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On the accuracy of the vortex method

Mirta Perlman

Department of Mathematics

and

Lawrence Berkeley Laboratory

University of California, Berkeley.

Introduction

The vortex method is a grid free method that simulates fluid flow by approx-

imating the vorticity by blobs of vorticity and computing their evolution. We

briefly describe the vortex method for an inviscid, incompressible fluid in the

absence of boundaries. A delaiied description of the

[3].741.75].79]..20].

H L

Consider Euler's equations

w + (Vs =0,
Ay =—z,

u1=\lfy, u, = —V¥_,

where u = { u,, ug ) is the velocity vector, z = {

is the vorticity and ¥ is the stream function.

meinod can be found in

z ,y ) is the position vector , w

We write ¥ as a convolution of the Green’'s function of the Laplace operator

with & ; the velocity w is then given by the Biot-Savart integral
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u(z,t) = K*wst(z —2z') w(z') dz',

[ |
K(z) = "2*7{_6:]10812 | = -anlTlg{_g] (1)

Assumme the vorticity » has bounded support in the ball of radius R cen-

where

tered at the origin. Introduce a grid with squares B; of side A centered at

jh={j1.72)h and approximate the initial vorticity distribution by

Mz) = Y yslz — 1h) <5, (2)
i
where the ¢;'s have one of the following two forms

0
I

§ !w(z) dz . | | (R.a)

w(jh) h?, _ (2.b)

Cj
and V¥¢ Is a smooth approximation to the Dirac delta function, defined by

Ye(z) = 6"77,’/( g—) . where ¥ satisfies the following conditions:

(i) Y& C?(R?)

{i1) Moment condition:

[ ¥(z)dz =1
S 279z)dz =0 y={ny) i=|y|<p-:

(iii) For some L>0, and for any multi-index B the Fourier transform z://(g) satisfies

sup | DE U (&)< Ca(it]8]) L8

¢e B2
Ve 1s said to be of order p if (i1) holds.
The vorticity approximation {2) by a sum of vortex blobs results in the velo-
A

city approximation u

ur(z,t) = Y Kelz - 2;{t)) c;, (3)
J



where K; is defined by
Ke(z) = K *ys = [ K(z=2") vs(2") d2",
the corresponding vorticity is

Szt) = T sz - 35(0) o5, (4)
J

where ;J.-(t) are the approximate particle paths which can be found by solving

the system of ordinary differential equations

~

dZ' ~ ™~ ~ -
dtJ =wu;{z;.t), z;{0) = jh.

The accuracy of the vortex method depends both on the approximation of

the initial vorticity distribution and the choice of cutoff functions ¥s .

Hald and Del Prete [8] and Hald /7] using a special class of cutoff functions
and the vorticity approximation {2.a) proved that the vortex method converges
to the solution of Euler's equations in the absence of boundaries.

Recently Beale and Vajda ' 1] using the vorticity approximation {2.b) and a
more general class of cutoff functions proved that the vortex method can be
made to converge with arbitrarily high accuracy, under the same restrictions. In
their proof they used stability and consistency estimates to establish conver-
gence.

Cotlet [6] proved that using the vorticity approximation {2.a), the vortex
method converges only with second order accuracy, for any cutofl function
satisfving (i)-{ii1) withp= <.

Let z;{t) denote the exact particle paths, 2;{0) = jh , i.e. the particle paths
determined by the exact solution of Euler's equations. Let u*{z.t) and w*{z t)
be the discrete approximations to the velocity and the vorticity determined by

the z;'s , i.e. the velocity and vorticity fields obtained by using 2;{t) rather than



;j(t) in (3) and {4), -

uh{z t) = 2 Kslz —2;(t)) w;RE, _ {5)
j

wh(z.t) =3 velz —2;(t)) wih? (8)
J

The consistency error is defined by
E, = fu-uh| ' (7)
for the velocity, and

w—o] (8)

L, =}
for the vorticity, where £, and £, depend on the mesh length A and the time £ .
The stability error measures the difference between u* and the discrete

velocity approximation u" due to a collection of vortex blobs moving under the

Influence of the computed particie paths ;j .
Beale and Majda estimated the consistency error as the sum of two terms.

The first term, the smoothing error, is due to the fact that the singular kernel K
in (%) is replaced by the smooth kernel As = A * ¥ resulting in the velocity
approximation:

ublz t) = f’Ké(z -z Ywiz') dz’,
which can alsc be viewed as approximating the vorticity w by wé = ¢ * o

Sz t) = f‘y’/é(z —z)w(z) dz"
The smoothing error depends on the parameter § and on the time ¢t and is

defined by:

<

S ¢ :
Eg=fu—-u’l E;

©
S

The second term, the discretization error, is due to the fact that we approx-

imate u® and «° by their discrete analogues u" and " defined in {3), {6). We
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denote this error term by £2. It depends upon the mesh length h, the parame-
ter § and the time ¢.

B2 = |u’~u”| E2 = [t -ut]. (10)

Beale and Majda have shown that provided the flow is smooth, the first error
term E° is of order 6° , where p is related to the number of moments of the
cutoff function 4 that vanish, while the discretization error E? is of order
6L hL7'"¢ Here h is the initial distance between the vortices, and L measures
the decay of the Fourier transform of ¥ . The best error estimates are attained
when the two errors £ and E£” are in balance. Choosing ¢ =h? with

g = % we balance the errors and obtain a total error of order h?? . Cutoff

functions ¥ with L arbitrarily large, { for example Gaussian cutoff functions )

allow us to choose 6 = h!™% | &£ small, and obtain essentially a p* order method.

Note that the Hald and Bealé-&!ajda proofs do not establish that cutoff func-
tions y which fail to satisfy conditions {i)—{(ii1) above cannot lead to conver-
gence. Chorin "3], 74], 3], used a different cutofT function which does not satisfy
these conditions, but has been shown experimentally to be of second order accu-
racy 5}, 8].

To test the accuracy of the vortex method in praétice, we carried out a
number of numerical experiments with several choices of cutofl functions and
different values of A and §. We measured the consistency errors £, and £, as
well as their components, the smoothing and dizcretization errors. These results

are prezented in the next section.

In the numerical experiments we used culoff functions ¥ which are linear

[

combinations of gaussian functions as suggested in 2] Since both ¥ and its
I'ourier transform decay rapidly, L is arbitrarily large aliowing us in principle to

choose § = h17% with & small.
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The numerical experiments show that if‘p >4 and § cleose to A, then the
error develops in an unexpected fashion both as a function of A and as a func-
tion of t. Looking at the two components of the error we find that this behavior
is due to the discretization error, which grows sharply in time aﬁd for £ >0 does .
not decrease as h - 0. This behavior of the discretization error is present for all

6 = h? with 0.5<g <1, but the error decreases as § increases.

The decrease of the discretization error as § increases, and the fact that
the smoothing error increases with §, allow us to eliminate the 'odd’ behavior of
the consistency error by choosing 6 =h? substantially larger than h, ie.,
g<085 for p=4 and g<.0.80 for p=86,8. Thus the accuracy provided by
Lhis new class of cutoff functions is reduced, i.e., instead of p* order accuracy

for a pt* order cutoff {p=4) K we obtain pg order accuracy .g < 85 .

Numerical resuits

In this section we present the numerical experiments carried out to test
the accuracy of the vortex method. As initial vorticity distribution we choose a

radially svmmetric function:

o lci=1z2y g2 =
2{z) =g (2] >:
The corresponding solution of Euler's equaticns is
‘Wi—(l—lz'l‘)c)(y.—z) lz| <1
u{z) = | '

We measure the consistency errors E, and £ defined in {7), {8) in the
L

discrete L® norm
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E, = {Zlu(zj,t) - uh(z; t)|%h? %.
J

3

s
J

£y

%
Wiz t) — P (z;.t) | *RP|

where z;, u, u" and w* are as defined in the previous section.

We also estimate the rate of convergence by :

log(Ex, / £,

rate of convergence = -
lOglhl / hg]

In our calculations we use gaussian cutoff functions of various orders (suggested
=) \ S

by Beale and Majda, [2]):

-2
1 o582
; - - = 2¢
(7') p=7 Ve = o2m62 e
A _r& _r
. 1 2 L &2
() p=2 o= (2 F-ge?
, 2
. re e ) 72
- o= &2 282 - 462
(iii) p =86 ’#/6—r62<‘(3—9 - TR )
] t L Fw
. 6 —i _7.2 -7.2 _1.2
: : . b4 2 L 52 £2 2
iy =8 je= —{ ——e ¢ — T ¥ 4 =9 ¥ _ =—_p 8
() p Yo = iy 3 6 168 )

The runs were made for 05<h =02, where A is the initial spacing
between the particles. This corresponds to 80-950 vortices. We let 6 = A9 with
0.5< g <. and assume that 0=t <20. At time t = 20 the particles near zero
travel :0 radians while those on |z | = I travel 1.25 radians.

We find that the errors using the cutoff functions {ii)—{iv) are qualitatively

similar. Hence we group them together as higher order cutoff functions as

opposed to the second order cutoff function (i) for which the results are



different.

The errors F, and £, depend on three parameters: A, the initial distance
between the particles, §, the core size which depends on h, and the time £. For
any of the cutoff functions (ii)—{iv), we find that as a function of each one of

these three parameters-the errors ¥, and £, develop in an unexpected fashion.

As a function of ¢ for §=hA% with .75<g¢ <i, £, and E, increase sharply
reaching a maximum and then oscillating. Let 7; the time at which the max-
imum occurs. Although T > i2 ( one rotation of the inner particles ), Ty does
" not ﬁecessarily increase as h -0 (Figures la-b). -

As a function of A, and with 6 as above, neither £, nor £, decrease uni-
formly as h -0 , this is clearly seen when we compute the rate of convergence,
(seé figures 2a-b). The rate of convergence stays constant for a short time inter-
val and then decreases sharply. The time interval becomes shorter as h - 0. We
also find that after T' > 0 the errors do not decrease with hA. This effect is more
pronounced for the consistency error in the vorticity than in the velocity.

Consider now a fixed A and let ¢ =AY with 0.5<g <.. Beale and Majda’s
estimates ] show that if 6 = A% with g <1 then the érror is of ibrder hf’q
‘where p is t’hevorder of the c_ﬁtoﬁ._function. Hencé the error shoﬁld increase as g
decreases. We find that this holds for a. short vtime interval [0, T.]. This time.
interval becomes shorter as ~A-»0 and as pv increases. For £t >Tvand p=4 thel
error decreases for 0.75<g <! and increases for g <0.75, while for ¢ >T. and
p =6,8 the error decreases for 0.65<g <. and increases {or g7 <0.85, {Figures
3a-b).

As g decreases the sharp increase of the error in time is gradually
attenuated and we observe a more uniform decrease of the. error as a h-»0. If
q <0.85 for a fourth order cutoff function and g <0.80 for the 8% and 8% order

cutoff functions then the accuracy is asymptotically pg thrcughout the interval
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[0, 20]. For h = 0.05, which corresponds to 925 vortices, and 6 = h*® the errors
are less than i% for the velocity and between 2 and 3% for the V’orticify, with the
cutoff function {(ii). For the same h but é = A€ the errors are 0.6% for the velo-
city and 1.4 - 2% for the vorticity, with the cutoff function (). Finally for the
cutoff function {iv) we obtain an error of 0.3% in the velocity and 0.8 - 1.8% in
the vorticity { Tables ia-b).

In contrast to the higher order cutoffs, we obtain good results for § = A9,
g =0.9, with the second order cutoff function {7). For example with 6 = h®

h = 0.05, the errors are 3% and 5% for the velocity and vorticity {Table 2 ).

To further understand the error behavior and following the spirit of the

proof in “i], we measured the two components of the error, namely the smooth-

ing error and the discretization error, in the discrete L? norm:

b9
4

5 )
olz) = o%z.0) |7 h‘J’

J

E:?:[Z

ED = Z‘lmé(z,-,t)—uh(zj,t)[EhZJ"
J

where % and " are as defined in {9), {1 0).

Ve computed »® by numerical integration using the routine DO:DAF of the
NAG library, with an error tolerance of :077. Since «° does not change in time
and neither does » , the smoothing error £ remains constant for all ¢t . It is
lherefore enough to look at ES at time t =0. From tables 3a-b we find that £ is
asymptotically of order 6P for a p™ order cutoff function.

The discretization error E£2 has the same qualitative behavior for all cutoff
functions {i)-{iz). We find from figures Za-d that the discretization error EJ
Increases sharply in time , reaching a maximumi, oscillating later on. The time at
which the maximum occurs changes with A. As a function of A the error

decreaszes at £ = 0, but for later times the error does not decrease as h-»0. This
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behavior in A and ¢ is present for all § = A? with 0.5<g <1.

As a function of 6 , keeping h fixed, the error ED decreases as § increases.
This indicates the presence of a negative power of 6 in £2, {see {1], [7] ).

If we keep h and ¢ fixed, and compare the discretization error EZ for the
different cutoff functions, we find thét the error for the second order cutoff
function {i) is substantially smaller than the errors for the higher order cutoff
functions {#i)—{iv) . The latter are of comparable size, but increase slightly as
P increases.

Having observéd the behavior of the smoothing and discretization errors we
can understand how the consistency error develops as a functionof A, § and £.
Consider the second order cutoff function {(i1), as we mentioned above the
discretization error EZ increases sharply in time and for 7>0, does not
decrease as h-0, however it is small relative to the size of the smoothing error
ES ., which is of order 6P . Thus the 'odd’ behavior of £7 is not felt in the total
consistency error and we obtain an accuracy of order 2g with g <0.9.

For higher order cutoff function and 6 = h?,O.?;S <g < the vsharp increase
of the error in lime and its behavicor as kh »0 is caused by ils discretization com-
ponent. We obzerve that Lhevcbnsiste_ncy error is almost equal to the discretiia—
licn error. This indicates that except for a short initial timé, there is no balance
of the error components, but the dominan‘t term in the total consistency error
is the discretization component. Because £° and £7 are of opposite character;

icreases, we are able to

[#2]
L)

e, ES increases with § while £? decreases a
aticniuate the sharp increase of the error as a function of U and to eliminate the
uneven decrease as a function of A , by increasing ¢ so that £ becomes the
dominant term. We can clearly observe this in Table £ which compares the con-

sistency error £, to the smoothing and discretization errors for § = 2% and the

cutofl function {i1}.
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Conclusion

Numerical experiments carried out to test the accuracy of the vortex
method using  cutoff functions suggested in [2] show that less than p®* order
accuracy is obtained with a p®* order cutofl function. The rapid decrease of
these cutoff functions and of their Fourier transform should allow us to choose
8 =h'®, ¢ small. However, with this choice of §, the consistency error grows
sharply in time and decreases in an unexpected manner as h »0. We find that
while the smoothing error is of order 67 , the discretization error grows sharply
in time and for T >0 does not decrease as h » 0. This phenomena is presenf'for
all 5=ﬁ7v with .5<g <! |, but as a function of §, the discretization error
| decreases as § increases. This decrease of the discretization error and the fact
that the smoothing error increases with 4, allow us to eliminate this ‘odd’
behavior of the consistency error, by choosing 6'substantia11y larger than A. In
doing so we lose some of the increased accuracy provided by the higher order
cutoff functions. Nevertheless, higher order cutofT functions improve the accu-
racy of the results. For example, with p =2, h =005 and §=h%, the con-
sistency error for the velocity is 3%, while with p =8, A =0.05 and §=h% the
error is 0.87.

We have not found an explanation for the behavior of the discretization

error.
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Table 1-a. Consistency errors for different cutoff functions, A =0.05

E, E,
t=0 i0 20 t=0 10 R0
6=h% p=4 1.336-03 1.336-03 1.445-03 | .9385-02 .9399-02 1.429-02
6=h?® p=6|0.798-03 0.798-03 B8791-03 | .6262-02 .6264-02  .9348-02
6=h® p=80421-03 .4210-03 .5765-03 | .3574-02 .3577-02  .8343-02
"Table i-b. Relative errors for different cutoff functions, h =0.05
E./ ‘ﬂ | E.,,./ ||
t=0 10 20 t=0 10 20"
5=h® p=4 9118-02 .9:1:19-02 .9866-02 | 205:-0¢ .2054-01 .3123-01
| 6= h€® p=6 | 5447-02. .5447-02 .6002-02 | .i358-0: .1370-01 .2043-01
5=h® p=3 E 2874-02  2874-02 - 3936-02 | 76i0-02 7816-02 .1823-01
! J

Table 2. Absolute and relative consistency errors for second order cutof,

h =005, §=h.

1 L t=0 10 20 L t=0 0 20
! i
{ | t
E, | 40502 20502 <¢20-02 E,  220-0: 223-0: 319-01
i . f
|
E, | | E,
4! 276-01 276-01 .287-01 | ——=— ' 482-0: .286-01 .697-01
l REN
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Table 3-a. Smoothing error £5

) p=4 p=6 p=8

02 | .1414 2801 -01 .1406 -01
0.14 | .8345-01 .9099-02 .2977 -02
0.10 | 4586-01 .2636-02 5093 -03
0.07 | 2411 -01 .7122-03 - .7642-04

0:05 | .1237-01 .1853-03 .1059-04

Table 3-b. Order of accuracy of the approximation to the vorticity « by 26

O
3
I
™

p=6 p=8

02 | 152 B83¢ 448
0.14 | 1.73 357 509
lo0 1.85 378 547

0.07. 192 388 570
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Table 4. Consistency error compared to its smoothing and discretization

_15-

components, h =0.05, §=h%  p=4

E, ES EP |

- ° °

t=0 | .9386-02 9385-02 .5462-05,
{210 | 9398-02 938502 141603
t=20 | 1420-01 9385-02 9995 -02.
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Figure captions.

Figure la Consistency errors E, and £, p =4, 0.05<h <02, 6=h'%

Figure 1b Consistency error £, and £, p =6, 0.05<h=<0.2, §=h%.

Figure 2a  Rate of convergence for the velocity aﬁd the vorticity approxima&
tions, p =4, 0.05<h<0.2, 6=h%

Figure 2b- Rate of convergence for the velocity and the vorticity approxima-
tions, p =6, 0.05<h<0.2, 6=h"%

Figure 3a Consistency errors £, and £, p =4, h=0.1,6=h9, 0.75=¢<0.95.

Figure 3b Consiétency errors £, and £, p=4, h=.05,6=h?, 0.75<¢g<0.95.

Figure 4a Discretization error £2 , p=2, 0.05<h<0.2, §=h "%,

Figure 45 Discretization error E2, p =2, 0.05<h<0.2, 6=h%,

3
H
1LY
Q
(@]
V)]
IA
ol
A
(@]
(8]
O
It
>
&

Figure 4c  Discretization error £Z,
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Figure 4d Discretization error £2, p =2,
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Figure ib. Consistency errors for the velocity and the vorticity, p =86,

0.05<h<0.2, §=h"9.
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0.05<h<0.2, §=h%.
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