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LIST OF FIGURES

Flow chart illustrating the overall strategy for identifying enzymatic targets
from genomic DNA. The workflow is indicated with solid arrows, while dot-
ted arrows represent steps where information from a later stage of the pipeline
enables refinement of earlier stages in an iterative manner. After genome se-
quencing, assembly, and gene discovery, target proteins are identified based
on putative enzymatic activity. Functional sequence features are identified
by analogy to annotation reference sequences found in the UniProt database.
Structures are predicted using the Rosetta software, and equilibrated in ex-
plicit solvent after removal of sequence regions not present in the mature
enzyme. Structures are compared using network analytic methods, enabling
strategic selection of enzymes for experimental characterization in a future
study. [1, 2, 3] . . ..
Sequence alignment for Family 18 chitinases, annotated by homology to the
reference sequence CHIT3_VITVI. The “DXDXE” motif, in which the acidic
residues are marked with red arrows, is imperative for the enzyme activity.
Orange arrows indicate residues implicated in substrate binding. . . . . . . .

Clustering of chitinases identified from the D. capensis genome, compared with
those from other Caryophylalles carnivorous plants and well-characterized
reference sequences. All of the sequences examined belong to GH Families
18 or 19. The sequence dissimilarity used here is the e-distance metric of
Székely and Rizzo [4] (with a = 1). This parameter is a weighted function
of within-cluster similarities and between-cluster differences with respect to a
user-specified reference metric, defined here as the raw sequence dissimilarity
(1 - (%identity)/100). . . . . . o
Sequence alignment for Family 18 chitinases, annotated by homology to the
reference sequence CHIT3_VITVI. The “DXDXE” motif, in which the acidic
residues are marked with red arrows, is imperative for the enzyme activity.
Orange arrows indicate residues implicated in substrate binding. . . . . . . .
Sequence alignment and annotation for Family 19 chitinases. Many sequences
in this cluster contain a chitin-binding C-rich domain (light green) that is
connected to the active region by a P-rich hinge (light blue). Three sequences
in this cluster contain a C-terminal extension (CTE) that causes the proteins
to be targeted to the vacuole. . . . . . . .. ..o
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Chitinase 1 fragments discovered using a BLAST search of the D. capensis
genome against the DcChitl_1 fragment previously identified by Renner and
Specht from D. capensis genomic DNA. . . . . . .. ... ... ... .....
DCAP_2209 (a) before and (b) after in silico maturation. The light orange
helix in part a is the N-terminal signal sequence. Important residues are color-
coded as follows: Red: catalytically active residues of the “DXDXE” motif.
Orange: aromatic substrate-binding residues. Yellow: Cysteines in disulfide
bonds. . . . ..
Initial Rosetta structures for two class I chitinases from Drosera spatulata,

Q6IVX8_9CARY and Q6IVX2_9CARY, illustrating positioning of the N-terminal

and C-terminal targeting sequences and the variability in length and confor-
mation for the P-rich hinge. . . . . . . . . . .. ... ... ... .......
Equilibrated structures of the mature sequences of chitinases from carnivorous
plants. A. DCAP_0106, a representative Family 18 chitinase, after in silico
maturation. Numbering of secondary structure elements follows the conven-
tion of Si et al. [5]. B. Notably, the tunnel containing the active site has two
surfaces with different chemical properties; the aromatic rings (orange) hold
the more hydrophobic face of the chitin polymer in place, while the acidic
residues (red) perform hydrolysis of the glycosidic linkages. C. Two conserved
non-proline cis peptide bonds (black) are critical to shaping the active site
tunnel in Family 18 chitinases. D. Chitinase VF-1 from Dionaea muscipula
V5TEI0-DIOMU [6], with important sequence features and active site residues
labeled (red: acidic active residue. blue: basic active residue. yellow: disulfide
bond). E. The two-domain chitinase DCAP_0533. Color coding is as in D,
with the addition of substrate-binding residues in orange.[1] . . . . .. ...
Sequence alignment and annotation of QGWSRS8_PICAB, CHIA_MAIZE, and
the N-terminal domain (NTD) and C-terminal domain (CTD) of DCAP_0533.
For the purpose of comparison, the sequence is manually separated above. We
observe high sequence conservation regarding: the signal cleavage site, C-rich
domain length and location, cysteines composing disulfide bonds, other bind-
ing site residues surrounding the main binding site residues (orange arrows),
and catalytic residues except Glu407 of the CTD which is unaligned with
Glull3 of QGWSR8_PICAB . . . . . . . . . . ...
Sequence alignment and annotation of QGWSRS_PICAB, CHIA_MAIZE, and
the N-terminal domain (NTD) and C-terminal domain (CTD) of DCAP_0533.
For the purpose of comparison, the sequence is manually separated above. We
observe high sequence conservation regarding: the signal cleavage site, C-rich
domain length and location, cysteines composing disulfide bonds, other bind-
ing site residues surrounding the main binding site residues (orange arrows),
and catalytic residues except Glud07 of the CTD which is unaligned with
Glull3 of QGWSR8_PICAB . . . . . . . . . . .. .
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2.11

2.12

3.1

3.2

3.3

3.4

DCAP_0533 comparison with CHIA_-MAIZE (4MCK) and Q6WSRS8_PICAB
(3HBE) and close up of catalytic residues and binding residues: (a) Robetta
generated predicted structure with highlighted catalytic residues and binding
residues. (b) Superimposition of CHIA_MAIZE and Q6WSR8_PICAB against
DCAP_0533. (c) Catalytic site of NTD with 1-letter residue code and specifier.
Catalytic triad consists of E173, E278, R290. (d) Catalytic site of CTD with

1-letter residue code and specifier. Catalytic triad consists of E407, E507, R519. 32

(a)-(b) Within-family clustering of chitinases by normalized structural dis-
tances. Ward’s method (in the generalization of [4]) was employed to con-
struct a hierarchical clustering of Family 18 (a) and Family 19 (b) chitinases
based on topological dissimilarity. Sequence similarity is broadly recapitu-
lated by the structural distances in Family 18, while Family 19 shows distinct
patterns of variation. . . . .. ...
PSN Visualizations for family-representative structures C7F821_NEPMI (Fam-
ily 18, (a) and (c)) and DCAP_5513 (Family 19, (b) and (d)). In panels (a) and
(b), vertices are colored by k-core number; vertices with higher core numbers
are embedded in more strongly cohesive local structures. Panels (c¢) and (d)
show vertices by M-eccentricity (with higher values indicating a higher mean
distance to other vertices in the network). The much higher level of internal
heterogeneity in DCAP_5513 versus C7TF821_NEPMI is immediately evident,
with the former containing complex and irregular structure that subjects some
vertices to higher levels of both cohesion and proximity than others. . . . . .

Sequence alignment for Cluster 1 esterase/lipases, annotated by homology
to the reference sequence GDL1_CARPA. The four functional blocks that
are critical for enzyme function are highlighted using outlined colored boxes.
The N-terminal signal peptide is highlighted in light orange. Colored arrows
indicate the catalytic triad residues. Conserved residues are marked using
colored dots: acidic (red), basic (blue), hydrophobic (green), and hydrophilic
(black) residues. . . . . . ...
Sequence alignment and annotation for Cluster 2. The four block regions
are determined by sequence conservation and outlined with colored boxes.
Three D. capensis esterase/lipases contain the N-terminal signal sequence
(highlighted in light orange) and three lack it. The catalytic triad is indicated
using colored arrows. Colored dots denote conserved residues. . . . . . . ..
Sequence alignment and annotation for Cluster 3. Reference sequences are
GLIP6_ARATH and GDL77_ARATH. All but three Cluster 3 esterase/lipases
contain a N-terminal signal peptide (highlighted in light orange). Functional
block regions are outlined using colored boxes. Colored dots indicate con-
served residues. . . . . ...
Sequence alignment and annotation of Cluster 4a (first set), annotated by
homology to EXL3_ARATH. Cluster 4 is separated into two parts (4a and
4b) for clarity. Block regions I-IV are shown in colored boxes with active site
residues marked by colored arrows. Colored dots indicate conserved residues.
When present, the N-terminal signal peptide is highlighted in light orange.
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Sequence alignment and annotation of Cluster 4b (second set), annotated by
homology to APG2_ARATH. Cluster 4 is separated into two parts (4a and
4b) for clarity. Block regions I-IV are shown in colored boxes with active site
residues marked by colored arrows. Colored dots indicate conserved residues.
When present, the N-terminal signal peptide is highlighted in light orange.
DCAP_4076 has an additional C-terminal domain (shown in Figure S3.8). . .
(A) Flow chart, made by me, illustrating the overall strategy for identifying
enzymatic targets from genomic DNA. The workflow is indicated with solid
arrows, while dotted arrows represent steps where information from a later
stage of the pipeline enables refinement of earlier stages in an iterative man-
ner. After genome sequencing, assembly, and gene discovery, target proteins
are identified based on putative enzymatic activity. Functional sequence fea-
tures are identified by analogy to annotation reference sequences found in the
UniProt database. Structures are predicted using the Rosetta software, and
equilibrated in explicit solvent after removal of sequence regions not present
in the mature enzyme. Structures are compared using network analytic meth-
ods, enabling strategic selection of enzymes for experimental characterization
in a future study. (B) DCAP _8086 before and (C) after in silico maturation.
The light orange helix in part A is the N-terminal signal sequence, which is
cleaved upon maturation. Important residues are color-coded as follows: dark
cyan (catalytically active serine), red (active site aspartic acid), purple (active
site histidine). . . . . . . ..
Comparison of DCAP_1460 (Cluster 3) to D. capensis esterase/lipases from
each of the other clusters. These pairwise alignments of structural models
provide an indication of the type and magnitude of structural differences be-
tween clusters: in general, the overall fold and secondary structural elements
is conserved, although considerable variation can be observed in their rela-
tive positions and the conformations of loops and termini. Alignment was
performed using the matchmaker feature of Chimera with default settings.
Functional block regions I-IV are colored accordingly while the catalytic triad
(Ser-His-Asp) residues are colored dark cyan, red, and purple. Active site
residues are located in block I and IV, binding residues in block II-ITI. A.
Comparison of DCAP_1460 to esterase/lipase DCAP_6260 (Cluster 4a). B.
Comparison of DCAP_1460 to DCAP_5587 (Cluster 4b). C. Comparison of
DCAP_1460 to DCAP_2088 (Cluster 4a). D. Comparison of DCAP_1460 to

47

model esterase/lipase, GIDEX3_SOLLC, from Solanum lycopersicum (tomato). 50

A. Sequence alignment of the C-terminal domain of DCAP_4076 with the SNI1
proteins from Arabidopsis thaliana (Uniprot ID: SNI1_ARATH) and Glycine
maz (Uniprot ID: Q0ZFU8_SOYBN). B. Ribbon structure of DCAP_4076,
with the catalytic domain in light blue and the C-terminal domain in dark
blue. C. Structural model of DCAP_4076 showing the surface representation.
The active site D (red) and H (magenta) residues are visible at the top of the
model. . . ..
Clustering of esterase/lipase sequences identified from the D. capensis genome
along with reference sequences from other plants. . . . . ... ... ... ..
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3.10 A. The sequences of the four conserved blocks. The sizes of the residue labels
correlate with the fraction of sequences in the cluster having that residue
in the indicated position. Amino acid properties are color coded as fol-
lows: hydrophobic-green, positive-blue, negative-red, cysteine-yellow, other-
black. B. A representative molecular model of a D. capensis esterase/lipase
(DCAP_0434) with the four functional blocks highlighted. C. The active site
catalytic triad for a typical esterase/lipase (DCAP_0434). . . . . . .. . . ..

3.11 The current chosen set for phospholipases is seen in the Figure 3.11 with four
different families, PLA2 (shown in green), PLA1 (shown in orange), PLDB/D
(shown in blue) and PLDA (shown in red) found in D. capensis . . . . . ..

3.12 An example of the phospholipases found in D. capensis is seen in Figure 3.12
where the active site residues are highlighted and lablelled, and the propep-
tide, C2 and a PLD domain are highlighted in salmon, green and aqua colors
respectively. The figure also shows the cut sites of different enzymes on a
phospholipid. . . . . . . . .

3.13 An example of the phospholipases found in D. capensis is seen in Figure 3.12
where the active site residues are highlighted and labelled, and the propep-
tide, C2 and a PLD domain are highlighted in salmon, green and aqua colors
respectively. The figure also shows the cut sites of different enzymes on a
phospholipid. . . . . . . . .

3.14 The current chosen set for PLA1 from D. capensis with PLA16_ARATH,
PLA20_ARATH and DESL_ARATH from Arabidopsis thaliana as references
SEQUENCES. .« o v v e e e

3.15 The current chosen set for PLDA from D. capensis with PLDA1_ARATH from
Arabidopsis thaliana as references sequences. . . . . . . . . . . ... ... ..

3.16 An example of the nucleases found in D. capensis where the active site residues
are highlighted and labelled, and the metal ions are highlighted. . . . . . . .

4.1 The DCAP cluster contains sequences that are more closely related to other
D. capensis sequences than to any of the references. Several have insertions
not found in other sequences, potentially indicating specific functionalities.
DCAP 2263 and DCAP_7862 contain the localization tag NPIR in their N-
terminal pro-domain regions, indicating targeting to the vacuole. . . . . . . .

4.2 Many of the reference sequences belong to the papain cluster despite the
diversity of their sources.. Several proteins in cluster also have C-terminal
granulin domains, which are shown in Fig. S4.3. . . . . .. .. ... ... ..

63

71



4.3

4.4

4.5
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4.8

The papain cluster granulin domains contain several examples homologous
to the reference proteins RD21_ARATH and ORYA_ORYSJ. Papain itself
lacks a C-terminal granulin domain, so it is not included in the alignment.
DCAP_2570 and DCAP_5667 are truncated, and therefore do not contain both
disulfide bonds stabilizing the granulin domains. DCAP_ 5945 contains an ex-
tra C-terminal extension not found in the reference sequences. The conserved
sequence region characterizing animal granulin domains is shown above the
corresponding sequences for comparison. The plant granulin sequences have
two distinguishing features; an additional conserved Cys residue is present
immediately after the first conserved CC pair in the animal sequence, and a
6-residue insertion containing another conserved C is present between the first
and second CC pairs. . . . . . . . . .. ..
Many proteins in the vignain cluster, including vignain itself, are characterized
by the localization tag KDEL at the C-terminus. This sequence element

indicates that the protein is marked for retention in the endoplasmic reticulum. 73

The granulin domain cluster contains proteins with C-terminal granulin do-
mains. Although they are not closely related to any of the reference sequences,
RD21_ARATH and ORYA_ORYSJ are shown in the alignment in order to
compare sequence features among the granulin domains. As shown for the
papain cluster granulin domains, the conserved sequence region characteriz-
ing animal granulin domains placed above the corresponding sequences. As in
the papain case, there are two additional conserved Cs and a 6-residue inser-
tion between the first and second CC pairs. In these sequence, a deletion of
one residue relative to the animal sequence also occurs between the first and
second conserved Cys residues in the granulin domain. DCAP_7656 is missing
most of the granulin domain, and instead contains the localization tag SKL
near the C-terminus, marking it for transport to the peroxisome. . . . . ..
The bromelain cluster is characterized by strong sequence identity with pineap-
ple fruit bromelain. . . . . . ..o
The dionain cluster contains many cysteine proteases that appear to be specific
to Caryophylalles carnivorous plants; this cluster contains the dionains from
D. muscipula as well as several proteins from D. capensis, but none of the
reference sequences from other sources. . . . . .. ... ... L.
The percent conservation of each residue in the consensus sequence for each
cluster is shown mapped onto a representative member of the cluster. The
color scale ranges from red (more conserved) to blue (less conserved). a.
DCAP cluster (DCAP_2263) b. papain cluster (papain) c. vignain cluster
((DCAP_2122) d. granulin domain cluster (DCAP_5115) e. bromelain cluster
(droserain 2) and f. dionain cluster (DCAP_0624). . . ... ... ... ...
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4.9 Clustering of cysteine protease sequences identified from the D. capensis genome.
Many are homologous to known plant cysteine proteases, including dionain
1 and dionain 3 from the Venus flytrap, Dionaea muscipula. Dissimilarity
between clusters is defined by the e-distance metric of [4] (with a = 1), which
is a weighted function of within-cluster similarities and between-cluster differ-
ences with respect to a user-specified reference metric. The underlying input
metric employed here is the raw sequence dissmilarity (1 — (%identity)/100). 79
4.10 Predicted structures for three full-length cysteine proteases. The secretion
signals are highlighted in light orange, the pro-sequences in pink, and the lo-
calization tags in light purple. a. DCAP_2263 contains the target sequence
NPIR, indicating localization to the vacuole. b. DCAP_5667 ends in the
tripeptide SSM at the extreme C-terminus, indicating transport to the perox-
isome c¢. and d. DCAP _2122 ribbon diagram and surface model, respectively.
DCAP _2122 ends in the ER-retention signal KDEL, indicating that it is re-
tained in the ER lumen. . . . . . . .. . . ... oo 84
4.11 Predicted structures for two vacuolar cysteine proteases (DCAP_2263, blue
and DCAP _7862, green) with sequence homology to cathepsin H (PDBID:
8PCH gray). The active site residues and the minichain are shown as space-
filling models. a. One side of the active site cleft is open and accessible to
substrate. b. The other side of the active site cleft is blocked by the minichain.
In cathepsin H, this partial occlusion of the active site confers aminopeptidase
specificity. . . . . . L 86
4.12 a. Ribbon diagram for the predicted structure for a representative member
of the granulin domain cluster (DCAP_5115), showing the catalytic domain
(dark blue), the proline-rich linker (gray) and the granulin domain (light blue).
b. Surface representation of the same structure rotated to show how the
proline-rich linker interacts with the granulin domain. . . . . . . . . . . . .. 90
4.13 a. Ribbon diagram of the DCAP_5115 granulin domain, with cysteine residues
highlighted in yellow. b. Cluster analysis of granulin domains from D. capensis
cysteine proteases and reference sequences. Solid colors denote membership in
the clusters of Fig 4.9, while the transparent boxes correspond to the clusters
previously identified by Richau et al. [7]. Notably, the D. capensis granulin
domain cluster appears to represent a new type of plant cysteine protease
granulin domain. c. Sequence alignment of all the granulin domains found in
the D. capensis cysteine proteases with reference sequences. . . . . . . . .. 91
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5.1

5.2

5.3

5.4

5.5

Two examples of the mapping of 3-dimensional fibril structures into their
equivalent graph representations, where the color coding indicates different
protein monomers. Each node in panels B and D corresponds to a protein
monomer, with ties between nodes whose monomers are non-covalently bound.
Panels A. and B. show the molecular structure and graph representations, re-
spectively, of a fibril segment formed from S-amyloid D23N (PDBID:2LNQ
[8]). Using the typology developed in this paper, this fibril structure is clas-
sified as a 1-ribbon. Panels C. and D. show the molecular structure and
its corresponding graph representation for a segment of wild-type AS;_4
(PDBID:5KK3 [9]). In our typology, this structure is classified as a 1,2 2-
ribbon. ...
The five unique amyloid fibril topologies found in the PDB, sorted by relative
complexity. Bar heights indicate the number of structures in the PDB with
the indicated topology. . . . . . . . . .o
Panel (a) represents the characteristics of amyloid fibril appearance. X-ray
fiber diffraction pattern from aligned TAPP amyloid fibrils, showing the po-
sitions of the 4.7 A meridional and 9.8 A equatorial reflections in a cross-
pattern. The figure is taken from the paper [10]. Using PDB ID 4RIK [11],
(c) is the color coded topology representation of (b).. . . . . . .. ... ...
Panel (1a) shows the accepted amyloid fibril structure, PDB ID 4RIK, panel
(1b) shows the supercell constructed in Pymol [12] and panel (1c) shows the
amyloid fibrils distances between adjacent S-strands of 4.8 A with 9.4 A be-
tween [-sheets [11]. Panel (2a) shows the rejected fibril structure, PDB ID
4RXFO, panel (2b) shows the supercell constructed in Pymol [12] and panel
(2¢) shows the fibrils distances between adjacent B-strands of 4.4 A with 7.8
A between S-sheets [13]. In case of 4XFO, the cross-layer contacts look really
weak and 4XFO did not pass energy calculations performed by Dr. Gianmarc
Grazioli, details can be found in the paper [14]. Panel (3a) shows the rejected
fibril structure, PDB ID 3FOD, panel (3b) shows the supercell constructed
in Pymol [12] and panel (3c) shows the fibrils distances between adjacent S-
strands of 5.3 A with 10-11.4 A between B-sheets [15], which does not conform
to the amyloid fibril criteria of the amyloid fibrils distances between adjacent
B-strands of 4.8 A with 9.4 A between S-sheets [11]. 3FOD did not pass en-
ergy calculations performed by Dr. Gianmarc Grazioli, details can be found
in the paper [14]. . . . . . ..
The topology of all amyloid structures can be described using a simple net-
work framework. Shown in A are the fundamental fibril forms: the n-ribbon
and the n-prism. These fundamental forms are the basis for describing any
fibril by either adding (chording) or deleting (nulling) edges between nodes
in a repeating pattern. In B, we demonstrate various chording operations to
the 2-ribbon. Chords are indexed by the subunits they connect, e.g. consecu-
tive chorded subunits are labeled 1,2, while subunits two positions apart are
labeled 1,3. Cis- and trans- indicate whether chords are between subunits oc-
cupying equivalent or different embedded 1-ribbon “backbones,” respectively.
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6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

ThT assay results of 1 mg/ml HEWL using phosphate buffer at pH 2 and pH
3.7 with agitation (150 RPM) at 75 degree celcius. . . . . . ... ... ...
ThT assay results of 1 mg/ml and 2 mg/ml yS-crystallin using phosphate
buffer at pH 1 and pH 2 with agitation (150 RPM) at 75 degree celcius. . . .
ThT assay results of 1 mg/ml and 2 mg/ml yS-crystallin using phosphate
buffer at pH 2 and pH 3.7 with agitation (150 RPM) at 75 degree celcius. . .
ThT assay results of 0.5 mg/ml and 1 mg/ml HEWL using carbonate buffer
at pH 2 and pH 3.7 with agitation (150 RPM) at 75 degree celcius. . . . . .
ThT assay results of 1 mg/ml vS-crystallin using phosphate buffer at pH 3.7
with agitation (150 RPM) and without agitation at 75 degree celcius.
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In Silico Exploration and Experimental Validation: A Story of Protein Discovery,
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Professor Rachel W. Martin, Chair

Proteins are fundamental building blocks of life: understanding protein structure, function,
aggregation, and degradation is, therefore, one of the central questions in biology. My work
investigates protein aggregation and degradation through computational modeling, protein

structure network analysis, and experimental verification.

One theme of my work is the discovery of new enzymes from the carnivorous plant, Drosera
capensis (D. capensis). With the ever-expanding genomic data, it is imperative to swiftly
move from raw genomic data to chemical results. Using the “target selection pipeline” that
we invented, in silico protein structures can be predicted rapidly, to direct the subsequent
experimental characterization of the promising candidates. Subsequent network analysis pre-
dicts interesting protein properties such as potential enzyme activity, enzyme specificity and
the functional pH range, aiding the selection of functionally useful proteins for experimental
characterization. This approach illustrates a generally applicable way to leverage the wealth
of information provided by whole genome shotgun sequencing for proteomics. Computa-
tional techniques, despite their limitations, are now powerful enough to allow potentially
useful proteins to be identified directly from the genome and filtered for strong indicators of

biochemical function. So far, this work has resulted in three publications including proteases,
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chitinases, and esterase/lipases.

The protease resistance of amyloid fibrils and their central role in more than 40 human
diseases, including Alzheimer’s, makes them an attractive target to test the activity of new
proteases from D.capensis. To advance and streamline scientific discovery related to amyloid
fibrils, it was crucial to have a standardized nomenclature. With collaborators, I introduced
a systematic approach to the nomenclature of fibril topology using graph theoretic concepts
to abstract the structure. The scheme encompasses all amyloid fibrils currently in the Protein
Data Bank (PDB), and can be easily extended to accommodate newer discoveries. The work
also showed that the vast majority of known fibril structures fall into just three topological
categories, something that was previously unnoticed. My work has improved the discussion
of fibril structures by condensing the descriptions of complicated structural features using a

set, of universal structural motifs.

The other theme of my work includes solving the protein structure of J2 crystallin, an ag-
gregation resistant protein. J2-crystallin is a novel eye lens protein, highly expressed in
Tripedalia cystophora (box jellyfish) and is an interesting target because of its very high
stability and water-solubility. Unlike most non-cephalopod invertebrates, box jellyfish have
camera-type eyes; therefore, their crystallins present an interesting system from an evolu-
tionary biology perspective, making them an intriguing model system for vertebrates. Inter-
estingly, Basic Local Alignment Search Tool (BLAST) search of J2 in the Protein Data Bank
(PDB) found no proteins above 32 % similarity. Therefore, the structure determination of
J2 is not only important from the evolutionary standpoint but also because of the hypothesis
that J2 possesses a novel protein fold, due to lack of known homology. Here, I present the
biophysical characterization, and solution-state NMR assignments of J2 crystallin, a previ-
ously uncharacterized eye lens protein, addressing the interplay of sequence, structure and

function in the eye lens crystallins.
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Chapter 1

Significance of rapid, in silico
discovery of novel proteins from the

carnivorous plant Drosera capensis

Proteins are fundamental building blocks of life: understanding protein structure, function,
aggregation, and degradation is, therefore, one of the central questions in biology. It is
not only important to discover new proteins as a source to study novel systems but also to
expand the toolkit for chemical biology, biotechnology and proteomics. My work investigates
protein aggregation and degradation through discovering new protein from the carnivorous
plant Drosera capensis, using bioinformatics and genomics tools for analysis and testing the
activity interesting of the newly discovered enzyme candidates experimentally. One may ask
why D. capensis? The digestive enzymes of carnivorous plants have been a topic of biological
interest at least since Darwin’s 1875 monograph on insectivorous plants; in fact, in his book
“Insectivorous plants” [17, 18] Darwin says he cares more about Drosera than the origin of

all the species in the world!



Darwin observed that the mucilage secretions of plants in the genus Drosera contained a
“ferment” that he conjectured to be similar to mammalian pepsin (now known to be an
aspartic protease) [17, 18]. Only recently scientists are beginning to characterize the carniv-
orous plant digestive enzymes. Before Drosera capensis, only two carnivorous plant genomes,
Genlisea aurea and Utricularia gibba, both members of the asterid order Lamiales, were se-
quenced [19, 20]. Both these plants feed on small, often microscopic, prey and perform their
digestive functions in closed traps in a relatively thermostable environment (underground or
under water), therefore they are less subject to the environmental constraints faced by car-
nivorous plants that perform their prey capture in exposed environments [3]. On the other
hand, carnivorous plants require stable and highly active digestive enzymes that would al-
lows the plant to digest its prey to its component amino acid over relatively long time spans
and usually under milder chemical conditions than those of their animal counterparts [3].
As the digestive process must occur without any mechanical disruption of the prey tissue
while competing with bacterial and fungal growth, carnivorous plants are attractive targets

for enzyme discovery.

Carnivorous plant digestive enzymes are stable, are substrate specific, possess unique cleavage
patterns, and have the ability to function over different pH ranges, presenting a rich resource
for chemical biology and biotechnology laboratory applications [3, 21, 2]. We selected the
Cape sundew (Drosera capensis), native to the Cape region of South Africa and belonging to
the order Caryophyllales [3, 21, 2]. D. capensis is an excellent model organism for the study
of carnivory in plants as it can easily be cultivated, is capable of self-pollination, matures
quickly, requires no period of dormancy, and is large and robust, facilitating tissue collection

for multiple experiments from the same specimen [3, 21, 2].

The sequencing and assembly of a high-quality draft genome for D. capensis by the Martin
lab and the Butts lab can be found in the paper [3] from which a plethora of enzymes

were discovered. However, the journey of a protein sequence to an experimentally studied



protein takes many years, as observed in Uniprot which has more than 5 million protein
sequences without a structure [22]. To study genomics effectively, it is imperative to quickly
move from raw data to chemical results. Using the target selection pipeline, in silico protein
structures can be predicted rapidly, to direct the subsequent experimental characterization of
the promising candidates [3, 21, 2]. Subsequent network analysis predicts interesting protein
properties such as potential enzyme activity, enzyme specificity and the functional pH range,
aiding the selection of functionally useful proteins for experimental characterization. This
approach illustrates a generally applicable way to leverage the wealth of information provided
by whole genome shotgun sequencing for proteomics. Computational techniques, despite
their limitations, are now powerful enough to allow potentially useful proteins to be identified
directly from the genome and filtered for strong indicators of biochemical function [3, 21, 2].
So far, this work has resulted in three publications including proteases, chitinases, and
esterase/lipases [18, 21, 2|. As the target selection pipeline forms a basis to my PhD, I will

be discussing the target selection pipeline (Figure 1.1) in detail in this chapter.

1.0.1 Genomic DNA assembly and gene discovery

Genomic DNA was isolated using a protocol developed for recalcitrant plants by Prof. Rachel

Martin [18] and details can be found in the paper.

1.0.2 Feature annotation

Sequence alignments are performed using ClustalOmega [24], with settings for gap open
penalty = 10.0 and gap extension penalty = 0.05, hydrophilic residues = GPSNDQERK,
and the BLOSUM weight matrix [23]. The presence and position of a signal sequence flagging
the protein for secretion was predicted using the program SignalP 4.1 [24], while other lo-

calization sequences were identified using TargetP [25]. The alignment figures are annotated
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Figure 1.1: Flow chart illustrating the overall strategy for identifying enzymatic targets from
genomic DNA. The workflow is indicated with solid arrows, while dotted arrows represent steps
where information from a later stage of the pipeline enables refinement of earlier stages in an
iterative manner. After genome sequencing, assembly, and gene discovery, target proteins are
identified based on putative enzymatic activity. Functional sequence features are identified by
analogy to annotation reference sequences found in the UniProt database. Structures are predicted
using the Rosetta software, and equilibrated in explicit solvent after removal of sequence regions not
present in the mature enzyme. Structures are compared using network analytic methods, enabling
strategic selection of enzymes for experimental characterization in a future study. [1, 2, 3]



to highlight chemical properties of the amino acid residues as well as important sequence
features. The amino acid attributes are color-coded as follows: cysteines are yellow, posi-
tively charged residues are blue, negatively charged residues are red, hydrophobic residues
are green, and all others are black [1, 2, 3]. Highly conserved residues are indicated with
a dot above the sequence position. The catalytic triad residues are marked with colored
arrows. SignalP 4.1 [26] is used to predict the signal peptide cleavage site, which is specified
by underlining the residues on either end of the cleavage point. The signal peptide itself is
highlighted in light orange. Strikethrough text indicates sequence regions that are absent in
the active enzyme, in this case the N-terminal signal peptide that is expressed but removed
during maturation. Annotations were performed by homology to the annotations reference
sequences from found in the UniProt database and identified by their UniProt IDs. An
example of chitinase Family 18 is seen in Figure 2.2 [21]. More details on chitinases can be

found in the following chapter.
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Figure 1.2: Sequence alignment for Family 18 chitinases, annotated by homology to the reference
sequence CHIT3_VITVI. The “DXDXE” motif, in which the acidic residues are marked with red ar-
rows, is imperative for the enzyme activity. Orange arrows indicate residues implicated in substrate
binding.



1.0.3 Structure prediction, equilibration and Protein Structure

Network (PSN) Analysis

In collaboration with Prof. Carter Butts, we developed the in silico maturation method.
Preliminary models of the newly discovered enzymes are produced using the online Robetta
implementation [27] of Rosetta [28]. The Rosetta structures contain the full sequences,
simulated in vacuum, and without any post-transnational modifications. In silico matura-
tion matures the preliminary structures obtained from Rosetta, adds the post-translational
modifications and chemical changes needed to make initial model match its native chemical
environment, which includes, but not limited to pro-sequence removal, protonation state
correction, and solvation, and adding disulfide bonds, introducing backbone cuts, oligomer-
ization and metal coordination. During in silico maturation, the signal sequence is removed
and the structure is equilibrated for 500 ps in explicit TIP3P solvent using NAMDI[29], using
the CHARMM?22 forcefield with the CMAP correction and sodium or chlorine ions were
added as necessary to neutralize the charge of the resulting structure [30]. Examples of
chitinases, esterase/lipases, phospholipases and proteases are represented in the following

chapters.

In addition to the presence or absence of specific features, identifying broader patterns of
structural differentiation can be helpful when selecting putative proteins for expression and
characterization: proteins within different structural subgroups may differ with respect to
other biophysically important properties such as thermal stability, substrate affinity pattern,
overall activity, or aggregation propensity, and choosing a structurally diverse sample thus
has the potential to maximize the chance of identifying proteins with functionally significant
variation [30]. PSNs are a useful tool for such exploration, as they directly represent patterns
of potential interaction among chemical groups rather than e.g. side chain dihedral angles or
other properties that may vary substantially without inducing significant changes in protein

function [30]. PSNs are created for each protein structure by Prof. Carter Butts, using



custom scripts using VMD and statnet tools [18] and more details can be found in the

paper [30].

1.0.4 Experimental validation

Once the target enzymes were selected using the target selection pipeline, the enzymes can
be expressed and studied experimentally. Projects in the Martin lab include expression of
chitinases [21] and proteases [30]. As seen in subsequent chapters, I wanted to test the

activity of proteases and I talk in-depth in the following chapters.



Chapter 2

In silico structure prediction and
network analysis of chitinases from

Drosera capensis

2.1 Background

Chitin, a -(1,4)-N acetylglucosamine (GlcNAc) biopolymer, is the second-most abundant
biopolymer [31]. Chitinases (EC 3.2.1.14) are ubiquitous even among organisms that do
not produce chitin, with the latter employing them for purposes of digestion and/or defense.
These enzymes cleave chitin at the a-1,4 linkage of N-acetyl glucosamine units, although sub-
stantial variation in activity and substrate specificity exists. Some chitinases can also cleave
peptidoglycans at 5-1,4 linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine,
and chitodextrins between N-acetyl-D-glucosamine units. Plant chitinases sometimes have
multiple functionalities; some display lysozyme activity [32], while others have a calcium

storage function [33]. In humans, chitinases are produced in response to fungal infections, a



feature of the innate immune system that is suppressed in immunocompromised individuals,
including AIDS patients, transplant recipients, and burn victims [34]. These enzymes and re-
lated chitin-binding proteins are expressed in human lung tissue, where they are dysregulated

in cystic fibrosis and asthma [35].

In plants, these enzymes are expressed in response to environmental stress and pathogen or
pest infestation [36], driving efforts to overexpress particularly effective examples in trans-
genic crop plants [37]. Carnivorous plants use chitinases as part of the prey capture response:
active chitinases have been found in the pitcher fluid of Nepenthes [38, 39], and in the diges-
tive fluids of the Venus flytrap [6]. However, the extent to which chitin is used as a nitrogen
source remains controversial. Drosera capensis plants fed on chitin incorporate its nitrogen
into their leaf tissue; however nutrient uptake is less efficient than for plants fed on protein
[40]. Examination of insect carcasses after digestion reveals that 40-60% of the total nitrogen
is unused [41, 42], consistent with the observation that the remains of insect exoskeletons
appear mostly intact [43]. However, chitinase expression is upregulated in the presence of
prey in the related species Nepenthes alata. In Drosera rotundifolia, an increase in both
expression of chitinase mRNA and chitinase activity was induced by addition of crustacean
chitin with mechanical stimulation of the traps [44]. The prey-induced induction of chitinase
activity, despite the low efficiency of chitin use, may indicate that chitinases primarily func-
tion to inhibit fungal growth in the traps, just as cytotoxic peptides discourage microbial

growth in the fluid of Nepenthes pitchers [45, 46].

In this work, I compare novel chitinases recently discovered from the genome of the Cape
sundew (D. capensis) [47], to those from other carnivorous plants in order Caryophylalles.
The conservation of the overall protein folds and active site architectures suggests that many
of the D. capensis chitinase sequences form functional enzymes. Using the ‘Target Selection
Pipeline’ described in Chapter 2 which involves sequence analysis, comparative modeling

with all-atom refinement followed by in silico maturation [48], and investigation of protein
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structure networks, structurally distinct subgroups of proteins for subsequent expression and
biochemical characterization could be identified. Author contributions can be found in the
paper [21]. It is important to understand the comparison of Family 19 and Family 18 and

therefore, a portion of the results from the paper [21] are shown in this chapter.

2.2 Materials and Methods

2.2.1 Two Distinct Families of Carnivorous Plant Chitinases Are

Found in D. capensis

Gene sequences annotated as coding for chitinases using the MAKER-P (v2.31.8) pipeline
[49] and a BLAST search against SwissProt (downloaded 8/30/15) and InterProScan [50]
were clustered by sequence similarity, along with chitinases previously identified from Dion-
aea muscipula [6] and various species of Drosera and Nepenthes [51]. Annotated sequence
alignments of the Family 18 and Family 19 chitinases are shown in Figure 3.1. We have
identified four fragments ranging from 41%-100% identity to the DcChitl_1 fragment previ-
ously found by Renner and Specht in D. capensis genomic DNA [51] (Figure2.4). Several
well-characterized reference sequences (e.g chitinases from Vitis vinifera, Brassica napus, and
Hordeum vulgare) are also included for comparison. Using the characterization scheme of
the carbohydrate-active enzymes (CAZy) database [52, 53], the chitinases investigated here
belong to Family 18 (orange) or Family 19 (green). Overall, the sequence identity among
the Family 18 chitinases from Caryophylalles carnivorous plants is much higher than that of
Family 19, as illustrated in Figure 3.1A and B. These two types of chitinases have different
folds and are thought to have evolved independently, [54, 55], consistent with their separa-
tion into separate clusters (Figure 3.1C). Family 18 contains types III and V, while types I,

IT and IV belong to Family 19 [6]. My collaborator Vy Doung worked on Family 19. [1].
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Figure 2.1: Clustering of chitinases identified from the D. capensis genome, compared with those
from other Caryophylalles carnivorous plants and well-characterized reference sequences. All of the
sequences examined belong to GH Families 18 or 19. The sequence dissimilarity used here is the
e-distance metric of Székely and Rizzo [4] (with o = 1). This parameter is a weighted function of
within-cluster similarities and between-cluster differences with respect to a user-specified reference
metric, defined here as the raw sequence dissimilarity (1 - (%identity)/100).

12



2.2.2 Sequence Alignment and Prediction of Putative Protein Struc-

tures

Sequences were aligned with ClustalOmega [56] (gap open penalty = 10.0, gap extension
penalty = 0.05, hydrophilic residues = GPSNDQERK, weight matrix = BLOSUM). Se-
cretion signal sequences were predicted using SignalP 4.1 [26]. Structure prediction was
performed as in [47]. In the first stage, the Robetta [28] implementation of Rosetta [27] was
used to produce an initial model for each protein. In the second stage, the model was sub-
jected to “in silico maturation.” Signal peptides were removed, and disulfide bonds identified
by a combination of homology and distance constraints. Protonation states of active site
residues were corrected to match literature values where necessary; for Family 18 chitinases,
we approximate the sharing of a proton between active site residues D1 and D2 by proto-
nation of D1 (which results in realistic side chain orientations and preserves the attractive
interaction between D1 and D2). In the third and final stage, each matured enzyme model
was equilibrated in explicit solvent (TIP3P water [57]) under periodic boundary conditions
using NAMD [29]. Simulation was performed using the CHARMMS36 forcefield [58], with
each model being energy-minimized for 10,000 iterations and then simulated at 293K for
500ps; the final protein conformation was retained for subsequent analysis. For the one ref-
erence sequence for which a structure was available (HORV2, PDB ID 2BAA, [59]), this was
used as the initial starting model (following removal of heteroatoms and protonation using
REDUCE [60]). PDB files corresponding to the equilibrated structures for all the proteins

discussed in this work available to download and discussed in Table 1 and Table 2.

A sequence alignment for Family 18 chitinases from Caryophylalles carnivorous plants is
shown in Figure 2.2. The figure is annotated to highlight specific amino acid properties
and important sequence features. The chemical properties of amino acids are color-coded
as follows: cysteines are yellow, positively charged residues are blue, negatively charged

residues are red, hydrophobic residues are green, and all others are black. Highly conserved
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residues are indicated with a dot above the sequence position. Cysteine residues involved
in structure-stabilizing disulfide bonds are indicated with yellow asterisks, while the active
amino acid residues are marked with colored arrows. SignalP 4.1 is used to predict the signal
peptide cleavage site, which is specified by underlining the residues on either of the cleavage
point. The signal peptide itself is highlighted in light orange. Strikethrough text indicates
sequence regions that are absent in the active enzyme, in this case the N-terminal signal
peptide that is expressed but removed during maturation. Annotations were performed by
homology to a well-characterized acidic endochitinase from Vitis vinifera (CHIT3_VITVI,
Uniprot ID-P51614).
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DCAP_2879 TALKTGLEFDY VWVQFYNNPP CEYLNGNTTN LLSSWKLWDS QKYIRKLFMG LPAATEAAGS GFIPANVLTS QVLSVIKKT- RKYGGVMLES RYYDTLTGYS
DCAP_4799 TALRTGLEDY ViVQFYNNPP CEYLNSNTTN LISAWNLWSK QGFIRKLEMG LPAGPQAAGS GEIPTDVLTT QVLPVIKKT- PTYGGVMLNS RYDDTLIGYS
DCAP_2737 TALRTGLEDY VIVQFYNNPP CEYLNGNTTN LISSWNLWSK QWFIRKLFLG LPAATQAAGS GFIPTDVLTT QVLPVIKKT- PKYGGVMLWS RYYDTLIGYS
o o
DCAP_7323
DCAP_0106 NQIIGNV
DCAP_7544 SKIIGNV
DCAP_2209 SAIIGSV
C7F821_NEPMI SAIKDSV
C7F817_9CARY SAIKDSV )
I7HCY7 NEPAL SAIKDSV XX signal cleavage site
C7F818_9CARY SAIKDSV ® conserved residue
QO06SNO_9CARY SAIKDSV
C7F824_9CARY SAIKDSV C in disulfide bond
C7F822_9CARY SAIKDSV
C7F819 9CARY SAIKDSV
C7F823 NEPGR SAIKDSV signal sequence
CHIT3_VITVI SSIKSSV L )
DCAP 5455 EAIIDSV non-proline cis peptide bond
DCAP_2879 KAIIDSV
DCAP_4799 EAIISSV
DCAP_2737 EAIISSV

Figure 2.2: Sequence alignment for Family 18 chitinases, annotated by homology to the reference
sequence CHIT3_VITVI. The “DXDXE” motif, in which the acidic residues are marked with red ar-
rows, is imperative for the enzyme activity. Orange arrows indicate residues implicated in substrate
binding.
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Family 19 contains Class [, II, and IV chitinases, all of which are characterized by an anomeric
inverting mechanism [61, 62]. Annotations for the Family 19 chitinases are shown in Figure
2.3. Family 19 contains Class I, II, and IV chitinases, all of which are characterized by an
anomeric inverting mechanism [61, 62]. The N-terminal chitin-binding domain is present in
Class I and absent in Class II, which are otherwise similar in sequence. Family 19 chitinases
from plants have in common a catalytic domain with an active glutamic acid residue. The
active site motif surrounding the active E is either HETT (type I and II) or HETG (type
IV) [51], both of which are observed in this set of proteins. Annotations for the Family
19 chitinases are shown in Figure 2.3. Amino acid and sequence features are indicated as
in Figure 2.2, with the following additions, when present: the C-rich domain is highlighted
in light green, the P-rich hinge in light blue, and the C-terminal extension (CTE) in light
gray. Both the C-rich domain and the P-rich hinge are highly variable in length and are
absent in some sequences. Only three chitinases in this set contain the CTE, which targets

those sequences to the vacuole. The reference sequences for this cluster are CHI3_CASSA

(Castanea sativa), CHI2.BRANA (Brassica napus), and HORV2 (Hordeum vulgare).

16



° oo * o
Q6IV09_DRORT
CHI3_CASSA A GNTAEY G-
Q6IVX8_9CARY MNARCECFH, MENHH 4 WAL ELNER H GTTSDY G-
VSTEIOiDIOMU BN Lt Bk P GTTSAY G-
Q6DUJY_DIOMU LLLCISPF P GATSAY G-
VJH3_9CARY LLLEVVR-I P GTTSAY
DCAP_5513 TILI AR P
Q6DUKO_9CARY
DCAP_4817 PILLLL VAR LLSGTYAVQ  GSEVGGAL P NGLO SKYGY ~GITSAY G-
HORV2
CHIZ_ERANA ****** MEGm— LLLELIFGE LIZESLARQ GRQAGGAL P NGL SEFGW CGDTEAYCKQ
Q6IV10_DRORT
I0CMI2_DIOMU
I0CMI3_9CARY
IOCMI479CARY
T0CMI6_NEPMI
Q6IVX2_9CARY £ LSLLG—LLAL SQYGH GTTDDY G-
Q6IVX4_9CARY M- B : EEAL SQYGW  GTTDDY G-
DCAP 0533 - MPIUHAS TNKAXIDESE DYDSIOT prTyNyENMA TSTXTRTH TP SQYGY GTSDAY G-
R9ZMK1_NEPAL LSABINLLIV-AFLAGII LN SKWGY ~GTGDAY G-
() ° o0 °o o °
Q6IV09_DRORT
CHI3_CASSA AG QS0 TASSGGGGD NDP SNGFYTYN AFIAAAR-SE NGEGTTGDVT
Q6IVX8_9CARY NG QsQ SPPSPVGGD NNAZ PARGEYTYE A SGFGTTGDEN
VSTEIOiDIOMU AG QSQ S--PSGGGDV NDNA PANGEYTYN
Q6DUJY_DIOMU AG 0SQ P ) NDNA ~PANGFYTYN AFIEAAR-SF PGFGTTGDVN
VJH3_9CARY DG QSQ $--PSGGGD NDNA ~PANGFYSYQ AFINAAR-KF SGEGTTGDTN
DCAP_5513 PG QSQ S--PSGGGD NDNA PANGFYSYQ AFLDAAR- SGEGTTGDIN
Q6DUKO_9CARY
DCAP_4817 PG QSQ $--PSGGGDV SSIITSQIFN QVLLHENDNA ~PAHGFYSYQ AFLDAAR-KF SGFGTTGDIN TRKKELA?
HORV2 SSIVSRAQFD RMLLHENDGA ~QAKGFYTYD AFVAAAA-AF PGFGTTGSAD AQKRE
CHIZ_BRANA EEREERREGT P-—————=—= ——————=—== ——= PGPTGDL SGIISRSQFD DI HENDN: PARGFYTYD A NAAK-SF PGFGTTGDTA T
Q6IV10_DRORT
I0CMI2_DIOMU -MLKHENDAA ~QGRGFYTYD AFIAAAK-SE PQFGTTGSAE 1
IOCMI3_9CARY N QMLKHRNDGG < PAKGFYTYD AFIAAAK-SF PA ATGDA T
IOCMI4_9CARY FN QMLKHENDGG ' PAKGFYTYD AFIAAAK-SE PR T
T0CMI6_NEPMI QVLKHENDGG ~PAKGEYTYD AFI -s¥ T
Q6IVX2_9CARY 0SQ ' S¥S TEDKEN QMLKHENDGG «PAKGFYTYD AFIARAK-SE AT
Q61VX4_9CARY QSQ SrS VTRDKEN QMLKHENDGG ~ PAKGFYTYD AFIAAAK-SF PAFAATGDA
DCAP70533 QEGP KS VSDAFFN GII-DQAAST EGIGFYS GFLSAWESNY TDFGTTGSVE
R9ZMK1_NEPAL QEGP' YS DIVTDSFFD GII-NQASSS ~AGKYFYSRS AFLDALD-SY PAFGTSSD
cowe V1 e
Q6IV09_DRORT - SLS PET GGY ~SDRYYGRGP IOLTNENNYE KAGTAIGQEL TISFKTAI
CHI3_CASSA \QTSHETTGG WATAPDGPYA WGY PV FGKQYYGHGP HNYNYG QAGKAIGADL PTISFKTAI
Q6IVX8_9CARY GQTSHETTGG WATAPDGPYA WGY P AGKSYYGRGP YNYNYG PSGQAIGQPL SFETAT
V5TEIO_DIOMU GQTSHETTGG WPTAPDGPY. P PGKSYYGRGP IQISYNYNYG Q GDSIGQPL ISFETAI
Q6DUJY_DIOMU GQTSHETTGG 1PTAPDGPY! P A PGKSYYGRGP I0OISYNYNYG Q GDSIGQPL L [SFETAI
VJH3_9CARY GOTSHETTGG P A PGQXYYGHGP I0ISYNYNYG L GAAINQPL LSNPGLVASD ADISFETAL
DCAP_5513 ******** GG i P PGKEYYGRGP IQISYNYNYG Q GVAINQPL ADVSFETAT
Q5DUK079CARY ———————— GG W IGY P PGKKYYGRGP IQISYNYNYG Q G. INQPT, ADVSFETAI
DCAP_4817 GQTSHETTGG ¥ 1GY P A PGKKYYGRGP I0ISYNYNYG Q GAAINQP ADVSFETAI
HORV2 AQTSHETTGG 1GY P PGKRYYGRGP 1 HNYNYG PAGRAIGVDL LANPDLVATD ATVGFKTAT
CHIZiBRANA GQTSHETTGG IGY P SGKSYYGRGP M INYNYG Q GRAIGSDL LNNPDLVSND PVIAFKAAI
Q6IV10_DRORT -QTTHETFGG ¥ WGy P A PGRKYFGRGP IOTSHNYNYG P'GRAIGVDL LNNPDLVATD SVISFKS
I0CMI2_DIOMU GOTSHETTGG 1GY P A AGKKYYGHGP FNFNYG PAGQATGODL LNNPDLVATD PIVSFKTAI
IDCMI3_9CARY AQTSHETTGG P AGKKYYGRGP IQISYNENYG AAGKAIGVDL LNNPDLVEKD PVVSFKTAI
I0CMI4_9CARY AQTSHETTGG PV AGKKYYGRGP IQISYNFNYG AAGKAIGVDL LNNPDLVEKD PVVSFKTAI
I0CMI6_NEPMI \QTSHETTGG PV AGKKYYGRGP IQISYNFNYG AAGKAIGVDL LNNPDLVEKD PVVSFKTAI
Q6IVX2_9CARY AQTSHETTGG PV AGKKYYGRGP IQISYNFNYG AAGKAIGVDL LNNPDLVEKD PVVSFKTAI
Q6IVX4_9CARY AQTSHETTGG P AGKKYYGRGP IQISYNENYG AAGKAIGV EKD PVVSFKTAT
DCAP70533 HVTHETG-- YINEIN GSS---+DY P N PSKGYYGHGP WNENYG PAGRDLGFDG LNSPETVAND PVISFKTA
A9ZMK1_NEPAL \HVTHETG-— YIEEIG GPSLPTSAY P N PNVGYYGHGP I0ISWNYNYG PAGQAIGFDG LNSPQTVAND PIISFKSAIL
o o oo ° o o oV 3 . .

Q6IV09_DRORT
CHI3_CASSA P PSAADTSAG HVPSYGVITN -GLE GH GSDDRVANRI GFYKRY DTL GVSYGNN
Q6IVX8_9CARY 0 P TPSAPD G REPGYGVTTN GGLE GF GPDI AS GEYERY DIL GVDYGDN
V5TEI07DIOMU WMTPQ! P S HDVITGNW SPSSADQAAG PGYGVITN GGVE' G GQDASVAD! GFYTRY NIL GVNPGNN
Q6DUJY_DIOMU WMTPQGDKP S HDVITGNW SPSSADQAAG RLPGYGVITN IINGGVE GK GQDASVADRI GFYTRY NIL GVNPGNN
VJH3_9CARY WMTPOGNKP A G RVPGYGVITN IINGGVE GQ GEKAEVADRI GFYQRY SIF GISPGON
DCAP_5513 WMTPQGSKP AG RVPGYG----
Q6DUKO_9CARY WMTPOGSKP G RVPGYGVITN 11NGGL----
DCAP_4817 WMTPOGSKP G HVPGYGVITN 11NGGVE G¥ GTVBQVADRI GFYQXY SIM GIAPGGNLD YNQH--PES- —---=----=
HORV2 WMTAQPPKP G PGFGVITN GGIE GH GQDS D] GFYXRY DIL GVGYGNNLD YSQR--PFA-
CHIZ_BRANA WMTPQSPKP G /PGYGVITN IINGGLE GF GQDARVADRI GFYQRY NIL GVNPGGNLD YNQR--SFAS
Q6IV10_DRORT ¥
I0CMI2_DIOMU MTPQSPKP
IDCMI3_9CARY WMTPQSPKP
TOCMI4_9CARY WMTPQSPKP
T0CMI6_NEPMI WMTPQSPKP S
Q6IVX2_9CARY WMTPQSPKP S H. ITGRW TPSAADKSAG PGIG GGVE GH GQDA D] GFYKRY DIL GVGYGNNLD YNQR--PFGN ! -
QéIVX479CARY WMTPQSPKP S HAVITGRW TPSAADKSAG VPGFGVV GGVE GH GQD: ADI GEYXRY DIL GVGYGNNLD YNQR--PFGN GLLWATE---
DCAP_0533 - SGQGFGETI -STE DG GNTPEVNDRV KYYXQY DEL AQS G AAGL ~ SKYGY GT TSSY GDG
R9ZMK1_NEPAL SGQGIGATI* AIN-SME NG GNPSAVDDRV GYYVAY NQF GUSPGGN--L Y ——==-=== —=——oomooo

XX signal cleavage site conserved residue C in disulfide bond signal sequence P-rich hinge

v binding residue V acidic catalytic residue V basic catalytic residue C-rich domain CTE

Figure 2.3: Sequence alignment and annotation for Family 19 chitinases. Many sequences in this
cluster contain a chitin-binding C-rich domain (light green) that is connected to the active region by
a P-rich hinge (light blue). Three sequences in this cluster contain a C-terminal extension (CTE)
that causes the proteins to be targeted to the vacuole.
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Four Family 19 chitinase fragments were identified from the D. capensis genome by perform-
ing a BLAST search for DcChit_1, a chitinase fragment previously identified from genomic
DNA of the same organism [51]. Their sequences range from 41%-100% identity to Dc-
Chit1_1. These fragments contain part of the N-terminal region, including the C-rich domain
and the P-rich hinge, neither of which was observed in the original fragment, along with part
of the catalytic domain (Figure 2.4). However, these sequences are all truncated before the
catalytic residues. Sequencing of the D. capensis transcriptome will clarify whether these
are fragments of active genes containing one or more introns, or inactive pseudogenes, which
are relatively common in gene families undergoing rapid evolution [63] (as is the case for

many proteins associated with pathogen defense) [64].

DeChitI 2 —=—mmmmmmm mmmmmmmmem oo SMEIT PLLSGTY AVQ GSEVGG PNGL S KYGY GTTSA Y GPG QSQ GGSSPPPAPP
TOCMI1 DROCA == mmmmmmmm mmmm oo o o e e e e
DeChitI 1 —=mmmmmmmm mmmmmmmmem oo SMEIT PLLSGTY AVQ GSEVGG PNGL S KYGY GTTSA Y GPG QSQ GGSSPPPAPP
DcChitI 3 TRSIPEIS STAPIISETL DHTIQT SPPMKSIH TMPRHLAAQS CGUAAGLCCS KYGYCGTTSD YCGDGUQAGP CSSTPA----
DeChitI 4 —mmmmmmmmm mmmmmmmmem oo SPPMENYHVT T TVMPGHLAAQS G AAGL S KYGY GTTSS Y GDG QAGP ~SSTPT----
DcChitI 2 SPTPSPPSPS GGGDVSSIIT SQIFNQVLLH “NDNA PANG FYSYQAFLD SGEGTT GDINTRKKE GOTSHE TTG--===== —======——
I0CMI1 DROCA —----- PSPS GGGDVSSIIT SQIFNQMLLH SNDNATPAHG FYSYQAFLD SGEGTT GDINTRKKE GQTSHE TT-------= —————————-
DcChitI 1 SPTPSPPSPS GGGDVSSIIT SQIFNQVLLH “NDNA PAHG FYSYQAFLD SGEGTT GDINTRKKE GOTSHE TT--====== —===————
DcChitI 3 ——mmmmme- G SGVSVPAVVT -NGIIN “AGSG PGTG FYSHSAFLSA IGSYPSFGTT GTSD E HVTHE TG “HIH SKEYAVLY
DeChitI 4  —mmmmmme- S SGVSVPAVVT DAFF-NGIIN QAGSG PGHG FYSRSAFLSA IGSYPSFGTT GTTDASKQE HUTHE T-======== ———=—————m
DcChitI 2 ——mmmmmmmm oo

IOCMI1 DROCA =—======== ———

DcChitI 1 ——mmmmmmmm —oo

DcChitI 3 Y DE AID

DcChitI 4 ——mmmmmmmm —oo

Figure 2.4: Chitinase 1 fragments discovered using a BLAST search of the D. capensis genome
against the DcChitl_1 fragment previously identified by Renner and Specht from D. capensis ge-
nomic DNA.

2.2.3 Preliminary Structural Models and In silico Maturation

Preliminary models for both Family 18 and Family 19 chitinases were produced using Rosetta
28], implemented in the online Robetta server [27]. The Rosetta structures contain the full
sequences, including the N-terminal signal peptides, and in some cases, C-terminal targeting
peptides that are also cleaved during maturation. These Rosetta models then underwent the

in silico maturation process [48], and the process is illustrated in Figure 2.5 for a represen-
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tative family 18 chitinase, DCAP_2209. The initial Rosetta sequence, including the signal
peptide and lacking post-translational modifications, is shown in Figure 2.5. In order to
generate the equilibrated structure Figure 2.5b, which more closely approximates the active
form of the enzyme in solution, the signal sequence is removed, disulfide bonds are added
using homology to a reference sequence (in this case CHIT3_VITVI), and the structure is
equilibrated in explicit solvent. Many Family 18 chitinases from plants contain three disul-
fide bonds [65, 66], although examples without any disulfide bonds also exist [67]. Three are
found in all the Family 18 chitinases in this set, as in CHIT3_VITVI [36], and hevamine from
Hevea brasiliensis (PDB ID: 2HVM) [68]. The functionally important cis peptide bonds are
captured by the molecular models for all the Family 18 chitinases examined here except for
DCAP_7323, which unlikely to be active in any case because it is truncated at the N-terminal

end.

a DCAP_2209 Rosetta (full)

b DCAP_2209 Roset (equilibrated)

~

N-terminus

signal sequence

Figure 2.5: DCAP_2209 (a) before and (b) after in silico maturation. The light orange helix in
part a is the N-terminal signal sequence. Important residues are color-coded as follows: Red:
catalytically active residues of the “DXDXE” motif. Orange: aromatic substrate-binding residues.
Yellow: Cysteines in disulfide bonds.

Figure 2.6 shows full-length structures for Q6IVX8 9CARY and Q6IVX2_9CARY (Family
19) from Drosera spatulata. The N-terminal and C-terminal targeting sequences are exposed

on the surface of the protein, as expected. The P-rich hinge in these proteins is variable
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in length, and highly flexible, as illustrated by the different relative conformations of of the

catalytic and C-rich chitin binding domains observed here.

a Q6IVX8_9CARY b Q6IVX2_9CARY

. N-term.
signal sequence

C-rich domain RN C_icm.
P-rich hinge S A GLLWATE
vaculolar targeting sequence

Figure 2.6: Initial Rosetta structures for two class 1 chitinases from Drosera spatulata,
Q6IVX8_9CARY and Q6IVX2_9CARY, illustrating positioning of the N-terminal and C-terminal
targeting sequences and the variability in length and conformation for the P-rich hinge.

All initial and equilibrated structures are available for download as PDB files from our paper
online [1]. The available structures for Families 18 and 19 are tabulated in Tables 1 and 2,

respectively.
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Protein
CHIT3_VITVI
CHIT3_VITVI

DCAP_7323
DCAP_7323
DCAP_0106
DCAP_0106
DCAP_7544
DCAP_7544
DCAP_2209
DCAP_2209
C7F821_NEPMI
C7F821_NEPMI
CTF817_9CARY
CTF817_9CARY
ITHCY7_NEPAL
ITHCY7_NEPAL
CT7F818_9CARY
C7TF818_9CARY
QO6SNO_9CARY
QO06SNO_9CARY
CT7TF824 9CARY
CT7F824 9CARY
CT7F822_9CARY
C7TF822_9CARY
CTF819 9CARY
CTF819 9CARY
CT7F823_NEPGR
CT7F823_NEPGR
DCAP_5455
DCAP_5455
DCAP_2879
DCAP_2879
DCAP_4799
DCAP_4799
DCAP_2737
DCAP_2737

Organism
Vitis vinifera
Vitis vinifera
D. capensis
D. capensis
. capensis
. capensts
. capensis
capensis
capensis
. capensis

. mirabilis

ZZoO000 DD

. mirabilis

. spatulata

S o

. spatulata
N. alata
N. alata
. spatulata
. spatulata
. spatulata

. spatulata

D

D

D

D

D. spatulata
D. spatulata
D. spatulata
D. spatulata
D. spatulata
D. spatulata
N. gracilis
N. gracilis
D. capensis
capensis
capensis
capensis
Capensis
Capensis

capensis

SISESESESE A

capensis

Sequence Elements included
signal, active region
active region
active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region

active region
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File Name
CHIT3_VITVI.ml.pdb
CHIT3_VITVI.mature_m1.pdb
DCAP_7323_m1l.pdb
DCAP_7323_mature_m1.pdb
DCAP_0106_m1.pdb
DCAP_0106_mature_ml.pdb
DCAP_7544_m1.pdb
DCAP_7544 _mature_m1.pdb
DCAP_2209_m1.pdb
DCAP_2209_mature_-m1.pdb
CTF821_NEPMI_m1.pdb
C7F821_NEPMI_mature_ml.pdb
C7F817_9CARY _m1.pdb
C7F817_9CARY _mature_ml1.pdb
ITHCY7_NEPAL_ml.pdb
ITHCY7_NEPAL_mature_m1.pdb
C7F818_9CARY m1.pdb
CTF818_9CARY _mature_ml.pdb
QO06SNO_9CARY _m1.pdb
QO06SNO_9CARY _mature_ml1.pdb
CT7F824_ 9CARY _ml.pdb
C7F824_ 9CARY _mature_ml.pdb
C7F822_9CARY _ml.pdb
CTF822_9CARY _mature_ml.pdb
C7F819_9CARY _m1.pdb
C7F819_9CARY _mature_ml1.pdb
C7F823_NEPGR_m1.pdb
C7F823_NEPGR _mature_m1.pdb
DCAP_5455_m1.pdb
DCAP_5455_mature_ml.pdb
DCAP_2879_m1.pdb
DCAP_2879_mature_m1.pdb
DCAP_4799_m1.pdb
DCAP_4799_mature_ml.pdb
DCAP_2737_ml.pdb
DCAP_2737_mature_ml.pdb



Protein
HORV2
HORV2

Q6IVO9_-DRORT
Q6IVO9_-DRORT
CHI3_CASSA
CHI3_CASSA
Q6IVX8_9CARY
Q6IVX8_9CARY
V5TEIO_DIOMU
V5TEIO_DIOMU
Q6DUJ9_DIOMU
Q6DUJ9_DIOMU
VIJH3_9CARY
VJH3_9CARY
DCAP_5513
DCAP_5513
Q6DUKO_9CARY
Q6DUKO_9CARY
DCAP_4817
DCAP_4817
CHI2_BRANA
CHI2_.BRANA
Q6IVIO_DRORT
Q6IVI0O_-DRORT
I0CMI2_DIOMU
I0CMI2_.DIOMU
I0CMI3_9CARY
I0CMI3_9CARY
I0CMI4_9CARY
I0CMI4_9CARY
I0CMI6_NEPMI
I0CMI6_NEPMI
Q6IVX2_ 9CARY
Q6IVX2_9CARY
Q6IVX4_9CARY
Q6IVX4_9CARY
DCAP_0533
DCAP_0533
A9ZMK1_NEPAL
A9ZMK1_NEPAL

Organism
H. vulgare
H. vulgare
D. rotundifolia
D. rotundifolia
Castanea sativa
Castanea sativa
D. spatulata
D. spatulata
muscipula
muscipula
muscipula
muscipula
spatulata

D.

D.

D.

D.

D.

D. spatulata
D. capensis
D. capensis
D. spatulata
D. spatulata
D. capensis
D. capensis

B. napus
B. napus

D. rotundifolia
D. rotundifolia
muscipula
muscipula
. spatulata
. spatulata
. spatulata
spatulata
marabilis
mirabilis
spatulata
spatulata

. spatulata

. spatulata

capensis

SESESASESASIE RN VAR

. capensis
N. alata
N. alata

Sequence Elements included
active region
active region
active region
active region
C-rich domain, P-rich hinge, active region
C-rich domain, P-rich hinge, active region
signal, C-rich domain, P-rich hinge, active region
C-rich domain, P-rich hinge, active region
signal, C-rich domain, P-rich hinge, active region
C-rich domain, P-rich hinge, active region
signal, C-rich domain, P-rich hinge, active region
C-rich domain, P-rich hinge, active region
signal, C-rich domain, P-rich hinge, active region
C-rich domain, P-rich hinge, active region
signal, C-rich domain, P-rich hinge, active region
C-rich domain, P-rich hinge, active region
active region
active region
signal, C-rich domain, P-rich hinge, active region
C-rich domain, P-rich hinge, active region
signal, C-rich domain, P-rich hinge, active region, CTE
C-rich domain, P-rich hinge, active region
active region
active region
active region
active region
active region
active region
active region
active region
active region
active region
signal, C-rich domain, P-rich hinge, active region, CTE
C-rich domain, P-rich hinge, active region
signal, C-rich domain, P-rich hinge, active region, CTE
C-rich domain, P-rich hinge, active region
signal, C-rich domain, P-rich hinge, active region, C-terminal domain
C-rich domain, P-rich hinge, active region, C-terminal domain
signal, C-rich domain, P-rich hinge, active region
C-rich domain, P-rich hinge, active region
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File Name
HORV2 PDBID: 2BAA
HORV2_crystal_struc_mature_m1l.pdb
Q6IV09_-DRORT _m1.pdb
Q6IV09_-DRORT -mature_m1.pdb
CHI3_CASSA_ml.pdb
CHI3_CASSA _mature_ml.pdb
Q6IVX8_9CARY _ml.pdb
Q6IVX8_9CARY _mature_ml.pdb
V5TEIO_.DIOMU _ml.pdb
V5TEIO_.DIOMU_mature_m1.pdb
Q6DUJ9_DIOMU_ml.pdb
6DUJ9_-DIOMU_mature_ml.pdb
VJH3_9CARY_ml.pdb
VJH3_9CARY _mature_ml.pdb
DCAP_5513_m1.pdb
DCAP_5513_mature.ml.pdb
Q6DUKO_9CARY_m1l.pdb
Q6DUKO_9CARY _mature-m1.pdb
DCAP_4817_ml.pdb
DCAP_4817_mature.ml.pdb
CHI2_.BRANA _m1.pdb
CHI2_.BRANA _mature-m1.pdb
Q6IV1I0_-DRORT _ml.pdb
Q6IV10-DRORT _mature_m1.pdb
I0CMI2_DIOMU_m1.pdb
I0CMI2_DIOMU_mature_-m1.pdb
I0CMI3_9CARY_ml.pdb
I0CMI3_9CARY _mature_ml.pdb
I0CMI4_9CARY _ml.pdb
I0OCMI4_9CARY _mature_ml.pdb
I0CMI6_-NEPMI_m1l.pdb
I0OCMI6_NEPMI_mature_ml.pdb
Q6IVX2_9CARY _ml.pdb
Q6IVX2_9CARY _mature_ml.pdb
Q6IVX4_9CARY _ml.pdb
Q6IVX4_9CARY _mature-ml.pdb
DCAP_0533_m1.pdb
DCAP_0533_mature_ml.pdb
A9ZMKI1_NEPAL_ml.pdb
A9ZMK1_NEPAL_mature_ml.pdb



2.2.4 Network Modeling and Analysis

In collaboration with Prof. Carter T. Butts, we mapped each equilibrated protein structure
to a protein structure network (PSN) as defined by the representation of [69] using software
tools from [47]; these in turn make use of VMD [70] and the statnet toolkit [71, 72] within
the R statistical computing system [73]. To compare PSNs, we use the structural distance
approach of [74], which defines a metric on graph pairs that is in our case equal to the number
of edges in one graph that would need to be altered in order to make it isomorphic to the
other. (Isolate addition was performed when comparing graphs with differing numbers of
vertices.) To remove size effects, the raw distance between each pair of PSNs was normalized
by the number of vertices, yielding a metric corresponding to edge changes per vertex.
These normalized structural distances were analyzed using hierarchical clustering using R.
Additional network analysis and visualization was performed using the network and sna

libraries within statnet [72, 75].

2.3 Results

This work reports molecular models and functional predictions from protein structure net-
works for eleven new chitinases from D. capensis, including a novel class IV chitinase with
two active domains. This architecture has previously been observed in microorganisms but
not in plants. This work used a combination of comparative and de novo structure predic-
tion followed by molecular dynamics simulation to produce models of the mature forms of
these proteins in aqueous solution. Protein structure network analysis of these and other
plant chitinases reveal characteristic features of the two major chitinase families. Vy Duong
worked mostly on Family 19 and my work was mostly concentrated on Family 18. It is im-
portant to understand the comparison of Family 19 and Family 18 and therefore, a portion

of the results from the paper [21] are shown in this chapter.
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2.3.1 D. capensis Chitinases are Predicted to Adopt Folds Con-

sistent with Active Enzymes

The catalytic action of family 18 chitinases, which retains the [-anomeric carbon stereo-
chemistry from the substrate to the product, is based on substrate-assisted hydrolysis of the
glycosidic bond [76, 77, 78]. Catalysis is initiated by distorting the -1 sugar ring subsite
adjacent to the glycosidic bond. Next, Asp 123 rotates to form hydrogen bonds with both
Glu 127 and the N-acetyl group of the +1 sugar. This step protonates Glu 127. Then, the
anomeric carbon is subjected to a nucleophilic attack by the oxygen from the N-acetyl group,
forming an oxazolinium ion as an intermediate, followed by cleavage of the glycosidic bond
by hydrolysis to generate smaller fragments. The DXDXE motif is essential for activity,
hence fragments that were lacking this sequence due to truncation were excluded from the

protein set.

Family 18 chitinases, which retain the S-anomeric carbon stereochemistry from the substrate
to the product, adopt the (a-f)s triosephosphateisomerase (TIM)-barrel fold [66, 76], shown
for DCAP_0106 in Figure 2.7A. The active site (Figure 2.7B), consists of a characteristic
DXXDXDXE motif [66, 76]. The “tunnel” containing the active site is shaped by an unusual
structural feature, two non-proline cis peptide bonds that are highly conserved, although the
particular residues involved are somewhat variable [68, 33]. The cis peptide bonds (shown
in black in Figure 2.7C), are captured by the molecular models for all full-length Family 18
chitinases examined here. The shape of the tunnel and the surface formed by the aromatic
rings opposite the catalytic D and E residues acts to guide the chitin polymer chains into
the active site, leading to processive activity [79]. The ability of Family 18 chitinases to keep
the strand that is currently being degraded from re-encountering solid substrate is thought

to be a key determinant of their ability to hydrolyze crystalline polysaccharides [80].

The Family 19 chitinases, all of which are characterized by an anomeric inverting mechanism
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C-rich domain
P-rich hinge

B acidic catalytic residue C-rich domain
[ basic catalytic residue inter-domain linker
[ binding residue

B catalytic domain

Figure 2.7: Equilibrated structures of the mature sequences of chitinases from carnivorous plants.
A. DCAP_0106, a representative Family 18 chitinase, after in silico maturation. Numbering of sec-
ondary structure elements follows the convention of Si et al. [5]. B. Notably, the tunnel containing
the active site has two surfaces with different chemical properties; the aromatic rings (orange) hold
the more hydrophobic face of the chitin polymer in place, while the acidic residues (red) perform
hydrolysis of the glycosidic linkages. C. Two conserved non-proline cis peptide bonds (black) are
critical to shaping the active site tunnel in Family 18 chitinases. D. Chitinase VF-1 from Dionaea
muscipula VSTEIO_DIOMU [6], with important sequence features and active site residues labeled
(red: acidic active residue. blue: basic active residue. yellow: disulfide bond). E. The two-domain
chitinase DCAP_0533. Color coding is as in D, with the addition of substrate-binding residues in
orange.[1]

25



[61], have diverse structural features. Much of the structural and functional diversity results
from two highly variable regions, the C-rich chitin-binding domain and the P-rich hinge
[81, 82], each of which may vary in length or be absent altogether. We have identified two
class I chitinases (DCAP_4817 and DCAP_5513) and one class IV chitinase (DCAP_0533)
from the D. capensis genome. Most of the sequences in this set contain N-terminal secre-
tion signals, however two D. spatulata sequences (Q6IVX2 9CARY and Q6IVX4 9CARY)
and the reference sequence CHI2_.BRANA contain short C-terminal extensions indicating
targeting to the vacuole, consistent with their playing a purely defensive role. One sequence
each from D. capensis (DCAP_5513), D. rotundifolia (Q6IVO9_-DRORT), and D. spatulata
(Q6DUKO0_9CARY) is missing one or more critical active site residues; in other organisms,
enzymatically non-functional chitinase homologs are often present and can serve as chitin-
binding proteins [83]. The predicted structure after in silico maturation for a representative
chitinase, VF-1 from D. muscipula (Figure 2.7 is in good agreement overall with the homol-
ogy model of Paszota et al. [6], with the active site residues positioned in a shallow cleft on
the surface of the active domain. The two models do differ in the relative orientations of the
domains; however examination of the other models in this set suggests that the P-rich hinge

is highly flexible as seen in Figure 2.6.

2.3.2 The Novel Class IV Chitinase DCAP 0533 Has Two Func-

tional Domains

This work identified a new class IV chitinase from D. capensis, DCAP_0533. A class IV
chitinase has previously been described as one of the most abundant proteins in the pitcher
fluid N. alata [45], where it preferentially hydrolyzes small GlcNAc oligomers over larger
polymeric substrates [84]. Unlike other known plant chitinases, DCAP_0533 contains two
class IV catalytic domains. The N-terminal domain appears to be fully active, while the C-

terminal domain lacks one of the active residues but contains a full complement of substrate-
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binding residues (Figure 2.7E, Figures 2.9, Figure 2.10). Multidomain chitinases containing
dedicated substrate-binding domains have previously been observed in microbes [85]. For
example, ChiA from the thermophilic archeon Pyrococcus kodakaraensis, has two chitinase
domains and three catalytically inactive substrate binding domains, allowing separate op-
timizaton of substrate binding and catalytic function [86]. AFM data suggests the binding
is mostly determined by interaction of the aromatic residues in the binding site (orange in
Figure 2.7E) with the pyranose rings of the substrate [87]. This type of functionality has
not been previously observed in plants; we hypothesize that it is an adaptation associated
with carnivory, perhaps related to more effective breakdown of small oligosaccharides to

components that can be used as a nitrogen source.

Structurally, each domain consists of two lobes with eight helices each, separated by a large
active site cleft Figure 2.10(a). In Figure 2.10(b), the two domains of this protein are
shown overlaid with the crystal structures of class IV chitinases from Zea mays (PDBID:
AMCK, 60% identity with the NTD) and Picea abies (PDBID: 3HBE, 64% identity with
the CTD). The NTD Figure 2.10(c) has an N-terminal signal peptide, a conserved C-rich
binding domain, and a catalytic domain that appears to be functional. In its homolog
CHIA_MAIZE, Chaudet et. al. characterized four catalytic residues (E62, E71, E165, and
R171) [88], all of which have counterparts in the NTD of DCAP_0533 (E173, E182, E278,
R290) Figures 2.9 and 2.10. Previous modeling studies of well-characterized class I chitinases
from barley, mustard, and chestnut seed homologs (barley: E67, mustard: E212, chestnut:
E124) suggest the necessity of E62 in CHIA_MAIZE and E173 in the NTD of DCAP_0533 as
a proton donor [89, 90, 91]. Overall, mutagenesis studies highlight the significance of E62 as
an essential residue of the catalytic triad (E62, E165, R171 in CHIA_MAIZE) which we use
to infer an equivalent catalytic triad in the NTD of DCAP_0533 (E173, E278, and R290). It
has also been hypothesized that purpose of the triad is to alter the surrounding environment
to induce activation of the glutamic acid in the HETG/I (class IV) or HETT (class I/II)

motif by changing its pKa [91].
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Figure 2.8: Sequence alignment and annotation of QGWSR8_PICAB, CHIA_MAIZE, and the N-
terminal domain (NTD) and C-terminal domain (CTD) of DCAP_0533. For the purpose of compar-
ison, the sequence is manually separated above. We observe high sequence conservation regarding;:
the signal cleavage site, C-rich domain length and location, cysteines composing disulfide bonds,
other binding site residues surrounding the main binding site residues (orange arrows), and catalytic
residues except Glu407 of the CTD which is unaligned with Glul13 of Q6WSR8_PICAB

Class IV chitinases exhibit an amino acid substitution in the first active site region rela-
tive to Class I chitinases, resulting in a HETG/I motif instead of the HETT motif [51]. A
deletion of four amino acids in the Cys-rich binding domain is also observed in class IV chiti-
nases, as shown for a class IV chitinase from Nepenthes alata (A9ZMK1_NEPAL) [84] and
DCAP_0533 in 2.3. Figure 2.9 shows a sequence alignment of the N- and C-terminal domains
of the Class IV chitinase DCAP_0533 with single domain class IV chitinases from Picea abies
(Q6WSRS_PICAB), Zea mays (CHIAMAIZE), and Sorghum bicolor (C5YBE7_SORBI).
The two domains of DCAP_0533 were aligned with the most closely related annotated class
IV chitinases, those from Picea abies (EC: 3.2.1.14, Uniprot: Q6WSR8_PICAB), Zea mays
(EC: 3.2.1.14, Uniprot: CHIA_MAIZE), and Sorghum bicolor (Uniprot: C5YBE7_SORBI)
(92, 51, 88] (Figure 2.10).

Linked to the NTD by a cysteine and glycine-rich linker sequence, the CTD of DCAP_0533
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(Figure 2.10(d) potentially houses a second catalytic domain or binding domain whose clos-
est structural homolog is QGWSR8_PICAB from Norway spruce (Picea abies) (Figure 2.9).
Binding site residues and cysteines involved in disulfide bond formation are conserved in
both chitinases. Comparing this sequence with the catalytic triad of Q6WSR8_PICAB
(E113, R230, E218), we observe a potentially equivalent triad in the CTD (E407, E507,
R519) (Figure 2.10). Ubhayasekera et. al. describe the flexibility of E113 and demonstrate
two conformations that it can adopt during catalysis [92]. Although E407 is not located in
the equivalent sequence position to E113, the flexibility of this residue in QGWSR8_PICAB
suggests that Glu407 may be at an appropriate distance to function as part of the CTD
triad. Alternatively, the CTD may lack catalytic activity and act as a binding domain as in

multidomain chitinases from archaea and bacteria.

2.3.3 Description of a Novel Two-Domain Class IV Chitinase

Class IV chitinases exhibit an amino acid substitution in the first active site region rela-
tive to Class I chitinases, resulting in a HETG/I motif instead of the HETT motif [51]. A
deletion of four amino acids in the Cys-rich binding domain is also observed in class IV chiti-
nases, as shown for a class IV chitinase from Nepenthes alata (A9ZMK1_NEPAL) [84] and
DCAP_0533 in 2.3. Figure 2.9 shows a sequence alignment of the N- and C-terminal domains
of the Class IV chitinase DCAP_0533 with single domain class IV chitinases from Picea abies
(Q6WSRS_PICAB), Zea mays (CHIA_MAIZE), and Sorghum bicolor (C5YBE7_SORBI).
The two domains of DCAP_0533 were aligned with the most closely related annotated class
IV chitinases, those from Picea abies (EC: 3.2.1.14, Uniprot: Q6WSR8_PICAB), Zea mays
(EC: 3.2.1.14, Uniprot: CHIA_MAIZE), and Sorghum bicolor (Uniprot: C5YBE7_SORBI)
(92, 51, 88] (Figure 2.10).
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Structurally, each domain consists of two lobes with eight helices each, separated by a large
active site cleft (Figure 2.10(a). In Figure 2.10(b), the two domains of this protein are shown
overlaid with the crystal structures of class IV chitinases from Zea mays (PDBID: 4MCK,
60% identity with the NTD) and Picea abies (PDBID: 3HBE, 64% identity with the CTD).
The NTD Figure 2.10(c) has an N-terminal signal peptide, a conserved C-rich binding do-
main, and a catalytic domain that appears to be functional. In its homolog CHIA_MAIZE,
Chaudet et. al. characterized four catalytic residues (E62, E71, E165, and R171) [88], all
of which have counterparts in the NTD of DCAP_0533 (E173, E182, E278, R290) (Figures
2.9, 2.10. Previous modeling studies of well-characterized class I chitinases from barley, mus-
tard, and chestnut seed homologs (barley: E67, mustard: E212, chestnut: E124) suggest the
necessity of E62 in CHIA_MAIZE and E173 in the NTD of DCAP_0533 as a proton donor
[89, 90, 91]. Overall, mutagenesis studies highlight the significance of E62 as an essential
residue of the catalytic triad (E62, E165, R171 in CHIA_MAIZE) which we use to infer
an equivalent catalytic triad in the NTD of DCAP_0533 (E173, E278, and R290). It has
also been hypothesized that purpose of the triad is to alter the surrounding environment to
induce activation of the glutamic acid in the HETG/I (class IV) or HETT (class I/II) motif

by changing its pKa [91].

Linked to the NTD by a cysteine and glycine-rich linker sequence, the CTD of DCAP_0533
(Figure 2.10(d) potentially houses a second catalytic domain or binding domain whose clos-
est structural homolog is Q6WSR8_PICAB from Norway spruce (Picea abies) (Figure 2.9).
Binding site residues and cysteines involved in disulfide bond formation are conserved in
both chitinases. Comparing this sequence with the catalytic triad of Q6WSR8_PICAB
(E113, R230, E218), we observe a potentially equivalent triad in the CTD (E407, E507,
R519) (Figure 2.10). Ubhayasekera et. al. describe the flexibility of E113 and demonstrate
two conformations that it can adopt during catalysis [92]. Although E407 is not located in

the equivalent sequence position to E113, the flexibility of this residue in QGWSR8_PICAB
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suggests that Glu407 may be at an appropriate distance to function as part of the CTD
triad. Alternatively, the CTD may lack catalytic activity and act as a binding domain as in

multidomain chitinases from archaea and bacteria.
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Figure 2.9: Sequence alignment and annotation of Q6WSR8_PICAB, CHIA_MAIZE, and the N-
terminal domain (NTD) and C-terminal domain (CTD) of DCAP_0533. For the purpose of compar-
ison, the sequence is manually separated above. We observe high sequence conservation regarding:
the signal cleavage site, C-rich domain length and location, cysteines composing disulfide bonds,
other binding site residues surrounding the main binding site residues (orange arrows), and catalytic
residues except Glu407 of the CTD which is unaligned with Glul13 of Q6WSR8_PICAB

2.3.4 Network Analysis Shows Substantial Topological Differences

by Family and within Proteins

When selecting potential targets for biophysical characterization, it is useful to consider
general patterns of structural similarity or difference within and between families that may
correlate with functional differences. Protein structure networks are useful for this purpose,
as they directly encode the potential for direct physical interaction between functional groups
(rather than representing detailed structure through properties such as side chain dihedral
angles that can often vary substantially and dynamically without impacting protein func-

tion). In collaboration with Prof. Carter T. Butts, we employ the PSN representation of

31



DCAP_0533 CHIA_MAIZE Q6WsR8_PICAB [l acidic catalytic residue [l basic catalytic residue  [I] binding residue

Figure 2.10: DCAP_0533 comparison with CHIA_MAIZE (4MCK) and Q6WSR8_PICAB (3HBE)
and close up of catalytic residues and binding residues: (a) Robetta generated predicted structure
with highlighted catalytic residues and binding residues. (b) Superimposition of CHIA_MAIZE and
Q6WSRB_PICAB against DCAP_0533. (c) Catalytic site of NTD with 1-letter residue code and
specifier. Catalytic triad consists of E173, E278, R290. (d) Catalytic site of CTD with 1-letter
residue code and specifier. Catalytic triad consists of E407, E507, R519.

[69], where vertices represent small moieties and edges represent the potential for direct in-
teraction (as determined by moiety-specific proximity constraints). Given two or more such
PSNs, we may compare their topology by the structural distance method of [74], identifying
the smallest number of edge changes (i.e. altered inter-moiety interactions) needed to make
one PSN isomorphic to the other. Figure 2.11 depicts respective hierarchical clusterings of
the Family 18 (panel A) and Family 19 (panel B) chitinases based on this notion of structural
similarity, with distances normalized by the number of vertices to yield a metric with units of
average changed interactions per moiety. For Family 18, the pattern of topological similarity

is strikingly close to the pattern of sequence similarity, although somewhat more diversity
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can be seen among structures than among sequences (compare with Figure 4.9). By con-
trast, topological clustering of Family 19 chitinases shows substantial differences from the
equivalent sequence-based clustering. For instance, while DCAP_0533, A9ZMK1_NEPAL,
and Q6IVO9_DRORT belong to an outlying but internally cohesive cluster with respect to
sequence similarity, the three show markedly different topologies (and, indeed, are split be-
tween the two large structural clusters characterizing the family). More broadly, we find that
the Family 19 chitinases divide structurally into two primary clusters (rather than the four
obtained from sequence similarity), both of which are internally heterogeneous and neither of
which maps cleanly onto the clusters found by sequence similarity. The relationship between

sequence and structure is thus much more tightly coupled for Family 18 than Family 19.

Further insight into the structural differences between the two families can be obtained by
considering variation in the properties of their respective PSNs. Here, we examine four
basic graph-level indices (GLIs) related to protein network organization. Transitivity [93]
is defined as the fraction of (i,j, k) two-paths for which there exists an (i, k) edge, and
is a standard measure of triadic closure; in the PSN context, higher levels of transitivity
are associated with structures that are closely and uniformly packed, with few cavities or
extended regions. Degree is defined as the number of edges incident on a given vertex; for a
PSN;, this corresponds to the number of other moieties with which a given chemical group is
in contact. The standard deviation of the degree distribution within a PSN then provides a
measure of the level of heterogeneity in local packing around chemical groups, and we employ
it here as a second GLI. At a somewhat less local level, the (degree) core number of a given
vertex [94] provides a measure of the extent to which that vertex is embedded in a region of
high cohesion within the graph. More precisely, the k-th core (or k-core) of a graph is defined
as the maximum set of vertices having at least k£ neighbors within the set. The core number
of a vertex is then the number of the highest-order k-core to which it belongs. Although each
k-core is not necessarily cohesive as a whole, cores with & > 2 are composed of unions of

cohesive subgraphs, such that all vertices with high core numbers necessarily belong to highly
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cohesive subgroups. In a PSN context, cohesive subgroups of moieties are joined by multiple,
redundant paths and cannot be pulled apart without severing large numbers of edges. At
the level of the entire PSN, then, the standard deviation of the core number serves as an
indicator of the degree of heterogeneity in structural cohesion, and distinguishes between
highly organized structures and structures that combine rigidly and loosely bound regions.
Finally, we consider an indicator of the global path structure within the PSN, which we
call M-eccentricity. The eccentricity of a vertex is the maximum geodesic distance from that
vertex to any other vertex in the graph [95]; we here refer to the corresponding mean geodesic
distance as the M-eccentricity. Vertices with high M-eccentricity are on average peripheral
to the graph structure, while those with low M-eccentricity are relatively centrally located.
At the level of the PSN as a whole, the standard deviation of the M-eccentricity distinguishes
between uniformly globular structures and structures with deformations or other elongations,

and we employ it as our fourth GLI.

Panel C of Figure 2.11 shows the distribution of the above GLI values for both chitinase
families. All GLIs were calculated using the sna library [75]; to facilitate visualization,
each GLI was standardized across the combined set of PSNs by subtracting the mean and
dividing by the standard deviation prior to analysis. As is clear from Figure 2.11, the two
families differ markedly on these four characteristics. On average, the Family 18 structures
are substantially more homogeneous with respect to extended structure, local packing, and
cohesion, while also being less transitive (p < 0.001 for all measures, two-tailed t-test).
With respect to variation within family, the Family 18 structures show significantly less
variability in eccentricity heterogeneity and transitivity (permutation test of logged IQR
ratios, respective p values < le — 5 and 0.007), but comparable variability with respect to

heterogeneity in local packing and cohesion (respectively p = 0.146 and p = 0.064).

To provide an intuition for how these patterns play out in specific cases, Figure 2.12 shows

vertex-level core numbers and M-eccentricity scores for the structures of CF821 NEPMI
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Figure 2.11: (a)-(b) Within-family clustering of chitinases by normalized structural distances.
Ward’s method (in the generalization of [4]) was employed to construct a hierarchical cluster-
ing of Family 18 (a) and Family 19 (b) chitinases based on topological dissimilarity. Sequence
similarity is broadly recapitulated by the structural distances in Family 18, while Family 19 shows
distinct patterns of variation.

(Family 18) and DCAP_5513 (Family 19). These structures were chosen by finding the PSN
in each family with the smallest median distance to each other structure in the family, and
are hence broadly representative of the classes in question. The core number visualizations
of panels (a) and (b) clearly show that CF821_NEPMI is dominated be a large and uniformly
cohesive core region, with few vertices in the outer region (i.e., lower cores). By contrast, the
highly irregular structure of DCAP_5513 has numerous areas of low cohesion (including much
of the C-rich domain) as well as the highly cohesive region associated with the central helices
(compare with Figure 2.7). Differences in global structure are brought into sharp relief by
the M-eccentricity visualizations of panels (c¢) and (d). The uniform and tightly connected
topology of CF821_NEPMI results in a large number of vertices with short path distances to
nearly all other chemical groups in the protein, and relatively little overall variation. Moieties
in DCAP _5513, on the other hand, may be at an average distance of more than 9 steps from

the rest of the protein, with large differences between the relatively central vertices in the
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helical region and those in the outer portions of the C-rich domain or the P-rich hinge.

Taken together with the findings above and Prof. Carter T. Butt’s PSN analysis of chiti-
nases from our paper [1], findings suggest substantial structural differences in the basic
organization of the Family 18 and Family 19 chitinases, with the former having more in-
ternally homogeneous structures, and with structural differences being more closely related
to differences in sequence. Family 19 is on the whole more diverse, and contains members
that are on average less internally homogeneous. The presence of a higher volume of low-
cohesion regions in the Family 19 chitinases suggests that these enzymes may be more prone
to thermal denaturation than those in Family 18 (since low-cohesion regions require fewer
disrupted edges to pull apart), but may also have functional significance (e.g., by allowing
enhanced flexibility). Such structural insights from PSN topology complement those gained
by studying specific features, and are more easily extended to analyzing large numbers of

sequences.

2.4 Conclusion

Modeling and analysis of Family 18 and 19 chitinases from D. capensis and several related
species reveal a number of novel enzymes that present promising targets for subsequent
expression and biophysical characterization. These include what is to our knowledge the
first plant chitinase found with multiple active domains, as well as several proteins that
differ in more conventional ways from others in their class. Comparative network analysis of
these structures reveals within- and between-family differences in structural properties, with
Family 18 chitinases tending to be substantially more homogeneous in internal structure and
Family 19 chitinases showing variation in cohesion and packing with possible implications
for both function and thermal stability. These results also demonstrate the potential of in

silico pipelines to move rapidly from genomic DNA to predictions of tertiary structure and
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Figure 2.12: PSN Visualizations for family-representative structures C7F821_ NEPMI (Family 18,
(a) and (c)) and DCAP_5513 (Family 19, (b) and (d)). In panels (a) and (b), vertices are colored
by k-core number; vertices with higher core numbers are embedded in more strongly cohesive local
structures. Panels (c¢) and (d) show vertices by M-eccentricity (with higher values indicating a higher
mean distance to other vertices in the network). The much higher level of internal heterogeneity
in DCAP_5513 versus C7TF821_NEPMI is immediately evident, with the former containing complex
and irregular structure that subjects some vertices to higher levels of both cohesion and proximity
than others.
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comparative analysis thereof. As the “genomic revolution” makes such data available at an
ever-increasing rate, such pipelines will become critical to our ability to exploit this scientific

resource.
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Chapter 3

Insights into esterase/lipases,
phospholipases and nucleases from the

carnivorous plant Drosera capensis

Drosera capensis represents a so far underexploited reservoir of novel enzymes with poten-
tially useful activities. In this chapter I present the results from estarase/lipases, phospho-

lipases and nucleases found in Drosera capensis.

3.1 Protein structure networks provide insight into ac-
tive site flexibility in esterase/lipases from the car-

nivorous plant Drosera capensis

Esterase/lipases play important roles in plant defense, stress responses, and drought toler-

ance. Plant genomes and transcriptomes have provided a wealth of data about expression

39



patterns and the circumstances under which these enzymes are upregulated, e.g. pathogen
defense and response to drought; however predicting the function of these enzymes from
genomic or transcriptome data is challenging due to weak sequence conservation among the
diverse members of this group. Functional blocks mediating enzyme activity have been iden-
tified; however progress to date has been hampered by the paucity of information on the
structural relationships among these sequence regions and their relationships with substrate
specificity and enzymatic activity. We have developed a methodology for efficient target
selection based on molecular modeling and analysis of protein structure networks. Here
this approach is demonstrated for 26 previously uncharacterized esterase/lipases from the
genome of the carnivorous plant Drosera capensis. Analysis of the network relationships
among functional blocks and among the chemical moieties making up the catalytic triad
reveals potentially functionally significant differences that are not apparent from sequence

analysis alone.

I worked on choosing the protein set, determining the functional regions of interest, gener-
ating the predicted structures, analyzing sequence and structure data, performing sequence
annotation and comparisons and wrote the manuscript with my co-authors on this paper. A
portion of the paper [2] is reproduced in this chapter to understand the importance of the

results found in this study. For more details and in-depth analysis, please refer the paper

[2].

3.1.1 Background

In land plants, tissues that are exposed to air are protected by the cuticle, a composite
biomaterial comprising a cross-linked polyester scaffold interpenetrated by wax components
[96]. The cuticle provides a barrier that minimizes water loss and protects the plant from

pathogen infection. The relative quantities of hydrophilic and hydrophobic components
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must be appropriately balanced and spatially located to adhere to the underlying cell walls
while presenting a hydrophobic surface to the air interface [97]. Numerous enzymes are in-
volved in producing the polymer components of this material, including esterases, lipases,
and GDSL esterase/lipases. Esterase/lipases belong to the large o/ hydrolase enzyme su-
perfamily, in which the catalytic triad consists of a nucleophile, an acid, and a stabilizing
histidine (in this case Ser-Asp-His). This study focusses on the GDSL esterase/lipases, char-
acterized by the proximity of the active serine residue to the N-terminus, as well as by its
surrounding residues (canonically GDSL). Numerous plant GDSL esterase/lipases have been
discovered from genome and transcriptome data [98, 99]; however their specific functions
and substrate preferences remain relatively unexplored despite their potential commercial
and technological importance. Much of what is known about the specific enzymatic activ-
ities of proteins in this family comes from studies of crop plants that produce large fruits.
[100]. Esterase/lipases present attractive targets for biotechnology applications because of
their potential for producing robust yet ultimately biodegradable polyester materials and

hydrophobic surface coatings.

This study presents molecular modeling and functional analyses of 26 esterase/lipases re-
cently discovered from the genome of the Cape sundew (Drosera capensis) [47]. The con-
servation of active site residues, key functional sequence blocks, and overall protein folds
suggests that many of the D. capensis esterase/lipase sequences form functional enzymes;
however the diversity of sequence and structural features indicates a range of potential molec-
ular targets and enzymatic activities. The study uses sequence analysis, comparative mod-
eling with all-atom refinement followed by in silico maturation and comparison of protein
structure networks to identify distinct subgroups of proteins as a first step toward target
selection for subsequent expression and biochemical characterization. To enable analysis of
structural features with potential functional relevance, the study defines two novel types of
functionally-targeted protein structure networks (FT-PSNs) generated using functional in-

formation specific to this protein class. Clustering of FT-PSNs based on connectivity among
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functional blocks reveals several classes with distinct structural characteristics, which we
hypothesize are related to enzyme flexibility and activity. Network connectivity among
functional sequence blocks acts as a useful descriptor of protein structure and a predictor
of global flexibility, while FT-PSNs based on connectivity among chemical moieties in the
neighborhood of the active site are used to construct measures hypothesized to correlate with
active site flexibility and hence enzyme promiscuity. Comparison with well-characterized ref-
erence sequences suggests that most of the D. capensis esterase/lipases have relatively rigid
active sites, consistent with the specific functionality of the tomato GDSL1 enzyme, the

best-characterized member of this class so far.

3.1.2 Methods

Sequence Alignments

Sequence alignments for the esterase/lipases from D. capensis are shown along with anno-
tation reference sequences from other plants. Cluster 1 (Figure 3.1) contains enzymes with
the traditional GDSL motif, including GDL1_CARPA from Carica papaya. Cluster 2 (Fig-
ure 3.2) contains only sequences from D. capensis, while Cluster 3 (Figure 3.3) contains
two reference sequences from Arabidopsis thaliana. Cluster 4 is split into two figures for
legibility (Figures 3.4 and 3.5). The alignment figures are annotated the same as chitinases
(Chapter 2). Additionally, strikethrough text indicates sequence regions that are absent in
the active enzyme, in this case the N-terminal signal peptide that is expressed but removed
during maturation. Functional blocks I-IV are highlighted with colored boxes. Annotations
were performed by homology to the annotations reference sequences from C. papaya and A.

thaliana found in the UniProt database and identified by their UniProt IDs.
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Figure 3.1: Sequence alignment for Cluster 1 esterase/lipases, annotated by homology to the ref-
erence sequence GDL1_CARPA. The four functional blocks that are critical for enzyme function
are highlighted using outlined colored boxes. The N-terminal signal peptide is highlighted in light
orange. Colored arrows indicate the catalytic triad residues. Conserved residues are marked using
colored dots: acidic (red), basic (blue), hydrophobic (green), and hydrophilic (black) residues.
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Figure 3.2: Sequence alignment and annotation for Cluster 2. The four block regions are determined
by sequence conservation and outlined with colored boxes. Three D. capensis esterase/lipases
contain the N-terminal signal sequence (highlighted in light orange) and three lack it. The catalytic
triad is indicated using colored arrows. Colored dots denote conserved residues.
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Figure 3.3: Sequence alignment and annotation for Cluster 3. Reference sequences are
GLIP6_ARATH and GDL77_ARATH. All but three Cluster 3 esterase/lipases contain a N-terminal
signal peptide (highlighted in light orange). Functional block regions are outlined using colored
boxes. Colored dots indicate conserved residues.

Preliminary Structural Models and In Silico Maturation

The study performs in silico maturation, which I have previously described for chitinases [21],
for each protein. Figure 3.6A shows the workflow of the overall enzyme discovery process as
described in Chapter 1. Panels (B) and (C) show an example of a Cluster 2 esterase/lipase,
DCAP 8086, before (B) and after (C) the in silico maturation process. Further compari-
son of a Cluster 3 esterase/lipase (DCAP_1460) to Cluster 4 enzymes and a cutin synthase
from Solanum lycopersicum (tomato), GIDEX3_SOLLC, is shown in Figure 3.7. Functional
sequence blocks DCAP_1460 and G1DEX3_SOLLC are highlighted by color (Figure S3.7).
DCAP_4076, has an additional C-terminal domain. A PSI-BLAST search for the sequence

of this domain indicated that it is related to the negative regulator of systemic acquired
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Block IlI
°
DCAP_6218 LRGENPDSRE VYLDLYNPVL LVONPTQSG VG ATGTSETS IFCUNSLF--D LESTCKNESE YIfF
DCAP_6260 LGKNLTGAKL VYLDLYGPLL QLVKNPENEV L A GDTNREMV -FCALRLISR ETL TE'SS Y
EXL3_ARATH F' NSKLSPKLDS 1 TLPGIKP IYINIYDPLF DIIQNPANYG G GTGAIEVA /CPDVST H
DCAP_1761 NSKLNTEIES LNRNLSGVAM FFLDVYAP DLINNPSQAG G GTGNIEVS DATK Y
DCAP_6217 " NSKLQETVVD LNKNLTG? YIDLYQP HLINNGSEYG G GTGLFEAS NDSQ Y
DCAP_5461 © NI QTLIDS LNENEFPG. GYLDIYSKLM YVIENAADEG G GTGLVEMG NNSE YV
DCAP_0158 —===—mmmmm mmmmmmmmmm mmmm o o IFFLVG G CCGTGLFEEG HTSK YV
DCAP_2088 ESEFNQDSLDEF NLKLQAMLKS LENTLQGSRE AYFDLYYTVL DLIQKPHEYG F G GTGFFEEG PNASK YV
DCAP_2089 ESFNQDTLNEF NLKLQTMLKS LONTLQGSRE IYFDEYYTVL DLVQKPHDYG G GTGLFEEG PNASK Y VDASHPT
Block IV
DCAP_6218 LEG VSMA NEGCPEGL SVELAGRTGN RTLASITRA QSQRGD
DCAP_6260 TMIY=m==== =m———mmmmm mmmmmmmoo - -—
EXL3_ARATH LINKFVNQFY - XX signal cleavage site | active Ser residue
DCAP_1761 DNINEFY
DCAP_6217 LUNTTINDLY signal sequence { active Asp residue
DCAP_5461 LTAENLHKEE
DCAP_0158 TINVTMPHFF @ conserved residue ¢ active His residue
DCAP_2088 NENQTMSKFEE
DCAP_2089 NINQTMSQFF —========= ——=— -

Figure 3.4: Sequence alignment and annotation of Cluster 4a (first set), annotated by homology to
EXL3_ARATH. Cluster 4 is separated into two parts (4a and 4b) for clarity. Block regions I-IV are
shown in colored boxes with active site residues marked by colored arrows. Colored dots indicate
conserved residues. When present, the N-terminal signal peptide is highlighted in light orange.
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Figure 3.5: Sequence alignment and annotation of Cluster 4b (second set), annotated by homology
to APG2_ARATH. Cluster 4 is separated into two parts (4a and 4b) for clarity. Block regions
I-IV are shown in colored boxes with active site residues marked by colored arrows. Colored dots
indicate conserved residues. When present, the N-terminal signal peptide is highlighted in light
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orange. DCAP_4076 has an additional C-terminal domain (shown in Figure S3.8).

47

®
TDITAD
TDITAE
LVPDFISE
PADFISE

TDFIAS

TDFVAS

D000 00

(]
NYFLNP-—
NYYVNP-—
NYYTLP--Q
NYYLPT-G.
NYYLPPLMS
NYYSTALP

PD NI
SD V DI
PGLXMALGNP
PDAKVLESNP
QRTKLEYLDI
QTTKLAYIDI



resistance proteins previously discovered in other plants [2], with approximately 36% se-
quence identity to the SNI1 proteins from Arabidopsis thaliana (Uniprot ID: SNI1_ARATH)
and Glycine maz (Uniprot ID: QOZFU8_SOYBN). The Arabidopsis protein negatively reg-
ulates DNA recombination and gene expression during short-term stress responses. It has
been suggested that SNI1_ARATH provides a scaffold for other proteins involved in regula-
tion of transcription to bind; it is possible that this domain is playing a similar role here.
DCAP_4076 lacks the N-terminal secretion signal common to many of the esterase/lipases,
suggesting an intracellular function (Figure 3.8). The above results were mostly collected by
Vy, Prof. Martin and Prof. Butts and are reproduced here to illustrate the importance of

estarase/lipases.

The template structures used by Rosetta to calculate the predicted structures for a repre-

sentative esterase / lipase, DCAP_0434, are tabulated in Table 1.
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C. CAP_8086 Rosetta (equilibrated)
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Figure 3.6: (A) Flow chart, made by me, illustrating the overall strategy for identifying enzymatic
targets from genomic DNA. The workflow is indicated with solid arrows, while dotted arrows
represent steps where information from a later stage of the pipeline enables refinement of earlier
stages in an iterative manner. After genome sequencing, assembly, and gene discovery, target
proteins are identified based on putative enzymatic activity. Functional sequence features are
identified by analogy to annotation reference sequences found in the UniProt database. Structures
are predicted using the Rosetta software, and equilibrated in explicit solvent after removal of
sequence regions not present in the mature enzyme. Structures are compared using network analytic
methods, enabling strategic selection of enzymes for experimental characterization in a future study.
(B) DCAP_8086 before and (C) after in silico maturation. The light orange helix in part A is the
N-terminal signal sequence, which is cleaved upon maturation. Important residues are color-coded
as follows: dark cyan (catalytically active serine), red (active site aspartic acid), purple (active site
histidine).
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Block | Block Il DCAP_1460 B pcAP 6260 B G1DEX3 soLLC
Block Il ™ Block IV [ pcAP_5587 DCAP_2088

Figure 3.7: Comparison of DCAP_1460 (Cluster 3) to D. capensis esterase/lipases from each of
the other clusters. These pairwise alignments of structural models provide an indication of the
type and magnitude of structural differences between clusters: in general, the overall fold and
secondary structural elements is conserved, although considerable variation can be observed in
their relative positions and the conformations of loops and termini. Alignment was performed
using the matchmaker feature of Chimera with default settings. Functional block regions I-IV are
colored accordingly while the catalytic triad (Ser-His-Asp) residues are colored dark cyan, red,
and purple. Active site residues are located in block T and IV, binding residues in block II-TII.
A. Comparison of DCAP_1460 to esterase/lipase DCAP_6260 (Cluster 4a). B. Comparison of
DCAP_1460 to DCAP_5587 (Cluster 4b). C. Comparison of DCAP_1460 to DCAP _2088 (Cluster
4a). D. Comparison of DCAP_1460 to model esterase/lipase, GIDEX3_SOLLC, from Solanum

lycopersicum (tomato).
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Table 1: Rosetta structures for esterase / lipases (PDB files available for download)

File Name
GDL1_CARPA_ml.pdb

Protein Organism Sequence Elements included
GDL1_.CARPA  Carica papaya signal, active region

Tables 1 and 2, respectively.
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DCAP_3343 D. capensis signal, active region DCAP_3343_m1.pdb
DCAP_6947 D. capensis signal, active region DCAP_6947_m1.pdb
DCAP_0448 D. capensis signal, active region DCAP_0448_m1.pdb
DCAP_8086 D. capensis signal, active region DCAP_8086_m1.pdb
DCAP_0434 D. capensis active region DCAP_0434_m1.pdb
DCAP_4098 D. capensis active region DCAP_4098_m1.pdb
DCAP_5529 D. capensis signal, active region DCAP_5529_m1.pdb
DCAP_5165 D. capensis active region DCAP_5165_m1.pdb
GLIP6_ARATH A. thaliana signal, active region GLIP6_ARATH ml.pdb
GDL77_ARATH A. thaliana signal, active region GDL77_ARATH _m1.pdb
DCAP_1840 D. capensis active region DCAP_1840_m1.pdb
DCAP_1460 D. capensis signal, active region DCAP_1460_m1.pdb
DCAP_1380 D. capensis active region DCAP_1380_m1.pdb
DCAP_0405 D. capensis signal, active region DCAP_0405_-m1.pdb
DCAP _4465 D. capensis active region DCAP _4465_m1.pdb
DCAP_6218 D. capensis active region DCAP_6218_m1.pdb
DCAP_6260 D. capensis active region DCAP_6260_m1.pdb
EXL3_ARATH A. thaliana signal, active region EXL3_ARATH _m1.pdb
DCAP_1761 D. capensis active region DCAP_1761_m1.pdb
DCAP_6217 D. capensis signal, active region DCAP_6217_ml.pdb
DCAP _5461 D. capensis signal, active region DCAP_5461_m1.pdb
DCAP_0158 D. capensis signal, active region DCAP_0158_m1.pdb
DCAP_2088 D. capensis active region DCAP_2088_m1.pdb
DCAP_2089 D. capensis active region DCAP_2089_m1.pdb
DCAP_5138 D. capensis active region DCAP_5138_ml.pdb
APG2_ARATH A. thaliana signal, active region APG2_ARATH _ml.pdb
DCAP_1365 D. capensis signal, active region DCAP_1365_m1.pdb
DCAP_5587 D. capensis signal, active region DCAP_5587_m1.pdb
DCAP_2187 D. capensis active region DCAP_2187_ml.pdb
DCAP_4076 D. capensis active region DCAP_4076_m1.pdb

All initial and equilibrated structures available for download as PDB files are tabulated in
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SNI1_ARATH
DCAP_4076_CTD
QOZFU8_SOYBN

SNI1_ARATH
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Figure 3.8: A. Sequence alignment of the C-terminal domain of DCAP_4076 with the SNI1
proteins from Arabidopsis thaliana (Uniprot ID: SNI1_ARATH) and Glycine maz (Uniprot ID:
QO0ZFU8_SOYBN). B. Ribbon structure of DCAP_4076, with the catalytic domain in light blue
and the C-terminal domain in dark blue. C. Structural model of DCAP _4076 showing the surface
representation. The active site D (red) and H (magenta) residues are visible at the top of the

model.
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Table 2: Mature structures for esterase / lipases (PDB files available for download)

Protein

Organism

Sequence Elements included

File Name

GDL1_.CARPA  Carica papaya

DCAP_3343 D. capensis active region DCAP_3343_mature_m1.pdb
DCAP_6947 D. capensis active region DCAP_6947_mature_m1.pdb
DCAP_0448 D. capensis active region DCAP_0448_mature_ml.pdb
DCAP_8086 D. capensis active region DCAP _8086_mature_ml.pdb
DCAP_0434 D. capensis active region DCAP_0434_mature_m1.pdb
DCAP_4098 D. capensis active region DCAP_4098_mature_m1.pdb
DCAP_5529 D. capensis active region DCAP_5529_mature_m1.pdb
DCAP_5165 D. capensis active region DCAP_5165_mature_ml.pdb
GLIP6_ARATH A. thaliana active region GLIP6_ARATH mature_m1.pdb
GDL77_ARATH A. thaliana active region GDL77_ARATH mature_m1.pdb
DCAP_1840 D. capensis active region DCAP_1840_mature_m1.pdb
DCAP_1460 D. capensis active region DCAP_1460_mature_-m1.pdb
DCAP_1380 D. capensis active region DCAP_1380_mature_ml.pdb
DCAP_0405 D. capensis active region DCAP_0405_mature_ml.pdb
DCAP _4465 D. capensis active region DCAP _4465_mature_ml.pdb
DCAP_6218 D. capensis active region DCAP_6218_mature_m1.pdb
DCAP_6260 D. capensis active region DCAP_6260_mature_m1.pdb
EXL3_ARATH A. thaliana active region EXL3_ARATH _mature_ml1.pdb
DCAP_1761 D. capensis active region DCAP_1761_mature_ml.pdb
DCAP_6217 D. capensis active region DCAP_6217_mature_ml.pdb
DCAP _5461 D. capensis active region DCAP_5461_mature_m1.pdb
DCAP_0158 D. capensis active region DCAP_0158_mature_m1.pdb
DCAP_2088 D. capensis active region DCAP_2088_mature_m1.pdb
DCAP_2089 D. capensis active region DCAP_2089_mature_ml.pdb
DCAP_5138 D. capensis active region DCAP_5138_mature_ml.pdb
APG2_ARATH A. thaliana active region APG2_ARATH _mature_ml.pdb
DCAP_1365 D. capensis active region DCAP_1365_mature_m1.pdb
DCAP_5587 D. capensis active region DCAP_5587_mature_m1.pdb
DCAP_2187 D. capensis active region DCAP_2187_mature_m1.pdb
DCAP_4076 D. capensis active region DCAP _4076_mature_ml.pdb

active region

GDL1_CARPA _mature_ml.pdb

Network Modeling and Analysis

A protein structure network for each protein was calculated as described in chaitinases
(Chapter 2) by Dr. Carter Butts. These structures were then secondarily processed to
construct functionally targeted PSNs (FT-PSNs) using the sna library [75] within statnet.

For further details, please look at the paper [2].
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Figure 3.9: Clustering of esterase/lipase sequences identified from the D. capensis genome along
with reference sequences from other plants.

3.1.3 Results and Discussion

D. capensis Esterase/Lipases Cluster Into Distinct Subfamilies Based on Se-

quence Features

Cluster 1 (Figure 4.9) contains sequences that have the canonical GDSL motif, as found
in the reference sequence GDL1_CARPA, which was isolated from papaya latex [101] and
has been proposed as a “naturally immobilized” biocatalyst for performing regioselective
esterification and transesterification reactions [102]. The enzymes in cluster 2 instead have
GDSN in the first functional block. Clusters 3 and 4 contain the motif GDSX, where X
is usually a hydrophobic residue, but is Ser or Thr in some cases. Overall, the presence of
the three active site residues in 24 of the 25 D. capensis esterase/lipases suggests they are

functionally active enzymes.
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Figure 3.10: A. The sequences of the four conserved blocks. The sizes of the residue labels cor-
relate with the fraction of sequences in the cluster having that residue in the indicated position.
Amino acid properties are color coded as follows: hydrophobic-green, positive-blue, negative-red,
cysteine-yellow, other-black. B. A representative molecular model of a D. capensis esterase/lipase
(DCAP_0434) with the four functional blocks highlighted. C. The active site catalytic triad for a
typical esterase/lipase (DCAP_0434).

Conserved Active Site Residues Suggest Functional Enzymes

In general, esterase/lipases are characterized by four moderately conserved sequence blocks
of length 8-13 residues that contain the cataytic triad, the oxyanion hole proton donors, and
other functionally important residues [103]. Functional sequence blocks I-IV are highlighted
in the sequence alignments in the methods section. In Figure 3.10A, these functional blocks
are represented as sequence logos, where the size of each residue label correlates with the
number of instances at that sequence position within each cluster. The Ser-Asp-His catalytic
triad is located within two block regions: block I (Ser) and block IV (Asp-His). The remain-
ing two blocks contain conserved oxyanion hole residues, Gly in block II and Asn in block
IIT [100]. Most of the proteins in this set contain the expected functional residues, as exem-
plified by the reference sequences GDL1_CARPA, GLIP6_ARATH, and GDL7_ARATH, as
well as the well-characterized tomato GDSL esterase/lipase GIDEX3_SOLLC. Other results,
including but not limited to PSN’s and molecular modelling can be found in [2]; I have only

included the results that I was directly involved in.
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3.1.4 Conclusion

In summary, molecular modeling and protein structure network analysis of 26 esterase/lipases
identified from the genomic DNA of Drosera capensis suggest that—with the exception of
one protein, DCAP_3343—the active site regions of these enzymes are less flexible than those
of related microbial proteins. The four clusters produced by the initial sequence analysis and
clustering provides a stark contrast to the more limited esterase/lipase inventory typical of
microbes (as evidenced by Uniprot searches). Subsequent principal component analysis of
active site moieties generated from PSNs further categorized the D. capensis and reference
sequences from decreasing to increasing active site rigidity. Together, these findings from
comparative sequence and structural analyses demonstrate the diverse, Drosera capensis
esterase/lipase landscape employed in carnivory, defense, and a plethora of functionalities

with potentially significant, biotechnological applications.

3.2 The Phospholipases Found in D. capensis Form

Four Clusters with Homology to Known Sequences

Phospholipases are a diverse set of enzymes that hydrolyze phospholipids. In plants, phos-
pholipase D, phospholipase C, phospholipase A1 (PLA1), and phospholipase A2 (PLA2) have
been characterized, that hydrolyze glycerophospholipids at different ester bonds as seen in
Figure 3.12 [104, 105]. These enzymes are involved in a broad range of functions in cellu-
lar regulation and development, lipid metabolism, abiotic and biotic stress responses and
membrane remodeling [104, 105, 106]. Within each type of phospholipase family, there are
different families or subfamilies of enzymes that can differ in substrate specificity, cofactor
requirement, and/or reaction conditions. These differences provide insights into determin-

ing the cellular function of specific phospholipases in plants, and they can be explored for
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different industrial applications[104, 105, 106].

With Prof. Rachel Martin, I choose the protein set, generated the predicted structures, and
analyzed the sequence and structure data as seen in Figure 3.11. The other team members
include Shanon Zhuang, Michelle Xu, and Dr. John E. Kelly with Prof. Carter T. Butts. I
performed sequence annotation and comparisons with the team as seen in Figure 3.14 and
Figure 3.15. We are currently in the process of analyzing the structures and writing the

manuscript.
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Figure 3.11: The current chosen set for phospholipases is seen in the Figure 3.11 with four different
families, PLA2 (shown in green), PLA1 (shown in orange), PLDB/D (shown in blue) and PLDA
(shown in red) found in D. capensis

The current chosen set for phospholipases is seen in the Figure 3.11 with four different fami-

lies, PLA2 (shown in green), PLA1 (shown in orange), PLDB/D (shown in blue) and PLDA
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(shown in red) in D. capensis. An example of the phospholipases found in D. capensis is seen
in Figure 3.12 where the active site residues are highlighted and lablelled, and the propep-
tide, C2 and a PLD domain are highlighted in salmon, green and aqua colors respectively.

The figure also shows the cut sites of different enzymes on a phospholipase.

Propeptide C2 Domain || cutsite PLA1
6\ B PLD Domain

Figure 3.12: An example of the phospholipases found in D. capensis is seen in Figure 3.12 where
the active site residues are highlighted and lablelled, and the propeptide, C2 and a PLD domain
are highlighted in salmon, green and aqua colors respectively. The figure also shows the cut sites
of different enzymes on a phospholipid.

Using the target selection pipeline described in Chapter 1, we have the equilibrated enzyme
structures using the in silico maturation. Figure 3.13 shows cluster PLA_1 representative

DCAP_7326 as an example in (a) and (b). The active site residues are histidine, serine and as-
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partic acid (shown in purple, aqua and red respectively). PLA_2 representative DCAP_2905
as an example in (c¢) and (d). The active site residue is histidine (highlighted in red) while
the disulfide bonds are shown in yellow. The structures will be available to download when

the paper is published.

Figure 3.13: An example of the phospholipases found in D. capensis is seen in Figure 3.12 where
the active site residues are highlighted and labelled, and the propeptide, C2 and a PLD domain
are highlighted in salmon, green and aqua colors respectively. The figure also shows the cut sites
of different enzymes on a phospholipid.
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3.3 Nucleases from Drosera capensis

Nucleases are enzymes capable of cleaving the phosphodiester bonds between nucleotides of
nucleic acids. We found 37 novel nucleases in D. capensis. An example of the nucleases
found in D. capensis is seen in Figure 3.16 where the active site residues are highlighted and

lablelled, and the metal ions are highlighted.

With Prof. Rachel Martin and Prof. Carter Butts, I chose the protein set and generated
the predicted structures. Manuscript in preparation; next steps include in silico maturation,

molecular modelling and analysis of the results.
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Figure 3.14: The current chosen set for PLA1 from D. capensis with PLA16_ARATH,

PLA20_ARATH and DESL_ARATH from Arabidopsis thaliana as references sequences.
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The current chosen set for PLDA from D. capensis with PLDA1_ARATH from Ara-
bidopsis thaliana as references sequences.
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Figure 3.16: An example of the nucleases found in D. capensis where the active site residues are
highlighted and labelled, and the metal ions are highlighted.
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Chapter 4

Sequence comparison, molecular
modeling, and network analysis
predict structural diversity in cysteine
proteases from the Cape sundew,

Drosera capensis

Characterization of carnivorous plant digestive enzymes could lead to their use in a variety of
laboratory and applications contexts, including analytical use in proteomics studies as well
as preventing fouling on the surface of medical devices that cannot be treated under harsh
conditions. The proteases of carnivorous plants present attractive targets for exploitation
in chemical biology and biotechnology contexts. New proteases may also prove useful for
cleaving amyloid fibrils, such as those responsible for the transmission of prion diseases or
the formation of biofilms by pathogenic bacteria. The characterization of aspartic proteases

from the tropical pitcher plants (Nepenthes sp.) [107, 108, 109], has already led to useful
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advances in mass spectrometry-based proteomics applications, where the ability to digest
proteins using a variety of cut sites is essential for identifying proteins and peptides from
complex mixtures. Proteases from plant and animal sources are also important components
of pharmaceutical preparations for gluten intolerance, arthritis, and pancreatic disease [110].
Therefore, characterizing proteases from D. capensis has the potential to diversify the tool-
box of proteases with different functional properties that are available for these and other

applications.

I contributed to choosing the protein set, determining the functional regions of interest, gen-
erating the predicted structures, analyzing sequence and structure data, performing sequence
annotation and comparisons and wrote the manuscript with my co-authors on this paper. A
portion of the paper [2] is reproduced in this chapter to understand the importance of the

results found in this study. For more details and in-depth analysis, please refer the paper [2]

4.1 Background

Plant cysteine proteases form a large and diverse family of proteins that perform cellular
housekeeping tasks, fulfill defensive functions, and, in carnivorous plants, digest proteins
from prey. It is typical for plants to contain many different cysteine protease isoforms; for
instance, in the case of tobacco (Nicotiana tabacum), more than 60 cysteine protease genes
have been identified [111]. Many of the cysteine proteases of interest are classified by the
MEROPS database as family C1 [112], a broad class of enzymes including cathepsins and
viral proteases as well as plant enzymes that function to deter herbivory. C1 proteases
can operate as endopeptidases, dipeptidyl peptidases, and aminopeptidases [113]. In plants,
many C1 enzymes are used to degrade proteins in the vacuole, playing many of the same
roles as their lysosomal counterparts in animals [114]. They are also found in fruits, par-

ticularly unripe ones; this protease activity impedes insect feeding and also serves to cleave
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endogenous proteins during fruit ripening. Some families of cysteine proteases in plants have
been subject to diversifying selection due to a molecular arms race between these plants and
their pathogens; as plants produce proteases that suppress fungal growth, fungi evolve in-
hibitors specific to these proteases, driving the diversification of plant proteases involved in

the immune response [64].

The plethora of paralogs found in a typical plant is indicative of the need for a range of dif-
ferent substrate specificities; this is particularly important in the case of carnivorous plants,
which must digest prey proteins to their component amino acids. Aspartic proteases have
long been implicated in Nepenthes pitcher plant digestion [107, 115], and more recently the
cysteine protease dionain 1 has been confirmed as a major digestive enzyme in the Venus
flytrap (Dionaea muscipula) [116]. In Drosera capensis, proteins from prey consititute the
major nitrogen source for producing new plant tissue [40]. Given that plant carnivory ap-
pears to have evolved from defensive systems in general [117], and that the feeding responses
are triggered by the same signaling pathway as is implicated in response to wounding [118],
one would expect cysteine proteases to play a major role; here we investigate some of the
many cysteine protease genes in D. capensis with the objective of adding to the portfolio
of cleavage activities available for chemical biology applications. The D. capensis enzymes
are particularly appealing for mass spectrometry-based proteomics applications, due to their

ability to operate under relatively mild conditions, i.e. at room temperature and pH 5.

This study focuses on the C1 cysteine proteases from the Cape sundew (D. capensis), where
it uses the pipeline from Chapter 1 to identify structurally distinct subgroups of proteins for
subsequent expression and biochemical characterization. C1 cysteine proteases share a com-
mon papain-like fold, a property also predicted for the proteins studied here. Despite this

conservation of the papain fold and critical active and structural residues, sequence analysis
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of the D. capensis cysteine proteases indicates that they represent a highly diverse group
of proteins, some of which appear to be specific to the Droseraceae. In particular, a large
cluster of proteases containing dionains 1 and 3 as well as many homologs from D. capensis
has particular sequence features not seen in papain or other reference enzymes. Finally, a
new class of granulin domain-containing cysteine proteases is identified, based on clustering

of the granulin domains themselves.

Molecular modeling was performed (Prof. Carter Butts and Dr. Xuhong Zhang with the
team) in order to translate this sequence diversity into predicted structural diversity, which
is more informative for guiding future experimental studies. Examination of the predicted
enzyme structures potentially suggests diversity that may imply a variety of substrate prefer-
ences and cleavage patterns. Further, the study uses Rosetta [28, 27| to perform comparative
modeling with all-atom refinement, described in detail in Chapter 1, combining local homol-
ogy modeling based on short fragments with de novo structure prediction. The study then
employs atomistic MD simulation of these initial structures in explicit solvent to produce
equilibrated structures with corrected active site protonation states; these equilibrated struc-

tures serve as the starting point for further analysis.

Quality control was performed using both sequence alignment and inspection of the Rosetta
structures; proteins that are missing one of the critical active residues (C158 or H292, papain
numbering) were discarded, as were some lacking critical disulfide bonds or other structural
features necessary for stability. After winnowing out sequences that are unlikely to pro-
duce active proteases, 44 potentially active proteases were chosen for further analysis. This
methodology allows the development of hypotheses based on predicted 3D structure and ac-
tivity, in contrast to focusing on the first discovered or most abundantly produced enzymes,

enabling selection of the most promising targets for structural and biochemical characteri-
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zation based on the priorities of technological utility rather than relative importance in the

biological context.

4.2 Cysteine Protease Sequence Analysis

Multiple-sequence alignments for cysteine proteases from D. capensis and previously charac-
terized plant cysteine proteases reveal diverse functionality. Annotated sequence alignments
are shown for the DCAP cluster (Figure 4.1), the papain cluster, both catalytic domains
(Figure 4.2) and (Figure 4.3), the vignain cluster, (Figure 4.4), the granulin domain clus-
ter (Figure 4.5), the bromelain cluster (Figure 4.6) and the dionain cluster (Figure 4.7).
The annotations highlight both specific amino acid properties and general sequence features.
Followung the nomenclature of “Target Selection Pipeline” from Chapter 1, hydrophobic
residues are shown in green, positively charged residues in blue, negatively charged residues
in red, and cysteines in yellow. Conserved Cys residues involved in structure-stabilizing
disulfide bonds are indicated with yellow asterisks, while other residues conserved across
all the sequences considered are indicated with solid circles. Residues conserved within the
cluster but not shared with papain are indicated with open circles. The residues of the
catalytic dyad are indicated with colored arrows, yellow for Cys and purple for His. The
position of the stabilizing Asn residue is indicated with a pink asterisk, although this residue
is not conserved in all sequences. Strikethrough text indicates parts of the sequence that
are expressed but removed during post-translational processing; for these proteins, this con-
stitutes an N-terminal region comprised of the signal peptide and the pro-sequence. The
presence and position of a signal sequence targeting the protein for secretion was predicted
using SignalP, and is indicated in the figures by highlighting in light orange, with the pre-

dicted cut site indicated by underlining the residues on either side of the cleavage point. The
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position of the pro-sequences was predicted by sequence similarity to the reference sequences
as well as comparison of the predicted structures to the crystal structure of the mature form
of papain. The pro-seqeunces of many of the sequences studied here contain the ERFNIN
motif (EX3RX3FX,NX3I/VX3N) common to Cl-family cysteine proteases. When present,
this sequence is shown above the relevant residues in the alignments. The presence of lo-
calization tags, when present, is indicated by purple highlighting. Granulin domains, when

present, are highlighted in blue.

Sequence consensus analysis for the sequences within each cluster defined in Figure 1.1, are
mapped onto the structure of a representative member of the class in Figure 4.8. Percent
conservation at each position is color coded (red = more conserved, white = intermediate
values, blue = less conserved). These plots demonstrate that the degree of sequence conser-
vation varies greatly among different clusters, i.e. the DCAP cluster has much less sequence
conservation overall than the vignain cluster. In all the clusters, conserved residues are
concentrated in the important secondary structure elements and near the active site cleft,
whereas residues in loops and linkers away from the core of the protein are less likely to
be conserved. All the predicted and equlibrated structures are available to download in the

paper [30].

69



(]
EXX

DCAP_2263 A=A =l ¥e— ¥ERVERY
DCAP_7862 \ ALS FARF-LHRYG KRYETUEEM
DCAP_3370 ——- - \TSD PHLAAGH-~H FDLEKS—FEN_“QYSTOREHD
DCAP_5561 MVSLERERRAHLWKKLRE! y 12 Qo LELVESYQLA AEYSC=TELN
PAPALl_CARPA MA MGL SFGDFSIVGY --SQNDLTST E -LIQL FESW-MLKHN YKNIDE
DCAP77834 = ——— ——T-—-SINV SRYLSEE V —-IREQ FEEW-IVQYG ADNAEKE
DCAP_4959 ———— e P SNV == A S RY LSV S e e e e — T REQ— FEREW—TVOY G RVYADNARKE
[ ] XXAXXXQ
XRXXXFXXNX XX IXXXN (] E PQNCSAT
DCAP_2263 ENL—RLIRSSNRN LALNDE ADMSWEEFQK—H LGA AQN'SATLKG NHKMTDATLP DMKDWREV-- -GIVTPVK-N
DCAP_7862 ENL—RLIRSSNRNG MPYTLALNDE ADMSWEEFQK—H LGA AQN'SATLKG SHKMTDATLP DVKDWREV-- -GIVTPVK-N
DCAP_3370 L <A - NQELD—PRSAKHEGYE F—SDLER Kl E—  L==GL 66— 166 GLEL—PRADA  m=m=QA—P=ULRPEEN| P | DI D EH-- -GAVTGY -D
DCAP_5561 SS PP e ¢ DESDEGS CNDESLETHT EGTTUSHLRLLPEAEQL QO PALLFIVEVE SREVYQITYP YHYGHYES-
PAPAT_CARPA XY DETNKEN-NSYWLOLNVE_ADMSNDEFKE KYTCS LAGN TR SYER VINDGDVNIP EYVDWRQK-- -GAVTPVK-N
DCAP_7834 LEALRELN-LGYCVG I NI FNDMPQEEFEA—AYTDGmmmae =al [ == =APTRFTEAN -DSVTEVEDQ
DCAP_4959 TEAT IN-IEY¥E 6 N N EQRE B — ¥ PDCmmmmm =m 5GP | mm = RPTR| T N -DSVTEVKDQ
®'e e ° [ X ° o
DCAP_2263 QGH GSCWTF STTGALEAAY SQAFGKSVSL SEQ-QLVD A NNFG SGGLP SQAF EEAYPYAGKD GECKFSSEN
DCAP_7862 QGHCGSCWTF STTGALEAAY SQAFGKSVSL SEQ-QLVD( NNEGUSGGLP SQAE EEAYPYAGKD GECKFSSEN
DCAP73370 QGS N STTGALEGSN YLATGKLVSL SEQ-QLVD D DAG NGGLM NNAF EEDYPYTGRD ETCKEDKS
DCAP_5561 NGV SATGAIEGAN FIATGKLLNL SEQQQLID D DSG'RGGLM TNAYKYLIE- ----AGGLME ERDYLYTGKQ GERFDSSNV
PAPAT_CARPA 0GS SAVVTIEG [RTGNLNEY SEQ-ELLD D SYG' NGGYP WSALQLVA-- ----QYGIHY ENTYPYEGVQ =Y RSREKGP
DCAP_7834 GPS \IAATEALH SAMYGDLRSL SEQ-QIIDCD YDNGCKRGLA ARAFKYASSS IGGKHVGIAN EEEYRYLGKT GTCKGNSIGE
DCAP_4959 GPS ATAATEALH SAMYGDLRSL SEQ-QIIDCD YDNG GLA YASSS IGGKHVGIAN EEEYRYLGKT GT “GNSIGE
L ] ®© e ee
DCAP_2263 -GVRVVDSVN ITLGAEDELX HA "YKDGVYTS DS GSTPMDV NH? GVPYWLIKNS WGGDWGDNGY
DCAP_7862 -GVRVVESVN ITLGAEDELKX HAV "YKDGVYTS DSCGSTSMDV NHAV GVPYWLIKNS WGGDWGDNGY
DCAP_3370 -ATTVANFSV VSLDEDQIA- ANLY M QTYIGGVSCP YICLR---NL DHGVLLVGYG SAGYAPIRFK EKPYWIIKNS WGENWGENGY
DCAP_5561 =SVKVVNFTT IPVDEKQIA- AHLVHHGPLA VGL-NAV-FM QTYIGGVS'P [CGH=-= GYG SKGEFSILREFG NKPYWIINNS WGRNGERTGN
PAPAT CARPA YAAK-TDGVE QVQPYNEGAL LYSIANQPVS VVLEAAGKDE QLYRGGIEVG -PCGN--- -PNYILIKNS WGTGWGENGY
DCAP_7834 DPVTIVDGYE FVPSNSEIDL ARAY PVS VEV-QSGDAL QAYTGGIFKG —-P GK--- -PSYWIVKNS T
DCAP_4959 DPVTIVDGYE FVPSNSEIDIL 2 PVS -QSGDAL QAYTGGIFKG -PCGK--- —PSYWIVKNS W
DCAP_2263
DCAP_7862 FKD !
DCAP_3370 Y /CGVDS -- e o
DCAP_5561 [AFAEGM=== ==VC AASTLW FGGKNYASSE TSLEYGQHQF SHTHS
PAPAT CARPA I GTGNS YGV( GLYTS- --
DCAP 7834 [RMRKGADGP AGLCGIARE- ---PSYPFSY
DCAP_4959 [RMRKGADGP AGL(GIARE- ---PSYPFSY IQRNDS-SKE NQQYYH
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@ conserved residue
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predicted minichain

* stabilizing Asn residue localization signal

Figure 4.1: The DCAP cluster contains sequences that are more closely related to other D. capensis
sequences than to any of the references. Several have insertions not found in other sequences,
potentially indicating specific functionalities. DCAP_2263 and DCAP _7862 contain the localization
tag NPIR in their N-terminal pro-domain regions, indicating targeting to the vacuole.
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Figure 4.2: Many of the reference sequences belong to the papain cluster despite the diversity of
their sources.. Several proteins in cluster also have C-terminal granulin domains, which are shown
in Fig. S4.3.
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DCAP 2570 ’ -
DCAP_0302 ® conserved residue Pro-rich linker
DCAP_5667 Cin disulfi

— in disulfide bond ) .
DCAP_5945 granulin domain
DCAP_6547 conserved Cys residue
RD21A_ARATH : : :
ORYA ORYSJ in granulin domain localization signe

Figure 4.3: The papain cluster granulin domains contain several examples homologous to the refer-
ence proteins RD21_ARATH and ORYA_ORYSJ. Papain itself lacks a C-terminal granulin domain,
S0 it is not included in the alignment. DCAP_2570 and DCAP _5667 are truncated, and therefore do
not contain both disulfide bonds stabilizing the granulin domains. DCAP_ 5945 contains an extra
C-terminal extension not found in the reference sequences. The conserved sequence region char-
acterizing animal granulin domains is shown above the corresponding sequences for comparison.
The plant granulin sequences have two distinguishing features; an additional conserved Cys residue
is present immediately after the first conserved CC pair in the animal sequence, and a 6-residue
insertion containing another conserved C is present between the first and second CC pairs.
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Figure 4.4: Many proteins in the vignain cluster, including vignain itself, are characterized by
the localization tag KDEL at the C-terminus. This sequence element indicates that the protein is
marked for retention in the endoplasmic reticulum.
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Figure 4.5: The granulin domain cluster contains proteins with C-terminal granulin domains.
Although they are not closely related to any of the reference sequences, RD21_ARATH and
ORYA_ORYSJ are shown in the alignment in order to compare sequence features among the gran-
ulin domains. As shown for the papain cluster granulin domains, the conserved sequence region
characterizing animal granulin domains placed above the corresponding sequences. As in the pa-
pain case, there are two additional conserved Cs and a 6-residue insertion between the first and
second CC pairs. In these sequence, a deletion of one residue relative to the animal sequence also
occurs between the first and second conserved Cys residues in the granulin domain. DCAP_7656
is missing most of the granulin domain, and instead contains the localization tag SKL near the
C-terminus, marking it for transport to the peroxisome.
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Figure 4.6: The bromelain cluster is characterized by strong sequence identity with pineapple fruit
bromelain.
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Figure 4.7: The dionain cluster contains many cysteine proteases that appear to be specific to

Caryophylalles carnivorous plants; this cluster contains the dionains from D. muscipula as well as
several proteins from D. capensis, but none of the reference sequences from other sources.
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a DCAP cluster b papain cluster ¢ vignain cluster

more conserved
less conserved

Figure 4.8: The percent conservation of each residue in the consensus sequence for each cluster is
shown mapped onto a representative member of the cluster. The color scale ranges from red (more
conserved) to blue (less conserved). a. DCAP cluster (DCAP_2263) b. papain cluster (papain)
c. vignain cluster (DCAP_2122) d. granulin domain cluster (DCAP_5115) e. bromelain cluster
(droserain 2) and f. dionain cluster (DCAP_0624).
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4.3 Results and Discussion

I discuss some important and relevant results from the paper [30] in this section- author
contributions can be found in the paper. Molecular modeling, protein network analysis and

all the predicted and equlibrated structures are available to download from our paper [30].

4.3.1 D. capensis Cysteine Proteases Cluster Into Distinct Fam-

ilies Based on Resemblance to Known Homologs

All D. capensis sequences previously annotated as coding for MEROPS C1 cysteine pro-
teases using the MAKER-P (v2.31.8) pipeline [49] and a BLAST search against SwissProt
(downloaded 8/30/15) and InterProScan [50] were clustered by sequence similarity. Several
previously-characterized cysteine proteases that have been identified from other plants are
also included as reference sequences. Clustering of the D. capensis cysteine protease se-
quences reveals a broad range of cysteine protease types, some of which are homologous to
known plant proteases (Figure 4.9). Three of the six clusters contain only proteins from D.
capensis or the related Venus flytrap Dionaea muscipula, while many of the reference se-
quences cluster together despite coming from a variety of different plant species from diverse
orders including both monocots and eudicots. The general types of plant protease features
found correlate well with previous surveys of cysteine proteases in Arabidopsis thaliana [119],
Populus sp. [104], and more recently, soybeans [120] and a broader group of plant proteases

from a variety of species [7].
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Figure 4.9: Clustering of cysteine protease sequences identified from the D. capensis genome. Many
are homologous to known plant cysteine proteases, including dionain 1 and dionain 3 from the Venus
flytrap, Dionaea muscipula. Dissimilarity between clusters is defined by the e-distance metric of
[4] (with a = 1), which is a weighted function of within-cluster similarities and between-cluster
differences with respect to a user-specified reference metric. The underlying input metric employed
here is the raw sequence dissmilarity (1 — (%identity)/100).
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4.3.2 Residues Conserved in D. capensis Cysteine Proteases In-

clude Active Sites and Important Sequence Features

A defining feature of C1A cysteine proteases is the Cys-His catalytic dyad, which is often
accompanied by an Asn residue that stabilizes the protonated catalytic His [121, 122]. The
mechanism of these enzymes requires using the thiolate group on the deprotonated cysteine
as a nucleophile to attack a carbonyl carbon in the backbone of the substrate. Preliminary
sequence alignments comparing putative cysteine proteases from D. capensis were used to dis-
card sequences lacking the conserved Cys and His residues of the catalytic dyad due to either
substitution or truncation. Other conserved features were observed in many of the sequences,
but were not treated as necessarily essential for activity. Reference sequences used include
zingipain 1 from Zingiber officianale (UniProt P82473), pineapple fruit bromelain (Ananas
comosus, UniProt 023791), RD21 from Arabidopsis thaliana (UniProt P43297), oryzain al-
pha chain (UniProt P25776) and SAG39 (UniProt Q7XWKS5) from Oryza sativa subsp.
japonica, ervatamin b from Tabernaemontana divaricata (UniProt P60994), and dionains
1 and 3 from the related Dionaea muscipula (UniProt AOAOE3GLN3, and AOAOE3M338,
respectively). Several of the reference sequences, e.g. zingipain-1 [123], were characterized
by mass spectrometric analysis of the mature enzyme; these sequences therefore lack the
signal peptide and pro-sequence found in the initially transcribed sequence. Sequence align-
ments for the individual clusters (seen above) are annotated to highlight individual amino
acid properties, residues conserved within the cluster and/or shared with papain, as well as
functional sequence features, as described above. In addition to the cluster-specific reference
sequences, all clusters include papain (Carica papaya, UniProt P00784) in order to have a

common reference for all the C1A proteases discussed in this work.

Most of the clusters are named after a reference sequence or a distinguishing feature of

its members. The DCAP cluster is highly diverse, yet it contains only sequences from D.
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capensis. The papain cluster contains many of the reference sequences, as well as several
D. capensis proteases, some of which have granulin domains (Figures 2 and 3), a feature
that is peculiar to plant cysteine proteases. The vignain cluster (Figure 4) contains vignain
from Vigna mungo (UniProt P12412) as well as D. capensis homologs. Many of the proteins
in the vignain cluster have C-terminal KDEL tags, indicating retention in the ER lumen,
suggesting that they are involved in germination and/or senescence. In the granulin domain
cluster (Figure 5), every sequence but one contains a granulin domain connected to the cat-
alytic domain by a proline-rich linker of about 40 residues; the one exception is truncated
after the proline-rich region. Several sequences in the papain cluster also contain granulin
domains, however the Pro-rich linkers in those sequences contain only about 16 residues
and the sequence identity between the two types of granulin domains themselves is not high.
The bromelain cluster (Figure 6) contains homologs of both defensive and senescence-related
enzymes. Every sequence in the dionain cluster (Figure S7) contains an extra Cys residue
immediately prior to the active site Cys. This CCWAF structural motif has been previously
observed in the Arabidobsis protein SAG12 and homologs [7]; however, the function of the
double Cys in unknown. It may have cataytic relevance, perhaps providing a second nucle-

ophilic thiolate or operating as a redox switch.

Like many other proteases, the papain-family enzymes are expressed with an N-terminal pro-
sequence blocking the active site. This sequence is cleaved during enzyme maturation, often
upon the protein’s entering a low-pH environment. This pro-sequence was found in most of
the C1A proteases from D. capensis (highlighted with pink boxes in figures 1-7 in the above
subsection). Plant C1A protease pro-sequences are often bioactive in their own right, acting
as inhibitors of exogenous cysteine proteases. This enables them to deter herbivory by insects
[124], nematodes [125], and spider mites [126], protecting the plants from damage. This can
be technologically exploited by producing transgenic crop varieties with protective cysteine

proteases they would otherwise lack [127]. This approach has proven useful in protecting
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crops from Bt-resistant pests [128]. Despite some variation in the lengths of the C-terminal
and N-terminal regions, all the cysteine proteases investigated here show substantial simi-
larity in the pro-sequences; in particular, the ERFNIN motif (EX3RX3FX,NX3IX3N) often
found in the pro-sequence of C1A proteases [129] is conserved in many sequences spanning all
the clusters. Interestingly, the alternative sequence EX3RX3FX;NX3AX3Q, which is char-
acteristic of the RD19 family of plant cysteine proteases, is found in only one of the D.
capensis proteases, DCAP 3370 in the DCAP cluster. For all previously uncharacterized
sequences, SignalP 4.1 [26] was used to predict the location of the signal sequences, if any,
while the pro-sequences were predicted by sequence similarity and structural homology to
papain. These sequence annotations were then used as the basis for further structure pre-

diction and functional analysis.

In addition to the common sequence features in the N-terminal pro-region, other varia-
tions are observed, such as the presence of C-terminal granulin domains in some sequences
and extra insertions that may be responsible for specific activities in others. Examples
of organelle-specific targeting sequences are observed; several sequences have a C-terminal
KDEL sequence targeting them for retention in the endoplasmic reticulum, while others
have targeting sequences indicating their destination in the cells, including signals indicat-
ing transport to the vacuole (NPIR, but not FAEAI or LVAE) or the peroxisome (SSM at the
C-terminus). The level of sequence conservation among the members of each cluster varies
dramatically, as can be seen in Figure 8, where sequence conservation is mapped onto the
structure of a representative member of each cluster. The sequences in the DCAP cluster
are less closely related to each other than the members of any of the other clusters, and some

are homologous to reference sequences used by Richau et al. [7].

Another interesting result was of DCAP_2263 and DCAP_7862, which belong to the Richau
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aleurain (cathepsin H) cluster. In humans, cathepsin H is an aminopeptidase that processes
neuropeptides in the brain [130], as well as acting as a lysosomal protein in other tissues. Its
barley (Hordeum vulgare) homolog, aleurain, has both aminopeptidase and endopeptidase
activity [131], suggesting that DCAP_2263 and DCAP_7862 may have both types of activity
as well. This hypothesis is supported by the presence of the Cathepsin H minichain sequence
in its plant orthologs, as discussed in the section devoted to these proteins. DCAP_3370
is related to the Richau RD19 (cathepsin F) cluster, and is the only protease in this set
that contains the characteristic pro-sequence motif (EX3RX3FXoNX3AX3Q), of the RD19
(cathepsin F) family. Human cathepsin F is distinguished by its unusually long pro-domain,
which is approximately 100 residues longer than that of other cysteine proteases and adopts
a cystatin fold [132]. In contrast, the pro-sequence of DCAP_3370 is about 140 residues,
typical for a plant cysteine protease. The last enzyme in the DCAP cluster, DCAP _5561
is not closely related to anything in either reference set. A BLAST search yields numerous
matches to uncharacterized predicted cysteine proteases from a variety of plant genomes,

however, the specific function of this enzyme remains enigmatic.

4.3.3 Some Cysteine Proteases Are Targeted to Specific Locations

Several of the cysteine proteases identified from D. capensis contain known targeting signals
that mark the protein for delivery to specific cellular locations. The most common such
signal is the N-terminal signal peptide targeting the protein for secretion. As expected,
the majority of proteins in this set contain such a secretion signal. In plants, the secretory
pathway delivers proteins to the vacuole, the vacuolar membrane, the cell wall, and the the
plasma membrane. In D. capensis, digestive enzymes are also expected to be secreted into the
mucilage. In addition to the N-terminal signal sequences, tri- or tetrapeptides indicating that

the protein is destined for a particular subcellular compartment are also found in many cases.
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Figure 4.10 shows the structures predicted by Rosetta for three full-length cysteine proteases
containing targeting signals, DCAP_2263, DCAP_5667, and DCAP_2122. Ribbon diagrams
are shown for all three enzymes; a surface is also shown for DCAP_2122 in order to assist
with visualization of the relationship of the pro-sequence, N-terminal signal peptide, and C-
terminal localization sequence to the rest of the protein. The positioning of the pro-sequences
(pink) and signal peptides (light orange) is highly variable, although in each example the
pro-sequence blocks the active site and the signal sequences and other localization tags (light

purple) are in highly exposed positions as expected based on their function.

a DCAP_2263

d DCAP_2122 surface
f w3
-+ ¥ ¥ Tv-‘ \

propeptide N-term.
[ targeting sequence

Figure 4.10: Predicted structures for three full-length cysteine proteases. The secretion signals are
highlighted in light orange, the pro-sequences in pink, and the localization tags in light purple.
a. DCAP_2263 contains the target sequence NPIR, indicating localization to the vacuole. b.
DCAP_5667 ends in the tripeptide SSM at the extreme C-terminus, indicating transport to the
peroxisome c. and d. DCAP_2122 ribbon diagram and surface model, respectively. DCAP_2122
ends in the ER-retention signal KDEL, indicating that it is retained in the ER lumen.
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In plants, the subsequence NPIR in the N-terminal region of a protein indicates targeting
to the vacuole, a large acidic compartment that is specific to plant cells and serves the same
function as the lysozome in animal cells. These compartments, which often occupy most of
the volume of the cell, contain a variety of hydrolases, including both aspartic and cysteine
proteases, which normally act to recycle damaged or unneeded cellular components. Upon
infection by viruses or fungal pathogens, the vacuole can also fuse with the plasma membrane
to release defensive proteases into the extracellular space. Two putative vacuolar proteases,
(DCAP_2263 and DCAP_7862) are found in the DCAP cluster. The NPIR tag is located
in an exposed position between the secretion signal and the beginning of the N-terminal
pro-sequence, as shown for DCAP_7862 in Figure 4.11. These proteases display sequence
homology to mammalian cathepsin H, a lysozomal protein that is important in development

and also implicated in cancer proliferation [133, 134].

In human cathepsin H, aminopeptidase activity is modulated by the minichain sequence
(EPQNCSAT). DCAP_2263 and DCAP_7862 (and aleurain, but no others in this set) con-
tain the sequence AAQNCSAT, which may have a similar function. The hypothesis that
this plant-specific minichain serves a similar role in modulating the substrate specificity
is supported by comparing the predicted structures with the crystal structure of porcine
cathepsin H (PDBID: 8PCH ) [135]. Figure 4.11 shows the predicted structures of mature
DCAP_2263 (blue) and DCAP_7862 (green) overlaid with the crystal structure of porcine
cathepsin H (gray). The predicted structures of the plant proteins coincide with the porcine
protein in the major secondary structure elements, albeit with substantial variation in loops
and linkers. The minichain sequence (EPQNCSAT in the porcine protein and AAQNC-
SAT in the D. capensis proteins) occupies a similar position in all three structures, allowing
substrate approach to the active site cleft from one side (Figure 4.11a), but not the other
(Figure 4.11b). Biochemical characterization of human cathepsin H has shown that deletion

of the minichain abolishes aminopeptidase activity [136], making this protein a standard
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endopeptidase. Based on sequence homology and examination of the predicted structures,
we hypothesize that this sequence plays a similar role in modulating the substrate specificity

and activity patterns of DCAP_2263 and DCAP_7862.

Cathepsin H
Il DCAP_2263
Il DCAP_7862

Figure 4.11: Predicted structures for two vacuolar cysteine proteases (DCAP_2263, blue and
DCAP_7862, green) with sequence homology to cathepsin H (PDBID: 8PCH gray). The active
site residues and the minichain are shown as space-filling models. a. One side of the active site
cleft is open and accessible to substrate. b. The other side of the active site cleft is blocked by
the minichain. In cathepsin H, this partial occlusion of the active site confers aminopeptidase
specificity.

Other proteases are targeted to the peroxisomes, organelles that bud from the ER membrane
and primarily break down long-chain fatty acids, but are also involved in the synthesis of
functional small molecules, such as isoprenoids, polyamines, and benzoic acid [137]. Some
proteases in the peroxisome are involved in the maturation of other enzymes imported to
this organelle, as well as disposal of oxidized proteins that build up in this challenging redox
environment [138]. Others are active during different developmental stages, such as differ-
entiation of seed glyoxysomes to mature leaf peroxisomes [139]. The most common type
of targeting signal for transport to the peroxisome is one of several C-terminal tripeptides.
The canonical example is SKL, but others have been discovered in a variety of plant proteins

[140]. DCAP_5667, which is in the papain cluster (Figure 3), has the tripeptide SSM at its
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extreme C-terminal end, indicating targeting to the peroxisome. DCAP_7656, which is in the
granulin domain cluster (Figure 5), contains the SKL sequence not at the C-terminal end,
but at a highly exposed position near the C-terminus, suggesting possible peroxisome target-
ing for this protein also. DCAP _7656 contains the proline-rich linker common to this cluster,
but its granulin domain is truncated. Another possibility is that the short sequence region
following the SKL tripeptide may be cleaved under some circumstances, acting as a switch
that determines whether this enzyme is sent to the peroxisome or elsewhere. Peroxisome-
targeted proteases represent attractive targets for biotechnological studies, because they are

optimized to remain stable and maintain their activity under harshly oxidizing conditions.

Proteins with the sequence KDEL at the C-terminus are retained in the lumen of the en-
doplasmic reticulum, enabling them to be stored in specialized vesicles as zymogens and
released to mediate programmed cell death in response to a stressor or during a particular
developmental phase. KDEL-tailed proteases such as vignain from Vigna mungo and CysEP
from Ricinus communis play an important role during germination, when proteins stored
stored in endosperm tissue are degraded for use as the cotelydons develop. A C-terminal pro-
peptide including the KDEL tag is removed along with the N-terminal pro-sequence during
maturation, to yield the soluble, active enzyme [141]. The crystal structure and biochemical
characterization of a homologous KDEL-tailed protein from the castor bean indicates that
this enzyme has a strong preference for large, neutral amino acids in the substrate peptides,
and has an unusually large and possibly flexible substrate-binding pocket that can accom-

modate a variety of sidechains, including proline [142].
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4.3.4 Several Discovered Proteases Possess Novel Granulin Do-

mains

Cysteine proteases with a C-terminal granulin domain are specific to plants, where they
are involved in response to dessication or infection by pathogenic fungi [143]. This type of
domain is found in two of the D. capensis protease clusters, the papain cluster Figure 3 and
the granulin domain cluster Figure 5. The reference sequences RD21A (RD21A_ARATH)
from arabidopsis and oryzain (ORYA_ORYSJ) from rice both contain granulin domains, as
do three proteins in the papain cluster (Figure 3) and three in the granulin domain cluster
(Figure 5). An additional two sequences in the papain cluster and one in the granulin domain
cluster contain truncated versions that do not contain all four cysteine residues necessary
to form the two disulfide bonds stabilizing the granulin domains. The granulin domain is
separated from the catalytic domain by a proline-rich linker region. In RD21A, which is
found in both the vacuole and the ER bodies [144], the granulin domain is removed from
the mature enzyme. Maturation within the vacuole is relatively slow and involves accumu-
lation of an intermediate where the N-terminal pro-sequence is removed and the C-terminal
granulin domain remains attached [145]. This intermediate species forms aggregates that
slowly release active enzyme following cleavage of the granulin domain, which is performed
by RD21 itself [146]. This suggests that aggregation mediated by the granulin domain pro-

vides a mechanism for regulating protease activity during leaf senescence.

The granulin domain is attached to the catalytic domain by a proline-rich linker of variable
length, as illustrated in Fig. 4.12. Granulins in animals act as growth factors, and contain
distinct sequence and structural features: the characteristic sequence motif consists of four
pairs of cysteine residues, with single conserved cysteines on both sides, and the resulting
fold consists of £ hairpins held together by disulfide bonds [147]. In plants, the granulin

domain has two additional cysteines and an insertion of 6 residues between the first two
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Cys pairs, slightly modifying the structure (Fig 4.13a). Clustering of the granulin domains
themselves, separately from the catalytic domains, yields three clusters (Fig 4.13b), two of
which contain proteins from the D. capensis papain cluster and one of which is made up
entirely of proteins from the D. capensis granulin domain cluster. The cluster analysis of
Richau, et al [7] identified two subfamilies of granulin domain-containing cysteine proteases;
comparison with those results places DCAP_0302 in their XBCP3 cluster, while DCAP_5945
and DCAP _6547 are in their RD21A cluster. Notably, the D. capensis granulin domain
cluster represents a new subfamily of plant cysteine proteases that is not closely related to

either of the previously described subfamilies.

The key sequence region of the canonical animal granulin motif is shown above the sequence
alignment for comparison (Fig 4.13c). The plant granulin sequences have two distinguishing
features; an additional conserved Cys residue is present immediately after the first conserved
CC pair in the animal sequence, and a 6-residue insertion containing another conserved C
is present between the first and second CC pairs. In the granulin domain cluster, there is
also a one-residue deletion between the first two conserved Cys residues. The first conserved
glycine in the animal sequence is not conserved in the plant granulin domains, and in fact

all of the examples shown here contain a bulky residue (F, Y, or L) at that position.

4.4 Conclusion

In summary, 44 cysteine proteases were identified directly from the genomic DNA of D.
capensis, and sorted into clusters based on sequence homology to known plant cysteine
proteases in our paper [30]. Molecular modeling and network analysis indicate that these
proteases have distinct structural properties suggesting potential diversity in functional char-

acteristics (e.g., thermal stability, substrate affinity). One particularly attractive potential
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W active region
Pro-rich linker
granulin domain

active site cleft

Figure 4.12: a. Ribbon diagram for the predicted structure for a representative member of the
granulin domain cluster (DCAP _5115), showing the catalytic domain (dark blue), the proline-rich
linker (gray) and the granulin domain (light blue). b. Surface representation of the same structure
rotated to show how the proline-rich linker interacts with the granulin domain.

application for these proteases is in mass spectrometry-based proteomics. Identification and
characterization of new proteases from diverse sources, including carnivorous plants, adds
to the repertoire of cleavage patterns that can be used in proteomics research. The diverse
properties make this class of proteins an attractive target for further characterization stud-

ies, with rich potential for biotechnology applications. Please look at the paper for detailed

results, supplementary data, downloadable structures and author contributions.
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Figure 4.13: a. Ribbon diagram of the DCAP _5115 granulin domain, with cysteine residues high-
lighted in yellow. b. Cluster analysis of granulin domains from D. capensis cysteine proteases and
reference sequences. Solid colors denote membership in the clusters of Fig 4.9, while the transparent
boxes correspond to the clusters previously identified by Richau et al. [7]. Notably, the D. capensis
granulin domain cluster appears to represent a new type of plant cysteine protease granulin domain.
c. Sequence alignment of all the granulin domains found in the D. capensis cysteine proteases with
reference sequences.
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Chapter 5

Leveraging molecular modeling,
experimental chemistry and
bioinformatics to study amyloid fibril

kinetics

5.1 Introduction

Amyloid fibrils are locally ordered protein aggregates that self-assemble under a variety of
physiological and in vitro conditions. Their formation is of fundamental interest as a physi-
cal chemistry problem and plays a central role in Alzheimer’s disease, Type II diabetes, and
other human diseases. In fact, more than 40 different human diseases, many of which are
both fatal and incurable, are associated with the formation of amyloid fibrils [8, 9, 148, 149].
These locally ordered protein aggregates are characterized by a cross-f structure, in which

B-strands composed of adjacent monomers stack in a repeating linear pattern, analogous to
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a crystal that grows along a single dimension rather than in all three [150]. This character-
istic structure is conserved across amyloid fibrils, independent of the secondary structure of
the protein monomer prior to fibrillization [151]. Despite the universality of this overall ar-
rangement, the patterns of connectivity among monomers that form the repeating subunits
of amyloid fibrils vary widely and are incompletely characterized. Indeed, the same fibrilliz-
ing monomer has been found to form different periodic structures in different experiments,
ruling out simple sequence-based explanations: for example, the PDB structures 5KK3 [9]
and 2BEG [152] exhibit markedly different periodic patterns along their respective growth
axes, yet both fibrils are comprised of the same Af;_45 peptide. High-resolution structures
have shown a diverse set of fibril subunit geometries displaying subtle but distinctive differ-
ences, e.g., linear vs. annular structures and parallel vs. antiparallel S-sheet arrangements
8, 153, 154, 155]. These structural differences have demonstrated clinical relevance: for in-
stance, they have been shown to directly correlate with toxicity and disease progression for
strains of both -amyloid [156] and a-synuclein [157] fibrils. The key feature differentiating
these subunit geometries from each other is the periodic pattern of non-covalent bonding
between monomers. This study refers to such motifs of non-covalently bonded connectivity
among the protein monomers making up each fibril type as fibril topology, the characteriza-

tion and modeling of which are the focus of the present work.

As an initial illustration of how fibril topology can be extracted from high-resolution struc-
tures and specified using graph theoretic formalisms, Figure 5.1 compares the patterns of
non-covalent connectivity for human Iowa mutant S-amyloid fibrils, associated with an early-
onset hereditary form of Alzheimer’s disease (PDBID:2LNQ [8]), with that of a fibril formed
by wild-type AfS_4o (PDBID:5KK3 [9]). As detailed below and in our paper [14], the
study represents the topology of each fibril by a network in which each node represents a
single protein monomer, with ties indicating monomers that are non-covalently bound to
one another. Application of this coarse-grained representation to solved amyloid structures

demonstrates that it is sufficient to distinguish a wide range of fibril topologies while also
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%
Figure 5.1: Two examples of the mapping of 3-dimensional fibril structures into their equivalent
graph representations, where the color coding indicates different protein monomers. Each node in
panels B and D corresponds to a protein monomer, with ties between nodes whose monomers are
non-covalently bound. Panels A. and B. show the molecular structure and graph representations,
respectively, of a fibril segment formed from [S-amyloid D23N (PDBID:2LNQ [8]). Using the ty-
pology developed in this paper, this fibril structure is classified as a 1-ribbon. Panels C. and D.

show the molecular structure and its corresponding graph representation for a segment of wild-type
ApB1_42 (PDBID:5KK3 [9]). In our typology, this structure is classified as a 1,2 2-ribbon.

being compact enough to serve as the basis for scalable models of fibrillization kinetics that
are able to simulate the fibrillization of hundreds or thousands of protein monomers. The
study’s examination of experimentally solved amyloid fibril structures reveals several dis-
tinct and previously unrecognized topological classes of fibrils; to describe them, this study
introduces a systematic nomenclature for fibril structure akin to the naming conventions for
organic polymers or protein secondary structure. This system, demonstrated in Figure 5.5,

describes all presently known fibril topologies, and is extensible to others not yet found.

A second motivation driving the present work is the need for models of fibril formation that
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are able to represent the diversity of observed structures and to capture fibrillization kinetics
on experimentally relevant time scales (many hours) and system sizes (hundreds to thousands
of peptide monomers). Because both the number of degrees of freedom and the timescales of
these events extend far beyond the reach of current atomistic methods, this study developes
a mathematical formalism for a network Hamiltonian describing the physics of interactions
between fibrillizing protein monomers in graph theoretic, or connectivity terms rather than in
atomistic detail; our approach exploits a formal connection between the statistical mechan-
ics of the fibrillization process and a framework for network modeling (Exponential family
Random Graph Models, or ERGMs) originally developed for studying social networks. This
study also describes simulation methodology that generates representative fibril topologies
under this Hamiltonian, recapitulating the topologies of all currently known amyloid fibril

structures reported in the Protein Data Bank (PDB [158]).

In the remainder of this paper [14], we: 1) introduce a general topological formalism for
protein aggregates (fibrillar or otherwise), including a quantitative mapping from atomic-
resolution structures to their topological representations; 2) introduce a typology and nomen-
clature for amyloid fibrils that encompasses all fibril structures found in the Protein Data
Bank; 3) introduce a specific family of Exponential family Random Graph Models (ERGMs)
that can reproduce all currently known amyloid fibril topologies (as well as some not yet
experimentally observed); 4) employ Markov-chain Monte Carlo (MCMC) simulations to
examine the equilibrium behavior of our models; and 5) employ a dynamic extension of

ERGMs based on local energy differences to probe the kinetics of fibril formation.

Our work has resulted in two papers [14] and [159]. T analyzed every amyloid fibril structure
from the PDB, was involved in topological classification and wrote the manuscript with
my coauthors. Dr. Gianmarc Grazioli and Dr. Yue Yu developed and implemented the
quantitative topological classification method and simulation studies with Prof. Carter Butts

and Prof. Rachel Martin. A portion of the papers [14, 159] is reproduced in this chapter
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to understand the importance of the results found in this study. For more details, in-depth

analysis and author contributions, please refer the papers [14, 159].

5.2 Network-based Classification and Modeling of Amy-

loid Fibrils

5.2.1 Methods

Defining Protein Aggregation States with Graphs

To capture the process of fibril formation, we require a simple representation that can accom-
modate protein monomers, small oligomers, larger unstructured aggregates, and the repeat-
ing units of fibrils themselves. Graph theory provides a natural language for this purpose,
and enables use of the ERGM formalism that has been extensively developed for modeling
graphs in social network and neuroscience applications to simulate realizations of the aggre-
gation process.[160] A graph is composed of a set of nodes or vertices, together with a set
of ties or edges representing pairwise interactions between nodes. Here, the nodes represent
individual protein monomers, with two nodes being joined by an edge if their corresponding
monomers are non-covalently bonded. We refer to such structures as aggregation graphs.
Because our focus is on fibril topology, we do not distinguish among types of intermolecular
interactions (e.g. hydrogen bonds, salt bridges, non-polar interactions, etc.); in practice,
protein monomers are held together by a combination of different interactions, whose com-
bined effects are of primary interest. As Figure 5.1 illustrates, a topological representation
is rich enough to distinguish among different fibril forms. Additional forms are shown in the
examples throughout this work. In the case of fibril structure A. from Figure 5.1, we note

that the structure displays a motif in which each protein monomer is bonded exclusively to
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its two immediate neighbors along the fibril growth axis; the minimal repeating subunit is
a single protein monomer. In contrast to this, the latter structure is characterized by two
chains of linear growth, whereby the minimal repeating subunit is a pair of monomers (one
from each chain, and of equal fibril growth axis index) that are bonded to: 1) each other; 2)
both of their neighbors along the same chain; and 3) the monomer on the opposite chain with
a fibril growth axis index offset by one and opposite in sign. Although our representation
is by intention coarse-grained, it has some advantages over (and can be used in conjunction

with) more fine-grained approaches.

Directly modeling aggregation states via topology dramatically reduces the degrees of free-
dom that must be explicitly represented, allowing substantial gains in computational effi-
ciency versus geometric representations. Modeling aggregation states in this fashion, how-
ever, requires a different approach from e.g. atomistic methods. The above-mentioned
ERGM framework provides a parsimonious means of parameterizing and simulating draws
from probability distributions on graphs, in this case representing patterns of connectivity
between protein monomers. Here, we exploit a property of this framework that allows us
to relate the ERGM specification to a Boltzmann distribution over aggregation states (Eq.
5.1).

exp (67t(g))
> gec exp (07t(g") h(g')

Pr(G = g|0,t) = h(g), (5.1)

This correspondence also provides a basis for defining Hamiltonian functions that describe the

energy of formation for all graph theoretic features sufficient for recapitulating a particular
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aggregation state (Eq. 5.2).

H(g) = (pe + kBT) te(g) + dastas(g) + Onspitnspi(9) + dnspatnsp2(g) (5.2)

+orsrotespo(9) + Pespitespi(9) + dostes(9) + destes(9) + dorter(g)-

Finally, we employ the graph Hamiltonian to define a family of kinetic models whose equilib-
rium distributions correspond to a target ERGM distribution, and that we show to be able to
qualitatively recapitulate behaviors seen in experimental studies. Further details regarding
the mapping of aggregation states to graphs and the statistics describing their formation to
ERGMs can be found in the paper [14]. Although the ERGM portion was performed by
Giannmarc, Yue and Prof. Butts, I had to mention it here to understand the importance of

the results in the next section. For more details, please look at the paper [14].

Identifying Amyloid Fibril Structures from the Protein Data Bank

To examine the diversity of fibril topologies observed to date, I performed an exhaustive
search of the PDB for all amyloid fibril structures. Although the PDB is not a random sample
from nature, it is a reasonable census of the known fibril structures so far discovered by the
scientific community and their classification into topological classes is useful for showing what
fibril forms have been found. The fibril structures were downloaded from the Protein Data
Bank (PDB; http://www.rcsb.org/pdb/ ) [158] after running multiple advanced searches on
the website. The search criteria included finding fibrils of sufficient size that the repeating
subunit could be clearly identified. Search terms used included “Fibril,” “A-beta,” “Protein
Fibril,” and “Lysozyme.” Any fibril attached to a ligand, metal or macro-scaffold was
discarded. To be retained for analysis, a putative fibril structure was required to display

1) the cross-beta sheet structure definitive of amyloid fibrils (distances between adjacent
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B-strands of 4.7 4+/- .4 A with 10 4/- 3 A between S-sheets) as seen in Figure 5.3(a) [161],
and 2) a periodic pattern of connectivity between monomers along a single fibril growth
axis as seen in Figure 5.3(b,c). Structures not satisfying these conditions were discarded.
Then, the structures were inspected individually in VMD [162] and Chimera [163]. Using
PDB ID 4RIK [164] for representation in Figure 5.3 (b) and (c), each structure was color
coded and mapped on the basis of topology using simple ball and stick model. The structure
was also checked for its correctness, any structure that was repeating as a crystal, or did
not conform to the definition of an amyloid fibril, was discarded. Figure 5.4 highlights the
criteria of acceptance. Figure 5.4 panel (la) shows the accepted amyloid fibril structure,
PDB ID 4RIK, panel (1b) shows the supercell constructed in Pymol [12] and panel (1c)
shows the amyloid fibrils distances between adjacent f-strands of 4.8 A with 9.4 A between
[-sheets [11]. Figure 5.4 panel (2a) shows the rejected fibril structure, PDB ID 4RXFO, panel
(2b) shows the supercell constructed in Pymol [12] and panel (2¢) shows the fibrils distances
between adjacent B-strands of 4.4 A with 7.8 A between S-sheets [13]. In case of 4XFO, the
cross-layer contacts look really weak and 4XFO did not pass energy calculations performed
by Dr. Gianmarc Grazioli, details can be found in the paper [14]. Figure 5.4 panel (3a) shows
the rejected fibril structure, PDB ID 3FOD, panel (3b) shows the supercell constructed in
Pymol [12] and panel (3c) shows the fibrils distances between adjacent S-strands of 5.3 A
with 10-11.4 A between S-sheets [15], which does not conform to the amyloid fibril criteria
of the amyloid fibrils distances between adjacent B-strands of 4.8 A with 9.4 A between
p-sheets [11]. 3FOD did not pass energy calculations performed by Dr. Gianmarc Grazioli,

details can be found in the paper [14].

This individual inspection not only help collect the accurate data samples to study but also
formed the basis of GUI and a traditional interface developed by Dr. Gianmarc Grazioli and
Dr. Yue Yu that automated the process of identifying and defining amyloid fibrils found in
the PDB and can be found in our paper [14]. In addition to the summary of our classification

results shown in Figure 5.2, a detailed list of structures satisfying our criteria is given in Table
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Figure 5.2: The five unique amyloid fibril topologies found in the PDB, sorted by relative complex-
ity. Bar heights indicate the number of structures in the PDB with the indicated topology.

5.1

Supplementary Video

We have provided a narrated video that features an animated visualization of one of our
kinetic simulations of fibrillization, as well as a brief introduction to this body of work. The
file name for the video is FibrilTopologyMovie.mp4. Additionally, a high resolution version

of the same video can be viewed via the following link: Fibril Topology Movie.

5.2.2 Fibril Nomenclature Rules for Chords

By default, it is assumed that each monomer within a repeating unit is adjacent to the
corresponding monomer in the next unit along the fibril axis. Where additional adjacencies

are present, these are indicated via the specification of cross-cutting ties that we refer to as
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https://www.dropbox.com/s/plcznv1461x80vp/FibrilTopologyMovie.mp4?dl=0

Table 5.1: The following table is a comprehensive list of all fibrillar structures found in the PDB
at the time this analysis was done, as well as their topological classification.

PDB ID Fibril Type Description Reference
9BEG  Lribbon AB 142 [152]
2E8D 1-ribbon [2-microglobulin [165]
OLM(Q  I-ribbon AB 1-40 [166]
OLMP  I-ribbon AB 1-40 [166]
SLNQ  l-ribbon AB D23N 1-40 8]
SMXU  I-ribbon AB 1-40 [167]
2NNT 1-ribbon TTCERG1 Y22F CA150 [168]
50QV 1-ribbon Ap 1-42 [169]
2LMN 2-ribbon AB 1-40 [166]
SLMO  2-ribbon AB 1-40 [166]
OM5N 1,2 2-ribbon TTR 105-115 1]
2MbHK 1,2 2-ribbon TTR 105-115 [11]
2MbHM 1,2 2-ribbon TTR 105-115 [11]
20MQ 1,2 2-ribbon Insulin 12-17 [170]
20MM 1,2 2-ribbon Yeast Prion sup35 7-13 [170]
3FTK 1,2 2-ribbon TAPP 64-70 [171]
3FVA 1,2 2-ribbon Elk Prion [171]
3ZPK 1,2 2-ribbon TTR 105-115 1]
4ROU 1,2 2-ribbon a-synuclein 72-78 [172]
4RIL 1,2 2-ribbon a-synuclein 68-78 [164]
47NN 1,2 2-ribbon a-synuclein 47-56 [164]
5K2H 1,2 2-ribbon Yeast Prion sup35 7-13 [170]
5KK3 1,2 2-ribbon AB 1-42 9]
OMVX  double 1,2 2-ribbon A 1-40 [173]
OMPZ  3-prism A3 D23N 1-40 [174]
2M4J 3-prism Ap 1-40 [156]
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Figure 5.3: Panel (a) represents the characteristics of amyloid fibril appearance. X-ray fiber diffrac-
tion pattern from aligned IAPP amyloid fibrils, showing the positions of the 4.7 A meridional and
9.8 A equatorial reflections in a cross- pattern. The figure is taken from the paper [10]. Using PDB
ID 4RIK [11], (c) is the color coded topology representation of (b).

chords. A chord is indicated by a pair of numbers, indicating the repeating units joined by
the chord in question. The first number is always 1, referring to the focal unit; succeeding
units are numbered as 2, 3, etc. Thus, a chord from the focal unit to the next unit is a
1,2 chord. A chord from the focal unit to the unit after next is a 1,3 chord, and so on. By
default, a chord is assumed to connect each element in the focal unit not having an incoming
chord of the same type from a previous unit to the next vertex along the ribbon or prism
in the unit to which it connects. Where specified explicitly, these are called trans chords.
When a chord connects to the corresponding element in a subsequent unit, it is known as
a cis chord. (Fig. 5.5 gives examples of both trans and cis chords.) Hence a 2-ribbon in
which the first vertex in the ribbon in a focal unit is adjacent to the second ribbon vertex in
the next unit is called a trans-1,2 2-ribbon, or simply a 1,2 2-ribbon (a cis-1,2 chord would
be a reference to an inherent edge between subunits, thus all all 1,2 chords must be trans,
ergo trans is a redundant qualifier for a 1,2 chord). Where chords connect both previous

and subsequent elements in the ribbon or prism structure, the chords are said to be doubled.
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Figure 5.4: Panel (1a) shows the accepted amyloid fibril structure, PDB ID 4RIK, panel (1b) shows
the supercell constructed in Pymol [12] and panel (1c) shows the amyloid fibrils distances between
adjacent fB-strands of 4.8 A with 9.4 A between S-sheets [11]. Panel (2a) shows the rejected fibril
structure, PDB ID 4RXFO, panel (2b) shows the supercell constructed in Pymol [12] and panel (2c)
shows the fibrils distances between adjacent S-strands of 4.4 A with 7.8 A between -sheets [13]. In
case of 4XFO, the cross-layer contacts look really weak and 4XFO did not pass energy calculations
performed by Dr. Gianmarc Grazioli, details can be found in the paper [14]. Panel (3a) shows the
rejected fibril structure, PDB ID 3FOD, panel (3b) shows the supercell constructed in Pymol [12]
and panel (3c) shows the fibrils distances between adjacent S-strands of 5.3 A with 10-11.4 A
between [-sheets [15], which does not conform to the amyloid fibril criteria of the amyloid fibrils
distances between adjacent 3-strands of 4.8 A with 9.4 A between S-sheets [11]. 3FOD did not pass
energy calculations performed by Dr. Gianmarc Grazioli, details can be found in the paper [14].
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Figure 5.5: The topology of all amyloid structures can be described using a simple network frame-

work. Shown in A are the fundamental fibril forms: the n-ribbon and the n-prism. These funda-
mental forms are the basis for describing any fibril by either adding (chording) or deleting (nulling)
edges between nodes in a repeating pattern. In B, we demonstrate various chording operations to
the 2-ribbon. Chords are indexed by the subunits they connect, e.g. consecutive chorded subunits
are labeled 1,2, while subunits two positions apart are labeled 1,3. Cis- and trans- indicate whether

chords are between subunits occupying equivalent or different embedded 1-ribbon “backbones,”
respectively.

A double trans-1,2 2-ribbon hence has chords from both vertices within each repeating unit
to the opposite vertex in the next repeating unit. When multiple chords types are present,
they are listed sequentially from longest to shortest; one may thus have e.g. a cis-1,3 double

trans-1,2 2-ribbon, or any other combination that forms a valid aggregation graph.

Extracting Topology from Atomistic Protein Structures

After identifying an amyloid fibril structure, we then extract its underlying topology (i.e.,
the pattern of bound interactions among monomers). For structures derived from x-ray
crystallography, this requires distinguishing between crystal contacts and the much stronger
interactions that define the fibril structure itself; in the case of NMR and EM structures, the
corresponding problem is distinguishing ephemeral and dynamically unstable contacts from

structural ones. In both cases, we employ an energy scoring protocol to remove spurious
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contacts.

Although we use the same scoring scheme for all structures, the definition of crystal structures
in terms of a repeating asymmetric unit requires special processing. This is performed as
follows. To ensure that we are working with a collection of fibril segments, we first generate
supercells consisting of multiple repeats of the reported crystal unit cell [12]. We then
calculate the score for the total interaction energy between each spatially adjacent monomer
in the supercell (using the approach described below), using a -10 kcal/mol cutoff to filter
out spurious contacts. If this yields a periodic fibril structure along a single axis (and not,
e.g. a three-dimensional, sheet-like, or non-periodic structure), the resulting ties are taken
to define the fibril topology. If this does not yield such a structure, then we lower the
energy cutoff until either such a structure is observed, or until the structure decomposes
into independent monomers; in the latter case, the structure is considered not to meet our
criteria of being composed of a repeating one-dimensional pattern of bound monomers, and
is rejected. Although the focus of the current work is fibril units held together by strong
interactions, we note that this methodology can be extended to more complex treatments
in which valued graphs are used to represent strong and weak interactions. In this case,

multiple scoring thresholds would be used to classify edges into their respective classes.

Since the NMR and EM structures employed here were not obtained from crystallized protein,
we do not need to build supercells prior to scoring inter-monomeric interactions. Instead,
we simply score contacts among spatially adjacent monomers within the structure, as before
beginning with a -10 kcal/mol cutoff and lowering the energy threshold until a periodic
structure is obtained. For the NMR and EM structures examined here, it was not necessary
to lower the default cutoff in order to obtain periodic structures. Most of this work was done

by Gianmarc and Yue, and further details can be found in the paper [14].
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Computational Experiments

Other experiments perfomred in this paper, mainly by Gianmarc and Yue include the fol-
lowing and further details can be found in [14]- Binding Energy Scoring Protocol for Edge
Determination, Kinetic Extension of the Fibrillization ERGM, Statistical Mechanics of the
Aggregation Graph, Aggregation Model Reference Measure, Aggregation Model Behavior at
Extreme Temperatures, Extended Stability Testing of Fibrils, Definition of Fibril Epochs

and Sample Code for 2-Ribbon Simulation.

5.2.3 Results and Discussion

A Systematic Nomenclature for Fibril Topology

In the study of individual protein structures, the paradigm of secondary structure has pro-
vided researchers with a tool for concisely describing structural details of proteins based on
commonly observed hydrogen bonding patterns. Here we present an analogous, systematic,
and standardized nomenclature system for fibril topologies that encompasses all of the di-
verse amyloid fibril forms currently represented in the PDB, and which can straightforwardly
be extended to describe forms yet to be discovered (Figure 5.5). The goal of the present
study is to develop a formalism for describing amyloid fibrils purely in network terms, using
connectivity among monomers. Although it differs in the details, the general approach is
part of the rich tradition in computational chemistry of adopting coarse-grained models that
capture the most salient features of the system of interest, while discarding other details that
are judged to add complexity but not essential information [175, 176]. Such coarse-grained
representations of protein systems often necessitate use of a specialized force field, whereby
the coarse-grained mapping is performed in the most literal sense, i.e. atomistic degrees

of freedom deemed to be unnecessary for capturing the phenomena of interest are fused
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together to create the “coarse grains” that compose less computationally expensive models

with fewer degrees of freedom.[177, 178] We address this objective below.

Amyloid fibrils are characterized by interesting structural features at multiple scales, from
the atomistic details of the molecular structures all the way to the distribution of plaques
in the brain. [179] The former have been the subject of considerable experimental investi-
gation, leading to details about the shapes of individual monomers within both parallel and
antiparallel assemblies. Types of fibrils include S- [9] (or tilde) [180] and double-horseshoe
[181] shapes, along with more complicated supramolecular assemblies. Our particular coarse-
grained model focuses on fibril topology at the level of interacting monomers, thus opening
the door to similar investigations at a higher level of structure, including potential relation-
ships with disease etiology (to which other features are hypothesized to be related [182]) and
connections between atomistic and topological features. Because all fibrils, by definition,
have a unique axis along which fibril growth occurs, we first posit that all fibrils are chains
of repeating subunits that are non-covalently bonded end to end. Each unique fibril topology
is identified by this one-dimensional repeating pattern of linked subgraphs, as summarized
in Figure 5.5. Our convention for visually indicating the axis of fibril growth in the graphs
is to depict “stubs” (i.e., endpoints of cross-unit edges) at both ends of the fibril segments
shown. In all examples, the repeating pattern of nodes, edges, and stubs that defines the

repeating unit of the fibril form is enclosed with dotted lines.

The subunit topologies observed to date can be divided into two categories: toroidal (i.e.,
cyclic) and linear. If the subunit is linear, we call it an n-ribbon, and if it is toroidal we call
it an n-prism (see Figure 5.5). For example, if a subunit comprises 3 monomers i, j, and k,
and the edges they share within the subunit can be represented as {i <> j, j <> k}, the fibril
type is a 3-ribbon. On the other hand, if the set of edges between monomers i, j, and k£ in
a single subunit are {i <> j,j <> k, k <> i}, the fibril type is a 3-prism. The simplest case,

where the repeating subunit is a single monomer, is called a 1-ribbon.
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We can further extend the naming convention to describe ties between monomers from
different unit cells. We introduce a convention for describing these additional ties of the form
1,7, where 7 and j give the indices of the subunits between which the ties occur. Additionally,
if the ties between unit cells connect nodes along the same embedded (“backbone”) 1-ribbon,
we add the term cis, while the term trans indicates that the tie is between nodes on different
ribbon segments. For example, if we have a 2-ribbon, where an additional tie connects each
unit cell to its immediate neighbor (a 1,2 tie), and the tie is between nodes that belong to
the opposite constituent 1-ribbons that make up the 2-ribbon (trans), the 2-ribbon becomes

a trans-1,2 2-ribbon (see Figure 5.5).

Characterizing Fibril Topologies Observed in Nature

In order to demonstrate that our system of nomenclature is general enough to be useful, we
have categorized the complete set of amyloid fibrils in the Protein Data Bank by topology
(Fig. 5.2). The amyloid fibril type classification follows a two-step protocol (see Methods).
First, we confirm that the PDB entry possesses the characteristic cross-beta sheet structure
definitive of amyloid fibrils (i.e. distances of 4.7 +/- .4 A between strands within -sheets and
10 +/- 3 A across f-sheets [161]). We carry out this step using the distance measurement
tool in PyMOL [12]. Second, we apply an energy scoring criterion to identify monomer
pairs whose interactions are sufficiently strong to constitute an edge in the aggregation
graph. The interaction energy score between two monomers is calculated in a style similar
to free energy difference scoring commonly practiced in molecular docking simulations. A
conservative minimum energetic threshold of -10 kcal/mol is employed to ensure that the
inter-monomeric interactions included in the graph representation of the fibril are at least
an order of magnitude more enthalpically favorable than a typical hydrogen bond between
water molecules. For the 28 amyloid fibril structures solved to date that meet our inclusion

criteria, we find 5 unique topological classes (Figure 5.2). We have identified simulation
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parameters for our mathematical model of fibril formation that are capable of recapitulating

all 5 of these known amyloid fibril topologies, as described in the following sections.

Computational Experiments and Simulation Results

Prof. Carter T. Butts, Dr. Gianmarc Grazioli and Dr. Yue Yu were successful in recapitu-
lating fibril structure in equilibrium by adapting exponential family random graph (ERGM)
techniques originally developed for the study of social networks. Details on how we em-
ployed the ERGMs using a Hamiltonian function and Markov Chain Monte Carlo (MCMC)
can be found in the paper [14] [183, 160]. We were also successful in constructing the fib-
rilization kinetics simulations [14]. Our followup study to the above paper [14] deals with
the mechanisms of amyloid fibril formation, a problem of considerable interest in terms of
both basic science and medical applications [159]. Our distinctive approach is to employ a
graph-theoretic formalism to represent the underlying topology of fibril structure, giving us
a parsimonious way of describing fibrils that is nevertheless flexible enough to accommodate

a wide range of aggregation states [159]. Further details can be found in the papers [14, 159]

5.2.4 Experimental Validation of the Predicted Statistical Model:

in vitro Amyloid Fibril Kinetics

Network statistical characterization of the pathways to fibrillization predicted by network
Hamiltonian models [14, 159] offer a uniquely capable approach toward identifying potential
intermediates in the process of amyloid fibril formation for experimental validation or inval-
idation. Most papers used two-step nucleation induced mechanism to study amyloid fibril
kinetics [184, 185]. To understand the disease and treatment better, we need to understand
the actual process, including formation of monomers, to better understand pathology, pro-

cess and disease treatment and management As I want to study the process of amyloid fibril
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kinetics, I propose to use unseeded, no nucleation method to understand the kinetics better.

Materials and Methods

Hen egg white lysozyme (HEWL), Enzyme Commission (EC) Number 3.2.1.17, CAS molec-
ular weight 14.4 kDa, was obtained from Millipore Sigma. ~-crystallin was expressed in the

lab [186].

Sample Preparation- 1 mg/ml, 2 mg/ml or 2.5 mg/ml of HEWL or ~S-crystallin in different
buffers were made by vortexing in a test tube. Tested buffers included phosphate buffer
(pH 2.15, 6.8, 12) and carbonate buffer (3.2, 9.2) as amyloid fibrils tend to form generally
at extreme pH, temperatures and agitation [184, 185, 187, 188]. Aliquots of 120 uL of
sample were taken in an eppendorf tube, placed in the Digital Heating Shaking Drybath

(Thermofisher) with or without shaking at temperatures between 70-76 degree celcius.

Thioflavin Binding Fxperiments- Thioflavin binding-dependent fluorescence was routinely
assessed on kinetic time points as described in literature [184, 185, 187, 188]. ThT was
sourced from Sigma Aldrich. 10 L aliquot of a 2.5 mM stock of ThT was added to 90 uL to
the aliquot of the amyloid fibril sample in fluorescence 96-well plate. The fluorometer was set
to an excitation wavelength of 450 nm and an emission wavelength of 489 nm. Calculations

were performed using excel and blank and negative controls were used.

Results

Although incomplete, the results seen below are promising and the project will continue
on the experimental path. Some results are presented in Figure 5.6, 5.7 , 5.8 , 5.9 and 5.10
General trend shows a minimum concentration 2 mg/ml at pH 3.7 with agitation (150 RPM)

at 75 degree Celsius shows propmising results. In Figure 5.6, we see ThT assay results of
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Figure 5.6: ThT assay results of 1 mg/ml HEWL using phosphate buffer at pH 2 and pH 3.7 with
agitation (150 RPM) at 75 degree celcius.

1 mg/ml HEWL using phosphate buffer at pH 2 and pH 3.7 with agitation (150 RPM) at
75 degree Celsius. Some amyloid fibril growth is observed however my hypothesis is the
fibrils crashes out of the solution. In figure 5.7, ThT assay results of 1 mg/ml and 2 mg/ml
~S-crystallin using phosphate buffer at pH 1 and pH 2 with agitation (150 RPM) at 75
degree Celsius. In Figure 5.8, ThT assay results of 1 mg/ml and 2 mg/ml yS-crystallin using
phosphate buffer at pH 2 and pH 3.7 with agitation (150 RPM) at 75 degree Celsius. In
Figure 5.9, ThT assay results of 0.5 mg/ml and 1 mg/ml HEWL using carbonate buffer at
pH 2 and pH 3.7 with agitation (150 RPM) at 75 degree Celsius. In Figure 5.10, ThT assay
results of 1 mg/ml vS-crystallin using phosphate buffer at pH 3.7 with agitation (150 RPM)

and without agitation at 75 degree Celsius.
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Figure 5.7: ThT assay results of 1 mg/ml and 2 mg/ml S-crystallin using phosphate buffer at pH
1 and pH 2 with agitation (150 RPM) at 75 degree celcius.
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Figure 5.8: ThT assay results of 1 mg/ml and 2 mg/ml S-crystallin using phosphate buffer at pH
2 and pH 3.7 with agitation (150 RPM) at 75 degree celcius.
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Figure 5.9: ThT assay results of 0.5 mg/ml and 1 mg/ml HEWL using carbonate buffer at pH 2
and pH 3.7 with agitation (150 RPM) at 75 degree celcius.
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Figure 5.10: ThT assay results of 1 mg/ml S-crystallin using phosphate buffer at pH 3.7 with
agitation (150 RPM) and without agitation at 75 degree celcius.
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Chapter 6

Biophysical characterization and
solution-state NMR assignments of J2
crystallin: Novel eye lens protein

from the box jellyfish

In this chapter, I describe the preparation, biophysical characterization, and solution-state
NMR structure determination of J2-crystallin, a previously uncharacterized eye lens protein

from Tripedalia cystophora (box jellyfish).

6.1 Background

The crystallins of the eye lens are extremely stable, soluble proteins that are responsible for
the transparency of this highly specialized tissue. The high refractivity of the eye lens results

from two major contributions; the high protein concentration (up to 1000 mg/mL in some
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fish species) [189, 190] and the high refractive indices of the crystallin proteins [191, 192].
Many crystallins are derived from either metabolic enzymes or physiological stress proteins
and appear to have undergone selection for increased refractive index after gene duplication
[193]. Mammalian lenses mostly consist of two strongly conserved classes of crystallins, the

chaperone a-crystallins, and the structural Sy-crystallins [194, 195, 196, 193, 197, 198].

Taxon-specific crystallins with diverse structural properties are found in other species, in-
cluding the e-crystallin in avians and reptiles and the S-crystallins in cephalopods [194, 196].
Unlike other non-cephalopod invertebrates, in which typical visual systems consist of sim-
ple ocelli and/or compound eyes made up of an array of ommatidia [199, 200], the box
jellyfish, Tripedalia cystophora, has camera-type eyes similar to those of vertebrates and
cephalopods [199]. Although the lenses are capable of forming sharp images, the eyes are
used for navigation rather than detection of detailed objects [201], as the distance between
the lens and the retina is not optimized for maximum visual acuity. 7. cystophora has a
total of 24 eyes split among four rhopalia (specialized structures that sense light), around
the bell of the medusa, each containing two camera-type eyes as well as an array of sim-
pler pigment cup eyes [202, 200]. The camera-type eye lenses are composed of the J1-, J2-
and J3-crystallin proteins [202]. J1- and J3-crystallins are homologous to known enzymes,
(ADP-ribohydroglycosylase and saposins, respectively) [202], whereas J2-crystallin (J2) has
no known homologs [201, 203]; a BLAST search of the Protein Data Bank (PDB) found no

proteins above 37% similarity [204].

To my knowledge, J2 has not previously been expressed and characterized. Here I focus on
the box jellyfish eye lens protein J2-crystallin. This 157-amino acid protein has a molecular
weight of 18.2 kDa [194] and a theoretical isoelectric point (pI) of 9.25 [205]. As expected
for an eye lens protein, the thermal stability of J2 crystallin is high, with an unfolding
temperature of 75.2 C. The project was initiated by Dr. Domarin Khago [192] in the lab.

She pioneered the expression and optimization of J2 crystallin [192] and was also involved
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in biophysical characterization and taking initial HSQC and NMR data. Please refer to
her thesis [192] for more details on expression and optimization. I will be focusing on the

biophysical studies and 3D NMR data that I collected for J2 crystallin [206, 207].

As seen in Figure 6.1, Rosetta and iTasser servers were used to predict J2 crystallin protein

models.

Rosetta, of Robetta server [206, 207], is an automated protein structure prediction software
developed by the Baker laboratory for ab initio and comparative modeling. On submission of
the fasta sequence, in this case J2 crystallin, Rosetta first searches for structural homologs
using BLAST, PSI-BLAST, and 3D-Jury, by breaking down the target sequence in small
portions of individual domains, or independently folding units of proteins. It then matches
the sequence to structural families in the Pfam database. Domains with structural homologs
then follow a ”template-based model” (i.e., homology modeling) protocol [206, 207]. The
lowest energy model as determined by Rosetta energy function is then selected as the final

predicted structure [206, 207].

iTASSER server [208, 209] is an on-line software that implements the iTASSER based al-
gorithms for protein structure and function predictions from amino acid (fasta) sequences.
When user submits an amino acid sequence, the server first tries to retrieve template pro-
teins of similar folds (or super-secondary structures) from the PDB library by LOMETS, a
locally installed meta-threading approach developed Zhang Lab [208, 209]. Next, the con-
tinuous fragments excised from the PDB templates are reassembled into full-length models
using Monte Carlo simulations with the threading unaligned regions built by ab initio mod-
eling [208, 209]. In the following step, the fragment assembly simulation is performed again
starting from the SPICKER cluster centroids, where the spatial restrains collected from the
LOMETS templates and the PDB structures are used to fasten the simulations [208, 209].
The final structure is predicted from the consensus of top structural matches between model

and templates as evaluated by TM-score, and the sequence identity in the structurally aligned
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regions [208, 209].

As seen in Firgure 6.1, there is variability and high dissimilarity in the models predicted by
iTasser [208, 209] and Rosetta [206, 207]. As these both tools use homology modelling of the

known protein structures, I hypothesize J2 crystallin has a unique protein fold (structure).

iTasser and Robetta Models for J2
¢

Figure 6.1: Rosetta (gold) and iTasser (silver) servers were used to predict J2 crystallin protein
model. Even within the server, there is variability and high dissimilarity of the predicted models.
As these both tools use homology modelling of the known protein structures, I hypothesize J2
crystallin has a unique protein fold (structure).
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6.2 Materials and Methods

6.2.1 Expression and purification of »"N-labeled and !*C-labeled

J2-crystallin

For the starter culture of J2 crystallin, 50 mL of LB media was inoculated with a single colony
of Rosetta (DE3) Escherichia coli cells containing a pET28(+)a vector with J2-crystallin
gene inserts was grown at 37 °C for 16 hours with shaking at 225 RPM [192]. Optical den-
sity measurement (OD), defined as a logarithmic intensity ratio of the light falling upon the
material, to the light transmitted through the material, measures the concentration of cells
in the solution [210]. Until an OD of 0.60 was reached, the cultures were grown at 37 °C
with shaking at 225 RPM. The cells were then collected in 500 mL batches by centrifugation
at 3000 RPM for 30 minutes and each 500 mL batch was resuspended in 1 L ®N-labeled
13C-labeled minimal media cultures [192]. The 1 L minimal media cultures were grown
for an additional 2 hours at 37 °C at 225 RPM. Protein overexpression was induced using
IPTG (Gold Biotechnology) at a final concentration of 0.10 mM at 25 °C for 30 hours [192].
Cells were collected via centrifugation at 6000 RPM, and pellet was resuspended in 40 mL of
50 mM sodium phosphate buffer with 300 mM sodium chloride, 10 mM imidazole, and 0.05%
sodium azide at pH 7.4 [192]. Cells were lysed by sonication in 30 second intervals for a total
of 10 minutes, followed by centrifugation at 15000 RPM for 90 minutes. The supernatant
was filtered with through a 0.22 pm filter (Millipore) before being loaded onto a Bio-Rad
Duo-Inject FPLC system (Hercules, CA) [192]. The His-tagged crystallin was purified and
cut by a His-tagged TEV protease, using a Ni-IDA (Bio-Rad) and a second application to a
Ni-IDA column was done to remove TEV protease and His-tag [192]. The purified labeled
crystallin was dialyzed into 10 mM sodium phosphate buffer with 0.05% sodium azide at pH
6.0 [192]. The final 1.8 mM concentrated J2-crystallin sample was prepared in 10 % D,O
and 2 mM TMSP [192].
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6.2.2 NMR experiments

A Varian "M%INOVA spectrometer (Agilent Technologies, Santa Clara, CA) operating at
800 MHz coupled with a 'H-3C-!°N 5 mm tri-axis PFG triple-resonance probe, using an
18.8 Tesla superconducting electromagnet (Oxford Instruments) was used to perform most
of the 2D and 3D experiments (HNCA and HN(CO)CA were performed on a Bruker Spec-
trometer operating at 800 MHz at University of California, San Diego NMR Facility). 'H
chemical shifts were referenced to TMSP, and '?N and '3C shifts were referenced indirectly
to TMSP. NMR data were processed using NMRPipe [211] and analyzed using CcpNMR
Analysis [212]. Center operating frequencies and (unless otherwise stated) center frequency

offsets were as follows:

Center 'H: 799.7988955 MHz °N: 81.04252684 MHz
Offset 'H: 4.81 ppm 15N: 118.70 ppm

6.3 Results and Discussion

6.3.1 Biophysical characterization of J2-crystallin reveals a stable

protein

Circular dichroism (CD) spectroscopy and aggregation propensity were used for biophysical
characterization of J2-crystallin. As expected of a structural protein, J2 crystallin is a stable
protein, aggregating at 73.5 degree Celcius and unfolding at 76.5 degree Celcius. A part of
biophyical characterization was performed by Dr. Domarin Khago and the results can be

found in her thesis [192].
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Aggregation under thermal stress measured as a function of temperature using

Dynamic Light Scattering (DLS)

Dynamic Light Scattering is robust and sensitive technique that can be used to characterize
protein aggregates in solution, because of its ability to resolve molecular or particle sizes
ranging from sub-nanometer to several microns [213]. DLS measurements to understand
the aggregation propensity of J2 crystallin were obtained on Zetasizer Nano ZS (Malvern
Instruments, Malvern, U.K.). The sample was prepared at the concentration of 1.0 mg/ml
in 10 mM phosphate buffer at pH 6.9. At each temperature, the sample was allowed to equi-
librate for 2 min before measurements were obtained, after which scattering measureazments
were performed in triplicate, resulting in a heating rate of 0.5 C/min. The average apparent
particle size is plotted as a function of temperature. J2 aggregates at 73.5° Celsius as seen

in Figure 6.2.

Number Mean (d.nm)

40 50 60 70 80
Temperature (°C)

Figure 6.2: DLS measurements of thermally induced aggregation of J2 crystallin over a range of
40-80 degree celcius. Salmon, green and blue colors represent the data taken in triplicate. The
average apparent particle size is plotted as a function of temperature. J2 aggregates at 73.5 degree
Celsius.

122



Circular Dichroism (CD) to study the thermal unfolding curves of J2 crystallin

Fraction Unfolded
o
[6)]

80 85 90 95
Temperature (°C)

Figure 6.3: Thermal unfolding curve of J2 crystallin measured by monitoring the circular dichroism
signal at 218 nm with the Tm value for J2 is 76.5° celcius.

Thermal denaturation provides complementary information regarding protein stability and
aggregation propensity. Thermal unfolding curves of J2 are measured by monitoring the
circular dichroism signal at 218 nm on a J-810 spectropolarimeter (JASCO, Easton, MD)
equipped with a thermal controller. For unfolding measurments, the samples were heated
at a rate of 2° C/ minute. The midpoint of the unfolding transition (Tm) is itself a useful
measure of protein stability. Tm value for J2 is 76.5° Celcius exhibiting characteristics of a

stable protein as seen in the Figure 6.3.

For the sake of comparison, Figure 6.4, shows the Tm comparison of J2 crystallin with other

crystallins studied in the lab. Figure from the paper [16].

6.3.2 Backbone assignment of J2 crystallin using Nuclear Mag-

netic Resonance

Solution state NMR was used to collect the data for J2 crystallin structure determination.
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Table 1. Thermal Unfolding Temperatures for yS-Crystallin Variants

protein variant Tm (°C)

YS-WT 72.0+0.1
yS-G18V 63.6 0.1
yS-G106V 58.9+0.1
yS-G18V/R20A 67.10.1
yS-G18V/R20M 63.1+£0.1
yS-G106V/M108R 62.7 £ 0.1

Figure 6.4: Tm comparison of J2 crystallin with other crystallins studied in the lab. Figure from
the paper [16].

5N HSQC

To assess the suitability of J2-crystallin for structural studies, a "H-'°N heteronuclear single-
quantum correlation experiment (HSQC) was collected using samples of N-labelled J2-
crystallin. The first of many solution-state NMR, experiments in a structure determination
effort, this experiment determines how well-folded the protein is by the distribution of cross
peaks [192]. The cross peaks are representative of the amide N-H pairs of the protein
backbone and sidechains. Clean and separated cross peaks allow for distinction among the
157 amino acid residues that should be seen in the spectrum. An HSQC also can indicate the
signal-to-noise ratio at the particular pH and concentration of the sample [192]. J2-crystallin
HSQC, as seen in Figure 6.5, shows well-separated cross peaks in both spectral dimensions,

indicating that the protein is folded and monomeric.

124



! N (ppm)

GSHN.1

r 100

r 110

r 120

t 130

r 140

‘H (ppm) é é ‘7 é é
Figure 6.5: 'H-'N HSQC spectrum of *N-labelled J2-crystallin acquired at 25 °C, indicating that

the protein is folded and monomeric. The crystallin sample was prepared in 10 % D20 and 2 mM
TMSP at a final concentration of 1.8 mM.

I5’N-Temperature dependent HSQC

'H-N HSQC spectrum of ®N-labelled J2-crystallin acquired at 20, 25, 30, 35 and 40
degree Celcius. indicating that the protein is folded, monomeric and stable. The crystallin
sample was prepared in 10 % D,O and 2 mM TMSP at a final concentration of 1.8 mM.
Temperature dependent HSQC does not reveal a major shift in the peaks showing that J2

is a stable protein as seen in Figure 6.6.

I'N-13C HNCA

HNCA experiment is useful for backbone assignment when used in conjunction with the
HN(CO)CA [214]. This is a 3D experiment because the chemical shifts are evolved for 'HN,
I5NH and '*Ca [214]. The magnetisation is passed in the following order- 'H - N - N-Ca
J-coupling - 13Ca - N - 'H hydrogen, where it is detected [214]. Since the amide nitrogen
is coupled both to the Ca of its own residue and that of the preceding residue, both these

transfers occur and peaks for both Cas are visible in the spectrum [214]. HNCA spectrum
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Figure 6.6: Temperature dependent HSQC does not reveal a major shift in the peaks showing that
J2 is a stable protein.

for J2 crystallin is seen in Figure 6.7.

I5N-13C HN(CO)CA

HN(CO)CA experiment is useful for backbone assignment when used in conjunction with the
HNCA [214]. The magnetisation is passed as follows- 'H to ®N- to *CO, then transferred
to 13C where the chemical shift is evolved [214]. The magnetisation is then transferred back
via BCO to ®N and 'H for detection. The chemical shift is only evolved for the 'HN, the
15N and the *C, but not for the *COa« [214]. HNCA spectrum for J2 crystallin is seen in

Figure 6.8.
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Figure 6.7: Slice of 'H-1N HNCA spectrum of N 13C labelled J2-crystallin acquired at 25 °C.
The J2 crystallin sample was prepared in 10 % D20 and 2 mM TMSP at a final concentration of
1.8 mM.
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Figure 6.8: Slice of 'TH-'N HNCOCA spectrum of N 13C labelled J2-crystallin acquired at
25 °C. The crystallin sample was prepared in 10 % D20 and 2 mM TMSP at a final concentration
of 1.8 mM.
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Figure 6.9: Slice of 'H-'N HNCO spectrum of >N 3C 'H labelled J2-crystallin acquired at
25 °C. The crystallin sample was prepared in 10 % D20 and 2 mM TMSP at a final concentration
of 1.8 mM.

I’N-13C HNCO

This is the most sensitive triple-resonance experiment as in addition to the backbone CO-
N-HN correlations, asparginine and glutamine are also visible [214]. Magnetisation is passed
in the following order 'H to N to the carbonyl *C through NH-3C J-coupling to °N
to 'H where it is detected [214]. HNCO is used in conjunction with the HN(CA)CO [214].

HNCO spectrum for J2 crystallin is seen in Figure 6.9.

I’N-13C HNCACO

Magnetisation is transferred in the following order 'H to '°N and then via the N-C J-coupling
to the ¥Ca to ¥*CO via the ¥C a-CO J-coupling [214] and then detected on H. HNCACO
spectrum for J2 crystallin is seen in Figure 6.10 which can be used in conjunction with

HNCO.
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Figure 6.10: Slice of 'H-'N HNCACO spectrum of ®N 13C labelled J2-crystallin acquired at
25 °C. The crystallin sample was prepared in 10 % D20 and 2 mM TMSP at a final concentration
of 1.8 mM.

I’N-13C CBCACONH, "N-13C CBCANH and "N-3C HNCACB

SN-BC CBCACONH, '*N-13C CBCANH and N-3C HNCACB, as seen in Figures 6.11,
6.12 and 6.13, are a standard set of experiments needed for backbone assignment especially

for large proteins which tend to have a big signal to noise ratio [214].

HCCH-COSY

HCCH-COSY is used for side-chain assignment. Magnetisation transfer is from the side-chain
hydrogen nuclei to their attached 3C nuclei which is then exchanged between neighbouring
13C nuclei via the J-coupling and finally transferred back to the side-chain hydrogen atoms

for detection [214]. Figure 6.14 shows the HCCH-COSY spectrum of J2 crystallin.
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Figure 6.11: Slice of 'H-'N 15C CBCACONH spectrum of ®N-labelled J2-crystallin acquired at
25 °C. The crystallin sample was prepared in 10 % D20 and 2 mM TMSP at a final concentration
of 1.8 mM.
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Figure 6.12: Slice of '"H-'N CBCANH spectrum of N 3C labelled J2-crystallin acquired at
25 °C. The crystallin sample was prepared in 10 % D20 and 2 mM TMSP at a final concentration
of 1.8 mM.
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Figure 6.13: Slice of '"H-'""N HNCACB spectrum of ®N 3C labelled J2-crystallin acquired at
25 °C. The crystallin sample was prepared in 10 % D20 and 2 mM TMSP at a final concentration
of 1.8 mM.
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Figure 6.14: Slice of HCCH-COSY spectrum of N 13C labelled J2-crystallin acquired at 25 °C.
The crystallin sample was prepared in 10 % DO and 2 mM TMSP at a final concentration of

1.8 mM.
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Figure 6.15: Slice of HCCH- TOCSY spectrum of 15N 13C labelled J2-crystallin acquired at 25 °C.
The crystallin sample was prepared in 10 % DO and 2 mM TMSP at a final concentration of
1.8 mM.

HCCH-TOCSY

HCCH-TOCSY is used for side-chain assignment. FlIgure 6.15 shows the HCCH- TOCSY
spectrum of J2 crystallin. Magnetisation transfer begins from the side-chain hydrogen nuclei
to their attached '3C nuclei, followed by isotropic *C mixing and back to the side-chain

hydrogen atoms where it is detected [214].

13C HSQC Aliphatic and *C HSQC Aromatic

13C HSQC Aliphatic and ¥*C HSQC Aromatic experiments (Seen in Figure 6.14, provide
correlations between carbons and its attached protons and helps circumvent the issue of

splitting of signal due to homonuclear *C—13C J couplings making the spectral resolution
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Figure 6.16: Slice of 'TH-1N NOESY spectrum of >N 13C labelled J2-crystallin acquired at 25 °C.
The crystallin sample was prepared in 10 % DO and 2 mM TMSP at a final concentration of
1.8 mM.

better.

NOESY

This spectrum can be used to obtain restraints for structure calculations and can also help

in assigninng the backbone [214]. J2 crystallin NOESY is seen in Figure 6.16.

6.3.3 J2 Crystallin triple resonance backbone assignment

Sequential protein backbone assignments for J2 crystallin using triple-resonance experiments
is seen in figure 6.17. Most spectra used for triple resonance backbone assignment have a 'H,
15N and *C dimension each. Assigning the backbone is step one on the path to strcuture

from NMR spectra. In Figure 6.17, Alanine 54 and 55 and Serine 56 residue are assigned
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using the CBCA(CO)NH and HNCACB 3D experiments.

6.4 Conclusion

As this is a structural protein, the structure is of paramount importance in determining its
function. J2-crystallin is a novel eye lens protein that has been expressed recombinantly
and purified in high yield [192]. In agreement with the secondary structure prediction and
CD spectroscopy, J2-crystallin has primarily a-helical character and thermal studies have
concluded a melting temperature of 75.2 °C [192]. A 'H-'"N HSQC shows the protein is
well-folded, allowing for further NMR experiments to be performed. Next steps include spin

assignments and residual dipolar coupling.
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Figure 6.17: Sequential protein backbone assignments for J2 crystallin using triple-resonance ex-
periments where the Alanine 54 and 55 and Serine 56 residue are assigned using the CBCA(CO)NH
and HNCACB 3D experiments.
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