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Abstract

Introduction.—Untargeted metabolomics holds significant promise for biomarker detection and 

development. In resource-limited settings, a dried blood spot (DBS)-based platform would offer 

significant advantages over plasma-based approaches that require a cold supply chain.
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Objectives.—The primary goal of this study was to compare the ability of DBS- and plasma-

based assays to characterize maternal metabolites. Utility of the two assays was also assessed in 

the context of a case-control predictive model in pregnant women living with HIV.

Methods.—Untargeted metabolomics was performed on archived paired maternal plasma and 

dried blood spots from n=79 women enrolled in a large clinical trial.

Results.—A total of 984 named biochemicals were detected across both plasma and DBS 

samples, of which 627 (63.7%), 260 (26.4%), and 97 (9.9%) were detected in both plasma and 

DBS, plasma alone, and DBS alone, respectively. Variation attributable to study individual 

(R2=0.54, p<0.001) exceeded that of the sample type (R2=0.21, p<0.001), suggesting that both 

plasma and DBS were capable of differentiating individual metabolomic profiles. Log-transformed 

metabolite abundances were strongly correlated (mean Spearman rho=0.51) but showed low 

agreement (mean intraclass correlation of 0.15). However, following standardization, DBS and 

plasma metabolite profiles were strongly concordant (mean intraclass correlation of 0.52). 

Random forests classification models for cases versus controls identified distinct feature sets with 

comparable performance in plasma and DBS (86.5% versus 91.2% mean accuracy, respectively).

Conclusion.—Maternal plasma and DBS samples yield distinct metabolite profiles highly 

predictive of the individual subject. In our case study, classification models showed similar 

performance albeit with distinct feature sets. Appropriate normalization and standardization 

methods are critical to leverage data from both sample types. Ultimately, the choice of sample type 

will likely depend on the compounds of interest as well as logistical demands.

Keywords

Metabolomics; plasma; dried blood spots; comparison

Introduction

Untargeted metabolomics has emerged as a powerful technique to investigate the role of 

metabolites in human health and disease. The unbiased nature of this approach and the 

ability to characterize novel compounds makes it particularly suitable for tasks such as 

biomarker discovery and assay development(Carter et al., 2019; Lee and Banerjee, 2020; 

Sovio et al., 2020). Metabolomic protocols have been developed for diverse sample matrices 

including serum, plasma, urine, and tissue(Chamberlain et al., 2019; Ly et al., 2016). A 

major caveat to these approaches is the requirement for significant laboratory infrastructure 

or a cold supply chain to minimize variation in metabolic profiling due to differences in pre-

processing conditions(Chamberlain et al., 2019; Gertsman and Barshop, 2018; La Frano et 
al., 2018; Wang et al., 2018a; Wang et al., 2018b).

Dried blood spot (DBS) sampling is routinely used for genetic screening and offers the 

additional advantages of relatively simple collection and ambient storage(Dorsey and Puck, 

2019; Greenman et al., 2015; Jansen et al., 2016). DBS-based untargeted metabolomics 

assays have been previously reported(Koulman et al., 2014; Li et al., 2020; Palmer et al., 
2019; Petrick et al., 2017) and used to identify markers of hereditary anemias(van 

Dooijeweert et al., 2019), newborn birth weight and ethnicity(Petrick et al., 2017), and 

inborn errors of metabolism(Haijes et al., 2019).
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Here, we used paired maternal plasma and DBS samples to assess the viability of DBS as a 

matrix for untargeted metabolomics. We characterized the specific compounds uniquely 

identified by each assay as well as those that were differentially abundant between the two 

assays. We also used intraclass correlation (ICC) to assess agreement between the two 

assays and identified a set of compounds with high reproducibility as potential candidates 

for DBS-based biomarker assays. As a proof of principle, we characterized plasma and 

DBS-derived signatures in a case-control cohort of women living with HIV.

Methods

Study population and sample collection

Plasma and dried blood spot (DBS) samples were obtained from n=79 pregnant women 

living with HIV as part of a larger clinical trial(Fowler et al., 2016). Samples were collected 

during pregnancy either prior to antiretroviral initiation (untreated) or during treatment with 

either a single drug (zidovudine) or protease-inhibitor based antiretroviral therapy (PI-ART). 

For the purposes of this study, women were labeled as case or control by the larger trial so 

the case study could be performed in a statistically blinded manner.

Blood samples were collected in BD Vacutainer ACD tubes and transferred to Whatman 903 

Protein Saver Cards. Cards were then air dried for at least four hours and then placed into 

gas impermeable bags with a desiccant pack and humidity card at −20°C or colder. DBS 

cards were transferred to a biorepository for long term storage at −80°C until assayed. The 

remaining blood volume was centrifuged at 400 × g for 10 minutes. Plasma was transferred 

to a new sterile tube and centrifuged again at 800 × g for 10 minutes. Aliquots were taken 

and placed into sterile cryovials for storage at −80°C.

Sample processing

Samples were processed by Metabolon Inc. according to published methods with 

modifications as described for DBS samples(Evans et al., 2014; Evans et al., 2009; Ford et 
al., 2020). Briefly, samples were prepared using the automated MicroLab STAR® system 

from Hamilton Company. Several recovery standards were added prior to the first step in the 

extraction process for QC purposes. For DBS samples, 2 × 6mm punches were extracted per 

sample; one punch taken from the middle of two spots, then combined in the extraction 

plate. These were then shaken vigorously with a small aliquot of water to reconstitute the 

dried sample. Subsequently, DBS and plasma samples were extracted using the same 

procedure. To remove protein, dissociate small molecules bound to protein or trapped in the 

precipitated protein matrix, and to recover chemically diverse metabolites, proteins were 

precipitated with methanol under vigorous shaking for 2 min (Glen Mills GenoGrinder 

2000) followed by centrifugation. The resulting extract was divided into five fractions: two 

for analysis by two separate reverse phase (RP)/UPLC-MS/MS methods with positive ion 

mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative ion 

mode ESI, one for analysis by HILIC/UPLC-MS/MS with negative ion mode ESI, and one 

sample was reserved for backup. Samples were placed briefly on a TurboVap® (Zymark) to 

remove the organic solvent. The sample extracts were stored overnight under nitrogen before 

preparation for analysis.
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Ultrahigh performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS)

Untargeted ultra-high-performance liquid chromatography/tandem mass spectrometry of 

known biochemicals was conducted on plasma and DBS samples by Metabolon Inc. 

according to published methods(Evans et al., 2014; Evans et al., 2009; Ford et al., 2020). All 

methods utilized a Waters ACQUITY ultra-performance liquid chromatography (UPLC) and 

a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced with a 

heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 

35,000 mass resolution. The sample extract was dried then reconstituted in solvents 

compatible to each of the four methods. Each reconstitution solvent contained a series of 

standards at fixed concentrations to ensure injection and chromatographic consistency. One 

aliquot was analyzed using acidic positive ion conditions, chromatographically optimized for 

more hydrophilic compounds. In this method, the extract was gradient eluted from a C18 

column (Waters UPLC BEH C18–2.1×100 mm, 1.7 μm) using water and methanol, 

containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). Another 

aliquot was also analyzed using acidic positive ion conditions, however it was 

chromatographically optimized for more hydrophobic compounds. In this method, the 

extract was gradient eluted from the same aforementioned C18 column using methanol, 

acetonitrile, water, 0.05% PFPA and 0.01% FA and was operated at an overall higher organic 

content. Another aliquot was analyzed using basic negative ion optimized conditions using a 

separate dedicated C18 column. The basic extracts were gradient eluted from the column 

using methanol and water, however with 6.5mM Ammonium Bicarbonate at pH 8. The 

fourth aliquot was analyzed via negative ionization following elution from a HILIC column 

(Waters UPLC BEH Amide 2.1×150 mm, 1.7 μm) using a gradient consisting of water and 

acetonitrile with 10mM Ammonium Formate, pH 10.8. The MS analysis alternated between 

MS and data-dependent MSn scans using dynamic exclusion. The scan range varied slighted 

between methods but covered 70–1000 m/z.

Data analysis

Compounds were identified by Metabolon Inc. as previously described(Evans et al., 2014; 

Evans et al., 2009; Ford et al., 2020). Briefly, compounds were identified by comparison of 

experimental data to a library of authentic standards using accurate mass, retention time and 

fragmentation spectrum(Sumner et al., 2007). Technical replicates of a DBS QC sample, that 

had been prepared in bulk at Metabolon using a single lot of whole blood to spot a large 

number of cards contemporaneously, were extracted in each 48-sample plate and injected 

periodically throughout the platform run to monitor the overall process variability of 

endogenous biochemicals. The internal standards that were added to each sample 

immediately before analysis (spiked in the reconstitution solvents) were monitored across all 

experimental samples to assess instrument variability. Overall process variability met 

Metabolon’s acceptance criteria in all plasma and DBS sample sets (< 10% and < 15% 

median RSD, respectively). Recovery standards (RS) were added to every sample (spiked in 

the crash solvent) at the beginning of the extraction and used to monitor variability in the 

extraction process. They were specifically chosen because they are highly reproducible and 

are detected well on each of the four analytical methods. RS plots of mean-scaled response 

per sample were checked to ensure all responses were within 15% of the mean.
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Raw area under the curve (AUC) values from plasma and DBS samples were used to 

tabulate the number of compounds quantified in each sample type. For all other analyses, 

missing values were imputed with the minimum quantified value of each biochemical in the 

sample matrix (plasma or DBS). All values were log-transformed and standardized using a 

Z-transform. Log-transformed values refer to those following imputation and log 

transformation but prior to standardization. Standardized values refer in effect to Z scores.

Analyses were conducted in the R statistical environment version 3.6.1(R Core Team, 2019). 

Permutational multivariate analysis of variance (PERMANOVA) with Euclidean distances as 

implemented in the ‘vegan’ package was utilized to assess variance attributable to study 

individual and sample type. Two-way (absolute agreement) intraclass correlation between 

paired plasma and DBS measurements was calculated for each compound using the ‘psych’ 

package(Revelle, 2019). Multiple testing correction using the Benjamini-Hochberg false 

discovery rate method was utilized as appropriate and an adjusted p-value of <0.05 was 

considered significant(Benjamini and Hochberg, 1995).

Random forests classification models (‘randomForest’ package)(Liaw and Wiener, 2002) 

were constructed separately for women prior to treatment (untreated) or during treatment 

with either zidovudine monotherapy or protease inhibitor-based ART. Three of the women 

were exposed to other ART regimens and were excluded from this analysis. Plasma or DBS 

metabolite abundances were used as covariates with a binary outcome for case versus 

control. One hundred forests each comprising 10,000 trees were used to obtain mean feature 

importance values and a sparse feature set was subsequently identified by 10-fold cross 

validation. Sparse models were then constructed with the selected number of features and 

used to calculate all reported performance metrics.

Analysis code and data files necessary to reproduce the analyses are available at https://

github.com/AldrovandiLab/DBSvPlasma-metabolomics.

Results and discussion

Study population

The study participants were divided into cases/controls and by the treatment regimen at the 

time of specimen collection(Fowler et al., 2016). Paired plasma and DBS samples were 

drawn from pregnant women living with HIV either prior to treatment (untreated) or on one 

of two treatment arms (zidovudine monotherapy or protease inhibitor-based ART). Baseline 

characteristics of the n=79 participants are shown in Table 1.

Compound detection from plasma and DBS samples

A total of 984 named compounds were detected across both plasma and DBS samples, of 

which 627 (63.7%), 260 (26.4%), and 97 (9.9%) were detected in both plasma and DBS, 

plasma alone, and DBS alone, respectively (Figure 1A, Online Resource 1). Most 

compounds were detected broadly across the samples, with 905 (92.0%) being detected in at 

least half of the 79 samples and 577 (58.6%) being detected in all of the samples (Online 

Resource 2). Of the 7 compounds that were detected in fewer than 3 samples, six were 

drugsfound in both DBS and plasma from the same study individual (Online Resource 1). 

Tobin et al. Page 5

Metabolomics. Author manuscript; available in PMC 2022 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/AldrovandiLab/DBSvPlasma-metabolomics
https://github.com/AldrovandiLab/DBSvPlasma-metabolomics


These are therefore unlikely to represent artifacts from the sample matrix itself. In contrast, 

androsterone glucuronide was only detected in 2 DBS samples but 77 plasma samples, 

suggesting that it may not be easily quantified by DBS. Overall, lipids were preferentially 

detected in plasma but not DBS (Figure 1B, χ2 p<0.001 versus compounds detected in both 

plasma and DBS). Peptides, specifically dipeptides, were more likely to be detected in DBS 

alone (Figure 1B, χ2 test p=0.001 versus compounds detected in both).

Measurement consistency and effect of standardization

We next wanted to assess the consistency of metabolomic profiles obtained from the paired 

plasma and DBS samples. Based on principal coordinates analysis with Euclidean distances, 

log-transformed but not standardized metabolomic profiles were markedly different between 

paired plasma and DBS samples (Figure 2A). Permutational multivariate analysis of 

variance (PERMANOVA) identified sample type (R2=0.57, p<0.001) and study individual 

(R2=0.22, p<0.001) to be significant drivers of overall variation in metabolomic profiles. 

Spearman correlation coefficients skewed positive (mean rho=0.51) but intraclass correlation 

coefficient (ICC) values showed minimal agreement between the paired DBS and plasma 

samples (mean ICC=0.15, Figure 2B). This is likely due to the ability of ICC to account for 

bias in the data values. These results suggest that unstandardized DBS metabolite 

abundances are correlated with but significantly biased from their plasma counterparts.

Given the observed bias, we decided to repeat the above consistency analyses using 

standardized values of the DBS and plasma metabolite abundances. As expected, 

standardized profiles did not display the same distinct separation by sample type (Figure 

3A), and PERMANOVA attributed 69% (p<0.001) of the overall variation to the study 

individual. Furthermore, Spearman correlation coefficients were unchanged but ICC values 

were dramatically increased (mean ICC=0.52, Figure 3B). Distances between plasma and 

DBS samples from the same participant were significantly smaller than those from different 

participants (Wilcoxon p<0.001, Figure 3C). Altogether, these results show that simple 

standardization of DBS metabolite profiles removes the observed bias compared to plasma-

derived profiles while retaining inter-individual differences. These results support the 

conclusion that appropriate statistical treatment of metabolomic data derived from both DBS 

and plasma sample types can allow for their use in joint modeling or classification tasks.

Another important consideration is whether DBS- and plasma-derived metabolomic profiles 

report consistent measurements for specific compounds of interest. A relatively small subset 

of compounds was found to demonstrate good (ICC >= 0.75, n=212) or excellent (ICC >= 

0.9, n=121) reproducibility (Figure 4 and Online Resource 3). Compounds classified as 

xenobiotics were increasingly enriched with higher ICCs (χ2 p<0.001 and p=0.001 for 

compounds with ICC >= 0.75 and 0.9 versus all compounds, Online Resource 4), suggesting 

that these compounds show especially high agreement between plasma- and DBS-based 

assays. However, these compounds are not likely to be particularly distinctive to pregnant 

women so their suitability as biomarkers is limited in this context. Indeed, two of these 

(trimethoprim and N4-acetyl-5-hydroxysulfamethoxazole) are a common antibiotic 

treatment for urinary tract and skin and soft tissue infections(Bowen et al., 2017; Mehnert-

Kay, 2005), and a third (2,6-dihydroxybenzoic acid) is a metabolite of the commonly used 
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topical agent salicylic acid(Wishart et al., 2018). On the other hand, several of the highly 

reproducible lipids (e.g. androsterone sulfate, dehydroepiandrosterone sulfate (DHEA-S), 

estrone 3-sulfate, glycocholate) are known pregnancy-associated hormones that have been 

reported in other studies using dried blood spot sampling(Janzen et al., 2010; Petrick et al., 
2017).

Case study in pregnant women living with HIV

As a proof of concept for the utility of DBS metabolomics, we next attempted to distinguish 

cases versus controls in pregnant women living with HIV who were either untreated or on 

either a zidovudine monotherapy or PI-based ART regimen. Using a standard random forests 

classification approach (see Methods), we constructed sparse models in each of the three 

treatment groups and sample matrices. DBS-based models achieved accuracies of 90.9%, 

95.7%, and 87.1% for the untreated, zidovudine monotherapy, and PI-based ART groups, 

respectively. Plasma-based models achieved slightly lower accuracies of 86.4%, 91.3%, and 

77.4%. However, given the relatively small sample sizes, it is difficult to draw meaningful 

conclusions from these performance metrics.

Overall, the feature sets identified using the sparse modeling approach were strikingly 

different between plasma and DBS (Online Resources 5 and 6). In fact, only 20/147 total 

features selected in any of the models were selected in both plasma- and DBS-based models 

for the same treatment regimen (Figure 5 and Online Resource 6). This subset of compounds 

showed significantly higher concordance (Wilcoxon p<0.001, Online Resource 7) and 

includes a number of sulfated steroid compounds as well as several metabolites involved in 

methionine metabolism (methionine sulfone and N-methylmethionine). Given the relatively 

small sample size, however, it is worth emphasizing that this case study is not intended as a 

conclusive analysis on pregnant women living with HIV but rather a preliminary study on 

the use of plasma- and DBS-based metabolomics for predictive modeling and biomarker 

discovery.

Conclusion

In this study, we compared the utility of plasma and dried blood spot (DBS) sampling for 

untargeted metabolomics profiling of pregnant women living with HIV. Following 

appropriate standardization, the two sample matrices had distinct features or combinations 

of features that are potential case-associated biomarkers. Selection of sampling strategy for 

any particular study should be based on the likelihood of capturing the biomarkers of interest 

in the sample type as well as resource availability.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank the members of the Metabolon research team for their invaluable assistance in DBS method development 
and validation.

Tobin et al. Page 7

Metabolomics. Author manuscript; available in PMC 2022 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Funding

Overall support for the International Maternal Pediatric Adolescent AIDS Clinical Trials Network (IMPAACT) was 
provided by the National Institute of Allergy and Infectious Diseases (NIAID) with co-funding from the Eunice 
Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the National Institute of 
Mental Health (NIMH), all components of the National Institutes of Health (NIH), under Award Numbers 
UM1AI068632 (IMPAACT LOC), UM1AI068616 (IMPAACT SDMC) and UM1AI106716 (IMPAACT LC), and 
by NICHD contract number HHSN275201800001I. The content is solely the responsibility of the authors and does 
not necessarily represent the official views of the NIH.

Availability of data and material

The data cannot be made publicly available due the ethical restrictions in the study’s 

informed consent documents and in the International Maternal Pediatric Adolescent AIDS 

Clinical Trials (IMPAACT) Network’s approved human subjects protection plan; public 

availability may compromise participant confidentiality. However, data are available to all 

interested researchers upon request to the IMPAACT Statistical and Data Management 

Center’s data access committee (sdac.data@fstrf.org) with the agreement of the IMPAACT 

Network.

References

Benjamini Y and Hochberg Y (1995) Controlling the False Discovery Rate: A Practical and Powerful 
Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological) 
57, 289–300.

Bowen AC, Carapetis JR, Currie BJ, Fowler V Jr., Chambers HF and Tong SYC (2017) 
Sulfamethoxazole-Trimethoprim (Cotrimoxazole) for Skin and Soft Tissue Infections Including 
Impetigo, Cellulitis, and Abscess. Open Forum Infect Dis 4, ofx232. [PubMed: 29255730] 

Carter RA, Pan K, Harville EW, McRitchie S and Sumner S (2019) Metabolomics to reveal biomarkers 
and pathways of preterm birth: a systematic review and epidemiologic perspective. Metabolomics 
15, 124. [PubMed: 31506796] 

Chamberlain CA, Rubio VY and Garrett TJ (2019) Impact of matrix effects and ionization efficiency 
in non-quantitative untargeted metabolomics. Metabolomics 15, 135. [PubMed: 31584114] 

Dorsey MJ and Puck JM (2019) Newborn Screening for Severe Combined Immunodeficiency in the 
United States: Lessons Learned. Immunol Allergy Clin North Am 39, 1–11. [PubMed: 30466767] 

Evans AM, Bridgewater BR, Liu Q, Mitchell MW, Robinson RJ, Dai H, Steward SJ, DeHaven CD and 
Miller LAD (2014) High Resolution Mass Spectrometry Improves Data Quantity and Quality as 
Compared to Unit Mass Resolution Mass Spectrometry in High-Throughput Profiling 
Metabolomics. Metabolomics 04.

Evans AM, DeHaven CD, Barrett T, Mitchell M and Milgram E (2009) Integrated, nontargeted 
ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry 
platform for the identification and relative quantification of the small-molecule complement of 
biological systems. Anal Chem 81, 6656–67. [PubMed: 19624122] 

Ford L, Kennedy AD, Goodman KD, Pappan KL, Evans AM, Miller LAD, Wulff JE, Wiggs BR, 
Lennon JJ, Elsea S and Toal DR (2020) Precision of a Clinical Metabolomics Profiling Platform for 
Use in the Identification of Inborn Errors of Metabolism. J Appl Lab Med 5, 342–356. [PubMed: 
32445384] 

Fowler MG, Qin M, Fiscus SA, Currier JS, Flynn PM, Chipato T, McIntyre J, Gnanashanmugam D, 
Siberry GK, Coletti AS, Taha TE, Klingman KL, Martinson FE, Owor M, Violari A, Moodley D, 
Theron GB, Bhosale R, Bobat R, Chi BH, Strehlau R, Mlay P, Loftis AJ, Browning R, Fenton T, 
Purdue L, Basar M, Shapiro DE and Mofenson LM (2016) Benefits and Risks of Antiretroviral 
Therapy for Perinatal HIV Prevention. N Engl J Med 375, 1726–1737. [PubMed: 27806243] 

Gertsman I and Barshop BA (2018) Promises and pitfalls of untargeted metabolomics. J Inherit Metab 
Dis 41, 355–366. [PubMed: 29536203] 

Tobin et al. Page 8

Metabolomics. Author manuscript; available in PMC 2022 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Greenman J, Roberts T, Cohn J and Messac L (2015) Dried blood spot in the genotyping, 
quantification and storage of HCV RNA: a systematic literature review. J Viral Hepat 22, 353–61. 
[PubMed: 25367722] 

Haijes HA, van der Ham M, Gerrits J, van Hasselt PM, Prinsen H, de Sain-van der Velden MGM, 
Verhoeven-Duif NM and Jans JJM (2019) Direct-infusion based metabolomics unveils 
biochemical profiles of inborn errors of metabolism in cerebrospinal fluid. Mol Genet Metab 127, 
51–57. [PubMed: 30926434] 

Jansen ME, Metternick-Jones SC and Lister KJ (2016) International differences in the evaluation of 
conditions for newborn bloodspot screening: a review of scientific literature and policy documents. 
Eur J Hum Genet 25, 10–16. [PubMed: 27848945] 

Janzen N, Sander S, Terhardt M, Das AM, Sass JO, Kraetzner R, Rosewich H, Peter M and Sander J 
(2010) Rapid quantification of conjugated and unconjugated bile acids and C27 precursors in dried 
blood spots and small volumes of serum. J Lipid Res 51, 1591–8. [PubMed: 20093478] 

Koulman A, Prentice P, Wong MCY, Matthews L, Bond NJ, Eiden M, Griffin JL and Dunger DB 
(2014) The development and validation of a fast and robust dried blood spot based lipid profiling 
method to study infant metabolism. Metabolomics 10, 1018–1025. [PubMed: 25177234] 

La Frano MR, Carmichael SL, Ma C, Hardley M, Shen T, Wong R, Rosales L, Borkowski K, Pedersen 
TL, Shaw GM, Stevenson DK, Fiehn O and Newman JW (2018) Impact of post-collection freezing 
delay on the reliability of serum metabolomics in samples reflecting the California mid-term 
pregnancy biobank. Metabolomics 14, 151. [PubMed: 30830400] 

Lee J and Banerjee D (2020) Metabolomics and the Microbiome as Biomarkers in Sepsis. Crit Care 
Clin 36, 105–113. [PubMed: 31733672] 

Li K, Naviaux JC, Monk JM, Wang L and Naviaux RK (2020) Improved Dried Blood Spot-Based 
Metabolomics: A Targeted, Broad-Spectrum, Single-Injection Method. Metabolites 10.

Liaw A and Wiener M (2002) Classification and Regression by randomForest. R News 2, 18–22.

Ly A, Buck A, Balluff B, Sun N, Gorzolka K, Feuchtinger A, Janssen KP, Kuppen PJ, van de Velde CJ, 
Weirich G, Erlmeier F, Langer R, Aubele M, Zitzelsberger H, McDonnell L, Aichler M and Walch 
A (2016) High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-
fixed paraffin-embedded tissue. Nat Protoc 11, 1428–43. [PubMed: 27414759] 

Mehnert-Kay SA (2005) Diagnosis and management of uncomplicated urinary tract infections. Am 
Fam Physician 72, 451–6. [PubMed: 16100859] 

Palmer EA, Cooper HJ and Dunn WB (2019) Investigation of the 12-Month Stability of Dried Blood 
and Urine Spots Applying Untargeted UHPLC-MS Metabolomic Assays. Anal Chem 91, 14306–
14313. [PubMed: 31618007] 

Petrick L, Edmands W, Schiffman C, Grigoryan H, Perttula K, Yano Y, Dudoit S, Whitehead T, 
Metayer C and Rappaport S (2017) An untargeted metabolomics method for archived newborn 
dried blood spots in epidemiologic studies. Metabolomics 13.

R Core Team (2019) R: A Language and Environment for Statistical Computing.

Revelle W (2019) psych: Procedures for Psychological, Psychometric, and Personality Research.

Sovio U, Goulding N, McBride N, Cook E, Gaccioli F, Charnock-Jones DS, Lawlor DA and Smith 
GCS (2020) A maternal serum metabolite ratio predicts fetal growth restriction at term. Nat Med 
26, 348–353. [PubMed: 32161413] 

Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW, Fiehn O, Goodacre R, 
Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott 
P, Nicholls AW, Reily MD, Thaden JJ and Viant MR (2007) Proposed minimum reporting 
standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics 
Standards Initiative (MSI). Metabolomics 3, 211–221. [PubMed: 24039616] 

van Dooijeweert B, Broeks M, Jans J, van Beers EJ, Verhoeven N, van Wijk R and Bartels M (2019) 
Untargeted Metabolomics on Dried Blood Spots for the Diagnosis and Clinical Follow up of Rare 
Hereditary Anemias. Blood 134, 3376–3376.

Wang Y, Carter BD, Gapstur SM, McCullough ML, Gaudet MM and Stevens VL (2018a) 
Reproducibility of non-fasting plasma metabolomics measurements across processing delays. 
Metabolomics 14, 129. [PubMed: 30830406] 

Tobin et al. Page 9

Metabolomics. Author manuscript; available in PMC 2022 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wang Z, Zolnik CP, Qiu Y, Usyk M, Wang T, Strickler HD, Isasi CR, Kaplan RC, Kurland IJ, Qi Q and 
Burk RD (2018b) Comparison of Fecal Collection Methods for Microbiome and Metabolomics 
Studies. Front Cell Infect Microbiol 8, 301. [PubMed: 30234027] 

Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, Sajed T, Johnson D, Li C, 
Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, 
Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C and 
Scalbert A (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46, 
D608–D617. [PubMed: 29140435] 

Tobin et al. Page 10

Metabolomics. Author manuscript; available in PMC 2022 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Detection of compounds from plasma and dried blood spots. (a) Venn diagram showing the 

number of compounds detected by both assays, or a single assay. (b) Breakdown of 

compounds detected by both assays or either assay alone into specific classes. Circle size is 

proportional to the absolute number of compounds detected and color shading shows 

enrichment or depletion of the specific class in the DBS and Plasma alone columns relative 

to the proportion detected by both assays. Black borders indicate significant differences by 

Chi-square test (adjusted p < 0.05).
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Figure 2. 
Consistency between log-transformed DBS and plasma metabolite profiles. (a) PCA plot of 

log-transformed metabolite profiles. Ellipses show 95% confidence regions for each sample 

type. Numbers in brackets denote the percentage of total variation explained by each 

principal component. (b) Distribution of interclass correlation (red) and Spearman 

correlation (blue) coefficients between paired plasma and DBS samples. Dotted lines denote 

means.
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Figure 3. 
Consistency between log-transformed and standardized DBS and plasma metabolite profiles. 

(a) PCA plot of log-transformed and standardized metabolite profiles. Ellipses show 95% 

confidence regions for each sample type. Numbers in brackets denote the percentage of total 

variation explained by each principal component. (b) Distribution of interclass correlation 

(red) and Spearman correlation (blue) coefficients between paired plasma and DBS samples. 

Dotted lines denote means. (c) Boxplot of Euclidean distances between plasma and DBS 

samples across different women (‘Between’) or within the same woman (‘Within’).
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Figure 4. 
Number of compounds with Spearman (red) or intraclass (blue) correlation coefficients 

above the specified threshold.
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Figure 5. 
Features that are consistently selected in random forests models from both plasma and DBS 

metabolite profiles. The specific drug regimen is noted at the bottom. Each column 

represents an independent model within the indicated sample matrix and drug regimen. Only 

features selected in at least 2 models are shown, and shaded cells denote selected features.
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Table 1

Demographics of study participants.

Case 
untreated

Case 
ZDV

Case 
PI-ART

Case 
other

Control 
untreated

Control 
ZDV

Control 
PI-ART

Control 
other

p

n 11 13 16 1 11 10 15 2

Country (%) 0.161

India 0 (0.0) 0 (0.0) 2 (12.5) 0 (0.0) 1 (9.1) 0 (0.0) 1 (6.7) 0 (0.0)

Malawi 3 (27.3) 8 (61.5) 4 (25.0) 0 (0.0) 4 (36.4) 7 (70.0) 0 (0.0) 1 (50.0)

South Africa 6 (54.5) 4 (30.8) 8 (50.0) 1 (100.0) 6 (54.5) 2 (20.0) 10 (66.7) 1 (50.0)

Uganda 2 (18.2) 1 (7.7) 1 (6.2) 0 (0.0) 0 (0.0) 1 (10.0) 3 (20.0) 0 (0.0)

Zambia 0 (0.0) 0 (0.0) 1 (6.2) 0 (0.0) 0 (0.0) 0 (0.0) 1 (6.7) 0 (0.0)

Gestational age 
at sample 
collection, 
weeks (mean 
(SD))

29.62 (2.78) 30.19 
(2.95)

31.51 
(2.21)

32.00 
(NA)

31.80 (1.84) 30.40 
(2.53)

30.56 
(1.86)

28.07 
(7.18)

0.213

Gestational age 
at delivery, 
weeks (mean 
(SD))

32.13 (3.15) 32.96 
(2.71)

33.76 
(1.58)

35.43 
(NA)

41.16 (4.36) 39.94 
(2.66)

39.90 
(2.13)

39.78 
(2.93)

<0.001

Infant sex, 
male (n (%))

4 (36.4) 4 (30.8) 8 (50.0) 1 (100.0) 3 (27.3) 6 (60.0) 10 (66.7) 1 (50.0) 0.248
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