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Estimation of Host Rock Thermal Conductivities Using the Temperature Data From 
the Drift Scale Test at Yucca Mountain, Nevada 
 
S. Mukhopadhyay and Y. W. Tsang 
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California  
 
Abstract 
 
A large volume of temperature data has been collected from a very large, underground 
heater test, the Drift Scale Test (DST) at Yucca Mountain, Nevada. The DST was 
designed to obtain thermal, hydrological, mechanical, and chemical (THMC) data in the 
unsaturated fractured rock of Yucca Mountain. Sophisticated numerical models have 
been developed to analyze the collected THMC data. In these analyses, thermal 
conductivities measured from core samples have been used as input parameters to the 
model. However, it was not known whether these core measurements represented the true 
field-scale thermal conductivity of the host rock. Realizing these difficulties, elaborate, 
computationally intensive geostatistical simulations have also been performed to obtain 
field-scale thermal conductivity of the host rock from the core measurements. In this 
paper, we use the temperature data from the DST as the input (instead of the measured 
core-scale thermal conductivity values) to develop an estimate of the field-scale thermal 
conductivity values. Assuming a conductive thermal regime, we develop an analytical 
solution for the temperature rise in the host rock of the DST; and using a nonlinear fitting 
routine, we obtain a best-fit estimate of field-scale thermal conductivity for the DST host 
rock. The temperature data collected from the DST shows clear evidence of two distinct 
thermal regimes: a zone below boiling (wet) and a zone above boiling (dry). We obtain 
estimates of thermal conductivity for both the wet and dry zones. We also analyze the 
sensitivity of these estimates to the input heating power of the DST.  
 
Gap numbers: 1829 Groundwater hydrology; 1832 Groundwater transport; 1875 
Unsaturated zone 
 
1. Introduction 
 
The Drift Scale Test (DST), located in the Topopah Spring middle nonlithophysal 
(Tptpmn) stratigraphic unit of Yucca Mountain, Nevada, is the largest ever in situ heater 
test conducted in fractured welded tuff. The DST was designed to investigate the coupled 
thermal-hydrological-mechanical-chemical (THMC) changes in the host rock caused by 
long-term heating. Data collected from the DST are assisting the scientists and engineers 
to develop an understanding of the THMC changes likely to be encountered in the host 
rock around the high-level radioactive waste repository at Yucca Mountain. A more 
detailed discussion about the DST and analyses of the thermal-hydrological (TH) changes 
arising out of the DST can be found in Birkholzer and Tsang [2000] and Mukhopadhyay 
and Tsang [2003] and references therein. 
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In the DST, heating was continuously provided by electrical heaters for slightly more 
than four years. During this heating phase, a substantial volume (more than 100,000 m3) 
of rock experienced a significant increase in temperature, along with associated THMC 
changes. An elaborate active and passive data collection system allowed recording of 
these THMC changes (including temperature rise) in the rock. The objective of this paper 
is to utilize the temperature data from the DST for estimating the thermal conductivities 
of the host rock. Given the large volume of the host rock heated during the DST, it is 
reasonable to expect that thermal conductivities estimated in such a manner would reflect 
field-scale thermal conductivities of the DST host rock. These estimated field-scale 
thermal properties are thus expected to be more useful in predicting the long-term THMC 
conditions in the vicinity of the repository than laboratory measurements. 

The fractured welded tuff surrounding the DST has an ambient, preheating matrix water 
saturation of approximately 90% [Tsang et al., 1999]. In other words, the rock matrix is 
considerably “wet” under ambient conditions. During the early phases of heating in the 
DST, heat transfer occurred through this wet rock. With continued heating, as the 
temperature approached boiling near the source of heat, some of this pore water was 
converted to vapor, which then moved away from the source of heating and condensed in 
the cooler parts of the rock. The condensate above the heat source thereafter started 
flowing back towards it under gravity drainage. This countercurrent flow of vapor and 
condensate gave rise to coupling of thermal and hydrological processes and resulted in 
what could be called “heat-pipe” signatures, a flat zone in a temperature vs. time plot. 
The temperature data collected from the DST showed ample evidence of these heat-pipe 
signatures [Birkholzer and Tsang, 2000; Mukhopadhyay and Tsang, 2003]. With further 
heating and boiling of pore water, a “dryout” zone was formed in the host rock in the 
immediate vicinity of the heat source.  

In the later stages of heating, therefore, heat transfer occurred in three distinct regimes. In 
the vicinity of the HD and the wing heaters, heat transfer occurred through the dry rock. 
At the same time, far away from the heat sources, heat transfer was still happening on 
account of the wet rock. In between these two regimes, was a two-phase regime, where 
most of the boiling was taking place. These three regimes are clearly visible in the DST 
temperature data discuss later (Section 3). Although the transformation from the wet to 
the dry rock scenario is a dynamic process, through careful analysis of the temperature 
data, it is possible to estimate wet and dry thermal conductivities of the rock. Because the 
host rock, after emplacement of radioactive wastes, is expected to experience similar 
“wet” and “dry” conditions, it may be useful to estimate these wet and dry thermal 
conductivities from actual temperature changes in the rock.  

It needs to be emphasized that overall temperature rise in the host rock of the DST is 
actually the outcome of coupling between thermal and hydrological processes. These 
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processes include heat conduction through the rock, fluid migration (movement of water 
and vapor as described above), phase changes, radiative heat transport, and natural 
convection. Of these processes, heat conduction is considered to be one of the dominant 
transport mechanisms and is essentially controlled by the thermal conductivity (k) of the 
surrounding rock. In a conductive heat-transfer regime, in addition to k, another 
parameter plays a significant role in determining the transient temperature profile in the 
rock. This is the thermal diffusivity (α) of the rock.  

Sophisticated numerical models have been developed to analyze the temperature data 
from the DST [Birkholzer and Tsang, 2000; Civilian Radioactive Waste Management 
Systems, CRWMS, 2000; Mukhopadhyay and Tsang, 2003; Birkholzer et al., 2003, and 
references therein]. For these numerical models, representative values of k and α of the 
host rock are provided as input. These input parameters have their origin in laboratory 
measurements of thermal properties of cores collected from various boreholes near the 
location of the DST (Brodsky et al., 1997). The measured thermal conductivity values 
(Brodsky et al., 1997) have a wide range and spatial variability. Note also that reliable 
measured thermal conductivity data are limited. Under these constraints, the estimation of 
representative host rock k and α values is difficult.  

Ramsey et al. (2002) recognized these difficulties in determining a mean thermal 
conductivity value. In response, they started with a three-dimensional cubic model (Hsu 
et al., 1995) for thermal conductivity of a porous medium. In this model, overall thermal 
conductivity is a function of the porosity, the thermal conductivity of the fluid in the pore 
space, the thermal conductivity of the solid, and the geometry and connectivity of the 
solid. Ramsey et al. (2002) treated the thermal conductivity of the fluid as constant but 
the remaining model parameters were treated as spatially uncertain random functions. 
They then employed sequential Gaussian simulation to develop 50 equally likely 
realizations of those uncertain parameters. Thermal conductivity measurments of 
Brodsky et al. (1997) and petrophysical measurements (for porosity) were used to 
condition these uncertain properties. Through these elaborate geostatistical simulations, 
they generated the spatial distribution of thermal conductivity values for various 
stratigraphic layers and computed the mean and standard deviation of thermal 
conductivity (both wet and dry) for each of those layers. These may be more reliable 
estimates of mean thermal conductivity values compared to the raw core measurement 
data. However, computational burden of the procedures adopted by Ramsey et al. (2002) 
may be too intensive.  

In this paper, we propose to estimate thermal conductivity using the temperature data 
from the DST. One way of obtaining the thermal properties of the host rock from its 
temperature response is to employ an elaborate inverse modeling approach, using 
software such as the ITOUGH2 [Finsterle, 1999]. Such an ITOUGH2-based inverse 
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modeling involves many forward simulations of the complex TH processes associated 
with the DST. Given the complex geometry of the DST and the complexities of the 
physical processes, a single forward TH simulation of the DST requires close to four 
weeks’ computation time on some of the fastest machines currently available. A full 
inverse modeling (which necessitates several such forward TH simulations) of the 
temperature data from the DST is computationally prohibitive. In the absence of 
complete inverse modeling, one may also adopt an approach based on selective inverse 
modeling of the temperature data (such as fitting temperature data from a two-
dimensional slice of the three-dimensional model) to obtain an estimate of the thermal 
properties. However, such selective analysis is always open to debate regarding the 
validity of the estimated properties. 

Here, we present an efficient methodology to obtain a reliable field-scale estimate of 
thermal conductivities. The approach is based on an analytical solution for the spatial and 
temporal evolution of temperature rise caused by heating at the DST. To obtain the 
analytical solution, we assume that the temperature rise in the rock happens entirely due 
to heat conduction. It is also assumed that the rock is homogeneous and isotropic. We 
also need to assume that no pore-water phase change takes place during heating. In the 
actual test, though, some part of the input energy is used in providing latent heat of 
vaporization for the pore water. Previous modeling experience [Mukhopadhyay and 
Tsang, 2003] with the DST has demonstrated that about 74–81% (depending upon time) 
of the input heat energy goes into heating the rock. Since the analytical solution is based 
upon a ‘no-phase-change’ assumption, we will use only the portion of the input energy 
that was used for heating rock as heat input to the analytical model. Finally, it is also 
assumed that the thermal properties are independent of temperature. In other words, the 
estimates of the thermal conductivities from the model should be construed as averaged 
over the appropriate temperature range. Comparing the analytical solution with the 
measured temperature rise at any given location and at any given time, we obtain the 
thermal conductivities using a nonlinear parameter estimation technique based on Gauss-
Newton approach (see Section 4).  

The rest of the paper is organized as follows. We begin with a brief description of the 
DST in Section 2. In Section 3, we present some representative temperature data 
collected from the DST and illustrate the various thermal regimes encountered in the 
DST during heating. In Section 4, we provide the analytical solution for spatial and 
temporal evolution of temperature rise in the host rock surrounding the host rock. We 
also discuss the nonlinear fitting techniques used in this section. Section 5 discusses the 
findings from our analysis of the temperature data. Section 6 provides a summary of 
methods and results. 
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2. Description of the DST 
 
The DST consists of a 47.5 m long, 5 m diameter Heated Drift (HD). The HD is 
connected to the outside world through a bulkhead, which is used as the origin of the 
coordinate system in our calculations. Heating in the DST started on December 3, 1997, 
and ended on January 14, 2002. Heat was provided by 9 canister heaters located on the 
floor of the HD. Additional heating was provided by 50 wing heaters, placed orthogonal 
to the axis of the HD, with 25 of them on each side of the HD. Each of the wing heaters 
has two parts, inner wing heater and outer wing heater. The inner wing heater starts at 
1.67 m from the Heated Drift and is 4.44 m long. There is a gap of 0.66 m between the 
inner and outer wing heater. The outer wing heater is also 4.44 m long. Temperature data 
from the DST were continuously collected by approximately 1,700 resistance 
temperature devices (RTD) placed in 26 boreholes (Borehole 133–134, 137–144, 158–
165, 169–175). Each of these boreholes is collared at the wall of the Heated Drift and is 
approximately 20 m in length. They are oriented either vertically, horizontally, or at an 
angle of 45o with the HD. Figure 1 shows a schematic picture of the HD, the bulkhead, 
the wing heaters, and the locations of the temperature data collection boreholes. A more 
detailed description of the DST and the data collection boreholes can be found in 
CRWMS [1998]. 

The total design power of the nine canister heaters was 67 kW; and that of the 50 wing 
heaters was 143 kW [CRWMS, 1998]. However, the actual heat output from these heaters 
varied somewhat during the course of the test (which included a few power outages). 
Figure 2 shows the actual total heat output from these heaters as a function of time. 
Starting at 27 months of heating (March 2000), power was reduced, in a series of steps, to 
keep the temperature at the wall of the HD at a targeted maximum of 200oC. In the 
analysis that follows, we will use an average of the actual heat output from the heaters as 
the total power available for heating. Table 1 shows the calculated average of the actual 
heating power at different times during heating. These are the powers that have been used 
in our calculations. For example, for obtaining results at 36 months of heating, 
computations were performed using the average total heating power up to 36 months. 

 

3. Measured Temperature Data from the DST 
 

Figure 3a shows measured temperature data as a function of radial distance from the DST 
at 2 months of heating in Boreholes 137–144 (see Figure 1). Boreholes 137–144 are 
located about 11.9 m from the bulkhead [CRWMS, 1998]. The drift wall is at about 95oC 
after 2 months of heating. Temperatures then fall rapidly with distance, except for 
Boreholes 139 and 143. These two boreholes are located parallel to the wing heater (see 
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Figure 1). Because of the gap between the HD and the inner wing heater, temperatures in 
this zone decline with distance in these two boreholes. Afterwards, temperatures begin to 
rise with distance because of the additional heat coming from the inner wing heater. At 
the end of the inner wing heater, temperatures drop again because of the gap between the 
inner and outer wing heater. Temperatures thereafter rise again with distance along the 
length of the outer wing heater. Beyond the end of the outer wing heater, temperatures 
decline with distance, as in other boreholes. 

Figure 3b shows measured temperatures in the same borehole group after 48 months of 
heating, i.e., very close to the end of the heating phase (the total heating phase was 
approximately 49.5 months). The temperature profiles are similar to those described in 
Figure 3a, except that the temperatures are considerably higher because of the continued 
heating. Additionally, three distinct zones are now observable in the temperature profile. 
Considering Boreholes 137–138, 140–142, and 144, there is a zone of an almost linear 
profile with temperatures above 100oC. This zone extends 5–8 m from the wall of the 
HD. At the end of the first zone, there is a flat profile with temperatures around 96-97oC, 
indicating the presence of TH coupling (heat-pipe signatures).   At the end of the flat 
profile, there is a third zone with (again) an almost linear decline in temperature. The 
slope of the temperature profile line in this zone is clearly different (larger) from the one 
for the first zone. This change in slope happens because heat transfer occurs through dry 
rock in the first zone, whereas wet rock governs heat transfer in the third zone.  

We will shortly show that temperature data from these two zones can be used to obtain 
dry and wet thermal properties of the rock, respectively. The same patterns are also 
observed for Boreholes 139 and 143 if we consider the profile from the end of the wing 
heaters instead of the HD. Notice also that there are some differences in the temperature 
profiles between even symmetrically located boreholes; such differences may have 
resulted from local heterogeneities. Temperature profile data collected from other 
boreholes are similar to those shown in Figures 3a and 3b, because of the symmetry of 
their locations.  

 

4. Methodology 

Figure 4 presents a schematic representation of the conceptual model developed in this 
section. Figure 4 also shows the coordinate system for the mathematical derivations. The 
temperature rise ∆T (x, y, z, t) at any sensor location (x, y, z) inside the rock and at any 
time t can be expressed as 

),,,(),,,(),,,( tzyxTtzyxTtzyxT WH ∆+∆=∆ ,                           (1) 
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where ∆TH  and ∆TW are the temperature rise due to heat emanating from the HD and the 
wing heaters, respectively. To obtain an expression for ∆TH, we can show that the 
temperature rise at location (x, y, z) inside a solid, owing to an instantaneous point source 
of QρC units of heat [Carslaw and Jaeger, 1959, pp. 256] at location (xo, yo, zo), is 
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In Equation (3), erf (η) is the error function  
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where )( 22 zxr +=  and I0 (η) is the modified Bessel function of the first kind with 
order 0 and argument η. In deriving Equation (5), the following property of the modified 
Bessel function has been utilized [Abramowitz and Stegun, 1964] 
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Since for the DST, the source of heat is a continuous one, we need to evaluate one more 
integral [Carslaw and Jaeger, 1959, pp. 261] to obtain the final expression 
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In Equation (7), JH is the average of the total power provided by the canister heaters. The 
integral in Equation (7) obviously needs to be evaluated numerically.  

 
Similarly, the contribution to the total temperature rise from the wing heaters (∆TW) can 
be obtained. It is useful to consider the wing heaters as line sources of heat. Observe that 
the wing heaters are located parallel to the x-axis at various y locations. With Equation 
(2) as the starting point again, we can write the temperature rise resulting from the first 
pair of wing heaters as  
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Since there are 25 pairs of such line sources at various y-locations, the total temperature 
rise due to these line sources is 
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(9) 
where M is the total pairs (= 25) of wing heaters and y(m) is the distance of the m-th wing 
heater from the bulkhead along the y-axis. Recognizing that the heat source is continuous, 
we need to rewrite Equation (9) as: 
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After a change in variable, Equation 10 can also be written as: 
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where JW is the average of the total power output from the wing heaters and L is the 
length of a wing heater. Similar to Equation (7), the integral in Equation (11) can be 
evaluated numerically. Combining Equations (1), (7), and (11), we finally obtain an 
expression for temperature rise at any location (x, y, z):  
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Equation 12 is the working equation for the remainder of the analysis in this paper. 

From Equation 12, it is clear that the temperature rise at any location at a specified time 
has a nonlinear dependency on k and α. To obtain k and α from the temperature data at 
the DST, we adopt the following approach. We first take the temperature data at a 
particular time. We then subtract the preheat temperature data from those temperature 
data to obtain the temperature rise during a particular interval of time. Equation (12) was 
then fitted to these temperature-rise data using a nonlinear fitting routine with k and α as 
the fitting parameters. The nonlinear fitting routine uses the Gauss-Newton [Gauss, 1821] 
algorithm with Levenberg-Marquardt [Levenberg, 1944; Marquardt, 1963] modifications 
for global convergence. That is, it finds the parameter values for k and α that minimize 
the sum of the squared differences between the observed temperature rise data at any 
sensor location, and those calculated using Equation (12) at the same location at any 
specified time. With the host rock in the DST displaying two distinct states (not 
considering the two-phase zone), namely the wet and dry states, we will now apply our 
methodology to estimate k and α for both these states. 

5. Results 

The boiling temperature of the pore water is estimated to be 96–97oC under ambient 
pressure conditions in the subsurface of Yucca Mountain. This is further confirmed by 
the existence of the extended heat-pipe signature close to that temperature in the DST 
data (see, as an example, Figure 3b). For the purposes of our analysis, we will assume 
that the rock at any location is dry if the temperature is equal to or more than 100oC. In 
other words, it is assumed that all the water from the pore spaces has been boiled away by 
the time the temperature exceeds 100oC. On the other hand, we will assume a rock to be 
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in a wet condition if the temperature is equal to or below 95oC. This last assumption 
implies that large-scale boiling at the DST begins only above that temperature.  
 
The parameters that have a considerable impact on temperature rise are the heating 
powers, JH and JW. That the DST was a field-scale open heater test has its inherent 
weaknesses, including the unmeasured heat losses from the test. Still, even in the absence 
of any heat loss, it is not possible to know precisely how much of the total input power 
was utilized in heating the rock and how much went into providing latent heat of phase 
change. Based on elaborate TH simulations of the DST using the TOUGH2 [Pruess, 
1991] integral, finite-difference simulator, Mukhopadhyay and Tsang [2003] showed that 
about 74–81% of the total input power went into heating rock during first 27 months of 
heating. In Table 2, we show the estimated power utilized in heating rock at the DST 
through the entire heating phase. Table 2 is a continuation of the results presented in 
Mukhopadhyay and Tsang [2003]. In the absence of any concrete data, we will use these 
numbers as the total heat input in the system. In the following two subsections, we 
present our estimates of the dry and wet thermal conductivities, based on the total input 
power in Table 2. In Section 5.3, we will present results from a sensitivity analysis with 
input power as the variable. 
 
5.1 Dry Thermal Properties 
 
The boundaries of the dry and wet zones in the DST change dynamically with the 
progress of heating. At initial phases of heating, there is no dry zone. As heating 
continues, a small dry zone is formed near the HD and along the wing heaters. With 
further heating, the dry zone continues to expand, pushing the wet zone farther and 
farther away from the heat source. As an example, see the radial location of the boundary 
of the dry zone as recorded by the sensors in Boreholes 137, 138, and 139 at various 
times (Table 3). These three boreholes are representative samples of the data in the DST 
host rock, with Borehole 137 oriented vertically upwards, Borehole 138 oriented upwards 
at an angle of 45o with the HD, and Borehole 139 oriented horizontally. In Table 3, the 
distances are listed as those from the center of the HD. For example, at 12 months of 
heating, the boundary of the dry zone is located at 3.81 m in Borehole 137, 4.52 m in 
Borehole 138, and 13.4 m in Borehole 139 as measured from the center of the HD. This 
implies that, at 12 months of heating, any location closer than 3.81 m along Borehole 137 
is recording a temperature of more than 100oC. By 24 months of heating, the dryout zone 
has expanded to 5.3 m in Borehole 137, 6.61 m in Borehole 138, and 14.3 m in Borehole 
139. Towards the end of the heating phase at the DST (at 48 months), the dryout zone is 
located at 7.4 m, 9.02 m, and 15.5 m in Boreholes 137, 138, 139, respectively. 
 
Because of this dynamically changing location of the dryout zone boundary, the 
analytical solution in Equation (12) has to be applied over different spatial extents at 
different times in order to obtain estimates of the dry thermal conductivities. For 
example, at 24 months of heating, we need to consider temperature data from sensors 
located at 5.3 m or closer from the HD in Borehole 137. For estimating the thermal 
properties of the dry state, we consider temperature data from the DST at 30, 36, 42 and 
48 months of heating. The extent of the dryout zone was somewhat limited earlier than 30 
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months.  Temperature data earlier than 30 months were thus not considered for the 
estimation of dry thermal properties. In Figures 5a and 5b, we show the measured 
temperatures in Boreholes 137, 138, and 139, along with the ‘best fit’ estimates of the 
calculated temperatures, at 36 and 48 months of heating. In Table 4, we provide the 
parameter values for k and α in the dry rock that produce the best fit with measured 
temperatures at various times. As a measure of goodness of fit, we provide the 95% 
confidence interval for both those parameters. It is seen that the estimated dry thermal 
conductivity value (1.43–1.49 W/m-K) is consistent with the estimation (mean of 1.45 
W/m-K for Tptpmn) of Ramsey et al. (2002) through elaborate geostatistical simulation. 
This in turn validates our approach of estimating thermal conductivity from temperature 
data. In addition, our estimate was obtained with much less computational effort 
compared to that of Ramsey et al. (2002). Our estimate of the dry thermal conductivity is, 
however, somewhat different from that used in earlier TH modeling of the DST 
(Birkholzer and Tsang, 2000; Mukhopadhyay and Tsang, 2003), which was 1.67 W/m-K. 
This variance indicates the difference between a spot estimate (based on a core sample) 
from a certain location and a mean for the entire location. 
  
5.2  Wet Thermal Properties 
 
Before start of heating, the entire domain of the host rock can be considered as wet rock. 
With constant heating, as the dryout zone expands with continuous boiling of pore water, 
the wet zone is pushed away from the heat source. The inner boundary of the wet zone, 
located at the HD at the beginning of heating, moves away from the HD (the outer 
boundary of the wet zone remains at infinity, or at the end of the instrumentation 
boreholes for our purposes). In Table 5, we show the location of the inner boundary of 
the wet zone at various times. Recollect that we have defined the wet zone as any sensor 
location recording 95oC or lower. The inner boundary of the wet zone is thus the contour 
of a 95oC temperature. For example, in Borehole 137, the inner boundary of the wet zone 
can be found at a radial location of 7.4 m and 10.39 m at 24 months and 48 months of 
heating, respectively. At those same times, the 95oC contours were located at 15.79 m 
and 17.59 m, respectively, in Borehole 139. The point we are trying to establish is that 
the extent of the wet zone is different in different boreholes at diferent times.  
 
In Figure 6a, we show measured temperature increases in Boreholes 137–139 within the 
wet zone, i.e., wherever temperature was below 95oC at 12 months of heating. In the 
same figure, we also show the computed temperature increases in those boreholes using 
the best-fit parameters for the wet zone. Figure 6b is similar to Figure 6a, except that the 
results are shown at 24 months of heating. In Table 6, the estimated parameter values are 
tabulated along with 95% confidence intervals for those parameters at various times. 
Observe that the estimated wet thermal conductivity is in the range 2.07–2.15 (W/m-K), 
except at six months when the estimated wet thermal conductivity is about 1.95 (W/m-
K). Barring that anomaly, it appears that a reasonable estimate of wet thermal 
conductivity is 2.1 (W/m-K). This is again similar to the mean wet thermal conductivity 
value of 2.13 W/m-K for Tptpmn reported by Ramsey et al. (2002). This estimate is 
slightly different from the wet thermal conductivity of 2.0 W/m-K used in earlier 
analyses (Birkholzer and Tsang, 2000; Mukhopadhyay and Tsang, 2003).  
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5.3  Sensitivity Analysis 
 
Temperature rise in the host rock of the DST is dependent upon the total heat utilized for 
heating the rock. Since there is some uncertainty exists (primarily due to heat losses) in 
determining what fraction of the input heat is actually used for heating the rock, 
uncertainties exist in the estimated (dry and wet) thermal conductivity values. In this 
section, we present some results to demonstrate the sensitivity of the estimated thermal 
conductivity values to uncertainty in the heat used for heating the rock. 
 
Based on TOUGH2 simulation estimates (Table 2), 77.6% of the input heat was used in 
heating rock at 6 months of heating. It gradually decreased to 73.6% at 48 months of 
heating (close to the end of the heating phase). The gradual decrease in the fraction of 
input heat going into heating rock results from a larger fraction of heat being used in 
boiling water with the progress of heating. When very little boiling is taking place, say, 
during the first two to three months of heating, an even higher fraction (~81%) of input 
heat went into heating rock (Mukhopadhyay and Tsang, 2003). Thus, the maximum 
fraction (81%) of input heat used for heating rock is about 10% higher than the minimum 
fraction (73.6% at 48 months) of heat used for that purpose. This represents an 
uncertainty range for the total heat to be used in calculating the thermal conductivities. It 
was thus decided to a perform sensitivity analysis with heat input into our model as ±5% 
of those listed in Table 2 at any given time. 
 
Table 7 shows estimated best-fit dry thermal conductivity values at various times with 
different heat inputs. The second column in Table 7 shows the best-fit dry thermal 
conductivity with 95% of the heat shown in Table 2, whereas the fourth column shows 
the same with 105% of the heat shown in Table 2. The third column is reproduced from 
Table 4 for easy comparison. Similarly, Table 8 shows the best-fit wet thermal 
conductivities at various times. From Tables 7 and 8, it is evident that reducing the heat 
input by 5% results in almost a 5% reduction in the estimated thermal conductivity 
values. Similarly, increasing the heat input by 5% results in a similar increase in the 
estimated thermal conductivity values. This almost linear dependency is expected (see  
Equation [12]). Also, changing the heat input does not impact the estimate of thermal 
diffusivity (this observation is also borne out of Equation [12]). The estimated dry and 
thermal conductivity values (after varying the heat input) are not dissimilar to the 95% 
confidence interval around the best-fit obtained using the heat listed in Table 2 as input to 
our model. It thus can be concluded that, even after assuming a 10% uncertainty in 
estimating the heat used for raising the temperature in the DST host rock, the temperature 
data produce a consistent estimate of thermal conductivity. Since these estimates have 
been obtained using actual temperature data from the DST over a wide spatial and 
temporal range, they possibly represent the true mean thermal conductivities of the host 
rock (as opposed to spot observation through core measurements). The validity of the 
present estimates is further confirmed by the observation of Ramsey et al. (2002) through 
elaborate geostatistical simulations. However, the simplicity of the underlying concept 
presented in this paper ensures that no elaborate geostatistical simulations are needed to 
obtain the same results. 
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6. Summary 
 
The large volume of temperature data collected from the DST provides an opportunity to 
estimate the field-scale thermal conductivity of the host rock. A field-scale estimate of 
the thermal conductivity is expected to be more reliable than that from core 
measurements in predicting the TH conditions likely to evolve in the host rock of the 
repository. In previous modeling studies of the TH conditions resulting from heating in 
the DST, thermal conductivity values from core measurements have been used as input. 
While these measured thermal conductivity values were adequate as starting points for 
modeling activities, they did not represent the true large-scale thermal conductivities of 
the host rock. Ramsey et al. (2002) realized this problem and performed elaborate 
geostatistical simulations to obtain an estimate of field-scale thermal conductivity of the 
host rock. However, these geostatistical simulations are computationally very intensive. 
Also, these simulations use the core measurements as input for obtaining field-scale 
thermal conductivity. Thus, their results are not independent estimates of the field-scale 
thermal conductivities. 
 
In this paper, we provide an efficient methodology for estimating the field-scale thermal 
conductivities of the host rock. This proposed method requires no elaborate statistical 
simulations. Additionally, this method derives the thermal conductivities from actual 
temperature data collected over large spatial and temporal scale and does not use the core 
measurements as input. As a result, these newly estimated thermal conductivity values 
can be used as independent verification of the previous estimates. 
 
The thermal regime in the DST host rock can be described in terms of “wet” and “dry” 
zones. At the beginning of heating, the entire host rock was about 90% saturated with 
water and could be called “wet”. With progress of heating, as water started boiling, a 
dryout zone appeared, and expanded with further heating. At the end of heating, although 
the wet zone was still present, there was a considerable dryout zone near the HD. 
Temperature data from the DST clearly established these wet and dry zones (including a 
two-phase zone as well). Temperature data also established the fact that thermal 
conductivities were different in the dry and wet zones. 
 
We have developed an analytical solution for transient temperature rise in the DST host 
rock. This analytical solution has two components: rise in temperature caused by heat 
emanating from the canister heaters and that caused by heat coming from the wing 
heaters. This analytical solution was then separately fitted to measured temperatures in 
the dry and wet zones at various times of data collection. We report the best-fit estimates 
from the exercise as the field-scale thermal conductivity for the dry and wet rock. We 
also provide the 95% confidence level for our estimates. As expected, our field-scale 
estimates are different from raw core measurement values (Brodsky et al., 1997) and are 
more consistent with the findings of Ramsey et al. (2002). However, our estimates were 
obtained with much less computational effort. 
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A likely source of uncertainty in our estimates is the amount of heat actually used in 
heating the rock. Detailed modeling of the TH conditions in the DST host rock has 
indicated that at least 73.6% (and at a maximum 81%) of the heat has been utilized in 
heating the rock. As a sensitivity analysis, we obtained the range of thermal condutivity 
(both dry and wet) that would result from a 10% uncertainty in input heat. The range is 
within the 95% confidence limit of the best estimates. 
 
Nomenclature 
 
C Specific heat capacity, J/kg-K. 
H Length of the HD, m. 
JH Average of total power from the HD, W. 
JW Average of total power from the wing heaters, W. 
k Thermal conductivity, W/m-K. 
kd Dry thermal conductivity, W/m-K. 
kw Wet thermal conductivity, W/m-K. 
l x-coordinate of the end of the wing heater, m. 
lo x-coordinate of the start of the wing heater, m. 
L Length of a wing heater, m. 
M Pairs of wing heaters. 
Q Strength of point source of heat, m3-K. 
r Radial location, m. 
ro Radius of the HD, m. 
∆T Total temperature rise, oC. 
∆TH Temperature rise due to heat coming from the HD, oC. 
∆TW Temperature rise due to heat coming from the wing heaters, oC. 
t time, s. 
to time, s. 
x x-coordinate, m 
y y-coordinate, m 
z z-coordinate, m 
xo x-coordinate of point source of heat, m. 
yo y-coordinate of point source of heat, m. 
zo z-coordinate of point source of heat, m. 
α Thermal diffusivity, m2/s. 
ρ Density, kg/m3 
 
 
    Acknowledgments. We thank the anonymous reviewers of the WRR for their 
careful and critical review of the manuscript. We thank Yu-Shu Yu, Nicolas Spycher, and 
Dan Hawkes of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley 
Lab) for their constructive review of the draft manuscript. This work was supported by 
the Director, Office of Civilian Radioactive Waste Management, U.S. Department of 
Energy, through Memorandum Purchase Order EA9013MC5X between Bechtel SAIC 
Company, LLC, and Berkeley Lab. The support is provided to Berkeley Lab through the 
U.S. Department of Energy Contract No. DE-AC03-76SF00098. 



 15

 
 
References 
 
Abramowitz, M. and Stegun, I. A. (eds.), Handbook of Mathematical Functions, National 

Bureau of Standards, Washington, D.C., 1964. 
 
Bandurraga, T. M. and Bodvarsson, G. S., Calibrating hydrogeologic properties for the 3-

D site scale unsaturated model of Yucca Mountain, Nevada, Journal of Contaminant 
Hydrology, 38 (1-3), 25-46, 1999. 

 
Birkholzer, J. T. and Tsang, Y. W., Pretest analysis of the thermal-hydrological 

conditions of the ESF Drift Scale Test, Rep. LBNL-41044, Lawrence Berkeley National 
Laboratory, Berkeley, CA, 1997. 

 
Birkholzer, J.T. and Tsang, Y.W., Modeling the thermal-hydrologic processes in a large-

scale underground heater test in partially saturated fractured tuff, Water Resources 
Research, 36 (6), 1431-1447, 2000. 

 
Birkholzer, J.T., Mukhopadhayay, S., and Tsang, Y. W., Drift-Scale Coupled Processes 

(DST and TH Seepage) Models, MDL-NBS-HS-000015 REV00, BSC, Las Vegas, NV, 
2003. 

 
Brodsky, N. S., Riggins, M., Connolly, J., and Ricci, P., Thermal expansion, thermal 

conductivity, and heat capacity measurements for boreholes UE25 NRG-4, UE25 NRG-
5, USW NRG-6, and USW NRG-7/7A, SAND95-1955 UC-814, Sandia National 
Laboratory, Albuquerque, NM, 1997. 

 
Carslaw, H. S. and Jaeger, J. C., Conduction of Heat in Solids, Oxford University Press, 

New York, NY, 1959. 
 
CRWMS, Drift Scale Test As-Built Report, BAB000000-01717-5700-00003 REV 01, 

CRWMS M&O, Las Vegas, NV, 1998. 
 
CRWMS, Thermal Tests Thermal-Hydrological Analyses/Model Report, ANL-NBS-TH-

000001 REV 00, CRWMS M&O, Las Vegas, NV, 2000. 
 
Finsterle, S., ITOUGH2 User’s Guide, LBNL-40040 UC 400, Lawrence Berkeley 

National Laboratory, Berkeley, CA, 1999. 
 
Gauss, C. F., Theoria Combinationis Observationum Erroribus Minimis Obnoxiae, pars 

prior, 1821, translated by G. W. Stewart, Theory of the Combination of Observations 
Least Subject to Errors, Society of Industrial and Applied Mathematics, Philadelphia, 
PA, 1995. 

 



 16

Hsu, C. T., Cheng, P., and Wong, K. W., A lumped-parameter model for stagnant thermal 
conductivity of spatially periodic porous media, Journal of Heat Transfer, 117 (2), 264-
269, 1995. 

 
Levenberg, K., A method for the solution of certain nonlinear problem in least squares, 

Quart. Appl. Math., 2, 164-168, 1944. 
 
Marquardt, D. W., An algorithm for least squares estimation of nonlinear parameters, 

SIAM J. Appl. Math., 11, 431-441, 1963. 
 
Mukhopadhyay, S. and Tsang, Y. W., Uncertainties in coupled thermal-hydrological 

processes associated with the Drift Scale Test at Yucca Mountain, Nevada, Journal of 
Contaminant Hydrology, 62-63, 595-612, 2003. 

 
Pruess, K., TOUGH2 User’s Guide, Technical Report LBL-20700, E. O. Lawrence 

Berkeley National Laboratory, Berkeley, CA, 1987. 
 
Ramsey, J., Bean, J., Lum, C., and Harding, E., Conductivity of the Potential Repository 

Horizon, MDL-NBS-GS-000005 REV00, BSC, Las Vegas, NV, 2003. 
 
Tsang, Y. W., Birkholzer, J. T., Freifeld, B., Peterson, J., Hu, M. Q., Sonnenthal, E., and 

Spycher, N., Yucca Mountain single heater test final report, Rep. LBNL-42537, 
Lawrence Berkeley National Laboratory, Berkeley, CA, 1999. 

 
 
 

S. Mukhopadhyay, Ernest Orlando Lawrence Berkeley National Laboratory, MS 90-
1116, 1 Cyclotron Road, Berkeley, CA 94720 (Smukhopadhyay@lbl.gov) 

Y.W. Tsang, Ernest Orlando Lawrence Berkeley National Laboratory, MS 90-1116, 1 
Cyclotron Road, Berkeley, CA 94720 (YTTsang@lbl.gov). 

 
Table Captions 
 
Table 1.  Average input power at the Drift Scale Test at various times 
 
Table 2. Estimated [Mukhopadhyay and Tsang, 2003] power for heating rock at 

various   times 
 
Table 3. Radial location of measured 100oC temperature contours in Boreholes 

137, 138, and 139 
 
Table 4. Estimated dry thermal properties of the fractured welded tuff of Tptpmn at 

Yucca Mountain, Nevada 
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Table 5. Radial location of measured 95oC temperature contours in Boreholes 137, 
138, and 139 

 
Table 6. Estimated wet thermal properties of the fractured welded tuff of Tptpmn at 

Yucca Mountain 
 
Table 7. Estimated dry thermal properties with 95%, 100%, and 105% of the input 

heat shown in Table 2 
 
Table 8. Estimated wet thermal properties with 95%, 100%, and 105% of the input 

heat shown in Table 2 
 
 
Figure Captions 
 
Figure 1. Schematic diagram of the HD, the wing heaters, and the RTD temperature 

holes in the DST 
 
Figure 2. History of total input power in the DST 
 
Figure 3a. Measured temperatures in Boreholes 137-144 at two months of heating 
 
Figure 3b. Measured temperatures in Boreholes 137-144 at 48 months of heating 
 
Figure 4. Schematic diagram of the coordinate system used in developing 

conceptual model of the DST 
 
Figure 5a. Measured and estimated temperature rise in the dry zone in Boreholes 

137-139 at 36 months of heating 
 
Figure 5b. Same as Figure 5a but at 48 months of heating 
 
Figure 6a. Measured and estimated temperature rise in the wet zone in Boreholes 

137-139 at 12 months of heating 
 
Figure 6b. Same as Figure 5a but at 24 months of heating  
 
 
 
 
 
 
Table 1 

Time 
(months) 

Average of Total 
Canister Heater 

Power 

Average of Total 
Wing Heater 

Power 

Average of Total 
Heating Power 
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(kW) (kW) (kW) 

6 51.67 134.70 186.37 

12 52.09 133.26 185.35 

18 52.07 132.15 184.22 

24 51.43 129.86 181.29 

30 50.96 128.65 179.61 

36 49.86 125.62 175.48 

42 48.76 122.36 171.12 

48 47.70 119.43 167.13 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2 

Time 
(months) 

Average of Total 
Heating Power  

(kW) 

Estimated Power for 
Heating Rock1  

(kW) 

% of Input Power in 
Heating Rock 

6 186.37 144.7 77.6 

12 185.35 139.0 75.0 

                                                           
1 From TOUGH2 simulations of the DST [Mukhopadhyay and Tsang, 2003] 
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18 184.22 137.8 74.8 

24 181.29 135.4 74.7 

30 179.61 133.3 74.2 

36 175.48 129.6 73.9 

42 171.12 126.5 73.9 

48 167.13 123.1 73.6 

 
 
Table 3 

Radial Distance of 100oC Contours from the Center of the HD (m) 
Time (months) 

Borehole 137 Borehole 138 Borehole 139 

6 2.91 3.32 12.2 

12 3.81 4.52 13.4 

18 4.71 6.32 14.0 

24 5.30 6.61 14.3 

30 5.90 7.82 14.9 

36 6.50 8.42 15.2 

42 7.10 8.72 15.2 

48 7.40 9.02 15.5 

 

 
 
Table 4 

Estimated Parameter Values for dry conditions 

Time 
(months) 

Dry Thermal Conductivity, kd 

(W/m-K) 

Thermal Diffusivity, α 

(m2/s) 
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 Best Fit 95% Confidence 
Interval 

Best Fit 95% Confidence Interval 

30 1.49 1.41-1.57 0.3609x10-6 0.3312x10-6—0.3944x10-6 

36 1.46 1.39-1.53 0.3717x10-6 0.3386x10-6—0.4067x10-6 

42 1.43 1.37-1.49 0.3907x10-6 0.3582x10-6—0.4232x10-6 

48 1.48 1.42-1.55 0.3883x10-6 0.3540x10-6—0.4226x10-6 

 
 
 
 
Table 5 

Radial Distance of 95oC Contours from the Center of the HD (m) 
Time (months) 

Borehole 137 Borehole 138 Borehole 139 

6 3.51 3.92 13.40 

12 4.71 5.41 14.60 

18 5.60 7.22 15.20 

24 7.40 9.01 15.79 

30 8.30 9.62 16.39 

36 8.90 10.83 16.99 

42 9.79 12.03 16.99 

48 10.39 12.34 17.59 

 
 
Table 6 

Estimated Parameter Values for wet conditions 

Thermal Conductivity, k 

(W/m-K) 

Thermal Diffusivity, α 

(m2/s) 

Time 
(months) 

Best Fit 95% Confidence 
Interval 

Best Fit 95% Confidence Interval 



 21

6 1.95 1.87-2.03 1.0137x10-6 0.9731x10-6—1.0543x10-6 

12 2.09 2.01-2.17 1.0803x10-6 0.9832x10-6—1.1775x10-6 

18 2.13 2.03-2.23 1.0382x10-6 0.9547x10-6—1.1212x10-6 

24 2.07 1.99-2.15 0.9754x10-6 0.9076x10-6—1.0431x10-6 

30 2.15 2.06-2.22 1.0457x10-6 0.9564x10-6—1.1350x10-6 

36 2.12 2.04-2.19 1.0567x10-6 0.9727x10-6—1.1408x10-6 

42 2.07 1.98-2.16 1.015x10-6 0.9479x10-6—1.0818x10-6 

48 2.08 2.00-2.14 1.0576x10-6 0.9652x10-6—1.1500x10-6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 7 
 

Best-fit Dry Thermal Conductivity (W/m-K) Time 
(months) 

0.95*Heat in Table 2 Heat in Table 2 1.05*Heat in Table 2 

30 1.43 1.49 1.57 

36 1.41 1.46 1.53 
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42 1.37 1.43 1.50 

48 1.42 1.48 1.55 

 
 
 

Table 8 
 

Best-fit Wet Thermal Conductivity (W/m-K) Time 
(months) 

0.95*Heat in Table 2 Heat in Table 2 1.05*Heat in Table 2 

6 1.87 1.95 2.05 

12 2.00 2.09 2.18 

18 2.03 2.13 2.22 

24 1.98 2.07 2.18 

30 2.04 2.15 2.24 

36 2.02 2.12 2.20 

42 1.99 2.07 2.16 

48 1.99 2.08 2.17 

 
 
 
 



 
 
 
 
 

Figure 1 
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Figure 3a 
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Figure 3b. 
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Figure 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5a 
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Figure 5b 
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Figure 6a 
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Figure 6b 
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