Equation 1.52), Y models the
short term acute effects of exercise on glucose uptake, and Z and W model the prolonged
changes to insulin sensitivity, lasting for several hours after exercise ends. The effect of each
of these variables is plotted in Figure 1.16. For full definition of the variables, see [1, 61].

This approach to exercise-modeling introduces several free-parameters, namely «, 3, and
7. These parameters were most likely identified using nonlinear least-squares (details for
some parameters are lacking in the original publication).

Uia = Gt

(1.56)

Model Review

GIM development was enhanced with access to a large dataset of state of the art metabolic
tracer data. This allowed for the identification of many detailed modules, such as a models
for liver endogenous glucose production, beta-cell insulin-secretion, gastrointestinal-tract
glucose absorption, and renal glucose excretion.

There are several elements of this model that, although important, are beyond the scope of
this dissertation. This includes the model for glucose absorption through the gastrointestinal
tract which provides an estimate for the output Ra,,.., and the model for endogenous
glucose production, which gives an output of EGP. Fortunately in this dissertation we have
access to direct measurements for the output of these complex processes, Raeqr and EGP.
Additionally, the GIM includes a model of insulin secretion S(t). In this dissertation we
are dealing with either C-peptide negative T1D subjects (no pancreatic insulin secretion) or
healthy subjects in which we have known plasma insulin concentrations from measurement.
Thus we have not examined the secretion model. There are also other phenomena considered
of secondary importance that were included in the GIM, such as renal excretion. Here, we
have not discussed these secondary effects.

The approach to exercise modeling introduced as part the the GIM includes several
free-parameters, namely «, B, and . These parameters were most likely identified using
nonlinear least-squares. Although numerical parameter identification is generally used in
PKPD modeling, it has its pitfalls - specifically its inability to identify robustly parameters
for complex models, especially in highly nonlinear models such as the GIM. Still, the results
from the GIM exercise addition are reasonable and seem to predict reasonably glucose levels
during exercise.
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Figure 5. Effect of ¥, Z, and W on the relationship between tissue
glucose [G.(f)] and glucose utilization (LIJ): a rise in Y produces an
increase in the steady-state walue of LL;, whereas a rise in Z and/or
W produces an increase on both Ui steady-state values and its speed
of rising.

Figure 1.16: Exercise model included Meal Glucose-Insulin Model of Type 1 Diabetes. Curves show the
effects of the various exercise variables Y Z and W on insulin-dependent uptake (U;q). For full definition of
the variables, see [1, 61]. Figure taken from [61], used without permission.

However, the inclusion of the exercise effects in the model maybe not be physiological.
These effects are added directly to the insulin-dependent glucose uptake function U;; even
though exercise has been shown to induce glucose uptake largely independent of changes in
insulin concentration [35, 39]. Thus actual uptake may not behave in the same saturable
manner as that proposed in the GIM. Also, to the author’s knowledge, there is no inclusion
of the effects of exercise on increasing FG P during exercise. This is a significant weakness
of the exercise module in the GIM.

One more criticism of the GIM is the sheer size and complexity of the model. This
prevents the non-expert from understanding the important aspects of the model and makes
interpretation of the underlying physiology difficult. For example, rate-parameters such as
k.o do not relay information about the underlying physical process. It is not clear from
explanations given in [61] that k. is dependent on tissue perfusion and local vascularization
(i.e. surface area) which are known to change during exercise. Without physical interpre-
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tation it is not clear how, and which, parameters values may change during exercise unless
one already has significant prior knowledge of insulin-glucose dynamics. One of the main
objectives of this dissertation is to provide a model that makes the physiological mechanisms
of insulin-glucose dynamics clear.

Regardless of the critiques, the GIM represents the largest effort in glucose modeling to-
date and is one of the most accurate models available. Thanks to continued efforts and over a
century of experience between Drs. Cobelli, Dalla Man, Kovatchev, Breton and many others,
the GIM has been approved by the FDA as a substitute in lieu of pre-clinical trials [63]. This
tool is now being used across the world to test control algorithms for the artificial pancreas.
This is a first-of-its-kind achievement, and paves the way for the development of more in
silico tools that can be used to expedite the development of new medical technologies.

1.5.3 Sorensen Model of Insulin-Glucose Kinetics

One of the most comprehensive models of insulin-glucose dynamics was developed by Sorensen
in 1984 [64]. The glucose model consists of 8 compartments, the brain vascular space, the
brain interstitial space, the lungs and heart, the gut, the liver, the kidney, the peripheral
vascular space, and finally the peripheral interstitial space. The governing equations for each
of these compartments is shown in Equation 1.57-1.64. An accompanying schematic is shown
in Figure 1.17. With 8 compartments, the model has more granularity than most models of
glucose metabolism. The GIM has two glucose compartments and the OMM has only one.
The 8 glucose model equations are

o dGpy Var

VBV dt - Qg ’ (GH - GBV) - (GBV — GBI) (157)
B
dG Vi
Vi dfl _ Ti; - (Gpy — GBr) — TBGU (1.58)
dG
vid dtH = Q5Grv + QLG + QKRG + QEGrv — QG — trpcy (1.59)
dG
ng—f = Q% (Gy — Gg) — 1aau (1.60)
dG
VLGd_tL = gGH+QgGG_Q€GL+rHGP_rHGU (161)
dG
V=" = Q% (Gu = Gk) — e (1.62)
dG V)
VPGv—d:V = Qf . (GH - GPV) — % . (GPV — GPI) (163)
p
dG 1%
Ver=g = 7 (Grv = Gri) ~rrcu. (1.64)
P

Sorensen’s model assumes the circulatory system is a closed system, with volumetric
blood flow @ through different tissue compartments. The mass flow rate of glucose into
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and out of each compartment is accounted for by multiplying the compartment specific )
by the concentration at the inlet and the concentration at the outlet, assumed to be the
concentration of the compartment. Glucose metabolism rate r is modeled as a separate rate

constant in each compartment.

Sorensen also developed a comprehensive insulin model, made up of 7 compartments.
The compartments are the brain, the heart and lungs, the gut, the liver, the kidney, and the
periphery. The ODEs governing each compartment are
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dl
Vi~ = Q- (In — 1) (1.65)
dI
Vit = Quls + Qul + Qicli + Qpley — Qiyln (1.66)
dl,
Véd—f = Q¢ (In — I) (1.67)
dl
VLId—tL = QU+ Qble — QLI +rpir — i (1.68)
dl
Véd—f = Qx - (In — Ix) = rxic (1.69)
dl V
Vév% =QL - (In — Ipy) — # ~(Ipv — Ipr) (1.70)
Tp
dl V
VPI% = # -(Ipv — Ipr) —1PIC (1.71)
p

This model has almost an identical structure to the glucose model but there are some key
differences. The blood flow rate of the glucose model Q¢ is replaced by the plasma flow
rate Q! because insulin does not enter RBCs and the effective flow rate is equivalent to the
plasma flow rate. Insulin clearance is only assumed to occur in the liver, kidney, and the
periphery.

Addition of Exercise into the Sorensen Model

Lenart and Parker [65] have added an addition to the Sorensen model to account for exercise.
This addition includes a model of glucose uptake in skeletal muscle during exercise and a
model for the enhancement of EGP during exercise.

Two main exercise additions were made in [65]. The first was the increase in peripheral
glucose uptake (PGU), which was modeled by introducing a third multiplier to the metabolic
sink in the peripheral compartment

PGU = M*- MY - M* . 35. (1.72)

MT, M, and MF are dimensionless multipliers representing the effect of insulin, glucose,
and exercise respectively on peripheral glucose uptake. Basal peripheral glucose uptake is 35
[mg/min]. M! and M% were taken from the previous Sorensen model, and the new addition
is the quantity M¥ defined as

PGU,s - PAMM - 28
+ 35 .

MP =1

(1.73)
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PGU, is the active muscle peripheral glucose uptake rate [mg/min/kg,,,sce] and PAMM
is the percent of active muscle mass.

The second exercise addition was to alter the hepatic glucose production (HGP a.k.a.
EGP) to account for exercise. This was done by introducing another multiplier

HGU = M%-M'- M"Y - M* - 155. (1.74)

M%, M, and M" are dimensionless multipliers representing the effects of glucose, insulin,
and glucagon respectively on HGP. The additional exercise multiplier is defined as

n HGPy- PAMM
155 '

ME =1

(1.75)

HGP, is the augmented rate of glucose production [mg/min] in response to exercise and
PAMM is the percent active muscle mass.

There was one final, yet secondary, exercise addition, that accounted for the observed
increased insulin uptake during exercise. Lenart first assumes that liver and kidney insulin
uptake is linearly dependent on the concentration by fixing the product of extraction fraction
and flow rate. This essentially models insulin clearance as linearly dependent on insulin
concentration. Second, the expression for peripheral insulin uptake was altered to account
for the observation by [66] that peripheral insulin uptake increases during exercise.

Model Review

Sorensen’s model is one of the most comprehensive models in the literature. However, the
model size makes it intractable to non-experts, and hampers its ability to be used in model
predictive control algorithms.

The structure of the model is very regular and easy to follow. The model uses very basic
concepts to predict glucose transport, assuming an extraction fraction, a flowrate, and a
diffusion time for each tissue. The downside is that many aspects are the model are fixed,
and thus it is not clear how to adapt the model to conditions that are different than what is
was designed for.

The exercise additions made by Lenart and Parker [65] were straightforward, but may
have pitfalls because they assume that PGU and HGU are nonlinear in glucose, insulin,
glucagon, and exercise. This nonlinearity can lead to significant overestimates at PGU when
all the multiplier terms have significant magnitude. Also, the HGP expression (Equation
1.74) may not be modeled correctly because it was simply added as a multiplier and did not
accounting for glucagon.
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1.6 Dissertation Objective: Develop an
Insulin-Glucose Dynamical Model that Includes
the Acute Effects of Exercise

Automatic control of blood glucose has long been a goal for management of type 1 diabetes.
However, because of the many dangers of safely dosing insulin, a fully autonomous artificial
pancreas is still not possible. As discussed in this chapter, exercise is one of the main hurdles
to a fully autonomous system. This is because of significant exercise-induced changes to
insulin-glucose dynamics that exasperate the already significant difficulty of accounting for
the long time-lag of subcutaneously injected insulin. One method for automated control
in the artificial pancreas is model predictive control [29, 67-69]. Model predictive control,
because it makes dosing decisions based not just on the current state, but predicted states, is
likely the best suited control technique for handling exercise. However, control actions based
on model predictions are only as good as the predictions themselves. For this reason, it is
important to have a high-fidelity and robust model. For the case of exercising with T1D,
optimal control can be achieved if the model is able to make reliable predictions of glucose
levels during exercise.

The objective of this dissertation is to develop an insulin-glucose dynamics model that
includes the acute (i.e. immediate) effects of exercise. This model can eventually be used
as a critical component of an artificial pancreas control system. We will develop this model
with the following principles in mind:

e Physiology-based. We wish to keep the model grounded in concrete physical mecha-
nisms, rather than using ambiguous parameters that are derived from curve fitting.

e [ndependently measured parameters. To prevent overfitting of the model, we wish to
utilize parameters that were measured or derived from independent studies.

e Parsimony. The model will only be made as complex as necessary. We wish to capture
the important physical mechanisms associated with insulin-glucose dynamics and ex-
ercise, but we do not want the model to have so many states and complexities that it
would be difficult for a well-trained engineer to understand. Additionally, model com-
plexity makes model predictive control more difficult. We will use phenomenological
models when necessary to avoid the complexities of biochemistry.

To achieve a physiology-based model some processes will be handled though direct mod-
eling of diffusive mass-transfer. Other processes will be modeled using traditional pharma-
cokinetic compartmental models. Bridging these two approaches amounts to a multiscale
model.

When developing the model, we will include what we believe are the important mecha-
nisms that govern insulin-glucose dynamics during exercise:

e Capillary recruitment



CHAPTER 1. INTRODUCTION TO TYPE 1 DIABETES AND INSULIN-GLUCOSE
DYNAMICS 40

e Endogenous glucose production (EGP)
e Skeletal muscle glucose uptake

By including these mechanisms into a complete model we hope to gain insight into their
relative contributions to glucose uptake during exercise. We anticipate that an understand-
ing of these mechanisms will give insight into many phenomena such as insulin-resistance
associated with poor capillary recruitment, the effect of insulin-on-board on EGP, as well as
many others.

With these principles and goals in mind, we will derive a insulin-kinetics model in Chapter
2 and a glucose-dynamics model in Chapter 3. In Chapter 4 we will couple the two models
for application to a T1D subject and compare model predictions to clinical data. Then
finally, the model will be demonstrated with 10 test cases in Chapter 5.
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Chapter 2

Modeling the Acute Effects of
Exercise on Insulin-Kinetics

Chapter Overview

Insulin is a hormone that promotes glucose uptake in various tissues, and it is critically
important in maintaining glucose homeostasis in humans. This chapter focuses on developing
a model of insulin pharmacokinetics during exercise (Figure 2.1). Pharmacodynamics aspects

Exercise Induces Acute Changes to Insulin-Glucose Kinetics
— Direct Effect ---# Indirect Effect

Insulin Subsystem E
. (Exercise Intensity)
ilnsulm Dose

C
Insulin in
Subcutaneous
Tissue

Enhances rate of insulin
absorption Chap. 2

I
Insulin in
Circulatory
System

Enhances rate of insulin
delivery Chap. 2

S
Insulin in
Skeletal Muscle

Figure 2.1: The focus of this chapter will be on the insulin model (unshaded region). The rate that insulin
moves between regions depends on the exercise intensity F (red arrows). The glucose model in the shaded
region will be presented in Chapter 3.
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of insulin on glucose uptake will be presented in Chapter 3.

Section 2.1 includes background information about the importance of insulin-kinetics
and some background. In Section 2.2, the insulin-kinetics model is derived. For brevity,
some details of the derivation are relegated to Appendix A. Section 2.3 will present model
verification and results, and a discussion will follow in Section 2.4.

2.1 Introduction

Persons with type 1 diabetes (T1D) must inject insulin to survive. The preferred method of
delivery is an injection into the subcutaneous tissue (SC). After injection, insulin is slowly
absorbed into the bloodstream, and then eventually delivered to insulin sensitive tissues,
where its availability facilitates glucose metabolism [44, 70].

Though the SC injection method is safe and mostly painless, the rates of insulin ab-
sorption and insulin delivery are highly variable from one injection to the next and from
person to person. The problem with this variability is that if insulin becomes available too
quickly, hypoglycemia can occur, causing dizziness and /or fainting. On the other hand if the
insulin becomes available too slowly, then hyperglycemia can occur, causing adverse long-
term health effects. This difficulty prevents us from predicting and accounting for the long
time-delay from insulin injection to availability in tissue, and it is one of the main reasons
robust and safe automated insulin dosing algorithms have not yet been developed.

Predicting insulin availability becomes even more difficult during exercise because not
only do glucose metabolism rates change due to increased glucose demand, but insulin ab-
sorption rates from subcutaneous tissue (SC) (k1) and delivery rates to skeletal muscle (SM)
(k%) have also been shown to increase [41-43, 71-74]. It has been postulated that the ob-
served changes are caused by an increase in blood flow rate [75-77] and some studies have
also shown that injection site location has a significant effect [42, 72, 77]. Increased delivery
rate has also been associated with an increase in microvascular blood volume (MBV) [43,
73, 74].

These studies have been illuminating and have shown experimental correlation between
blood flow, MBV, and k! and k!, however many lack a rigorous treatment of the underlying
transport phenomena. In the same vein, most models of insulin absorption in the literature
are data-driven where experimental data is used to identify simple kinetic parameters [78].
These approaches are expedient and indeed useful from an engineering standpoint, however
they unfortunately circumvent inclusion of the underlying transport phenomena and physiol-
ogy of the problem. Indeed, when a more mechanistic model is available, it may be possible
to improve designs of algorithms for control of treatments. To bridge the gap between ob-
servations and physiology, a rigorous treatment of the underlying transport phenomenon is
needed. The focus of this study is to derive a physiology-based pharmacokinetic (PBPK)
model to elucidate the relationship between kI, k!, and exercise intensity F. We draw on
concepts from the research area of microcirculation and nutrient delivery [79]. Drug and nu-
trient delivery are typically characterized by two parameters: the capillary tissue perfusion
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Figure 2.2: A multiscale approach is used to model insulin-kinetics.

rate (@) and capillary permeability surface area (P.S). These parameters characterize mass-
transfer between different regions in the body and will be modeled at the microscale, where
diffusion is handled directly through solution of the convection-diffusion equation. Insulin
distribution within different regions in the body will be modeled at the macroscale using a
compartmental approach. This multiscale approach is illustrated in Figure 2.2.

This chapter is laid out as follows: first, the theory and mathematics that underlie the
insulin kinetics model will be explained. Because the model is derived from fluid mechanics
that utilize partial differential equations (PDE) to describe the fields of interest, we will use
scaling arguments to convert the PDE models into simpler ordinary differential equation
(ODE) models. The parameters of the model are taken from the literature and their validity
will be discussed. The accuracy of the derived model will be demonstrated on T1D human
data taken from a group of resting subjects and a separate group of exercising subjects. The
predicted plasma insulin concentrations will be compared to average measurements from
these two cohorts. The physical interpretation of the model, the prediction accuracy, and
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the implications on glucose metabolism and closed loop control will be discussed.
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2.2 Methods

2.2.1 Model Development
System Overview

Insulin-kinetics is modeled in five steps: insulin pump infusion into the interstitial fluid of
the subcutaneous (SC) tissue, diffusion into SC absorbing capillaries and convection into
the circulatory system (CS), mixing and distribution in the CS, convection into skeletal
muscle (SM) delivering capillaries and diffusion into the interstitial fluid (ISF), and finally
clearance by the liver /kidneys in the CS and clearance by insulin degradation in the the SM.
The abstract model is shown schematically in Figure 2.3(left) and in physiological detail in
Figure 2.3(right). Absorbing and delivering capillaries are part of the SC and SM domain,
respectively.

The human silhouette of Figure 2.3 shows that each domain exists at a different volume
scale. The SC domain is only a few milliliters and is defined as only the SC tissue in contact
with infused insulin. The CS domain is a few liters, and it is defined as being all the blood
that is confined to the larger vessels and organs. The SM domain is tens of liters and it is
defined as being all the skeletal muscle tissues and it also includes other SC tissues that are
not a part of the SC domain because they are not in close proximity to the infusion site. It
is worth mentioning that both capillaries and ISF are contained in the SC and SM domains,
and that blood in the capillaries makes up only a small fraction (< 1% [80, p. 220]) of the
volume of these domains. Hence the capillary volume is not included as part of the volume
of distribution.

Note on Nomenclature

The model consists of multiple domains, each with their own domain specific parameters. In
order to be specific with nomenclature, subscripts and superscripts will be used to denote the
domain (SC, CS, or SM) and the substance that the parameter belongs to, respectively. In
some cases, a parameter will be normalized by either a mass or volume, and will be denoted
by a second subscript, y. As an example

Vsay (2.1)

is the normalized volume of distribution of insulin (I)in the skeletal muscle (SM) domain. In
some equations a peculiar volume parameter shows up with a superscript ¢, This indicates
a volume of tissue, rather than a volume of distribution.

Interstitial Fluid of the Subcutaneous Domain

The SC domain consists of ISF and capillaries. In this section we will consider the dynamics
of the insulin in the ISF. A Following section will consider the dynamics of the capillaries.
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Figure 2.3: (left) Abstract schematic of the proposed insulin model. (right) Physiological representation of
model. The model consists of three distinct domains: the subcutaneous (SC) domain, the circulatory system
(CS) domain, and the skeletal muscle (SM) domain. The human silhouette illustrates that each domain
exists at a different volume scale: the SC domain consists of only tissue in the vicinity of the infusion site,
and is order of milliliters, the CS domain is order of a few liters, the SM domain is order of tens of liters.
The SM domain contains both the SM tissue and the SC tissue that is not in the vicinity of the infusion
site. Capillaries and ISF are both contained in the SC and SM domains, and each have their own separate
dynamics. c is the concentration in the SC ISF, which we integrate over to obtain C. Insulin is infused into
the SC tissue where the total mass is C, then it diffuses into the absorbing capillaries where its concentration
is by, then is convected into the CS where its concentration is I, then is convected into the SM delivering
capillaries were its concentration is by, and finally diffuses into the SM ISF where its concentration is S.
Arrows show insulin clearance directly from the CS by the liver and kidneys. Clearance also occurs in the
SM tissue by insulin degradation. Blood flows at a tissue perfusion rate of QL and Qé through the SC tissue
and SM tissue, respectively.

Insulin is infused directly into the ISF of the SC tissue. The SC ISF consists of only the
ISF in the vicinity of the infusion and not the ISF of the rest of the body. We assume a
continuous and homogeneous SC domain and the concentration of insulin ¢(r, ) in the ISF
is governed by the spherical diffusion equation, with one source and one sink. The source
u represents the insulin pump infusion rate per unit volume. The sink 1, represents the
absorption mass flow rate per unit volume. Djgp is the diffusion coefficient of insulin in the
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ISF and ¢,(r) is the initial concentration profile of insulin.

subject to

c=co(r) at t =0 for all r (2.3)
%antT:O (2.4)
Oc

E:Oasr%oo. (2.5)

The two boundary conditions 2.4 and 2.5 are symmetric and zero flux conditions, respec-
tively, at the center and the outer boundary of the SC domain. To simplify the model, we
convert the PDE into an ODE by applying the assumption of an infinite and homogeneous
SC domain. We integrate Equation 2.2 over an arbitrarily large volume of SC tissue, VI&?,
to get

2/ ch:D,SF/ Ve dV — e dV+/ w dV (2.6)
8t Vgiss Vé'gs Vggs Véiss

C C

Note that the precise value of VE5* is inconsequential as we integrate over an arbitrary but
sufficiently SC large volume to capture all the insulin wetted tissue. The integral of the
diffusive term (V?c) is zero by application of the divergence theorem and BC 2.5 (shown in
Appendix A.1). We define three new variables: C [Units(U)] is the total dose residing in
the SC domain or the insulin-on-board(IOB), ¢ is the insulin infusion rate [U/min] (from
the pump), and C, is the mass flow rate of insulin absorbed from the ISF [U/min] into the
capillaries.

C = cdV (2.7)
Vi

Uty = / wdv (2.8)
Vi

Co = Thg dV. (2.9)
Vi

Because we have integrated in space, we now have a single ODE that governs the ISF in
the SC domain

ocC ;
= 2.1
oy Co +U(1) (2.10)
subject to
C=C,att=0 (2.11)

where C, is the volume integral of c,(r) which is equal to the total insulin initially present
in the SC tissue, or the initial IOB. The form of C, will be defined in a coming section.
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Circulatory System Domain

The CS domain is the intermediate domain between the SC domain, where insulin is ab-
sorbed, and the SM domain, where the insulin is delivered. Z denotes the total mass of
insulin in the CS domain, and insulin is confined to the blood plasma at concentration I. To
model the insulin in the CS, we assume that mixing occurs rapidly and is therefore uniformly
distributed. This allows us to use a traditional single compartment model. To derive this
model, we start with a simple mass balance for insulin

dT . . .
E - I,L - Iout - Icl~ (212)
where, im is the insulin mass flow into the CS domain via convection, Zwt is the insulin mass
flow out of the CS domain via convection, and Z, is the plasma insulin clearance rate. The
control volume around the CS in Figure 2.3 shows two entrances and two exits, we specify
these for the absorbing (subscript ,) and the delivering (subscript 4) capillaries as

jin = iind + -,Z'ina (213)
iout = :zoutd + I.outa (214)

We express Equation 2.12 as a concentration I using the well-mixed assumption, Z =
V2is - I, where Vg is the volume of distribution of insulin in the CS domain. For clearance
we assume a linear model for the plasma insulin clearance rate, Z; = rfg - I [81], where rlg
[mL/min] is the rate constant for the clearance of insulin from the CS domain. We substitute
these relationships into 2.12 along with Equations 2.13 and 2.14 to obtain

dl Izn + iina - -,Z'out - I.O'Uta I

iy = Tos/Vés [1/min] is the volume normalized rate constant for the clearance of insulin
from the CS domain.

Absorbing and Delivering Capillaries

Insulin is absorbed from the SC domain into the capillaries by permeating the capillary wall
through endothelial pores and junctions [37]. It is delivered to the SM tissue in the same
manner. We assume that the absorption and delivery processes are driven by pure diffusion
(i.e. flux is driven only by concentration gradients). This assumption allows us to model
the physics of absorption and delivery identically. The only difference between the two are
parameter values and the sign of the flux. Generally, b will denote the concentration of
insulin in a capillary. More specific, b, will denote the concentration in an absorbing SC
capillary and by will denote the concentration in a delivering SM capillary. We find the
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solution for the general concentration b, and then apply it to both domains to find b, and by
by simply applying domain specific parameters.

First, we assume that our single capillary model has uniform properties along its length.
We will also assume that the capillary bed is homogeneous, i.e. each capillary in the domain
has identical properties, and is uniformly perfused at tissue perfusion rate ). In the real
case, properties and () are heterogeneous, and thus our assumption will prevent us from
capturing some non-linear effects. However, because capillaries have a low permeability to
insulin the effects of heterogeneity will be small [38].

The concentration b in a capillary is governed by the cylindrically symmetric convection-
diffusion equation with axial flow only. A schematic of this flow is shown in Figure 2.4 (left)
and the corresponding BVP for b is defined in Equations 2.16 to 2.19. In the BVP, D, is
the diffusion coefficient of insulin in blood plasma, U is the plasma flow velocity in the axial
direction x, R is the radius of the vessel in the radial direction p, L is the length of the
vessel, and P is the permeability of the vessel wall

ob 10/ 0b 0%b
=D ==(p= -— 2.1
U@x b(p@p <p8p> * 8$2> (2.16)

subject to
b=1atz=0for p=10,R] (2.17)
ob
—=0atp=0 2.18
gy~ Vatr (2.18)
qg= P(c—b)at p=R. (2.19)

We assume a linear concentration gradient across the capillary wall and we use permeability
P to relate flux at the wall to the concentration on each side of the wall. ¢ is the concentration
in the ISF that surrounds the capillary and I is the concentration at the inlet, which we
assume is equal to the concentration in the CS.

The BVP and corresponding schematic shows that b is directly dependent on p and z. In
addition to this local spatial dependence in the capillary domain, b is also dependent on time,
t, and on its global location in the ISF domain, r, through the boundary conditions Equation
2.17 and Equation 2.19. Thus, in general b(p,x, I(t),c(r,t)). Fortunately, because we have
a separation of time and length scales between the SC ISF, the SC capillaries, and the CS,
we can treat I(t) and c(r,t) as fixed when solving b. This also allows us to approximate
0b/Ot =~ 0 (no accumulation in capillaries). We further simplify by arguing that because
we have a moderate Péclet number (Pe) [82] and a large aspect ratio (AR), we can convert
the PDE 2.16 in p and x to an ODE that only depends on x. Details of the simplifications
can be found in Appendix A.2, But, the main results are that: (1) we have a low Péclet
number and thus the concentration boundary layer is large and the radial concentration
gradient is small and (2) blood rapidly traverses a capillary, and thus we can hold I and
¢ constant when solving for b. Mathematically this allows us to make the approximation

b(p,x, I(t),c(r,t)) =~ b(z).
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The ODE that results from the simplifications is

db P2rRLN 1
&= )zl (2.20)
b=Iatx=0 (2.21)

In examining this coefficient, we notice that P2rRL is the permeability surface area (P)S)
and U R? is the volume flow rate (Q) of a cylindrical capillary. The solution to the ODE is
(Details in Appendix A.3)

b(x,r,t) = c(r,t) — (c(r,t) — I(t))e @t (2.22)

b describes the concentration along the length of a cylindrical capillary as a function of axial
position x, SC location r, and t. Remember that r and ¢ were arbitrarily fixed when solving
for b locally, but b is a field variable that depends on time and the location in the SC domain
through BCs. Thus by allowing BCs to vary with r and ¢, the solution is valid for both the
absorption and delivery processes.

The absorption solution is therefore determined, subject to domain specific parameters
and variables for PS and Q. PS!, Q!. and c are used for the absorption solution and PS?,
Q}, and S are used for the delivery solution (replace ¢ with S). Note that the solution is
only dependent on the ratio of parameters PS and (). The ratio of these two parameters
tells us whether the absorption/delivery rate is limited by convection (flow limited) or by
diffusion (surface area limited). As will be seen, because of the low permeability of capillaries
to insulin, this problem is surface area limited.

Interstitial Fluid of the Skeletal Muscle Domain

We chose to include a model of insulin delivery to SM because it is well known that insulin
action occurs in a compartment remote from plasma insulin which has been identified as the
ISF [70]. To model the ISF of the SM domain, we start with a simple mass balance on a
single compartment model

% =85, — 8. (2.23)
Here S is the total amount of insulin present in the SM ISF, S, is the insulin delivery mass
flow rate by capillaries, S is the insulin mass flow rate due to clearance.

We wish to express Equation 2.23 in terms of S, the insulin concentration in the SM
ISF. To do this we need to assume that the compartment is well mixed so that S = V{,, - S,
where V4, is the volume of distribution of insulin in the SM. To test this assumption, we
can compare the timescale of delivery to the timescale of spreading through the ISF. The
timescale of delivery is the diameter of a capillary, 2R, divided by the permeability of a
vessel to insulin, P?. The timescale of spreading is the diffusion distance squared, which in
our case is the intercapillary distance (IC'D) squared, divided by the diffusivity in the ISF,
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Figure 2.4: (left) Schematic of flow in a capillary. Blood enters from the left at uniform velocity U and
concentration initial concentration b|;. Dy is the diffusion coefficient in blood plasma. L, R, and P are the
capillary length, radius, and permeability, respectively. The outer vessel walls is assumed to have a uniform
drug concentration c(r,t), evaluated at a fixed r and ¢. (right) Zoomed out view of a single capillary in the
subcutaneous (SC) domain, hence b, instead of the general b. The light blue in the background represents
the region of drug wetted SC tissue with homogeneous capillaries (red pipes) uniformly distributed. Each
capillary can be thought to act as a local mass-exchanger with inlet concentration b,|; and exit concentration
bale. By integrating over the entire volume of drug-wetted SC tissue, V{* we obtain the total drug absorbed
from the SC tissue per unit time, C,.

Disp. Using R = 3-107* ecm, P! = 107% ecm/s, ICD = 10R, and Djsr = 1075 cm?/s,
the timescale of delivery is 10® s and the timescale of spreading through the SM ISF is 10
s. Because spreading occurs much more quickly than delivery, we can assume the SM ISF
compartment to be well-mixed. As with the CS domain, we also assume linear clearance
Su = L, - S. Substituting into Equation 2.23 we get

—_— = — - S. 2.24
dt V‘S{M rSMN ( )

Coupling the Domains

Now that we have an expression for each domain, our next goal is to couple the domains.
We do this by relating the fluxes across the domain boundaries.

In quasi-steady state, a control volume around the SC domain (shown by dotted line in
Figure 2.3 (right)) reveals that the insulin absorbed from SC tissue is simply equal to the
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insulin mass flow rate out of the domain, minus the mass flow rate into the domain
éa - i-ina - -,Z"—outa- (225)

If we apply the same logic to the SM domain and accounting for the change in sign, we have
the relation

Si=—Tin, — Tour,)- (2.26)

Because the mass flow rate of insulin crossing the boundary between the capillary domain
and the plasma domain is the volume flow rate times the concentration, we can express the
convective fluxes into about out of the CS domain (see Figure 2.4(right)) as functions of the
insulin concentration and volume flow rate

. —ps!
Lin, = Qhbale AV = Ql(c—(c—IDe et ) dv (2.27)
Vs Vs
:Z-outa = Qébali dv = QCILI dVv (228)
vigs Vs
] -Ps}
Ty = [ Qlble dV = / QLS — (S —D)e @& ) av (2.29)
v v
joutd = Qébd|z dV = le] dv (230)
VSN© VSi®

Where we have evaluated b in Equation 2.22 at x+ = 0 or x = L for inlet ; and exit .,
respectively. Parameters are made specific to either the absorption or delivery capillaries.
We now substitute Equations 2.27 and 2.28 into 2.25

: —ps
Ca—/ Ql(c—(c—De @& —1I)dV (2.31)
Ve
: —PSy
Co=QL(1—e @ )/ c—1dV (2.32)
vig?
: =PSg
Co=Ql(1—c el )C. (2.33)

We have assumed uniform tissue properties Q! and PS!. The final equality is a result
of assuming that ¢ > I. This is a valid assumption considering that initially ¢ is highly
concentrated (10® [uU/mL] out of the vial), which is much greater than I (10* [uU/mL])
because insulin is highly diluted in the CS domain.

Similarly, we substitute Equations 2.29 and 2.30 into 2.26

Sy = —/ HS=(S—=1)e % —1I)dV (2.34)
Véiss

M
I
PS!

Si=QViir(L—e % )(I = 5). (2.35)
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S and [ are pulled out of the integral because they not spatially dependent. The parameter
QLVIEEs results because Q7 is volume flow of blood per unit volume of tissue and we need the
total flow rate through the SM to quantify total mass flux. This is not the case in Equation
2.33 because C has units of mass, rather than concentration.

Equations 2.25, 2.26, 2.33, and 2.35 are substituted into Equations 2.10, 2.15, and 2.24
to obtain the final form of the insulin model, shown in the model summary section.

The main dynamics of the SC and SM capillary beds are contained within the general
rate parameter

k=Q(l—e @) (2.36)

We define the rate constants of absorption and delivery as

—ps!

ko= Qg1 —e i) (2.37)
-ps}

kh=QL1 —e Q). (2.38)

Both depend on the tissue perfusion rate ) and the permeability surface area P.S in their
respective tissues. k! is plotted in Figure 2.9 as function of exercise intensity E.

We have independently derived k for the purposes of modeling insulin absorption. A
similar solution was previously derived for the purposes of studying the microcirculation
and nutrient delivery by Renkin [79] and further discussed in [38]. To our knowledge this is
the first time this parameter has been used for the purposes of modeling insulin absorption.

2.2.2 Inputs and Parameters

Some model parameters are taken directly from the literature, and others need to be derived
from physiologically based assumptions. All the parameters are summarized in Table 2.1.
Exercise Intensity, F

For the parameters that are dependent on exercise, we define a new input, F, to quantify
exercise intensity. We define E, as a ratio of VOy,,,,

E (2.39)

B V02maz ‘

E =0 is at rest and £ = 1 is at maximal exercise. E is a continuous input to the insulin
absorption model. Specifically, () and P.S will depend directly on E, and the magnitudes ¢
and PS will directly determine the insulin absorption and delivery rates k.
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Tissue Perfusion Rate, Q

The tissue perfusion rates, ), in the SC tissue and SM tissues have been quantified in many
studies, at rest and during exercise [83, 84]. Our goal is to incorporate how @) changes with
exercise level. Saltin [84] measured leg blood flow (LBF) at different levels of cardiac output
(CO) and found a linear relation. If we assume that LBF is equivalent to ) and that CO
is proportional to V0, then we can use the data of Saltin to define a linear relationship
between Q} and F

max?

QYUE) = (1—h)-(Qq,., +F) [mLy/mLy;/min] (2.40)

Where Qg,..,=0.038 [mL,/mLy;ss /min] is the resting value of blood flow from [83] and the
slope of \y=1.1 [mL/mLy;ss/min per E] comes from Saltin’s relationship between LBF and
CO [84]. The factor h represents the hematocrit (assumed 40%) and accounts for the fact
that insulin does not enter red blood cells and so the effective flow rate for insulin is only 60%
that of whole blood. Note that for convenience we have to converted from customary units
of @ [mL;,/100g;;ss/min] to [mL,/mLy;,s /min| using an average tissue density of 1 [g/mLy;s),
which falls between the average tissue density for SC (0.91 g/mLy,s) tissue and SM tissue
(1.09 g/mLyss) [85].

We can use a similar approach to define a linear relationship between Q! and E. We
assume a linear relationship between Q! and E and then fit a line to data from literature
on resting and exercising adipose tissue blood flow (ATBF). Resting ATBF is Q,,,., = 0.028
[mLy/mLy;ss/min] [83]) and ATBF at moderate intensity exercise (E =~ 0.5) is taken to be
on average 0.063 [mL;,/mLy;ss/min] [71, 86-88]). We fit a line to these two data points an
obtain slope A\, = 0.0705 [mL;/mLy;ss/min per E] to obtain

Qé(E) = (1 - h) ’ (Qa'rest + )‘aE) [me/mLtiss/miH] (2'41>

Q% and Q! are plotted in Figure 2.5. At rest the blood flow in the two different types of
tissues are nearly the same, but as expected SM is much more sensitive to exercise than SC
tissue. QY experiences a more than 20-fold increase at maximum exercise vs. a mere 2-fold
increase in Q!.

Permeability Surface Area, PS

PS is a measure of how permeable a capillary bed is to a certain solute. Many theorize
that P.S increases during exercise because capillary recruitment increases the overall surface
area in exercising muscle by fully perfusing capillaries that are underutilized at rest [89-91].
Renkin was one of the first to show this in a 1966 paper [91] where he demonstrated a near
doubling of P.S during muscle contractions, shown in Figure 2.6.

In light of this study, capillary recruitment has been identified as a potentially important
mechanism for the enhancement of nutrient exchange and delivery during exercise. Many
others have sought to quantify capillary recruitment. One of the most popular proxies for
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Blood Flow vs. Exercise Intensity
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Figure 2.5: The blood flow relationship to be used in the proposed insulin absorption and delivery model.
Tissue perfusion rate Q' is assumed to be linearly dependent on exercise intensity E. Qé, the flow rate
in skeletal muscle (SM), is much more sensitive to exercise than the flow rate in subcutaneous (SC) tissue

I indicated by a 20-fold increase, compared to a mere 2-fold increase. Note that we have assumed 40%

hematocrit and so Q' = 0.6Q.

recruitment is the quantification of microvascular blood volume (MBV) by contrast enhanced
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Figure 2.6: Results of Renkin [91] showing how PS increases due to muscle contractions caused by electrical
stimulation. In the bottom frame PS nearly doubles during muscle contractions. Renkin attributed this
to the recruitment of capillaries “We conclude that the increase in PSJ...Jproduced during metabolic vasodi-
latation [is] brought about by an increase in the capillary surface area effectively in contact with flowing
blood]...]it appears most likely that this change is brought about by the opening of precapillary sphincters
which are closed under resting conditions.”
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ultrasound [92-94]. We will utilize this proxy to quantify recruitment, which is described by
the recruitment factor R.

We model PS as a saturable process that is dependent on E. The saturability assumption
stems from the concept of a finite reservoir of previously unrecruited capillaries that are
recruited during exercise. The following functions describe how PS depends on F and R

PSI(E) = PS! - (1+ R.tanh(vE)) (2.42)
PS)(E) = PS) (14 Rgtanh(vE)) (2.43)

Here PSémt and PSC’;rest are PS values at rest in the SC and SM domains, respectively.
v is a free parameter that serves to modulate how quickly the function reaches its plateau

value. R, and R, are the recruitment factors. We need to find values for 5 parameters:
PS! Ra)PScIlresthda and 7.

Fr‘eisrtst, we quantify the difference between the resting permeabilities of each tissue, PSérest
and PS émt. This is difference is difficult to ascertain as data on capillary density in SC tissue
compared to capillary density in SM tissue is sparse. Only a few studies have quantified MBV
in both SC tissue and SM tissue [95-97]. These studies have shown MBV of SM tissue is the
same order of SC tissue, but data on capillary recruitment in SC is sparse. Because of the
dearth of data, we assume the simplest case, that resting capillary density in SC tissue is
the same as that of SM tissue, PS] = PS! .

Next, we wish to quantify the recruitment factor R, in each tissue. We define the second
term in Equation 2.43 as a new function f; that describes recruitment

fa = Ratanh(~E). (2.44)

fa can be thought of as the proportional increase in the number of perfused capillaries in
the delivering (SM) tissue. For example f; = 0 is no increase, f; = 0.5 is a 50% increase, and
fa = 21s a 200% increase. We quantify f; by using MBV as a proxy. Results of several MBV
studies are shown in Figure 2.7, where MBV was quantified at different levels of exercise.
By dividing the MBV value at exercise by the MBV value at rest (basal), we obtain values
of f4 at various exercise levels.

The ratios show considerable variation and are plotted as dots in Figure 2.8. The corre-
sponding curve is Equation 2.44 with best-fit parameters R4 and 7. Because quality of fit is
relatively insensitive to 7, we assign v = 10, which indicates rapid recruitment even during
light (F = 0.25) exercise. The plateau value that best describes the data was R; = 1.46,
indicating that maximal recruitment is approx 146%, a value consistent with various studies
on microvascular recruitment, which place maximal recruitment in the range of 100 to 300
% [91, 98]. With values for PS] .+, and Ry we have fully characterized our recruitment
function Equation 2.43.

Our last step is to estimate the recruitment factor of SC tissue R,. Unfortunately, data
on capillary recruitment in SC tissue during exercise is extremely limited. Because of this,
we use data from two studies on capillary recruitment during rest following a meal. Each
of these studies show MBV increases approximately 50% following a meal [96, 97], verifying
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Figure 2.7: Figures from three studies showing the effects of exercise on capillary recruitment, as quantified
by changes in microvascular blood volume (MBV). All studies indicate that MBV more than doubles during
exercise, with only limited differences between light and heavy exercise. The ratios of MBV during exercise to
MBYV at rest are plotted in Figure 2.8 and used to fit parameters v and Ry. (left) [92] Recruitment is 115%
after exercise as assessed by MBV and independently by the rate of 1-methylxanthine (MX) metabolism
(another proxy for recruitment) in rat hindlimb adductor muscles. (center) [99] MBV is shown to increase
roughly 240% during light and 163% during heavy forearm exercise in humans. (right) [94] MBV in the
human forearm is shown to increase 91% during light and 118% during heavy forearm exercise. Figures are
used without permission.
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Figure 2.8: The relationship between capillary recruitment and exercise intensity is assumed to be a sat-
urable process. The black dots are derived from the experimental results of various studies on capillary
recruitment[92, 93, 100], which are summarized in Figure 2.7. Recruitment f; is defined to be zero at rest
(EF = 0) and is fit to data to find R4 and v in Equation 2.44. f, rapidly increases to a plateau value of
R4 = 1.46, indicating a 146% increase in capillary density during exercise.

that SC capillaries do have the ability to recruit. However, we expect that SC recruitment
is significantly lower in SC tissue than in SM tissue for two reasons: (1) SC tissue is not
as nutrient hungry as SM during exercise and (2) SC tissue blood flow only increases 2-3-
fold during exercise, as compared to the 20-fold increase in SM tissue. Taken together, if
the evolutionary necessity of capillary recruitment is to provide tissue with nutrients during
exercise, then it would seem a needless adaptation for SC tissue to also possess the same
recruitment ability at SM tissue. The observation that SC blood flow is only about 10% of
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SM blood flow during exercise would indicate that nutrient delivery to SC is not as critical
as in SM. Following this logic, we allow SC capillaries to recruit only 40% during exercise,
significantly lower than the 150% in SM. We set R, = 0.4

Lastly, we need at least one measured value for PS to complete our system. Recently
PS has been directly measured in humans [101, 102] during hyperinsulinemia. This measure
corresponds to the value of PS! and is 0.005 [mL;/mLy;s/min].

Substituting our parameter values, we can fully identify our PS recruitment model.
Equations 2.42 and 2.43 become

PSH(E) = 0.005(1 4 0.4 tanh(10E)) [mLy/mLy;ss/min] (2.45)
PSI(E) = 0.005(1 + 1.46 tanh(10E)) [mLy/mLys, /min] (2.46)

PST is plotted vs E in Figure 2.9(left). As E increases, PS! rapidly rise to their plateau
values. By E = 0.25 capillaries are fully recruited.

With expressions for Qf and PS? it is illustrative to examine how the absorption and
delivery rates k! and k] will depend on E. By substituting Q! and PS! (Equations 2.41
and 2.45) into k! (Equation 2.37) and substituting in Q4 and PS} (Equations 2.40 and 2.46)
into k} (Equation 2.38), we obtain the curves seen in Figure 2.9. & increases much more
rapidly than k! because recruitment is proportionally greater. Also, k} reaches its plateau
value more rapidly due to a more rapid increase in Q7.

Permeability and Kinetic Rates vs. Exercise Intensity
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Figure 2.9: Insulin permeability surface area (P.S?, Equations 2.45 and 2.46) and kinetic rate (k!, Equations
2.37 and 2.38) are plotted vs. exercise intensity E. Exercise-induced capillary recruitment rapidly increases
PS’! reaching a plateau value at at only E = 0.25. The plateau exists because there is a finite reservoir of
capillaries in the tissue and once they are all fully perfused then surface area can no longer increase. PS!
plateaus at a higher value because the delivering skeletal muscle (SM) capillaries have a higher recruitment
factor than the absorbing subcutaneous (SC) capillaries. The absorption rate k! and delivery rate ké rates
both increase very similarly to PSS because insulin kinetics are surface area limited, not flow limited. k! does
not plateau as quickly as k:é because Q! is significantly lower than Qfl during exercise, and thus k! remains
partly flow limited.
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Volume of Distribution, V! and Tissue Volume, V¢

Insulin distributes in a different fluid in each of the three domains: the ISF in the SC, the
blood plasma in the CS, and the ISF in the SM.

For the SC domain, we are fortunate that we do not need to know the volume of distri-
bution. This is because we have a known input and diffusive transport on a uniform domain
simplifies to an ODE (see derivation of Equation 2.10).

For the CS and SM domain, the metabolic clearance rate depends on the concentra-
tion, and thus it must be solved for. Hence, we convert the total mass in the system to a
concentration by dividing by the volume of distribution.

Insulin is a water soluble hydrophilic molecule. Thus the volume of distribution of insulin
is nearly equal to the volume of water in each domain, which corresponds to the volume of
blood plasma and ISF. There may be a small redistribution of fluids during exercise that
may decrease the volume of plasma by 10-15% [103], but this change is small and as such
we will treat the volume of distribution as constant and independent of exercise.

The volume of distribution we use for the CS domain is equal to the volume of the blood
plasma, which normalized by the weight of an average man is Vg = 0.5 [dL/kgpw] [44,
104]. The volume of distribution that we use in the SM domain is roughly equal to the
volume of the ISF, which normalized by BW is V{,, = 1.2 [dL/kgpw] [44, 64, 104].

V'tiss is fundamentally different from the volume of distribution, it is the volume of tissue
in the compartment. This parameter only shows up in the SM compartment (Equation 2.52)
because we must know the total volume flow rate (QJ - V&5 in order to calculate the mass
flux. The volume of tissue in the SM compartment is V&5 = 0.54 [L/kgpw] [83], i.e. 54% of
body weight at an assumed 1 [kg/L] density. Approximately half of V% is SM tissue, with
the other half SC tissue (we remind the reader that SC tissue far from the infusion site is
part of SM domain).

Metabolic Clearance Rate, r!

In the proposed insulin model, metabolic clearance of insulin occurs in both the CS domain
and the SM domain. This poses a small problem because measurements of insulin clearance
almost exclusively assume that insulin is only cleared from the CS, and does not track
clearance from the SM domain. For this reason, we must make certain model assumptions
in order to estimate the respective clearance contributions from each domain.

The total clearance rate of insulin, r/,, is measured by infusing insulin directly into the
CS domain via an IV catheter, waiting for steady-state, then measuring the plasma in-
sulin concentration. By assuming that clearance is linearly dependent on plasma insulin
concentration, r!, can be determined. Several have measured rl,: Feo [105] measured
13 [mL/min/kgp,|, Thorsteinsson measured 23 [mL/min/kgy,| in one study [106] and 16
[mL/min/kgy,] in another [107]. Taking the average of these studies, we choose r/,, = 17-BW
[mL/min]|, where the numerical value is multiplied by body weight (BW) for consistency with

previous definitions.
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Our model has two domains from which clearance occurs, thus we will estimate each
domain’s contribution to insulin clearance. r/,, must be equal to the sum of the clearance in
each compartment. By assuming that clearance is linearly related to concentration in each
compartment we have

vl I =rhel +15,,S (2.47)

where r5¢ and rk,, are the clearance rates in the CS and SM compartments, and multiply
by the local concentrations. Rearranging, we have

I I
Yos = Tt — Tsm

S
—. 2.48
: (2.45)
Next, we utilize Equation 2.24 and 2.35, to solve for r%,,. By assuming at rest (F = 0) and
steady state, then rearranging, Equation 2.24 becomes

, 1
thy = VARIO) (5 —1). (2.49)

We have also assumed that 1! does not change with exercise. Some have shown that r’
marginally increases during and following exercise [108, 109], however because of limited
data we will assume 1/ is independent of exercise.

The last relationship that we need is the ratio S/I at steady-state. At basal levels
of insulin, concentration measurements for S are difficult to obtain, due to difficulty of in
obtaining reliable microdialysis needle measurements at low insulin concentrations. However,
several studies have compared S to I at physiological hyperinsulinemia [44, 70, 101, 110
112]. These studies have consistently shown approximately a 2:1 ratio for I : S. Hence, we
set S/I =1/2.

Substitution of S/I into Equations 2.48 and 2.49, we obtain r5,, = 200 [mL/min] and
rgg= 1370 [mL/min]. This corresponds to a volume-normalized clearance rate r§,, = 0.02
[1/min] r{,g = 0.32 [1/min], meaning that 2% of the SM insulin content is cleared per minute,
and 32% of the CS insulin content is cleared per minute. This is the same order, but lower
than the 0.04 [1/min] measured in dogs by Bergman [44].

2.2.3 Model Summary

Equations 2.25, 2.26, 2.33, and 2.35 are substituted into Equations 2.10, 2.15, and 2.24 to
obtain the final form of the insulin model. The final model equations are
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dS  VissEl. (I —95)
- = VI — oy, S (2.52)
subject to
C=C,att=t, (2.53)
I=1,att=t, (2.54)
S=5,att=t, (2.55)
with functions defined as
—-ps!
Kl =Ql(1—e ) (2.56)
-pPs}
kL= QLl(1—e < ). (2.57)
Qé(E) ( ) (Qarest + )\aE) (258)
a(B) = (1~ ) (Qdyeee + AaE) (2.59)
PSI(E) = PS!_, - (1+ Rytanh(yF)) (2.60)
PSH(E) = PSL - (1 + Rgtanh(vE)). (2.61)
The initial conditions, C,, I, and S,, are found by evaluating our system at resting (£=0)

and steady-state. This yields the relationships

0= —kL0)C, +U(t,) (2.62)
k’(O)CO VEissEL(0)(1, — S,) I
= — - 2.
"V v, fosw -1 209
t'Lssk,I I —
0 V (O)I( o SO) . réMN . So (264)
Vanr

These are linear equations, and can be algebraically solved for C,, I,, and S,.

The model represents the movement through three distinct domains; the SC, the CS, and
the SM. This system of three ODEs represents a significant simplification from the system
of PDEs that we started with. The main assumptions that have allowed us to arrive at
the simplified system are as follows: (1) uniform capillary properties PS and @, (2) c is
much greater than 7, (3) insulin clearance from the CS and SM is a linear process, and the
metabolic rates are constants (4) the volume of distribution in each compartment is constant.
Other less direct assumptions are that we have a moderate Péclet number and large capillary
AR, and the length of a capillary is small compared to the region of drug wetted SC tissue.
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Some potentially important unmodeled phenomena include: no degradation of insulin in
the SC tissue, no hexameric to dimeric/monomeric dissociation prior to absorption, hetero-
geneity of tissue, insulin absorption through the lymph vessels, and changes in clearance rate
r’ and volume of distribution V! during exercise.

2.2.4 Human Subjects Data

The data used in this study comes from two separate research studies on T1D human subjects
and is the secondary use of existing data. The main differences between the two cohorts is
that one examined T1D patients under resting conditions (T1DR), and the other examined
T1D patients under exercising conditions (T1DE). The protocols are illustrated in Figure
2.10. Data from T1DR was previously published in [6] where diurnal variations in insulin
sensitivity were examined, however that study did not focus on modeling insulin absorption
and delivery. The T1DE data is previously unpublished. All data has been provided by
the Mayo Clinic through their own internal human subjects research (HSR) data protection
protocols. For brevity, only the relevant protocol information will be discussed here. De-
tailed protocol information on T1DR can be found in [6]. The meal and exercise protocol
information on T1DE can be found in a similar study on healthy patients [113]. Important
dosing and demographic information is summarized in Table 2.2.

Cohort of subjects with Type 1 Diabetes at Rest (T1DR)

T1DR consisted of 19 subjects. All meals were provided by the clinical research unit (CRU)
metabolic kitchen promptly at 0700 h. Subjects received weighed meals, with each compris-
ing 33 % of the total estimated calorie intake based on Harris Benedict calorie requirements,
including a low level of physical activity, with ~ 50 g of carbohydrate in each meal. The
meal consisted of Jell-O with dextrose, eggs (scrambled or omelet), and ham slices. At meal
time, an insulin dose that corresponded to the patient’s normal insulin-carb ratio was infused
through an insulin pump. A few subjects preferred steak slices to ham. The macronutrient
contents of the meals were identical. No snacks or calorie-containing drinks were permitted
between meals unless otherwise required to treat hypoglycemia (point-of-care glucose < 60
mg/dL) as per institutional guidelines. Unfinished food was weighed and excluded from
calculated caloric intake. Each labeled meal was preceded by at least 3 h and followed by
6 h of inactivity when the subjects were resting in bed to enable periodic blood draws. All
subjects were on an insulin pump. Thirteen subjects were taking insulin aspart, whereas
the remaining six were taking insulin lispro. Insulin pump data was downloaded and used
to quantify the insulin infusion rate U(t).

Insulin levels were measured by a two-site immunoenzymatic assay performed on the DxI
automated immunoassay system (Beckman Coulter, Inc., Chaska, MN), The DxI method also
reliably detects both insulin aspart and insulin lispro analogs (13) that have been tested in the
Mayo clinical laboratory and cross-checked in the Mayo CTSA immunochemical laboratory.

Of the 19 patients in the T1DR group, 2 patients were removed due to missing data.
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0 min 360 min

Resting Throughout T

Insulin Meal Test
Bolus Ingestion End
0 min 120 min 360 min
Insulin Meal Four 15 min Test
Bolus Ingestion Exercise Periods End

Figure 2.10: Timeline for the mixed-meal tolerance test (MMTT) T1D resting protocol (T1DR, top) and the
T1D exercising protocol (T1DR, bottom). At time 0 the subjects in TIDR ingested a 50 [g] CHO mixed-meal
and the subjects in T1DE ingested 75 [g]. The insulin bolus was infused through an insulin pump at time 0,
with bolus size calculated according to the subject’s normal insulin-to-carb ratio. The T1DR group rested
throughout the entire study period. The T1DE group exercised at 50% V0.
periods, starting at minute 120.

for four 15 minute exercise

max



Table 2.1: Parameters used in insulin-kinetics model

Parameter  Description Unit Value  Source
VCISN Normalized volume of distribution of insulin in circulatory system  dL/kgpw * 0.5 [44, 104]
VéMN Normalized volume of distribution of insulin in skeletal muscle dL/kgpw * 1.2 [44, 64, 104]
Vg”;\‘}SN Normalized volume of tissue in skeletal muscle domain mL/kgpw * 540 [83]

résN Normalized clearance rate of insulin in circulatory system 1/min 0.32 [105-107]*
rf My Normalized clearance rate of insulin in skeletal muscle 1/min 0.02 [105-107]
Qayrest Tissue perfusion rate absorbing (SC) tissue at rest mL;,/mL;ss/min - 0.028  [83]

Qdyest Tissue perfusion rate in delivering (SM) tissue at rest mLy/mL;ss/min - 0.038  [83]

h Hematocrit percentage in blood 1 0.4 [104]

Aa Slope relating @ in absorbing (SC) tissue to exercise mL;,/mL;ss/min - 0.071  [71, 86-88]
Ad Slope relating @ in delivering (SM) tissue to exercise mLp/mLjss/min - 1.1 [84]

pst . Permeability surface area to insulin in absorbing (SC) capillaries mLy/mLg;ss/min - 0.005  §

PSéregt Permeability surface area to insulin in delivering (SM) capillaries ~ mLp/mL¢iss/min  0.005  [101, 102]
R, Capillary recruitment factor in absorbing (SC) tissue 1 0.40 [96, 97] 1
Ry Capillary recruitment factor in delivering (SM) tissue 1 1.46 [92-94]
vy Saturation coefficient for PS’ 1 10 [92-94] £

* Multiplied by BW prior to being used in model. See demographics for BW.
T Derived from total clearance rate.

§ Assumed to be the same as PS?

drest”

 Derived by curve fitting to MBV literature data in SC and SM tissue.
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Cohort of subjects with Type 1 Diabetes with Exercise (T1DE)

T1DE consisted of 12 patients. Subjects did not engage in vigorous physical activities for 72 h
before screen and study visits. In the screening visit participants performed a graded exercise
test on a treadmill to determine V0,, . according to guidelines (American College of Sports
Medicine Guidelines for Exercise Testing and Prescription, 7th Edition) and ensure stable
cardiac status. Expired gases were collected and analyzed using indirect calorimetry. VO,
was determined when at least two of the following three criteria were met: 1) participant
too tired to continue exercise, 2) respiratory exchange ratio exceeded 1.0; or 3) a plateau
was reached in oxygen consumption with increasing workload. The purpose of this test was
to use individual VO, . data to determine workload during the moderate-intensity VOq,,,.
protocol during the study day.

For the study visit all subjects spent 40 h in the CRU. On day 1 subjects were admitted
to the CRU at 1600. Thereafter a Modular Signal Recorder accelerometer (MSR Electronics,
Seuzach, Switzerland) was placed and maintained for the rest of the study period (data not
used in the current work). They were then provided a standard 10 kcal/kg meal (55 %
carbohydrate, 15% protein, and 30% fat) consumed between 1700 and 1730. No additional
food was provided until the next morning. A heart rate monitor was also attached to capture
heart rate during the study (data not used in the current work). On day 2 at 0600 h, an
intravenous cannula was inserted retrogradely into a hand vein for periodic blood draws. The
hand was placed in a heated (55C) Plexiglas box to enable drawing of arterialized-venous
blood for glucose and hormone analyses. At 0700 a mixed-meal study was performed.

A mixed meal containing 75 grams of glucose was ingested at time 0. At meal time, an
insulin dose that corresponded to the patient’s normal insulin-carb ratio was infused through
an insulin pump. At 120 min following the first bite, subjects stepped on a treadmill to exer-
cise at moderate-intensity activity (50 % VO0,,,,.): i.e., four bouts of walking at 3-4 miles/h
for 15 min with rest periods of 5 min between each walking bout: total duration 75 min.
The workload during physical activity was continuously monitored by heart rate responses
and measurements of V0, during exercise to maintain target 50% V0, exercise inten-
sity. Accelerometer recordings were collected throughout the study period to monitor and
quantitate activity levels (data not used in the current work). Following the last blood draw
the hand vein cannula was removed. Lunch at 1300 and dinner at 1900 were provided, each
meal contributing 33% of daily estimated caloric intake. The patient was discharged the
next morning at 0800.

Originally there were 14 patients in the T1DE group, 2 patients were deemed outliers
and removed because they exhibited extremely rapid absorption rates compared to the rest
of the group.

2.2.5 Simulation, Input, and Data Considerations

Equations 2.50 - 2.61 are solved using MATLAB odel5, a built in explicit ODE solver.
The initial conditions were found by solving the steady-state resting Equations 2.62 - 2.64.
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Table 2.2: Demographics of T1D subjects

Variable Resting Protocol (n=17)  Exercising Protocol (n=12)
Age (Years) 39.7 £ 14.3* 435 £ 129 *

Sex (M/F) 9M, 8F 8M, 6F

Weight (Kg) 74.4 £ 5.3* 85.9 £21.9 *

HbA1C(%) 7.11 £+ 0.6* 7.5+£0.6*

Average Bolus Size (U) 4.1 6.7

VO02,, .0 Not measured 23.8 £54*

* + Standard deviation

to, = —420 min was the initial time of the simulation which corresponded to about 12
midnight when the subjects were sleeping and had approximately steady-state and basal
insulin levels.

The averaged insulin pump infusion rate U(t) and measured plasma insulin concentration
L4010 Were used for comparison and validation of model predictions. The initial input U(t,)
was set to the average infusion rate at t,. For the T1DE cohort £ = 0.5 during exercise
periods (120-135, 140-155, 160-175, 180-195 min) and E = 0 elsewhere. A small time delay
with a time-constant of 1 min was given to the E signal to account for HR lag time after
exercise begins and ends. For the T1DR cohort £ = 0 throughout.
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2.3 Results

2.3.1 Model Comparison with Resting Patient Cohort (T1DR)

Using the average measured input U(¢) from the resting cohort (T1DR), the insulin kinetics
model was simulated for an average resting patient to produce predictions of I and S. Figure
2.11(left) plots the predictions along with the measured insulin concentration Iy4,. Overall
predictions agree reasonably well with measurements. The predicted insulin reaches a peak
of 28 [U/mL], a slight underestimation of the measured peak plasma insulin concentration
32 [pU/mL]. Also, the peak insulin occurs only 20 minutes after injection, compared to
45 minutes for the measured data. These discrepancies occur because of underestimated
parameter values and because the model does not include insulin dissociation in SC tissue.
This will be further explained in the discussion section.

The concentration in the SM domain, S, slowly rises due to the slow diffusion of insulin
into the SM tissue. It eventually reaches a maximum of 13 [pU/mL], up from the baseline
concentration of 6 [pU/mL]. S was not measured in the current study and hence we cannot
verify the predictions for S, however they are in reasonable agreement with lymph insulin
data taken by Bergman after an intravenous insulin infusion [55].

2.3.2 Model Comparison with Exercising Patient Cohort (T1DE)

Next, using the average measured input ¢(t) and E(t) from the exercising cohort (T1DE), the
insulin kinetics model was simulated for an average exercising patient to produce predictions
of I and S. Figure 2.11(right) shows the comparison of simulation to measured data.

Overall, I in the exercise simulation closely follows I4,,. In the resting period prior to
exercise [ reaches a peak of 30 [uU/mL], a slight underestimate of the measured peak of 33
[©U/mL]. Again, the predicted peak occurs much earlier than the measured peak because
the model does not include insulin dissociation in SC tissue.

Once exercise begins, I rapidly increases by 30% from 25 [U/mL] to 32 [xU/mL]. This
occurs as a result of the 50% increase in the insulin absorption rate k. brought on by capillary
recruitment in the SC tissue. Ij4, shows a similar 30% increase from 22 to 29 [pU/mL].

A sawtooth pattern in the predictions emerges as a result of 15 minutes on, 5 minutes
off, exercise bouts. This is verified by 4., which exhibits a slight drop during the 5 minute
resting periods. This drop occurs because of de-recruitment of capillaries and/or changes in
VZs (changes in Vg are not included in the model). After exercise ends, the predictions
settle to a nearly perfect agreement with the data up until the cessation of the study at
minute 360.

S slowly rises after the injection due to the slow diffusion of insulin into the SM tissue.
Then S reaches a local maximum near minute 60 at a concentration of 13 [pU/mL]. It
maintains this level until exercise commences at minute 120. At this point, the rate of
insulin delivery &} increases by 150% due to capillary recruitment and as a result, S begins
a rapid rise, peaking at a concentration of 21 [pU/mL], a 60% increase. This increased
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Figure 2.11: Simulated insulin concentration for an average resting (left) and exercising patient (right).
Inputs U(t) and E are shown in the top frames. Measured insulin concentration data is shown as a dot with
standard deviation (I44¢,). Predictions of insulin concentrations in the plasma I (solid lines) and skeletal
muscle interstitial fluid S (dotted lines) are shown in the bottom frames. 15 minute exercise bouts with 5
minute breaks are shown as shaded regions. Both cases closely follow the data, with a slight underestimation
of peak plasma insulin concentration. Upon the commencement of exercise at minute 120 the ., rises
from 22 to 29, and maintains until exercise ends at minute 195. Similarly during exercise I rises 30%
from 25 [pU/mL] to 32 [pU/mL]. This increase is a result of the enhanced absorption rate k. associated
with capillary recruitment. A significant increase in S is also predicted, increasing 60% from 13 [pU/mL)
to 21 [pU/mL] over the entire exercise period. This is due to the enhanced delivery rate k} associated
with capillary recruitment in the SM. This predicted increase in S has significant implications on glucose
metabolism, potentially leading to hypoglycemia during exercise.

concentration is maintained until after the exercise period ends, at which point S rapidly
decreases to near baseline.

2.3.3 Predicted Insulin-Kinetics

In order to illuminate the effects that capillary recruitment has on insulin delivery to SM
tissue, we have quantified two kinetic measures. The first is the extraction fraction of insulin
(ef!) [%)] which measures the percentage arteriovenous change in insulin concentration after
blood passes through SM tissue. The second is the insulin delivery mass flow rate (Sy)
(14U /min] from the CS to SM tissue.

The extraction fraction of insulin (ef!) is defined as

[ar erial [venous
ef! = Zarterial - 100.

(2.65)

Iarterial
ef! is a measure of how effectively insulin in the CS is delivered to the SM tissue. A high
ef! means that a large amount of insulin is removed from the CS on each pass through the
SM tissue. ef! of can be directly measured using arteriovenous catheterization, however in
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our study ef’ is not measured. Instead, we will use the developed model to express ef’ as a
derived quantity. ef! can be written in terms of I and S by approximating that I,eriat = I
and Lyenous = bale- Using Equation 2.22 we can estimate b4|. and plug the solution into
Equation 2.65 to get
—ps}
(1—e 9 )T —=25)
I

ef! = -100. (2.66)

The insulin delivery mass flow rate (S;) also is not measured directly. However, it can
be estimated from the model. We do this by multiplying the total flow rate to the SM tissue
ViissQl by the predicted arteriovenous difference (numerator of Equation 2.66). Our derived
estimate is identical to Equation 2.35 and is repeated

I
—ps}

Si= QT -(1—¢ % )(I - 9). (2.67)

ef! and S, are plotted vs. time in Figure 2.12 for both the resting (T1DR, blue line) and
the exercising (T1DE, orange line) groups. The exercise periods are shown in the shaded
regions, but do not apply to the resting group.

Baseline ef! is about 10 %, which is slightly lower than the 15%-20% measured in [70),
114]. Upon meal ingestion in both groups ef! increases temporarily because of an increase

Insulin Extraction Fraction (ef!) vs. Time Insulin Delivery Mass Flow Rate (S;) vs. Time
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Figure 2.12: (left) Calculated insulin extraction fraction e f from the resting (T1DR, blue line) and exercising
(T1DE, orange line) simulations. (right) Corresponding insulin delivery mass flow rate S4. Resting ef! is
10%. Upon meal ingestion ef! temporarily increases to nearly 15% because of an increase in I. During the
exercise periods (shaded regions) of the TIDE group, the ef! drops as low as 1.5%. This is a result of the
10-fold increase in Q%, which cuts the transit time by a factor of 10, thus decreasing the arteriovenous (A-V)
difference. But the A-V difference does quite drop by a factor of 10 because because capillary recruitment
increases PS] by 150%. Hence, even with the significant drop in ef! during exercise, the magnitude of S4
still increases 2-3 fold during exercise. This huge increase in Sy is responsible for the 60% increase in S
shown in Figure 2.11(right).
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in I. The observed higher ef’ and S, in the period up until minute 120 is because of the 50
% larger insulin dose in the T1DE group than the T1DR group.

In the both groups ef! returns to baseline within 2 hours of the insulin injection. Upon
the commencement of exercise at minute 120 in the T1DE group there is a precipitous drop
in ef’. This is because of a 10-fold increase in the tissue perfusion rate Qf, which cuts
the transit time by a factor of 10, reducing the arteriovenous difference. However, the drop
in ef! during exercise does not completely characterize insulin delivery because delivery is
proportional to the product of arteriovenous difference and Q. ef! drops by a factor of
5, but QF increases by a factor of 10, and hence the insulin delivery rate S, increases 2-3
fold, as shown in Figure 2.12(right). This tremendous increase in insulin delivery, from 3000
(11U /min] to nearly 9000 [U/min] is responsible for the increase in S shown in Figure 2.11.

There is also a noticeable drop in S, after exercise ends. This can be attributed to S
being nearly the same concentration as I around minute 200, seen in Figure 2.11(right).

2.3.4 Test Case: Dependence of Insulin Kinetics on Timing of
Exercise

This test case will predict S for several different timings of exercise with respect to a 6 [U]
bolus given at time 0. The hypothesis is that the sooner a T1D exercises after the bolus the
more significant the insulin delivery to SM and the more significant the peripheral glucose
uptake (GU).

The proposed model predicts exercise-induced changes in insulin kinetics. However, to
understand how these changes are relevant to insulin dosing they must be interpreted in
the context of GU. To do this, we make a rough estimate of insulin-dependent GU in
the periphery during exercise. There are certainly other mechanism of GU during exercise,
such as insulin-independent GU [35] and insulin/exercise synergistic effects on GU [40], but
quantifying these are beyond the scope of this test case. These effects will be included in
Chapter 3.

Castillo and Bergman [44, 70] showed that when glucose is clamped at basal levels, the
rate of glucose uptake (RGU) [mg/min| in the periphery is roughly proportional to insulin
concentration in the periphery

RGU =1§1,S (2.68)

Where r$l, is the rate constant relating the RGU to S. 1§l can also be thought of as
the insulin sensitivity (S7) at basal glucose concentration. r$1, was estimated to be 5 to 10
[mg/min per pU/mL] at basal glucose concentration [70].

To quantify GU in a given time period, we integrate Equation 2.68 over time frame ¢; to

ty (note that RGU = d(GU)/dt)

to
GU = rg@/ S dt (2.69)

t1
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Figure 2.13: The timing of exercise with respect to the bolus has a significant impact on peak insulin S
and glucose uptake (GU). (left) Five test cases with moderate (E = 0.5) 45 minute exercise periods were
simulated (solid lines). For comparison a resting case was simulated (black dotted line). The exercise case
from t=(-300, -255); shows an increase in S from 5.5 to 10 [¢U/mL] and corresponds to exercise under basal
insulin conditions. For the exercise case from t=(30, 75) S increases from 10 to 25 [U/mL], indicating that
when exercise occurs shortly after the bolus, the effects on S are profound. As more time is put between
the bolus and the exercise bout, the effect on S is diminished. (right) Peripheral GU was estimated with
Equation 2.69 from the shaded AUC regions shown on the left. For the exercising case from (-300, -255)y,
GU is 3.7 [g], a 1.2 [g] increase over the resting case. In comparison, for the exercising case from (30, 75)
GU 1is 9 [g], an increase of 3.6 [g] over the resting case. The sooner the exercise bout occurs after the bolus,
the more significant the increase in predicted peripheral GU. These estimates of GU do not account for
synergistic effects of insulin and exercise [40], which may make exercise effects on GU even more profound.

where we have set GU to be 0 initially, and have assumed constant 1§{ and basal glucose
concentration throughout.

To calculate GU, we simulate S from -400 to 360 min, while specifying a period of
exercise. The five test periods of exercise are 45 minutes at moderate intensity (F = 0.5),
and go from minute -300 to -255, 30 to 75, 90 to 135, 150 to 195, and 210 to 255. Results of
these five simulations are shown in Figure 2.13(left) (solid lines). For comparison a rest case
was also simulated (black dotted line). Using Equation 2.69 the resulting predictions of S
were used to calculate GU over the 45 minute exercise periods. GU is proportional to the
AUC for each test case in Figure 2.13(left). The exercising cases AUC are shown as colors,
and the corresponding resting AUC is shown as a grey region below. The comparison of GU
is plotted in Figure 2.13(right).

Figure 2.13(left) shows the timing of the exercise bout has a significant effect on peak S.
When exercise occurs prior to the bolus, S only increases from 5.5 to 10 [U/mL], about an
80 % increase. In comparison, for the case where exercise occurs 30 minutes after the bolus,
S increase from 10 to 25 [pU/mL], a 150% increase. As more time is put between the bolus
and the exercise bout, peak S tapers down.

Figure 2.13(right) compares the GU for each of these cases. The enhancement of GU
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because of increased insulin delivery rate shows a strong dependence on exercise timing.
Exercise 30 minutes after insulin infusion shows an increase in GU from 5.4 [g] for the period
at rest, to 9 [g] for the same period with exercise, a 70% increase of GU. In comparison,
for the basal case starting at minute -300, GU increased from 2.5 [g] to 3.7 [g], only a 50%

increase.
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2.4 Discussion

Enhanced absorption and delivery rates during exercise may have significant implications
on the rate of glucose uptake and can potentially cause hypoglycemia. This is one reason
why exercise is considered a major hurdle to closed loop control in T1D. An improved
model of insulin kinetics during exercise can potentially improve safety by improving insulin
availability predictions in model predictive control algorithms.

The objective of this work is to develop a physiology-based model of insulin-kinetics to
understand why insulin has been observed to absorb from SC tissue and deliver to SM tissue
more rapidly during exercise [41-43, 71, 72, 110]. We hypothesize that this enhanced rate
of absorption/delivery is due to capillary recruitment, which increases surface area available
for insulin transport.

Model Development. Most previous models of insulin absorption and delivery were data
driven, with parameters identified from data, and did not provide rigorous treatment of the
underlying physical transport phenomena. Starting with first principles, we developed a
model of insulin absorption that included the effects of capillary recruitment on solute deliv-
ery, as first described by Renkin in 1966 [91]. We included this transport model (Equation
2.36) into a broader insulin-kinetics model. In this model we allowed the surface area and
tissue perfusion rate to increase simulating capillary recruitment. The simple model pre-
dicts that insulin absorption/delivery rates are surface area dependent, not flow dependent,
contrary to that reported by multiple authors [71, 77, 115]. Additionally, all parameters are
based on physiological measurements taken from literature, and are not obtained from curve
fitting. This helped us prevent overfitting, and gives confidence that the physical phenomena
we are modeling are indeed the controlling ones.

Model Comparison with data. To test the model we compared plasma insulin predictions
I to plasma insulin measurements [, in Figure 2.11. For the resting group T1DR, the
model agrees well with the data, but slightly underestimates the peak concentration. This
is likely due to an underestimation of the Vg and PSL. Population averaged values (Table
2.1) were used, rather than a curve fit value. If a slightly smaller Vg and slightly higher
PST were used, the predictions would closely match the data. The peak concentration is also
skewed earlier than measurements because the insulin hexameric dissociation is not modeled
here.

For the exercising group T1DE, the peak is also underestimated and skewed earlier. When
exercise occurs a at minute 120, I and Iz, rapidly increase 30%. This is a result of the 45%
increase in ké (See Figure 2.9). A sawtooth pattern follows, and I and 14, both drop during
the 5 minute resting periods. The model predicts these slight dips because of de-recruitment.
An alternative explanation is that VZ4 increases temporarily due to the volume-contraction
effect, which is estimated to be 10% [103]. This volume-contraction effect may also partly
explain the 30% increase in I;4,, however, it is doubtful that the 10% volume contraction
could cause the full increase.

Insulin absorption from subcutaneous depot. Insulin transport is primarily a surface area
dependent phenomenon. We have assumed that the capillary surface area in SC tissue
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increases by 40% during exercise. This, along with a modest increase in Q!, predicts that k!
increases by 45% during exercise, with little dependence on exercise intensity E. Previous
studies of the exercise-induced increase in k! have ranged 49 to 100% for insulin injected
into the thigh [41, 42, 71, 72|, and from 0-20% for insulin injected into the abdomen [42, 72].
If one assumes that thigh SC injections are near more vascularized SM tissue, as compared
the abdominal SC injections, then these literature findings agree with our theory that SM
has a greater ability to recruit (R;=150%) than SC (R,=40%). In our study insulin was
infused into the abdomen with an insulin pump and we see a clear 30% increase in 14,
during exercise. We strongly believe this increase results from an increase in k.. So why
do we predict a 45% increase in k!, while the literature only shows a 20% increase? Most
of these measurements were taken in the 1980s using regular human insulin - not the rapid
acting insulins that are typically used today. Modern insulins dissociate much faster and
the rate-limiting step of absorption is likely penetration of the endothelial walls. In older
insulins the rate limiting step was more skewed toward hexameric dissociation, and thus
older insulins may have been less sensitive to changes in surface area brought on by capillary
recruitment. To address this theory, new studies should be designed to estimate the effects
of exercise on the absorption of rapid acting insulin through injection into the abdominal
region.

It is also worth mentioning that the present hypothesis may explain the enhanced ab-
sorption of new delivery devices. The jet injector [116] and the localized heating pad [117]
have each been shown to absorb significantly faster than with a typical syringe injection. If
capillary recruitment occurs because of tissue trauma from the jet or heating from the pad
then the enhanced absorption rate could be explained by the present hypothesis.

Insulin delivery to skeletal muscle. Insulin delivery to skeletal muscle has been shown
to be the rate-limiting factor to glucose uptake because insulin concentration S is directly
proportional to glucose uptake [44, 55, 70]. The model predicts that the the insulin delivery
rate k} increases 150% during exercise and as a result S is predicted to increase 60% in the
T1DE group (Figure 2.11). S was not measured in our study so we cannot verify these model
predictions. However, others have measured an increase of 10-25%, albeit under different
conditions [43, 110]. Assuming that the 60% prediction is accurate we would expect, at
minimum, a 60% increase in peripheral GU over the case where there is no increase in S.

To understand why S is predicted to increase dramatically, we calculate standardized
measures of insulin delivery, the insulin extraction fraction ef! (Equation 2.66) and the
insulin delivery mass flow rate S; (a.k.a. insulin uptake, Equation 2.67). Baseline ef7 is
estimated to be 10% (Figure 2.12), which is slightly lower than the 15-20% measured by
Bergman [70] and Eggleston [114]. We believe this is due to underestimation of PS’. Upon
exercise ef! drops considerably because the perfusion rate increases 10-fold, reducing the
transit time and the arteriovenous difference. No data exists for ef!, during exercise and
thus this drop cannot be verified.

ef! does not give a good indication of the delivery dynamics, because it alone cannot
provide estimates of Sy, which directly determines the concentration S. The baseline Sy
is 1190 [pU/mL] or 18 [fmol/min/100mLy;] when normalizing by VI and converting to
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mol. This is remarkably close to the 15 [fmol/min/100mLy;s] measured by Eggleston [114],
and gives some confidence that the model accurately predicts insulin delivery, at least in
baseline resting conditions. During exercise Sy significantly increases. In the initial phase
there is a large spike in Sy from 3000 to 9000 [;U/mL], which causes the sharp increase
in S seen in Figure 2.11 at minute 120-135. Because of the rapidly changing dynamics we
cannot compare directly with measurements from the literature, as they are typically taken
at steady state. Instead, we look at the delivery rates during the fourth exercise bout,
which are closer to steady state. During the fourth exercise bout the delivery rate is 4000
[1U/mL], corresponding to a 2-fold increase over baseline. Estimates from measurements
show an increase from 0%-200% [66, 73]. Our predictions match the top end of measurements
from literature, however, this large spread exemplifies that insulin delivery during exercise
remains an open question.

Glucose Uptake Implications. Our test case examined how the timing of exercise affects
glucose uptake. Exercise has the greatest effect on S when the performed shortly after a
bolus. This is because the absorption mass flow rate C, is equal to C (a.k.a. IOB) times k!
(Equation 2.9).

We estimated GU with a simple expression (Equation 2.69). The test case predictably
showed that GU is most affected by exercise for the test case when exercise begins only
30 minutes after the bolus. In this case GU increased 70% over a resting baseline case,
which shows why hypoglycemia commonly occurs in T1D when exercise follows a meal. If
synergistic effects of exercise /insulin on GU were included, this difference would be even more
profound. There is also the fact that increasing I suppresses endogenous glucose production,
which would further exacerbate the problem of hypoglycemia during exercise.

Modeling Gaps. When deriving the insulin-kinetics model we have tried to balance model
parsimony with accuracy. Perhaps the most significant model assumption was the decision
not to include the hexamer to dimer/monomer dissociation step. We did this because we
wanted to keep the model based in physics as much as possible. If we included the dissociation
step we would either have to use an abstract model with parameters found through curve
fitting or we would have to model the non-linear process of protein dissociation, which would
have added significant complexity to the model. Lymphatic insulin absorption was also not
included because it is believed to be of secondary importance [118].

One important but complex phenomenon that was not included is capillary bed hetero-
geneity. Renkin [38], showed that heterogeneity may explain why the capillary transport
model he derived (and we derived independently as Equation 2.36) is inaccurate for many
solutes. This inaccuracy may partly explain why our predicted ef! drops so low during
exercise. Capillary recruitment may not just increase surface area, but also redistribute flow
to longer capillaries enhancing transport [38]. To include heterogeneity would involve defin-
ing a distribution of capillary lengths for inclusion in the compartmental description. This
may bring the model closer to ‘truth’ but the introduction of uncertainty through unknown
distribution parameters may negate any gains made by including heterogeneity.

Lastly, some have also suggested that insulin transport may be a saturable process [114],
which may change our results significantly. However, given our lack of understand of this
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mechanism, there is not a clear path to include this in a model of insulin-kinetics.

Parameter Selection and Uncertainty. To keep our model rooted in physiology we avoided
the use of curve fitting to estimate parameters. This allowed us to avoid overfitting, providing
more confidence that the physical mechanisms in our model are being reliably captured. With
this approach there is significant parameter uncertainty that needs to be addressed before
the model can be validated.

The permeability surface area of insulin P.S? is difficult to measure and highly uncertain.
This is because PS! cannot be directly measured with current techniques, and thus its value
is based on assuming a homogeneous capillary bed model and measured related quantities
(see Appendix A.5). In other words, PS is a model-dependent parameter. Because of this
difficultly, postprandial and exercise PS’ values are lacking. It is for this reason we need to
create a recruitment model based on MBV to show how PS! changes during exercise.

Another parameter that is problematic is r’. Typically 1’ is typically measured at steady-
state, during rest, and assuming that clearance occurs from a single compartment. This is
known to be incorrect, as insulin has been shown to be cleared directly from the SM [44]. To
deal with this, we derived a value for r5,, by setting total clearance equal to the clearance
in both compartments (Equation 2.47). Also, little is known about how r! changes during
exercise. Reduction of blood flow to the liver (the primary site of insulin clearance) to
account for increased flow to SM may fundamentally alter r/. There is also the possibility
that rf,, is enhanced during exercise because of muscle contraction and GU. To obtain a
higher fidelity model, r’ must be estimated during exercise to a higher degree of certainty.

Last, MBV has been used sparingly to characterize capillary recruitment in SC tissue
[95-97]. In fact, we found no studies that examined changes in SC MBV during exercise
and we had no choice but to use SC MBV measurements obtained postprandially, where
recruitment is 50%. More studies need to be done to understand recruitment in SC tissue
during exercise.

Model Insights. For the first time, to the author’s knowledge, we have incorporated the
effects of exercise-induced capillary recruitment on insulin-kinetics. By using independent
measurements of PS’, we have obtained reasonably accurate predictions of insulin concen-
tration in plasma.

The model also provides an interesting insight about natural limits on absorption. If we
assume that absorption is driven by pure diffusion then P.S! may represent a hard upper-limit
on kI. This is because even if hexameric dissociation occurs instantaneously upon injection,
PSI would still provide resistance to transport. This model therefore may represent the
upper limit of k!. We predict that the peak I occurs 20 minutes after injection, which
is 30 minutes earlier than I4,,. There thus may be little room for the design of faster
absorbing insulin. Additionally, because insulin transport to SM is the rate limiting step of
GU, modeling the hexameric dissociation step may be unnecessary, as it may not change S
much.

Last, this model shows how lack of capillary recruitment is a possible cause of insulin
resistance. In type II diabetes it has been shown that capillary recruitment is less prominent
[94]. Without recruitment the model shows that insulin is not delivered to SM as quickly.
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Future Directions. The model gives reasonable predictions for an average patient. How-
ever we have yet to take inter-patient and intra-patient variability into account. Insight
about the variability of insulin absorption can be gained from characterizing the variabil-
ity of tissue vascularization in patient populations. The incorporation of the variability of
capillary beds into the model could make a significant improvement to accuracy in different
patients.

Also, the SM domain grouped all peripheral tissues into a single compartment. In fact
the SC tissue far from the infusion site, the resting SM, and the exercising SM should all be
their own compartments, as they have different flow rates and would recruit separately. The
model can potentially be improved by making this split.

In the future, we would also need to validate the model on various levels of exercise
intensity £. In this study we only evaluated our model for £E=0.5. Also, a module should be
added for predicting E based on real-time activity sensor inputs such as heart-rate monitors
and accelerometers.

Finally and most importantly, the insulin-kinetics model needs to be incorporated into
a model of glucose-metabolism. This will make the relationship between exercise, insulin-
kinetics, and glucose-metabolism much more evident. This work will begin in Chapter 3,
where a model of glucose-metabolism during exercise is derived.

2.5 Conclusion

We have derived an insulin-kinetics model that includes the effects of exercise on insulin
absorption from the subcutaneous tissue and insulin delivery to skeletal muscle. Using pa-
rameters based in physiology found in the literature, the model gives reasonable predictions
of plasma insulin concentrations during rest and exercise periods. During exercise the ab-
sorption rate is predicted to increase by 45% and the delivery rate by 150% compared to
rest. These kinetic changes significantly alter the insulin concentration in skeletal muscle
which induces significant glucose uptake. The model provides insight into the physiology
that governs insulin-kinetics. In the future the model can be incorporated into a broader
model of glucose-metabolism, which can provide higher fidelity predictions during exercise
that are useful in model predictive control algorithms for the artificial pancreas.
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Chapter 3

Modeling the Acute Effects of
Exercise on Glucose-Dynamics

Chapter Overview

Acute exercise directly affects glucose-dynamics in three ways: it increases endogenous glu-
cose production to keep up with glucose demand, it enhances the rate of glucose delivery

Exercise Induces Acute Changes to Insulin-Glucose Kinetics
—> Direct Effect ---# Indirect Effect

E Glucose Subsystem
(Exercise Intensity)

Increases endogenous Meal Absorption
glucose production
Chap. 3
»| i €
¥ Liver Glucose in
Circulatory
System

[ alters net liver| Enhances rate of glucose
glucose uptake | delivery Chap. 3
Chap. 3

H
Glucose in
Skeletal Muscle

S promotes glucose uptake in skeletal muscle
Chap. 3

Figure 3.1: The focus of this chapter will be on the glucose subsystem model (unshaded region). There are
three direct effects (red arrows) of exercise F on glucose-dynamics. There are also 2 indirect effects of F
(dotted red arrows, from insulin) on glucose-dynamics. The insulin model in the shaded region was presented
in Chapter 2.
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from the blood to the skeletal muscle via capillary recruitment, and it directly induces glu-
cose uptake in the skeletal muscle due to increased muscle demand for energy. There are also
two indirect effects of exercise on glucose metabolism. These occur because insulin-kinetics
are altered, which then alter glucose-dynamics. These five primary processes are shown in a
block diagram in Figure 3.1. This chapter focuses on developing a model of glucose-dynamics
during exercise.

In Section 3.1 some background and introductory information will be provided. In Section
3.2, the glucose-dynamics model is derived. For brevity, some details of the derivation are
relegated to Appendix A. Section 3.3 will present model verification and results, and a
discussion will follow in Section 3.4.

3.1 Introduction

Only four grams of glucose exist in the adult human circulatory system at any moment
in time [36]. During exercise, this amount of glucose can be burned up in less than 10
minutes. Fortunately, the human body possesses an outstanding glucose-control system
to keep glucose levels very near normal basal levels of 90 [mg/dL], even during rigorous
exercise. This control system utilizes several hormones, mainly insulin and glucagon, to
maintain glucose homeostasis. Unfortunately, in type 1 diabetes (T1D) this control system
is faulty because insulin can no longer be secreted by the pancreas. Because of the lack
of endogenously produced insulin, it must be replaced through injection, typically into the
subcutaneous (SC) tissue. However, the appropriate insulin dose is highly variable and
depends on food type/load of carbohydrates in the meal, current glucose levels, stress levels
[5], physical activity [8] and a host of other factors [7]. An artificial pancreas (AP) that can
autonomously and safely adjust the insulin dose would greatly improve the lives of those
with T1D.

There are significant hurdles to the design of the AP. Many of these hurdles stem from
the time-lag between SC injected insulin and the eventual action of insulin to lower glucose
levels [44]. Onset of action is 15-30 minutes after injection and continues for 3-5 hours. This
time-lag means that an effective and robust artificial pancreas must preemptively calculate
the appropriate dose of insulin. This is especially difficult when exercise is involved because
exercise significantly alters insulin-glucose dynamics [2] and therefore the appropriate insulin
dose. If exercise is carried out when insulin-on-board (IOB) levels are high because of a recent
insulin dose then dangerous hypoglycemia may occur [2, 24], which can cause dizziness,
confusion, fainting, and in the most extreme cases, death.

Because of the potentially catastrophic ramifications of exercise in T1D patients, artificial
pancreas controllers must explicitly account for the effects of exercise. This has been achieved
mainly by shutting off insulin delivery during exercise [67]. However, by shutting down insulin
delivery there is the other significant danger of diabetic ketoacidosis (DKA). For this reason,
it is attractive to use a model predictive control (MPC) system in the AP to account for
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exercise in a more systematic and robust manner [29, 69]. MPC requires a ‘model’ so that
future predictions can be used to make a dosing decision at the current time.

Several pharmacokinetic-pharmacodynamic models of insulin-glucose dynamics exist in
the literature, and range from minimal and simple to complex and broad. Some of the most
popular models are the oral minimal model (OMM) developed by Bergman and Cobelli [55,
56], the glucose-insulin meal (GIM) model developed by Dalla Man and Cobelli [59, 60],
and the Sorensen model [64]. Though originally derived to model insulin-glucose dynamics
during rest, these three models have been amended in various ways to account for exercise
[1, 58, 61, 65].

Each models has its own benefits and drawbacks. The OMM, as its name suggests, has
the advantage that it contains the ‘minimal’ amount of variables and parameters needed
to represent a subject’s insulin-glucose dynamics. However, because of the limited model
structure, it can only be applied in very limited situations and significant modifications
would need to be made to fully amend the model for exercise conditions. The GIM is a more
comprehensive insulin-glucose model and is perhaps the best validated model available in the
literature. An exercise module has been added to the GIM [61], and it provides reasonable
predictions. However, various important effects, such as capillary recruitment and exercise
effects on endogenous glucose production were not directly included. The Sorensen model
[64] is perhaps the most comprehensive model available, with a total of 15 compartments
used to represent glucose-insulin dynamics. Roy and Lenart [65] amended the Sorensen
model to include the effects of exercise. However, this exercise model has been validated
in a post-hoc manner, only being used to describe the data that was used to obtain the
exercise model parameters, and thus it may be subject to overfitting. Also, because of the
model complexity, some of the exercise effects may not have been properly included. To the
authors knowledge, the exercise addition to the Sorensen model has not been validated on
any modern datasets.

Regardless of any criticism, each of the mentioned models have made significant con-
tributions to our understanding of insulin-glucose dynamics. Still, none were developed
specifically to handle exercise.

Objective: In this work, the objective is to develop a model of insulin-glucose dynam-
ics specifically for exercise. The desire for modeling exercise effects will inform the model
structure, and the focus will be on modeling phenomenon that are known to change acutely
with exercise.

Acute effects are defined as the short term immediate changes to insulin-glucose dynamics
during exercise. We are not focused on the prolonged effects of exercise. We estimate that
there are five primary acute effects of exercise on insulin-glucose dynamics, as shown in
Figure 3.1. This chapter focuses on modeling the three main acute effects of exercise on
glucose-dynamics. The other two acute effects of exercise are limited to insulin-kinetics and
are derived in Chapter 2. There are also two indirect effects of exercise on glucose-dynamics
(shown by dotted lines in Figure 3.1). These will be also be included in the model, but
discussion will be limited.

The three direct acute effects are (1) the change in the rate of glucose delivery (k) to
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Figure 3.2: A multiscale approach is used to model glucose-dynamics.

peripheral tissues resulting from increases in the tissue perfusion rate and capillary recruit-
ment, (2) the increase in the rate of endogenous glucose production (EGP) resulting from
glucagaon release during exercise, and (3) the increase in the rate of glucose uptake (RGU)
in peripheral tissues resulting from muscle contractions.

To include these effects we utilize a multiscale modeling approach. We include capillary
recruitment by modeling microscale mass transfer through capillaries using the convection-
diffusion equation. Distribution of glucose through the body is handled by macroscale models
of the various whole-body glucose pools, represented by compartments. Exercise effects on
EGP and RGU will be modeled phenomenologically and will act on the compartments
directly. Figure 3.2 illustrates the multiscale modeling approach. The details of the model
derivation are shown in Section 3.2.
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3.2 Methods

3.2.1 Model Development

Glucose is distributed in several regions of the body: the circulatory system (CS), the pe-
ripheral interstitial fluid (ISF), the brain, the liver, the kidneys, the heart, the gut, and
several other organs. In order to model the glucose balance in the blood, each of these
regions needs to be accounted for. Sorensen [64] created a complete and exhaustive model
of the glucose system, with each important compartment modeled. However, Sorensen mod-
eled glucose at rest, and did not account for physiological changes brought on by exercise.
These physiological changes are significant, altering not just how quickly glucose is delivered
to each compartment, but how quickly glucose is metabolized. The purpose of this work
is to evaluate the effects of exercise on glucose-dynamics and metabolism. This is done by
creating a pharmacokinetic/dynamics (PKPD) model that focuses on the major quantified
effects of exercise:

1. the change in the rate of glucose delivery (k) to peripheral tissues resulting from
increases in the tissue perfusion rate and capillary recruitment

2. the increase in the rate of endogenous glucose production (EGP) resulting from gluca-
gaon release during exercise

3. the increase in the rate of glucose uptake (RGU) in peripheral tissues resulting from
muscle contractions

Because we are only focused on these three main effects, we do not need the same level
of granularity and detail as the Sorensen model. The presently developed glucose model
will consist of only two domains, the CS domain and the peripheral domain made up of
subcutaneous and skeletal muscle tissue (SM) domain. A simple schematic of the model is
shown in Figure 3.3. We will account for metabolism in other organs as simple sources or
sinks, or alternatively, by incorporating previously developed models.

The change in kS will be modeled using concepts from microcirculation research that
relate delivery rates to tissue perfusion rates (Q4) and permeability surface area (PSY). The
increase in EG P will be accounted for by incorporating direct measurements obtained using
tracer methods, and also via an independently derived model of EGP. The increase in RGU
will be accounted for by utilizing data from literature that relates exercise intensity (F) to

to RGU.

Note on Nomenclature

The model consists of multiple domains, each with their own domain specific parameters.
In order to be concise with nomenclature, subscripts and superscripts will be used to denote
the domain and the substance that the parameter belongs to, respectively. V' denotes either
a volume of distribution of a volume of tissue. A superscript V% indicates a volume of
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Figure 3.3: (left) Abstract schematic of the proposed glucose model. (right) Physiological representation of
model. The model consists of two distinct domains: the circulatory system (CS) domain, and the skeletal
muscle (SM) domain (the SM domain also includes subcutaneous tissue). The human silhouette illustrates
which region each domain represents in the human body. Capillaries and ISF are both contained in the SM
domain, and each are modeled separately. The life of glucose proceeds as follows: glucose is either absorbed
from the GI tract (Rameq) or is released from the liver (EGP) and enters the CS. Glucose in the CS, at
concentration G, is then either delivered to the brain, gut, kidney, or heart and metabolized, or taken up by
the liver. Alternatively, glucose in the CS is delivered to SM by capillaries, which have blood flow rate Qg
and glucose concentration g4. Glucose in the SM domain, at concentration H, is taken up (cleared) by cells.

tissue, any other superscript denotes a volume of distribution (i.e. V). In some cases, a
parameter will be normalized by either a mass or volume, and will be denoted by a second
subscript, y. As an example

Ve (3.1)

is the volume of distribution of glucose (G) in the skeletal muscle (SM) domain. The param-
eter is also normalized (V) by the total domain volume. A subscript ;, represents the basal
value of a variable, i.e. G} is the basal glucose concentration.

Circulatory System Domain, CS

The circulatory system (CS) domain includes all blood vessels and the heart, minus the
capillaries in the skeletal muscle (SM) domain, which are < 5% of the total blood volume
[104]. A schematic of the CS domain is shown in Figure 3.3.
The rate of change of the mass of glucose in the CS domain G is described by
dg

% == gzn - GOut - GCl (32)
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where g'm, and Qout are the mass flow rates of glucose into and out of the CS domain. g’d
is the clearance mass flow rate from the CS domain. Gy, includes glucose originating from
three sources: (1) ingested glucose absorbed through the gastrointestinal tract (GI) (rate of
meal appearance, Raeq), (2) glucose absorbed from endogenous sources such as the liver
and kidneys (endogenous glucose production, EGP), and (3) glucose entering the domain
by convection from the SM domain (returning glucose from the delivering capillaries, G, L)
Qm can be written as

Gin = Rameal (t) + EGP(t) + gind‘ (33)

On the other hand Gou includes only glucose departing the CS domain for the SM domain,
which is denoted G,

gout = goutd (34)

G., includes clearance from the brain, heart, kidneys, gut, and liver. All glucose metabolic
clearance rates 1% with the exception of the liver, are assumed constant. These approximates
for each organ come from [45]. The brain, heart, kidneys, and gut will be referred to as ‘fixed’
rate tissues, and the rate of glucose uptake of these tissues RGUcs,,, is equal to the sum of
the metabolic clearance rates

_ .G G G G
RGUCSfiz = Tprain + Theart + rkidney + I‘gut' (35)

Developing a new model of liver glucose uptake is beyond the scope of the current work.
However, considering that the liver has been estimated to absorb 50-60 % of total ingested
glucose [119, 120], a model must be included. We adapt the liver glucose uptake model
developed by Sorensen [64, p. 117]. Unlike the ‘fixed’ organs, the rate of glucose uptake
in the liver RGUcg,,, is strongly dependent on both glucose and insulin concentrations.
Lacking information on the effects of exercise on liver glucose uptake, we will assume that
RGUg¢s,,, is independent of E. RGUcg,,, will be assumed to depend on G and S, the insulin
concentration in a compartment remote from the CS. Details of RGU¢g,,, will be discussed
in Section 3.2.2. The clearance rate G, is equal to the total rate of glucose uptake from the
CS domain RGUcsg,p, which is the sum of the fixed tissues and liver

Ga = RGUcs,or = RGUcs,, (G, S) + RGUcs,... (3.6)

The last step in developing our governing equation for the CS domain is to assume that
glucose is well mixed (i.e. uniformly distributed) at concentration G with a fixed volume
of distribution VS5. Applying the well-mixed assumption G = V& - G and substituting
Equations 3.3 - 3.6 into 3.2 we get

dG  Giny = Gowy RGUgs,, (G, S) + RGUcs,, N Rameal(t) + EGP(t) (3.7)

dt Vs VEs Vs ' '
This equation models the plasma concentration of glucose in the CS domain. The specifics
of the terms G, , and Gout , Will be defined in Section 3.2.1. The last two terms are time-
dependent because they are measured fluxes, discussed in Section 3.2.2. However, EG P(t)
can be replaced by a model of EGP(G, S, E), which is developed in Section 3.2.1.
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Skeletal Muscle Domain

The skeletal muscle (SM) domain consists of all the peripheral tissues of the body (SM and
SC tissue), which include the delivering capillaries (capillaries that perfuse the peripheral
tissues) and the interstitial fluid (ISF). H is the total mass of glucose in the SM domain.
Mass conservation on this domain yields

I W~ H — (3.8)
H,,, is the mass flow rate of glucose entering the SM, H.,u is the mass flow rate of glucose
exiting the domain, and M, is the clearance mass flow rate of glucose from the SM. As in
the CS domain, we will assume that glucose in the SM is well-mixed, and thus H = V&, - H,
where H is the concentration of glucose in the ISF of the SM domain.

Glucose is continuously delivered to the SM tissue from the CS domain. The difference
between the inlet mass flow rate Hm and the outlet mass flow rate ’Hout is equal to the rate
of glucose delivery to the SM tissue

Ha = Hin — Hour- (3.9)

H,, requires more rigorous treatment. Metabolic clearance of glucose (cellular uptake)
can occur from either insulin-dependent or exercise-induced (a.k.a. insulin-independent)
mechanisms [36].

Each of these mechanisms is postulated to be dependent on recruitment of the GLUT4
transporter to the cell membrane [36, 121-123]. GLUT4 is the transporter responsible for
facilitating diffusion of glucose across the cell membrane. The higher the concentration of
GLUT4 on the cell membrane, the faster the rate of uptake. Both insulin and exercise
have been shown to increase the concentration of GLUT4 on the cell membrane. Some
have postulated a ‘two-pool” GLUT4 theory, which claims that separate pools of GLUT4
transports are reserved for insulin-induced recruitment and exercise-induced recruitment
[123]. This theory would seem to support the idea of additive mechanisms, however there
is still debate on whether insulin and exercise induced uptake is additive. A few prominent
researchers have claimed that the effects are truly additive [121]. Others have claimed that
there is a synergistic effect of insulin and exercise, where the combination of both leads to
higher rates RGUgp,,, than one would expect from the sum of each mechanism separately
[40]. However, data on the synergistic interaction of insulin and exercise is limited and not
well-understood. We will model the effects as simply additive, neglecting synergistic effects.
The insulin-induced rate of glucose uptake is denoted as RGUgyy,,, and the exercise-induced
as RGUgyy,,,. The clearance rate, or total rate of glucose uptake RGUgns,,,,, in the skeletal
muscle domain is assumed to be the sum of both mechanisms of glucose uptake

Mo = RGUsatyy, = RGUsys

ins

+ RGUsy

exr”’

(3.10)



CHAPTER 3. MODELING THE ACUTE EFFECTS OF EXERCISE ON
GLUCOSE-DYNAMICS 86

The specific expressions for each mechanism of uptake is derived in the next section. The
final result is

H
RGUsn o = E(rngS + rngE) + rgMg' (3.11)

rngs and rng are called the insulin sensitivity and exercise sensitivity of glucose uptake

in skeletal muscle, respectively. With this expression, we have implicitly assumed that
RGUgyy,, and RGUgyy,,, are non-saturable and purely additive processes. Non-saturability
has been assumed because RGU doesn’t significantly deviate from linear until very high
glucose concentration > 250 [mg/dL] [124]. However, in T1D, non-saturability may be a poor
assumption, as discussed in Chapter 4. In the next section the mathematical expressions

representing each of these mechanisms are derived.

Insulin-Dependent Glucose Uptake, RGUg),.

wms

The rate of glucose uptake induced by insulin, RGUgyy,, ., is dependent on both glucose
concentration and insulin concentration. To illustrate this process, consider a permeable cell
membrane in SM insulin-sensitive tissue. A schematic is shown in Figure 3.4. In this case,

we want to derive an expression for RGUgyy,,,, so we set B = 0.

ns?

Interstitial Fluid Intracellular Space

|
H E&:—’ Hey
]

Pcell(S:E)
» T
Figure 3.4: Schematic of insulin-sensitive cell with a cell membrane that is permeable to glucose. ¢ is the
flux across the cell membrane. x is the positive direction toward the center of the cell. H and H.e; are the
glucose concentrations inside and outside the cell. P,.;; is the permeability of the cell membrane to glucose.

S is the insulin concentration outside the cell and F is the exercise intensity (shown as muscle contraction);
both are shown as modulators of P..;. P, is assumed to depend on S and E in an additive fashion.

According to Fick’s law the concentration difference drives flux ¢

dh
q= _Dcell_

- (3.12)

Where D, is the diffusivity of glucose through the cell membrane, h is the local glucose
concentration, and = the coordinate toward the center of the cell. Note we are considering
a very small portion of the cell membrane, which can be approximated with Cartesian
coordinates.



CHAPTER 3. MODELING THE ACUTE EFFECTS OF EXERCISE ON
GLUCOSE-DYNAMICS 87

By assuming a constant gradient across the cell membrane we rewrite as
q = Peen(H — Heenr)- (3.13)

Where P, is the permeability of the cell membrane to glucose, H is the glucose concentra-
tion outside the cell (same as concentration in the ISF), and H.y; is the glucose concentration
inside the cell. Further assuming that H.; < H, and then multiplying Equation 3.13 by
the total surface area of all insulin-sensitive cells in the SM domain we get

qA = RGUSM = cellAH- (314)

mns

The permeability of the cell to glucose, P..j, is known to depend on the insulin concentration
S. This stems from the observation that the primary glucose transporter GLUT4 is recruited
to the cell membrane roughly proportionally to S [122], barring saturation. We thus assume
P..; = kS. Substituting and combining k with A into a single constant, «, we obtain
RGUsy;, . = aSH. (3.15)

mns

This expression has the same functional dependence as that proposed by Bergman [125]
in the well-studied oral glucose minimal model [55, 56, 126, 127]. This form has also been
validated at clamped basal insulin with varying glucose by [128], and clamped basal glucose
and varying insulin by Castillo [70]. In the later study, RGU was found to be proportional
to S at fixed basal glucose H,. Following this observation, we evaluate Equation 3.15 at H,

RGUgny

ins

m, = aH,S. (3.16)

We define proportionality factor between RGUgy,,, |n, and S to be rg), =aH,. The con-
stant of rngS can be thought of as the insulin sensitivity. However, to generalize the
expression for all glucose concentrations, we desire to find the proportionality factor a. We

simply solve for a =r§,, /H, and substitute to obtain

H
RGUSM’LTLS = rgMinsF
b

S +18y,- (3.17)

... We have added an additional term rngO to account
for the observation that even at zero insulin, there is still finite glucose uptake in the SM
tissue.

This is the final expression for RGUgy,,

Exercise-Induced Glucose Uptake, RGUgyy. ..

Exercise significantly increases glucose uptake by skeletal muscle (SM) independent of changes
in insulin or glucose concentrations. This has been repeatedly shown by measuring leg glucose
uptake during exercise, while clamping glucose and insulin concentrations at basal concen-
trations [35, 39, 40, 129, 130]. To include this effect in our model we will derive an expression
for exercise-induced rate of glucose uptake, RGUgyy,,, -
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We start by again considering glucose uptake into a cell in the SM domain, shown
schematically in 3.4. In this case, we focus on the effect that exercise intensity F has
on P.;. We start with a similar expression to Equation 3.14, modified for exercise

RCYY(]S]\/[Ezr - PcellAH' (318)

Richter has shown that RGUsgyy,,, is roughly proportional to intensity[90, p. 926]. This
behavior is consistent with P..; being proportional to E; P..; = kE. Defining g = kA, we
obtain

RGUgy,,. = PEH. (3.19)
Evaluating this expression at Hj, we obtain
RGUSMemle = BHbE (320)

We define the proportionality factor between RGUgyy,,, |, and E as rng = [Hy. The
constant 1§, can be thought of as the exercise sensitivity. To estimate r§,, ~we use data
from several studies (shown in Section 3.2.2) that have measured leg RGU at basal glucose
35, 39, 40, 129, 130]. We solve for 8 =r§,, /H, and substitute into Equation 3.19 to obtain
our final expression

H

RGUsy,,, = rngFE. (3.21)
b

The form of this expression is confirmed by the results from studies with varying £ and fixed
H [35, 39, 40, 129, 130] and fixed E and varying H [90, p. 922].

One final assumption is that the activity is primarily leg exercise, i.e. walking or bicycling.
This is because rng is derived based on measurements of glucose uptake across the leg
during these activities. This should be a good assumption if the subject is walking or
bicycling but for exercise that focuses on the upper body a different value of rng may
need to be derived.

Final Expression Governing H. The final expression for H can be found by substituting
Equations 3.9 and 3.11 (note: Hy = RGUsas,,,) into 3.8, and assuming a well-mixed
compartment (H = V&, - H)

dH ~ Ha 1 (H .
a vsG, V&,

(16,8 + 1600, B) + 16, ). (3.22)
b

The first term is the rate of glucose delivery from the CS domain into the SM compartment,

and the second term represents insulin-dependent and exercise-induced glucose uptake. The

constant term rgMO is the rate of glucose uptake at zero insulin.
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Model of Endogenous Glucose Production

One of the limitations of using FGP input data is that the data is only valid under the
conditions for which it was measured. In our case the data was taken for a mixed meal
tolerance test with exercise beginning at minute 120. To allow for an estimate of FGP
under other conditions, we have created a model of EGP based on data from literature, and
validated on the triple-tracer measurements from our exercising patient cohort. We assume
a form for our model

EGP = EGP, - %%(1 + L) (3.23)

where EG P, is the basal value of EGP, set to be equal and opposite to RGUror under basal
conditions. EGP is chosen to be inversely proportional to G and S based on observations
of near complete EG P suppression following a meal [54, 113]. L is the exercise-action on
EGP, and is governed by an ODE that takes exercise intensity F as its input

dL 1
dt — Tegp

(—L + nE). (3.24)

The parameter Tggp is the time-constant that represents the time-lag of increased exercise-
action on FGP. The parameter 7 is the maximum exercise-action on EG P. For example, an
n=2 [unitless] allows EGP to increase by a maximum of 200% as a result of exercise. L can
be thought of as a surrogate for glucagon release that occurs during exercise. L is delayed
because changes in EGP due to exercise are known to lag the onset of exercise [35, 39,
113]. Details of parameter selection for the EGP model are given in Section 3.2.2. EGP(t)
indicates when measured EGP is used as an input into the model. EGP(G, S, E) indicates
when the modeled EGP is used.

Delivering Capillaries

Glucose is delivered to the SM domain via convection from the CS domain into the ‘delivering’
capillaries, which belong to the SM domain. Once in these delivering capillaries, glucose
then diffuses into the ISF by permeating the capillary wall through endothelial pores and
junctions [37]. We assume that the delivery processes is driven by pure diffusion; flux across
the endothelial walls is driven only by concentration gradients, not pressure differences,
microfiltration effects, or facilitated diffusion. This assumption allows us to model the physics
of delivery using Fick’s Law.

The concentration in a delivering capillary is governed by the cylindrically symmetric
convection-diffusion equation with axial flow only and pure diffusion at the walls

U

0g9q Dg<1 0 ( 89d> 029d> (3.25)

or  \pop\Tap) T a2
q=Py(H —gq) at p=R. (3.26)
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ga is the concentration in a delivering SM capillary, D, is the diffusion coefficient of glucose
in plasma, P, the permeability of the capillary wall to glucose, and U is the velocity of blood
through capillaries. We utilize the same solution that was derived for insulin delivery in
Chapter 2 (Appendices A.2 and A.3), but will use different parameter values to make the
solution specific to glucose
Ps§

ga(x,t) = H(t) — (H(t) — G(t))e QT (3.27)
ga changes with time ¢ and axial distance, z. PS$ is the permeability surface area of a
delivering capillary to glucose, ()4 is the tissue perfusion rate in the delivering capillaries
(RBCs and plasma), and L is the length of a capillary. To obtain Equation 3.27, we have
made several assumptions: (1) we have a low Péclet number and thus the mass-transfer
boundary layer is large and the radial concentration gradient is small, this allows us model
the concentration g4 as constant in the cross section. (2) blood rapidly traverses the capillary
and thus boundary conditions can be held fixed when solving for g; (3) the capillary has
uniform properties along its length, and (4) the capillary bed is homogeneous, meaning each
capillary in the domain has identical properties and is uniformly perfused.

In the real case the capillary bed is heterogeneous, and thus our homogeneous assumption
may prevent us from capturing some non-linear effects. These may indeed be important for
modeling glucose delivery [38], however absent detailed information about the heterogeneity
of a typical capillary bed, and with the desire to model parsimony, we assume homogeneous
capillary beds.

Coupling the Domains

Now that we have an expression for each domain, our next goal is to couple the domains.
We do this by relating the fluxes across the domain boundaries.

In quasi-steady state, a control volume around the SM domain (shown by the dotted
line in Figure 3.5) reveals that H,, the total glucose delivered to the SM tissue, is equal
to the difference between the mass flow rate back into the CS domain from the delivering
capillaries, gm ,» and out of the CS domain to the delivering capillaries gout .-

- _(gznd - goutd)' (328>

Simply stated, if the glucose flux leaving the CS is greater than the glucose flux reentering
the CS, then a finite amount of glucose was delivered to the SM.

Now, the mass flow rate of glucose crossing the boundary of a domain is equal to the
local concentration gy, times the volume flow rate ;. We can thus express the convective
terms Qm , and g’out , as

. ) ~-Ps§
Giny = | Qagale dV:deSff;(H (H - G)e " ) (3.29)
Gouty = Qagali AV = QaVisi G (3.30)

tiss
VS M
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Figure 3.5: (left) Schematic of flow in a capillary. Blood enters from the left at uniform velocity U and
initial concentration gq4|;. D, is the diffusion coefficient of glucose in blood plasma. L, R, and P are the
capillary length, radius, and permeability, respectively. The outside of the vessel wall is assumed to be
wetted with a uniform drug concentration H(t). (right) Mass transfer from a single capillary from a bed
of homogeneous capillaries in the skeletal muscle (SM) domain. Each capillary can be thought to act as a
local mass-exchanger with inlet concentration g4|; and exit concentration gq|.. By integrating over the entire
volume of SM tissue Vi and therefore all capillaries in the SM, we obtain the total drug delivered to the
SM tissue from the CS per unit time, Hg.

gal; and gq4|. are the glucose concentrations at the inlet about outlet of the delivering capil-
laries in the SM domain. Their specific values were found by evaluating Equation 3.27 at
x =0 and x = L. Substituting Equations 3.29 and 3.30 into 3.28, we obtain

-ps§

Hy = VESQu(1 — e " )(G — H). (3.31)

3.31 and 3.28 can be substituted into the field equations 3.7 and 3.22 to obtain the final form
of the glucose model.

The coefficient in Equation 3.31 is the rate constant that governs glucose flux between
the two domains

G
—PSg

kG = Qu(1 —e @ ). (3.32)

kG depends on the tissue perfusion rate Q4 and the permeability surface area PSY. De-
pending on the value of these parameters, the problem is either surface area limited or flow
limited. For typical glucose parameters, the problem is a mix between flow limited and
surface area limited. Changes in perfusion rate and surface area during exercise both serve
to increase the delivery rate.
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A similar solution was previously derived for the purposes of studying the microcirculation
and nutrient delivery by Renkin [79] and further discussed in [38]. We have independently
derived kS for the purposes of modeling glucose delivery during exercise.

Insulin Concentration, S

The glucose model takes insulin concentration in the SM domain, .S, as an input. However,
the data only has measurements of the insulin concentration in plasma, /. Thus, we add one
more equation to the model to capture the time-lag from I and S. We model insulin-kinetics
identically to how we modeled glucose in the SM domain; Utilizing a one compartment
model, which takes our measured [ as an input.

aS  VESKNIW) - S)

— = - .S 3.33
dt VS{M I‘SMN ( )
-Ps}
ki=Qi1—e %) (3.34)
PS}(E) = PSj _(1+ Rytanh(yE)) (3.35)

k! is the insulin delivery rate and depends on exercise through the tissue perfusion rate of
plasma (assumed 40% hematocrit), Q%, and the the capillary permeability surface area to
insulin PSCII. rsyy is the normalized metabolic clearance rate of insulin in the SM domain.

This equation was derived in Chapter 2, and the details will not be discussed here. The
parameters of the insulin model will be discussed in the next section.

3.2.2 Inputs and Parameters

The glucose model consists of glucose sources (Raeq and EGP), glucose metabolic clear-
ance rates (r%), and glucose delivery rates (k). The glucose inputs were measured in humans
using metabolic tracers. The metabolic clearance rates are modeled based on glucose uptake
measurements found in literature. Delivery rates are taken from microcirculation measure-
ments found in literature.

r and k are affected by exercise intensity £ due to increased demand, increased perfusion
rate, and capillary recruitment. In some cases, these parameters have been measured at
different levels of E. In others, no measurements exist, and the parameters need to be
derived.

The inputs and the selection of parameters is described below. All the model parameters
are summarized in Table 3.1.
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Exercise Intensity, F

For the parameters that are dependent on exercise, we define input E, which quantifies
exercise intensity. We define F, as a ratio of VO,

V0,

E = .
V02maz

(3.36)

E =0 is at rest and £ = 1 is at maximal exercise. F is a continuous input to the model.
Specifically, Q4 and PS$ will depend directly on E, and in turn the magnitudes of Qg and
PSY will directly determine the delivery rate kS

Glucose Inputs (Raeq and EGP )

The two glucose inputs to the model are the rate of meal appearance Ra,,.q;, which is the rate
that an ingested meal reaches the CS, and the rate of endogenous glucose production FG P,
which is the rate that glucose is produced (and released in the CS) by endogenous sources
in the body (mainly the liver). The difference between the glucose inputs and the total
rate of glucose uptake (RGU) is responsible for the balance of glucose in the bloodstream,
and directly determines G. A typical measured Ra,,.,; and EGP for a 75 [g] carbohydrate
(CHO) meal in a healthy (non-diabetic) resting subject and exercising subject is shown in
Figure 3.6. Each of these inputs are expressed in [mg/min], and are included in the glucose
model in Equation 3.7.

Notice that EG P rapidly increases during exercise. This is the body’s natural response
to the increased glucose uptake associated with exercise. Without this robust increase in
EGP, hypoglycemia may occur.

The accurate measurement of postprandial glucose fluxes is difficult. We have utilized
the most reliable method, the triple-tracer method, to measure Ra,,. and EGP. This
method utilizes three independent tracers to clamp tracer to tracer ratios. Details of this
methodology can be found in the introductory Chapter 1.4 and in the original paper in which
the method was described [46].

Slight pre-processing of EGP and Ra,.q was done. To ensure that under no pertur-
bation, steady-state is achieved, EGP was scaled to be equal to basal RGUror, which on
average is 155 [mg/min| [45, p. 219]. Also, measurements of Ra,eq tend to be an overes-
timate of actual Ra,,eq. To correct for this, Ra,,.. was scaled so that its area under the
curve is equal to 0.9 d, where d is the total dose (i.e. a 75 [g] meal), and 0.9 is the ratio of
the ingested meal that is absorbed into the bloodstream [131].

EGP Model Parameters

An alternative to using the direct triple-tracer measurements of EGP, as shown in the
previous section is to use the EGP model described by Equations 3.23 and 3.24.

The EGP model contains two parameters, Tggp and 7. Tpgp represents the time-lag
of increased exercise-action on EGP. The parameter 7 is the maximum exercise-action on
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Figure 3.6: Typical measured rate of meal appearance (Raeq;) and endogenous glucose production (EGP)
for an average healthy (non-diabetic) resting subject and an average healthy exercising subject. Meal inges-
tion for each group occurs at ¢ = 0. The exercising group has four 15 minute exercise bouts from t=120-195
shown by shaded regions. Raeq; during fasting is 0 [mg/min]. Upon ingestion of the meal Ra,eq rapidly
increases to a maximum near 500 [mg/min], and then slowly declines over the next 6 hours to nearly 0. There
is not a significant difference in Ra,eq; between the resting and exercising subject. On the other hand, there
is a profound difference in EGP during exercise. EGP is initially 155 [mg/min] and is rapidly suppressed
upon meal ingestion. In the resting group it slowly rises back to basal levels as glucose levels and insulin
levels return back to basal. In contrast, during exercise EGP rapidly increases, reaching a maximum of 210
[mg/min] (35 % above basal). This rapid increase in EGP is an important effect to include in a model of
glucose metabolism during exercise. Vertical lines are SEM.

EGP. For example, an n=2 [unitless| allows EGP to increase by a maximum of 200% as a
result of exercise.

These parameters are estimated from data taken from two studies by Ahlborg [35, 39],
where exercise was done at 60% VO0,,,,. in [35] and 30% VO0,,,,. in [39]. The model fit is shown
in Figure 3.7, along with the data from [35, 39]. The estimated parameters are 7g¢p=20 [min]
and n=4 [unitless].

Rate of Glucose Uptake from the Circulatory System, RGU¢g

The total rate of glucose uptake from the circulatory system is equal to the sum of glucose
uptake in the liver, brain, heart, kidney, and gut. As specified in Equations 3.6, and repeated
here

RGUCSTOT = RGUCSIW(G, S) + RGUCS”Z (337)

As previously defined in Equation 3.5, we lump the the brain, heart, kidney, and gut
into RGUcs,,,, as they are considered constant rates in our model. Uptake by these tissues
has not been shown to be significantly dependent on exercise [132], nor glucose or insulin
concentration. The values that we have chosen for the RGU of each of these organs was
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EGP Model Comparison
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Figure 3.7: The EGP model is plotted (solid and dashed lines) vs. exercise intensity E. The model is defined
in Equations 3.23 and 3.24 and parameters are identified by fitting to data from [35, 39], where EGP was
measured at 30% (open circles) and 60% (closed circles) VOs, .. Notice that after prolonged exercise (>120
[min]) the EGPyqtq drops off drastically, while the model stays constant. This is due to depletion of glycogen
stores. The derived EGP model is not valid beyond 2-3 hours because it assumes sufficient glycogen storage
for conversion to glucose. The extended segment (dotted line) indicates where the model is no longer valid.

taken from [45, p. 219]; rf. ., = 71 [mg/min], rf, ., = 4 [mg/min], v, . = 4 [mg/min], and
1$,16.6 [mg/min]. Thus RGUcs,,, is

gut
RGUgs,,, = 95.6 [mg/min] (3.38)

For the liver, we have adapted a model of liver glucose uptake developed by Sorensen
[64]. This model augments the basal rate of liver glucose uptake r;, according to current
glucose and insulin concentrations. RGUc¢sg,,, is

RGUgs,,, = 15, M(G)M (S) (3.39)

M(G) and M (S) are multiplicative factors that specify how RGU¢g,,, depends on glucose and
insulin concentrations G and S. M(G) and M (S) are both modeled as saturable functions
of G and S. In the original Sorensen model, M(G) and M(S) depended on the glucose
and insulin concentration in the liver. In our model, we have not included the liver as a
separate compartment, and thus we instead assume that M (G) is dependent on the glucose
concentration in the blood, and that M (S) is dependent on the insulin concentration in the
SM tissue. This should be a reasonable modification, as the time-lag between our remote
compartment should be similar to the time-lag in Sorensen’s liver compartment.
The final liver model is

RGUcs,, = 111,(5.66 + 5.66 - tanh(2.44(G£ — 1.48))) M (3.40)
b
M 1
M 1,. tcmh(o.55§). (3.41)

% Tliv Sb
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M is modeled with a time-lag 7;, = 25 [min] to account for the observation that the
liver does not immediately respond to increases in S. All of the numbers were derived by
Sorensen and based on data from experiments on liver glucose uptake.

r was set to 15 [min/min], a slight downward adjustment from the typical 20 [mg/min].
This ensured that RGUj,., is approximately equal to 50% of total glucose ingested, which is
consistent with studies by [120]. At basal glucose and insulin concentrations, RGUcg,., =
110.6 [mg/min]. The remainder of the 155 [mg/min| of glucose uptake occurs in the SM

domain.

Rate of Glucose Uptake from the Skeletal Muscle, RGUg),

The expression for skeletal muscle rate of glucose uptake (RGUg)ys) was derived in Section
3.2.1 (Equation 3.11)

H
RGUSMTOT = E(rngnSS + rgMemrE) + rgMo' (342)

This expression contains three parameters; rng, r$y., and rgMO. These represent, re-
spectively, the metabolic clearance rate due to insulin (i.e. insulin sensitivity), the metabolic
clearance rate due to exercise (i.e. exercise sensitivity), and the metabolic clearance rate
at zero insulin and zero exercise. Castillo and Bergman [70] estimated rngs by measuring
RGUswi, o, during rest at various SM insulin concentrations .S, while holding glucose at
basal concentrations. Their estimate ranged between 2 — 20 [mg/min per pU/mL|. From
this range we choose a reasonable insulin sensitivity of r§;, =5 [mg/min per xU/mL].
To find the value of rgMO we evaluate Equation 3.42 during rest under basal conditions.
RGUspyor(E = 0,H = Hp,, S = S5) is equal to the basal metabolic clearance rate in
peripheral tissue, r§,,; = 44.6 [mg/min] [45, p. 219]; the difference between basal EGP (155

ert

[mg/min|) and basal RGUcs,, (110.6 [mg/min]). Substituting, we obtain
rgMo = rz?’eri _ rngS Sb' (343)

In our model, we are not interested in the value of r§,, . as it is just a result of assuming
that RGU is linear in S. We thus eliminate rgMO by substituting Equation 3.43 back into
Equation 3.42. After some rearranging, we get

RGUsror = Trr, . (gs —S) + rnggE 15 (3.44)
b b
This expression can then be evaluated with an estimate for S;,. Generally .5} is approximately
50% of the plasma basal insulin concentration I, [44, 70, 101, 110-112]. In our model, I, is
a measured input and thus S, can be estimated from Equation 3.33.
For the exercise sensitivity parameter rng, we utilize data from several studies on leg

glucose uptake during exercise [35, 39, 40, 129, 130]. Each of these studies was carried out at
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basal glucose and insulin concentrations. First, we evaluate Equation 3.44 at H = H, and
S =5, leaving E as a variable

RGUSMTOT|H5755 = rgMewE + rzc);eri' (345)

We estimate rng by fitting the linear function (Equation 3.45) to RGU data aggregated
from several studies that have measured leg glucose uptake (LGU) at various levels of exercise
35, 39, 40, 129, 130]. We assume that LGU is equivalent to RGUgps,,,- This is reasonable
because for walking and bicycling, the primary site of glucose uptake is the legs.

The data from the previous exercise studies is plotted in Figure 3.8. Equation 3.45 is fit
to the data (neglecting the point at £=0.9) and is plotted in blue. The resulting slope is
&y, = 860 [mg/min] per unit E. This means that at 50% E, RGUsn,,, would rise by
430 [mg/min].

The linear regression fits well in the range of moderate-exercise intensities (£=0.3-0.6),
but because we have neglected the £=0.9 data point, the line underestimates uptake in
the high-intensity range. This was done because only one datapoint was available at high-
intensity exercise, and if included the best-fit line is significantly skewed upward, preventing
accurate estimates of RGU in the more reliable moderate-intensity exercise range. Addi-
tionally, the human data we have gathered is taken during moderate-intensity exercise, and
thus for comparison purposes it is more important to predict RGU at moderate-intensity
than high-intensity exercise.

Rate of Glucose Uptake vs. Exercise Intensity
1400 T T T T

1200+ o
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D @
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—_RGU,,

0 0.2 0.4 0.6 0.8 1
Exercise Intensity F

Figure 3.8: Relationship between total rate of glucose uptake in the skeletal muscle RGUgps,,, and exercise
intensity F, at basal glucose Hp and basal insulin S,. Equation 3.45 is shown (blue line), and the slope
rgM&m = 860 is fit to all aggregated data [35, 39, 40, 129, 130], excluding the F = 0.9 data point. As an
example, at 50% E, if all else is held constant, RGUgs., would rise by 430 [mg/min], 10-fold over resting
RGU.
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Tissue Perfusion Rate, Q

The tissue perfusion rate, @)y, in SM tissue has been quantified in many studies at rest
and during exercise [83, 84]. Saltin [84] measured leg blood flow (LBF) at different levels of
cardiac output (CO) and found a linear relation. If we assume that LBF is equivalent to
(4 and that is CO is proportional to VO0,, ., then we can use the data of Saltin to define a
linear relationship between )y and E

Qd(E) = erest + AdE [mlb/mltiss/min] (346)

Where the resting value of SM blood flow Qg,.., = 0.038 [ml,/mly;ss/min], comes from [83]
and the slope Ay = 1.1 [ml,/mly;s/min per E] comes from Saltin’s relationship between LBF
and CO [84]. Note that for convenience we have to converted from customary units of Qg
[ml,/100g;;ss/min] to [ml,/mly;ss/min| using an average tissue density of 1 g/mly,s, which
falls between the average tissue density for SC (0.91 g/mly;ss) tissue and SM tissue (1.09
g/mlyss) [85]. Qq is plotted in Figure 3.9. Q)4 experiences a more than 20-fold increase at
maximum F.

Blood Flow vs. Exercise Intensity
1.2 T T T T

0 0.2 0.4 0.6 0.8 1
Exercise Intensity F

Figure 3.9: The blood flow relationship to be used in the proposed glucose model. Tissue perfusion rate in
the skeletal muscle (@) is assumed to be linearly dependent on exercise intensity(E) and increases 20-fold
at high-intensity exercise. Relationship taken from [84].

Permeability Surface Area, PS¢

Permeability surface area (PS) is a measure of how permeable a capillary bed is to a cer-
tain solute. Many theorize that PS increases during exercise because capillary recruitment
increases the overall surface area in exercising muscle by fully perfusing capillaries that are
underutilized at rest [89-91]. Renkin was one of the first to show this in a 1966 paper [91]
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Figure 3.10: Results of Renkin [91] showing how PSS increases due to muscle contractions caused by electrical
stimulation. In the bottom frame PS nearly doubles during muscle contractions. Renkin attributed this
to the recruitment of capillaries “We conclude that the increase in PS ... ...produced during metabolic
vasodilatation [is] brought about by an increase in the capillary surface area effectively in contact with
flowing blood... ... it appears most likely that this change is brought about by the opening of precapillary
sphincters which are closed under resting conditions.”

where he demonstrated a near doubling of P.S during muscle contractions, shown in Figure
3.10.

In light of this study, capillary recruitment has been identified as a potentially important
mechanism for the enhancement of nutrient exchange and delivery during exercise. Many
others have sought to quantify capillary recruitment by other means. Omne of the most
popular proxies for recruitment is the quantification of microvascular blood volume (MBV)
by contrast enhanced ultrasound [92-94]. We will utilize this proxy to quantify recruitment,
which is described by the recruitment factor, R,.

We model PSY as a saturable process that is dependent on E. The saturability assump-
tion stems from the concept of a finite reservoir of previously unrecruited capillaries that are
recruited during exercise. The following function describes how PSS depends on E and Ry

PS§(E) = PSS (1+ Rgtanh(vE)) (3.47)

PS¢ refers to the permeability specific to glucose in the delivering capillaries of the SM
domain. PSC?;M is the PS¢ value at rest. « is an unimportant free parameter that serves to
modulate how quickly the function reaches its plateau value. R, is the recruitment factor,
which indicates the maximum proportional increase in PSY. We need to find values for three
parameters: PSdG,'eSthdv and 7.

Starting with R; we define the second term in Equation 3.47 as a new function f; that
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describes recruitment
fa = Ratanh(~E). (3.48)

fa can be thought of as the proportional increase in the number of perfused capillaries in
the SM tissue; fy = 01is no increase, f; = 0.5 is a 50% increase, and f; = 2 is a 200% increase.
We quantify f; by using MBV as a proxy. Results of several MBV studies are shown in Figure
3.11, where MBV was quantified at different levels of exercise. By dividing the MBV value
at exercise by the MBV value at rest (basal), we obtain values of f; at various exercise levels.
These ratios are plotted as dots in Figure 3.12. The corresponding curve is Equation 3.48
with best-fit parameters R; and . Because goodness of fit is relatively insensitive to v, we
assign v = 10, which indicates rapid recruitment even during light (E = 0.25) exercise. The
plateau value that best describes the data is R; = 1.46, indicating that maximal recruitment
is approx 146%, a value consistent with various studies on microvascular recruitment, which
place maximal recruitment in the range of 100 to 300 % [91, 98].
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Figure 3.11: Three studies showing the effects of exercise on capillary recruitment, as quantified by changes
in microvascular blood volume (MBV). All studies show that capillary density more than doubles during
exercise, with only limited differences between light and heavy exercise. The ratios of MBV during exercise to
MBYV at rest are plotted in Figure 3.12 and used to fit parameters v and Rg. (left) [92] Recruitment is 115%
after exercise as assessed by MBV and independently by the rate of 1-methylxanthine (MX) metabolism
(another proxy for recruitment) in rat hindlimb adductor muscles. (center) [99] MBV is shown to increase
roughly 240% during light and 163% during heavy forearm exercise. (right) [94] MBV in the human forearm
is shown to increase 91% during light and 118% during heavy forearm exercise. Figures are used without
permission.

The only other parameter that needs to be estimated to fully define Equation 3.47 is
PSg’;est. For this, we take direct measurements of from the literature[80, p. 33] [101, 102],
which put PSiest in the range of 0.6-2.0 [ml,/100g;;ss/min]. The wide range is due to the
observation that capillary permeability changes during fasting, postprandial, or hyperinsu-
linemic conditions. Lacking complete data to describe Psgest, we use a reasonable value of
PSaGTest = 1.0 [ml,/100g;;ss/min] or 0.01 [ml,/ml;;ss/min]. This value also predicts a reason-
able resting glucose extraction fraction of 3-4%, which is consistent with measurements in

literature.
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Recruitment vs. Exercise Intensity
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Figure 3.12: The relationship between capillary recruitment and exercise intensity is assumed to be a sat-
urable process. The black dots are derived from the experimental results of various studies on capillary
recruitment [92, 93, 100], which are summarized in Figure 3.11. Recruitment f; is defined to be zero at rest
(E = 0) and is fit to data to find R4 and v in Equation 3.48. f; rapidly increases to a plateau value of
R4 = 1.46, indicating a 146% increase in capillary density during exercise.

With estimates for each of our parameters: Ry, 7, and PSC?T .., we have fully identified
our PSY model. PSS is plotted vs E in Figure 3.13. As F increases, PS$ rapidly rises to
its plateau values. By F = 0.25, capillary recruitment is essentially complete.

With expressions for Qg and PSY it is illustrative to examine how the glucose delivery
rate k§ depends on F. By substituting Equations 3.46 and 3.47 into Equation 3.32, we
obtain the k§ curve in Figure 3.13. k§ follows a path very similar to PSY. This is because
Q4 is high during exercise, and thus is not the limiting factor in glucose delivery. Rather,

the limiting factor in glucose delivery is surface-area, and so PS¢ almost directly determines
K.

Volume of Distribution, V¢ and Tissue Volume, V%%

Glucose is a small molecule that readily dissolves in water. Hence, the volume of distribution
of glucose is approximately the volume of water in each compartment.

Glucose in the CS is contained in both the plasma and the red blood cells (RBC).
Equilibration between the two is rapid [64, p. 43] and thus glucose in the CS can be modeled
as a single compartment. This volume relates the entire content of glucose the CS to the
plasma concentration, and is called the volume of distribution VS5 Specifically, it is a
measure of the fluid volume that would be required to contain the total amount of glucose
present in the CS, Geg,,, at the same concentration as that measured in the plasma, G.

gCSTOT = gCSp + gCSRBc =G- VC(’;S' (3'49)

Where Ges, and Gosy o is the amount of glucose contained in the plasma and red blood cell
components of blood, respectively. Assuming a hematocrit of 40%, and that the concentra-
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Figure 3.13: Permeability surface area (Equation 3.47) rapidly increases with exercise, reaching a plateau
value at at only F = 0.25. The plateau exists because there is a finite reservoir of capillaries in the tissue
and once they are all fully perfused then surface area can no longer increase. The delivery rate kg; (Equation
3.32) increases similarly to PSf. This is expected because during exercise, at high perfusion rates Qgq,

glucose delivery is surface area (diffusion) limited rather than flow limited, and so is mainly dependent on
PsS.

tion of glucose in the RBCs is 76% of plasma [64, p. 43] we can quantify the mass in plasma
and RBCs as

G- VS =(06-G+04-0.76-G)V? (3.50)
where VB is the total blood volume. Solving for Vg we obtain
Vos = (0.904)VE. (3.51)
We normalize by body weight to obtain
Vesy = (0.904) V7. (3.52)

If we estimate Vi = 0.77 [dL/kg], then ViS5 = 0.7 [dL/kg]. With this volume of distribution,
our predictions can be directly compared to measurements of plasma glucose.

In the SM domain, glucose only distributes in the ISF. Thus, the volume of distribution in
the SM domain, VSGMN, is taken as the volume of ISF, which was estimated to be VSGMN = 0.96
[dL/kg] [64, p. 43]. In the model, V&, and V& are used. They are obtained by multiplying
the normalized volume distribution by the subject’s body weight (BW).

The combined volume of distribution VSGMN + VC%N ~ 1.7 [dL/kg], which is consistent
with one-compartment estimates from the literature ranging from 1.5-2 [dL/kg] [133]. This
gives some confidence in our estimates of the volume of distribution.

Vtiss is fundamentally different from the volume of distribution, it is the volume of tissue
in the domain. This parameter shows up because we must know the total volume flow rate
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(Qq - VE&#) in order to calculate the mass flux. The volume of tissue in the SM domain is
estimated to be V&7 = 0.54 [L/kg] [83], i.e. 54% of body weight at an assumed 1 kg/L
density. Approximately half of V£%* is SM tissue, with the other half SC tissue. As previously
mentioned, despite naming the second compartment the SM domain, it also includes SC
tissue.

Insulin Model Parameters

The insulin model was derived in Chapter 2 and details of how the parameters were obtained
are omitted here. The volume of distribution of insulin that we use in the SM domain is
roughly equal to the volume of the ISF, which normalized by BW is VSIMN = 1.2 [dL/kg]
[44, 64, 104]. The normalized metabolic clearance rate of insulin from the SM is r5 My = 0.02
[1/min]. The capillary permeability surface area to insulin is PS? =0.005 [ml,/ml;s,/min].

3.2.3 Model Summary

The field equations are

dG __Viipk§(E) - (G = H) _ BGUcs,, (G, M(5)) + RGUcs,,, | Ramea(t) + EGP(1)
dt Vs Vs Vs
(3.53)
dH _ ViitkG(E) - (G —H)  RGUsw,,,(H, S) + RGUsu,,, (H, E) (3.54)
di Vi Vi ' '
tiss .1
% Y kd(E‘)/gj\jI(t> ) _ S (3.55)
% = T;Q.O : tanh(O.E)SS%) (3.56)
subject to
G=G,att=t, (3.57)
H=H,att=t, (3.58)
S=S,att=t, (3.59)
M =M, at t = t,. (3.60)

The complete glucose metabolism model is a system of four non-linear ordinary differential
equations with non-constant coefficients. G is the plasma concentration of glucose in the CS
domain. H is the ISF concentration of glucose in the SM domain. S is the ISF concentration
of insulin in the SM domain, with measured plasma insulin concentration I as an input. M
is the glucose uptake multiplier that affects RGUcg,,, from Sorensen [64].
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Rates of glucose uptake (RGU) are defined as

RGUCSfm = rg"ain + rgeart + rkGidney + rgGut' (361)
G
RGUcs,,, = 11, (5.66 + 5.66 - zecmh(2.44(a —1.48))) M (3.62)
b
H
RGUsu,,, =5y, (55— %) +15.; (3.63)
mns ins Hb P
H
RGUgy ¢ E. (3.64)

=T _—
exr SMezr
ex Hb

The kinetic rates k, which depend on exercise intensity F, are defined as.

K (B) = Qu1 — ¢ o) (3.65)
KUE) = Q1 — ¢ ) (3.66)
Qa(E) = Qi + MaE (3.67)
Qi(E)=(1—h)-Qq (3.68)
PS$(E) = PSY_ (1+ Rgtanh(yE)) (3.69)
PSJ(E) = PS) _(1+ Rgtanh(yE)). (3.70)

Qg is the total blood perfusion rate and Q7 is only the plasma blood perfusion rate. The
difference is the h = 40% hematocrit.
Additionally, we have the EG P model

Gy Sy

EGP = EGP,- 222(1+ L 71
GP = EGP,- 5 (1+ L) (3.71)
L 1
G = Lk (3.72)
L=0att=t, (3.73)

The EGP model can be used in place of the measurements for EGP(t). In this chapter, we

will only use the measured input EGP(t). In subsequent chapters we will use the model for
EGP.
The parameters of the entire model are defined in Table 3.1.

3.2.4 Initial Conditions

The initial conditions are chosen by to be equal to basal measurements for G and I. For
H and S, which are not measured, Equations 3.54 and 3.55 are evaluated at basal resting



Table 3.1: Parameters used in glucose-dynamics model for healthy subjects

Parameter  Description Unit Value  Source

rlgam Metabol%c clearance rate of glucose %n the brain mg/m%n 71 [45, p. 219]

- Metabolic clearance rate of glucose in the heart mg/min 3.7 [45, p. 219]

T idney Metabolic clearance rate of glucose in the kidneys mg/min 3.7 [45, p. 219]

G, Metabolic clearance rate of glucose in the gut mg/min 16.6 ¥ [45, p. 219]

rz%je”- Basal metabolic clearance rate of glucose in the peripheral tissue mg/min 45.2 [45, p. 219]

T Basal metabolic clearance rate of glucose in the liver mg/min 14.8 ¥ [45, p. 219]

TS, Insulin sensitivity of glucose clearance in skeletal muscle mg/min per pU/mL 5 [70]

rgMCM Exercise sensitivity of glucose clearance in skeletal muscle mg/min per E 860 [35, 39, 40, 129, 130}§

VchN Normalized volume of distribution of glucose in circulatory system  mL/kg * 0.7 [64]

VSGMN Normalized volume of distribution of glucose in skeletal muscle mL/kg * 0.96 [64]

VéﬁffN Normalized volume of tissue in skeletal muscle mL/kg * 540 [83]

Tliv Time lag of insulin action of liver glucose uptake min 25 [64]

Qdyest Tissue perfusion rate in skeletal muscle tissue at rest mLp/mLy;ss /min 0.038 [83]

PS(%';&M Capillary permeability surface area to glucose during rest mLy/mLy;ss /min 0.01 [80, 101, 102]

Ry Capillary recruitment factor in delivering (SM) tissue 1 1.46 [92-94] §

¥ Capillary recruitment saturation rate 1 10 [92-94] §

Ad Sensitivity of tissue perfusion rate to exercise mL,/mLy;ss/min per £ 1.1 [84]

TEGP Time lag of exercise action on endogenous glucose production min 20 [35, 3918

n Maximum exercise action on endogenous glucose production 1 4 [35, 39]§

VS{MN Normalized volume of distribution of insulin in skeletal muscle mL/kg * 1.2 [44, 64]

rgMN Normalized metabolic clearance rate of insulin in skeletal muscle 1/min 0.02 [105-107]8
érest Capillary permeability surface area to insulin during rest mLp/mLy;ss /min 0.005  [101, 102]

Hematocrit percentage in blood 1 0.4 [104]

* Multiplied by BW prior to being used in model. See demographics for BW.
T Derived from total clearance rate.

 Adjusted to ensure that total liver uptake is approx 50% of ingested glucose [119, 120].
§ Parameter is derived from data taken from specified sources.
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conditions (G = Gy,H = H,,S = Sp, E = 0)

G(t,) = Gh,,,, (3.74)
a

___pert 3.75
VIS kS | =0 (3:75)

T

H(to) = deata -

Vtisskllb
S(to) = oM~ pdate (3.76)
réM + V& ké
M(t,) =1 (3.77)

M is initially 1 because this gives basal RGUcs,,, = 15, .

3.2.5 Human Subjects Data

The data used in this study comes from two separate research studies on healthy (non-
diabetic) human subjects and is the secondary use of existing data. A summary of the
demographic information is shown in Table 3.2. Detailed protocol and demographic infor-
mation can be found in [54, 113]. Note, these two studies were not paired; different subjects
were used for each group. We will refer to the resting group as ‘rest’ or ‘resting’ and the
exercising group as ‘exercise’ or ‘exercising’.

In each study the time of meal ingestion was the same (0700), the meal content was the
same (55 % carbohydrate, 15% protein, and 30% fat), the number of subjects was the same
(n=12) and the triple-tracer protocol was the same [46]. The only significant difference in
the studies is that one group exercised in the period from ¢ =120 to 195 [min] following meal
ingestion. Figure 3.14 shows the timeline for each protocol.

Brief Protocol Information

The following protocol information applies to the ‘resting’ and ‘exercising’ subjects, except
where specified.

The ‘exercising’” subjects did not engage in vigorous physical activities for 72 h before
screen and study visits. In the screening visit participants performed a graded exercise test
on a treadmill to determine V0, . according to guidelines (American College of Sports
Medicine Guidelines for Exercise Testing and Prescription, 7th Edition) and ensure stable
cardiac status. Expired gases were collected and analyzed using indirect calorimetry. VOg,, .
was determined when at least two of the following three criteria were met: 1) participant
too tired to continue exercise, 2) respiratory exchange ratio exceeded 1.0; or 3) a plateau
was reached in oxygen consumption with increasing workload. The purpose of this test was
to use individual VO0q, . data to determine workload during the moderate-intensity VOq,,,.
protocol during the study day.

For the study visit all subjects spent 40 h in the CRU. On day 1 subjects were admitted to
the CRU at 1600. They were then provided a standard 10 kcal/kg meal (55 % carbohydrate,
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15% protein, and 30% fat) consumed between 1700 and 1730. No additional food was
provided until the next morning. On day 2 at 0600 h, an intravenous cannula was inserted
retrogradely into a hand vein for periodic blood draws. The hand was placed in a heated
(55C) Plexiglas box to enable drawing of arterialized- venous blood for glucose and hormone
analyses. At 0700 a mixed-meal study was performed.

A mixed meal containing 75 grams of glucose was ingested at time 0. At 120 min following
the first bite, the ‘exercising’ subjects stepped on a treadmill to exercise at moderate-intensity
activity (50 % VO0,,, . ): i.e., four bouts of walking at 3-4 miles/h for 15 min with rest periods
of 5 min between each walking bout: total duration 75 min. The workload during physical
activity was continuously monitored by heart rate responses and measurements of VOy .
during exercise to maintain target 50% V0, . exercise intensity. Following the last blood
draw the hand vein cannula was removed. Lunch at 1300 and dinner at 1900 were provided,
each meal contributing 33% of daily estimated caloric intake. The patient was discharged
the next morning at 0800.

0 nllin 360 min
T Resting Throughout T

Meal Test

Ingestion End

0 min 120 min 360 min

Meal Four 15 min Test

Ingestion Exercise Periods End

Figure 3.14: Timeline for the mixed-meal tolerance test (MMTT) resting protocol and exercising protocol.
Each test was done using only healthy (non-diabetic) subjects. At time 0 the subjects in the resting group
ingested a 50 [g] CHO mixed-meal and the subjects in exercising group ingested 75 [g]. The resting group
rested throughout the entire study period. The exercise group exercised at 50% V0q,__ for four 15 minute
exercise periods, starting at minute 120.
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Table 3.2: Demographics of healthy (non-diabetic) subjects

Variable Resting Protocol! (n=12)  Exercising Protocol’ (n=12)
Age (Years) 36.0 + 11.3 37.1 £ 13.2

Sex (M/F)  9M, 3F 5M, TF

Weight (kg) 72.4 + 15.8 70.9 + 16.6

HbAIC(%) 5.1+ 0.4 51+ 0.3

V02,44 - 3234+ 7.3

=+ is standard deviation
Not measured
Data originally published in [54](rest) and [113](exercise).

3.2.6 Simulation, Input, and Data Considerations

Each simulation was started using the initial conditions derived in Equations 3.74-3.77. To
obtain an average patient, all data was averaged for the 12 patients in each cohort. The
error bars indicate the SEM. MATLAB was used to simulate the system. A timestep of 0.1
[min] was used.

As previously mentioned, FGP and Ra,,., were preprocessed. The basal value of EGP
was set to be 155 [mg/min] by linearly scaling the raw EGP data. The AUC of Raeq set to
be 0.9 -d [131, 133], where d is the meal dose. To meet this requirement the raw Ra,,eq Was
scaled linearly. FGP model predictions were not used to produce the results here, Chapter
4 will utilize the EGP model.

3.3 Results

Model simulation results are shown in Figures 3.15 - 3.20. First, insulin and glucose concen-
tration predictions are plotted. Then, extraction fraction and rate of glucose delivery to SM
tissue are plotted, which provide insight into the model’s ability to predict glucose-kinetics
between the compartments. Last, glucose input and uptake are plotted, which shows the
importance of different RGU mechanisms at different times in the postprandial period.

Figure 3.15 shows the postprandial insulin response to a meal ingested at ¢ = 0 for a
resting patient and an exercising patient. The measured plasma insulin input /4., and the
predicted SM ISF insulin concentration S based on Equation 3.55 are plotted. The grey bars
indicate the four 15 minute exercise periods.

The peak plasma insulin concentration [z, is nearly the same between groups, reaching
about 55 [pU/mL]. Similarly, the peak predicted S is about 20 [pU/mL], occurring at 100
[min| in each group. At ¢t =120 [min], the moment before exercise, Ijqt, is 33 [pU/mL] in
the exercising group. At the same timepoint in the resting group Igu, is 29 [pU/mL).

The trajectories for each group begin to diverge after exercise occurs. This is plainly
seen by the rapid decrease in [I;,, during exercise. A much slower decay is seen in the
resting group. In the exercising group Iy, falls to 10 [uU/mL] by ¢t = 145 [min]. The
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resting group doesn’t reach 10 [pU/mL] until ¢ = 180 [min], a full 35 minutes later. The
predicted S also decays as an accelerated rate, falling to 5 [¢U/mL] by ¢ = 200 [min]. The
resting group doesn’t reach 5 [pU/mL] until almost an hour later. The observation that
insulin concentrations quickly drop during exercise is consistent with previous observations
that insulin production by the pancreas is suppressed during exercise [134].
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Figure 3.15: Postprandial (meal at ¢ =0 [min]) measured plasma insulin concentration Ijq, (dots) and
predicted (blue line) skeletal muscle insulin concentration S vs. time for a resting subject (left) and exercising
subject (right). The grey bars indicate the four 15 minute exercise periods. Notice that plasma insulin
concentration rapidly declines during the exercise period, reaching near basal levels by ¢ =200 [min]. On the
other hand, for the resting group, the insulin concentration falls at a slower rate. The observation that insulin
concentrations quickly drop during exercise is consistent with previous observations that insulin production
by the pancreas is suppressed during exercise [134]. This reaction helps prevent hypoglycemia by reducing
the insulin concentration in insulin-sensitive tissues.

The postprandial glucose response is shown in Figure 3.16. There is strong agreement
between the model predictions G and measurements G gq1,. Peak G is about 170 [mg/dL] and
is nearly identical for both the exercise and rest groups. In fact, prior to exercise (shown as
shaded regions), the glucose response for both groups is nearly identical. The predicted G at
t = 120 (the moment before exercise) is 130 [mg/dL], a slight overestimate of measured G a4,
which is about 115 [mg/dL] in each group. This overestimation is likely due to measurement
error of Raeq;, which exhibits a slight uptick around this time (see Figure 3.6).

Only after exercise do the glucose responses of each group begin to diverge. In the
resting group, glucose decays slowly, and reaches basal levels at around ¢ =160 [min]. In
comparison, the exercising group drops below basal by ¢ =130 [min], only 10 minutes after
exercise begins. This significant drop is accurately captured by the model. After entering
hypoglycemic territory (G =~ 70 [mg/dL]), G no longer drops, and maintains at about 75
mg/dL]. G is maintained because of the significant increase in EGP (see Figure 3.6). The
jagged glucose response during exercise is a result of the direct dependence of RGUgy,.,, on
E, which jumps from E=0 to 0.5 almost instantaneously. After exercise ceases, G returns
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to basal levels. The G predictions slightly diverge from Ggu, after t = 250 [min]. This is
most likely due to steady-state error in EG P measurements, which did not return back the
set basal rate of 155 [mg/min].

The SM ISF glucose concentration H starts at approximately 90% of G. After meal
ingestion G rapidly rises, with H rising at a much slower rate due to slow diffusion of glucose
from the CS to the SM. During exercise H drops to an extremely low level of about 40
[mg/dL]. This significant drop occurs because the glucose delivery mass flow rate Hy cannot
keep up with the demand of exercising muscle. Details of glucose-dynamics will shed more
light on this prediction.
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Figure 3.16: Postprandial (meal at ¢ =0 [min]) glucose concentrations vs. time for a resting subject (left)
and exercising subject (right). Ggate (dots) and G (black line) are the measured and predicted plasma
glucose concentrations. H (blue line) is the predicted SM glucose concentration. The grey bars indicate
the four 15 minute exercise periods. There is strong agreement between the model plasma predictions G
and measurements Ggq:,. Measurements for H are not available for comparison. In both groups, prior to
exercise G and H take nearly identical trajectories. After exercise Ggu¢, drops into hypoglycemic territory
in less than 10 minutes. For the resting group, hypoglycemia does not occur, and glucose does not reach
basal levels until ¢ =160 [min]. For the resting group, the lowest predicted G and H were approximately 85
[mg/dL] and 70 [mg/dL]. In comparison, the exercising group had a nadir of 70 [mg/dL], and 40 [mg/dL].
This indicates that H is more sensitive to exercise than G, likely for two reasons: (1) glucose uptake occurs
directly in the SM tissue and thus immediately decreases H, and (2) the counteracting increase in EGP
occurs in the CS compartment immediately increasing G.

Next, we evaluate the predicted glucose-kinetics, that is how glucose moves from the CS
to the SM. The extraction fraction (ef) and the rate of glucose delivery (H,) are plotted vs
time in Figures 3.17 and 3.18.

The extraction fraction (ef) is defined as

o f = Gorteriat = Guenous 150 (3.78)

Garterial
ef is a measure of how effectively a substance in the CS is delivered to the tissue (in this case
the SM). The ef of glucose can be directly measured using arteriovenous catheterization. A
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high ef means that a large amount of glucose is removed from the CS on each pass through
the tissue.

In our study ef is not measured directly. Instead, we will use the developed model to
express ef as a derived quantity. ef can be written in terms of G and H by approximating
that Gureriae = G and Genous = gale- Using Equation 3.27 we can estimate gy4|. and plug
the solution into Equation 3.78 to get

G
—PSj

(1—¢ @ )G~ H)
G

We can estimate ef by simply substituting in our predictions for G and H. The resulting
ef is plotted vs. time in Figure 3.17.

The glucose delivery rate H, is also not measured directly. However, it can also be
estimated from the model. We do this by multiplying the total flow rate to the SM tissue

Viss@Q, by the predicted arteriovenous difference. Our derived estimate of Hgy is

ef = - 100. (3.79)

-ps§

Hy = VESQu(1 — e " )(G — H). (3.80)

H, is plotted in Figure 3.18.

Clearly, ef and Hy are related quantities; a larger ef typically leads to a larger Hg.
However, if ()4 significantly increases, this will lead to a lower extraction fraction due to less
time for exchange, but likely a higher H,. For this reason, ef can sometimes be a misleading
measure of glucose-kinetics. H4 provides a more direct quantification of glucose-kinetics.

Prior to the commencement of exercise, both groups exhibit very similar values of ef.
Initially ef is 3.5 %, consistent with direct measurements found in literature [45, p. 219].
Upon meal ingestion at ¢ = 0 [min], ef increases to just above 8% due to the substantial
increase in G — H. After the initial steep rise, ef decreases and then paradoxically increases
again, maxing out at about 7 %. This paradoxical rise is due to the slow decay of Raear,
which buoys G in the period between ¢t = 80 to 120 [min]. In this same period H continues
to drop, resulting in an increased G — H and thus an increased ef.

After the commencement of exercise, the dynamics of ef between the two groups sharply
diverge. In the resting group, ef wobbles but slowly decays back to 4%. In the exercising
group, ef significantly drops during the exercise period to less than 2%. This significant
drop is is explained by a decrease in the exchange time. This is because of a drastically
increased flow rate, increasing 10-fold during exercise periods. After exercise ends, the ef
drastically increases again to nearly 9%. This peak is because Q)4 drops to basal rates and
G — H is still large. Over the next hour glucose in the SM is replenished and G — H returns
to normal levels, providing an extraction fraction of 3.5% by t = 360 [min].

The corresponding glucose delivery rate Hy is plotted in Figure 3.18. Prior to exercise,
Hq shows a very similar pattern to ef in both groups. Initially, 7, is 45 [mg/min], the basal
glucose uptake rate in SM. After meal ingestion H, rises to about 200 [mg/min] in both
groups.
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Figure 3.17: Extraction fraction (ef) is predicted to increase following a meal and drop significantly during
exercise. The figure shows predicted extraction fraction vs. time for a resting subject (left) and an exercising
subject (right). The grey bars indicate the four 15 minute exercise periods. In both groups the extraction
fraction at basal is approximately 3.5 %, consistent with measurement [45, p. 219]. Upon meal ingestion,
the extraction fraction increases to nearly 8 % due to the the increased G — H gradient. In the exercising
group, the extraction fraction drops considerably during exercise due to the sharply increased blood flow
(Qq increases nearly 10-fold during exercise). This is because the exchange time is decreased 10-fold This
predicted drop in the extraction fraction is in contradiction to measurements [40] and may represent a
weakness of the model to accurately predict glucose exchange between the CS and SM compartments.

In the moment before exercise commences (t = 120 [min]) H,4 is about 150 [mg/min] in
both groups. After exercise begins, H, approximately doubles, maxing out at 350 [mg/min].
By the second bout of exercise (second spike), Hy has slightly decreased to about 275
[mg/min]. This slight decrease occurs because uptake is assumed proportional to H, which
considerably drops during exercise. As soon as exercise ceases Hy drops because () drops.
Over the next 50 minutes, Hy further decreases because glucose demand in the SM muscle
decreases and G — H returns to basal levels.

In Figure 3.19, the relationship between H,; and extraction fraction ef is plotted over
the period ¢ = 0 to 360 [min] with ¢ as a parameter. During rest (blue line), when flow Qg
and permeability surface area PS$ are assumed fixed, an increase in ef and H, is caused
by an increase in G — H. The exercising group (orange line) follows the same path, until
exercise commences, causing an upward movement to the left. During exercise, both )4 and
PS¢ increase to facilitate glucose delivery H,4. However, the significant increase in Hy does
not keep up with demand, and causes H to drop, so G — H increases until H, is equal to
demand. During this period, ef decreases significantly because an increase in (), decreases
the capillary exchange time.

Figure 3.20 shows the relative magnitude of different glucose input and uptake mech-
anisms vs. time. Measured inputs Ra,,.q and EGP are plotted as positive dotted lines.
Predicted uptake RGUcs,, and RGUgsa,, are plotted as negative solid lines.

Prior to exercise, the corresponding input and uptake mechanism for each group follow
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Figure 3.18: Glucose delivery rate (Hy) significantly increases during exercise. The figure plots predicted
Hgq vs. time for a resting subject (left) and an exercising subject (right). The grey bars indicate the four 15
minute exercise periods. Initially H4 = 45 [mg/min], equal to the basal SM uptake rate. In both groups upon
meal ingestion, H4 rapidly increases to nearly 200 [mg/min]. In the resting group, Hq slowly drops back
to basal levels because the G-H gradient decreases after the initial rapid rise. In the exercising group Hq
sharply increases, peaking at 350 [mg/min]. This significant increase is attributed to increases in: capillary
surface area (tissue recruitment), tissue perfusion rate (higher blood flow), and an enhanced G — H gradient
caused by a significant increase in glucose demand in exercising muscle. The plateau value of H, during
exercise occurs when the delivery rate equals glucose demand.

similar trajectories. Raeq rapidly rises from 0 [mg/min| to nearly 500 [mg/min| after meal
consumption at ¢ = 0 [min] and then slowly decreases back to 0. EGP is initially equal to
155 [mg/min|, which at steady state is equal and opposite to the RGUror (RGUcsyor +
RGUsniyr)- Upon ingestion of the meal, EGP is rapidly suppressed and reaches a nadir
of nearly 0 [mg/min| after about an hour. Simultaneously RGUcs,.,, increases significantly
due to RGUcs,,, (not shown). RGUgpi,, also increases in response to the meal, although
it is lagged in comparison to RGUcs,,- This is because RGUgnz,,, is proportional to S
which is significantly delayed because of the slow diffusion of insulin into the SM.

In the time period after exercise commences, Ra,,.q; is essentially unchanged between the
two groups. However, EG P, initially suppressed, is significantly enhanced in the exercising
group, increasing from nearly 0 to 210 [mg/min] in an hour. This enhancement is not
seen in the resting group. This rise of FGP in the exercising group compensates for the
significant exercised-induced increase in RGUgyy,,,., Shown as negative spikes. These spikes
in RGUgpr,, have a peak magnitude of 600 [mg/min| and eventually decrease to about 300
[mg/min|. In both groups, RGUcs,, is initially the primary contributor to total uptake.
The resting group continues this trend. However in the exercising group RGUcs,,, Which
is dependent on G, rapidly decreases to basal levels due to the drop of G that results from
exercise.

In Table 3.3 we have quantified the relative importance of each glucose input and uptake
mechanism. This was done by integrating each function over the period from from ¢t = 0 to
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Figure 3.19: The relationship between glucose delivery mass flow rate H, and extraction fraction ef over the
period t = 0 to 360 [min], ¢ is a parameter. During rest (blue line), when flow Q4 and permeability surface
area PSC? are assumed fixed, an increase in the ef causes a monotonic increase in Hy. In the exercising
group (orange line), both Q4 and PSdG increase due to increased blood perfusion and capillary recruitment.
Because of the significant increase in Q4 the exchange time is less, causing a decrease in ef (movement to

the top left). The prediction that ef decreases during exercise is not consistent with previous observations
[40].

360 [min] to find the AUC.

Raror in the exercising group is 9 [g] more than in the resting group. This is entirely
due to the increased EGP that resulted from exercise (29.7 vs. 39.5 [g]). There was no
difference in meal size, S0 Ra,eq is nearly identical in the two groups.

Proportionally, more uptake occurred in the CS (RGUcs,.,) in the resting group than in
the exercising group (66.7 vs 55.8 %). This is related to the prediction that glucose uptake by
the liver RGUgyy,,, is significantly higher in the resting group than the exercising group, 31.4
and 26.4 [g], respectively. Essentially, during rest, uptake preferentially occurs directly from
the CS by the liver [119], and during exercise uptake preferentially occurs in the periphery.

Over the entire exercise period 17.6 [g] of glucose uptake occurred in the SM due to
exercise. The AUC of RGUg\y,,, is noticeably insensitive to exercise with a difference of only
a few grams.

Finally, we quantified splanchnic (RGU,) and extrasplanchnic (RGU,sy) glucose up-
take; RGUyy = RGUgs,,, + rgGut and RGU.sy = RGUror — RGUgy. The model predicts
that splanchnic glucose uptake is less important than extrasplanchnic glucose uptake when
exercise is involved, 38 % in the resting group and 29.8 % in the exercising group.

3.3.1 EGP Prediction Validation

Although the previous simulation utilized direct triple-tracer measurements of EGP, we
wanted to demonstrate the ability of our EG P model to predict the measured EGP. Figure
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Figure 3.20: Glucose production and uptake vs. time for a resting subject (left) and an exercising subject
(right). Measured glucose inputs are shown as positive dotted lines. Glucose uptake is shown as negative solid
lines. The grey bars indicate the four 15 minute exercise periods. Prior to exercise the corresponding input
and uptake mechanisms for each group are similar. After exercise commences at ¢ = 120, the trajectories
of each group begin to deviate. Although exercise does not seem to significantly affect Rammeq;, FGP is
significantly affected. Both are nearly 0 at ¢ = 120 [min], but exercise increases EGP to 210 [mg/min] in
about an hour. This increase in EGP counteracts the significant exercise-induced increase in the rate of
glucose uptake in skeletal muscle (RGUgpz,., ), Preventing hypoglycemia.

3.21 shows predicted EGP vs. measured EGP. Remember that the EGP model was identi-
fied on independent data taken from [35, 39], and there was no curve fitting done to obtain
the predictions shown in Figure 3.21.

The EGP predictions match very well with the data, with a slight overestimation of the
suppression effect - the predictions are slightly lower than the measurements indicate. In the
exercising case, the magnitude of the EG P response is almost the same as the data, however
there is a slight time-lag of about 25 minutes.
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Figure 3.21: EGP response to a mixed meal tolerance test. (top) EGP during exercise. (bottom) EGP with
exercise periods from minute 120 to minute 195. Grey region represents exercise period. Notice the strong
agreement between the model EGP (which was identified from independent data) and EGPjutq.

3.4 Discussion

We have developed a model of postprandial glucose metabolism with exercise and have
demonstrated the model on human data from two groups, one resting in the period following
meal ingestion, and one exercising for 75 minutes in the period following meal ingestion.
The three main effects that exercise has on glucose metabolism are included in the model:
(1) changes to EGP, (2) changes in the SM rate of glucose uptake and (3) changes in
glucose-kinetics.

EGP is known to be an important factor in maintaining glucose at sufficient concentra-
tions during exercise, increasing 2-fold over basal levels during prolonged exercise [35]. We
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Table 3.3: Individual glucose uptake contri-
butions

AUC* [¢g] % Total*

Group rest  exer rest  exer

Measured Inputs *

Raror 98.4 107.0 100 100
Rameal 68.7 67.5 69.8 63.1
EGP 29.7  39.5 30.2  36.9

Predicted Uptake *

RGUroT 98.4 108.7 100 100
RGUcS o1 65.6  60.6 66.7 55.8

RGUcs,,, 314 264 319 243
RGUcsy,, 342 342 34.8 315
RGUs M or 32.8 48.1 33.3 44.2
RGUsw,,,, 32.8 305 33.3 28
RGUsr,,, 0 176 0 16.2
RGU,p T 373 324 380 298
RGUesp ¥ 61.0 763 620 702

" All measures are taken from t = 0 to 360 [min]

.* Indentations are subsets

! Splanchnic uptake: RGUs, = RGUcgs,,, + T’Eut

i Extrasplanchnic uptake: RGU,sp = RGUroT —
RGUgp

have accounted for this significant infusion of glucose by directly including measurements of
EGP taken during exercise (Figure 3.6). These EGP measurements, in addition to direct
measurements of Ra,,.q allow us to directly account for all of the glucose input into the sys-
tem, without the need for modeling these terms. The inclusion of these measurements into
our model of glucose metabolism represent a significant advantage over previous attempts
to develop models of glucose metabolism during exercise [58, 64, 65]. As an additional con-
tribution, a model of EGP was developed, but the work in this chapter did not include the
EGP model.

Changes in SM glucose uptake during exercise were included in the model by developing
a phenomenological model that relates the rate of glucose uptake to exercise intensity F
(Equation 3.64). This model was identified by aggregating data from various studies that
measure directly the peripheral glucose uptake during exercise (See Figure 3.8) via arteriove-
nous catheterization. The inclusion of this uptake model allows us to evaluate how enhanced
glucose uptake during exercise impacts G.

Changes in glucose-kinetics were included by developing a microscale model of mass-
transfer in capillaries. This predicted glucose delivery rate kS (Equation 3.65 and Figure
3.13) in the delivering capillary bed and depends on the tissue perfusion rate Q4 and the
capillary bed permeability surface area to glucose PSY.

Model Validation. Overall, model predictions of G agree well with average patient data
taken from experiments on a group of 12 resting patients and a separate group of 12 exercising
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patients (Figure 3.16).

In the resting group, the peak predicted G is almost identical to the peak measured Ggqyq.
During the decay period, G falls back to basal levels at a rate slightly slower than measured.
This can potentially be be attributed to measurement error in Ra,,.q;, Which has spurious
oscillations in this same time frame (Figure 3.6). This may be due to non-steady state specific
activity (SA) associated with the triple-tracer methodology [135]. For the exercising group,
peak G is nearly identical to Ggu,. Shortly after exercise commences, GG precipitously drops
to 70 [mg/dL] in less than 10 minutes. This drop is almost perfectly aligned with Ggu, and
indicates that the model gives reasonable predictions of glucose metabolism during exercise.
As a result of an increase in FGP, G reaches a new steady state, maintaining around 70
[mg/dL]. After the cessation of exercise, G once again returns close to basal levels. Soon
after exercise ends FG P drops below basal production and the predicted G drops, then stays
below G gq1e. This disagreement between prediction and data may be because measured EG P
is underestimated in the time frame following exercise.

Though on the surface the predictions seem to match the data, the agreement needs
further validation. This is because as with all models that include significant uncertainty,
some adjustments were made to facilitate comparison.

First, original parameters for the liver glucose uptake model adapted from Sorensen [64]
predicted liver uptake that was too high. To correct for this rf} was slightly decreased,
down to 15 [mg/min| from the accepted value of 20 [mg/min|. This effectively reduced the
predicted liver glucose uptake so that total splanchnic uptake was in agreement with the
55%-60% of meal ingestion measured by Felig [119] and Defronzo [119].

Second, it is possible that moderate measurement error exists for EFGP and Ra,,eq. Di-
rectly measuring glucose fluxes is a painstaking and laborious process [135], and although
significant care is taken to ensure the measurements are as accurate as possible, the method-
ology is still error prone, especially during rapid changes in glucose concentration. For this
reason, we have adjusted measurements for FGP by forcing the basal value of EGP to be
155 [mg/min], a value equal and opposite to basal RGUror. Rameq was also adjusted so
that its AUC is equal to 90% of the total glucose ingested, consistent with the early findings
of Radziuk [131].

The derived EGP model (Equation 3.71 and 3.72) was partially validated in Figure 3.21.
The predictions slightly overestimate the suppression effect of G and S and there is a minor
lag in the effect of exercise on EGP, but overall the model shows good agreement vs. data.
This model was not incorporated into the results in this Chapter, but it will be utilized in
subsequent chapters.

Finally, it must be mentioned that all comparisons were made for an average patient
and hence no effort was made to include any interpatient variability. It is expected that
interpatient variability is significant, and that exercise may affect one individual to a different
magnitude than another, especially in the cases of insulin-resistance.

Model Insights. The model provides several insights into the physiology of glucose-
kinetics, and metabolism.
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First, EGP provides needed glucose during exercise. Figure 3.20 shows that following
the meal, EGP is suppressed in both groups. In the resting group, EG P slowly rises back to
basal levels over several hours. In the exercising group, EG P sharply increases after exercise
commences, reaching a maximum of 210 [mg/min|. In this same time period, Rameq is
about 200 [mg/min|. Summing the two, there is a total of 410 [mg/min] of glucose input
during exercise, which is equal and opposite to RGUror. EGP provides over 50% of the
glucose required to prevent hypoglycemia. Previous studies have shown that in a fasting state
(Ramea=0 [mg/min]) EGP rises as high as 400-500 [mg/min| [35] to prevent hypoglycemia.
This is consistent with our results that show that a total of 410 [mg/min| is required to
prevent hypoglycemia during exercise. In diabetic patients, a robust FG P response during
exercise may not occur because of prolonged hyperinsulinemia. This may help explain why
persons with T1D often experience hypoglycemia during exercise.

Another insight about FGP that can be gathered from the model predictions is how
it effectively acts as a ‘safety net’ that prevents hypoglycemia in the CS while allowing
hypoglycemia in the SM. Figure 3.16 shows that during exercise G drops to 70 [mg/dL] (a
low but safe level of glucose) and H drops all the way to 40 [mg/dL]. This occurs because
EGP enters directly into the CS, while exercise-induced uptake occurs locally in the SM.
The fact that we have two compartments with relatively slow glucose exchange rates provides
a moderating influence on G, allowing the CS to maintain G at a high enough concentration
to provide glucose to the most demanding and critical organ, the brain.

We also gain some insight about glucose-kinetics (i.e. the transfer of glucose between
compartments). We evaluate the predicted glucose-kinetics by analyzing the exercise-induced
changes in kS, Hg, and ef. Glucose delivery rate kS increases 2-fold during exercise (Figure
3.13), however this predicted increase does not keep up with demand during exercise. As a
result, H decreases to about 40 [mg/dL] (Figure 3.16) before the G — H gradient is sufficient
to increase H,4 enough to keep up with a demand of nearly 300 [mg/min] (Figure 3.18).
During the same time, ef drops to only 2% (Figure 3.17), despite the 2-fold increase in
kG from capillary recruitment. This is because the 10-fold increase in Qg reduces the time
available for glucose exchange in capillary beds, reducing ef.

Figure 3.19 shows how Hy and ef are related during rest and exercise. At rest, ef
and Hy increase together, because they both only depend on G — H. During exercise, the
dynamics change because increases in PSS and @, increase the glucose delivery rate kS.
Naturally, this causes an increase in H, however e f falls because the capillary exchange time
is significantly reduced.

Exercise is predicted to have significant effects on the relative contributions of each mech-
anism to total glucose input and metabolism. We’ve examined this by calculating the AUC
of each mechanism over the entire postprandial period (Table 3.3). The model predicts the
following: (1) Enhanced EGP in the exercising group is a significant contribution to total
glucose input (410 [g] over the resting group). Considering that increased EGP is the mech-
anism responsible for preventing hypoglycemia during exercise, this is not surprising. (2) A
75 minute exercise period significantly increases glucose uptake (+17 [g]). (3) Glucose uptake
due to insulin in the SM tissue is noticeably insensitive to exercise (only a 2 [g] difference
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from the resting group to the exercising group). This may be due to insulin-kinetics only be-
ing marginally affected by exercise in healthy patients with functioning -cells, whose insulin
production is scaled back during exercise (see Figure 3.15). However, it is worth noting that
we are not modeling the synergistic effects of insulin and exercise on uptake, which some have
found may be significant [40]. Thus our predictions of RGUgyy,,, may be an underestimate.
(4) Glucose uptake by the liver is lower in the exercising group (-5 [g]). This is the result
of two effects. The primary effect is that G rapidly falls during exercise, reducing RGUcg,,,
which depends significantly on G. The secondary effect is that [ and S fall during exercise,
which decreases insulin-action on glucose uptake in the liver. (5) The last prediction is that
splanchnic uptake as a proportion of total uptake is lower in the exercising group (- 8 %).
This is consistent with the previous prediction of decreased liver uptake during exercise, as
the liver is the primary site of splanchnic uptake.

The authors must stress that each of these predictions, while consistent with direct
observations from literature, are speculative. A more accurate model structure and improved
parameter values may change predictions and paint a different picture of postprandial glucose
metabolism during exercise.

Modeling and Experimental Shortcomings. Results also indicate some significant mod-
eling weaknesses that need to be addressed in order to validate the model and improve
accuracy. Many of these modeling weaknesses are borne from a lack of experimental data
that can be used to measure parameters and validate certain model expressions.

The significant drop of H to 40 [mg/dL] may not be an accurate prediction. This can be
explained by two potential modeling weaknesses. The first is that our derived model for solute
exchange in capillary beds (Equation 3.65) does not accurately predict glucose transport
because of both unmodeled transport phenomena such as microfiltration and potentially
active transport, inaccurate assumptions such a capillary homogeneity. The second reason
for inaccurate kinetic predictions is the uncertainty in the permeability surface area PSS.

These inaccuracies in glucose transport are apparent because even though model predic-
tions during fasting and resting agree with observation (ef =~ 3-4 %), ef during exercise
is predicted to drop to 2%, which is inconsistent with direct measurements of ef showing
an increase to 8% across the leg during exercise [39, 40]. Various prominent researchers
such as Renkin [38] have proposed that capillary bed heterogeneity could be the culprit
in the inability of homogeneous capillary exchange models to accurately capture observed
behaviors.

Measurements of capillary permeability to glucose vary significantly, from 0.6-2.0
[ml,/100g;;ss/min], with some estimates as high as 5.0 [ml,/100g;;ss/min|. The difficulty
in consistently and accurately quantifying PSY stems from measurement techniques, that
are model-dependent, and confounding factors, such as hyperglycemia, hyperinsulinemia,
stress, and whether the patient is in a fasting or postprandial state. Any of these factors can
significantly alter PSY. This may explain why the G — H gradient is larger than would be
expected throughout the postprandial period. Future work should include the dependence
of PSS on fasting/postprandial state, physiological hyperglycemia, and hyperinsulinemia.

Future work should seek to improve the capillary transport model (Equation 3.65) by
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either adapting a fully phenomenological model for capillary exchange, or by attempting
to improve the model by including more unmodeled phenomenon. Specifically, more mi-
crocirculation experiments need to be done to obtain a better estimate of PSY. This may
be achieved by performing arteriovenous catheterization studies during exercise of varying
intensities, while simultaneously measuring glucose in the SM ISF and tissue perfusion rate.

Another aspect of the model that warrants further consideration is the lumping of all
active SM, resting SM, and SC tissue into one compartment. In the current model the pre-
dictions for H represent the average concentration in all three of these compartments. While
this simplifies the model structure and reduces parameters, it also ignores some potentially
important phenomena. First, active SM and resting SM have been shown to have different
ef during exercise [35]. This has been explained by a redistribution of blood flow to prioritize
active muscle over resting muscle. Along the same lines, SC tissue during exercise exhibits
different glucose-kinetics than that of SM muscle. Ideally, each of these tissue groups should
be represented by an independent compartment. It is expected that if these compartments
were added, the glucose concentration in active SM would be lower than in the resting SM
and SC tissues because of local glucose uptake in active SM. Future work should address
whether the addition of these three compartments would improve model predictions.

Also, the model for peripheral glucose uptake RGUsy,,,. was developed for low and
moderate intensity leg exercise. For other types of exercise, as well as high intensity exercise,
the model may be inaccurate. We have also assumed that uptake RGUgyy, . is not a saturable
process. At glucose concentrations greater than 300 [mg/dL] this assumption may be invalid
(90, 124]. Also, RGUgy,,, did not include any synergistic effects of glucose and exercise,
meaning that insulin-induced uptake and exercise-induced uptake are considered independent
and additive processes. Last, the exercise uptake model did not include a significant time-lag,
meaning that exercise-induced glucose uptake occurs immediately at the onset of exercise.
Another missing piece is that RGUgyy,,. does not include uptake hysteresis (i.e. time
dependent insulin resistance). Castillo and Bergman [70] did observe this phenomenon, but
again limited data and the desire for model parsimony led us to not to include this effect.

The liver glucose uptake model RGUcg,,, was adapted from Sorensen [64] and does not
include the effects of exercise. It is clear that glucose uptake in the liver is a significant con-
tributor to total postprandial glucose uptake during rest [119, 120, 131], but less is understood
about liver glucose uptake during exercise. The lack of a validated model of RGUcsg,,, during
exercise is a significant weakness of the present work.

The present model was only validated on healthy patients with fully functional S-cells.
To accurately represent a type 1 diabetic patient the model needs to be expanded to include a
model of insulin resistance, FGP in a diabetic, and subcutaneous insulin infusion. The latter
has already been developed in Chapter 2, which models insulin-kinetics during exercise. A
full coupled model of insulin-glucose dynamics will be presented in Chapter 4.

Finally, the last shortcoming of the model is that there is significant parameter un-
certainty, which is the case in any biological model. This shortcoming is directly related to
experimental shortcomings, which cannot directly quantify certain parameters, especially for
individual patients, because of measurement error. To capture the interpatient variability,
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much more data needs to be taken under various exercising conditions.

Model Applications. Despite the limitations and uncertainty of the model, the predictions
are reasonable during rest and exercise. An understanding of how glucose concentrations
change during exercise can provide insight into optimal control tuning. Additionally, the
inclusion of a model of glucose kinetics between the CS and SM provides insight into how
interstitial fluid glucose concentrations change postprandially and during exercise. This
understanding can be used to improve continuous glucose monitors, which sample glucose
from the interstitial fluid.

One of the most difficult and crucial conditions to control in T1D patients is when exercise
occurs in the postprandial state. This is because insulin-on-board is high, which causes EG P
to be suppressed and insulin-induced glucose uptake to be high. Because of this, the addition
of exercise can quickly push a person into hypoglycemia. This model provides a means to
understand the interplay between EG P, liver uptake, peripheral uptake, and exercise induced
uptake, and how their combined effects can lead to dangerous hypoglycemia.

The most obvious application of this work is the use of the model in an model predictive
control algorithm in the artificial pancreas. Because exercise remains a significant hurdle, a
model that can accurately predict glucose concentrations during exercise will greatly improve
control.

3.5 Conclusion

A multiscale model was developed to predict postprandial glucose-dynamics during exercise.
For the first time we have included the effects of capillary recruitment on glucose-dynamics.
We have also developed and validated a novel model of FGP during exercise. Overall,
the glucose-dynamics model agrees reasonably well with an average healthy (non-diabetic)
resting and exercising subject. A main advantage of the model was the inclusion of direct
measurements of glucose production, eliminating the need to model these complex phenom-
ena. Instead, the focus was on modeling the various uptake terms and the glucose-kinetics
between the circulatory system and the skeletal muscle. It was found that a homogeneous
model of glucose delivery provided predictions of the extraction fraction that were too low,
despite the inclusion of enhanced capillary surface area associated with tissue recruitment.
The presented model provides a framework for developing a more accurate model of glucose
dynamics. This model can eventually be used in model predictive control algorithms in the
artificial pancreas.
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Chapter 4

Coupling the Insulin-GGlucose Models
and Validation on a Type 1 Diabetic
Subject

Chapter Overview

Exercise Induces Acute Changes to Insulin-Glucose Kinetics
— Direct Effect ---# Indirect Effect
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Figure 4.1: The focus of this chapter will be on coupling the insulin subsystem model to the glucose subsystem
model, and then validating the model for a T1D subject by comparing model outputs with measurements.
The solid red lines are the direct effects of exercise and the dotted-lines are the indirect effects that result
from the coupling of the models.
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The focus of this chapter will be on coupling the insulin-kinetics model to the glucose-
dynamics model, and then validating the coupled model for a T1D subject by comparing
model outputs with measurements. The insulin-kinetics model derived in Chapter 2 was
derived for a subject with T1D. However, the glucose-dynamics model derived in Chapter 3
was for a healthy non-diabetic subject. In coupling the two models we must make appropriate
parameter adjustments so that the glucose-dynamics model can be applied to a subject with
T1D.

4.1 Model Coupling for Subject with Type 1 Diabetes

The final insulin model equations are taken from Chapter 2 (Equations 2.50-2.61). The final
glucose model equations are taken from Chapter 3 (Equations 3.53-3.73). Coupling the two
models is straightforward. In the original glucose model we assumed that I(t) was given as
a measured input. Now, we instead predict I using the insulin model. The coupled system
is summarized below.

dc

o = —ka(B)-C+U) (4.1)
1 . tiss 1.1 X i
d_H(E)-C_VEIME)-U=8) , )
dt Vig Vi N
as _ VESKYE)-(1=S)
T - : 4.
dt v, Ty S (4.3)
G Vgigk§(E)- (G - H)  RGUcs,, (G, M(S)) + RGUcs,,
dt V& VS,
Rapmea(t) + EGP(G, S, L(E
 Finealt) + EGP(G, 5, L(E) "
‘ Vis
dt Vs V&, :
dM 1 S
— = 2.0 - tanh(0.55— 4.
i — 0 - tanh(0 555b) (4.6)
dL 1
T T 4.
dt  Tpep (=L+nE) (4.7)

U is given as [pU/min]. C has units of [pU]. Insulin concentrations I and S have units
[#U/mL]. Glucose concentrations G and H have units [mg/dL]. Insulin-action on liver glucose
uptake M and exercise-action on endogenous glucose production L are unitless.
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Kinetic functions that govern the movement of between compartments are defined as

—-ps!

ka(B) = Qu(1—e @b ) (4.8)
B = QU — e ) (49)
Qu(E) = (1= 1) - (Quarees + AoE) (4.10)
Qa(E) = (1= 1) - (Qayor + MaE) (4.11)

PSHE)=PS! (14 R.tanh(vE)) (4.12)
PS}(E) = PS) - (14 Rgtanh(vE)) (4.13)
KB = Qul1 — e ) (4.1)
Qu(E) = Qa e + AaE (4.15)
PSY(E) = PSS, - (1+ Rytanh(vE)). (4.16)

The rates of glucose uptake (RGU) and endogenous glucose production (EGP) functions
are defined as

RGUcs,,, = Ty in + Theart + rkGidney + l"gGut (4.17)
RGUes,, = 1, (5.66 + 5.66 - tanh(2.44(G£b 148)))M (4.18)
RGUsw,,, = Tngs( S Sb) + Tpy (4.19)
RGUsw,,, = Top... g E (4.20)

EGP - EGPb%%(l L L), (4.21)

The initial conditions are calculated by solving the following set of linear equations, which
are assumed at resting (F = 0), steady-state, and basal concentrations. Gy and is a free
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parameter that can be set to any set-point. EGP, is set to 155 [mg/min].

0= —kL(0)C, +U(t,) (4.22)
kI(O)Co éﬁké(o) (IO - So) I
0= -2 — —rbg. - 1, (4.23)
Vs Vs
tissk,l I —
o — Vsii dm)j( 0= 50) _ e - So (4.24)
VSM
0=—-G,+ G, (4.25)
0= —H,+G,— b (4.26)
T VERRG |
0=—M,+1 (4.27)
0= L, (4.28)

4.1.1 Parameter Adjustments for Subject with Type 1 Diabetes

The values of the parameters of the model are shown in Table 4.1. All the glucose model
parameters reported in Chapter 3 are specific to healthy patients. In order to use the model
to simulate a T1D patient, certain parameters need to be adjusted. All parameters are kept
the same except for r& | rgGut and rg,, . These three parameters will be adjusted to account
for the observed insulin resistance that was found in T1D subjects [136].

We will assume that in a T1D subject, the constant glucose metabolic rates r§ . v
Iidney» and 157 are unchanged between a T1D and healthy subject. These rates, given as
[mg/min], do not depend on glucose concentration nor insulin concentration because they
are mainly determined by the underlying metabolic demands of the tissue. Similarly, rng
is be kept the same, as it is a derived parameter (see Chapter 3.2.1) that is assumed to be
dependent on tissue demands during exercise.

The remaining three glucose metabolic rate parameters are rf;,, r%, and 1§, . Insulin
resistance in T1D subjects has been documented by DeFronzo [136]. The clearance rate of
glucose in T1D subjects was found to be 61% less than in healthy subjects. We will thus
adjust parameters 1§, and rngS by multiplying them by 3/8. For our model we still would
like to keep the total body RGU at 155 [mg/min|. Hence 1§, was adjusted upward from
16.6 to 25.8 [mg/min] to account for the drop in r{,. In summary, the three parameters that
change from a healthy (1) to a T1D subject (IP!) are

rﬁvw] =3/8- rﬁv[H] [mg/min)] (4.29)
rfut[D] = rgGut[H] + 9.2 [mg/min] (4.30)
rgj\/[lgs =3/8- rgﬂ}i]s [mg/min per pU/mL]. (4.31)

The volume parameters, VCGSN, VSGMN ,Vgﬁij , are physical parameters that only depend
on the size of the subject being studied, and thus will not change. We will further assume
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that the T1D patient is well controlled, and without vascular complications. Hence vascular
parameters () and P.S will be kept the same.

The remaining parameters characterize the liver. 7, will be assumed the same, as we
lack data on the time-delay of insulin-action RGUcsg,,, in T1D subjects. Last, we assume
that exercise effects on FGP are unaltered in T1D subjects and so Tegp and 1 will be kept
the same.

4.2 Validation Tests on T1D Subject

We now perform validation testing to evaluate the accuracy of the coupled T1D insulin-
glucose model. We will perform two validation tests, one on an average resting T1D subject
(T1DE) and one on an average exercising T1D subject (T1DE). The T1D clinical data was
gathered at the Mayo Clinic in Rochester MN. Detailed protocol information can be found in
Chapter 2.2.4. The parameters used in the two tests are listed in Table 4.1. An illustration
of the two protocols is shown in Figure 4.2.

0 n|1in 360 min

T Resting Throughout T
Insulin Meal Test
Bolus Ingestion End
0 min 120 min 360 min
Insulin Meal Four 15 min Test
Bolus Ingestion Exercise Periods End

Figure 4.2: Timeline for the mixed-meal tolerance test (MMTT) T1D resting protocol (T1DR, top) and the
T1D exercising protocol (T1DR, bottom). At time 0 the subjects in TIDR ingested a 50 [g] CHO mixed-meal
and the subjects in T1DE ingested 75 [g]. The insulin bolus was infused through an insulin pump at time 0,
with bolus size calculated according to the subject’s normal insulin-to-carb ratio. The T1DR group rested
throughout the entire study period. The T1DE group exercised at 50% VO0s, .. for four 15 minute exercise
periods, starting at minute 120.



* Multiplied by BW prior to being used in model. See demographics for BW

 Derived from total clearance rate as measured in specified sources

¥ Parameter is derived by fitting to microvascular blood volume data from specified sources
§ Parameter is derived by fitting to data from specified sources

I' Assumed to be the same as PSé

9 Parameter for type 1 diabetic subject. See Chapter 3 for healthy patient parameter.

rest

T
Table 4.1: Parameters for the insulin-kinetics model (top) and glucose-dynamics model (bottom). - %
=l
Parameter  Description Units Value  Source % ;mU
V(,I* Sy Normalized volume of distribution of insulin in circulatory system  dL/kgpw 0.5 *  [44, 104] = e
v My Normalized volume of distribution of insulin in skeletal muscle dL/kgpw 1.2~ (44, 64, 104] =
Vé’AZSN Normalized volume of tissue in skeletal muscle domain mL/kgpw 540 *  [83] E 8
résN Normalized clearance rate of insulin in circulatory system 1/min 0.32 [105-107]t > -
r{S.MN Normalized clearance rate of insulin in skeletal muscle 1/min 0.02 [105-107]t g 3
Qarest Tissue perfusion rate absorbing (SC) tissue at rest mL;,/mLy;ss /min 0.028  [83] — :
Qdyest Tissue perfusion rate in delivering (SM) tissue at rest mLp/mLy;ss /min 0.038  [83] =z
Hematocrit percentage in blood 1 0.4 (104] Q D
Aa Slope relating @ in absorbing (SC) tissue to exercise mLp/mLy;ss /min 0.071  [71, 86-88] N 3
Ad Slope relating @ in delivering (SM) tissue to exercise mL;,/mLy;ss /min 1.1 (84] bq:l s
PSéTES . Permeability surface area to insulin in absorbing (SC) capillaries mLy/mLy;ss /min 0.005 I S
PS; . Permeability surface area to insulin in delivering (SM) capillaries mLp/mLy;ss /min 0.005  [101, 102] o —
Ra Capillary recruitment factor in absorbing (SC) tissue 1 0.40 (96, 97] 1 Q =z
Ry Capillary recruitment factor in delivering (SM) tissue 1 1.46 (92— 94} H Cé
5 Saturation coefficient for PS 1 10 [92-94] =
F—
Ty in Metabolic clearance rate of glucose in the brain mg/min 71 [45, p. 219] |2
T ot Metabolic clearance rate of glucose in the heart mg/min 3.7 [45, p. 219] o)
T idney Metabolic clearance rate of glucose in the kidneys mg/min 3.7 [45, p. 219] =~
rg"ut Metabolic clearance rate of glucose in the gut mg/min 25.87  [45, p. 219][136] <
rge”. Basal metabolic clearance rate of glucose in the peripheral tissue mg/min 45.2 [45, p. 219] 8
T, Basal metabolic clearance rate of glucose in the liver mg/min 5.6 [45, p. 219][136] wn
TSN Insulin sensitivity of glucose clearance in skeletal muscle mg/min per pU/mL 1.9 [70] =
TS Mo Exercise sensitivity of glucose clearance in skeletal muscle mg/min per E 860 (35, 39, 40, 129, 130]% z
VE “sn Normalized volume of distribution of glucose in circulatory system  mL/kg 0.7 * (64] (@)
VSMN Normalized volume of distribution of glucose in skeletal muscle mL/kg 0.96 * [64] O
Vé"}(}i\, Normalized volume of tissue in skeletal muscle mL/kg 540 *  [83] g
Tliv Time lag of insulin action of liver glucose uptake min 25 (64] n
PSgest Capillary permeability surface area to glucose during rest mL;, /mLy;ss /min 0.01 (80, 101, 102] D
TEGP Time lag of exercise action on endogenous glucose production min 20 [35, 39]§ =
n Maximum exercise action on endogenous glucose production 1 4 [35, 39 } )
=
=
o
S
=
)
=

8¢l
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4.2.1 Validation Test on a Resting T1D Subject

The T1DR protocol is illustrated in Figure 4.2. 17 T1D subjects underwent this protocol.
Each subject was given a 50 [g] carbohydrate (CHO) meal at time = 0 [min]| and took an
insulin bolus through their insulin-pump according to their normal insulin-carb ratio (the
dose averaged ~ 4 [U]). The subject then rested for the following 360 [min]. We simulate the
model using the average measured inputs U(t), Rameq(t), and E(t) = 0. The basal values
of glucose was taken from experiment G=151 [mg/dL]. EGP, was set to 155 [mg/min].

The predicted outputs I, G, and EGP are plotted in Figure 4.3, with the corresponding
measurements Iy.iq, Gaata, and EGPyaq.

The topmost frame in Figure 4.3 shows the insulin inputs U(t) and exercise intensity
E. The frame below shows the I predictions, which agree well with I, with a slight
underestimation. This underestimation is likely because the permeability of the capillary
bed to insulin, PS; , was underestimated. Also, I reaches its peak much earlier than I;4,.
This occurs because - as noted before - we did not model hexameric to dimeric/monomeric
dissociation, which would have accounted for the time-lag of insulin absorption. We also
notice that I prior to the bolus is slightly lower than the data indicates. This likely occurs
because the volume of distribution Vg is too large. For all our parameters we selected the
population-average values, and thus the selected value of VZg, may have been too low for
the T1DR cohort. A slight adjustment of parameters PS! and Vg would have increased
agreement between I and [;,,, however we wanted to avoid overfitting, and hence decided to
keep population-averaged parameter values. Additionally, notice that prior to time 0 small
insulin boluses are given, shown by small bumps in ¢. These bumps slightly raised I prior
to the main bolus. Some subjects provided these small boluses prior to their main bolus
in hopes of starting the test closer to euglycemia. This adversely affected the initial G and
EGP predictions, as will be explained.

Glucose predictions are shown in the third frame of Figure 4.3. The red region represents
hypoglycemia (< 70 [mg/dL]). Overall, agreement between G and Ggu, is reasonable and
indicates that the model appropriately captures the main aspects of the post-postprandial
glucose response. At the start of the test G falls slightly because of the reduction in EGP
(see the bottom frame of Figure 4.3) that results from the increase in I prior to time 0. This
reduction in FG P is a consequence of the model, and was not seen in the clinical data, which
may indicate that our EG P model is overly-sensitive to insulin. This causes G to start off at
a slightly lower concentration than G4,:,. Upon the meal ingestion, G rapidly rises and it is in
almost perfect agreement with Ggu,, but peaks at a slightly lower concentration, consistent
with the lower concentration to start. G then slowly returns back to basal levels around 150
[mg/dL] over the next few hours. Interestingly G guq does not return to basal, and plateaus
around 225 [mg/dL]. The plateau of G4, may be because of time-dependent changes in the
insulin sensitivity (SI) (rg,, ) which were not modeled. These time-dependent changes in
SI have been confirmed to exist by Castillo and Bergman [70]. If we were to include this
effect by decreasing rngS as the meal progresses, the equilibrium value of G would shift and
plateau in a manner similar to Gguq.
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Simulation of Average Resting T1D Subject

Inputs: Insulin Infusion Rate and Exercise Intensity
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Figure 4.3: Results of validation test on a resting T1D subject. (top) Inputs insulin infusion rate U and
exercise intensity E. (middle top) Insulin predictions. (middle bottom) Glucose predictions. (bottom)
Endogenous glucose production predictions. Overall agreement is good, with only small discrepancies.
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EGP predictions are shown in the bottom frame of Figure 4.3. Overall, the agreement
is strong. EGP is suppressed at nearly the same rate as EG Py, bottoms-out at the same
value, and rises at nearly the same rate. However, there is some spurious behavior during
the period prior to time 0. EGP is predicted to drop from 155 [mg/min] to 120 [mg/min]
(the early times where EGP=155 [mg/min] is not shown). We believe this occurs for one
of two reasons. First, £GPy, measurements were not captured prior to time 0, and they
may have in fact been higher than EGP at time 0, which would have altered the FGP,
value used in Equation 4.7. The other explanation is that our EGP model may be too
sensitive to small perturbations in insulin concentration. The EGP model predicted a drop
of 15% because S increased from 4.5 to 7.5 [¢U/mL]. In the real case the liver may only
respond to significant changes in insulin concentration and small changes may not trigger
suppression of glucose production. It may be possible to model EGP so it does not respond
to small perturbations in S, however it is not clear that the increased accuracy would offset
the additional mathematical complexity.

To gain some insight into the dynamics that govern G, we examine the individual con-
tributions of each mechanism of glucose production and uptake. Figure 4.4 plots the two
mechanisms of glucose production, Ra.. and EGP, and the glucose uptake in each com-
partment RGUcs,,, and RGUsn,or- RGUcs,p is comprised of the constant glucose sinks
of the brain, heart, gut, and kidney plus the glucose uptake by the liver RGUcs,,,. RGUgsnpor
is comprised of both insulin-dependent and exercise-dependent glucose uptake in the muscle.
Rameq 1s plotted as a dotted line because it is a measured input. The remaining lines are
solid because they are predictions.

After meal ingestion at time 0, Raneq (blue dotted line) rapidly spikes. This causes
the initial increase in GG seen in Figure 4.3. During this time, due to the rapid increase
in insulin and glucose concentration, EGP (red line) is rapidly suppressed. In the next
hour RGUcs,o, (vellow line) and RGUgar, o, (purple line) slowly increase. The increase
in RGUcs,., is due solely to liver uptake. At approximately minute 75, uptake exceeds
production, and glucose levels begin to decline. From the plot it is clear that the liver is the
main source of postprandial glucose uptake, skeletal muscle tissue is secondary.

4.2.2 Validation Test on Exercising T1D Subject

The protocol for the exercising group (T1DE) is illustrated in Figure 4.2. 12 T1D subjects
underwent this protocol and each ingested a 75 [g] CHO meal at time 0. As in the resting
group, subjects dosed insulin through their insulin-pump according to their normal insulin-
carb ratio. The dose for T1DE averaged = 6 [U], about 2 [U] more than TIDR. After meal
ingestion the subjects rested for 120 [min]. At minute 120, the subjects underwent four 15
minute 50% VO0,,,,. exercise bouts, with 5 minutes of rest between each bout. After exercise
ended at minute 195, the patient was instructed to rest for the remainder of the test, until
being released at minute 360.

We simulate the model using the average measured inputs taken on the 12 subjects
U(t), Ramea(t), and E(t). The basal values of glucose was taken from experiment G,=171
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Figure 4.4: The calculated individual contributions of each mechanism of glucose production and uptake for
the validation test on a resting T1D subject. Positive is production, negative is uptake. The dotted line for
Ra,eq; indicates an input.

mg/dL]. EGP, was set to 155 [mg/min|. The predicted outputs I, G, and EG P are plotted
in Figure 4.5, with the corresponding measurements 4,10, Gaata, and EGPyq. Note that
the EG Py, had significant error because of the difficultly of clamping the tracer-to-tracee
ratios in T1D patients during exercise [113]. For this reason, we have post-processed the
EG Py, using linear scaling. This provided more realistic EG P values, however it does not
fix non-steady state errors, and hence the EFG P, shown in Figure 4.5 should be regarded
with some skepticism.

The topmost frame in Figure 4.5 shows the insulin inputs U(t) and exercise intensity
E. The frame immediately below shows the predicted insulin concentrations I with exercise
periods indicated by grey regions. There is good agreement between I and I4,,. However,
as in the resting case shown in Figure 4.3, [ is an underestimate of /4., and peaks much
earlier. This can be explained by the same reasoning as before: PS! is likely underestimated
and we did not model hexameric dissociation. If these effects were included we anticipate
better agreement.

At minute 120 exercise commences causing capillary recruitment (see Chapter 2.2.2).
Due to the associated increase in capillary surface area the insulin absorption rate increases
by 45%. This causes I to increase by 30%, which is in almost perfect agreement with the
30% increase shown in I4,;,. This increase is maintained throughout the 15 minute exercise
period, with slight dips during the 5 minute resting periods due to capillary de-recruitment.
After exercise ends there is a rapid drop in both I and [,,, which stay nearly identical until
the end of the test.

The glucose predictions are shown in the third frame of Figure 4.5. The red region
represents hypoglycemia (< 70 [mg/dL]). The subject eats a meal at time 0, and glucose
rises to 350 [mg/dL]. Exercise commences at minute 120 and continues in four bouts until
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Simulation of Average Exercising T1D Subject

Inputs: Insulin Infusion Rate and Exercise Intensity
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Figure 4.5: Results of validation test on an exercising T1D subject. (top) Inputs insulin infusion rate U
and exercise intensity E. (middle top) Insulin predictions. (middle bottom) Glucose predictions. (bottom)
Endogenous glucose production predictions. Exercise periods are indicated by grey regions. Note that EGP
measurements had significant error, and were linearly scaled so that the basal level was 155 [mg/min].
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minute 195. In this period there is a significant drop in glucose. After exercise glucose levels
stabilize until the end of the study. Overall, agreement between model predictions of G and
Glaata 1 reasonable, however there are two significant discrepancies.

The first discrepancy is that the rise in G after the meal ingestion has a nearly 30
minute lag compared to Ggu,. This lag can likely be explained by measurement error in
Rameqr- It is known that measurement of Ra,,., using isotopic tracers is unreliable during
the initial glucose rise following a meal [135] because the rapidly changing glucose levels make
it nearly impossible to ensure a stable tracer-to-tracee ratio, leading to significant errors. If
we examine the current Ra,e, in Figure 4.6 (blue dotted line), we see that Rae., has a
lag in its initial rise, seen as a small notch around minute 20. If we compare to the Ra,eq
measured in other protocols, such as that shown in Figure 4.6 and in earlier chapters (Figure
3.6), it is clear that the current Ra,., exhibits a spurious lag. We thus expect that the
reason for the 30 minute lag between G and G 444, is because of error associated with Ra,,cq;-

The second discrepancy is that G drops much more rapidly than Gy, during exercise.
This discrepancy is likely due to model error. The overestimated drop occurs because the
model overestimates the increase in skeletal muscle glucose uptake during exercise RGUg\y,,, -
This likely occurs because we have not modeled glucose uptake as a saturable process, and
instead assumed glucose uptake increases indefinitely as the glucose concentration increases
(see Equation 3.64). In fact Rose and Richter found that glucose uptake saturates at a
concentration of 300 [mg/dL] [123], which is precisely the range of glucose concentration
that occurs in this dataset. Future work will explore improving the model for skeletal muscle
glucose uptake so that the drop in G during exercise can be estimated more accurately.

EGP predictions are shown in the bottom frame of Figure 4.5. The predictions of EGP
closely follow EGPyu, throughout the entire period. However, we must note that predicted
EGP is dependent on G, which was shown to be predicted poorly during exercise. If a
proper prediction of G were achieved, it would have the effect of reducing FGP during
exercise which would cause disagreement of EGP with EGP,;,. Additionally, as previously
mentioned the current FG Py, has significant error (notice the enormous error bars), and
hence these measurements should be taken with a grain of salt.

As in the resting case, for the exercising case we also examine the individual contribu-
tions of each mechanism of glucose production and uptake. Figure 4.6 plots the two mecha-
nisms of glucose production, Ra,,.; and EGP, and the glucose uptake in each compartment
RGUcs,, and RGUsniyppr- RGUcs,o, 1s comprised of the constant glucose sinks of the
brain, heart, gut, and kidney plus the glucose uptake by the liver RGUcs,,,. RGUsnipor 18
comprised of both insulin-dependent and exercise-dependent glucose uptake in the muscle.
Raeq is plotted as a dotted line because it is a measured input. The remaining lines are
solid because they are predictions.

After meal ingestion at time 0, Ra,,., exhibits an uncharacteristic lag in its typically
rapid rise. As mentioned, this is likely due to measurement error. EGP (red line) is initially
suppressed because of the meal, but rapidly rises starting at minute 120 due to the effects
of exercise. It increases from 30 [mg/min| to 155 [mg/min] in about an hour. At the same
time glucose uptake in the skeletal muscle (RGUgas,.,-) has a tremendous spike, increasing
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Figure 4.6: The calculated individual contributions of each mechanism of glucose production and uptake for
the validation test on a exercising T1D subject. Positive is production, negative is uptake. The dotted line for
Rameqr indicates an input. The predictions for skeletal muscle glucose uptake during exercise (RGUs o)
are likely significantly overestimated.

to nearly 1000 [mg/min]. As previously mentioned, this spike is likely an overestimate.

4.3 Validation Conclusions

The objectives of this chapter were: (1) to couple the insulin-kinetics model derived in
Chapter 2 with the glucose-dynamics model derived in Chapter 3 and (2) to validate the
model on data from a resting T1D cohort (T1DR) and a exercising T1D cohort (T1DE).

Figure 4.3 shows that for the TIDR cohort agreement between model predictions and
data was strong. Though there was a slight underestimation of I, this can be easily remedied
by slight adjustments of parameters. We currently use population-averaged parameters
which may not coincide with the parameters of the average patient from our T1DR cohort.
Predictions for GG also agreed well with data, although there was a significant difference
between G and Ggu, in the later stages of the meal. This is likely because of the time-
dependence of insulin sensitivity [70], which was not accounted for in our model. EGP also
agreed well with data, except for a slight discrepancy in the beginning, which was likely
caused by the EGP model being sensitive to small perturbations of insulin. In reality the
liver may not be sensitive to small changes in insulin concentration, and thus the behavior
of our EGP model under small perturbations may not be physiological.

Figure 4.5 shows that for the T1DE cohort agreement between model predictions and
data was strong for I, reasonable for G, and undetermined for EGP because of poor data.
The main discrepancy in our G predictions was that G dropped much more rapidly during
exercise than the data would indicate. This can be attributed to the way that exercise-
induced skeletal muscle glucose uptake (RGUgyy,,, ) was modeled. In deriving our expression
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for RGUgyy.,, we assumed that it was a non-saturable process. In fact, glucose uptake is
known to be saturable at high glucose concentrations [123]. Future work needs to focus on
improving the model for RGUgy,,,,, perhaps by incorporating saturability.

Overall, the coupled insulin-glucose dynamics model performed well on both T1D cohorts,
and can be considered validated for a resting T1D subject. However, more work needs to
be done to improve the model before the it can be validated for exercise. Fortunately the
model structure is well-understood and the parts of the model that have been determined
to be insufficient can be made the focus on future work.
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Chapter 5

Test Cases for Type 1 Diabetes
Insulin-Glucose Exercise Model

Chapter Overview

In this chapter we will examine the dynamics of the T1D insulin-glucose model by perform-
ing 10 real-world test cases. We will examine the effects of exercise timing, intensity, and
capillary recruitment on insulin, glucose, and EGP based on the coupled insulin-glucose
dynamics model presented in Chapter 4.

The first five test cases will focus on examining the complete dynamics of the model. The
two inputs, the insulin infusion rate & and the exercise intensity F are plotted with accom-
panying [ (insulin in plasma), S (insulin in skeletal muscle ISF), G (glucose in plasma), and
H (glucose in skeletal muscle ISF). Also shown are plots of the different glucose production
(Rameqr and EGP) and uptake mechanisms (RGUcs, ., and RGUsnpor)-

The remaining five test cases examine how different exercise intensities affect the glucose
response and the EG P response. We plot the responses for exercise intensities ranging from
resting £=0 to intense £=0.75 exercise. We remind the reader that F is quantified as %
V0,, ... The insulin-kinetics do not significantly change at different levels of exercise, and
hence they are not plotted in these cases. Also, in these cases the basal glucose level is set
to 100 [mg/dL], unlike in the first five test cases where basal glucose was set to 150 [mg/dL].

In all plots, the grey shaded regions represent the exercise periods and the red shaded
region represents hypoglycemia (< 70 [mg/dL]).

5.1 Test Case 1: Standard Meal with Bolus

This test case simulates the glucose response to a standard 75 [g] meal with a 6 [U] insulin
bolus. No exercise is done. The basal rate was kept constant at 0.96 [U/hr].

Figure 5.1 shows the results of this simulation, which is used as a baseline for comparison
with subsequent test cases. As we expect, G rises after the meal is ingested at time 0. Ra,eq
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in the bottom frame shows the rate of meal absorption that causes this rise. G continues
to rise until a peak of 300 [mg/dL], and then slowly drops back to basal levels. During this
time EGP is suppressed (see the red line in the bottom frame), and RGU¢g,.,, rises due to
an increase in liver glucose uptake.
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Test Case 1: Standard Meal with Bolus

Inputs: Insulin Infusion Rate and Exercise Intensity
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Figure 5.1: Baseline simulation for comparison with subsequent test cases. (top) Inputs insulin infusion rate
U and exercise intensity E. (middle top) Insulin predictions. (middle bottom) Glucose predictions. (bottom)
Glucose production is positive and uptake is negative.
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5.2 Test Case 2: Standard Meal with Bolus and Light
Exercise

This test case will simulate the glucose response to a standard 75 [g] meal with a 6 [U] insulin
bolus. 60 minutes of 25% V0, . exercise (light walking) starts 60 minutes after the meal is
ingested. Basal rate was kept constant at 0.96 [U/hr].

We keep all simulation settings identical in this test case (Figure 5.2) as in test case 1
(Figure 5.1), except we have an ‘early’ exercise period. This early exercise period causes
rapid glucose uptake in the skeletal muscle as can be seen by the purple line in the bottom
frame of Figure 5.2. GG drops as a result of exercise, but only by about 60 [mg/dL]. The drop
is only slight because glucose is entering the CS from the GI tract (Raeq). During exercise
there is a significant increase in the insulin concentration due to capillary recruitment (middle
top frame).
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Test Case 2: Standard Meal with Bolus and Light Exercise

Inputs: Insulin Infusion Rate and Exercise Intensity

'g‘ 1-5 T T T T T T T T T
g 1t —URn1
~
D051 ——Bllgs™
3 0 l L R 7I — L l 1 L L O
-100 -50 0 50 100 150 200 250 300 350
Time [min]
Insulin

5

w
o

Concentration [pU/mL]
N
S

10
O 1 1 1 1 1 1 1 1 1
-100 -50 0 50 100 150 200 250 300 350
Time [min]
Glucose
T T T T T T T T T
400+ —GaH
- —H
T 350 =
S
[l 300 — -
o
S
= 250 -
i)
£ 200 i
Q
&
S 150
%
S 100 .
O
=
O 501 -
0 I I I I I I I I I
-100 -50 0 50 100 150 200 250 300 350
Time [min]
Glucose Production and Uptake
T T T T T T T T T
600 - — = Rapear ||
'~ . —— EGP
400 AL RGU¢s70r |
/ \—""’\\ —— RGUsnyor

Glucose Production/Uptake [mg/min]

-200 -

-400 4

-600 - 1 1 1 1 1 1 1 1 L]

-100 -50 0 50 100 150 200 250 300 350
Time [min]

Figure 5.2: Early exercise causes rapid glucose uptake in the skeletal muscle, but the drop in G is not signifi-
cant because glucose is still rapidly being absorbed from the GI tract (Rameq:)- (top) Inputs insulin infusion
rate U and exercise intensity F. (middle top) Insulin predictions. (middle bottom) Glucose predictions.
(bottom) Glucose production is positive and uptake is negative.
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5.3 Test Case 3: Standard Meal with Bolus and
Heavy Exercise

This test case will simulate the glucose response to a standard 75 [g] meal with a 6 [U]
insulin bolus. 60 minutes of 75% VO0s, . exercise (running) starts 60 minutes after the meal
is ingested. Basal rate was kept constant at 0.96 [U/hr].

Figure 5.3 shows the response to early heavy exercise and can be compared with early
light exercise in the previous test case (Figure 5.2). Insulin levels are nearly identical between
these two test cases because insulin-kinetics are ‘saturable.” This means that there is only
a finite reservoir of capillaries for recruitment and our model predicts that recruitment is
rapid and is not strongly dependent on exercise intensity. Glucose levels on the other hand
are not saturable, and glucose uptake in the SM is directly dependent on exercise, glucose
concentration, and insulin concentration. This is why the 260 to 130 [mg/dL] drop in glucose
during exercise in this case is much greater than in the previous test case that had light
exercise (from 260 to 190 [mg/dL]).
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Test Case 3: Standard Meal with Bolus and Heavy Exercise

Inputs: Insulin Infusion Rate and Exercise Intensity
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Figure 5.3: Glucose concentration significantly drops during exercise period. (top) Inputs insulin infusion
rate U and exercise intensity E. (middle top) Insulin predictions. (middle bottom) Glucose predictions.

(bottom) Glucose production is positive and uptake is negative.
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5.4 Test Case 4: Standard Meal with Bolus and Late
Heavy Exercise

This test case will simulate the glucose response to a standard 75 [g] meal with a 6 [U]
insulin bolus. 60 minutes of 75% VO0s, .. exercise (running) starts 150 minutes after the meal
is ingested. Basal rate was kept constant at 0.96 [U/hr].

Figure 5.4 shows the response to heavy late exercise. This test case can be compared
to the previous test case where heavy early exercise was simulated (Figure 5.3). The only
difference between the two test cases is the timing. G drops to a much lower level in the
late exercise case (from 300 to 85 [mg/dL]) than in the early exercise case (from 260 to
130 [mg/dL]). This enormous difference in the magnitude of the drop is explained by the
observation that most glucose from the meal has already been absorbed by minute 150, and
thus it cannot act as a buffer to hypoglycemia as in the previous case. Also, high insulin-on-
board after a meal acts to keep insulin levels high, suppressing £GP and further increasing
the likelihood of hypoglycemia. This shows the importance of not just exercise intensity but
exercise timing on G.
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Test Case 4: Standard Meal with Bolus and Heavy Late Exercise

Inputs: Insulin Infusion Rate and Exercise Intensity
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Figure 5.4: Timing, not just exercise intensity, has a significant impact on G. (top) Inputs insulin infusion
rate U and exercise intensity E. (middle top) Insulin predictions. (middle bottom) Glucose predictions.
(bottom) Glucose production is positive and uptake is negative.
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5.5 Test Case 5: 60 Minutes of Moderate Exercise
during Fast

This test case will simulate the glucose response to a 60 minute 50% V0o, .. exercise bout
(brisk walking) during fasting conditions. Basal rate was kept constant at 0.96 [U/hr].

Figure 5.5 shows the response. Notice that insulin concentrations I and .S increase, even
though there was no additional bolus of insulin given at time 0. This occurs because capillary
recruitment increases the rate of absorption and delivery. Notice, however, that [ is slowly
beginning to decrease back to the original basal levels by the end of the exercise period. If
the exercise period were sufficiently long, then steady state would eventually be reached and
I and S would settle back near their original levels. During this time, G' drops from 150 to
100 [mg/dL], but near the end of exercise approaches a minimum because the increase in
EGP eventually matches RGUgpy o -
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Test Case 5: 60 Minutes of Moderate Exercise during Fast

Inputs: Insulin Infusion Rate and Exercise Intensity
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Figure 5.5: During a fast, G drops during exercise until EGP increases sufficiently to match skeletal muscle
glucose uptake(RGUghrr). (top) Inputs insulin infusion rate U and exercise intensity E. (middle top)
Insulin predictions. (middle bottom) Glucose predictions. (bottom) Glucose production is positive and
uptake is negative.
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5.6 Test Case 6: 120 Minutes of Exercise at Various
Intensities during Fast

This test case will simulate the glucose response to a 120 minute exercise bout at 0%, 25%,
50%, and 75% V0, .. Basal rate was kept constant at 0.96 [U/hr|. The basal glucose level
is set to 100 [mg/dL], unlike in the previous test cases where basal glucose was set to 150
[mg/dL].

Figure 5.6 shows the glucose and EGP response for different levels of exercise. The
insulin-kinetics do not significantly change at different levels of exercise, and hence they are
not plotted. The blue line is resting, red line is 25% VO0,,,,., vellow line 50% VO0s, ., purple
line is 75% VO0s,,,,.-

The first thing we notice is that, as expected, G most rapidly drops for the highest
exercise intensity (purple line). However, the drop is arrested at about 65 [mg/dL] and
starts to rise only 30 minutes after exercise begins. This rise occurs because EGP, seen
in the bottom frame, rapidly increases. In comparing all the G responses for the different
exercise intensities we observe a curious result - that more intense exercise actually leads to
less hypoglycemia than light exercise. This may seem counter-intuitive. It occurs because
EG P responds more rapidly and to a greater magnitude for more intense exercise. Anecdotal
evidence supports this prediction. Persons with T1D often experience hyperglycemia during
intense exercise periods because of the rapid release of glucagon, which we have modeled
indirectly through our variable L. On the other hand, it is a common occurrence for those
with T1D to experience hypoglycemia during a light walk, perhaps because their EGP
response is muted because it is only ‘light’ exercise which does not stimulate a strong EG P
response.
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Test Case 6: 120 Minutes of Exercise at Various Intensities during Fast
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5.7 Test Case 7: 120 Minutes of Interval Training
Exercise at Various Intensities during Fast

This test case will simulate the glucose response to a total of 120 minutes of exercise at 0%,
25%, 50%, and 75% V0, .. There are 12 exercise bouts with a 10 minute duration and 5
minutes of rest. Basal rate was kept constant at 0.96 [U /hr].

Figure 5.7 shows the response to interval training exercise. We compare interval training
exercise to continuous exercise (as in the previous test case Figure 5.6). In comparing the
two test cases, there is very little difference in G. What is interesting is that a lower level
of EGP is needed to maintain essentially the same G. The EGP response is much lower in
magnitude, maxing out at 400 [mg/min] rather than 500 [mg/min] in the continuous exercise
case. This is likely because the 5 minute breaks blunt the EGP response, and also lowers
the overall RGUs iy -
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Test Case 7: 120 Minutes of Interval Training Exercise at Various Intensities
during Fast
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Figure 5.7: A lower level of EGP is needed to maintain essentially the same G as in the continuous exercise
test case (See Figure 5.6). (top) Plasma glucose concentration G for various levels of exercise. (bottom)
EGP for various levels of exercise. Blue line is resting, red line is 25% VO0q_ ., yellow line 50% V0,
purple line is 75% V0, There are 5 minutes of rest between each 10 minute exercise bout.
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5.8 Test Case 8: 60 Minutes of Early Exercise After a
Meal at Various Intensities

This test case will simulate the glucose response to 60 minutes of exercise at 0%, 25%, 50%,
and 75% VO0,,, ... Exercise begins 60 minutes after a meal is ingested. Basal rate was kept
constant at 0.96 [U/hr].

This test case is the same as that shown in test case 3 (Figure 5.3), except we test
various exercise intensities. The glucose response shows that, as expected, a higher exercise
intensity leads to a greater drop in G. However, the sensitivity of glucose to higher levels of
exercise decreases - the difference between the yellow (50% VO0s,,..) and the purple line (75%
VO0,,...) is only 25 [mg/dL]. This happens for two reasons. First, EFGP has a more significant
counter-regulatory response at higher exercise intensities. Second, as glucose levels fall closer
to basal levels, as they do in the intense exercise case, then skeletal muscle uptake is decreased
because it is proportional to G itself.
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Test Case 8: 60 Minutes of Early Exercise After a Meal at Various Intensities
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Figure 5.8: A higher exercise intensity leads to a greater drop in G. (top) Plasma glucose concentration
G for various levels of exercise. (bottom) EGP for various levels of exercise. Blue line is resting, red line
is 25% VO0q,,,., yellow line 50% V0, ., purple line is 75% V0, . . Exercise begins 60 minutes after meal
ingestion.
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5.9 Test Case 9: 60 Minutes of Late Exercise After a
Meal at Various Intensities

This test case will simulate the glucose response to 60 minutes of exercise at 0%, 25%, 50%,
and 75% V0, .. Exercise begins 150 minutes after a meal is ingested. Basal rate was kept
constant at 0.96 [U/hr].

This test case is the same as that shown in test case 4 (Figure 5.4), except we test
various exercise intensities. We compare this test case to the test case 8 (Figure 5.8). As
previously discussed, late exercise has a more significant effect on G than does early exer-
cise. This is because the ingested meal is nearly completely digested by minute 150, and
Rameq is no longer providing significant amounts of glucose. This increases the likelihood
of hypoglycemia. Also, high insulin-on-board after a meal acts to keep insulin levels high,
suppressing EG P and further increasing the likelihood of hypoglycemia.
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Test Case 9: 60 Minutes of Late Exercise After a Meal at Various Intensities
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Figure 5.9: Late exercise has a more significant effect on G than does early exercise. (top) Plasma glucose
concentration G for various levels of exercise. (bottom) EGP for various levels of exercise. Blue line is
resting, red line is 25% VO0q, ., yellow line 50% VO0s ., purple line is 75% V0. Exercise begins 150
minutes after meal ingestion.
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5.10 Test Case 10: 60 Minutes of Late Exercise After
a Meal at Various Intensities without Capillary
Recruitment

This test case will simulate the glucose response to 60 minutes of exercise at 0%, 25%, 50%,
and 75% V0,, . . Exercise begins 150 minutes after a meal is ingested. Capillary recruitment
is turned off, so there is no increase in blood flow and no increase in capillary surface area
associated with exercise. To do this we set the parameters \,, Ay, R,, and Ry to 0. Basal
rate was kept constant at 0.96 [U/hr].

The final test case is shown in Figure 5.10. This case allows us to explore the effect of
capillary recruitment on G and EGP. For reference we can compare to test case 9 (Figure
5.9), which is setup exactly the same, except includes the effects of capillary recruitment.

Capillary recruitment does not directly affect uptake or production mechanisms, it does
however directly affect the transfer for insulin and glucose between compartments thereby
altering concentrations G, H, I, and S, which have a direct effect on uptake and production.

By shutting off capillary recruitment we essentially limit the rate that glucose and insulin
can move between compartments. This results in a lower S, and a lower H during exercise.
The lower S directly affects liver glucose uptake and skeletal muscle glucose uptake (not
depicted). A lower S also affects EGP. The lower H directly affects skeletal muscle glucose
uptake as well, because uptake is linearly dependent on H. These effects combine to blunt
SM glucose uptake and increase EGP, as can be seen by comparing this test case to test
case 9 where recruitment is turned on (Figure 5.9). This leads to G predictions that are
significantly higher. Whether or not these predictions are more or less accurate remains to
be determined, but the simple fact is that in the context of our model, capillary recruitment
has a significant effect on glucose uptake and production, and may be critically important
to accurately predicting G during exercise.
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Test Case 10: 60 Minutes of Late Exercise After a Meal at Various Intensities
without Capillary Recruitment
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Figure 5.10: Capillary recruitment is turned off and thus blunts SM glucose uptake and increases EG P, which
increases the predicted G. This can be seen by comparing this test case to test case 9 where recruitment is
turned on (Figure 5.9). (top) Plasma glucose concentration G for various levels of exercise. (bottom) EGP
for various levels of exercise. Blue line is resting, red line is 25% V0, _, yellow line 50% V0, purple
line is 75% V05, .. Exercise begins 150 minutes after meal ingestion. Capillary recruitment is turned off,
so there is no increase in blood flow and no increase in capillary surface area associated with exercise.
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5.11 Insights and Conclusions from Test Cases

The 10 test cases provided significant insights into insulin-glucose dynamics during exercise.
We summarize the insights in a list:

o The timing of exercise with respect to a meal matters. Earlier exercise tends to lead
to less hypoglycemia than late exercise. This can be attributed less glucose absorption
from the GI tract at minute 150 than minute 60, which prevents Ra,,.. from acting
as a buffer to hypoglycemia.

e [ntense exercise leads to less hypoglycemia than light exercise. This occurs because
EGP responds more rapidly and to a greater magnitude for more intense exercise.

e A lower level of EGP is needed to maintain the same G in the interval exercise case
than in the continuous exercise test case. This is likely because the 5 minute breaks
blunt the EG P response, and also lower the overall RGUgnz, -

o Capillary recruitment has a significant effect on glucose uptake and production, and
may be critically important to accurately predicting G during exercise. This also indi-
cates that insulin-resistance may be partly explained by a lack of capillary recruitment.
By shutting off capillary recruitment we essentially limit the rate that glucose and
insulin can move between compartments. In doing this we reduce the concentration
of glucose and insulin in the SM compartment and because uptake is proportional to
both, it is significantly reduced.
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Chapter 6

Conclusion

Living with Type 1 Diabetes (T1D) is a challenge. Up to ten times per day those with T1D
must ask themselves “How much insulin should I dose?” knowing that an incorrect dose may
shorten their life. An artificial pancreas that can autonomously and safely dose insulin would
greatly improve the lives of those with T1D. Despite great progress in the development of
the artificial pancreas, there are still significant hurdles that must to be overcome before
the system can be proven safe and effective in all living conditions. Exercise, because of the
significant time-lag of injected insulin and the significant changes to insulin-glucose dynamics,
is considered the most dangerous task for the artificial pancreas controller to handle. Some
artificial pancreas systems utilize model predictive control algorithms to overcome the time-
lag and difficulties of exercise. These controllers require a model that can accurately predict
the exercise-induced changes to insulin-glucose dynamics, so that the T1D patient can be
kept safe, even during spurious, rigorous, and/or long-duration exercise.

This dissertation focused on the development of a novel pharmacokinetics model of
insulin-glucose dynamics that is specifically designed to include the effects of exercise. We
modeled five primary glucoregulatory phenomena that are known to be sensitive to exercise.
To validate the model, we compared predictions to data from four cohorts of human subjects
studied during controlled clinical exercise trials. We also carried out several test cases to
demonstrate the effects of exercise intensity and duration on blood glucose levels. The model
provides significant insight into insulin dosing during exercise and can be used to improve
model predictive control algorithms in the artificial pancreas.

6.1 Modeling Outcomes

The insulin-glucose dynamics model we have developed was specifically designed to include
the five primary acute effects of exercise: the increase in endogenous glucose production,
the increase in skeletal muscle glucose uptake, the increase in insulin absorption rate, the
increase in insulin delivery rate, and the increase in glucose delivery rate.

When developing the model, our goal was to keep the model as physiologically-based as
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possible, so that predictions could be understood in the context of real physical phenomena
such as increased blood flow or increased surface area. In order to achieve this, we had to
create a multiscale model that included both microscale phenomena and macroscale whole-
body phenomena. Of course, the complexities of multiscale modeling needed to be balanced
with model parsimony. For example, insulin and glucose transport in capillary beds was
modeled at the microscale because this was deemed important for understanding how exercise
alters insulin and glucose transport from the blood to skeletal muscle. However, other
phenomena, such as glucose uptake in the liver, were modeled phenomenologically because
it would not have been practical to model cellular level interactions.

There are inevitably more parameters in a multiscale model, and this makes overfitting
more likely. To prevent this, all the parameters in our model were taken directly from the
literature or extracted from experiments found in the literature. This is not to say we have
eliminated the problem of overfitting, as there were some parameters that were not directly
available in the literature and had to be derived by adjusting the available parameters.

The insulin-kinetics model that we developed is, to the authors knowledge, the first
insulin-kinetics model that has been explicitly designed to include the effects of exercise.
This was done by modeling the effects of exercise-induced capillary recruitment on two
processes: insulin absorption from the subcutaneous injection site and insulin delivery from
the blood to skeletal muscle. Understanding how these two rates change during exercise is
critically important because they determine insulin concentration, and thus directly affect
rates of glucose uptake, potentially causing hypoglycemia.

We have preliminarily validated the insulin-kinetics model by comparing predictions with
data from two cohorts of T'1D subjects, one resting and one exercising. The results compare
favorably, and also agree with direct measurements of insulin absorption and delivery rates
during exercise from literature.

The glucose-dynamics model, similarly to the insulin-model, also included for the first
time the effects of exercise-induced capillary recruitment on glucose delivery rate to skeletal
muscle. The predictions showed that glucose delivery rates to skeletal muscle increase dras-
tically during exercise, which is consistent with trends seen in the literature. Additionally,
we included direct measurements of glucose fluxes, Ra,ue.q and EGP, from collaborators.
This is a significant advantage in our model because we do not need to model the complex,
uncertain processes of meal digestion and endogenous glucose production.

Using the measured flux inputs in the glucose-dynamics model, we preliminarily validated
the model on two cohorts of healthy subjects (non-diabetic), one resting and one exercis-
ing. There is strong agreement between model predictions and the data, providing some
confidence that we have modeled the various exercise-effects correctly, at least for healthy
subjects. As an added contribution, we used the measured FGP data to validate a new
model of EGP that depends on insulin, glucose, and exercise duration and intensity.

To fulfill the original objective of this dissertation, we coupled the insulin-kinetics model
with the glucose-dynamics model, for application to T1D subjects. Coupling the models was
straightforward, but some significant parameter adjustments needed to be made to account
for insulin-resistance in T1D subjects. After making necessary adjustments, we tested the
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model by comparing predictions to measured data from two cohorts of T1D subjects, one
resting and one exercising. In the resting subject, there was good agreement between model
predictions and measurements. However, in the exercising subject, the effect of exercise
on glucose uptake in the skeletal muscle was significantly overestimated resulting in poor
predictions. This was likely because we did not model the saturable nature of glucose uptake.
We venture to say that we have preliminarily validated the T1D model for the resting case,
but work still needs to be done to improve model predictions during exercise.

Even though the T1D model predictions were poor during exercise, we still gained sig-
nificant insight into insulin-glucose dynamics by performing several test cases. These test
cases show that in the postprandial state (i.e. after a meal) the timing of exercise, not just
the intensity, is crucial to avoiding hypoglycemia. Tests like these help shed light on how
best to dose insulin to avoid hypoglycemia.

This significant modeling effort provides a means to understand the interplay between
several complex glucoregulatory processes. More importantly, this model can potentially be
used in a model predictive control algorithm in the artificial pancreas to more safely dose
insulin when exercise is involved. When these devices inevitably become available, the life
of the person with T1D will be markedly improved, and will be one of the greatest medical
and engineering achievements in modern times.

6.2 Model Insights

In Chapter 5, 10 test cases were simulated. These provided some significant insights into
insulin-glucose dynamics during exercise. We showed that the timing of exercise with respect
to a meal matters. Earlier exercise is predicted to lead to less hypoglycemia than late exercise.
This can be explained by the observation that Ra,,cq;, which accounts for a significant portion
of glucose infused into the CS following a meal because of EG P suppression, is diminished
as more time is put between the meal ingestion and exercise. Because of this Ra,,eq cannot
act as a buffer to hypoglycemia.

We also predicted that intense exercise leads to less hypoglycemia than light exercise.
This occurred because EGP responds more rapidly and to a greater magnitude, for more
intense exercise. Anecdotal evidence supports this prediction. Persons with T1D often
experience hyperglycemia during intense exercise periods because of the rapid release of
glucagon, which we have modeled indirectly through our variable L. On the other hand, it
is a common occurrence for those with T1D to experience hypoglycemia during a light walk,
perhaps because their EG P response is muted because it is only ‘light’ exercise.

Next, capillary recruitment, which was a novel part of our model, was shown to have
a significant effect on glucose uptake and production, and may be critically important to
accurately predicting G' during exercise. Results also indicated that insulin-resistance may
be partly explained by a lack of capillary recruitment. By running a test case where we shut
off capillary recruitment we essentially limited the rate that glucose and insulin can move
between compartments. In doing this we reduced the concentration of glucose and insulin in
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the skeletal muscle compartment, and because uptake is proportional to both, uptake was
significantly reduced.

The model also provides an interesting insight about the natural limits on insulin ab-
sorption from subcutaneous tissue. If we assume, as we did in Chapter 2, that absorption is
driven by pure diffusion then PS! the permeability surface area of the capillaries to insulin,
may represent a hard upper-limit on the absorption rate. This is because even if hexam-
eric dissociation occurs instantaneously upon injection, PS! would still provide resistance
to transport. Because our model does not include hexameric dissociation, it may represent
the upper limit of the insulin absorption rate. Thus, there may be little room for the design
of faster absorbing insulin, at least if injected into subcutaneous tissue.

In regard to these model insights, it must be stressed that our interpretation is through
the lens of the developed model. For example, it has been postulated in the literature
that capillary recruitment may be an important factor in insulin-resistance. Our model
corroborates this theory, but doesn’t confirm it. Many more experiments would need to be
carried out to validate/invalidate our hypotheses.

6.3 Limitations and Future Work

As with all models, there are limitations to the accuracy and robustness of our model.

Despite its importance, the liver is poorly understood in regards to its ability to take up
and provide glucose (EGP). This stems partly from the uncertainly of local glucose and
insulin concentrations in the liver, which are known to affect EGP and liver glucose uptake.
However, the larger problem is that experiments on humans that isolate the effects of the liver
are highly invasive and thus data cannot be easily obtained. Liver uptake during exercise is
even less understood, and creating a liver model for the purposes of this dissertation would
have required significant effort. For this reason, we adopted a liver model from Sorensen
[64] that was derived for healthy patients. However, because of the importance of the liver,
future work must include a T1D specific liver model.

Next, the coupled T1D insulin-glucose model does not accurately predict the drop in
glucose associated with exercise. This may be because the effect of saturability of glucose
uptake was not included in the model. In future work, the effect of saturability, as well as
the effect of synergistic effects of insulin and exercise, should be added to the model.

Both liver and skeletal muscle glucose uptake may also have ‘uptake hysteresis,” the
phenomenon of insulin sensitivity decreasing in time after a meal. This effect has been shown
in the literature, but it is likely unimportant for modeling the acute effects of exercise, and
hence is low priority in future work. A related concept is insulin-resistance in T1D patients.
We used data from the literature to quantify this effect when adjusting our insulin-sensitivity
parameters, & and rng, for application of the model to T1D subjects. However, additional
work needs to be done to accurately quantify this effect because it is crucial to glucose
predictions in our model.
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Insulin and glucose delivery rates to skeletal muscle, though accurate during rest, do not
agree with findings in literature during exercise. This is a weakness of the diffusion model
that we have used and may be remedied by including the heterogeneity of the capillary bed as
proposed by Renkin [38]. However, the glucose delivery rate seems to be fairly unimportant
in comparison to other phenomena, and thus the benefit of this addition is not clear. It is
considered lower priority in future work.

Most importantly, more data is needed to validate and refine the model, as the small
patient cohorts used for testing in this dissertation are insufficient. A larger dataset could
also provide insight into the magnitude of intra/interpatient variability with respect to acute
exercise effects.
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Appendix A

Insulin Absorption Modeling

Note that the nomenclature in this appendix is different than that employed in the body of
the dissertation.

A.1 Application of Divergence Theorem

By application of the divergence theorem the following expression is exactly zero
DISF/ Ve dV:Ds/Vc-ndS:O (A.1)
g s

This is because Ve is zero by application of boundary condition % = (0 on the boundary.

A.2 Simplifying the Convection-Diffusion Equation
for a Capillary

In the full BVP describing insulin absorption in a capillary, D, is the diffusion coefficient
of insulin in blood plasma, U is the plasma flow velocity in the axial direction x, R is the
radius of the vessel, L is the length of the vessel, and P is the permeability of the vessel wall

0b 10/ 0b 9%b
Uge =55, (75,) * 52) (4.2)
subject to
b=1at z=0for p=10,R] (A.3)
0b

qg= P(c—0b)at p=R. (A.5)
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Permeability P relates flux at the wall to the concentrations on each side of the wall. ¢
is the concentration in the subcutaneous (SC) ISF that surrounds the capillary and I in
the concentration in the circulatory system (CS) domain, which we assume is equal to the
concentration at the inlet. We also assume that there is no significant accumulation of
insulin in the capillary, and so % = 0. In general b(p, x, I(t), c(r,t)), but we will simplify the
problem to allow us to solve for b as only a function of x.

The first simplification that will be make is to hold I(¢) and ¢(r, t) fixed when solving for
b. We can do this because the difference in timescales is large; b changes on the timescale of
blood traversing the capillary domain (~ 1 second), ¢ changes on the timescale of permeation
through the capillary wall (~ 1 hour). I changes on the same timescale as ¢. The difference
in lengthscales is also large; b changes on the lengthscale of a capillary (~ 1 mm) while ¢
changes on the lengthscale of the SC ISF domain (~ 1 cm). We can thus evaluate b locally,
holding boundary conditions at a fixed r and ¢. Thus b(p, z, I(t), c(r,t)) = b(p, ).

Even with the first simplification, the convection-diffusion equation that describes the
drug absorption in the SC capillary domain is still a PDE. This linear PDE could be solved
in a relatively simple manner (both an analytical and a numerical solution are shown in
Appendix C.1), but we prefer to work with ODEs when possible for their simplicity. We will
simply the PDE to an ODE through scaling of terms by non-dimensionalization.

We non-dimensionalize Equation 2.16 with substitution of variables b = b/¢, ¢ = ¢/¢,
T =ux/L,and p = p/R. ¢ is the average concentration in the ISF.

ob Dy L 10/ 0b\ R 0%
— = -——(p=— - — A.
i UR(R pa;;(p ﬁ) T aﬁ) (A.6)
subject to
.
b=—at i =0 for p=10,1] (A7)
c
ob
—=0atp=0 A8
op Vs (A.8)
P. .
§= o= at = (A.9)
The last BC was derived through utilization of expression ¢ = Db% = %’ﬁg—z.

We have assumed uniform flow for the velocity field U. This is a valid assumption because
typically in capillaries, single red blood cells (RBCs) form plugs every few cell lengths [137]
with a resulting flow field that is nearly uniform in the cross section.

Now examining the non-dimensionalized Equation A.6 we see that the magnitude of each
term is dependent on the Péclet number Pe = UR/D, and the aspect ratio AR = L/R.
Capillaries are much longer than they are wide and thus the second term on the RHS is
much smaller than the first, and we eliminate it. We now integrate Equation A.6 over the
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capillary cross section

) e P

Now, utilizing the divergence theorem, we convert the area integral to a line integral on the
boundary and apply BC A.9

10 /\0b ob P-R .
2 (p)=da= | = = i — ) A1l
/map(p)aﬁd o5 "D, /S(C b) ds (A1)
Plugging into Equation A.10 we obtain
o [ - PRLN [,
%/AbdA_<UR2)/S(c—b) ds. (A.12)

Per the previous argument, ¢ is fixed. Additionally, since b is axially symmetric, it does not
vary along the capillary perimeter curve s and can be evaluated at the wall and pulled out
of the integral. The integral over s is then fo% p df = 27w and we have

9 /A b = (T2 @ o) (A.13)

ot UR?

The last step before we can convert the integral equation to an ODE is to evaluate how
b varies along the cross-section A. We will show with scaling arguments that b(p, Z) =~ b(Z).
To show this approximation is reasonable we need to show that the concentration boundary
layer of b is ‘large’. This would imply that the concentration gradient in the p direction,
from the wall to the axial centerline, is small and hence b is only weakly dependent on p.

We start by estimating the size of the coefficient Pe~! - AR in Equation A.10. D, has
previously been approximated as O(107%) cm?/s in water [138, p.54][75], U as O(107!) cm/s
(138, p.476], and R as 3 -107* cm [138, p.476], resulting in Pe ~ 30. This means that
downstream convective transport occurs more quickly than than radial diffusive transport.
However, considering that the AR ~ 200 [139, rat muscle], the diffusion distance is very
small in comparison to the convection distance. This is confirmed by the value of the
product Pe~! - AR which is only ~ 6; diffusion to the capillary centerline has occurred
when the plasma has traversed only 1/6 of the capillary length, a relatively ‘rapid’ diffusion.
Furthermore, Pe is likely overestimated due to unaccounted phenomena. The dispersive
effects of shear and circulation in the flow due to the presence of RBCs can greatly increase
the rate of diffusion to the center line [137]. We thus comfortably assume that diffusion
of insulin to the centerline occurs quickly compared to the downstream convection and we
make a low Pe argument. It follows that the concentration boundary layer is ‘large’ and that
the concentration b is not strongly dependent on p. This scaling allows us to approximate

b(p, %) ~ b().
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We utilize the approximation by treating b as a constant in the cross section in Equation
A.13. Thus b is pulled out of the integral on the LHS and b|.; = b. Noting fA dA = 7 the
result is

db P2rRLN . -
== ( e >(c—b) (A.14)

Now we examine the single dimensionless parameter that governs the system. The prod-
uct P21 RL is the permeability surface area (PS). Un R? is the volume flow rate (Q). Because
we have a ratio of these two quantities, we may express each of these as specific (per-unit
volume) properties, which are measurable and have units of mIL;,/min/mLy;s. The solution
to Equation A.14 subject to boundary condition A.7 is (details in Appendix A.3)

c(r,t)
c c C

b(id,r t) = (A.15)
Remember, r and t were arbitrarily fixed when solving for b locally, but b is a field variable
that depends on time and the location in the ISF, and so depends on ¢ and r globally. Thus,
the solution is valid for all r, ¢ and & from 0 to 1. The general dimensional form of the
solution A.15 is

P

b(x,r,t) =c(r,t) — (c(r,t) — I(t))e @

195)
SIE}

(A.16)

A.3 Solution to ODE Governing Capillary Domain

Here, we solve Equation 2.20.

5o (L
b=Ilatz=0 (A.18)
The homogeneous solution is
bh=A-e ot (A.19)
The particular solution is then
b, =DB(z) e @t (A.20)

Plugging the particular solution into Equation A.17 we get

dB(x) PS1 ks
dr QL
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Now, because we would like to know the solution at each point in time, we use a convolution
integral to solve for B(x)

“dB(x) PS1 [* ese
T dr = 2 L A.
/0 o dx 0 Lc/o eQr dx (A.22)
Blz) =cle@t —1) (A.23)

We hold ¢ fixed due to separation of length scales between the capillary and ISF domain.
The particular solution is

by=c(l—e @t) (A.24)

and the general solution is
by = by + b, (A.25)
by —A- ot +c(1—ef%%) (A.26)

and applying the boundary condition A.18 we get the final form of the solution (dropping
subscript ¢)

P

b=c(r,t)— (c(r,t) —1(t))e @

195)
I8

(A.27)

A.4 Measuring Tissue Perfusion Rate () in Adipose
Tissue

The measurement of tissue perfusion rate ¢) in the adipose tissue was first described by
Larson in 1966[140]. The calculations are simple and straight forward and only require one
time-series measurement - the tracer mass that is present in the subcutaneous compartment.
This is typically measured as counts per minute (cpm) of a radioactive tracer such as Xenon
(Xe'33). Xe!33 is chosen because it is an inert gas, and thus its transfer from one solvent to
the other obeys Henry’s law[141]. Additionally, it readily moves into the bloodstream with
little hindrance from the capillary wall. The combination of these two phenomena allows
for the quantification of the Xe!3? partition coefficient, ), in various tissues of the body. We
leverage this knowledge to measure blood flow in various tissues.

Consider an injection of Xe!3? into the subcutaneous tissue. It has a concentration of X,
[cpm per gss] and it slowly diffuses into the bloodstream where it has a concentration of
Xy [cpm per ml,]. If we assume that the system is in equilibrium, then we can describe the
difference in concentration with the simple relation

X, = \X, (A.28)
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where \ is the partition coefficient between the concentration in the subcutaneous space
and the blood space, which has been previously reported in several studies [140, 142]. A
does depend on hematocrit slightly, but if we assume that the subject has a near average
hematocrit, we use the A value calculated for a typical 40% hematocrit [140]. This equilibrium
assumption is valid when we consider that Xe!3? has a large diffusion coefficient, meaning that
we are not rate limited by diffusion, but rather blood flow. This is equivalent to saying that
transfer from the tissue to the blood occurs rapidly, and reaches the equilibrium described
by Equation A.28 before blood leaves the region. Thus we can determine blood flow () by
only knowing the rate of disappearance of Xe'3 from the subcutaneous space. To obtain
this relation, we apply Fick’s principle for extraction of Xe'®® from the subcutaneous tissue

dX;
dt

= Q(X, — Ap,) (A.29)

where X}, is the arterial (upstream) concentration in the blood and X}, is the venous (down-
stream) concentration in the blood. Considering that upon leaving the microcirculation,
a substance becomes greatly diluted throughout the body, we can assume that X;, ~ 0.
Plugging A.28 into A.29, and setting &, = A} (because of rapid equilibration) we get

X, —Q
= T X, (A.30)
Q- —)\C“nd—(txs)[mlb/min/gtiss} (A31)
(A.32)

X; is measured using a scintillation counter and eventually the term % reaches a
constant value. At this point ) can be calculated reliably.

It is customary to express @@ as per 100 g, to do this, simply multiply by 100. Also,
because @ is typically expressed per g;;.s, we often need to convert to per mly;,s. A typical
conversion can be made with pgss=0.911 gy;ss/mlyss for subcutaneous tissue or pyss=1.09

tiss/Mlyss for muscle[85]. In this work we have assumed pyiss=1 gyss/mlyss for simplicity.

A.5 Measuring Permeability Surface Area, PS

The capillary permeability surface area (PS) that is used as a parameter in the insulin model
was measured by Gudbjornsdottir [101], and ranges between 0.4 to 0.6 mlyeq/min/100gy;ss-
To make this measurement, a microdialysis technique was utilized, and a model for capillary
mass transfer was assumed. Coincidentally, the model they assumed is the same capillary
mass-transfer model that we derived in Chapter 2 and solved in Appendix A.3. The difference
is that in their case, they are evaluating movement of solute from the plasma to the interstitial
fluid, opposite to the present model. However, even with the differing sign, the solutions are
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identical

P

b=c(r,t)— (c(r,t) —1(t))e @
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We can evaluate the difference in b from the inlet b|; to the exit b|. as

bli —ble=1—c+(c—De @ (A.34)
I—V=I—c+(c—IDe <. (A.35)

We solve for PS
PS=-Q- 1n(‘;__f) (A.36)

where b|; = I is the plasma insulin concentration at the arterial end of the capillary bed,
blc = V is the plasma insulin concentration at the venous end of the capillary bed. ¢ is the
concentration of insulin in the subcutaneous space. To estimate PS, one needs to measure
I, V, and ¢ using microdialysis catheters and @, the plasma flow rate (i.e. 60 % of blood
flow rate), using the method described in Appendix A.4 or equivalent.

If microdialysis catheters are properly placed, I and V' can be measured. However, we
must assume that ¢ is uniform in concentration. At pseudo-steady state this is a good
assumption, as the insulin has had time to equilibrate and mix in the ISF compartment.
The PS measurements used in our model were taken at steady state by [101].

Lastly, it is worth noting that we are modeling diffusion in both the delivery (plasma
to ISF) and the absorption direction (ISF to plasma). P.S measurements were taken in the
delivery direction. In pure diffusion, mass-transfer is isotropic, but this may not be the
case in capillaries, as active transport, facilitated diffusion, or pressure differences may have
an effect. However, given the size of the insulin molecule, pure diffusion should be a good
assumption, so bi-directional flux should be the case and P.S measurements should be valid.

A.6 Healthy vs. T1D Insulin Response with Exercise

Here we have simulated the interstitial fluid insulin concentration I;sp (same as S from
insulin chapter) using measured plasma [(¢) as an input. There is a 75 minute bout of
exercise from minute 120 to 195. Accounting for the enhanced delivery rate k}, you can
see that the T1D patient has an increase in I;gr during the exercise period, rather than a
decrease in I;gr as in the healthy patient. When insulin comes from endogenous sources,
the body can suppress insulin output during exercise, so as to prevent hypoglycemia. This
is a demonstration of how the dynamics of insulin are fundamentally different when insulin
is injected subcutaneously rather than coming from endogenous sources.
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Figure A.1: Predicted interstitial fluid insulin concentration Irgr based on measured Ipjqsmq input. Notice
that the only case where there is a rise in insulin concentration during exercise is with the T1D patient.
No such rise in I;gp is present in the exercising healthy patient. Because I;gp is directly proportional to
glucose uptake in the periphery, this is profound result. When insulin is produced endogenously, its release
can immediately be suppressed so as not to cause hypoglycemia during exercise, unlike in the T1D patients.
(top left) Average T1D patient at rest. (top right) Average T1D patient with exercise from t=120-195
min.(bottom left) Average healthy patient at rest. (bottom right) Average healthy patient with exercise
from t=120-195 min. Not that the saw tooth pattern is exactly the opposite in the healthy patient SM
insulin than in the diabetic patient SM insulin.

A.7 Insulin Absorption Rate and Delivery Rate

Dependence on Tissue Perfusion Rate
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Figure A.2: Absorption/Delivery rate constant dependence on perfusion rate ). The plateau shows that

these processes are surface area dependent.



187

Appendix B

A Direct Approach to Assessing
Insulin Sensitivity in the Oral
Minimal Model

This appendix includes a manuscript that summarizes an alternative method for explicitly
calculating insulin sensitivity in the Oral Minimal Model.
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1. INTRODUCTION

HE insulin sensitivity index (SI), which represents insulin’s ability to promote whole body glucose uptake
and simultaneously suppress endogenous glucose production (EGP), is a very useful proxy for estimating
insulin needs in humans[1]. Since the cardinal work of Bergman and Cobelli[2], in which the quantification of

SI was first described, the index has been used to great effect, providing insights into how insulin needs change
diurnally[3], after exercise[4], and with various hormonal interventions[5].  Additionally, SI has been used to
determine the state of a subject’s insulin resistance and glucose tolerance, and in turn their risk of developing type 2
diabetes[6]. More recently, SI has been used to improve next generation artificial pancreas control algorithms,
allowing the controller to adjust to changes in insulin needs[7]. For its multitude of uses, it is important to be able to
quantify SI accurately. One of the hurdles to calculating SI accurately is that a specialized mathematical technique
called optimization is needed. For this reason it would be useful to simplify the calculation of SI. This paper focuses
on reducing the mathematical complexity typically required to calculate SI.

SI is calculated by fitting a model of insulin-glucose dynamics, the Oral Minimal Model (OMM)[2], [8] to
experimental measurements of insulin, glucose, and if available (though not always required), glucose fluxes[2], [6].
The experimental data is obtained from one of several types of glucose tolerance tests: an intravenous glucose
tolerance test (IVGTT)[9], an oral glucose tolerance test (OGTT)[10], or a mixed meal tolerance test MMTT)[8]. In
these tests, the idea is to challenge an individual with a glucose load and then observe the dynamic response of
insulin and glucose over several hours. This dynamic response is then mathematically interpreted through the OMM
to determine SI. A high SI indicates that the individual is effective at utilizing insulin to control glucose
concentrations, i.e. glucose tolerant[6] or insulin sensitive. A low SI indicates that the individual does not make
effective use of insulin in controlling glucose concentrations (as is typical in type 2 diabetes[11]) i.e. glucose
intolerant or insulin resistant.

Unfortunately, there are various technical challenges in accurately obtaining SI from a glucose tolerance test.
These manifest themselves into two groups: The first is obtaining accurate measures of glucose flux during the
glucose challenge test (some methods do exist for obtaining SI without measuring glucose fluxes[12], [13], but these
are mathematically involved and/or have other drawbacks). The technical challenge of measuring glucose fluxes has
been largely overcome through advanced isotope dilution techniques that make use of one, two, or three isotopic

tracers to obtain increasingly more accurate model-independent[14] measurements of the rates of meal glucose



appearance (Raye,) and glucose disappearance (Rg)[14]-[17]. This is done by minimizing changes in the specific
activity (SA)[14].

The second challenge is mathematical. The essence of this challenge lies in the difficulty of mathematically fitting
the experimental data to a model of insulin-glucose dynamics, such as the OMM, in order to obtain the parameters
that make up SI. Indeed, the fact that the OMM is a nonlinear model makes determining SI difficult and is not a
trivial mathematical optimization problem.

The present work takes a direct approach to calculating SI so that researchers without access to specialized
optimization software can calculate SI straight from experimental measurements. As will be shown, the presented
formula is directly derived from the well-studied OMM, and under well-understood conditions provides a highly
accurate approximation of SI. The formula requires a measurement of Ra,,,, far from an easy task[18], but if post-
prandial glucose metabolism is already being studied then Ray,., should be an available measurement. This formula
would thus be useful in studies of healthy subjects such as [3], [5], [19].

Two datasets (A) and (B) will be used in this study. Each dataset will be used to validate the explicit formula for
calculating SI (Sleyp). The calculated Sl is compared to previously published values of SI from Hinshaw, Saad and
Cobelli (Slcop)[3], [5] that are considered the gold standard. In addition, a previously published method for explicitly
calculating SI (Slcaumo) from only glucose and insulin measurements[12] will be compared to Slco,. The three
methods of calculating SI are compared in three ways: (i) directly through their overall Pearson correlation, (ii)
through discriminant validation, and (iii) through Spearman rank-ordering. As will be seen, each of these
comparisons show strong agreement between Sl and Sl¢,,, and somewhat weaker agreement between Slcuumo, and
Slcob.

This paper is organized as follows: First, a brief description of the OMM is presented to inform the reader what
each aspect of the OMM represents. Next, the direct approach to calculating SI is derived with note of the specific
assumptions made and their implications on calculation accuracy. The new formula is validated on the two datasets
by comparing the resulting Sl to previously published values of Slc,, and also showing how Sl typically gives a
more accurate result than Slcaume. Lastly, there will be a brief discussion on the strengths and weaknesses of the

explicit method with emphasis on how the formula allows for clear and direct interpretation of SI.



2. MATERIALS AND METHODS

2.1. Subjects and Protocol

The original subjects were enrolled in a Mayo Clinic Institutional Review Board approved protocol. The data to
be analyzed is published in part in Hinshaw and Cobelli[5] (A) and in Saad and Cobelli[3] (B). (A) was of 12
subjects, each undergoing a control test and intervention test to provide paired data for a total of 24 samples. (B) was
of 18 subjects, each undergoing three tests at different times of day, for a total of 54 samples. One of the main
differences between (A) and (B) is that (A) consisted of a 75g carbohydrate meal and (B) only 50g. Though it is
necessary to describe the datasets herein, the objective of this study is to only utilize the data for validation. It is
therefore beyond the scope of this work to comment on scientific interpretations and conclusions.

In brief, eligible subjects reported to the Clinical Research Unit of Mayo Clinic in Rochester, MN at 4pm.
Demographics and specifics of each protocol are listed in [3] and [5]. A mixed meal (10kcal/kg, 55% carbohydrates,
15% protein, 30% fat) was consumed at approximately 5 PM. No other food was provided until the next morning.
An intravenous cannula was inserted into a forearm vein at ~ 8 PM for glucose tracer infusions.

The following morning (day 2), a triple tracer approach was performed as previously reported in [11], [15], [20].
At ~ 6 AM, a cannula was inserted into a hand vein of the contralateral arm for drawing of arterialized venous blood
periodically throughout the study for measurements of glucose, glucose tracers, insulin, c-peptide and glucagon
concentrations.

At ~7 AM (=0 min) of day 2 subjects had a mixed meal containing 75 grams of dextrose (A) or 50 grams of
dextrose (B) labeled with [1-">C] glucose. Blood was frequently sampled from 3 hours before the meal to 6 hours
after the meal for measurement of tracer-to-tracee ratios, glucose, and insulin. With the first bite of the meal at
time=0, an infusion of [6-’H] glucose was started and the rate varied to mimic the anticipated systemic rate of Ramea
for the next 6 hours[15]. At ~1 PM, all infusions were discontinued, the cannulae were removed and the subject was

provided lunch.

2.2. Analytical Methods

Insulin was measured with a 2-site electrochemiluminescence immunoenzymatic assay by DxI automated system
(Beckman Instruments, Chaska, MN). C-peptide was measured by the Cobas e411 (Roche Diagnostics, Indianapolis,

IN) using a 2 site electrochemiluminescence immunometric assay. Glucagon was measured with a direct, double



antibody radioimmunoassay (Linco Research, St. Charles, MO). Plasma samples were placed on ice, centrifuged and
then separated and stored at -80°C until assay. Plasma glucose concentration was measured using a glucose oxidase
method (YSI, Inc., Yellow Springs, OH). Plasma [6-°H] glucose SA was measured by liquid scintillation counting
as described in [11]. Plasma enrichment of [1-"*C] glucose was measured using GCMS (Thermoquest, San Jose,

CA) as described in [15]. Plasma glucose and insulin concentrations are shown for both datasets in Fig. 1(a,b,d,e).

2.3. Estimation of Fluxes

Fasting and postprandial rates of glucose turnover were calculated as described in [15] using the triple-tracer
technique. The systemically infused [6-°H] glucose was used to trace the systemic rate of appearance of [1-°C]
glucose contained in the meal. SA(t) (Specific activity i.e. ratio of plasma concentration of [6-°H] glucose to [1-"°C]

glucose) was used to calculate Ra,sc, the rate of appearance of ingested [1-"°C] glucose[17],

INF,,(t) PV, Gpc(t) dSAQD)
SA(1) SA(1) dt

Ra, . (t)=
, (D

where INF;y is the infusion rate of [6-3H] glucose, Gi;c is the plasma concentration of [1-13C] glucose, Vq is the
volume of distribution per body weight (fixed to 200 mL/kggy) times the subject’s bodyweight, and p is the pool

fraction, 0.65. The total rate of appearance of meal glucose can be calculated as

TTR

meal

Ramm,(t)zRa13C(t)~(l+ ! ]
, (2)
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Fig. 1. Measured Inputs and Outputs. Average measured glucose concentration (a,d), insulin concentration (b,e), and calculated Rayea (c,f) vs.
time for (A) (a,b,c) and (B) (d,e,f). 95% confidence interval are shown as error bars. Dataset (A) is a paired study with each subject undergoing
a control and intervention test, and will be used for discriminative validation of the explicit method. Both datasets (A) and (B) will we used for
validation through a Pearson and Spearman correlation analysis.

where TTR;cq 1S the ratio of [1—13C] glucose to unlabeled glucose in the meal. Ra,, is shown in Fig. 1(c,f).
Even though the data presented utilizes a triple-tracer protocol, the measurement of Ra,,, using the dual-tracer
method would be similar if the systemic tracer is infused to mimic the absorption of the ingested glucose. Thus the

methodology described in this paper is equally useful for dual-tracer and triple-tracer techniques.
2.4. Statistics

Statistics are presented (with noted exceptions where standard deviation (SD) is used) as the sample mean +
standard error of the mean (SEM). In the figures 95% confidence intervals (CI) of SEM are used. A student’s t-test

was used for statistical analysis.
3. Theory and Calculation

3.1. The Oral Minimal Model — A Brief Description

The oral minimal model (OMM)[6] is a model of insulin-glucose dynamics that can be used to assess a patient’s
SI from a glucose tolerance test. It is a nonlinear lumped parameter model of whole body glucose metabolism, and is
made up of two equations. Equation (3) is a single compartment model that governs insulin action (X). X can be
thought of as a variable rate constant (1/min are the units) that describes the ability of insulin to promote glucose
uptake and suppress glucose production. Equation (4) is a single compartment model that governs glucose dynamics

in plasma. The equations and their initial conditions (unperturbed insulin and glucose concentrations) are



dxX

e pX+p(-1) X(0)=0

dt ,(3)
96 _ 5 6-G)-xG+ R Go)=g,
dt \% , (4)

where the variables are X and glucose concentration in plasma (G). The inputs are the measured insulin
concentration in plasma (I) and the rate of meal appearance (Ray,). The constants are basal glucose concentration
(Gyp) in plasma, basal insulin concentration (I,) in plasma, glucose effectiveness (Sg), i.e. the ability of glucose itself
to promote glucose uptake and suppress its own production per volume of distribution (here set to a population
average value of Sg=0.014 1/min[8]), and V is the volume of distribution of glucose in the body (here set to a
population average value of V=1.7 dL/kggw [8]). The parameters p, and p; are also treated as constants, however
they are unknown and to-be-determined. The ratio of p; to p, times the volume of distribution V, define whole-body

SI

s, =Ly
p2 (5)

The units of SI are dL/kg/min per pU/mL. The parameter can be defined as the insulin action per unit insulin
concentration. A more specific SI definition will be presented in the discussion. It is the objective of this paper to

provide a simplified means of calculating SI by a direct approach.

3.2. Method 1: Previously Published Values of SI via Cobelli’s Method (Slc,p)

Cobelli and co-authors have published and validated Sl values in a number of studies[2], [3], [8], [12], [13].
Thus the values of SI obtained by Cobelli (SIco,) are considered the standard and will be used to validate the Sl
that is calculated using the explicit formula derived in this paper. The values of Sl¢,, presented here come from two
previously published studies[3], [5].

Cobelli and co-authors use a nonlinear least squares optimization procedure to obtain Slc.,. Additionally, Cobelli



preprocesses the data prior to the optimization procedure, using deconvolution and other techniques ([21], [22]) to
correct for measurement errors that result from the rapid change in glucose flux at the beginning of a meal. This
rapid change often results in moderate overestimation of Ray,. In these cases the fraction of absorbed glucose
(integral of Ray,..; over the total ingested glucose) is greater than one, which is not possible. Cobelli and co-authors
correct for this overestimation and as such Slc,, is typically lower than the resulting SI if the data were not
preprocessed. The data used in this study to calculate Sl.,, was not preprocessed and as such their values are

systematically higher than Slc, as will be shown.

3.3. Method 2: SI obtained via Direct Approach (Sl.., i.e. Explicit Method)

An explicit formula to calculate SI, we call Sl,, is now derived. The benefit of this formula is Sl., can be
calculated directly from experimental measurements, with no need for optimization techniques.

The following derivation follows work presented by Caumo et al.[12], but rather than making an assumption
about the form of Rape, as Caumo et al. did, we have assumed that measurements for Ra,., are available. For
brevity, the details of the derivation are in the appendix. Here, only the main steps will be demonstrated.

We start by integrating (3) from time 0 to the final time t¢

X(t,)- X(0)=—[ p,X(0)dt + [ p,(1(1) - 1,)dt . (6)

We apply the initial condition X(0)=0 and then assume that p, and p; are constants in time (as is typical).

Multiplying our equation by V, we can then algebraically rearrange to obtain an expression for full body SI as

v-xa,) + Vj X(t) dt

S = P> -
jAI(r) dt
0

» (D

where AI(t) =I(t) - I,. Now, in order to make use of this expression we need to be able to evaluate the integral of X.

To this end we rearrange (4) as



Ra
XG = Znea -8, (G- G)—d—G
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Then dividing through by G (which never goes to 0), and integrating the expression in time from 0 to t; yields

| Ra,. . S, AG . T1dG
'([th:‘([ V. Gl dt — JEE‘” o

where AG = G(t) - Gy,. This expression for the integral of X is then substituted into (7). We assume that Sg and V are

constant in time, then after algebraically rearranging the resulting equation we obtain

V-X(@t,) G
(f)+jRa’”“” dt-V-S J' )

S = )23 0 G G(O) .(10)

J.Aldt

The last part of the derivation is to find an expression for the unknown X(t¢), to do this we solve (3) using the

method of variation of parameters (see appendix for details). The solution to (3) evaluated at the final time t;is

lf
X(t,)=ps[ """ Al dt
0 an

Finally, we can substitute (11) into (10), and algebraically solve for SI to obtain the expression

s G(t
[ R gy vsj—d v

G G(0)
SI=2 . (12)

TAIdt - TJZ“’”AI dt
0

0
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At this point, we have yet to make any
approximations, and as such our expression is exact
for determining SI. However, in order to obtain an
explicit expression for SI - that is an expression that
can calculate SI from measured, known values only
- it is necessary to make some assumptions about
the only unknown parameter, p,. In the appendix, it
is shown that for typical values of p,, the second
term in the denominator of (12) is typically small
compared to the first term. Physiologically this is
the case because insulin is no longer active in the
system 6 hours after meal ingestion. With this

argument we neglect the second term and obtain the

fully explicit definition for SI, which we call SI.y,



G(t,
jRamM di—V-S j— dr—v 10 240
G G(0)

S, = 0 - . (13)
jAIdt

A second approximation further simplifies the expression; given that in healthy subjects glucose levels are nearly
the same at the beginning and the end of the test, G(tr) =~ G(0) and In(G(t;)/G(0)) = In(1) = 0. Thus we may neglect

the third term in the numerator of (13)

jR"G’"w’dt V.S j

jAI dt
(14)

Equation (14) allows for SI to be calculated only from known, measured values. This is an alternative convenient
method for calculating SI, not requiring mathematical optimization techniques or computer solutions to differential
equations. To calculate ST one needs to only carry out three integrals of the measured data. This can be done using
the trapezoidal or midpoint rule (see worked example in supplementary material referenced in appendix).

In using this simplified formula, it is necessary to understand the potential for error. In Appendix C an error
formula is derived to estimate the upper bound of the error from the true value of SI (12). It is shown that for typical
parameter values, the error incurred through this approximate formula is less than 10%. However the error will be
small only under specific conditions and assumptions, namely:

1. 6 hours of observation are allotted after the ingestion of the meal. This ensures that G(t) and X(t) return to
basal prior to the cessation of the study. (i.e. G returns to Gy and X returns to 0)

2. Subjects are healthy (non-diabetic) individuals.

3. Subjects are not undergoing significant physical activity during the test.

4. Mixed meal contains < 75g carbohydrates with similar composition as [3], [5].

If these conditions and assumptions are not met, the explicit formula may not be accurate.



3.4. Method 3: SI obtained via Caumo Method (SIcuums)

An explicit formulation for calculating SI was derived by Caumo ([12] Equation VII). This formula has the
benefit of not requiring the measurement of Ra,.,. Rather a form for Ra,., is assumed, and it depends only on
glucose. This assumption makes the measurement of SI very easy, as the difficult, expensive, and time-consuming
tracer methodology to measure Ra,,, is avoided.

However, there is a drawback to the Caumo method; calculation of SI can be skewed because the measured Racq
is not closely approximated by the assumed form given by Equation III in [12]. The consequences of this will be

discussed in the Results and Discussion sections.

4. RESULTS

In order to validate Sl,, three arguments are made in what follows. First, overall agreement is indicated with
simple linear regression plots. Next, discriminative validation between the control and intervention group of dataset
(A) is carried out by comparing the receiver operating characteristic (ROC) curve of the three methods. Lastly, a
rank-ordering of the resulting SI is plotted to indicate that the explicit method preserves rank-order compared to

Cobelli’s method.

4.1. Pearson Correlation of the Methods
Slexp is calculated using the explicit formula Equation (14) derived in the Section 3.3. for the 24 samples in (A)
and for the 54 samples in (B). Slcaumo 1S calculated as described by Equation VII in [12]. The resulting SI values
from these three methods are compared in Fig. 2, with the statistics shown in Table 1.
From Fig. 2 it can be seen that the agreement between S, and Slc, is strong indicated by a high correlation
coefficient, r = 0.93 (A) and r = 0.92 (B). The coefficient of determination values are R* = 0.86 (A) and R* = 0.84

(B). The slope of each regression is m = 0.96 (A)

TABLE I
and m = L15 (B). However, there are a few STATISTICS OF SI FOR THE THREE METHODS
. . . Dataset A Dataset B
samples that show large discrepancy in Fig. 2a, and Sley  Slew  Slewmo | Slay  Sleos  Sleame
Mean ST 20.0 19.0 14.3 10.3 8.1 6.4
upon further examination this was found to be due  Standard 10.0 96 6.8 4.7 38 3.1
Deviation (SD)
to overestimation of Rame. This observation will ~ Cocfficient of /0.0 0.51 048 046046 048
Variation (CV)
Standard Error | 2 2 1.4 0.6 0.5 0.4
further explored in the discussion. of Mean (SEM)

Units of all quantities are 10™* dL/kg/min per pU/mL (CV excepted)



In comparing Slcaumo t0 Slco, We see that there

ROC Curve
1 is a strong correlation with an r = 0.89 (A) and r =
0.8 - 0.96 (B) and R* = 0.79 (A) and R* = 0.92 (B).
EE S o T 4
- However, for each dataset the slope of the linear
£06
= regression is only m = 0.63 (A) and m = 0.78 (B),
)
c
%0-4 SI_Cob indicating that although the correlation between
----- SI_Caumo ) )
the two methods is strong, the overall agreement is
021 v .= e Sl_exp
still weak in comparison to the slope obtained
0 -
0 0.2 0.4 0.6 0.8 1 from comparing Sl.,, which is closer to 1 for both

1-Specificity
Fig. 3. Receiver Operator Characteristic (ROC) Curves. ROC curves for each
method applied to dataset (A) as a test to discriminate between a control and
intervention subject, based only on the magnitude of SI. The AUCs of the
Cobelli, Caumo, and explicit methods are 0.67, 0.61, and 0.69, respectively. 4.2. Discriminative Validation
Notice the AUC of the Cobelli and explicit methods are very close, and
significantly greater than the Caumo method, indicating superior
discriminative power. The diagonal dotted line represents a random test.

datasets.

Dataset (A) is made up of a control and
intervention group. To test the ability of each method to discriminate between control and intervention subjects the
receiving operator characteristic (ROC) curves are plotted in Fig. 3. The curves of the three methods follow a similar
trajectory, and importantly are both well above the diagonal line; this demonstrates that there is indeed a discernable
difference from the control to the intervention group, consistent with the conclusions in [5]. To quantify
discriminative power, the area under the curve (AUC) of the ROC curve is calculated. The AUC is 0.69 for Sl

0.67 for Slcqp, and 0.61 for Slcaymo. The discriminative powers of Sley, and Slcp, are similar, and both are superior to

SICaumo-

4.3. Rank-Ordering

The rank-ordering of SI for only Sle, and Slco, is shown in Fig. 4, along with the squared Spearman rank-
ordering coefficient, Ri. There is a high Spearman correlation with each dataset, r,= 0.93 (A) and r;= 0.91 (B). The
squared Spearman coefficient of determination is R> = 0.87 (A) and Ry* = 0.82 (B), indicating that the rank-ordering

is mostly preserved regardless of the method used. This ranking provides further evidence of the validity of Slcp.

5. DISCUSSION

A direct approach was used to reduce the complexity typically necessary to calculate SI. Because this is a new

alternative method of calculation it is necessary to validate S, vs. the gold standard of calculating SI (Slcep). In



addition we have compared Slcaumo, @ method Dataset A

25 — Rank-Ordering of SI,,, vs. SIg,,
similar to Sleyp, to Slcop in order to show how Sley,

20 | RZ=087 -
is an improvement over Slcaumo-

o
1

A summary of the resulting statistics is shown in

SI,, Rank-Order

Table 1. From this table it is clear that Sl., and

Slco,  produce values of SI that are in high

0 5 10 15 20 25

agreement. For (A) Sk, =20 + 2 10 dL/kg/min SI,,, Rank-Order

Dataset B
Rank-Ordering of SI(,W vs. Slgg,

per pU/mL and Slcg, = 19 + 2 10™* dL/kg/min per

60 -
pU/mL, with CVs of 0.50 and 0.51, respectively.
(B) shows similar agreement; Sle, = 10.3 + 0.6

10 dL/kg/min per pU/mL and Slcq, = 8.3 + 0.5

SI.,, Rank-Order

*10* dL/kg/min per pU/mL, with both CVs = 0.46.

This agreement is further indicated by a high

SI¢,,, Rank-Order

Pearson correlation coefficient of r=0.93 (A) and r

Fig. 4. Rank-ordering Comparison of the Cobelli and Explicit Methods for

Both Datasets. The Spearman rank-ordered correlation coefficient is r,= 0.93

(A) and r;= 0.91 (B), their squared values are shown above. The strong

correlation indicates that rank-ordering is mostly preserved for the explicit

datasets. method (Sl.y,) as compared to Cobelli’s method (Slco), further validating the
explicit method.

=0.92 (B) and also the slope is close to 1 for both

Slcaumo produces values of SI that have
questionable accuracy compared to Slco,. Though, Slcaume has a high correlation with Slcy, at r=0.89 and r = 0.96
for (A) and (B), respectively (Fig. 2c and 2g), the slope of the linear regression is less than 0.8 for both of these
datasets, and only 0.63 for (A) indicating a significant underestimation of SI.

The rank-ordering (Fig. 4) for SIco, and Sley, paints a similar picture, with a Spearman correlation coefficient of r;
=0.93 (A) and r;= 0.91 (B). This indicates that rank-ordering is mostly preserved when Sly;, is use in place of Slcop.

To validate further we performed a discriminative analysis of each method using the control and intervention
groups in (A). The most commonly used plot for analyzing discriminative power is the receiver operator
characteristic (ROC) curve. The curves for the three methods are shown in Fig. 3. Each ROC curve represents the
tradeoff between true positive rate (or sensitivity) and false positive rate (1-specificity). In the case of our dataset,
each curve conveys the ability of a particular method to discriminate between a subject from the control group and a

subject from the intervention group. The curves can be compared to the dotted diagonal line, which indicates the



discriminative power of random guessing, i.e. a useless test. Because the three methods fall above the diagonal line,
they all possess discriminative power over random guessing, as is expected. The AUCs of each of the methods are
0.69 and 0.67 for Slcy, and Slc, respectively. The AUC of Slcaumo 1s only 0.61, a significant decrease from the other
two methods.

Given that the explicit and Cobelli methods exhibits similar values of SI, similar discriminative power, and
similar rank-ordering, we may conclude that these two methods are can be interchanged as a means to calculate SI in
healthy subjects. Because Slcaumo has inferior agreement with Slc,, compared to Slc,, and has lower discriminative
power, we can further conclude that S, is superior to Slcaumo. One of the potential reasons that Slcaumo gives
inferior results is because the assumed Ra,., waveform from Equation III in [12]. This waveform does not capture
the blunted Ray,, that is present in larger meals (75g) as in dataset (A) (shown in Fig. 1a).

The explicit formula has been shown to give accurate values of SI; however, the formula should not be used
blindly. There are a few important assumptions made for it to be valid. The most important assumption is that X
falls back to nearly O prior to the termination of the test. Because we do not calculate X(t) when using the explicit
formula, we have no way of knowing with certainty that this will always be the case, however under the same
conditions of the data presented, the error should be similarly small as the results obtained here. The specific
conditions of the MMTT datasets were as follows: (i) 6 hours of observation were allotted after the ingestion of the
meal, (ii) Subjects were healthy individuals, (iii) Subjects were not undergoing significant physical activity during
the test, (iv) Mixed meal contained < 75g carbohydrates and consists of 10kcal/kg, 55% carbohydrates, 15% protein,
30% fat as per [3], [5]. For meals of small size with a lower fat or protein content, the formula should also be valid,
assuming that the rate of digestion is as fast or faster than the 75g mixed meal administered here. A minimum of two
tracers[16] should be utilized in the measurement of Ra,., to ensure accuracy, as SI is very sensitive to this
measurement. In general, this explicit formula would be useful in studies of healthy subjects such as [3], [5], [19].

Until further validation is performed, the explicit formula is discouraged from being used for tests other than
MMTT. Validation work would need to be carried out before the formula could be used for an Oral Glucose
Tolerance Test (OGTT). Additionally, it is expected that the formula would be less accurate if it were used with data
from a diabetic subject, as typically glucose and insulin levels do not fall back to basal as quickly as in healthy
subjects. This observation may invalidate the assumption that X returns to 0 prior to the cessation of the observation.

Conveniently, if one wishes to check for the potential of error given insulin concentration measurements, an



equation for estimating error is in the appendix (A22). This formula may be used as guidance as to whether error
incurred from the use of the explicit method will be significant.

Even though there is strong agreement between Slc,, and Slc,p, it is worth mentioning that some samples do
show a discrepancy and on average Slc, is higher than Sl¢., especially in (B). This discrepancy can be attributed
largely to the lack of data preprocessing; not having to do with the method of calculating SI or a violation of
assumptions (returning to basal), but rather with a change in the input data. Ra,,, is often overestimated even when
great care is taken and multiple tracers are used in an attempt to measure fluxes as accurately as possible[15]. The
overestimation is due to an imperfect tracer clamp, which results in non-constant specific activity of tracers[14].
The error is apparent when looking at f, the fraction of ingested glucose that is actually absorbed[8]. f is defined as
the integral of Rap,, during the test, divided by the meal dose. For (A), f= 1.02 + 0.18 (SD). In (B) f was much
greater, with f=1.15 + 0.19 (SD). Because f can not possibly be more than 1 (and typically f~= 0.9 is thought to be
true[8], [23]), this indicates that in many samples Ray,.,; was overestimated. For these cases preprocessing[21], [22]
the data to correct for overestimation would increase the accuracy of quantifying SI. This likely explains the
discrepancies seen between Sley, and Slc,. Particularly in (B), fis on average 28% greater than a nominal f of 0.9.
This directly explains why Sl is 25% larger than Sl¢,. In fact when using nonlinear least-squares optimization to
calculate SI (not-shown) without data preprocessing, there was almost perfect agreement (R* = 0.98) with Slexp
confirming that the discrepancies are due to data preprocessing rather than error incurred from approximations made
in the explicit method.

Although there may be a benefit in preprocessing data to correct for overestimation of glucose fluxes (and other
measurements), the objective of this study is to provide a formula that reduces the complexity of calculating SI. It
would thus be beyond the scope of this study to introduce complex data preprocessing techniques on the inputs.
Undoubtedly preprocessing may help reduce measurement error and researchers are encouraged to minimize the
error of the inputs (G, I, Ray,., ) before utilizing the formula.

There are some clear benefits to utilizing the formula, yet there are also some weaknesses. First, if glucose
absorption or X is slow in a given test, then assumptions may be violated, introducing error. This type of error would
not be as large when using optimization methods (as in Slc.). Additionally, if the actual value of the parameters p,
and p; are desired, rather than just their ratio (i.e. SI), they cannot be acquired from the explicit method. Still, if

proper care is taken to ensure that assumptions are not violated, and if the actual value of p, and p; are not needed,



then the explicit formula provides a means to assess SI that is mathematically direct and highly accurate.

There are also indirect benefits of using the explicit method, particularly with regard to interpreting the meaning
of the index SI. When looking at the OMM, it is not immediately clear what the parameters p, and p; mean, and why
the ratio of them is important enough to give a name, insulin sensitivity. In our algebraic manipulations, we have
expressed the definition of SI in a very direct form, allowing for direct interpretation. To facilitate this interpretation,

it is illustrative to consider again (7) (with the first term neglected), and multiply it by 1/t

Iy
vle(t)dt
tf 0

1t
—jAI dt
tf 0 (15)

Equation (15) illustrates mathematically the definition of Sl — it is the time-averaged X divided by the time-
averaged plasma insulin concentration above baseline. More succinctly, it is the total effect of insulin over the total
amount of insulin above basal, for a particular meal.

We may obtain further understanding of the meaning of SI by re-examining the glucose dynamics (8). Because
the OMM glucose dynamics define the insulin effect (XG) to be linearly proportional to the glucose concentration,
we may divide through by glucose concentration to obtain the insulin effect per unit glucose concentration, i.e. the

well-known ‘insulin action (X)’

XZL(M—SG(G—Gb)—d—G)
G\ Vv dt ) 1)

By integrating this equation over the total meal duration we obtain the ‘total insulin action’

[ X = j’fi(M—SG(G—G,,)jdt
0 oGl v an



Finally, substituting into (15) we get (identical to (14))

1y 1
— [~ (Ray = Ss-V-AG)dt

meal

lﬂmm
I . (18)

This definition precisely states that SI is equal to the time-averaged exogenous glucose absorbed per unit glucose
minus the glucose effectiveness per unit glucose all divided by the time-averaged insulin concentration above
baseline. This interpretation is consistent with the definition of SI from the literature, and as defined in Section 3.1.

This direct interpretation is an added benefit of our explicit expression of SI.

6. CONCLUSION

A direct approach that yields an explicit formula (14) to calculate insulin sensitivity is derived and validated. We
have shown that for two datasets consisting of healthy subjects undergoing a mixed meal tolerance test the explicit
formula gives accurate results that are comparable with gold-standard published values of insulin sensitivity.
Additionally, we have shown that the explicit method is superior to a comparable explicit method of calculation
previously published. To prevent pitfalls of utilizing the explicit formula it is important that care is taken to ensure
certain assumptions are valid during the test; typically 360 minutes of observation are required after the ingestion of
a meal. In summary, the explicit formula clearly interprets insulin sensitivity and provides an accurate and direct

alternative calculation method for healthy subjects undergoing glucose tolerance tests.

APPENDIX

A. Example Calculation and Matlab Script

An example calculation and Matlab Script for calculation of S, via Equation (14) can be found at the repository:
TBD

B. Detailed Derivation of Sy,

The Oral Minimal Model (OMM) is

dX
e pX+p(-1) X(0)=0

dt , (A1)
96 _ 5 G-G)-xG+ R Go)=g,

dt 14 .(A2)

We start with the insulin action equation (A1) of the OMM and integrate it from time 0 to the final time (tp):



1 ;
chl—):dt = j—p2x+ pi(I—1,)dt
0 : (A3)

2
X(t,)~ X(t,) = j —p, X+ py(I - Ib)dt
(A4)
We set X(to) to 0 (as defined by the initial condltlon X(0)=0) and assume that p, and p; are constants in time (as is
typically assumed), and rewrite this equation as

) Iy
X(t,)= —psz+p3det
0 0

, (A5)
where Al =1(t) - I,. A rearrangement yields
X(1,)
—+ j Xdt
P _ pz
p
’ j Al dt
(A6)
Finally, we multiply (A6) by the volume of dlstrlbutlon V to obtain an expression for SI in terms of V, X, p,, and Al,
-X(1,)
VXt , Vj Xdi
si=Ly-_ P
P> f
j Al dt
(AT)

Now, in order to make use of this expression we need to be able to evaluate the integral of X. To this end we
rearrange our glucose equation (A2)

R
XG =Bt 5 G-G,)-49
v t

d (A8)
Then we divide through by G (which never goes to 0), and integrate the expression from 0 to t; to obtain
tr

Iy I Iy
Jth:JM—’ t— SGAGdt—J.lﬁd
0 0 V-G 0 G G dt (A9

Note that AG = G(t) - G,. Now we have an expression for the integral of X and can substitute it into our expression
SI in (A7). Also, we assume that V and Sg are constant in time, and utilize the identity 1/G dG/dt=d In(G)/dt where
In is the natural logarithm. The resulting expression is

V-X(tf)+J-Rameal di— V- SJ‘ G( )
ST = P, 0 G(0) . (A10)
_[Aldt

The next part of the derivation is to find an expression for X(tr). To do this we solve the differential equation (A1)
using the method of variation of parameters. To start we obtain the homogenous solution. We find this solution by
setting the forcing function I-I, to zero and finding the exponential solution that satisfies the homogenous
differential equation, namely

— Dot
X, =Ae (All)
where A is a yet to be determined coefﬁment With the homogenous solution in hand, we can now use variation of
parameters to find the particular solution. Our proposed particular solution is

— o, Dot
X, =e ™ -ull) (A12)



We substitute the particular solution into (A1) to obtain a first order differential equation in u:
i = pie” (1) - 1,).
which can be integrated to yield u(t):

(A13)

u= pJe"zTAIdT

(A18)
where 1 is a dummy variable of time. Now we have our homogenous and particular solution. Adding them together
we obtain the general solution

Xt)=Ae ™™ +e_P2’p3Jep27NdT

(A14)
We can now apply the boundary condition X(O) 0 to show that A= 0 The final solution for X is

X(t)=e p3jeP2’A1 dr

(A15)
The expression for SI in (A10) takes the ﬁnal value of X, X(tf) To this end we evaluate (A15) to obtain X(tf)
i
X(t,) :nge"z“_tf)AIdt
0 (A16)

Note we have switched from the dummy variable t back to t. Finally, we can substitute (A16) into (A10), and solve
for SI again to get the expression

G(t
jRamal dt—V-S j _y.m 2
e G(0)
SI = 0 L(A17)
j Al dt - je”“"’fw dt
0

At this point, we have yet to make any approximation (with the exception of assuming that our parameters, p;, pa,
Sg, and V are constant in time, as is typical), and as such our expression is exact for determining SI. However, in
order to obtain an explicit expression for SI (i.e. an expression that can calculate SI from measured, known values
only) it is necessary to make some assumptions about the only unknown, p,. The function inside of the integral in
the denominator of (A17) can be rewritten to be

l/»
_[(1 - e”z("t”)AIdt . (A18)

0
In most cases, Al is small about two hours after meal ingestion. Correspondingly, for typical values of p, (i.e. 0.02)
the quantity in parentheses can be shown to be almost constant for these same two hours. Thus the argument can be
made that the exponential term contributes little to the integral. With this, we neglect the second term and obtain the
fully explicit equation for SI

G,
jRam’ di—V-S j— di—v.n 24
G(0)

SI =2 . (A19)
jAzdt

A second approximation further simplifies the expression; given that in healthy subjects glucose levels are nearly the
same at the beginning and the end of the test, G(t;) = G(0) and In(G(ty)/G(0)) = In(1) = 0. We may neglect the third
term in the numerator of (A19) to obtain the final expression for Sle,



Iy ly
j—Ramwl dt—V- SG'[&dt
_ 0 G 0 G
SIexp =

Iy
j Al dt
0 (A20)

C. Error Estimate of Sy,

Equation (A20) is the approximate value of the true value of SI expressed by (A17). It would be convenient to
estimate the error incurred from the approximation. To do this we evaluate the percentage error, E, based on the
formula

SI-SI,
%E =——=2-100
S1 , (A21)
where Sl is the true value of SI and Sl., is approximate. We substitute in Eq. (A20) and (A17) (neglecting the third
term in the numerator) and obtain the expression

[7em Al di
0 100

RE = ,
O’Aldt

. (A22)

With (A22) we can directly calculate the error made when approximating SI with Sl.,,. Typically p, ranges from
0.01 to 0.10 1/min (found from optimization - not shown). We can obtain an estimate for the upper bound of the
error by choosing a p, on the low end, say p,=0.01 1/min, because a lower p, will lead to the largest error. For (A)
and (B) the upper bound error was calculated with (A22) and found to be less than 20%(A) and 18%(B) for all
subjects, with an average of 10%(A) and 9%(A). Upon using optimization to determine the actual values of p, the
actual error for each subject was calculated by plugging in p, to (A22). It was found to be less than 8%(A) and
22%(B) for all subjects (only 2 of the 54 samples were above 10%) and 3%(A) and 4%(B) on average. Thus using
(A22) with a low p, =0.01 1/min tends to give a very conservative estimate of upper bound error.
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Appendix C

Mathematical Derivations

C.1 Analytical Solution to Spherical Diffusion
Equation

This Appendix provides an analytical solution to the insulin absorption problem that was
solved in Chapter 2. Though this analytical solution was not employed in the model deriva-
tion, it is a good academic exercise and hence is included here. Note that the nomenclature
in this appendix is different than that employed in the body of the dissertation.

C.1.1 Problem Definition

Insulin is injected into the subcutaneous tissue at a prepared insulin concentration c¢,,. and
then spreads according to diffusion coefficient D, and slowly absorbs into the bloodstream
dependent on the rate constant £ . Mathematically the concentration of insulin in the
subcutaneous tissue c is described by

Oc

— = D,Vic — 1
Y p Ve — ke (C.1)
subject to
c(0,7) = cpre H(a— 1) (C.2)
c—0asr — oo (C.3)
Oc
— A4
5 0asr — oo (C.4)

Where the initial concentration is a top hat profile with magnitude c,,. and a is the dose
(d) radius found from the relationship d = ¢,,.4/3ma?.

Though in other chapters of this dissertation is was shown that the insulin absorption
rate is not dependent on the spreading rate of insulin in the subcutaneous space, we have
still developed an analytical solution to the spherical heat equation as an academic exercise.
This solution was confirmed with a numerical solution to the same equation.
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C.1.2 Mathematical Formulation

The spherical diffusion equation with a sink term in an infinite domain, with constant diffu-
sivity a, can be written as

% + ku = o*V?u. (C.5)

In an infinite domain the boundary condition on the solution w is

u—0asr — oo

—~~
aa
~N O
~— —

u=1 for re [O,a] and 0 elsewhere.

C.1.3 Transform Method

We will solve C.5 using a Hankel transform, modified for spherical symmetry. The spherical
Hankel transform is defined as follows

Flsy =H{f(r)} = / TR ) To(sr)dr (C8)
Firy =H () = / " 2 f(5) T (sr)ds. (C.9)

Where 7, is the zeroth order spherical bessel function, i.e. the sinc function.
Next, by assuming spherical symmetry of C.5, the laplacian operator simplfies to

2 10,0

= —. C.10
r2ar or ( )

It can be shown (see appendix for details) that by applying C.8 to C.10 we get
H{V?u} = —5°1 (C.11)

By applying this transformation to C.5 we reduce our partial differential equation to an
ordinary differential equation in time.

g—? + (k+ a?s?)i = 0 (C.12)

Which is easily solved by the exponential function

(s, t) = A(s)e (Fre?s) (C.13)

To find A(s) we need to calculate its transform
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Afs) = /0 A T (sr)dr (C.14)

Where A(r) = H(a —r) is the Heaviside step function that is 1 at » < a and 0 for r > a,
consistent with the initial condition C.7. Plugging in and using integration by parts, our
expression for A(s) becomes

~ oo 1 a
A{s} = / r?H(a —r)J,(sr)dr = —/ rsin(sr)dr (C.15)
0 S Jo
Lr—rcos(sr)je 1 [¢
= |\ - q
s[ . . + 5/0 cos(sr)dr} (C.16)
1 sin(sa)
=3 [ — acos(sa) + T} . (C.17)
Thus our solution in frequency space is
u(s,t) = E [ — acos(sa) + M} ¢~ (ko) (C.18)
, = . . :

We may convert back to physical space through the inverse Hankel Transform C.9

sm(sa)]

u(r,t) = /00 [— acos(sa) + e~ (ke 7 () ds. (C.19)
0

This integral can be solved numerically.

Solution Validation

To validate our analytical solution, we will compare it to the numerical solution using a
forward time centered space (FTCS) numerical scheme. This numerical scheme is simply
derived and is applied to C.5 to obtain

a? 202 ul'yy — uf

(Ar)? Ar i
The index n is the index for time, and the index 7 is the index for space (radial coordinate).
Using a stable timestep that satisfies the CFL condition, we simulate the diffusion process

subject to the boundary conditions defined in C.6 and C.7 using C.20. This numerical
solution is compared to the analytical solution in Figure C.1 and C.2.

W = A (- 2ul ) + —cu]. (C-20)
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Analytical Solution to Spherical Heat Equation

0.9 —

Concentration
o o ) o o o
© IS o > 3 »
T T T T T T

o
o
T

;\\\\

1 — 1

Figure C.1: Analytical solution to spherical diffusion equation.

4

C.1.4 Transform Details

Our goal is to show that

5 6 7 8
R (Radial Coordinate)

H{V?y} = —5°].

We start by applying the spherical Hankel transform C.8 to the spherically symmetric
laplace operator C.10 and integrating by parts

© .10 ,0
H{VQQ}:/O TzﬁETQa—Z;%(ST)dT
_ <0 L0y
—/0 " Ejo(sr)dr
dy | < L0y 0
= T G = [ g leryie

=0- [yr2§jo(sr)‘zo — /OOO y(?r%%(sr) + r25a_:2jo(sr)>d7“]

B [e'e) 8 ) 82
— —O—I—/O y<27’5‘70(s7’) +7r w[ﬂ(sr))dr]
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(C.21)

(C.22)
(C.23)
(C.24)
(C.25)

(C.26)
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Numerical ion to ical Heat E
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Figure C.2: Numerical solution to spherical diffusion equation.

and by using separation of variables on C.5 one obtains the zeroth order spherical bessel
equation

2
7ﬂ2d R(sr) N 2Tallti(sr)

dr? dr

+ s**R(sr) = 0 (C.27)

which is exactly satisfied by the zeroth order spherical bessel function R(sr) = J,(sr) yielding
the relation

2
2 To(s7) N 2rd~7o(37’) — 227, (s) (C.28)

dr? dr
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and thus C.26 can be rewritten as

H{V?y} = /Omy<2T£%(sr) + 7‘2%\70(57“0(# (C.29)
H{V?y} = /OOO y( — s2r2jo(sr))dr (C.30)
H{V?y} = —5 /000 yr2J,(sr)dr (C.31)
H{V?y} = —5%7. (C.32)

Note that we have assumed that y — 0 with 1/r% as 7 — oo, which allowed us to eliminate
the boundary terms in integration by parts. This is a reasonable assumption because of the
spherical nature of diffusion.
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Figure C.3: The author (center) and his wonderful labmates, AJ (left) and Claire (right), during their walk
to UC Berkeley campus on a brisk morning.
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