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Abstract

We present a neural process model of visual analogical map-
ping that receives image inputs and responds by spatially se-
lecting a matching object to a cued object. The relational struc-
ture of the base scene is stored in a way that specifies the argu-
ments of each relation, allowing mappings based on structural
correspondence to be represented as proposed by the structure-
mapping theory. All the processes in the model emerge out of
coupled integro-differential equations modeling neural popu-
lation activation dynamics. The mapping can be influenced
by both featural and relational similarities. The developmen-
tal shift in mappings in the presence of a featural distractor
can be accounted for by manipulating how well the model can
maintain attention to relevant feature/relation dimensions, con-
sistent with a hypothesis suggesting inhibitory as a key factor
explaining the shift.
Keywords: Analogy; Structure-mapping; Development; In-
hibitory control; Computational modeling; Neural dynamics

Introduction
Analogical mapping establishes the correspondence between
objects and relations across two scenes based on the matching
relation. According to the structure-mapping theory, analog-
ical mapping is influenced stronger by relational similarity
than featural similarity as mapping preserving the relational
structure is preferred (Gentner, 2003). From the perspective
of embodied cognition, analogical mapping plays an impor-
tant role in abstract concept acquisition and comprehension
by detecting similarities to concepts linked closer to sensori-
motor surfaces (Lakoff & Johnson, 1980).

Studying developmental changes in mappings provides
functional constraints to understanding the processes in-
volved in analogical mapping. Many studies have shown
that younger children fail to solve analogies as they are more
likely to select an object that is similar in terms of their fea-
tures rather than taking the relational structure into account
(Gentner & Toupin, 1986; Markman & Gentner, 1993; Rat-
termann & Gentner, 1998). One possible explanation is that
younger children are worse at inhibiting objects that are feat-
urally similar to instead select an object that matches in terms
of their relations (Richland, Morrison, & Holyoak, 2006).
The intrusiveness of featural similarity suggests that analog-
ical mapping is based on a general mechanism of similarity
detection (Rattermann & Gentner, 1998).

Many computational models of analogical mapping have
been proposed, and some of them generate a sequence of
cognitive processes that are hypothesized to take place when

solving analogies (Gentner & Forbus, 2011). The connection-
ist model by Hummel and Holyoak (1997) starts with a struc-
tured representation of two scenes and learns mappings be-
tween localist units based on the shared semantics. The model
was constrained by the fact younger children are more likely
to make mappings based on features. It does not include a vi-
sual attention system, and descriptions of visual scenes had to
be hand-coded in activations of localist units. The model by
Hesse, Sabinasz, and Schöner (2022) includes a visual atten-
tion system that takes real image input. However, the model
was limited to processing only a single pairwise relation and
did not respond spatially. It did not explicitly connect to ex-
isting literature on the development of analogical mapping.

This paper aims to demonstrate a neural process model
of visual analogical mapping that can generate a sequence
of cognitive processes leading from visual input to the spa-
tial selection of a matching object. Dynamic Field Theory
(DFT) is a suitable theoretical framework for building such
a model (Schöner, Spencer, and DFT Rearch Group (2016)).
DFT aims to explain how cognitive functions emerge from
neural population activation dynamics modeled by coupled
integro-differential equations. In DFT, general principles that
hold across all areas of cognition can be found. A key prin-
ciple is that decisions must be stabilized against fluctuating
input. The underlying activation states are then attractors of
the neural dynamical system. When the activation is above
a threshold, local excitation stabilizes the activation, form-
ing a localized peak along the feature dimension. Such de-
cisions must be destabilized in order to generate sequences
of mental states. This happens through bifurcations that are
induced as input changes. For example, when the strength of
a stimulus increases sufficiently, the system switches from a
no-detection to a detection neural state by going through a de-
tection instability. The activation variable time course makes
different attractors appear and disappear, autonomously gen-
erating a sequence of cognitive processes.

Three key problems addressed by the model are high-
lighted. First, the relational structure of a scene has to be
represented in a way that specifies i) which objects are in-
volved in each relation and ii) which object is playing which
role within a specific relation (Doumas & Hummel, 2005).
In Figure 1, the description of the base scene should repre-
sent that it is the cat chasing the rat, not the dog, and that the
rat is the one being chased, not the cat. Second, the model
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receives real visual input and spatially selects a matching ob-
ject. The model generates a sequence of neural states that
describes the cognitive processes of perceiving the stimuli,
figuring out the mapping, and indicating which objects are
mapped onto each other. An explicit neural representation of
the structure mapping enables spatially selecting the match-
ing objects. Finally, the model captures the fact that younger
children are more likely to select the featural distractor. Both
the relational/featural similarities have an influence on its re-
sponse, while younger children are assumed to have a weaker
control of which kinds of similarities to use.

Model

O3 O1

O1O3
O1'

O1'
O3'

O3'
O2'

O2'

Dist

Dist

O2

O2

Figure 1: left) The example stimulus with a distractor. The
figure is reprinted from Richland et al. (2006). right) The
stimulus used for the present study. The numbering of objects
is for illustration purposes only.

The model maps objects across two scenes and responds
which object in the target scene corresponds to the cued ob-
ject. A similar task had to be solved in the experiment by
Richland et al. (2006), in which an arrow cued an object in
the base scene.

We use stimuli defined over dimensions that can be di-
rectly grounded in terms of their perceptual features (Figure
1). The objects varied in color, shape, size, and spatial lo-
cation. The relative size and the spatial relation between a
pair of objects were treated as relations, while the colors and
shapes of objects were treated as features of individual ob-
jects. Neutral items in the original stimuli were left out, as
children were guided to focus only on critical objects. Figure
2 shows the sub-networks within the model and their interac-
tions. The following processing phases emerge autonomously
in the model.

First, the model describes the base scene and stores the re-
lational structure in the conceptual description sub-network.
The spatial selection sub-network sequentially selects an ob-
ject to attend to. Each time an object is selected, its features
are extracted in the feature processing sub-network, and its re-
lations to one of the previously selected objects are extracted
in the relational reasoning sub-network. Extracted features
and relations are stored in the conceptual description sub-
network.

Once the description of the base scene is completed, the
model identifies which stored features and relations are criti-
cal for the decision to accept or reject the proposed mapping.
Visual WM fields are inhibited to ’reset’ them so the target
scene can be processed. The visual input is changed to the
target scene picture.

Next, the model visually grounds the description of the

Perception

Feature
Processing

Relational
Reasoning

Conceptual
Description

Mental MapCognitive
ControlDecision Making

Behavioral
Organization

Spatial
Selection

Feature/Relation
Guidance

Figure 2: Abstract diagram of the model. Fields are classified
into different functional sub-networks and depicted as boxes.
Connections between different sub-networks are depicted as
arrows. Black boxes are sub-networks needed for both the
description and the grounding phase; green boxes are needed
only from the grounding phase onward.

base scene in the target scene. Descriptions of objects are
activated in the same order as the description order. Only
a single object can be grounded at any given moment in
time. Activated concepts in the conceptual description sub-
network boost objects with matching features/relations in
the guidance sub-network, which biases the spatial selection.
The cognitive control sub-network controls whether the fea-
ture/relations can bias spatial selection.

After selecting a potentially matching object, the decision
to accept or reject the mapping is made. Match/mismatch
is detected in the decision making sub-network for all fea-
ture/relation dimensions, and both influence the decision. If
the selected object does not yet provide enough evidence for
the mapping, the architecture proceeds the grounding phase
by selecting another object to check the relational match.
If the selected object is accepted, the architecture responds
by spatially selecting the object in the target scene that maps
onto the cued object in the base scene. If the selected ob-
ject is rejected, an alternative mapping is tried out. The
grounding process starts from the start again, but the initial
selection will be biased not to select the same object again,
leading to a different mapping. Figure 3 shows all the neu-
ral fields and connections between them in the model. While
they are divided into different sub-networks based on their
functions, functions emerge out of connections between and
within fields.

The Perception / Spatial Selection / Feature Processing
/ Guidance sub-networks provide the interface to sensory in-
put and model visual attention. They resemble the visual
search model by Grieben et al. (2020) in a simplified way.
The spatial location and features of objects in the input image
are conjunctively represented in three space-feature maps.
The spatial selection field operates in a selective regime so
that only one localized peak can form. Different inputs from
the saliency map, the inhibition-of-return field, and the guid-
ance fields sum up, and the location with the strongest input
most likely form a peak. The inhibition-of-return field pre-
vents the same location from being selected again. The fea-
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Figure 3: A detailed view of the model. Fields are grouped into different functional sub-networks by colored boxes. Input from
some nodes is depicted externally on the top as truncated inputs.

ture relay fields have bi-directional patterned synaptic con-
nections to the matching feature concepts nodes in the selec-
tive regime, expressing each concept’s prototypical feature.
The guidance fields bias the spatial selection to the location
of the object whose features and relations match the feature
and relations of the object in the base scene.

The Relational Reasoning sub-network describes the pair-
wise relations between two objects and uses the activated
relation concepts to guide the spatial selection during the
grounding phase. For each relation dimension (spatial/size),
two distinct roles in a relation are represented by two separate
fields. The target fields are filled by the object currently se-
lected in the spatial selection field. The reference space field
receives input from the base scene map field and the target
space field, biasing the selection towards an object that was
recently described and is spatially closed to the target object
as the reference object. The attended relation fields represent
the target object’s values in shifted dimensions so that the ref-
erence object’s values are represented in the middle of each
field, which is invariant to the feature values of individual ob-
jects (Richter, Lins, & Schöner, 2021). During the grounding
phase, the expected relation fields form peaks in dimensions
centered around the reference object’s feature values. The in-
verse transformation fields receive inputs from the reference
fields and the expected relation fields and represent the ex-
pected spatial location/size of the target object in the same
dimension representing the absolute value. They provide in-
puts to the relation guidance fields.

The Conceptual Description sub-network keeps WM rep-
resentation of the relational structure of the base scene and
activates the appropriate concepts to provide search guid-
ance during the grounding phase (Sabinasz, Richter, &

Schöner, 2023). The object-concept field and the relation-
concept field jointly represent the extracted concepts and
the object/relation indices. The sequence generation system
(Sandamirskaya & Schöner, 2010) activates nodes standing
for indices serially, so that the concepts of the first selected
item are jointly represented at the location where it overlaps
with the input from the object index O1 and the relation in-
dex R1 to the first relation being extracted. The relation-
target field and the relation-reference field are defined over
the relation index dimension and the object index dimension.
The relation-target field receives input from the object index
field along the object index dimension, while the relation-
reference field receives input from the base scene map pro-
duction field along the object index dimension. Peaks in these
fields represent the argument of relations differentiating their
roles. Each field mentioned above provides sub-threshold ex-
citatory input to its counterpart production field (connections
are not shown in the figure). During the grounding phase, the
target production field is activated sequentially, starting from
O1, driving other production fields to activate feature and re-
lation concepts of the object selected by the index. The ref-
erence object is selected in the relation-reference production
field. The selected features and relations are then represented
in the feature and relation concepts nodes, ultimately guiding
the spatial selection decision.

The Decision Making sub-network activates one of the
three nodes that causes different processes to emerge based on
the match/mismatch detection of features and relations. For
each feature and relation dimension, there exists a match de-
tection sub-sub-network that receives input from the expected
feature/relation fields and the attended feature/relation fields.
(Grieben et al., 2020). The match/mismatch nodes will be ac-
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tivated depending on whether these two inputs overlap. The
no decision node is activated if one or both inputs are miss-
ing. The match evaluation sub-sub-network activates one of
three decision nodes based on the match detection of each
dimension. The proceed search node is activated when the
match detection is completed in all four dimensions, causing
the node representing the next object index in the target pro-
duction field to be activated, starting the search for the next
object. The reject node is activated when there is a mismatch
in at least one dimension. The grounding phase starts from
the beginning again, activating O1 in the target production
field. The hypothesis testing field keeps sustained activation
of all initially selected objects. In the new grounding phase,
the inhibitory input from the hypothesis testing production
field to the spatial selection field causes another object to be
selected as the matching object to the base scene object as-
signed the index O1 than the object that was selected before-
hand. The accept node will be activated if sufficient feature
or relation matches exist. The match memory fields represent
match decisions of critical objects/relations for each dimen-
sion. The cued index fields form peaks during the index iden-
tification phase and represent the object/relation indices criti-
cal to evaluating the mapping of the cued object. The needed
number of matches increases as the number of critical indices
increases, as the cued index fields inhibit the feature/relation
match nodes.

The Mental Map sub-network jointly represents the spa-
tial location of objects and the assigned indices (Sabinasz et
al., 2023). There exists a separate map for the base and tar-
get scenes. The target scene map production field forms a
peak where the input from the relation-reference production
field along the index dimension overlaps with the input from
the target scene map field, representing the spatial location
of the object selected as the reference object. The reference
space field gets input from the target scene map production
field. Importantly, the objects that map onto each other across
scenes are assigned the same index, representing the mapping
between objects. As the object index dimension binds objects
in different scenes as mapping objects and the mental maps
bind the object index dimension to spatial location, the spa-
tial location of the target scene object can be identified by
spatially cueing the base scene object.

The Cognitive Control sub-network modulates the at-
tention given to feature and relation dimensions during the
grounding phase. The attend feature and the attend relation
nodes are recurrently connected to the feature relay fields and
the relation relay fields respectively (Buss & Spencer, 2014).
In addition, these two nodes inhibit each other mutually. Dur-
ing the grounding phase, the feature relay fields and the rela-
tion relay fields can form peaks only if the respective attend
nodes are active. The attend nodes get external excitatory in-
put modeling the task input. Depending on the connection
strength of mutual inhibition and self-excitation, the attend
nodes might get activated by the input from the relay fields.

The Behavioral Organization sub-network controls

which fields can form peaks by providing homogeneous ex-
citatory inputs at the right moments. Each processing phase
is controlled by a set of intentions, Condition of Satisfaction
(CoS), and memory nodes (Richter et al., 2021). The inten-
tion node boosts the activation of fields engaged in the in-
tended processing phase. When the condition to terminate
the process is met, the CoS node is activated, which in turn
inhibits the coupled intention node. The intention nodes are
chained to autonomously generate a sequence of processing
phases.

Simulation
For numerical simulation of the model, the DFT software
CEDAR (Lomp, Richter, Zibner, & Schöner, 2016) was used.
The condition with a featural distractor and two relations to
be mapped are explained in detail, but the model can also
solve tasks with one relation to map or without a featural dis-
tractor. We simulated two model variants, changing only one
parameter to account for the difference between younger and
older children. For the ’young’ model, the mutual inhibition
between the attend nodes is set lower than the ’old’ model.
This effectively causes the ’old’ model to be better at sup-
pressing the activation of irrelevant (feature) dimensions dur-
ing the grounding phase. The rest of the section explains the
difference in the time course generated by the young and the
old model.

At the start of the simulation, both the old and the young
models describe the base scene picture in the same way. The
sustained activation in the conceptual description after the ter-
mination of the description phase is shown in Figure 4(c). The
spatial selection field is boosted by input from the intention
describe node, and the cued object (O1) is selected due to the
additional excitatory input from the cue bias. Its features are
described in the conceptual description sub-network. Next,
the object to the right of the cued object (O2) is selected. In
addition to its features, the relations between the selected and
cued objects (R1) are described. Finally, the object to the left
of the cued object (O3) is selected, and its features and rela-
tions to the cued object (R2) are described.

The Inhibition-of-return field is inhibited, and peaks repre-
senting the base scene objects decay. The object index O1 and
the relation indices R1 and R2 are identified as critical indices
to evaluate the mapping. Afterward, the grounding phase
of the old model starts. Figure 4(a) shows the time course
of activation changes. At t1, the target production field is
activated at the location representing the object O1 and acti-
vates the feature concepts nodes standing for color ’blue’ and
shape ’pentagon’. The input from the target production field
to the relation-target production field does not overlap any-
where with the input from the relation-target field, so no rela-
tion index is selected. The attend relation node is active due
to the strong excitatory input, modeling the task instruction
to focus on relation dimensions. Due to the strong inhibition
from the attend relation node, the attend feature node is sup-
pressed, and no peaks form in the feature relay fields despite
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Figure 4: The activation colormap on the bottom right repre-
sents the activation value of fields. The output of 3D fields is
contracted along the index dimension with labels of each ob-
ject for visualization. The legend on the top right is shared for
plots (a) and (b). P: proceed search, T:target production de-
layed, F:attend feature, R:attend relation, X:reject, O:accept.
(a) The time course of activation changes in the old model.
(b) The time course of activation changes in the young model.
(c) The activation value after the description phase. (d) Spa-
tial responses generated by the two models in the target scene
map production field. (e) A graphical representation of struc-
ture mapping is on the left, and the corresponding represen-
tation based on neural dynamics in the model is on the right.

excitatory inputs from the feature concepts nodes. Therefore,
the peak in the spatial selection field forms only based on
saliency with no bias from the guidance fields. The match de-
tection network decides that no match decisions can be made
as no relations can be extracted yet, and there were no ex-
pected features due to the inhibition from the attend relation
nodes. At t2, an object mapping to O2 in the base scene is be-
ing searched. The model searches for objects with a red color
and a diamond shape, but there are no such objects. Likewise,
the relation guidance biases the selection to the right of the
first selected object and any objects bigger than the first se-
lected object, but there are no such objects. The spatial selec-
tion field again selects an object based on saliency. The match
detection network detects a mismatch in relation dimensions,
and the reject node is activated, starting the grounding phase
from the start again. At t3, the correct object (object mapping

onto the cued object) is selected as the matching object to
O1, as other salient objects will be inhibited from the selec-
tion due to the input from the hypothesis testing production
field to the spatial selection field. At t4, the target index O2
is active. In addition to the features of O2, the relation R1
between the object O1 and the object O2 also provides guid-
ance. The relation guidance field forms a peak at the location
of the object that is to the right of and is bigger than the first
selected object. The match detection network decides a match
in relation dimensions. The proceed search node is activated,
and the search for the matching object to O3 starts. At t5, an
analogous process to t4 happens but for the target index O3
and the relation index R2. The relations between the selected
and previously selected objects match the expected relations.
The accept node is activated, and the spatial response is gen-
erated, creating a peak at the location of the object in the tar-
get scene that correctly maps onto the cued object in the base
scene (left in Figure 4(d)). Two scene maps represent the cor-
rect structure mapping as objects with the same indices are
matching objects (Figure 4(e)).

Analogous to the old model, the the grounding phase of
the young model starts with the target index O1 being acti-
vated (Figure 4(b)). However, due to the weak mutual inhi-
bition between two attend nodes, the attend feature node can
get activated, ultimately making the selection decision based
on feature guidance. At t1, the feature relay fields have sub-
threshold bumps at the location representing feature concepts
of object O1 due to the patterned excitatory input from the
feature concepts nodes, but the attend feature node is below
the detection instability, only providing weak excitatory in-
put to the feature relay fields. At t2, the sub-threshold bumps
in the feature relay fields and the activation level of the at-
tend feature nodes have increased due to recurrent excitatory
couplings between these two fields, providing weak input to
each other. At t3, both the attend feature node and the feature
relay fields go through the detection instability, recurrently
exciting each other. The activation in the feature guidance
fields starts to build up. At t4, the delayed excitatory input
from the target production field to the spatial selection field
signals a selection decision to be made, and a peak is formed
in the spatial selection field. Due to the bias from the fea-
ture guidance fields, the distractor object is selected. At t5,
the match detection network detects the match in two feature
dimensions, and the accept node is activated shortly after no
detection decisions have been made for the relation dimen-
sions. The model generates a wrong response by selecting
the distractor object as the object that maps onto the cued ob-
ject (right in Figure 4(d)).

Discussion

We presented a neural process model of visual analogical
mapping that can build a structured representation of the vi-
sual stimuli to guide the search for matching objects, reject
hypotheses based on the task requirements to focus on rela-
tional similarity, and ultimately generate a response by spa-
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tially selecting a matching object to the cued object. Three
key problems were addressed for this purpose.

First, the model represents the relational structure of the
scene description such that the identities of relations are dis-
tinguished and the arguments of each relation are specified.
In Figure 1, the relation between O1 and O2 is not confused
with the relation between O1 and O3, and the relation that O2
is to the right of O1 is not confused as O1 being to the right of
O2. Joint representations including the index dimensions en-
ables instantiating objects and relations as separate entities,
even when multiple entities share the same semantics.

Second, generating a spatial response was enabled by rep-
resenting the established mapping between objects. Here, the
index dimension again plays a key role in representing the
structure mapping as mapped objects are assigned the same
object index (base/target scene maps in Figure 3). The joint
representation of an object’s spatial location and index en-
ables selecting a spatial location based on the cued index or
vice versa. The mapping established by the model is in ac-
cordance with the structure-mapping theory as the mapping
is structurally consistent (Gentner, 2003). Any objects in the
base scene map onto at most one object in the target scene as
the inhibition-of-return field inhibits the previously selected
object from being selected again within a hypothesis. Match-
ing relations have matching objects as their arguments, as
objects are selected based on guidance from the relation to
which they are bound.

Third, both the featural and the relational similarity may
affect the mapping, which forms a basis for explaining why
younger children are more likely to select the featural distrac-
tor as the matching object. While both feature/relation guid-
ance guides the spatial selection, the old model could sup-
press the feature guidance according to the task input, while
the young model failed to do so. The inhibitory connection
strength between dimensional attention control nodes was set
to a smaller value in the young model. This is in agreement
with the hypothesis in Richland et al. (2006), stating that rel-
atively less developed inhibitory control in younger children
might explain why they are more likely to select a featural dis-
tractor. Manipulation of connection strength between dimen-
sional attention nodes has previously been used within DFT
to account for the fact that younger children are more likely
to make preservative errors in the Dimensional Change Card
Sort task (Buss & Spencer, 2014), which is a task hypothe-
sized to involve inhibitory control. In general, strengthening
of lateral inhibition (and local excitation) might be a general
developmental change that can account for effects from other
areas of cognition such as spatial WM (Schutte, Spencer, &
Schöner, 2003), and effects of such development can emerge
from repeated experiences (Perone & Spencer, 2013).

While our developmental account focused on changes in
inhibitory control, other factors are known to influence ana-
logical mapping. Younger children are more likely to fail at
analogical mapping in which more relations have to be simul-
taneously considered. This might reflect limitations in their

WM capacity (Halford, Wilson, & Phillips, 1998). In DFT,
the WM capacity limit arises from how much activation can
be sustained within fields (Perone, Simmering, & Spencer,
2011). Explanations of increased analogical mapping abil-
ity based on non-maturational factors are possible. Gentner
and Rattermann (1991) claims that learning the relevant rela-
tions in the problem domain leads to increased performance
which can happen on a relatively short time scale. Our model
is compatible with this hypothesis, as the patterned synap-
tic connections between the relation relay fields and relation
concepts nodes can be learned based on Hebbian rules.

Other process models of analogical mapping have been
proposed. The class of models using localist representa-
tion, such as LISA (Hummel & Holyoak, 1997) and DORA
(Doumas, Puebla, Martin, & Hummel, 2022), is closely
aligned with our goal as they both hypothesize a sequence of
cognitive processes and aim to be constrained by neural prin-
ciples. In LISA and DORA, the structured representation of
one scene guides the selection of matching entities in another
scene. In our model, the description of one scene also guides
the spatial selection of objects in another scene. This is the
search strategy most used by adults. It is also used by children
when solving scene analogies (Guarino, Wakefield, Morrison,
& Richland, 2022). LISA and DORA represent the relational
structure by instantiating a separate unit for each object-role
binding. This differs from the representation in the present
model, which uses the index dimension as an additional bind-
ing dimension (Sabinasz et al., 2023). The mapping between
entities is represented in LISA/DORA by learnable connec-
tions between localist units. Our model represents the map-
ping by sustained activation in two mental maps. Visual at-
tention is an important component of our model. It generates
the whole process of analogical mapping from describing vi-
sual input to responding spatially. While a recent version of
DORA connects to a visual preprocessor that takes visual in-
put, that preprocessor is intended as a shortcut rather than a
genuine model of visual processing (Doumas et al., 2022). In
LISA and DORA, WM capacity is limited because different
localist units have to share a limited amount of time to be ac-
tive while being out of synchrony. These models do not seem
to have an account for how items may be lost from WM. In
dynamic fields, peaks may become unstable when inhibition
outweighs self-excitation providing an account for how items
may be lost from WM.

Morrison, Doumas, and Richland (2011) accounted for
how different factors of development may influence analogi-
cal mapping ability based on LISA. While our model may be
open to the influence of these different factors on analogical
mapping, this has not been worked out in practice. How in-
ferences may be based on an established analogical mapping
is another interesting potential extension of our model.
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