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One of the fundamental goals of research in modern genetics is to determine the genetic

basis for complex traits. One experimental approach to this problem is artificial selection, where

individual organisms are selected each generation for extreme values of the trait under study. In

these experiments, the investigator identifies putative trait loci based on genetic differentiation

in evolved populations. Recently, researchers have combined artificial selection with genome-

wide pooled massively parallel sequencing to identify quantitative trait loci. In this dissertation, I

present analysis and simulation methods applicable to pooled sequencing and artificial selection

experiments.

In Chapter 1, I provide some background on artificial selection, massively parallel sequenc-

ing, and the use of simulations in population genetics.

In Chapter 2, I present an expectation-maximization (EM) algorithm for estimating haplo-

type frequencies in a pooled sample directly from mapped sequence reads, in the case where the

possible haplotypes are known. This method is relevant to the analysis of pooled sequencing

data from selection experiments, in addition to the calculation of proportions of different species
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within a metagenomics sample. The method outperforms existing methods based on single-site

allele frequencies, as well as simple approaches using sequence read data. I have implemented

the method in a freely available open-source software tool called harp (Haplotype Analysis of

Reads in Pools). In Appendix A, I present additional analyses to show that the method improves

estimates of relative abundances and community diversity at higher taxon levels.

In Chapter 3, I present a new forward-in-time simulator forqs (Forward-in-time simulation

of Recombination, Quantitative traits, and Selection). forqs was designed to investigate hap-

lotype patterns resulting from scenarios where substantial evolutionary change has taken place

in a small number of generations due to recombination and/or selection on polygenic quantita-

tive traits. The simulator uses a memory-efficient representation of chromosomes that allows

the simulation of whole genomes. In addition, forqs explicitly models quantitative traits, and

its modular design gives the user great flexibility in specifying trait architectures, selection and

demography.

In Chapter 4, I present a new analysis of the power of artificial selection experiments to de-

tect and localize quantitative trait loci (QTLs), using the forqs simulator from Chapter 3. I

show that modeling loci with constant selection coefficients does not fully capture the dynamics

of QTLs under artificial selection. I also show that a substantial portion of the genetic variance of

the trait (50–100%) can be explained by detected QTLs in as little as 20 generations of selection,

depending on the trait architecture and experimental design. Furthermore, I show that the power

to detect and localize QTLs depends crucially on the opportunity for recombination during the

experiment. Finally, I show that an increase in power is obtained by leveraging founder hap-

lotype information to obtain allele frequency estimates (using the harp method from Chapter

2).
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CHAPTER 1

Introduction

One of the fundamental goals of modern genetics research is to determine the genetic basis for

complex traits. In particular, a major area of ongoing research is the mapping of loci underlying

quantitative traits (quantitative trait loci, QTLs). One method for mapping QTLs relies on arti-

ficial selection of individuals for extreme values of the trait, which results in population allele

frequency changes at loci contributing to the trait. Recent advances in DNA sequencing tech-

nology have enabled researchers to easily and inexpensively scan the genome for putative QTLs

on the basis of these allele frequency changes. This combination of artificial selection followed

by genome-wide pooled sequencing is known as the Evolve and Resequence (E&R) method.

The research I present in this dissertation involves new methods for analyzing and simulating

E&R experiments. Chapter 2 is applicable to the analysis of pooled sequence data from E&R

experiments, and in Chapters 3 and 4, I present simulation methods I developed and analysis

I performed to guide the design of future experiments. In this short chapter, I provide context

for this research by presenting some background on the E&R method and the use of simulation

methods in population genetics.
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1.1 The Evolve and Resequence method for mapping QTLs

1.1.1 Artificial selection and QTL mapping

Artificial selection has long been used by humans to breed plants and animals for desired char-

acteristics, such as increased dairy production in livestock, or greater yield in fruits and grains.

Over the past century, artificial selection has also been used extensively as an experimental tech-

nique in genetics research. In an artificial selection experiment, researchers subject a population

to selection pressure that it would not normally experience in nature. This selection pressure

may take the form of, for example, a change in environmental conditions (e.g. temperature or

nutrient availability), or direct selection of particular individuals possessing a desired phenotype.

Some of the first artificial selection experiments, performed in the early 1900s, were designed

to settle ongoing debates about the nature of selection. In particular, early researchers hoped to

answer questions about whether selection on continuous variation was even possible, and how

to reconcile this with the Mendelian viewpoint of genes as discrete heritable units (see Falconer

(1992) for a history of early selection experiments).

Traditional QTL mapping studies begin with two inbred parental lines that differ in their

mean trait values; often these inbred lines are obtained through artificial selection (see Mackay

et al. (2009) for a review of QTL mapping methods). After creating an F1 generation by crossing

the parental lines, F1 individuals are mated to create an F2 mapping population. Individuals

in the mapping population have haplotypes that are mosaics of the inbred parental haplotypes.

These individuals are measured for the trait, and genotyped at markers that segregate between the

parental populations. QTLs are then identified by correlation between trait value and genotype

at a locus, where the genotype is inferred by linkage to neighboring markers. The ability to

localize a QTL using this method depends crucially on the scale of recombination in the mapping

population. For this reason, recombinant inbred lines (RILs) are often used for the mapping

population to increase mapping resolution. RILs are derived from the F2 generation by repeated

2



sib mating, resulting in the accumulation of more recombination breakpoints between parental

haplotypes. This accumulation slows each generation as homozygosity increases in the RIL

population, eventually stopping when the RIL is fully inbred. To further increase the amount

of recombination in the mapping population, F2 individuals can be mated randomly to create

advanced intercross lines (AILs, Darvasi and Soller (1995)), which can be subsequently inbred.

In the context of mapping QTLs, Genome-Wide Association Studies (GWAS) can be seen

to be very similar to traditional QTL mapping (see Korte and Farlow (2013) for a review of

GWAS for QTL mapping). In GWAS, the mapping population is usually a natural outbred pop-

ulation, and the markers are single-nucleotide polymorphisms (SNPs). The mapping resolution

in outbred populations is determined by historical linkage disequilibrium between QTLs and

SNPs. In general, this is much finer than in laboratory populations obtained by crossing inbred

lines, leading to better localization of QTLs. However, the power to detect a QTL depends on

the phenotypic variance explained by the QTL, which is determined by its effect size and allele

frequency. Because of this, GWAS generally have low power to detect QTL variants with small

effects or that are rare in the population.

Under artificial selection for extreme values of a trait, allele frequencies at QTLs will in-

crease or decrease due to the selection pressure. While traditional QTL mapping and GWAS

both identify QTLs on the basis of cosegregation of genotype and phenotype, an alternative

strategy is to identify QTLs by scanning the genome for loci that exhibit large allele frequency

changes. This strategy has been implemented using array-based genotyping in a wide variety of

organisms, including for example maize (Laurie et al., 2004), yeast (Ehrenreich et al., 2010),

fruit flies (Lai et al., 2007; Nuzhdin et al., 2007; Teotonio et al., 2009), chickens (Johansson

et al., 2010), and mice (Keightley and Bulfield, 1993).

With the development of massively parallel sequencing technology, allele frequency changes

in evolved populations can now be measured by genome-wide pooled sequencing – this is the

Evolve and Resequence (E&R) method. In the next sections, I first give an overview of the new
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sequencing technology, followed by a more in depth discussion of E&R experiments.

1.1.2 Massively parallel sequencing

The completion of the Human Genome Project and the publishing of the reference human

genome (International Human Genome Sequencing Consortium et al., 2001) stimulated devel-

opment of new and improved methods for sequencing genomes. These technologies, known as

next-generation sequencing, have revolutionized the biological sciences by allowing researchers

to obtain DNA sequence data easily and affordably.

Several next-generation sequencing machines are commercially available (see Metzker

(2010) for an overview). While the specific methods vary by manufacturer, they generally use

massively parallel sequencing to obtain millions of short DNA sequence reads from random

locations in the genome. As a result, these new sequencing technologies have spurred the devel-

opment of a wide variety of computational methods to handle the large volume of sequence data,

as well as to provide meaningful interpretation of the data in spite of the inherent randomness

of the data generation process. For example, when there is a reference genome available for the

organism under study, the first analysis step will be to align the raw sequence reads to the ref-

erence. Because read alignment is so fundamental, dozens of algorithms and software packages

have been developed to perform this step (see Li and Homer (2010) for a review of alignment

algorithms).

An additional challenge in the analysis of next generation sequence data comes from the

relatively high error rate for individual sequence reads. Consequently, next-generation sequenc-

ing machines report base quality scores along with the actual sequence base calls. The base

quality score represents an estimate of the probability that the base call is correct. In general,

researchers use a combination of two techniques to handle base errors: 1) increase read cover-

age (the average number of sequence reads per site) to obtain more reliable genotype or allele

frequency estimates, and 2) utilize the base quality scores, either filtering out poor quality reads
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or incorporating the scores into a likelihood function during downstream analysis.

When population allele frequencies are of primary interest, pooling samples can reduce the

cost and labor involved in sample preparation, library construction, and sequencing (Futschik

and Schlotterer, 2010). Because sequence reads may originate from any of the individual or-

ganisms contributing to the pooled sample, it is not possible to obtain, for example, genotypes

of individuals in the pool. However, one can obtain an estimate of the allele frequency of a

particular variant in the population by calculating the proportion of reads representing this allele

among all reads covering the polymorphic site. While this method is easy to implement, it is

subject to error from two sources: random base errors, and stochasticity in the number of reads

covering the site.

In Chapter 2, I present a method to obtain local haplotype frequency estimates from pooled

sequence data. Because the method incorporates base quality scores and combines information

from sequence reads across a genomic region, the estimates are robust to the two primary sources

of error in read-count-based allele frequency estimates. In Chapter 4, I show that using the local

haplotype frequency estimates to derive allele frequencies leads to greater power to detect and

localize loci contributing to a quantitative trait.

1.1.3 E&R experiments

The Evolve and Resequence method combines artificial selection with next-generation genome-

wide pooled sequencing to study the genetic basis of complex traits. At the end of the selection

experiment, the selected populations are pooled and sequenced to obtain genome-wide allele

frequency estimates. The genome is then scanned for variants whose allele frequencies have

changed substantially over the course of the experiment. A site exhibiting a large allele fre-

quency difference indicates the presence of a nearby locus contributing to the trait (Figure 1.1).

While E&R experiments can be performed on any organism (for example Parts et al. (2011)

studied heat tolerance in yeast), the vast majority of E&R studies have used the fruit fly
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Figure 1.1: Evolve and resequence experiment. After initial neutral mixing of founders, indi-

viduals with extreme values of the trait are selected to create the next generation. After several

generations of selection, populations are sequenced and analyzed for allele frequency differ-

ences.

Drosophila melanogaster. D. melanogaster is the species of choice because populations are

easy to maintain in the laboratory, generation times are short (∼ 2 weeks), and also because sev-

eral techniques have been developed for fine mapping of candidate QTLs (see Mackay (2001)

for a review).

Several groups have successfully identified QTLs for various traits in Drosophila via the

E&R method. Burke et al. (2010) performed whole-genome sequencing of populations that had

been selected for accelerated development for over 600 generations and found a large number
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of genomic regions that had differentiated between selected and control populations. Turner

et al. (2011) divergently selected two replicate populations each for large and small body size

for over 100 generations, finding strong evidence for QTLs contributing to the trait. To iden-

tify genes that contribute to hypoxia tolerance, Zhou et al. (2011) exposed populations of flies to

hypoxic conditions for over 200 generations, finding several candidate genes that they also func-

tionally validated. Remolina et al. (2012) selected populations for 50 generations to find genes

related to life history traits (life span and fecundity). Orozco-terWengel et al. (2012) sequenced

populations at three time points over 37 generations as they adapted to a novel laboratory en-

vironment, finding substantial variation in the allele frequency trajectories of selected variants.

In a shorter experiment (14 generations of selection), Turner and Miller (2012) selected male

flies divergently based on the interpulse interval of the male courtship song, finding significant

differentiation at variants across the genome, albeit with poor mapping resolution.

Although information about the individuals comprising the final population is lost when

they are pooled together, investigators may have additional information about the founders of

the population. For example, Turner and Miller (2012) used fully sequenced inbred lines from

the Drosophila Genetic Reference Panel (DGRP) (Mackay et al., 2012) to create the founding

population for the selection experiment. In such an experiment, individual haplotypes in the

evolved populations will be, apart from the rare occurrence of de novo mutations, mosaics of

haplotypes from the founding population, whose sequences are known.

In Chapter 2 (and Appendix A), I show how information about the founder haplotypes can

be leveraged to obtain local haplotype frequency estimates from pooled sequence data. While

my primary motivation was the analysis of data from E&R experiments, this method is also

applicable to metagenomics studies, where it can be used to obtain relative abundance estimates

of known taxa in a naturally pooled sample. In Chapter 4, I report the results of a power analysis

I performed by computer simulation of E&R experiments. Because existing simulation software

was not adequate for this analysis, I designed and implemented a new forward simulator which
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I describe in Chapter 3.

1.2 Simulations in population genetics

Computer simulations play a substantial role in population genetics research. Simulations

are used to verify analytical results, validate statistical methods, perform statistical inference,

and generate predictions from analytically intractable mathematical models. Forward-in-time

(e.g. Wright-Fisher) simulations follow individuals (or individual chromosomes) in a popula-

tion through multiple generations, while backward-in-time (e.g. coalescent) simulations start

from the present and trace lineages back in time as they coalesce into a single lineage.

Backward simulations (e.g. ms (Hudson, 2002), MaCS (Chen et al., 2009), fastsimcoal

and fastsimcoal2 (Excoffier and Foll, 2011; Excoffier et al., 2013)) are very efficient for

simulating neutral sequence data, due to the fact that they only trace extant lineages. In contrast,

forward simulations track all individuals in a population, even those who leave no present-day

descendants. The efficiency of backward simulations is very useful when modeling the effects

of demographic history (e.g. population size changes, population merges/splits, migrations) on

the genomes of large populations over long timescales. However, while it is possible to simulate

certain selection scenarios within the coalescent framework (Hudson and Kaplan, 1988; Ewing

and Hermisson, 2010), one must turn to forward-in-time simulations to model selection in a

flexible way.

Forward simulations offer the ability to model phenomena such as selection, mating sys-

tems, and complex phenotypes. In Chapter 3, I discuss a new forward simulator that I designed

and implemented, called forqs (Forward-in-time simulation of Recombination, Quantitative

Traits, and Selection). The software employs a memory-efficient model allowing the fast sim-

ulation of whole genomes, while also offering flexible specification of quantitative traits and

complex selection scenarios. In the following, I discuss the basic principles underlying forward
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simulations, beginning with the Wright-Fisher model for completeness.

1.2.1 Wright-Fisher model

The Wright-Fisher model is perhaps the most basic model used in population genetics. In this

model, we consider a single population of N haploid individuals, distinguished only by the

allele they carry at a single polymorphic locus. We assume that there are only two possible

alleles at this locus, which we label 0 and 1. We further assume that generations are non-

overlapping. To create a new individual in the next generation, a parent is chosen at random

from the current generation, and the new individual receives a copy of the allele carried by the

parent. Note that the parent is not removed, so that individuals in the current generation may

have multiple offspring in the next generation. We can extend this model to diploid individuals

by specifying each individual by the two alleles they carry. In the diploid case, two parents

are chosen randomly from the current population, and from each parent one allele is chosen

randomly to be copied to the child. In this case, there are 2N total copies of the locus in the

population. We restrict our attention to the diploid case from now on.

If we let p be the frequency of allele 1 in the population in the current generation, then the

count C of allele 1 in the next generation will be binomially distributed: C ∼ Binom(p, 2N).

The allele frequency P = C/2N in the next generation is thus a random variable with ex-

pectation E(P ) = p and variance V ar(p) = p(1 − p)/2N . From this it can be seen that the

magnitude of genetic drift (the random fluctuation in allele frequency from one generation to the

next) depends on 1/2N . As a result, larger populations will experience smaller changes in allele

frequency each generation than smaller populations. We observe that if p = 0 (allele 1 is lost) or

if p = 1 (allele 1 is fixed) in any generation, then that allele remains lost or fixed in subsequent

generations. We additionally observe that because there is a chance of loss or fixation of the

allele each generation, the allele will be lost or fixed eventually.

To simulate the Wright-Fisher model, we can simply represent the population at a given
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time by the single number p, the allele frequency. We then generate values of p in subsequent

generations by binomial sampling as described above.

1.2.2 Extensions to the model

We can add mutation to the model by specifying a mutation rate µ at which the allele copied

from a parent mutates to the other allele before being transmitted to the child. Alternatively, two

mutation rates can be specified, for forward (0→ 1) and backward (1→ 0) mutation.

We can also add selection to the model, by assigning a fitness to each genotype. In this case,

parents are chosen randomly with probability proportional to their fitness. We can represent the

fitness corresponding to a particular genotype as 1 + s, where the parameter s, the selection co-

efficient, represents the proportional fitness advantage gained by individuals with that genotype.

To extend the model to accommodate multiple loci, we first make the observation that each

individual will carry two of 2L possible haplotypes, where L is the number of loci. Additionally,

we could allow more than two alleles at each locus. For example, if a locus is a single site with

any of 4 nucleotides possible, there would be 4L possible haplotypes.

To simulate the multiple locus case, we can proceed in two ways: 1) store the frequency of

each possible haplotype for each generation, or 2) store two arrays of lengthL for each individual

that represent the individual’s two chromosomes/haplotypes. Method 1 would require memory

usage proportional to the number of possible haplotypes, which is exponential in the number of

loci L. Method 2 would require memory usage proportional to LN , which is linear in both the

number of loci and the population size. As the number of loci increases, the number of possible

haplotypes quickly grows to exceed the number of haplotypes actually present in the population

(maximum 2N), so Method 2 is preferable for modeling large genomic regions.

Modeling multiple loci opens up the possibility to simulate recombination. To do this, we

can give each parent the ability to transmit a mosaic haplotype resulting from recombination
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between the parent’s two chromosomes. One way to do this is to specify a recombination rate ρ

for the population. After a parent is chosen, we draw a random number of crossover positions

according to a Poisson distribution with mean ρ, and draw the positions uniformly randomly

from the loci under consideration. The recombined haplotype is then constructed by alternately

copying the allele at each locus from one parental haplotype or the other, switching at crossover

positions.

We also note that one can simulate multiple populations, as well as population size changes

and migrations, in a straightforward manner. With these extensions, a great variety of demo-

graphic scenarios can be simulated.

1.2.3 Fitness functions

To model selection in the multiple locus case, we need to specify a fitness function that depends

on the multilocus genotype of the individual. One typical way to do this is to assign a fitness to

each genotype at each locus, parametrized by a selection coefficient (and possibly a dominance

parameter). A multilocus fitness function is used to calculate an individual’s fitness based on the

single site fitnesses. Many forward simulators take this approach (e.g. ForwSim (Padhukasa-

hasram et al., 2008) Fregene (Chadeau-Hyam et al., 2008) GENOMEPOP (Carvajal-Rodriguez,

2008) SFS CODE (Hernandez, 2008) TreesimJ (O’Fallon, 2010), SLiM (Messer, 2013)). One

common simplifying assumption is that the loci have independent effects, which implies a multi-

plicative fitness function, where an individual’s fitness is the product of the single-site fitnesses.

Alternatively, we can specify a more complicated fitness function. For example, to model

selection on a quantitative trait, we must first decide how to calculate a trait value for each in-

dividual. To do this, we must specify 1) how various loci contribute to the trait, and 2) how

the environment affects the trait. One simple way to do this is to assume independent additive

effects, where each of several loci has an effect size, together with a random Gaussian envi-

ronmental effect. More complicated models could include dominance or epistatic effects. In
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addition to specifying the quantitative trait, we must specify how fitness depends on an individ-

ual’s trait value (or possibly values of multiple traits). For example, an individual’s fitness could

decrease with distance from some optimum value. Another possibility is truncation selection,

where only individuals whose trait value is above (or below) some threshold are able to have

offspring in the next generation.

In addition to my simulation software forqs, a few other forward simulators include sup-

port for quantitative traits (e.g. ForSim (Lambert et al., 2008), quantiNemo (Neuenschwan-

der et al., 2008), simuPOP (Peng and Kimmel, 2005)). However, these existing simulators each

have one or more limitations that make them inadequate for the simulation study that I present

in Chapter 4. These limitations include: lack of flexible selection/fitness models, requirement

of long initial burn-in to reach mutation-drift equilibrium, lack of haplotype information, and

inability to simulate whole genomes due to memory limitations.

1.2.4 Computational limitations

We now restrict our attention to the case where we are simulating a single contiguous region of

length L (i.e. each locus is a single site), with 4 possible nucleotide bases at each position. By

using 2 bits to represent the 4 possible bases, we can store the bases for 4 positions in a single

byte (1 byte = 8 bits), for a total of LN/2 bytes of memory to store the whole population (for a

single generation). Here we can see that we have a tradeoff between the number of individuals

and the length of the genomic region simulated. For example, 16GB of memory will allow

storage of 1 million individuals with 32 Kb of sequence per individual, or 10000 individuals

with 3.2 Mb of sequence per individual. Note that in this latter case, our regions are still more

than an order of magnitude smaller than the smallest human chromosome.

In typical scenarios, the majority of sites in a region will be monomorphic in a population.

Because of this, one can make more efficient use of memory by storing only the mutations

carried by individuals. This strategy is employed by the forward simulator SLiM (Messer, 2013),
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for example.

Further efficiency gains in memory usage can be obtained in scenarios where there are a lim-

ited number of loci with fitness effects. For example, consider an artificial selection experiment,

where selection on a quantitative trait is performed for a small number of generations. In this

case, selection acts primarily on standing variation, i.e. only on QTLs that are already polymor-

phic in the population. In such scenarios, evolution in the population proceeds primarily through

recombination, and de novo mutations are not expected to play a large role. Because of this, we

can store the haplotypes of the founder individuals only, and then represent each descendent

individual haplotype as a list of founder haplotype chunks.

In Chapter 3, I describe how I have implemented this approach in the software forqs. By

employing this strategy, forqs is able to simulate whole genomes efficiently (e.g. 23 chromo-

some pairs, 100 Mb each, for human populations).

1.2.5 Applications of simulations to evaluate E&R studies

Two previous simulation studies have used forward simulations to assess the power of Evolve &

Resequence experiments to detect and localize quantitative trait loci (QTLs) (Kofler and Schlot-

terer, 2014; Baldwin-Brown et al., 2014). Both of these studies used forward simulators where

selection at a locus is modeled with a single parameter, the selection coefficient.

In Chapter 4, I describe a simulation study I performed using the forqs software. In my

simulations, I explicitly model the genome-wide architecture of quantitative traits, with trunca-

tion selection based on individual trait values. By explicitly modeling selection on a quantitative

trait I am able to parametrize the simulated experiments and report results using the standard

quantitative genetics concepts of effect size, genetic variance, and heritability. I show that popu-

lation genetics simulations based on loci with constant selection coefficients do not fully capture

the dynamics of QTLs contributing to a trait under artificial selection. Indeed, the behavior of a

QTL under artificial selection is dependent both on the experimental design (proportion of indi-
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viduals selected each generation) and on the trait architecture (effect size, and linkage to other

QTLs). While the selection coefficient conflates these parameters into a single number, my sim-

ulation framework allows these parameters to be separated and investigated independently. In

addition, I show the important role that recombination plays in the ability to detect and localize

QTLs with an E & R experiment.

1.3 Roadmap

In the following chapters, I present the methods I have developed for the analysis of Evolve and

Resequence experiments.

In Chapter 2, I present a method for estimating local haplotype frequencies from pooled

sequence data, where the founder haplotypes are known. While the primary motivation of this

work was for the analysis of data from E&R experiments, the method is also applicable to the

analysis of sequence data from naturally pooled metagenomics samples. Some further analysis

of this application is presented in Appendix A.

In Chapter 3, I present the forward simulation software forqs that I designed and imple-

mented for the simulation of whole genomes with explicit modeling of quantitative traits and

selection. In addition to the simulation of artificial selection experiments, many other selection

scenarios can be simulated, such as selection toward a trait value optimum, or fitness depending

on multiple quantitative traits.

In Chapter 4, I present an analysis of the power of E&R experiments to detect and localize

QTLs. This analysis relies on forqs to explicitly model various quantitative trait architectures

and experimental designs. Because the results are reported using familiar concepts from quanti-

tative genetics, this analysis will be useful for guiding the design of future E&R experiments.
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CHAPTER 2

Maximum Likelihood Estimation of Frequencies of Known

Haplotypes from Pooled Sequence Data

2.1 Abstract

DNA samples are often pooled, either by experimental design, or because the sample itself is

a mixture. For example, when population allele frequencies are of primary interest, individual

samples may be pooled together to lower the cost of sequencing. Alternatively, the sample itself

may be a mixture of multiple species or strains (e.g. bacterial species comprising a microbiome,

or pathogen strains in a blood sample). We present an expectation-maximization (EM) algorithm

for estimating haplotype frequencies in a pooled sample directly from mapped sequence reads,

in the case where the possible haplotypes are known. This method is relevant to the analysis

of pooled sequencing data from selection experiments, as well as the calculation of proportions

of different species within a metagenomics sample. Our method outperforms existing methods

based on single-site allele frequencies, as well as simple approaches using sequence read data.

We have implemented the method in a freely available open-source software tool.

2.2 Introduction

Pooled sequencing is a common experimental method in which DNA samples from multiple

individuals are sequenced together. In some contexts, the pooling of individual samples is per-
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formed by the researcher; in others, the sample itself is a mixture of multiple individuals. When

population allele frequencies are of primary interest, pooled sequencing approaches can reduce

the cost and labor involved in sample preparation, library construction, and sequencing (Futschik

and Schlotterer, 2010; Cutler and Jensen, 2010; Kofler et al., 2011; Orozco-terWengel et al.,

2012; Huang et al., 2012).

For example, in experimental evolution studies, populations are selected for extreme values

of a trait over several generations, followed by pooled sequencing to calculate allele frequen-

cies at polymorphic sites across the genome (Nuzhdin et al., 2007; Burke et al., 2010; Earley

and Jones, 2011; Turner et al., 2011; Zhou et al., 2011). Typically, differences in single-site

allele frequencies between an experimental population and a control population (or between

two experimental populations selected in opposite directions) are used to identify regions of the

genome that may have undergone selection during the course of the experiment, and thus con-

tribute to the trait of interest. However, localizing such regions would be improved if haplotype

frequencies were more easily estimated from pooled data, as many of the most powerful tests

for selection rely on haplotype information (Voight et al., 2006; Sabeti et al., 2007).

In certain cases, haplotype frequency estimation may be more feasible than others, such as

when the investigator has prior knowledge about the founders of the pooled sample. For exam-

ple, Turner and Miller (2012) used inbred lines from the Drosophila Genetic Reference Panel

(DGRP) (Mackay et al., 2012) to create the founding population for the selection experiment. In

such an experiment, individual haplotypes in the evolved populations will be, apart from de novo

mutations, mosaics of haplotypes from the founding population, whose sequences are known.

This structure should make it simpler to estimate haplotype frequencies, and in turn detect re-

gions harboring adaptive variation, by searching for haplotypes that have increased in frequency

locally during the experiment.

In many other contexts, biological samples are naturally pooled, and the researcher is inter-

ested in the relative proportions of various species or strains within the sample. For example,
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malaria researchers interested in drug resistance and vaccine efficacy testing have developed

several laboratory and computational techniques for determining the proportions of different

malaria parasite strains in blood samples (Cheesman et al., 2003; Hunt et al., 2005; Takala

et al., 2006; Li et al., 2007; Hastings and Smith, 2008; Hastings et al., 2010). In metagenomics

studies, one major interest is the relative abundance of different microbial strains and species

in pooled samples from different tissues/habitats (Ley et al., 2006; Human Microbiome Project

Consortium, 2012). Short sequence reads from 16S rRNA are commonly used to estimate these

frequencies by classifying reads by taxon and counting the number of reads in each category

(Mizrahi-Man et al., 2013). In these examples, canonical haplotypes (e.g. 16S reference se-

quence) of many species of interest are known, and accurate estimates of relative frequencies of

the known species are of great importance.

Indirect estimation of haplotype frequencies from unphased genotype data has a long history

(see Niu (2004) for a review of these methods). Several approaches for estimating haplotype fre-

quencies from pools containing multiple individuals have focused on the use of single-nucleotide

polymorphism (SNP) allele frequencies obtained by array-based genotyping (Pe’er and Beck-

mann, 2003; Ito et al., 2003; Wang et al., 2003; Yang et al., 2003; Kirkpatrick et al., 2007;

Zhang et al., 2008; Kuk et al., 2009). Some examples of this class of methods have incor-

porated prior knowledge about haplotypes in the sample into the estimation (Gasbarra et al.,

2009; Pirinen, 2009). Most recently, Long et al. (2011) have proposed a method for estimating

haplotype frequencies from SNP allele-frequency data obtained by pooled sequencing, using a

regression-based approach with known haplotypes.

Pooled sequence data provide two important sources of information beyond single-site al-

lele frequencies: haplotype information from sequence reads that span multiple variant sites,

and base quality scores, which give error probability estimates for each base call. Here we

introduce a method to use this additional information to estimate haplotype frequencies from

pooled sequence data, in the case where the constituent haplotypes are known. This method
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uses a probability model that naturally incorporates uncertainty in the reads by using the base

quality scores reported with the sequence data. The method obtains a maximum likelihood

estimate of the haplotype frequencies in the sample via an expectation-maximization (EM) al-

gorithm (Dempster et al., 1977). We present results from realistic simulated data to show that

the method outperforms allele-frequency based methods, as well as simple approaches that use

sequence reads. The use of a fixed list of known haplotypes allows the algorithm to use data

from much larger genomic regions than algorithms that enumerate all possible haplotypes in a

region, which leads to much improved haplotype frequency estimates. We also explore the ef-

fects of unknown haplotypes being included in the mixture, and specify conditions affecting the

accuracy of the estimation. We have implemented the method in an open-source software tool

harp (see authors’ websites for software link).

2.3 New Approaches

We assume that there are H haplotypes represented in the pool, and that the sequence reads

have been generated randomly according to the frequencies of the haplotypes. Informally, we

use haplotype information contained in an individual read to probabilistically assign that read

to one or more of the known haplotypes (Figure 2.1), and then use the probabilistic haplotype

assignments to estimate the haplotype frequencies.

2.3.1 Probability Model

Let f = (f1, . . . , fH) be the frequencies of the H haplotypes in the genomic region of interest.

We can think ofN sequence reads r = (r1, . . . , rN) as being independently generated as follows.

To generate read rj:

• choose the haplotype ηj to copy from:

ηj ∼ Discrete(f)
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Figure 2.1: Haplotype information from individual reads can be combined across a genomic

region to obtain haplotype frequency estimates. In this cartoon, there are 4 known haplotypes

(black, green, blue, orange), with sequence data coming from a pool containing 25% green,

25% blue, and 50% orange haplotypes. Each read is probabilistically assigned to the known

haplotypes. Some reads can be assigned with great certainty, e.g the reads coming from the blue

haplotype that cover two neighboring variant sites. Other reads (represented by two colors) are

assigned with less certainty.

• choose a starting position uniformly at random in the genomic region, and copy read rj

from haplotype ηj starting at the chosen position

• draw base quality scores for the read from a fixed distribution (which can be determined

empirically)

• introduce errors in the sequence read, with the probability of error in a base call given by

the base quality score at that position
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In practice, haplotypes may not be perfectly known, or there may be segregating variation

within the strain represented by a particular haplotype. In such cases, International Union of

Pure and Applied Chemistry (IUPAC) ambiguous base codes (e.g. R for purine, Y for pyrim-

idine, N for any, etc.) may be used in place of the standard bases (A, C, G, T) to indicate the

uncertainty. We incorporate these cases into our probability model by assuming the true base

at each segregating site is sampled from a discrete distribution with probabilities determined by

the allele frequencies at that site within the strain (which may be known a priori or assumed to

be uniform).

2.3.2 Haplotype Likelihood

Calculating the likelihood of a set of haplotype frequencies given read data under this model can

be carried out as follows. LetLj be the length of the j th read rj , let (rj[1], . . . , rj[Lj]) be the base

calls, and let qj = (qj[1], . . . , qj[Lj]) be the base quality scores. Also, let (ηj[1], . . . , ηj[Lj]) be

the corresponding bases of haplotype ηj . At read position i, qj[i] is the probability of sequencing

error at that position: qj[i] = P (rj[i] 6= ηj[i]). Note that for paired-end data, rj represents a

read pair coming from a single haplotype, and that the positions within the read may not be

contiguous.

We have P (ηj, rj|f, qj) = P (ηj|f)P (rj|ηj, qj). The first term P (ηj|f) is given by the dis-

crete distribution with probabilities f , and the second term P (rj|ηj, qj), the haplotype likelihood,

can be calculated from the base quality scores, as follows.

First, we assume that sequencing errors within a single read are independent of each other:

P (rj | ηj, qj) =

Lj∏
i=1

P ( rj[i] | ηj[i], qj[i])

Next, we need to specify how to calculate the terms in the above product, i.e. the probability

of an observed base, given the true base and the base quality at that position. For simplicity, we
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assume that each of the 3 incorrect bases will be observed with equal probability:

P ( rj[i] | ηj[i], qj[i]) =

1− qj[i] if rj[i] = ηj[i]

qj[i]/3 if rj[i] 6= ηj[i]

More generally, we note that we can use a base error matrix (parametrized by base quality score)

to allow for unequal probabilities, and that these probabilities can be estimated from the data by

considering the monomorphic sites in the sample.

Note that if position i is a segregating site in the strain represented by haplotype ηj , the

likelihood is calculated by summing over the possible bases:

P ( rj[i] | ηj[i], qj[i]) =∑
b∈{A,C,G,T} P ( rj[i] | ηj[i] = b, qj[i]) P (ηj[i] = b)

where P (ηj[i] = b) is the frequency of base b at that site within the strain. For sites where the

possible bases are known, but not the allele frequencies, we set the allele frequencies to be equal,

e.g. .5 for biallelic sites, and .25 for sites with no information.

For clarity, we suppress the dependence on the base quality scores in what follows.

2.3.3 Simple Approaches

We explored two simple approaches for estimating haplotype frequencies. The first method is

a simple string match algorithm, where sequence reads are fractionally assigned (with equal

weight) to haplotypes with which they are identical up to a specified maximum number of mis-

matches. For example, a read that matches two haplotypes is assigned .5 to each. The fractional

assignments are then summed, to obtain counts for each haplotype, and dividing by the number

of reads gives the haplotype frequency estimate.

The second method, which we call a soft string match, uses the probability model described

above to calculate the vector of haplotype likelihoods lj for each read rj . Thus, the soft string
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match makes use of the base quality scores from the reads. The haplotype likelihood vector lj is

normalized so that the components sum to 1, which we take to be our probabilistic haplotype as-

signment. As with the fractional assignments above, the probabilistic assignments are averaged

to obtain the haplotype frequency estimate.

2.3.4 EM Algorithm

In addition to the simple approaches, we developed a full likelihood approach to obtain maxi-

mum likelihood estimates of the haplotype frequencies under the probability model described

above.

We assume that our reads are generated independently, so our complete data likelihood is:

L(f | η, r) = P (η, r | f) =
N∏
j=1

P (ηj, rj|f)

We observe the reads r, but treat the haplotype assignments η as missing data, so we are

interested in the marginal likelihood,

L(f | r) = P (r | f) =
∑
η

P (η, r|f)

which we maximize by iteratively calculating haplotype frequency estimates via the EM algo-

rithm: f (0), f (1), . . .

First we describe the iteration step of the algorithm; we assume we have f (i) and show how

to obtain f (i+1). In Material and Methods, we show that this is the formal EM algorithm of

Dempster et al. (1977).

We let lj,h = P (rj|ηj = h), and let lj = (lj,1, . . . , lj,H) be the vector of haplotype likelihoods

for read j. Note that for a given sequence read rj , the haplotype likelihood vector lj is determined

by the variant sites covered by the read, up to a proportionality constant. Also note that the

haplotype likelihood vectors can be calculated once and cached, before the actual EM iteration.
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Given f (i), we define pj = (pj,1, . . . , pj,H) to be the haplotype posterior vector for read j,

where

pj,h = P (ηj = h|rj, f (i))

Intuitively, pj is a probabilistic haplotype assignment of read rj , with each component pj,h rep-

resenting the probability that the read came from haplotype h (given our current haplotype fre-

quency estimate f (i)). Note that:

P (ηj = h|rj, f (i)) ∝ P (rj|ηj = h) P (ηj = h|f (i))

= lj,h f
(i)
h

so pj can be obtained by taking the component-wise product lj ◦ f (i), and normalizing so that

the vector components sum to 1. As a special case, if f (0) is uniform, then in the first iteration,

pj is just lj normalized.

Our updated estimate f (i+1) is given by the average of the haplotype posterior vectors:

f (i+1) =

∑
j pj

N

Finally, we must specify how to choose our initial haplotype frequency estimate f (0), as well

as convergence criteria for the iteration. For our first initial estimate we use the uniform distri-

bution f (0)
h = 1/H . We also use additional random initial estimates drawn from a symmetric

Dirichlet distribution to start multiple runs of the algorithm, since there is a possibility that the

EM algorithm will climb to a non-global local maximum on the likelihood surface. For the ter-

mination condition, we specify a threshold ε, and halt the iteration when the squared distance

between estimates falls below the threshold: |f (i+1) − f (i)|2 < ε. In practice, we found a value

of ε = 10−8 to work well and this value is used in the results presented below.

2.3.5 Base Quality Score Recalibration

We observed inconsistencies between the reported base quality scores in our experimental data

sets and empirical error rates based on sequence reads covering monomorphic sites in the known

23



haplotypes (see Results), which motivated the development of a recalibration method to correct

for these inconsistencies.

Illumina base quality scores have different interpretations, depending on the Illumina ver-

sion. In our experimental data set, corresponding to Illumina versions 1.5 - 1.7, the scores range

from 2 to 40, with the score q representing an error probability given by the Phred scale:

P (error) = 10−q/10

For example, a base quality score of 20 gives an error probability of 1/100. The special score of

2 indicates that the base should not be used in downstream analysis.

To recalibrate, we examine monomorphic sites to calculate an observed error rate

Pobs(error)(q) for each possible base quality score q. These observed error rates can then be

used directly in the haplotype likelihood calculation in place of the Phred scale error rates, or to

create a new BAM file with recalibrated base quality scores.

2.3.6 Haplotype Likelihood Filtering

The EM algorithm described above relies on the assumption that we know the sequences of the

haplotypes found in the pool and that the pool has no contamination from unknown species.

While investigating the effects of unknown haplotypes species in the pool, we found that in the

case where the unknown is sufficiently unrelated to the known haplotypes (known species, in the

case of 16S sequences), reads from the unknown can be filtered out on the basis of the haplotype

likelihoods.

For each sequence read, the maximum haplotype likelihood will usually be attained by the

haplotype from which the read was derived. Building on this, we can calculate the distribution

of the maximum haplotype likelihood of the sequence reads under the assumption that the pool

contains only known haplotypes, based on the empirical base quality score distribution of the

data (see Material and Methods for details). Using this “null” distribution, we can filter out
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reads whose maximum haplotype likelihood falls outside a specified range (Figure 2.8A). In

our simulations, we obtained good results by filtering out reads whose maximum haplotype

likelihood was less than 2 standard deviations below the mean of this distribution (Figure 2.8C).

2.4 Results

2.4.1 Comparison With Existing Allele-Frequency Based and Simple Sequence Based

Methods

We first evaluated the performance of the EM algorithm in comparison to single-site allele-

frequency based methods and the simple sequence-based methods discussed above (see New

Approaches). To represent the allele-frequency based methods, we chose hippo, which is a

freely available program that has been shown to outperform other allele-frequency based meth-

ods for estimating haplotype frequencies (Pirinen, 2009). One property of this class of methods

is that all possible haplotypes in the region are considered during the estimation. This results in

an exponential growth in the number of haplotypes (and thus memory usage and algorithm run-

ning time) as the region width increases. To improve performance, the hippo method allows

one to specify known haplotypes, which we do here. We found it difficult to obtain results on

our simulated data for regions larger than about 2kb (though this distance scale is driven largely

by the relatively high Drosophila-specific levels of diversity we simulated here).

In this comparison, we simulated data from a pool of 20 haplotypes with 100bp paired-

end sequence reads and 200x pooled coverage, with 100 replicates each from genomic regions

ranging in size from 500bp to 50kb.

We found that the simple methods using sequence reads (string match and soft string match)

outperformed the method based on single-site allele frequencies, and that the EM algorithm per-

formed vastly better than all of the other methods (Figure 2.2). The soft stringmatch method
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Figure 2.2: Comparison of the EM algorithm to known allele-frequency based and sim-

ple sequence-based methods. Each algorithm was run on simulated pooled 100bp paired-end

sequence data from 20 haplotypes at 200x coverage, with 100 replicates for each region width.

showed a distinct improvement over the stringmatch method, due to the incorporation of infor-

mation from the base quality scores. We also note that the EM algorithm performed the estima-

tion using 162 reference haplotypes, and accurately reported zero frequencies for the haplotypes

not present in the pool.

The EM algorithm’s increased performance can be attributed to the sharing of information

across all of the reads in the genomic region. In contrast to the other methods, the EM algo-

rithm’s performance improves as the width of the region increases. This improvement comes

from the fact that more variant sites are available to distinguish between haplotypes, in addition

to the increased amount of data on which to base the inference.
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Figure 2.3: Performance of the EM algorithm increases with coverage, region width, and

read length and is robust to sequencing errors. A) Performance of the EM algorithm increases

with both coverage and width of the region used for the estimation. B) The EM algorithm

performs better with longer reads, which provide more haplotype information. C) The EM

algorithm maintains good performance with increasing sequence read error rate. Empirical error

rates were found to be in the range of .05 - .07 errors per base call. In all simulations, we

simulated paired-end pooled sequence data from 162 haplotypes at randomly drawn frequencies,

with 100 replicates per parameter value level. Non-varying parameters were held at fixed values

representative of our experimental data (read length 100bp, read error rate .06, coverage 200x,

region width 200kb).

2.4.2 Effects of Region Width, Coverage, Read Length, and Sequencing Error

We next evaluated the performance of the EM algorithm with respect to increasing region width

and coverage. In this evaluation, we simulated pooled data (100bp paired-end) from all 162

haplotypes, 100 replicates each in genomic regions ranging in size from 25kb to 400kb, at cov-

erages ranging from 25x to 300x. We found that performance increases substantially as coverage

increases, especially at the lower coverage levels (25x - 100x), and also as the region width in-

creases (Figure 2.3A). In particular, for larger regions (≥ 100kb) at moderate pooled coverage
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(200x), the sum of squared errors is less than 10−4, which corresponds to a root mean squared

error of less than .1% per haplotype.

We also evaluated the effect of increasing read lengths on the performance of the EM al-

gorithm. We simulated paired-end sequence data in a 200kb region with sequence read lengths

ranging from 50bp to 500bp (100 replicates each). In each case, we generated 200,000 read pairs

(200x coverage for 100bp reads). As expected, longer read length also increases performance,

due to the additional haplotype information contained in individual reads (Figure 2.3B). Note

that the effect of increased read length is equivalent to the effect of increasing SNP density, due

to the fact that differences in haplotype likelihoods between strains/species are determined by

the variant sites covered by the sequence reads.

Finally, we studied the effects of sequence read errors on the haplotype frequency estimation.

We calculated an empirical base quality score distribution, which we shifted to obtain simulated

data sets with specified error rates. In our experimental data sets, the sequence error rate cal-

culated from the base quality scores was generally in the range of .05 − .07 (errors per base

call), depending on the region. On simulated data sets (162 haplotypes, 200kb region, 100bp

paired-end reads, 200x coverage), we found that the EM algorithm maintains good performance

(sum of squared errors ≈ 10−4, average error < .1%), even with error rates of 2-3x empirical

error rates (Figure 2.3C).

2.4.3 Effects of Haplotype Diversity

We investigated the effects of haplotype diversity, quantified by the Shannon entropy (in natural

log units) of the true haplotype frequency distribution, on the performance of the EM algorithm.

We simulated pooled 100bp paired-end sequence data from 162 haplotypes at 200x coverage in

a 200kb region. We generated the haplotype frequencies using symmetric Dirichlet distributions

with parameter values ranging from .005 to 10, for a total of 550 replicates, which were binned

by Shannon entropy (Figure 2.4). We found that the EM algorithm performs best for low entropy
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Figure 2.4: The EM algorithm performs best when the true frequency distribution has

low entropy (non-uniform, with a few haplotypes at high frequencies, with the rest at low

frequencies). The algorithm was run on simulated pooled 100bp paired-end sequence data from

162 haplotypes at 200x coverage in a 200kb region (550 replicates binned by Shannon entropy

in natural log units).

frequency distributions, where there are a few haplotypes at high frequencies, with the rest at

low frequencies. Performance degrades as the entropy increases, with a slight improvement for

high-entropy (nearly uniform) distributions. This behavior can be explained by the fact that

missing information leads to uniform estimates, which will give better results for near-uniform

distributions.
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Figure 2.5: Recalibration of base quality scores using monomorphic sites improves perfor-

mance. A) Reported base quality scores do not match empirical scores calculated from real data

using monomorphic sites. B) The EM algorithm was run with and without base quality score

recalibration on simulated pooled 100bp paired-end sequence data from 162 haplotypes at 200x

coverage in a 200kb region (100 replicates each). Sequence errors in the simulated data were

introduced with probabilities given by the empirical error rates.

2.4.4 Effects of Inaccurate Base Quality Score Reporting

The computation of haplotype likelihoods is dependent on the correct reporting and interpreta-

tion of base quality scores. By looking at monomorphic sites in our experimental data sets, we

calculated an observed error rate Pobs(error) for each possible base quality score, which maps to

an empirical base quality score qobs according to:

qobs = −10 log10 Pobs(error)
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We observed that the reported base quality scores in our experimental data sets were consistently

inaccurate (Figure 2.5A). This motivated the development of a recalibration method to correct

for inaccurate reporting of base quality scores (see New Approaches).

In order to test our recalibration method, we simulated data sets (162 haplotypes, 100bp

paired-end reads, 200kb region, 200x coverage) using the empirical error rate for each base

quality score to generate sequence read errors. For each of 100 replicates, we ran the EM

algorithm with and without recalibration of the base quality scores. We found the algorithm has

higher accuracy with the base quality score recalibration (Figure 2.5B).

2.4.5 Random Initial Estimates To Avoid Local Maxima

We investigated the possibility that the EM algorithm could converge to non-global local maxima

on the likelihood surface. We simulated data sets (162 haplotypes, 100bp paired-end reads, 200x

coverage, empirical error rates) over a range of region sizes from 10kb to 200kb, starting from

a uniform initial estimate in addition to a varying number of random initial estimates (0, 25, 50,

100), with 100 replicates for each combination. We found that running the algorithm multiple

times with random initial estimates did not improve performance (data not shown), indicating

that the EM algorithm finds the global maximum reliably starting from a uniform initial estimate.

2.4.6 Estimation of Relative Abundances of Species Based on 16S rRNA Sequence Reads

While our primary motivation for developing the haplotype inference algorithm arises in the

context of Drosophila evolution experiments, the structure of our algorithm suggests it may be

extended to the problem of inferring bacterial community composition. For instance, sequence

reads derived from 16S rRNA are often used to identify the species contained within a naturally

pooled sample. In the context of our method for haplotype frequency estimation, each species

with a canonical 16S sequence is a known haplotype, and the challenge is to infer the haplotype

frequencies based on reads copied with error from the canonical sequences. As such, our method
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Figure 2.6: Performance of the EM algorithm on the calculation of species-level abundances

from 16S rRNA sequence data. The algorithm was run on simulated 75bp single-end 16S

sequence data from pools of 200 randomly chosen microbial species, with 100 replicates for

each coverage level.

differs from most existing 16S analysis pipelines in that we do not first classify reads to species

and then infer frequencies. As in the haplotype frequency inference problem, we consider the

probability of each read coming from each potential source species and then iteratively converge

on a set of frequency estimates using the EM algorithm.

As a preliminary test of this approach, we simulated simple communities composed of pools

of 200 randomly chosen species (average 16S sequence divergence 19% (± 2 SD of 12% )), with

75bp single-end sequence reads derived from their 16S sequences, at varying coverage levels.

The simulated data reflect what one would expect from a shotgun sequencing metagenomics

experiment, with sequence reads coming from random locations in the 16S sequence, from the

different species according to their relative abundance within the pool. (We do not consider
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the accuracy for approaches that target a specific hypervariable region, though the algorithm

can be applied to such designs.) Figure 2.6 shows the performance as a function of coverage.

As one example, with 150x pooled coverage of the 16S sequence, the average sum of squared

errors was ≈ 2× 10−4, which corresponds to an average error of .1%. This error is of the same

order of magnitude as the error in estimation of Drosophila strain-level frequencies, which used

much larger regions, but typically have lower levels of between-haplotype divergence. In these

examples, we assumed the species in the pool are known. We next considered inference settings

with unknown species in the pool.

2.4.7 Frequency Estimation for a Specified Set of Species Within a Larger Mixture of

Unknown Species

First, because the species of some genera are better characterized than others, we investigated

the utility of this method in estimating the frequencies of known species within a single genus,

in a pool containing a large number of unknown species from different genera. To this end, we

simulated pools containing 500 randomly chosen species: 20 from genus Clostridium, together

with 480 species from other genera. In these simulations, the pool of known sequence reads

was spiked with unknown sequence reads, with the total unknown proportion ranging from 0

to 50%, and where the unknown sequence reads were drawn uniformly at random from the

480 unknown species. The 16S average sequence divergence between pairs of known species

was 12% (±10%) while the average divergence between known and unknown species was 20%

(±6%).

We then estimated the frequencies of the Clostridium species using only the known reference

sequences. We found that the EM algorithm, in combination with the haplotype likelihood filter

(see New Approaches), performed well (sum of squared errors≈ 2×10−4, average error≈ .3%),

in spite of the large number of unknown species in the pool. (Figure 2.7).
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Figure 2.7: Large numbers of unknown unrelated species do not significantly affect the

estimate of within-genus species frequencies. The EM algorithm with haplotype likelihood

filter was run on simulated 75bp single-end 16S sequence reads from 500 species [20 Clostrid-

ium species (known), 480 non-Clostridium species (unknown)]. “Unknown proportion” is the

total proportion of reads coming uniformly at random from the 480 unknown species, with the

remainder of the reads coming from the 20 known species (100x pooled coverage, 100 replicates

for each unknown proportion level).

2.4.8 Effects of Unrelated Unknown Species on Frequency Estimation

To more fully characterize the effect of unknown species on the estimation of frequencies of

known species, we further investigated the scenario where there are unknown species present

within the pool. For simplicity, we simulated pools with 20 known species, spiked with a single

unknown species that does not belong to the same genus as any of the known species.

In this situation, reads coming from the unrelated unknown species do not map well to the

reference sequences of the known species. Since the unknown is unrelated to the known species,
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Figure 2.8: Sequence reads from unknown unrelated species push frequency estimates to-

ward the uniform distribution; filtering the reads based on haplotype likelihood minimizes

this effect. A) Sequence reads from unknown unrelated species have low maximum haplotype

likelihoods, giving rise to the long left tail of the distribution. By calculating the theoretical

distribution (blue) of maximum haplotype likelihoods based on the base quality scores from

the sequence data, reads whose maximum haplotype likelihood falls below a specified thresh-

old (red, z-score threshold = -2 in this example) can be filtered out. B) A typical example of

this effect, with 50% of the reads coming from the unknown species. C) Without filtering on

the haplotype likelihoods, error in frequency estimates increases with higher proportion of un-

known sequence reads. 75bp single-end 16S sequence reads were simulated from 20 species,

with varying proportions of reads from an unknown unrelated species (100x pooled coverage,

100 replicates per unknown proportion level).

these reads have low haplotype likelihoods across all the known species (Figure 2.8A). The end

result is that the frequency estimates are pushed toward a more uniform distribution (Figure

2.8B), as the reads of the unknown species give weight to all the known species in roughly equal

portions. We found that this effect can be minimized by implementing a haplotype likelihood

filter (see New Approaches), which effectively keeps only those reads that come from the known

species. Our simulations show that a haplotype filter z-score threshold of -2 works well to
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maintain good performance in the presence of unrelated unknowns (Figure 2.8C). Without the

haplotype filter, performance of the EM algorithm degrades as the proportion of the unknown

species in the pool increases.

2.4.9 Effects of Related Unknown Species on Frequency Estimation

We also investigated the scenario where there is a single unknown species that is related to one of

the known species in the pool. Again for simplicity, we simulated pools with 20 known species,

spiked with an unknown species from the same genus as one of the known species.

We found that, in general, the sequence reads coming from the unknown species increase the

estimated frequency of the known species that it is related to. However, this effect depends on

the sequence similarity between the unknown and the related known species. Reads that come

from a region where the two species differ significantly are filtered out and do not contribute to

the estimation.

This effect is limited to the estimate of the frequency of the known species that is related to

the unknown, and has little effect on the relative frequency estimates of the other species (Figure

2.9AB).

2.5 Discussion

We have presented a new method for estimating the frequencies of known haplotypes from

pooled sequence data, using the haplotype information contained in individual sequence reads.

We showed that the method outperforms methods based on allele frequencies, as well as

simple methods using sequence data. Using data from larger genomic regions improves the ac-

curacy of the estimate. Increased coverage and longer read lengths also improve the performance

of the algorithm. The method generally performs better for haplotype frequency distributions

with lower entropy (non-uniform) than those with higher entropy (uniform), which is particu-
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Figure 2.9: When the pool contains an unknown species that is related to one of the known

species, sequence reads from the unknown increase the frequency estimate of the most

closely related known species, but have little effect on the estimation of the relative fre-

quencies of the other known species. A) Sequence reads from an unknown species (black)

related to one of the known species (orange) contribute to the frequency estimate of that species.

Shown is a typical example of this effect, with 50% of the reads coming from the unknown

species. The relative abundances of the other known species are estimated accurately. B) Pres-

ence of the unknown species has little effect on the estimation of the relative frequencies of the

other (unrelated) known species. 75bp single-end 16S sequence reads were simulated from 20

known species and 1 unknown related species (100x pooled coverage, 100 replicates for each

unknown proportion level).

larly notable in metagenomics contexts, where species/strain abundances are far from uniform.

The method incorporates uncertainty in the sequence reads by using the reported base quality

scores. Recalibration of base quality scores using monomorphic sites in the pooled data leads to
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better performance.

We note that in the EM algorithm, as well as the two simple approaches, haplotype informa-

tion from individual sequence reads is combined across a genomic region, which minimizes the

effects of local areas of low coverage. By contrast, single-site allele frequency estimates have

larger variance at sites with lower coverage, which decreases the accuracy of methods based on

these estimates.

The method relies on the probabilistic assignment of sequence reads to the known haplo-

types. The method works best when the SNP density (the number of SNPs per base pair) is

high; ideally individual read pairs will cover multiple SNPs. In the DGRP Drosophila strains,

the SNP density is ∼ 1/20 SNP/bp so that 100bp paired-end reads contain on average 10 SNPs

per pair, which is sufficient for this probabilistic assignment. As sequence read lengths increase

with advances in sequencing technology, we anticipate that this method will be useful for a wide

variety of organisms.

This method can be improved to handle more complicated genomic situations. For example,

the probability model described could be enhanced with known information about between-

species or between-strain copy number variation. In addition, because estimation at the species

level (or above) requires mapping the reads to multiple references, there is room for improve-

ment in the efficiency of this step, including methods for mapping reads to multiple references

simultaneously with automatic calculation of haplotype likelihoods, which can then be input

directly into the EM iteration.

This method has immediate application in the analysis of pooled data from artificial selec-

tion experiments where the founding haplotypes are known. In essence, by using information

from the founding population, we are able to infer haplotype information about the final pooled

population, which has previously only been available when individuals have been sequenced

separately. This haplotype information can then be used for various purposes (e.g. to look for

signatures of selection).
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It should be noted that in the experimental evolution setting, the haplotype frequency esti-

mates obtained are local, and will vary across the genome due to recombination over the course

of the experiment. In the case where a recombination has occurred within the region under con-

sideration, nearly all sequence reads coming from the recombined haplotype will come from

one or the other of the two original haplotypes. Because of this, reads from the recombined

haplotype will contribute to the frequency estimates of both of the original haplotypes, with the

exact proportion determined by the location of the recombination point within the region. The

few reads that span a recombination point will have very low haplotype likelihoods, and will

contribute neglibly to the final estimate. In practice, one can choose the width of the genomic

region used for the estimation to be smaller than the expected length scale of recombination. For

example, in Drosophila selection experiments lasting 25 generations, we expect to see recombi-

nation breakpoints at a scale of ≈ 1mb, whereas our method obtains very accurate results with

much smaller regions of ≈ 100 kb.

Haplotype frequency estimation from pools may also be useful in QTL mapping studies.

In studies with recombinant inbred lines, several generations of inbreeding are carried out with

lines that are derived from mixed populations founded by multiple strains, and the parent of

origin for each segment in each inbred line is inferred and correlated with phenotypic trait values.

As an alternative, it may be possible to perform haplotype frequency estimation from pooled

sequencing of the mixed populations directly and map traits by correlating haplotype frequencies

with trait values.

In addition to applications in experimental evolution settings with known founder haplo-

types, we also explored whether the method may have utility for estimating the relative abun-

dances of known species from metagenomic data. We specifically tested the setting in which one

has short-read shotgun sequencing data from 16S rRNA, rather than amplicon-based 16S rRNA

sequences. The setting we have tested is relevant to the practical setting in which one generates

whole-genome metagenomic data and then focuses on reads from 16S rRNA for quantification

39



of known species. In our simulation experiments, we have explored various factors affecting

performance. We note how having closely related species in the sample that are not in the ref-

erence set will elicit an implicit ”clustering” behavior, in which the most closely related known

species in the reference set will have its frequency inflated (Figure 2.9A). The relative frequen-

cies of unrelated species are not affected however (Figure 2.9B). This behavior extends nicely to

the case where one is interested in the relative frequencies of species from a well characterized

genus (e.g. one in which most member species have known canonical 16S rRNA sequences).

In this case, we show the relative frequencies can be estimated well, even in the presence of

hundreds of background species (Figure 2.7). In these cases, our haplotype likelihood filter acts

as a form of clustering tool in that we only base the frequency estimates on reads that are close

to the taxa of interest.

Just as SNP density is highly relevant in the haplotype inference problem, a key factor in the

performance for metagenomic applications is the amount of 16S sequence divergence between

the taxa of interest. Our examples were based on species sets whose divergences were generally

between 5% and 33% and the method performed well in these settings. More closely related

species will be more difficult to distinguish, and at an extreme, strains within species will require

more than the 16S sequence to distinguish. One limitation is that our method infers frequencies

of taxa represented by specific canonical rRNA sequences. How our method would perform

with a single canonical sequence per genus, class, or phylum is not clear, and future extensions

of this work may seek to specifically alter the underlying probability model to include diversity

within taxa to specifically address this problem.

The potential advantage over existing methods for handling 16S data lie in the method’s abil-

ity to handle base quality scores explicitly and give probabilistic weights to the source of reads,

rather than making hard classifications and estimating frequencies based on those classifications.

As we have shown in the context of haplotype frequency estimation (Figure 2), such estimation

performs much worse than the probabilistic approach we take here.
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The software implementing the method, harp, is open source and available for download,

and can be easily integrated into existing analysis pipelines.

2.6 Material and Methods

2.6.1 Implementation

We implemented both simple approaches and the EM algorithm described above in a C++ pro-

gram called harp (Haplotype Analysis of Reads in Pools). The program takes as input a standard

BAM file with mapped sequence reads, a reference sequence in FASTA format, and known hap-

lotypes in the SNP data format used by the DGRP project (Mackay et al., 2012). Alternatively,

to estimate abundances of distinct species within a pool, the program will accept multiple BAM

files, each paired with the reference sequence used for the read mapping. The software uses the

samtools API for random access to BAM files (Li et al., 2009). The program includes many

options for the user to customize the analysis, including choice of algorithm, the genomic region

to analyze, parameters for sliding windows within the region, convergence threshold for the EM

algorithm, parameters used to generate multiple random initial estimates to avoid local maxima,

base quality score recalibration, and haplotype likelihood filtering threshold. The program also

calculates standard errors for the haplotype frequency estimates, using general properties of the

EM algorithm and maximum likelihood estimators (details on this calculation below).

2.6.2 Performance Evaluation

We used the following procedure to simulate pooled sequence data:

• Draw a random haplotype frequency distribution (the true distribution) from a symmet-

ric Dirichlet distribution. The symmetric Dirichlet distribution is parameterized with a

single parameter α that governs the uniformity of the randomly drawn frequency distribu-
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tions: α = 1 gives an identical probability to each possible frequency distribution, α > 1

generates frequency distributions that are close to uniform (i.e. all haplotypes at similar

frequencies), and α < 1 generates frequency distributions that are more non-uniform (i.e.

a few common haplotypes, and many rare ones). The parameter value α = .2 was cho-

sen to produce frequency distributions with non-uniformity similar to that observed in our

experimental Drosophila data.

• Draw random sequence reads by choosing the haplotype according to the true distribution

and the starting position uniformly at random over the given genomic region. For paired-

end reads, the paired end distance was chosen according to a Poisson distribution fitting

the experimental Drosophila data.

• For segregating sites denoted by ambiguous base codes, draw allele frequencies according

to a symmetric Dirichlet distribution. Choose the true base at a segregating site according

to the allele frequencies. (For biallelic sites denoted by a 2-base ambiguous code, e.g. R

for A or G, we set the Dirichlet parameter α = 1, i.e. the allele frequency was chosen

uniformly at random. For sites denoted by N (any) in the haplotype, we set α = .1, as we

expect that most of these sites have an allele that is at or near fixation).

• Generate base quality scores according to the empirical distribution obtained from the real

data (either Drosophila or 16S), and introduce sequencing errors with error rates deter-

mined by the base quality scores.

For the simulated Drosophila pooled sequence data, we generated mapped read files (SAM

format), which were subsequently converted to binary format (BAM) using samtools (Li

et al., 2009). For the simulated 16S rRNA sequence data, we generated raw read files (fastq

format), which were then mapped to reference sequences using bwa (Li and Durbin, 2010).

For our performance metric, we used the sum of squared errors between the true haplo-

type frequencies of the simulated data and the frequencies estimated by the EM algorithm:
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∑H
h=1

(
f trueh − f estimatedh

)2, in addition to the root mean squared error. We define ftrue to be

the realized frequencies of the haplotypes in the sequenced reads from the DNA pool. We do

this to quantify the error of estimation, rather than the stochasticity of the pooled sequencing.

For the purposes of comparison across simulations, we report the sum of squared errors in the

figures. However, we also give the equivalent root mean squared errors in the main text for

interpretation.

2.6.3 Simulation of Drosophila Pooled Sequence Data

To evaluate the performance of the algorithms, we used simulated pooled sequence data based on

experimental data from selection experiments in Drosophila melanogaster (Turner and Miller,

2012). The data consisted of Illumina 85bp and 100bp paired-end sequence reads generated

from 4 pools of 120 D. melanogaster individuals each, sequenced at 200x average coverage.

For our known haplotypes, we used the publicly available SNP data from 162 Drosophila inbred

lines representing Freeze 1 of the DGRP project. The published haplotypes include ambiguous

base codes (e.g. R for A or G) to represent sites that have multiple alleles still segregating

within the inbred line. The ambiguous base code N is used at sites where there was not enough

sequence data to make a base call.

2.6.4 Simulation of 16S rRNA Pooled Sequence Data

To evaluate the ability of the EM algorithm to estimate species abundances from a pool of 16S

rRNA sequences, we used sequences from the Greengenes 2011 release of its 16S rRNA se-

quence database (DeSantis et al., 2006), which consists of approximately 800,000 sequences.

We simulated 75bp single-end sequence reads with an empirical base quality score distribu-

tion based on the publicly available Illumina-sequenced “mock community” short read archive

datasets from the Human Microbiome Project (NIH HMP Working Group, 2009). Specific de-

tails on number of species used in each simulated experiment are described in the results.
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2.6.5 Formal EM Calculation

Expectation step: We calculate the expectation of the complete data log-likelihood, where the

expectation is taken over the posterior distribution of the missing data given the observed data

and the current estimate. Recall that pj,h = P (ηj = h|rj, f (i)) is the probability that read rj

came from haplotype h, given our current haplotype frequency estimate f (i).

Q(f |f (i)) = Eη|r,f (i) [logL(f |η, r)]

= Eη|r,f (i)
∑
j

logP (ηj, rj|f)

=
∑
j

Eηj |rj ,f (i) logP (ηj, rj|f)

=
∑
j

∑
h

P (ηj = h|rj, f (i)) logP (h, rj|f)

=
∑
j

∑
h

pj,h[logP (rj|h) + logP (h|f)]

=
∑
j

∑
h

pj,h log fh + C

= log
∏
h

f
∑

j pj,h
h + C

where C is a constant independent of f .

Maximization step: Our next estimate f (i+1) is given by the f that maximizes the expected

log-likelihood:

f (i+1) = argmax
f

Q(f | f (i))

First note that the function R(f) =
∏

h f
αh
h is maximized by fh = αh/

∑
i αi. (For example,

the maximum likelihood estimator for the parameters of a multinomial distribution is given by
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the vector of count proportions.)

Since log is monotonic and

∑
h

∑
j

pj,h =
∑
j

1 = N (the number of reads),

Q(f |f (i)) is maximized when, for all h:

fh =

∑
j pj,h

N
.

In other words, our next estimate f (i+1) is given by the average of the posterior vectors:

f (i+1) =

∑
j pj

N

2.6.6 Calculation of Standard Errors

We use general properties of the EM algorithm and maximum likelihood estimators to calculate

standard errors for our haplotype frequency estimates, following Lange (2010). For brevity, we

let L(f) be the log-likelihood of f . Our strategy to calculate standard errors of our maximum

likelihood estimate f̂ is as follows:

1. estimate the observed information I = −d2L(f̂)

2. f̂ is asymptotically normal with covariance matrix I−1, so the standard error estimates are

the square roots of the diagonals of I−1

One slight complication is that our estimate f̂ is subject to a linear constraint (the frequencies

must sum to 1). Below, we also show how to adjust this calculation to handle this constraint.
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2.6.7 Calculating d2L

Let g be the minorizing function for the EM algorithm:

g(f |f0) = Q(f |f0) + L(f0)−Q(f0|f0)

Then g satisfies the relations for all f, f0:

g(f |f0) ≤ L(f)

g(f0|f0) = L(f0)

Note that ∇g(f |f0) = ∇Q(f |f0). Also, L(f) − g(f |f0) is minimized f = f0, so ∇L(f) −

∇g(f |f0) = 0 at f = f0. This means that ∇L(f0) = ∇Q(f0|f0). Note that ∇Q(f0|f0) is the

gradient ∇Q(f |f0) computed as a function of f , then evaluated at f = f0.

In summary, we can write the score function S = (S1, . . . , SH)′, defined to be the gradient

of the log-likelihood, as:

S(f) = ∇L(f) = ∇Q(f |f)

Since dS = d2L, we need to find the partial deriviatives of S.

Recall that we have:

Q(f |f0) =
∑
h

(
∑
j

pj,h) log fh

where pj,h is the haplotype posterior vector, representing the probability that read rj came from

haplotype h.

Note that the pj,h depend on f0, but not f , so the partial derivatives of Q(f |f0) have a simple
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form:

∂Q(f |f0)
∂fh

=

∑
j pj,h(f0)

fh

Now we evaluate at f = f0, and drop the subscript:

Sh(f) =

∑
j pj,h(f)

fh

We can now compute partial derivatives of the score function:

∂Sh
∂fk

=
1

fh

∑
j

∂pj,h
∂fk

− 1k=h
f 2
h

∑
j

pj,h

To compute the partial derivatives of pj,h, first write pj,h as:

pj,h =
lj,hfh
Pj

where Pj =
∑

h lj,hfh is the total probability of read rj . Since ∂Pj

∂fk
= lj,k, we have:

∂pj,h
∂fk

=
lj,h
Pj

1k=h − lj,hfh
1

P 2
j

∂Pj
∂fk

=
lj,h
Pj

1k=h −
lj,hlj,kfh
P 2
j

2.6.8 Adjusting for the linear constraint

We continue to follow Lange (2010) to handle the linear constraint
∑

h fh = 1. Let V = 1tH =

(11 · · · 1) be the row vector with H 1’s, so we can write our constraint as V f = 1.
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We let W be a matrix with H − 1 column vectors orthogonal to V :

W =



1 1 · · · 1

−1 0 · · · 0

0 −1 · · · 0
...

...
...

...

0 0 · · · −1


We reparametrize by β, using the relation f = α + Wβ, where α satisfies the constraint

V α = 1. As a function of β, the log-likelihood L(α + Wβ) has observed information

−W td2L(α + Wβ)W , which gives an estimate Var(β̂) = −[W td2L(f̂)W ]−1. This gives the

estimate Var(f̂) = Var(Wβ̂) = −W [W t d2L(f̂)W ]−1W t, where d2L(f̂) was estimated above.

2.6.9 Haplotype Likelihood Filter Threshold

In this section we show how we approximate the mean and variance of the maximum haplotype

likelihood distribution, which are used to calculate the threshold for the haplotype likelihood

filter.

The main idea is that the maximum haplotype likelihood P (r|η, q) for a read is usually at-

tained by the actual haplotype from which the read was copied. Because of this, we can approx-

imate the mean and variance of the maximum haplotype likelihood distribution by the mean and

variance of the distribution of P (r|η = h, q) for reads r copied from a fixed haplotype h, under

the empirical distribution of the base quality scores q. For ease of calculation and implementa-

tion, we actually calculate the statistics for the log-likelihood distribution logP (r|η = h, q). We

also suppress the dependence on h in the following for ease of notation.

We assume we have an empirical per-position base quality score distribution obtained from

the data, where for simplicity we assume that the base quality scores at different positions

are independent of each other. So for reads of length L, we have discrete random variables
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(Q1, . . . , QL). For example, for Illumina reads, Qi will take values in {0, . . . , 40}. For a base

quality score q, we let ε(q) denote the probability of a read error for that base. Typically we will

have the Phred-encoded error probabilities, so ε(q) = 10−q/10.

Let (h1, . . . , hL) denote the true haplotype sequence from which the read is copied,

(q1, . . . , qL) denote the base quality scores, and (r1, . . . , rL) denote the read bases. Note the

slight change in notation from the description of the probability model (New Approaches): here

the subscript denotes position in the sequence read.

By our assumption of position independence, we have logP (r|q) =
∑L

i=1 logP (ri|qi). Note

that each of these terms is random:

logP (ri|qi) =

log(1− ε(qi)) w/probability 1− ε(qi)

log(ε(qi)/3) w/probability ε(qi)

where the first event corresponds to ri = hi (no error), and the second event represents the 3

possible error bases when ri 6= hi, each one occuring with probability ε(qi)/3.

Next we calculate the conditional expectation of logP (ri|qi) given qi:

E[logP (ri|qi) | qi] = [1− ε(qi)] log(1− ε(qi)) +

ε(qi) log(ε(qi)/3)

Note that this expression does not depend on ri. Now we can take the expectation over Qi:

E[logP (ri|qi)] = EE[logP (ri|qi) | qi]

=
∑
qi

E[logP (ri|qi) | qi] P (Qi = qi)

Note that this expression doesn’t depend on either ri or qi, and is a function solely of the empir-

ical distribution Qi. Finally, we can sum over positions to obtain:

E[logP (r|q)] =
L∑
i=1

E[logP (ri|qi)]
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which represents the expected log haplotype likelihood for a read r corresponding to the true

haplotype h, under the empirical base quality distribution.

Similarly, we calculate E[(logP (ri|qi))2] for each position, from which we can obtain the

per-position variance Var[logP (ri|qi)]. Again by our position-independence assumption, we

have:

Var[logP (r|q)] =
L∑
i=1

Var[logP (ri|qi)]

We use the calculated mean and variance of logP (r|q) to translate a user-defined z-score

threshold into a haplotype log-likelihood threshold for filtering out low-likelihood reads.
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CHAPTER 3

forqs: Forward-in-time Simulation of Recombination,

Quantitative Traits, and Selection

3.1 Abstract

forqs is a forward-in-time simulation of recombination, quantitative traits, and selection. The

forqs simulator was designed to investigate haplotype patterns resulting from scenarios where

substantial evolutionary change has taken place in a small number of generations due to recom-

bination and/or selection on polygenic quantitative traits. To do this, forqs tracks individual

haplotype chunks during the course of the simulation; each chunk carries an identifier specifying

the ancestral individual from which the block is derived. forqs is implemented as a command-

line C++ program, using a modular design that gives the user great flexibility in creating custom

simulations.

3.2 Introduction

Simulations have a long history in population genetics, both for verifying analytical results and

for exploring population models that are mathematically intractable. Population genetics sim-

ulations can be broadly classified as forward-in-time (e.g. Wright-Fisher) or backward-in-time

(e.g. coalescent). Coalescent simulations (e.g. ms (Hudson, 2002), MaCS (Chen et al., 2009),

fastsimcoal (Excoffier and Foll, 2011)) are very efficient for simulating neutral sequence
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data because they only need to track lineages that are ancestral to the sample. While it is possi-

ble to simulate certain selection scenarios within the coalescent framework (Hudson and Kaplan,

1988; Ewing and Hermisson, 2010), one must turn to forward-in-time simulations to model se-

lection in a flexible way.

Many forward-in-time simulators are currently available. Most of these simulators use a

mutation-centric approach, implemented by storing the mutations carried by individuals in an

array. To handle selection, the majority of these simulators assign selection coefficients to

individual mutations (e.g. ForwSim (Padhukasahasram et al., 2008) Fregene (Chadeau-

Hyam et al., 2008) GENOMEPOP (Carvajal-Rodriguez, 2008) SFS CODE (Hernandez, 2008)

TreesimJ (O’Fallon, 2010), SLiM (Messer, 2013)), while a few also include support for

quantitative traits (e.g. ForSim (Lambert et al., 2008), quantiNemo (Neuenschwander et al.,

2008), simuPOP (Peng and Kimmel, 2005)). Hoban et al. (2011) and Yuan et al. (2012) are

recent reviews providing a comprehensive comparison of these and other simulators.

In many scenarios of biological interest, substantial evolutionary change has taken place

in a small number of generations due to recombination and/or selection on standing variation,

rather than mutational input. For example, one may be interested in the genome-wide haplotype

patterns that emerge from admixture between historically isolated populations (Wegmann et al.,

2011), or from artificial selection on a quantitative trait. Studying these haplotype patterns can

be difficult with existing forward-in-time simulators, because detailed information about the

mosaic haplotype structure of individuals is not readily available, and must be inferred from

the output sequences of the simulation and/or stored recombination event data. In addition,

forward-in-time simulators that store entire sequences incur a severe trade-off between the size

of the genomic regions and the size of the populations simulated.

Motivated by such examples, we have implemented a new forward-in-time simulation ap-

proach that, instead of tracking single-site variants, tracks individual haplotype chunks as they

recombine over multiple generations. Further, we have designed the simulator for fast simulation

52



of quantitative traits under selection. We have labeled this software forqs (Forward-in-time

simulation of Recombination, Quantitative Traits, and Selection). Similar approaches have been

implemented recently by Haiminen et al. (2013) and by Aberer and Stamatakis (2013), for the

simple selection models with per-mutation fitness effects.

The haplotype-based design allows for fast simulation of whole genomes, with very efficient

memory usage. For example, forqs can easily simulate two populations (size 10,000 each)

selected for different optimal trait values, where individuals have human-sized genomes (23

chromosome pairs, 100 mbp each), taking ∼2 seconds/generation. For comparison, existing

forward simulators are limited by the amount of sequence that can be stored in arrays in memory:

for the above 20,000 individuals, 16GB of memory would permit the storage of only 3.2 million

base pairs of sequence per individual, which is an order of magnitude smaller than the smallest

human chromosome. forqs’ design also preserves information about the haplotype structure

of individuals, which allows for immediate identification of genomic regions where individuals

share identical-by-descent haplotype tracts.

Our simulator uses a modular architecture to allow the user to flexibly specify recombination

maps, mutation rates, demographic models, quantitative traits and fitness functions. This mod-

ular approach facilitates simulation of complicated scenarios and investigation of the resulting

haplotype patterns. forqs is currently under active development to support ongoing projects.

3.3 Design and Implementation Summary

forqs begins with a set of founding haplotypes carried by the individuals in the initial gener-

ation. Individuals are diploid, and carry a user-specified number of chromosome pairs. By as-

signing a unique identifier to each founding haplotype, individual haplotype chunks are tracked

as they recombine over subsequent generations (Figure 3.1). For the purposes of simulation,

any existing neutral variation on the haplotype chunks can be ignored, and only those loci with
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crossover at
position 1234

(0, 1) (0, 2)

(0, 1)

(1234, 2)

crossover at
position 5678

(5678, 1)

Haplotype Chunk: (position, id)

Chromosome: array of haplotype chunks

Figure 3.1: forqs chromosome representation. An individual chromosome is represented by

a list of haplotype chunks. Each haplotype chunk is represented by two numbers (position, id):

the position where it begins, and the identifier of the founding haplotype from which it is derived.

This cartoon depicts a chromosome with 3 haplotype chunks as the result of recombination

(double crossover) between two founder chromosomes.

fitness effects need to be tracked.

forqs performs the following actions during a single cycle of the simulation: 1) gener-

ation of new populations, 2) genotyping, 3) quantitative trait evaluation, 4) fitness evaluation,

and 5) reporting. forqs has a flexible design in which the simulator delegates specific tasks

or calculations to configurable modules. The user specifies which modules to instantiate in a

configuration file.

In addition to the primary modules that are used to specify demography, mutation, recombi-

nation, quantitative traits, fitness, and reported output, there are several building block modules

that provide basic functionality to the primary modules. For example, Trajectory modules

provide a unified method for specifying values that change over time, such as population sizes

or migration rates. Similarly, Distribution modules can be used to specify how to draw

particular random values (e.g. QTL positions or allele frequencies).

As an illustration of forqs configuration, suppose that a user wanted to simulate pop-

ulations undergoing neutral admixture. The user would specify a PopulationConfig-

Generator module representing a stepping stone or island model with the desired popula-

tion size and migration rate trajectories. However, the user would not specify any quantitative
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trait modules, and would use the default FitnessFunction module that assigns identical

fitness values to all individuals. On the other hand, to simulate an artificial selection experi-

ment with truncation selection on a single quantitative trait, the user would specify the trait with

quantitative trait loci (QTLs) and effect sizes, and choose a FitnessFunction module that

selects the desired proportion of individuals to produce the next generation. Alternatively, the

user could indicate that the QTLs and effect sizes should be drawn randomly from user-specified

distributions.

The representation of chromosomes as haplotype chunks in forqs makes very efficient use

of memory, independent of the size of the chromosomes. On a typical laptop computer, for

a population size of 1 million, simulations take ∼1.5 sec/gen for neutral simulations and ∼3

sec/gen with selection at a single locus. Decreasing the population size allows the simulation

of a greater number of generations in a reasonable amount of time: a population size of 10,000

takes∼3 sec per 100 generations (without selection, with a slight increase with selection). How-

ever, forqs’ design comes with the tradeoff that memory usage grows linearly with the number

of generations simulated, due to recombination. Thus, for investigations focusing on mutational

input over a large number of generations (e.g. studies involving demographic changes taking

place over thousands of generations), forqs’ design is not as efficient as array-based imple-

mentations (e.g. SLiM or SFS CODE) that were designed specifically for these scenarios. Simi-

larly, we recommend that forqs be used in conjunction with a coalescent simulator to generate

neutral variation, rather than running forqs for a long burn-in period to reach mutation-drift

equilibrium.

forqs has been extensively tested for correctness, both at the level of individual code units,

and in its large-scale behavior in comparison to theoretical predictions from population genetics

and quantitative genetics. Validation results, tutorials and documentation can be found in the

Supplementary Information. Configuration files for all simulations mentioned in this manuscript

are included in the forqs software packages.
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3.4 Getting Started

forqs binaries (Linux, OSX, and Windows) are distributed in zip file packages containing the

executables, documentation, and example configuration files. The latest forqs packages are

available here:

https://bitbucket.org/dkessner/forqs/downloads

forqs is a command line program that takes a single argument specifying the configuration

file for the simulation:

forqs config_file

The forqs packages include an examples directory containing several example configu-

ration files. After unzipping the forqs package, you can run forqs directly from the package

directory:

bin/forqs examples/example_1_locus_selection.txt

forqs puts all output files in the output directory specified in the configuration file. Af-

ter running this command, you will find a new directory output_example_1_locus_

selection with the output from this simulation. For convenience, you can put the forqs

executable somewhere in your PATH, e.g. ˜/bin, so that you don’t have to type the path when

running the program.

In addition to the document you are now reading, forqs packages include the forqsMod-

ule Reference (docs/forqs_module_reference.html) which contains details about

the configurable modules available to the user, including parameter names, usage, and links

to examples (Figure 3.2).
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Figure 3.2: forqs Module Reference screenshot.

3.5 Modular Architecture

forqs begins with a set of founding haplotypes representing the individuals in the initial gener-

ation. By assigning a unique identifier to each founding haplotype, individual haplotype chunks

are tracked as they recombine over subsequent generations. For the purposes of simulation, any

existing neutral variation on the haplotype chunks can be ignored. When simulating selection

on standing variation, only those loci with fitness effects need to be tracked.

Internally, forqs represents an individual chromosome as a list of haplotype chunks

(Figure 3.1). Individuals are diploid, and carry a user-specified number of chromosome

pairs. To represent genetic variation at particular loci, forqs queries functions called
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VariantIndicators to obtain the variant values carried by the founding haplotypes at those

loci.

 Population Config (1)

populations,
data

trait value
data

genotype
data

new
populations

Variant
Indicator

(4)

Quantitative
Traits

(5)

Reporters
(6)

Recombination (2)

Mutation (3)

Figure 3.3: forqs modular design. The orange boxes represent places where the user can plug

in configurable modules.

forqs uses configurable modules (Section 3.7) that are plugged into the main simulator

to change the behavior of the simulation (Figure 3.3). forqs performs the following actions

during a single cycle of the simulation:

(1-3) Generation of new populations: The PopulationConfigGenerator module (1)

provides the simulator with a population configuration that specifies how to create in-

dividuals in the next generation from parents in the previous generation, based on user-

specified fitness functions, population size and migration rate trajectories. Recombination

and mutation are handled by a user-specified RecombinationPositionGenerator
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module (2) and/or MutationGenerator module (3), respectively.

(4) Genotyping: individuals are “genotyped” at a set of loci, using the Variant-

Indicator module to obtain variant (SNP) values for each individual. The list of loci

to genotype is determined from the quantitative traits and reporters that are specified by

the user.

(5) Quantitative trait evaluation: for each quantitative trait, a trait value is calculated for each

individual, based on the individual’s genotype at loci affecting the trait. Each quantitative

trait is specified by a QuantitativeTrait module.

(6) Reporting: each Reporter module updates its output files using current information

from the populations (which includes genotypes, trait values, and fitnesses).

Each configurable module in Figure 3.3 is actually an interface with multiple implementa-

tions. The user specifies which module implementations to instantiate in a forqs configuration

file. More details on the primary module interfaces and their interaction with the simulator can

be found in Section 3.7.4. The forqs Module Reference contains detailed information on the

primary module implementations available to the user.

In addition to the primary modules shown in the diagram, there are several building block

modules (Section 3.7.5) that provide basic functionality to the primary modules. For example,

Trajectory modules provide a unified method for specifying values that change over time,

such as population sizes or migration rates. Similarly, Distribution modules can be used to

specify how to draw particular random values, for example, QTL positions or allele frequencies.
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3.6 Tutorial Introduction

In this section we introduce forqs configuration files, starting with a minimal example and

gradually adding modules to add complexity to the simulation. All example configuration files

can be found in the examples directory of the forqs package.

3.6.0 A minimal example

We start with a minimal example configuration file:

#

# tutorial_0_minimal.txt

#

PopulationConfigGenerator_ConstantSize pcg

population_size = 10

generation_count = 3

SimulatorConfig

output_directory = output_tutorial_0_minimal

population_config_generator = pcg

There are two modules specified in this configuration file. The first module is

PopulationConfigGenerator ConstantSize, which we have assigned the object

id pcg. The object id, which can be any text string, allows other objects to ref-

erence this object. We have set two parameters for this module, which specify the

population size (population size = 10) and the number of generations to simulate

(generation count = 3).

The second module is SimulatorConfig, the top-level module. This module must

be specified last in the configuration file, because it has references to the primary mod-

ules (the general rule is: objects must be specified before they can be referenced by other

objects). In this case, we are telling SimulatorConfig to use object pcg as our

PopulationConfigGenerator, which is the only primary module that is required to
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be specified. The other primary modules have trivial defaults, and we leave them unspec-

ified. In addition to the primary module references, SimulatorConfig also contains

global simulation parameters. In this case, we have specified the output directory to be

output_tutorial_0_minimal.

The simulator queries the PopulationConfigGenerator each generation to obtain a

population configuration, which contains the information necessary to create the next generation

from the previous one. In this case, the population configuration is the same each generation —

it tells the simulator to create a population of 10 individuals with parents drawn from the same

population in the previous generation.

When you run forqs on this example (tutorial_0_minimal.txt), you will see

screen output showing that the simulation ran for 3 generations. You will also see the new

output directory output_tutorial_0_minimal. If you look in this directory, you’ll see

a single file: forqs.simconfig.txt. This file contains the configuration used for the sim-

ulation, including unspecified default parameters. However, there are no other output files in

the directory, so we don’t actually know what happened during the simulation. To get more

information, we need to specify Reporters to report output — we show how to do this in the next

section.

3.6.1 Recombination and reporting output

In this example, we add modules to include recombination and report output:

#

# tutorial_1_recombination_reporter.txt

#

PopulationConfigGenerator_ConstantSize pcg

generation_count = 3

population_count = 1

population_size = 10

chromosome_lengths = 1e6
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RecombinationPositionGenerator_Uniform rpg

rate = 1

Reporter_Population reporter_population

# update_step = 1

SimulatorConfig

output_directory = output_tutorial_1_recombination_reporter

population_config_generator = pcg

recombination_position_generator = rpg

reporter = reporter_population

When creating offspring chromosomes from parental chromosomes, the simulator uses the

RecombinationPositionGenerator module to generate lists of recombination posi-

tions. In this case, we are using RecombinationPositionGenerator Uniform, which

chooses the positions uniformly at random along the chromosome. Note the use of the compound

parameter chromosome length rate that specifies both the length of the chromosome and

the recombination rate.

Reporter modules are used by forqs to output information about the simulation. The

user can specify an arbitrary number of Reporters, depending on what output is desired.

Reporter Population outputs forqs population files, where each individual is repre-

sented as a list of chromosomes (one chromosome per line) and each chromosome is repre-

sented as a list of haplotype chunks. By default, population files will be produced only for the

final generation — setting update step = n will tell the Reporter Population to out-

put population files every n generations. You can see this by uncommenting (removing the ’#’

character) the update step line in the configuration file and re-running the simulation.

The population files contain the raw information about the simulated individuals, and are not

meant to be analyzed directly. Instead, they can be used to propagate existing neutral variation

from the founding haplotypes of the initial generation to the mosaic haplotypes of the final

generation (see Section 3.8).
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However, we will use the population files to illustrate forqs’ internal representation of

chromosomes. The first chromosome in the population file from the final generation is:

+ { (0,12) (704958,7) }

This means that the first chromosome of the first individual is made up of two haplotype chunks:

the first chunk (0,12) starts at position 0 and comes from founder individual 12; the second chunk

(704958,7) starts at position 704958 and comes from founder individual 7. Now comment out

the following line in SimulatorConfig:

recombination_position_generator = rpg

which ’un-plugs’ the RecombinationPositionGenerator from the simulator. Now re-

run the simulation, specifying a different output directory on the command line:

forqs tutorial_1_recombination_reporter.txt output_directory=out2

When you look at the resulting final population file, you will see that all chromosomes consist

of a single chunk, as you would expect with no recombination.

3.6.2 Wright-Fisher simulation

Our next example is a simple Wright-Fisher simulation where we track the allele frequency at a

single locus under neutral drift:

#

# tutorial_2_wright_fisher.txt

#

PopulationConfigGenerator_ConstantSize pcg

population_size = 100

generation_count = 200

# population_count = 10
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Locus my_locus

chromosome = 1

position = 100000

VariantIndicator_SingleLocusHardyWeinberg vi

locus = my_locus

allele_frequency = .5

Reporter_AlleleFrequencies reporter_allele_freqs

locus = my_locus

SimulatorConfig

output_directory = output_tutorial_2_wright_fisher

population_config_generator = pcg

variant_indicator = vi

reporter = reporter_allele_freqs

In this example, the population size is 100, the initial allele frequency is .5, and the simulation

runs for 200 generations.

The Locus module defines a single site — in this case it is position 100000 on chromosome

1. The Locus has id my locus, and this id is used by two other modules to refer to this locus.

As we saw in the previous example, forqs represents chromosomes as lists of haplotype

chunks, with no information about nucleotides or variant (SNP) values at any position. (To be

concrete, we think of a variant value as being 0 or 1, but forqs variant values can be anything

in the range 0–255, so we are not restricted to bi-allelic SNPs). However, if we give forqs

the variant values for the founding haplotypes, it can calculate variant values for any mosaic

chromosome. This information is represented by a VariantIndicator, which is a function

that tells forqs which founding chromosomes contain which variants.

In our case, we specify a VariantIndicator SingleLocusHardyWeinberg,

which assigns variants to individuals in Hardy-Weinberg proportions. Because we have spec-

ified an initial allele frequency of .5, this means that of the founding individuals, 25% will be

homozygote 0, 25% will be homozygote 1, and 50% will be heterozygotes.
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We also want to track the allele frequency at this locus, so we specify a

Reporter AlleleFrequencies, which reports the allele frequency at each generation.

You will find the output in the file allele_frequencies_chr1_pos100000.txt.

You may have noticed the commented line with the parameter population count

= 10. By uncommenting this line, you will tell forqs to simulate 10 populations.

PopulationConfigGenerator ConstantSize does not allow migration between pop-

ulations, so this effectively gives 10 independent Wright-Fisher simulations. The resulting allele

frequency trajectories can all be found in the same output file, with one column per population.

As expected, you will see that the alternate allele (1) has been fixed or lost in some populations,

and is still polymorphic in others.

3.6.3 Selection

In this example, we add selection to our Wright-Fisher simulation.

#

# tutorial_3_selection.txt

#

PopulationConfigGenerator_ConstantSize pcg

population_size = 100

generation_count = 100

population_count = 10

fitness_function = qt

Locus my_locus

chromosome = 1

position = 100000

VariantIndicator_SingleLocusHardyWeinberg vi

locus = my_locus

allele_frequency = .5

QuantitativeTrait_SingleLocusFitness qt
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locus = my_locus

w0 = 1

w1 = 1.1

w2 = 1.2

Reporter_AlleleFrequencies reporter_allele_freqs

locus = my_locus

Reporter_TraitValues reporter_trait_values

quantitative_traits = qt

Reporter_DeterministicTrajectories reporter_deterministic_trajectories

initial_allele_frequency = .5

w0 = 1

w1 = 1.1

w2 = 1.2

SimulatorConfig

output_directory = output_tutorial_3_selection

population_config_generator = pcg

variant_indicator = vi

quantitative_trait = qt

reporter = reporter_allele_freqs

reporter = reporter_trait_values

reporter = reporter_deterministic_trajectories

For this simulation, we add a quantitative trait representing fitness determined by an indi-

vidual’s genotype at a single locus: QuantitativeTrait SingleLocusFitness. The

parameters w0, w1, w2 are used to specify the fitness for individuals with genotype 0, 1, and

2, respectively. In general, a quantitative trait can depend on multiple loci on multiple chromo-

somes, as well as on other quantitative traits. Note that the name of this quantitative trait qt is

passed to the PopulationConfigGenerator as the fitness function parameter.

We also add some useful Reporters that output the mean fitnesses of the populations as

well as the deterministic trajectories expected in the limit of infinite population size. These out-

put files can be easily read into a plotting application (e.g. R) to compare the random trajectories
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with the deterministic trajectories (Figure 3.4).
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Figure 3.4: Allele frequency trajectories from selection simulation.

3.6.4 Trajectories

This section shows how to use Trajectory modules to specify population sizes that change

over time. In general, Trajectory modules can be used to specify any numeric value that

varies by population and generation – other examples include mutation rates and migration rates.

In the first example (tutorial_4a_trajectories.txt), there are two populations

following the same population size trajectory: constant size 100 until generation 2, followed by

a linear increase in population size until it reaches 400 at generation 5, after which the population

size stays at 400. This is accomplished by specifying each piece (Trajectory Constant,

Trajectory Linear, Trajectory Constant) and composing the pieces together with
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Trajectory GenerationComposite.

#

# tutorial_4a_trajectories.txt

#

Trajectory_Constant popsize_1

value = 100

Trajectory_Linear popsize_2

begin:value = 2 100

end:value = 5 400

Trajectory_Constant popsize_3

value = 400

Trajectory_GenerationComposite popsize

generation:trajectory = 0 popsize_1

generation:trajectory = 2 popsize_2

generation:trajectory = 5 popsize_3

PopulationConfigGenerator_LinearSteppingStone pcg

generation_count = 8

population_count = 2

population_size = popsize

SimulatorConfig

output_directory = output_tutorial_4a_trajectories

write_popconfig = 1 # set this flag to write out the popconfig file

population_config_generator = pcg

Note that PopulationConfigGenerator LinearSteppingStone has a

population size parameter whose value must be the id of a Trajectory module

(rather than a numeric value). Also, unless otherwise specified, each Trajectory gives the

same numeric value for each population in a given generation. You can see the raw population

configuration generated by including the parameter write popconfig = 1, which tells
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forqs to write out the population configs in a file forqs.popconfig.txt. After running

this example, you can examine forqs.popconfig.txt to see the population sizes.

In the next example (tutorial_4b_trajectories.txt), population 1 fol-

lows the same population size trajectory as in the first example, while popula-

tion 2 experiences exponential growth, doubling each generation (with initial popu-

lation size 1000). In order to specify this scenario, each population size trajec-

tory is specified separately (popsize pop1 and popsize pop2 in this example),

and the two are composed with Trajectory PopulationComposite. When

Trajectory PopulationComposite is queried for a value for a population, it returns

the value obtained from the appropriate sub-trajectory.

#

# tutorial_4b_trajectories.txt

#

# population 1

Trajectory_Constant popsize_pop1_1

value = 100

Trajectory_Linear popsize_pop1_2

begin:value = 2 100

end:value = 5 400

Trajectory_Constant popsize_pop1_3

value = 400

Trajectory_GenerationComposite popsize_pop1

generation:trajectory = 0 popsize_pop1_1

generation:trajectory = 2 popsize_pop1_2

generation:trajectory = 5 popsize_pop1_3

# population 2

Trajectory_Exponential popsize_pop2

generation_begin = 0
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value_begin = 1000

rate = 0.693147 # log(2); population size doubles each generation

# composite trajectory

Trajectory_PopulationComposite popsize

trajectories = popsize_pop1 popsize_pop2

PopulationConfigGenerator_LinearSteppingStone pcg

generation_count = 8

population_count = 2

population_size = popsize

SimulatorConfig

output_directory = output_tutorial_4b_trajectories

write_popconfig = 1 # set this flag to write out the popconfig file

population_config_generator = pcg

3.6.5 Quantitative traits

In this section, we present an example of specifying a quantitative trait by specifying quantitative

trait loci (QTLs) and their effect sizes.

#

# tutorial_5_qtl.txt

#

PopulationConfigGenerator_ConstantSize pcg

generation_count = 10

population_count = 1

population_size = 100

chromosome_pair_count = 3

chromosome_lengths = 1e6 1e6 1e6

fitness_function = ff

Locus locus1

chromosome = 1

position = 1000
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Locus locus2

chromosome = 2

position = 2000

Locus locus3

chromosome = 3

position = 3000

LocusList loci

loci = locus1 locus2 locus3

VariantIndicator_Random vi

locus_list:population:frequencies = loci * .5 .5 .5

QuantitativeTrait_IndependentLoci qt

qtl = locus1 0 .1 .2

qtl = locus2 0 .2 .4

qtl = locus3 0 .1 .2

environmental_variance = .05

FitnessFunction_TruncationSelection ff

quantitative_trait = qt

proportion_selected = .5

Reporter_AlleleFrequencies reporter_allele_frequencies

quantitative_trait = qt

Reporter_TraitValues reporter_trait_values

quantitative_traits = qt

write_full = 1

SimulatorConfig

output_directory = output_tutorial_5_qtl

population_config_generator = pcg

variant_indicator = vi

quantitative_trait = qt

quantitative_trait = ff

reporter = reporter_allele_frequencies

reporter = reporter_trait_values
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write_vi = 1

In this example, we specify a single population (size 100) where individuals have 3 chromo-

somes. We specify 3 loci, each on a different chromosome.

VariantIndicator Random is used to assign variants to the initial haplotypes ran-

domly, according to the specified allele frequencies – in this case, the variant allele frequency

is .5 for each locus. The ’*’ indicates that all populations have the same allele frequencies –

because there is only one population, we could have used ’1’ in place of ’*’. The parame-

ter write vi = 1 in SimulatorConfig tells forqs to write the file forqs.vi.txt

containing lists of the initial haplotypes carrying the variant allele at each locus.

QuantitativeTrait IndependentLoci specifies a quantitative trait where the ef-

fects of variants at different loci are independent of each other, i.e. there are no epistatic effects.

Each QTL is listed with its per-genotype effects – in this case, individuals with genotype 0, 1,

or 2 at locus1 will have 0, .1, or .2 added to their trait value, respectively. Alternatively, QTL

effect sizes and dominance values can be chosen randomly according to specified distributions.

For an example of this, see example_qtl_random.txt which also demonstrates the use of

LocusList Random to pick the loci randomly as well.

In this example, FitnessFunction TruncationSelection assigns fitness values

of 1 to individuals in the upper half of the distribution, and 0 to individuals in the lower half

(proportion selected = .5). Reporter AlleleFrequencies uses the parame-

ter quantitative trait = qt, which tells it to report allele frequencies for all QTLs

associated with the trait. Reporter TraitValues reports mean trait values for the popu-

lation each generation; the parameter write full = 1 tells it to also report individual trait

values for each generation.
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3.6.6 Reporting haplotype frequencies

This example shows the use of Reporter HaplotypeFrequencies to report local haplo-

type frequencies in the simulated populations.

In this example, there is a single locus that confers an additive fitness advantage to the in-

dividuals carrying the selected variant. The VariantIndicator specifies which haplotype

ids actually carry the variant: in this case, VariantIndicator IDRange assigns the value

1 to the first 1000 haplotype ids, i.e. the first 500 individuals are homozygous for the selected

variant.

Reporter HaplotypeFrequencies uses a HaplotypeGrouping module that

specifies how haplotype ids should be grouped. The grouping can be as fine-grained as a single

haplotype id per group, but for simplicity we have specified just two groups: those individuals

who carry the selected variant, and those who don’t. Reporter HaplotypeFrequencies

then reports local proportions of the two groups in the population.

We have specified a relatively high recombination rate (3 crossovers per meiosis on av-

erage) and strong selection (.1 selection coefficient) in order to illustrate the change in lo-

cal haplotype frequencies in just a few generations. After running the example, the output

file haplotype_frequencies_chr1_final_pop1.txt shows that haplotypes carry-

ing the selected variant have risen to high frequency near the selected locus, but not as much in

regions farther away, due to recombination. The parameter update step = k will result in

reporting of local haplotype frequencies every k generations (default is to report only the final

generation).

#

# tutorial_6_haplotype_frequencies.txt

#

PopulationConfigGenerator_ConstantSize pcg

generation_count = 20

population_count = 1
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chromosome_pair_count = 1

chromosome_lengths = 1e6

population_size = 1000

fitness_function = qt

RecombinationPositionGenerator_Uniform rpg

rate = 3

Locus selected_locus

chromosome = 1

position = 500000

VariantIndicator_IDRange vi

locus:start:count:step:value = selected_locus 0 1000 1 1

QuantitativeTrait_IndependentLoci qt

qtl = selected_locus 1 1.1 1.2

Reporter_AlleleFrequencies reporter_allele_frequencies

quantitative_trait = qt

HaplotypeGrouping_Uniform hg

ids_per_group = 1000 # 2 groups of 500 individuals

Reporter_HaplotypeFrequencies reporter_haplotype_frequencies

haplotype_grouping = hg

chromosome_step = 1e5

#update_step = 1

SimulatorConfig

output_directory = output_tutorial_6_haplotype_frequencies

population_config_generator = pcg

recombination_position_generator = rpg

variant_indicator = vi

quantitative_trait = qt

reporter = reporter_allele_frequencies

reporter = reporter_haplotype_frequencies
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3.7 Modules

In this section, we give an overview of the forqsmodule interfaces. For information about spe-

cific forqsmodule implementations, including parameter names, usage, and links to examples,

please refer to the forqs Module Reference (forqs module reference.html).

3.7.1 Module types and interfaces

forqs has a single top-level module called SimulatorConfig. There are seven primary

modules, corresponding to the orange boxes Figure 3.3, which represent the main places where

forqs can be customized. There are also several building block modules, which are used by

the primary modules.

Multiple modules may share a common interface, as indicated by their names. For example,

Reporter Timer and Reporter AlleleFrequencies both implement the Reporter

interface. Modules with the same interface can be used interchangeably by the simulator.

In addition, specific modules can be instantiated multiple times (with different object ids and

parameters) – for example, Reporter AlleleFrequencies can be used to report allele

frequencies at several different loci.

By mixing and matching different modules, the user has a great deal of flexibility in cre-

ating customized simulation scenarios. In addition, forqs can easily be extended with new

functionality by adding new modules that implement existing module interfaces.

3.7.2 Module specification and instantiation

Each forqs module specified in the configuration file corresponds to an object that is instan-

tiated by the simulator before the simulation starts. The first line of a module specification

contains the module name and object id. Each subsequent line specifies a parameter of the mod-
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ule, formatted as a name-value pair: name = value. The value is read as a string, but may be

interpreted as an integer, floating point, string, or list, depending on the parameter. Each module

determines how its parameter values are interpreted, and interpretation errors are reported to

the user. In some modules, multiple parameter values may be specified with the same name, in

which case each value specified is appended to a list. A blank line ends the specification for that

module.

As an example, here is the specification of a Locus module, which represents a single
nucleotide position:

Locus my_locus

chromosome = 1

position = 500000

The first line specifies a Locus object with id my locus. The two parameters specify which

chromosome (1) and the position on the chromosome (500000).

After parsing this module specification, the simulator instantiates a Locus object, and puts

the object in a registry under the name my locus. Subsequently instantiated objects may need a

reference to this object, which can be obtained by looking up the object by name in the registry.

Because modules are instantiated in the order they are specified in the configuration file, it is

important to specify an object before it is referenced by other objects (otherwise forqs will

produce an error message that it couldn’t find the referenced object in the registry).

Object references are specified as string-valued parameters, where the value contains the ob-
ject id of the referenced object. For example, the following is the specification of a Reporter
module that holds a reference to our example Locus object my locus:

Reporter_AlleleFrequencies reporter_allele_frequencies

locus = my_locus

One final note on a parameter naming convention used in forqs – for parameters where
the value is a list of sub-parameters, the parameter name should be a concatenation of the sub-
parameters. This convention allows easier reading and editing of configuration files without
the need to consult documentation. For example, Trajectory GenerationComposite
represents a list of Trajectory modules, to be followed piecewise at specified generations.
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This module is parametrized by a list of pairs (generation, trajectory), using the parameter name
generation trajectory:

Trajectory_GenerationComposite id_migration_rate

generation_trajectory = 0 id_migration_rate_0

generation_trajectory = 5 id_migration_rate_1

In this case, the module configuration can be interpreted as follows: at generation 0

use trajectory id migration rate 0, and then at generation 5 start using trajectory

id migration rate 1.

3.7.3 Top-level module: SimulatorConfig

SimulatorConfig is the top-level module containing:

• global simulation parameters

• references to the primary modules

Because SimulatorConfig has references to the primary modules, it must be specified last

in the configuration file.

3.7.3.1 Global simulation parameters

The main global simulation parameters are:

• output directory: forqs will create this directory and place all output files here

• seed: seed for the random number generator

Command line parameters can also be specified on the command line as name=value with
no whitespace, as shown in this example:

forqs config.txt output_directory=mydir seed=12345
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If a parameter is specified on both the command line and in the configuration file, the command

line takes precedence.

If no random seed is specified, forqs will first look in the current working directory for

the file forqs.seed containing a previously generated seed. If no seed is found, forqs will

generate a new seed from the system time. At the end of each run, forqs generates a random

seed and writes it to forqs.seed. To summarize, forqs looks for the seed in the following

places, in order of preference:

1. command line

2. configuration file

3. forqs.seed

4. system time

3.7.3.2 References to primary modules

Of the primary modules, only PopulationConfigGenerator is required to be specified,

because it contains necessary information about population sizes and the number of generations.

The rest of the modules default to trivial implementations. The primary modules specified in

SimulatorConfig are:

1. PopulationConfigGenerator

• required – no default

2. RecombinationPositionGenerator

• default: RecombinationPositionGenerator Trivial (no recombination

– whole chromosomes are transmitted, chromosome pairs segregate independently)
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3. MutationGenerator

• default: none (no mutation)

4. VariantIndicator

• default: VariantIndicator Trivial (always returns 0)

5. QuantitativeTrait

• default: none (no quantitative traits)

• multiple QuantitativeTraits may be defined

6. Reporter

• default: none (no reporters)

• multiple Reporters may be defined

3.7.4 Primary modules

3.7.4.1 PopulationConfigGenerator

For the reproduction/transmission step, in addition to information about the current populations,

the simulator needs to know the population configuration for the next generation, which in-

cludes:

• number and sizes of the populations in the next generation

• mating distribution, which describes how parents are chosen from populations in the cur-

rent generation to create offspring in the next generation, including which quantitative

traits to use as fitness functions
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The PopulationConfigGenerator module provides an interface for the simulator to ob-

tain a population configuration for each generation. To create each new individual in the next

generation, the simulator chooses parent populations according to the mating distribution, and

then individual parents with probability proportional to their fitnesses.

For the initial generation, individuals are assigned haplotype ids sequentially starting at 0,

with two ids assigned per individual (one for the maternal chromosomes, and one for the paternal

chromosomes). Id offsets can be used to make it easier to distinguish between populations – for

example, individuals from population 1 may be assigned ids starting at 0, and individuals from

population 2 may be assigned ids starting at 1000000.

PopulationConfigGenerator File allows the user to specify a population config-

uration for each generation, giving the user precise control over the demographic histories of the

simulated populations.

Alternatively, forqs provides higher level PopulationConfigGenerators that al-

low the user to specify time-dependent population size and migration rate trajectories (e.g.

PopulationConfigGenerator LinearSteppingStone). When a migration rate is

specified from a source population to a destination population, it is interpreted to be the proba-

bility that a new child in the destination population has parents in the source population. Equiv-

alently, it is the expected proportion of individuals in the next generation of the destination

population whose parents were in the source population.

For debugging purposes, forqs optionally outputs the file forqs.popconfig.txt
with the population configuration that was used for each generation during the simulation. This
option can be selected by setting the write popconfig parameter in SimulatorConfig:

write_popconfig = 1
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3.7.4.2 RecombinationPositionGenerator

The RecombinationPositionGenerator module provides an interface for

the simulator to obtain a list of recombination positions. After querying the

RecombinationPositionGenerator, the simulator uses the list of recombination

positions to create an offspring chromosome from a pair of parental chromosomes.

There are multiple implementations of the RecombinationPositionGenerator

module interface, each of which uses a different method to generate the recombination posi-

tion list.

RecombinationPositionGenerator SingleCrossover assumes there is a sin-

gle crossover event at a position chosen uniformly at random over that chromosome. This results

in the offspring receiving one of the two parental or one of the two recombined chromosomes

with equal 25% probabilities.

RecombinationPositionGenerator Uniform generates recombination positions

according to a uniform Poisson process along the chromosome, with rate specified by the user.

RecombinationPositionGenerator RecombinationMap generates recombina-

tion positions according to previously estimated recombination maps, in the format used by the

HapMap project.

3.7.4.3 MutationGenerator

The user may specify a MutationGenerator module to generate random mutations

during the simulation. MutationGenerator provides a single interface through which

the simulator obtains a list of new mutations for a particular generation. However,

MutationGenerator implementations may differ in how they generate this list of muta-

tions. For example, MutationGenerator SingleLocus generates mutations only at a

single site, while MutationGenerator Regions generates mutations in multiple regions
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with different (possibly time-dependent) mutation rates. In any case, the user will most likely

want to also specify Reporter Regions to report the final mutated sequences at the end of

the simulation.

forqs current mutation implementation creates a new haplotype id for each new mutation,

storing it in a haplotype ancestry tree (so that information about the ancestral haplotype can be

preserved). This results in memory usage that increases with each generation, which may cause

performance degradation in simulations involving a high total mutation rate for a large number

of generations. (Here total mutation rate means θL, where θ = 4Nµ is the population-scaled

per-site mutation rate and L is the total length of the genomic region where new mutations are

being generated).

3.7.4.4 VariantIndicator

Internally, forqs represents each individual chromosome as a list of haplotype chunk ids, with

no information about particular variants carried on that chromosome. In order to obtain an

individual’s genotype at a locus, the simulator must use a VariantIndicator, which is

essentially a function that maps:

(locus, haplotype id) 7→ variant value

Typically these variant values will be 0/1 for SNPs; however, any value in the range 0-255

can be used.

In general, a VariantIndicator needs to specify variant values only at selected loci,

because neutral loci have no effect on the simulation. Ancestral neutral variation that is present

on the haplotypes of the founders (individuals in the initial generation) can be propagated to

individuals at the end of the simulation using the forqs map ms tool included in the forqs

package.

Several VariantIndicator implementations are available, allowing the user a variety
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of options for specifying the variants carried by the founders – these can be found in the forqs

Module Reference.

3.7.4.5 QuantitativeTrait

A QuantitativeTrait module represents a single quantitative trait. The mod-

ule encapsulates the information needed to calculate the trait value for each individ-

ual based on the individual’s genotypes at a list of user-specified loci. For example,

QuantitativeTrait IndependentLoci allows the user to specify loci and effect sizes,

and the trait value for each individual is calculated by combining that individual’s locus-specific

effects additively (with user-specified environmental variance).

In addition, a quantitative trait may depend on other quantitative traits.

QuantitativeTrait Expression allows the user to define a quantitative trait by

a mathematical expression whose variables are other quantitative traits.

Some QuantitativeTraits are named with the prefix FitnessFunction, which

indicates that they are intended to be used at fitness functions for choosing individuals. However,

any QuantitativeTrait may be used as a fitness function. Full documentation on the

available QuantitativeTraits can be found in the forqs Module Reference.

3.7.4.6 Reporter

Reporter modules are used to report information during the simulation. For example,

Reporter AlleleFrequencies reports the allele frequency of a user-specified locus at

each generation. The full list of available Reporters can be found in the forqs Module

Reference.
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3.7.5 Building block modules

3.7.5.1 Locus and LocusList

The Locus module represents a single site on a chromosome, specified by the chromosome pair

index and position on the chromosome:

Locus my_locus

chromosome_pair_index = 0

position = 500000

Note that the chromosome pairs use 0-based indexing, so chromosome pair index =

0 refers to the first chromosome pair.

LocusList modules are used to define a list of loci. The list can be specified in two ways
– in the first, loci are specified by chromosome number and position:

LocusList locus_list

chromosome:position = 1 1000123

chromosome:position = 2 2000234

[...]

Alternatively, the loci can be references to previously specified Locus objects:

LocusList locus_list_2

loci = my_locus_1 my_locus_2 [...]

Also, a random list of loci can be generated with LocusList Random:

LocusList_Random locus_list_random

locus_count = 10

3.7.5.2 Trajectory

In simple situations, constant parameter values can be used to specify an aspect of the simulation.

For example, it is common in population genetics to simulate models where population sizes are

constant. In more complicated scenarios, parameter values (e.g. population sizes, migration
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rates, mutation rates, optimal quantitative trait values) may vary in space (population) or in time

(generation).

forqs uses Trajectory modules to describe such varying quantities. In essence, a

Trajectory represents a function:

(population index, generation index) 7→ value

Trajectories can be built by the user by starting with simple building blocks (e.g. con-

stant, linear, polynomial, exponential functions) and then composed either by population or

by generation. Once the Trajectory has been defined, it can be referenced by name to

be used as the parameter of another module. Note that if a module expects a particular pa-

rameter to be a Trajectory, it is an error to pass a constant integer or floating point num-

ber as the parameter value. In this case, if the user really wants a constant parameter value,

Trajectory Constant should be specified.

3.7.5.3 Distribution

Distribution modules represent probability distributions. These modules are used to

model, for example, effect sizes for QTLs or environmental variance for a quantitative trait.

Distribution Constant can be used in situations where a module requires a reference

to a Distribution but a constant value is desired.
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3.8 Simulating background variation

Forward-in-time simulators often use a burn-in period to allow neutral variation to reach

mutation-drift equilibrium. An alternative strategy, adopted by forqs, is to use an existing

program (such as Dick Hudson’s ms) to generate neutral variation for the founders in the initial

population. Chromosomes in the final populations are mosaics of the founder chromosomes, so

neutral variation can be propagated to the mosaic chromosomes to generate sequence (or SNP)

data. The tool forqs map ms is included in forqs packages for this purpose. In this section

we discuss the propagation procedure using two examples.

3.8.1 Example 1: No new mutations

The first example is a simple case where there are no new mutations introduced during the

forqs simulation. This case includes many scenarios of interest where the variation in the

population has been generated over a small number of generations, primarily by recombination

and recent admixture between historically isolated (or inbred) populations.

In this case, the propagation of neutral variation is straight-forward: sequence variants on

founder haplotypes are mapped onto the mosaic chromosomes of the final population. However,

there are many details about the mapping that must be specified by the user in a mapping con-

figuration file. forqs produces final populations of individuals that may carry multiple pairs of

chromosomes, with absolute positions specified by integers. ms outputs single chromosomes,

with relative positions specified by floating point numbers. The mapping configuration thus

needs to specify an integer range of positions on a particular chromosome that correspond to the

ms relative positions in the range [0,1]. In addition, the user must specify how forqs haplotype

ids correspond to the ms-format variant sequences.

In the examples directory, the following 4 files can be found:

• population example.txt (forqs population data)
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• ms test data 1.txt, ms test data 2.txt (ms-format files)

• ms map config.txt (mapping configuration file)

Perform the mapping using the following command:

forqs_map_ms population_example.txt ms_map_config.txt > output.ms

The resulting sequences in output.ms are mosaics of the sequences in the input ms-format

files. For example, the first chromosome of the first individual is a mosaic of haplotypes 0, 1, 2,

and 3, corresponding to the sequences ’aaaaaaaaa’, ’bbbbbbbbb’, ’ccccccccc’, and ’ddddddddd’,

respectively. The output sequence for this chromosome is ’aabccccdd’. Note that alphabetic

letters are used in these example sequences for illustration only – real ms output consists of 0’s

and 1’s.

3.8.2 Example 2: Including new mutations

In scenarios where it is important to include new mutations in addition to ancestral neutral

variation, the mapping procedure has one additional complication. When simulating forward in

time, the neutral variants carried by individuals have no effect on the dynamics of the simulation.

forqs takes advantage of this by ignoring (i.e. not storing in memory) any ancestral neutral

variation on the founding haplotypes. Each new mutation generated in forqs results in a

new haplotype id. Because of this, it is necessary to use an id ancestry map to translate the

new ids back to the ancestral ids before performing the mapping. After the neutral variation

has been mapped, the new mutations can then be merged with the ancestral variants. This

procedure is detailed in the following shell script (and data files referenced in the script), which

runs a complete example of a forqs simulation followed by mapping ms sequences (with new

mutations merged):

examples/ms_map_example_new_mutations.sh
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3.9 Validation

forqs has an extensive set of unit tests that verify the correctness of individual code modules.

In addition, in order to validate the larger-scale behavior of the simulations, we have compared

forqs simulation results to theoretical predictions from population genetics and quantitative

genetics.

3.9.1 Single locus selection

We first considered simple scenarios where an individual’s fitness is determined by that indi-

vidual’s genotype at a single locus, under a wide range of fitness effect sizes and dominance

values. We compared the simulated allele frequency trajectories to the deterministic trajectories

predicted in the limit of infinite population size.

In all cases, the simulated trajectories closely followed the deterministic trajectories, with

better agreement in simulations with larger population sizes, as expected. Figure 3.5 shows the

case of additive positive selection, for population sizes of 100 and 1000.

3.9.2 Decay of linkage disequilibrium

In the limit of infinite population size, linkage disequilibrium (measured by D, the correlation

between two variants at different sites) decays geometrically at rate 1− r, where r is the recom-

bination rate (see Figure 3.6 for an example run).

3.9.3 Mutation-drift equilibrium

To validate our mutation implementation, we approximated the infinite-sites model by simulat-

ing mutations generated randomly in large regions (1mb). We set the per-site mutation rate to

make the population-scaled mutation rate θ = 10, and simulated for enough generations to reach
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Figure 3.5: Selection on a single locus. The dark curves show the deterministic trajectories, and

the lighter curves show simulated trajectories. Populations of size 100 and 1000 were simulated

with additive fitness effect .1 at a single locus, with the selected variant having initial allele

frequency .1.

mutation-drift equilibrium.

We then compared the resulting site-frequency spectra {ξi} to theoretical predictions, where

ξ1 is the number of singletons, ξ2 is the number of doubletons, etc. in the sample. Coalescent

theory predicts that ξi = θ/i in expectation (Fu, 1995), under the assumption that the sample

size is small compared to the population size. When the sample size is close to the population

size, the Wright-Fisher model is expected to have approximately 12% more singletons and 2%

less doubletons compared to the coalescent expected values (Wakeley and Takahashi, 2003).

Site frequency spectra generated from the full population agree with the Wright-Fisher large

sample expected values, and site frequency spectra from smaller samples agree with the coales-

cent expected values, as expected (Figure 3.7).
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Figure 3.6: Decay of linkage disequilibrium. The dark curve shows the deterministic trajectory,

and the lighter curves show simulated trajectories. In this example, D = .25 initially and r =

.05.

3.9.4 Response to selection

To validate our implementation of selection on quantitative traits, we simulated a quantitative

trait with 10 QTLs with identical additive effect sizes and initial allele frequencies, which gives

an approximately normal distribution of trait values in the population. We also used the forqs

quantitative trait FitnessFunction TruncationSelection, which selects a specified

proportion of individuals at the upper tail of the trait value distribution to produce offspring for

the next generation.

The Breeder’s Equation from quantitative genetics (Gillespie, 2004; Falconer and Mackay,

1996) predicts the response to selection R from the heritability of the trait h2 and the selection
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Figure 3.7: Mutation-drift equilibrium. (left) Simulations for different population sizes are

shown, together with expected values for both the coalescent and Wright-Fisher with large sam-

ple size. (right) Small samples taken from a larger simulated population agree with the coales-

cent expected values.

differential S:

R = h2S

where the S and R are the selected parent mean and offspring mean, respectively, measured as

deviations from the population mean.

Simulations run with various values for the heritability and proportion of individuals selected

agree with the response values predicted from the Breeder’s Equation (Figure 3.8).

3.9.5 Performance

The representation of chromosomes as haplotype chunks in forqs makes very efficient use

of memory, independent of the size of the chromosomes. This allows, for example, simulation
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Figure 3.8: Response to selection. 3 panels show simulations run at different heritability levels

(.2, .5, .8), with varying proportions of selected individuals (.2, .4, .6, .8) (100 simulations each).

The dark curves show the response values predicted from the Breeder’s Equation.

of entire genomes of individuals. One drawback to this approach is that memory usage grows

linearly with the number of generations, due to recombination.

On a typical laptop computer, for a population size of 1 million, simulations take ∼1.5

seconds per generation for neutral scenarios and ∼3 seconds per generation with quantita-

tive traits and selection. Decreasing the population size allows the simulation of a greater

number of generations in a reasonable amount of time: for a population size of 10,000, it

takes ∼3 seconds per 100 generations (without selection, with a slight increase with selec-

tion). Configuration files for these benchmark scenarios are included in the forqs packages

(examples/benchmark_*.txt).

To illustrate the simulation of entire genomes, the configuration file examples/

example_qtl_random_full_human_genome.txt specifies a scenario where two pop-

ulations (each size 10,000) are selected for different optimum values of a quantitative trait (Fig-
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ure 3.9). In this simulation, individuals have human-sized genomes (23 chromosome pairs,

chromosome length 100 million base pairs), with 50 QTLs placed randomly across the genome;

the simulation takes ∼2 seconds per generation (averaged over 50 generations).

Such a simulation is not feasible for forward-in-time simulators that store individual mu-

tations in an array. For example, suppose that each locus for each individual chromosome is

encoded in a single bit. Then to simulate 20,000 individuals as in the above scenario, 16GB of

memory (available on high-end computers) will permit the simulation of only 3.2 million base

pairs of sequence. This is an order of magnitude smaller than the smallest human chromosome

(or roughly 0.1% of the human genome).
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Figure 3.9: Selection for different optimal values of a quantitative trait. Shown are mean trait

values for two populations (each size 10,000) that are selected for different optimal trait values.

In this scenario, the quantitative trait has 50 QTLs distributed randomly over 23 chromosomes,

with effect sizes drawn from an exponential distribution.

3.10 Software development

3.10.1 Software dependencies

forqs is written in C++, and makes extensive use of the Boost libraries, including the Boost

build system:

http://boost.org
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forqs also uses the muparser library for parsing mathematical expressions. This is used

in QuantitativeTrait Expression, which allows the user to specify quantitative traits

that depend on other traits via a mathematical formula. The muparser source code is included

in the forqs codebase, and is built automatically with forqs . The muparser library web-

page is here:

http://muparser.beltoforion.de

3.10.2 Building the program

forqs is regularly built and tested on OSX and Linux. In addition, Windows binaries are built

using cross-compilation with gcc on Linux.

The code can be obtained via git from bitbucket:

git clone https://bitbucket.org/dkessner/forqs.git

If you have the both the Boost libraries and the Boost build system installed, you can build

forqs with the bjam tool, which is the Boost build system’s equivalent of make:

cd forqs/src

bjam

3.10.3 Structure of the codebase

Most code units in the forqs project consist of three files:

• interface (header file)

• implementation (cpp file)

• unit test (cpp file)
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For example, the code for the Locus module can be found in the files Locus.hpp,

Locus.cpp, LocusTest.cpp.

The unit test for each code unit is run during the build; the build is successful only if all unit

tests pass.

In addition to the unit tests, there are also regression tests, consisting of scripts in the

regression test directory. These tests prevent unintended behavior changes in the soft-

ware during new development. Most of the tests are based on the example configuration files in

the examples directory, and consist of running forqs and performing a diff comparison

with known output. The regression tests are controlled by a Makefile, and run by make.

The codebase includes all documentation, including the Latex source code for this document.

The forqs Module Reference is generated by Doxygen from the source code – each module

is documented using Doxygen markup in the module’s header file, immediately preceding the

module’s class declaration.

3.10.4 Software architecture

This section describes some of the design details of forqs that may be of interest to program-

mers who would like to add new features.

3.10.4.1 Low-level data structures

These are the basic low-level data structures used by forqs:

• HaplotypeChunk: a pair of integers (position, id)

• Chromosome: an array of HaplotypeChunks

• Organism: an array of pairs of Chromosomes

• Population: an array Organisms
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In this setup, Population can be seen as an array of arrays, which requires a significant

number of memory allocations. To avoid these memory allocations, Population was re-

implemented as a two dimensional array of Chromosome pairs, resulting in a roughly 30%

speedup.

The implementations produce identical results, and can be used interchangeably. To ac-

complish this, Population is actually an interface class, with two concrete implementa-

tions: Population Organisms and Population ChromosomePairs. While the latter

is faster, the former can be more convenient for testing purposes.

In order to handle both cases in a unified manner, the class ChromosomePairRange

represents the begin/end of chromosome pairs belonging to a single individual, and

ChromosomePairRangeIterator does the appropriate iteration through individuals, de-

pending on the memory layout of the population.

3.10.4.2 Configurable modules

Configurable modules in forqs are represented by the Configurable abstract base class,

which defines the common interface through which objects are instantiated and initialized based

on parameters specified by the user. The top-level module (SimulatorConfig), all primary

modules (e.g. PopulationConfigGenerator, Reporter, etc.), and all building block

modules (e.g. Trajectory, Locus) implement the Configurable interface.

The Configurable interface describes the functionality required to serialize an object’s

configuration, which must be representable as a list of name-value pairs. (This is not actually

very restrictive, since the value can be anything representable as a string, including an array of

numbers).

Configurable objects are instantiated by SimulationBuilder Generic, which

handles the mapping from the module name to the actual C++ class. Each object in the user-
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specified configuration file is instantiated and registered by name so that other objects can

obtain references to it if necessary. SimulationBuilder Generic produces the final

SimulatorConfig used by forqs for the simulation. (Note on the name: there were other

SimulationBuilder classes that constructed SimulatorConfigs based on a more lim-

ited set of parameters – these have since been deprecated in favor of the more generic specifica-

tion via configuration files.)

After instantiation, Configurable objects are configured/initialized in two steps. First,

the configure() method sets any parameters specific to this module that are specified

by the user. Second, after all objects have been configured, the initialize() method

allows the modules to communicate with each other. For example, objects that need in-

formation about the lengths of the chromosomes (e.g. for recombination) can query the

PopulationConfigGenerator, which has this information.

Configurable objects are instantiated, configured, and initialized in the order they are

specified in the configuration file. It is important to note that while objects can obtain refer-

ences to previously instantiated objects during the configure() step, they should not try to

communicate via these references until the initialize() step, since the objects they refer

to may not be fully initialized until then.

The main Simulator object interacts with Configurable objects through inter-

mediate interfaces. This allows the main simulation logic to be separated from the

specific behavior implemented by the various Configurable modules. For example,

Reporter AlleleFrequencies and Reporter TraitValues both implement the

Reporter interface. Simulator will give each Reporter information about the current

populations, but doesn’t need to know what they do with this information. As another example,

the Simulator gives a QuantitativeTrait object information about individuals’ geno-

types and expects to receive trait values for each individual, but doesn’t need to know details

about how this is accomplished.
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The Configurable interface also facilitates some features that make forqs more user-

friendly, because it provides a translation layer between the user and program internals. For

example, while 0-based indexing is used internally, from the user’s perspective chromosomes

and populations are numbered starting with 1. Also, Configurable modules can support

multiple alternate parametrizations. For example, linear trajectories may be parametrized by

slope-intercept or by two endpoints, and exponential distributions may be specified by the mean

or the rate, depending on which is more natural for a particular scenario.

3.10.4.3 Mutation handling

Because forqs tracks haplotype chunks rather than sequences of variants, mutation is necessar-

ily more complicated than recombination. This is because a new point mutation essentially cre-

ates a new haplotype that is identical to the original except at the mutated site. In order to accom-

plish this, the VariantIndicator must be able to be updated with the new haplotype and

variant value. In addition, the haplotype’s ancestry must be stored, since that haplotype chunk

may contain other variants known by the VariantIndicator. This is implemented with the

special VariantIndicator Mutable that is not specified by the user. Instead, it is a wrap-

per class that is automatically instantiated when the user specifies a MutationGenerator.

This wrapper class provides the functionality for updating variants, but passes calls through to

the user-specified VariantIndicator for non-mutated loci.

3.10.5 Appendix: Boost libraries

The Boost C++ Libraries are an essential extension to the C++ Standard Library. In addition to

providing functionality missing from the Standard Library, the Boost filesystem library and

build system insulate the programmer from many platform-specific details.

If you have administrative access to your computer, you can use a package manager to install

the Boost libraries and build system. If not, you can install Boost locally in your home directory.
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The following are instructions for doing this on a Unix-like system (e.g. OSX or Linux):

# download latest Boost package, uncompress

# install boost libraries

cd boost_??? # go into the uncompressed directory

bootstrap.sh --help # see options

bootstrap.sh --prefix=$HOME/local # install in ˜/local

./b2 # builds libraries -- get coffee (this can take a while)

./b2 install # installs stuff in ˜/local/include/boost and ˜/local/lib

# install boost build

cd tools/build/v2

./bootstrap.sh

./b2 install --prefix=$HOME/local # puts bjam in ˜/local/bin, boost-build in ˜/local/share

# also:

# put ˜/local/bin in your path (to find bjam)

# you might need this in your environment:

# export BOOST_BUILD_PATH=$HOME/local/share/share/boost-build

# to avoid bjam warning: No toolsets are configured.

# create the file user-config.jam in either ˜ (home) or ˜/local/share/boost-build

# with the following line (note the space before ; is necessary):

using gcc ;

3.10.6 Appendix: Cross-compilation targeting Windows

Cross-compilation of Windows binaries from Linux can be done using tools from the

mingw-w64 project (http://mingw-w64.sourceforge.net/). On Debian-based

systems (e.g. Ubuntu, Mint), installing package g++-mingw-w64 will install the necessary

tools and dependencies.

# add this line to user-config.jam, which defines the toolset gcc-windows

# (you need to tell Boost build which g++, ar and ranlib to use):
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using gcc : windows : i686-w64-mingw32-g++ : <archiver>i686-w64-mingw32-ar

<ranlib>i686-w64-mingw32-ranlib ;

# build the Boost libraries (or at least filesystem and system) for Windows

# (you may need to fiddle with these command line parameters -- these worked for me),

# from your Boost source dir:

bjam toolset=gcc-windows --prefix=$HOME/local_win32 threading=multi

target-os=windows link=static threadapi=win32 --without-mpi

runtime-link=static --without-python -sNO_BZIP2=1 --layout=tagged

# note: LIBRARY_PATH doesn’t appear to work for cross-compilation, but you can

# put the Boost library files directly in /usr/i686-w64-mingw32, where the various

# development headers/libs are installed for mingw-w64

# the forqs Jamroot contains a target ‘‘windows’’, which will build Windows binaries

# and put them in forqs/bin_windows:

bjam windows
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CHAPTER 4

Power analysis of artificial selection experiments using

efficient whole genome simulation of quantitative traits

4.1 Abstract

Evolve and resequence studies combine artificial selection experiments with massively paral-

lel sequencing technology to study the genetic basis for complex traits. In these experiments,

individuals are selected for extreme values of a trait, causing quantitative trait loci (QTLs) to

increase or decrease in frequency in the experimental population. We present a new analysis of

the power of artificial selection experiments to detect and localize quantitative trait loci. This

analysis uses a novel simulation framework that explicitly models whole genomes of individu-

als, quantitative traits, and selection based on individual trait values. We show that modeling loci

with constant selection coefficients does not fully capture the dynamics of QTLs under artificial

selection. We also show that a substantial portion of the genetic variance of the trait (50–100%)

can be explained by detected QTLs in as little as 20 generations of selection, depending on the

trait architecture and experimental design. Furthermore, we show that power depends crucially

on the opportunity for recombination during the experiment. Finally, we show that an increase

in power is obtained by leveraging founder haplotype information to obtain allele frequency

estimates.
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4.2 Introduction

Some of the first artificial selection experiments, performed in the early 1900s, were designed

to settle ongoing debates about the nature of selection. In particular, early researchers hoped

to answer questions about whether selection on continuous variation was even possible, and

how to reconcile this with the Mendelian viewpoint of genes as discrete heritable units (see

Falconer (1992) for a history of early selection experiments, and Garland and Rose (2009) for a

comprehensive overview of experimental evolution).

More recently, researchers have used artificial selection experiments to study the genetic

basis for complex traits by analyzing allele frequency changes in evolved populations. This

technique has been used in a wide variety of organisms, including for example maize (Laurie

et al., 2004), yeast (Ehrenreich et al., 2010), fruit flies (Nuzhdin et al., 2007; Teotonio et al.,

2009), chickens (Johansson et al., 2010), and mice (Keightley and Bulfield, 1993).

Massively parallel (also known as next-generation) sequencing of pooled samples has en-

abled researchers to obtain genome-wide allele frequency estimates for a population in a cost-

effective manner (Futschik and Schlotterer, 2010). These technological advances have led to

the development of the Evolve and Resequence (E&R) method for mapping traits (Burke et al.,

2010; Turner et al., 2011; Parts et al., 2011; Orozco-terWengel et al., 2012; Remolina et al.,

2012). In E&R studies, artificial selection is followed by genome-wide pooled sequencing. In

the case of a quantitative trait, a site exhibiting a large allele frequency change in the selected

population suggests the presence of a nearby quantitative trait locus (QTL) (Figure 4.1).

Due to limitations on resources and time, researchers will face many design decisions as

they set up artificial selection experiments. First, the size of experimental populations affects

the degree of genetic drift and the efficacy of selection. Next, the strength of selection is deter-

mined by the proportion of individuals selected each generation to create the next generation. In

addition, the length of the experiment must be chosen in conjunction with the strength of selec-
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Figure 4.1: Evolve and resequence experiment. After initial neutral mixing of founders, indi-

viduals with extreme values of the trait are selected to create the next generation. After several

generations of selection, populations are sequenced and analyzed for allele frequency differ-

ences.

tion so as to maximize allele frequency differences at QTLs, while at the same time minimizing

differences at neutral loci due to drift. One concern is that extremely strong selection over a

large number of generations will result in the fixation of variants across the genome, which will

stifle any ability to distinguish QTLs from neutral loci. In the case of selection on a quantitative

trait, selection can be performed on a single population which will be compared to a control

population; alternatively, selection can be divergent, where two populations selected in opposite

directions will be compared. Finally, replication is a key consideration in any experiment, and
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especially in experimental evolution, where random genetic drift plays a large role: observation

of a large allele frequency difference at a locus in multiple replicate experiments will increase

confidence that the difference is due to selection at the locus rather than drift.

Previous studies of the power of artificial selection experiments to detect trait loci have taken

the traditional population genetics approach in which selection is parametrized using selection

coefficients that remain constant each generation. For example, previous work by Kim and

Stephan (1999) analyzed a single locus under a constant selection coefficient using a diffu-

sion approximation, and two recent simulation studies employed forward simulations with loci

parametrized by constant selection coefficients to obtain power estimates (Kofler and Schlot-

terer, 2014; Baldwin-Brown et al., 2014).

However, E&R experiments lie at the interface between population genetics and quantitative

genetics. The selection pressure on a QTL is more naturally parametrized using concepts from

quantitative genetics such as effect sizes, genetic variance, and heritability, in addition to exper-

imental design parameters such as the proportion of individuals selected each generation. Fur-

thermore, as we will see, the effect of a QTL allele on an individual’s fitness depends strongly

on interaction with the other QTL alleles carried by the individual. As noted by Felsenstein

(1974, 1987), finite populations necessarily experience random linkage disequilibrium between

any two polymorphic loci. This linkage disequilibrium results in interference, where the effect

of selection on each locus is decreased (Hill and Robertson, 1966).

In this study, we introduce a new simulation framework to investigate the power of artificial

selection experiments to detect and localize QTLs contributing to a quantitative trait. Our sim-

ulations employ a whole-genome quantitative genetic model of loci underlying a quantitative

trait, and we explicitly model artificial selection of individuals each generation based on their

trait values. As in Kofler and Schlotterer (2014) and Baldwin-Brown et al. (2014), we model

Drosophila melanogaster individuals, and we use experimental parameters similar to those used

by Turner and Miller (2012).
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Our simulations show that forward simulations of a locus assuming a constant selection

coefficient do not fully capture the allele frequency dynamics of a QTL under artificial selection

on a quantitative trait. In contrast, explicit quantitative genetic modeling of the trait leads to

insights regarding the effect of the trait architecture on the allele frequency trajectory of a QTL.

For instance, by simulating the entire genome of individuals, we also demonstrate the important

role that recombination plays in decreasing interference between QTLs, as well as reducing

linkage disequilibrium between QTLs and neighboring neutral loci. We show that designing the

artificial selection experiment to allow more opportunity for recombination increases the ability

to detect and localize QTLs.

Finally, previous work suggested that when founder sequence information is available, one

can obtain more accurate allele frequency estimates by estimating local haplotype frequencies

from pooled read data (Kessner et al., 2013). We show that these improved allele frequency

estimates, when compared to estimates calculated directly from read counts, lead to an increase

in power.

4.3 Results

4.3.1 Comparison between selection coefficient simulations and explicit quantitative ge-

netic modeling

To address the importance of modeling quantitative traits, we first investigated allele frequency

trajectories of a focal QTL contributing to a quantitative trait under truncation selection in com-

parison to a single locus with a constant selection coefficient.

We simulated populations of sizeN = 1000 for the selection coefficient simulations. For the

artificial selection simulations, we simulated populations of size N = 5000 with 20% selected

to create the next generation, so that the effective population size was Ne = 1000. We ran the

artificial selection simulations with 12 canonical trait architectures with various heritabilities and
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Figure 4.2: Qualitative differences between fixed selection coefficient and truncation selec-

tion on a quantitative trait. A focal QTL exhibits fundamentally different behavior under a

constant selection coefficient, compared to truncation selection on a quantitative trait. Shown

are allele frequency trajectories (A) and realized selection coefficient distributions (B) of a locus

under two different selection coefficients (.2, .3) [N=1000, 80 generations]. C and D show the

same for a focal QTL (effect sizes .1, .3) under truncation selection on the trait [N=5000, 20%

selected, 80 generations, 100 QTLs, h2 = .8, σ2
trait = 1].

QTL counts, and with exponentially distributed effect sizes (see Methods). In all simulations, the

initial frequency of trait-increasing allele was .2, and selection is assumed to be in the direction

of increasing trait values.

As seen in Figure 4.2 (A and C), the allele frequency trajectories of the focal QTL under

107



effect 0.1 effect 0.3 effect 0.5

0

20

40

60

0

20

40

60

0

20

40

60

heritability 0.2
heritability 0.5

heritability 0.8

2 5 10 100 2 5 10 100 2 5 10 100
QTL count

F
ix

at
io

n 
tim

e 
(g

en
er

at
io

ns
)

Figure 4.3: Effect of genetic architecture on fixation times Fixation times of a focal QTL for

a trait under truncation selection decrease with increasing effect size and heritability. For a fixed

effect size and heritability, the fixation times increase with the number of QTLs contributing to

the trait due to interference. [N=5000, 20% selected, 80 generations]

truncation selection are qualitatively different from the trajectories under a constant selection

coefficient. While a strong selection coefficient leads to nearly deterministic allele frequency

trajectories, trajectories of a focal QTL under strong truncation selection are dependent on the

underlying trait architecture. In particular, the focal QTL may experience interference from
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other linked QTLs. This effect can be seen in the trajectories where the focal QTL decreases

in frequency at first, due to repulsion linkage (with a QTL of opposite effect), but increases in

frequency once linkage disequilibrium has decreased sufficiently through recombination.

In addition, once an allele with a constant selection coefficient reaches high frequency, it

remains at high frequency for several generations before finally going to fixation. In contrast,

the focal QTL under truncation selection tended to become fixed quickly after reaching high

frequency in the population. This behavior is not surprising, because after a few generations of

selection, the upper tail of the population trait value distribution is highly enriched for individuals

carrying high-effect variants.

To further illustrate these qualitative differences, we analyzed the realized selection coeffi-

cient of the trajectories, which represents the selection coefficient that would result in a given

single-generation allele frequency change under a deterministic model (see Methods). Under

a constant selection coefficient, the mean realized selection coefficient tracks the true selection

coefficient closely during the selection phase, after which it decreases to zero during the drift

phase (Figure 4.2B). Under truncation selection, the behavior of the mean realized selection co-

efficient depends on the underlying genetic architecture of the trait. When the effect size is low,

the realized selection coefficient increases each generation – this is due to selection acting on the

larger effect QTLs first, and then having a greater effect on the focal QTL after the larger effect

QTLs have reached fixation. On the other hand, when the effect size is higher, the focal QTL

experiences very strong selection initially, decreasing as the focal QTL rises to fixation (Figure

4.2D).

Another effect of the underlying trait architecture can be seen in the fixation times of the

focal QTL (Figure 4.3). Because truncation selection will have a stronger effect on QTLs with a

large effect size, the fixation time of the focal QTL decreases as the effect size increases. On the

other hand, for a given effect size and heritability, the fixation time of the focal QTL increases

with total number of QTLs due to interference.
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4.3.2 Measurement of power to detect and localize QTLs

In all of the following analyses, we examine the power to detect QTLs through allele frequency

differences at variant sites. There is currently no consensus regarding the choice of statistic in the

analysis of artificial selection experiments. Both for simplicity and becuase of its use in practice

(Parts et al., 2011; Turner and Miller, 2012) we chose to base our analysis on the absolute allele

frequency difference D = |p1 − p2|, where p1 and p2 are the allele frequencies of the variant in

populations 1 and 2, respectively. We also note that this statistic, also called the difference in

derived allele frequencies (∆DAF or DDAF ), is used in several related or composite methods

for detecting selection (Turner et al., 2011; Grossman et al., 2010; Utsunomiya et al., 2013).

We calculate D for each variant site in the genome, and we call a site detected if the D value

exceeds a threshold value. By varying the threshold, we obtain receiver operating characteristic

(ROC) curves showing the relationship between power (true positive rate) and the false positive

rate.

Due to linkage and strong selection, detected QTLs will generally have neighboring neutral

variants whose allele frequency differences also exceed the detection threshold. Because of

this, detection and localization of a QTL are necessarily intertwined. In an actual experimental

setting, the entire genomic region surrounding the significantly diverged loci would be chosen

for follow-up studies.

We explored several methods for calculating and interpreting power and false positive rate.

We present our results using the method that we found to be most interpretable, and which we

summarize here (see Methods for full details on the different methods). For a given D value

threshold, we determine a detection region that consists of all variants within a specified radius

of any variant above the threshold (10kb for the results presented here; see Figure 4.9 for an

illustration). Power is calculated as the proportion of genetic variance (in the founder population)

expained by the QTLs located within the detection region. We define the true region to consist

of all variants within the specified radius of any QTL, and we define the neutral genome to be
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the rest of the genome (outside the true region). False positive rate is calculated as the proportion

of the neutral genome covered by the detection region. Thus, a false positive rate of .01 can be

interpreted to mean that 1% of the genome would be incorrectly flagged for follow-up studies.

In Drosophila melanogaster, this would correspond to a 1.4mb region.

4.3.3 Advantages of divergent artificial selection

5 QTLs 10 QTLs 100 QTLs

0.00

0.25

0.50

0.75

1.00

0.
00

00

0.
00

25

0.
00

50

0.
00

75

0.
01

00

0.
00

00

0.
00

25

0.
00

50

0.
00

75

0.
01

00

0.
00

00

0.
00

25

0.
00

50

0.
00

75

0.
01

00

Proportion of neutral genome

P
ro

po
rt

io
n 

of
 g

en
et

ic
 v

ar
ia

nc
e

Comparison

High vs. low

High vs. neutral

Figure 4.4: Increase in power due to divergent selection. Comparison of two populations

divergently selected for extreme values of a trait has greater power to detect QTLs than com-

parison between selected and control populations. Three populations of 1000 individuals (high,

low, neutral) originating from a single founder population were simulated for 20 generations,

with 20% selected each generation in the high and low populations. Shown are the scenarios

with 5, 10, and 100 QTLs, with h2 = .5.

In artificial selection studies of quantitative traits, one commonly used technique is divergent

(also called bidirectional) selection, where the first “high” population is obtained by selecting
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from the upper tail of the trait value distribution each generation, and the second “low” popula-

tion is obtained by selecting from the lower tail (for example Johansson et al. (2010) and Turner

and Miller (2012)). Use of this technique presumes that allele frequency differences between the

high and low lines will be more pronounced at QTLs contributing to the trait than, for example,

differences between the high line and a control population that has been evolving neutrally.

To compare the power obtained by a divergent selection experiment to the power obtained

by selection in a single direction, we simulated 3 populations originating from a single founder

population, where one population was selected for high values, one selected for low values, and

one allowed to evolve neutrally. Each population had 1000 individuals, of which 20% were

selected each generation in the high and low populations, for 20 generations total.

We ran the simulations for each of our 12 canonical architectures (see Methods), and we

show the results in Figure 4.4 for some of these (h2 = .5, with 5, 10, and 100 QTLs). Com-

parison between the high and low populations leads to a substantial increase in power over the

comparison between the high and neutral populations. In particular, at a 1% false positive rate,

roughly half of the genetic variance of the trait is detected in the high vs. low comparison but

not in the high vs. neutral comparison.

4.3.4 Extent of increased power due to replication

Another technique available in artificial selection experiments is the use of replicate high and

low populations to increase confidence that allele frequency differences between diverged pop-

ulations are due to selection rather than genetic drift. A natural generalization of the allele

frequency difference D for replicate populations is D = |
∑R

i=1 pi,high − pi,low|, where R is the

number of replicate population pairs.

We investigated the effects of evolving replicate populations by simulating 5 pairs of popu-

lations originating from a single founder population [10 QTLs, h2 = .5, N=1000, 20% selected,

20 generations]. We then calculated the average power to detect QTLs using subsets of the data
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Figure 4.5: Increase in power due to replicate populations. Adding replicate pairs of diver-

gently selected populations increases power to detect QTLs. 5 pairs of populations originating

from a single founder population were simulated [h2 = .5, N=1000, 20% selected, 20 genera-

tions].

representing population replicates from 1 to 5 pairs.

We found that using 2 replicate populations substantially increases power to detect QTLs

(Figure 4.5). For example, at the low false positive rate (neutral genome proportion) of .0005,

the proportion of genetic variance detected increases from 25% to 50%. Adding further replicate

populations continues to increase power, but with diminishing returns.

4.3.5 Effect of population size

It is well known that selection on a single locus, defined by a selection coefficient s, acts more

efficiently in larger populations, as can be seen in the dependence of fixation probabilities and

fixation times on the population-scaled selection coefficient 4Ns (Ewens, 2004).
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Figure 4.6: Increase in power due to population size. Using larger population sizes substan-

tially increases power to detect QTLs [h2 = .5, 20% selected, 20 generations].

To investigate how the population size affects artificial selection experiments, we performed

simulations of populations of different sizes (N = 500, 1000, 2000, 5000) under identical exper-

imental conditions (20% selected, 20 generations), with each of our 12 canonical trait architec-

tures.

In all cases we found a substantial increase in power to detect and localize QTLs as we

increased the population size. For example, in the case of 10 QTLs and h2 = .5, increasing the

population size from 500 to 1000 resulted in an additional 25% of the genetic variance detected

at the .5% false positive rate (Figure 4.6). Moreover, while less than 50% of the genetic variance

was detected withN = 500 at that false positive rate, nearly 100% was detected withN = 5000.
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Figure 4.7: Effects of length of experiment and selection strength. Experiments with weak

selection (top/bottom 80% selected each generation) over a longer number of generations have

higher power than those with strong selection (20% selected). [N=1000, h2 = .5]

4.3.6 Effects of the length of experiment and proportion selected

We next investigated the effects of the length of the experiment and the strength of selection on

the power to detect QTLs. To do this, we simulated 4 different selection scenarios, from weak

selection (top/bottom 80% selected each generation) to strong selection (20% selected). Each

simulation ran for 80 generations, and we examined snapshots of each population at generations

20, 40, 60, and 80. In these simulations, the populations consisted of 1000 individuals, and the

trait had 10 QTLs, with a heritability of .5.
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One particularly interesting finding was that under strong selection, power can actually de-

crease with the number of generations, depending on the false-positive rate threshold chosen

(for example, 20% or 40% selected, at false-positive rate .01 in Figure 4.7). In these scenarios,

most of the QTLs have differentiated by generation 20 (over 75% of the genetic variance was

detected at false positive rate 1%). However, the lower effective population size induced by

strong selection results in the fixation of many neutral variants, which are then falsely detected

as QTLs.

Conversely, by lowering the selection pressure (80% selected each generation) the maximum

power is actually increased. In addition, letting the experiment run for a greater number of

generations at this lower selection pressure increases the maximum power attained.

These observations suggest that recombination plays a large role in the power to detect and

localize QTLs: reducing the selection pressure and increasing the number of generations should

allow more recombination, which reduces linkage between QTLs and neighboring neutral vari-

ants. Increased recombination will also reduce interference between QTLs, which should allow

lower effect QTLs to be selected and detected. This led us to investigate the effects of recombi-

nation further in our subsequent analyses.

4.3.7 Effect of recombination

To investigate the effects of recombination on the power to detect and localize QTLs, we first

considered the effect of increasing the recombination rate of the simulated individuals. We

simulated populations of 1000 individuals, with each our 12 canonical trait architectures, with

recombination rates at 1x, 2x, 3x, and 4x our standard recombination rate (see Methods) [20

generations of neutral mixing, 20 generations of selection, 20% selected].

We found that increasing the recombination rate does indeed increase the power to distin-

guish QTLs from neutral variants, for all trait architectures (Figure 4.8AD). While in practice it

is not feasible to experimentally increase the recombination rate of individuals, the experiment
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Figure 4.8: Effect of recombination. The power to detect and localize QTLs depends on the

extent of recombination experienced by the populations. (A,F) Power increases with the recom-

bination rate of the organisms under selection. (B,E) Additional generations of initial mixing

and (C,F) additional generations between rounds of selection similarly increase power. [top row

(A-C): 10 QTLs, bottom row (D-F): 100 QTLs, h2 = .5, N=1000, 20% selected, 20 generations

of selection, 20 generations of mixing in A, C, D, F]

can be designed so as to increase the opportunity for individual chromosomes to recombine and

thus decrease linkage between QTLs and neighboring neutral variants.

One way to decrease linkage disequilibrium in the population is to allow more generations

of initial neutral mixing in the founder population, before selection starts (e.g. Turner and Miller
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(2012)). We simulated scenarios with varying numbers of generations of neutral mixing (20, 40,

60, 80), with the other parameters as above. We found that increasing the number of generations

of initial neutral mixing increases power (Figure 4.8BE).

An alternative way to decrease linkage disequlibrium is to intersperse extra generations of

neutral mixing between rounds of selection. To test this idea, we simulated scenarios where

selection was carried out every 1, 2, 3, or 4 generations, with random mating during the gen-

erations where selection did not take place (other parameters as above). Again, we found that

the additional recombination events increased power to detect QTLs (Figure 4.8CF). We further

illustrate the effect of extra recombination on allele frequency differences in Figure 4.9.

Taken together, these results show that the ability to detect and localize QTLs depends cru-

cially on recombination, both to decrease interference between QTLs and to break up linkage

between QTLs and nearby neutral variants.

4.3.8 Haplotype-based inference of allele frequencies increases power

In all of our power analyses, we have assumed that we are able to calculate the allele frequencies

at all variant sites perfectly. However, in actual experiments, the allele frequency at a locus will

be estimated by considering the sequence read counts that cover the site. These estimates are

prone to errors from two sources: random base errors, and stochasticity in the number of reads

covering the site. The error in measurement of allele frequencies will lead to a loss of power to

detect and localize QTLs.

In the case where founder sequences are known, our previous work (Kessner et al., 2013)

showed that one can leverage haplotype information from the founders to obtain local haplotype

frequencies, and that these estimates are robust to both sequence read errors and uneven cover-

age. This work suggested that improved allele frequency estimates could be derived from local

haplotype frequency estimates.
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Figure 4.9: Illustration of linkage disequilibrium between QTLs and neutral loci. In plots of

allele frequency differences between high and low populations, QTL peaks are narrower when

extra generations of neutral mixing are introduced. As an example, we indicate a threshold of .5

with the blue lines, and the corresponding detection regions with orange bars. Note that the true

region, consisting of sites within 10kb of either SNP, is too small to be seen at this scale; thus,

the size of the orange bars represent the (local) false positive rate at this threshold. [10 QTLs,

h2 = .5, N=1000, 20% selected, 20 generations of initial mixing, shown are average D values

over 20 replicates. A) 20 generations of selection B) 20 generations of selection, 4 generations

per selection event (80 generations total)]

We investigated the effect of allele frequency estimation error on power by first obtaining

empirical error distributions for the two estimation methods (see Methods). We then simulated
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Figure 4.10: Using founder haplotype information estimation improves power. A) If founder

sequence information is available, estimating local haplotype frequencies leads to better allele

frequency estimates and an increase in power over estimates obtained from raw read counts. B)

Error in local haplotype frequency estimates increases with the number of generations due to

recombination; however, there is a still a net gain in power from extra generations of neutral

mixing. Default: 20 generations mixing, 20 generations selection. Interspersed: 20 generations

mixing, 4 generations per selection event, 20 selection events (100 generations total). Initial +

interspersed: as interspersed, with 70 generations mixing (150 generations total). [10 QTLs,

h2 = .5]

artificial selection experiments with our standard experimental parameters [N = 1000, 20%

selected, 20 generations] and canonical trait architectures, followed by the random introduction

of errors based on the empirical error distributions. In all cases, we found that the haplotype-

based allele frequency estimates led to improved power over the read-count-based estimates.

Figure 4.10A shows the results from the case with 10 QTLs and h2 = .5.
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Our analyses from the previous section showed that increasing the amount of recombina-

tion led to an increase in power. On the other hand, increased recombination results in shorter

haplotypes. This leads to greater errors in local haplotype frequency estimates and the allele

frequency estimates derived from them, with a subsequent decrease in power. To investigate

the relative magnitude of these two counteracting effects, we added two scenarios: one where

we interspersed rounds of neutral mating between generations of selection (4 generations per

selection event, 100 generations total for the experiment), and one where we also added an extra

50 generations of initial neutral mixing (150 generations total). We introduced random errors as

above, using empirical error distributions that take into account the increased number of gener-

ations.

We found that recombination’s positive effect of breaking up linkage between QTLs and

neutral sites outweighed the negative effect on haplotype frequency estimation (Figure 4.10B).

However, for experiments lasting 200 generations or longer, our haplotype-derived allele fre-

quency estimates were no better than read-count-derived estimates (see Methods for parameter

assumptions). Thus, we do not expect haplotype-derived allele frequency estimates to lead to

increased power in scenarios where the typical length of haplotype chunks is shorter than the

window size used for the local haplotype frequency estimation.

4.4 Discussion

We have presented a new analysis of the power of artificial selection experiments to detect and

localize loci contributing to a quantitative trait. In this analysis, we explicitly model whole

genomes of individuals, quantitative traits, and selection based on individual trait values, using

a novel simulation framework.

We showed that population genetics simulations based on loci with constant selection coeffi-

cients do not fully capture the dynamics of QTLs contributing to a trait under artificial selection,
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and that the trait architecture plays a large role in these dynamics. In addition, explicit mod-

eling of selection on a quantitative trait has several other advantages. For example, simulated

experiments can be parameterized and results can be reported using the standard quantitative

genetics concepts of effect size, genetic variance, and heritability. Also, scenarios such as di-

vergent selection can be simulated in a straightforward manner. Finally, the behavior of a QTL

under artificial selection is dependent both on the experimental design (proportion of individuals

selected each generation) and on the trait architecture (effect size, and linkage to other QTLs).

While the selection coefficient conflates these parameters into a single number, our simulation

framework allows these parameters to be separated and investigated independently.

Our results show the important role that recombination plays in the ability to identify QTLs.

Recombination not only reduces interference between QTLs, but also decreases linkage disequi-

librium between QTLs and neighboring neutral loci. In fact, one can view the artificial selection

experiment as a classification problem. From this viewpoint, the ROC curve, which measures

the ability to classify a locus as QTL vs. neutral, contains information about how well the

experiment can break linkage disequilibrium between causal and neutral loci.

The classification viewpoint is useful when thinking about how to design a selection exper-

iment. For example, we found that experiments allowing more opportunity for recombination,

either during initial neutral mixing of the founder haplotypes or between selection events, have

greater power to detect and localize QTLs. Similarly, experiments with weaker selection (greater

proportion selected each generation) over a longer period of time will have greater power than

shorter experiments with strong selection. We note that the improved mapping resolution af-

forded by additional recombination is analagous to the use of recombinant inbred lines (see

Crow (2007) for a history) or advanced intercross lines (Darvasi and Soller, 1995) in traditional

QTL mapping studies.

While recombination increases the ideal power of an artificial selection experiment, it also

decreases the ability to use founder haplotype information to obtain more accurate allele fre-
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quency estimates. We showed that the haplotype-based estimates still result in a net increase

in power in experimental scenarios where the scale of recombination is larger than the window

used for estimating local haplotype frequencies. This suggests that when choosing the window

size for such an analysis, one should take into consideration the expected scale of recombination

based on the experimental design.

Similar to the findings of Kofler and Schlotterer (2014) and Baldwin-Brown et al. (2014), we

found that increasing population sizes and number of replicates leads to an increase in power.

Additionally, our simulation framework allowed us to quantify the increase in power due to

bidirectional selection. We also note that adding generations of initial neutral mixing in the

founder population is in some ways similar to increasing the number of founder haplotypes, in

that it places QTLs on multiple genetic backgrounds. Our results regarding the increase in power

due to additional initial mixing are thus consistent with the findings of both of these groups that

increasing the number of founder haplotypes increases power to detect and localize QTLs.

Also in agreement with Baldwin-Brown et al. (2014), but in contrast to Kofler and Schlotterer

(2014), we found that the effect of increasing the length of the experiment is not uniformly

beneficial, but rather depends on the strength of selection. From the classification viewpoint

again, power depends on the ability of the experiment to allow QTLs to differentiate in selected

populations while keeping allele frequencies at neutral loci constant. Continuing the experiment

beyond the point where the majority of QTLs have differentiated will lead to increased fixation

of linked neutral loci, and hence lower power.

In contrast to both Kofler and Schlotterer (2014) and Baldwin-Brown et al. (2014), whose

results suggest that hundreds of generations are necessary to obtain reasonable power, we found

that artificial selection experiments can detect QTLs explaining most of the genetic variance of

the trait in as little as 20 generations, under reasonable assumptions about the trait architecture

(100 loci, h2 = .5, exponentially distributed effect sizes). We believe that the previous studies

were perhaps conservative in their choice of ranges of selection coefficients. On the other hand,
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it is not obvious how to interpret selection coefficients in the context of an artificial selection

on a quantitative trait, where we feel it is more natural to use parameters representing the trait

architecture and experimental design.

In summary, we have shown that it is feasible to do whole-genome simulations of artificial

selection with explicit quantitative trait modeling. The scope of this study was limited to the

use of D. melanogaster as our model species and simple trait architectures with no dominance

or pleiotropic effects. However, we believe that our simulation methodology can be applied to a

wide variety of species, trait architectures, and experimental protocols. We emphasize that the

opportunity for recombination is a key factor in the power to detect and localize QTLs, and that

this should be taken into account by future designers of artificial selection experiments.

4.5 Methods

4.5.1 Forward simulation

We used the program forqs (Kessner and Novembre, 2014) for all forward simulations.

forqs simulates whole genomes of individuals efficiently by tracking the haplotype chunks that

are inherited from the founder individuals in the initial generation. forqs allows the specifica-

tion of quantitative traits, and provides flexible fitness functions for the simulation of complex

evolutionary scenarios such as artificial selection.

In our simulations of artificial selection on a quantitative trait, individuals had 3 chromo-

somes, with lengths matching Drosophila chromosomes X, 2, and 3. For simplicity, we set the

recombination rate to be uniform along each chromosome, with rate = 2 cM/mb, which is similar

to recombination rates reported previously (Comeron et al., 2012). For each set of experimental

parameters we simulated populations using 200 replicates each of 12 different canonical archi-

tectures: 2, 5, 10, and 100 QTLs, at initial heritability levels .2, .5, and .8. For a given number

of QTLs and heritability level, QTL positions and effect sizes were generated randomly for each
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simulation run (see next section). The random trait generation was implemented in an auxilliary

program which produces trait description files which are included by forqs configuration files

that specify the experimental setup. Our simulation scenarios represented selection on standing

variation where the expected waiting time 1
2Nµ

for a mutation to occur at a QTL is much larger

than the number of generations in the experiment. Hence, we did not include de novo mutations

in our simulations.

Each generation, forqs calculates trait values for all individuals based on the effect sizes

of the alleles they carry at QTLs and a random environmental effect (with variance determined

by the heritability of the trait). Artificial selection was simulated using the forqs module

FitnessFunction TruncationSelection, which assigns a fitness value of 1 to those

individuals whose trait value lies above (or below) a threshold (and 0 otherwise), where the

threshold is determined each generation by the distribution of trait values in the population and

the user-specified proportion of individuals selected to create the next generation.

All configuration files and analysis scripts for all simulations are freely available online:

https://bitbucket.org/dkessner/artificial_selection_pipeline

4.5.2 Generation of random trait architectures

In order to investigate how the genetic architecture of a trait affects the behavior of QTL allele

frequencies under artificial selection, we developed a method to generate random trait architec-

tures with specified parameters. In particular, we were interested in how the number of QTLs

contributing to the trait and the heritability of the trait affect the power to detect QTLs. In ad-

dition, we wanted to investigate how the trait architecture affects a focal QTL with a specified

effect size and initial allele frequency. Finally, we wanted to ensure that linkage disequilibrium

in the simulated starting population is similar to that found in populations used in experimental

settings. In the following, we describe our procedure for generating the founding population and

trait architecture in our simulations.
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Starting with founder individuals for which we have full-genome haplotypes, we run neutral

forward simulations with forqs to recombine the haplotypes and expand the population size.

This results in a mixed population that is 2-3x larger than the desired starting population for the

selection experiment. For our founder individuals, we used the publicly available SNP data from

162 Drosophila inbred lines representing Freeze 1 of the Drosophila Genetic Reference Panel

(DGRP) project (Mackay et al., 2012). Our procedure is similar to the experimental procedure

used by Turner and Miller (2012), where individuals from the DGRP inbred lines are allowed

to mate randomly for several generations in order to create a mixed population with genetic

variation and linkage disequilibrium similar to the natural popluation from which the inbred

lines were derived.

In some cases we additionally specify a focal QTL, for which we specify the locus, effect

size and initial allele frequency. We create a starting population by randomly selecting a subset

of individuals from the mixed population. We ensure that the focal QTL has the desired allele

frequency by choosing individuals in Hardy-Weinberg proportions according to their focal QTL

genotype.

From the heritability and total variance parameters that we specify, we calculate a target ge-

netic variance for the trait. We choose the remaining QTL positions uniformly at random across

the genome, until we have the specified number of QTLs. We choose effect sizes according

to a standard exponential distribution, with random sign for positive/negative effect on the trait.

From the individuals’ haplotypes and QTL effect sizes, we calculate the current genetic variance

of the trait in the population. We then scale the QTL effect sizes so that the genetic variance is

equal to the target genetic variance. In the case where we have a focal QTL, we keep the focal

QTL effect size constant, and scale the other QTL effect sizes – this requires iteration until the

genetic variance is close to the target genetic variance, within a specified tolerance.
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4.5.3 Realized selection coefficient

We first recall the deterministic model of selection on a single locus in a diploid population.

Suppose a locus has two alleles A0 and A1. If p is the frequency of A1, then the allele frequency

change is given by:

∆p = p(1− p)w
∗
1 − w∗0
w̄

where w∗0 and w∗1 are the marginal fitnesses of the A0 and A1 alleles, respectively, and w̄ is the

mean fitness of the population (Rice, 2004).

In the special case where A1 has additive selection coefficient s, this becomes:

∆p = p(1− p) s

1 + 2ps

We define the realized selection coefficient for a given p and ∆p to be the selection coefficient

s that would result in this allele frequency change in the deterministic case. By solving the above

equation for s, we obtain a formula for the realized selection coefficient:

srealized(p,∆p) =
∆p

p(1− p)− 2p∆p

4.5.4 Calculation of power and false positive rate

We explored several methods for calculating the power and false positive rate associated with

the detection of QTLs by allele frequency differences between populations.

The simplest method to measure power is to calculate the proportion of QTLs detected.

However, we feel that a more relevant measure of power is the proportion of the genetic variance

in the initial population that is explained by the detected QTLs. This measure appropriately gives

greater weight to QTLs responsible for more of the genetic variance. Figure 4.11AB illustrates

the difference between these two measures of power: at a false positive rate of 10−4, only 50% of

the QTLs are detected, but these QTLs are responsible for more than 75% of the genetic variance

of the trait.
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Figure 4.11: Comparison of three methods for calculating and interpreting power and false

positive rate. A) Power is measured by proportion of QTLs detected, and false positive rate is

measured by proportion of neutral variant sites detected. B) Power is measured by the proportion

of genetic variance in the founder population explained by the detected QTLs; false positive rate

as in A. C) Power as in B; false positive rate is measured by proportion of the neutral genome

covered by the detection region. In this case, the ROC curve shows that over 75% of the genetic

variance is explained by QTLs in a detection region which covers 1% of the neutral genome.

Furthermore, calculating the false positive rate as the proportion of neutral variants detected

does not capture the clustering of detected variants due to linkage disequilibrium. In addition,

significantly diverged variants are not necessarily causal, but indicate that the region nearby

may contain a causal variant. To address these issues, we define a detection region to include all

variants within a specified radius of any variant whose D value exceeds a given threshold (see

Results, “Measurement of power to detect and localize QTLs”). This leads to a natural definition

of false positive rate: the proportion of the neutral genome covered by the detection region (see

Figure 4.9 for an illustration).
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We calculated the false positive rate in this way with radii of 10kb, 100kb, and 1mb. We

found that using a radius of 100kb or 1mb led to true regions that covered a substantial portion

of the genome in the cases where there were a large number of QTLs. Thus, we found that using

the 10kb radius for the detection region, together with measuring power as the proportion of

variance explained, gave the most interpretable results.

4.5.5 Analysis pipeline

The forward simulator forqs efficiently simulates the entire genome of each individual by

tracking haplotype chunks. forqs outputs data files that represent each chromosome of each

individual as a mosaic of founder haplotypes. In order to obtain the neutral variants carried by an

individual, the neutral variation on founder chromosomes must be propagated to the individual’s

mosaic chromosomes.

In our simulation framework, we use two forward simulations. The first simulation creates

a mixed population from the founder haplotypes, after which we generate the random trait ar-

chitecture. The second simulation represents the selection experiment. Individuals in the final

populations are mosaics of individuals in the mixed population, which are in turn mosaics of

the founders. We implemented a custom program to handle this two-step propagation of neutral

variation. Given founder sequences, the mixed population, and the final population, the program

calculates the allele frequency in the final population of each variant in the genome. We note

that while this step does not require a large amount of computation, it is I/O-intensive because it

uses the full DGRP variant data set for the founder sequences, which consists of 162 haplotypes

at approximately 5 million loci.

After calculating allele frequencies for each population, we calculate the allele frequency

difference D for each high-low population pair under consideration (multiple pairs for the repli-

cation analyses). After sorting the D values, we begin with the highest D value and iteratively

decrease the threshold to obtain data equivalent to an ROC curve (power and false positive rates)
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for that simulation run. We note that this step depends on the method for calculating power and

false positive rate, so we performed it once for each method we described above in “Calculation

of power and false positive rate”.

We obtain average ROC curves by calculating the average power over replicate simulation

runs at regularly spaced false positive rates, where the power for a particular run at a given false

positive rate is obtained by linear interpolation between points on its ROC curve.

4.5.6 Empirical error distributions

To investigate the power increase due to the use of haplotype-based allele frequency estimates,

we needed to simulate pooled sequence reads from a population, followed by haplotype fre-

quency estimation in sliding windows across the genome, using the harp method and software

detailed in Kessner et al. (2013). Because this procedure is computationally expensive, and due

to the large number of simulations involved in this study, it was not feasible to do this for each

simulated experiment.

As an alternative, we obtained empirical error distributions, which we later used to add ran-

dom errors to true allele frequencies. Because errors in the haplotype frequency estimation

depend on the length scale of recombination, we ran replicate neutral simulations for varying

numbers of generations (from 40 to 400). Haplotypes surrounding selected QTLs are expected to

be longer than in neutral regions, so our empirical error distributions are conservative. We simu-

lated pooled sequence reads from the final populations using a new program simreads forqs

based on the read simulator used in Kessner et al. (2013). Haplotype frequency estimation was

performed with harp in overlapping sliding 200kb windows within a single 1mb region. We

then calculated allele frequencies at variant sites within the region using read counts. By consid-

ering allele frequencies in bins of size .05, we obtained a frequency-dependent empirical error

distribution. Similarly, we also derived allele frequency estimates from the local haplotype fre-

quencies, from which we obtained frequency-dependent empirical error distributions for each
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generation count. We found that after ∼ 200 generations, the haplotype-based estimates were

no better than the read-count-based estimates; this behavior is expected as the recombination

length scale approaches the window size used for haplotype frequency estimation (200kb in this

analysis). Hence, for this analysis we only considered experimental scenarios lasting less than

200 generations.
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APPENDIX A

Additional analysis of haplotype frequency estimation in

metagenomics applications

A typical metagenomics analysis includes an estimate of the relative abundances of the various

taxa comprising the microbial community. In this Appendix, I compare relative abundance es-

timates obtained by the maximum-likelihood method of Chapter 2 (implemented in the harp

software) to those calculated by the commonly used metagenomics analysis pipeline QIIME

(Quantitative Insights Into Microbial Ecology, http://qiime.org). In particular, for the

scenario where known reference sequences are used for the estimation, I show that harp pro-

duces better relative abundance estimates at the species level, as well as at higher taxonomic

levels. In addition, I show that the improved relative abundance estimates lead to better esti-

mates of community diversity.

A.1 Mock community analysis

We first considered a scenario based on Mock Community samples used in the Human Micro-

biome Project (HMP, http://www.hmpdacc.org). The Mock Community samples con-

tain 21 species at known abundances. We simulated 75bp single-end reads generated from 16S

rDNA, at high coverage (1000x), using base quality score distributions obtained from the pub-

licly available HMP data sets.

For the harp analysis, we first aligned all reads to each reference sequence using the bwa
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program (Li and Durbin, 2010). For the QIIME analysis, we calculated relative abundances

using the “closed reference” option. With this option specified, the QIIME pipeline performs a

read alignment, followed by assignment of each read to the best matching reference sequence.

Finally, QIIME calculates relative abundances based on the proportion of reads assigned to each

taxon. By default, QIIME requires reads to match a reference sequence with 97% sequence

similarity. For comparison, we also used sequence similarity parameters of 90% and 80%.
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Figure A.1: Mock community comparison of harp to QIIME. harp produces better species

relative abundance estimates than QIIME (left), leading to better estimates of diversity (right).

[Simulations of 75bp reads from a pool of 21 species at 1000x pooled coverage]

Similar to the results in Chapter 2, we found that harp estimates showed an improvement

over those obtained from QIIME, both for species relative abundance and for species diver-

sity (measured by the Shannon diversity index) (Figure A.1). We additionally found that the

estimates of relative abundance at higher taxonomic levels also improved (Figure A.2).
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Figure A.2: Mock community comparison of harp to QIIME – higher level taxa. harp

produces better relative abundance estimates than QIIME at higher taxonomic levels. [Simula-

tions of 75bp reads from a pool of 21 species at 1000x pooled coverage; L6=genus, L5=family,

L4=order, L3=class, L2=phylum]

A.2 Larger community analysis

We next simulated a larger microbial community, with each simulation drawing 200 species

randomly from a list of 1000 known species, at frequencies drawn from a symmetric Dirich-

let distribution (common parameter .2). We then simulated high coverage (1000x) 75bp reads

from the sample, and analyzed with harp and QIIME with default parameters, using a closed

reference set consisting of the 1000 known species.

As in the mock community scenario above, harp showed significant improvement in perfor-

mance over read-count-based estimates of relative abundance, both at the species level (Figure

A.3) and at higher taxonomic levels (Figure A.4). In addition, community diversity estimates

improved as a result (Figures A.3 and A.5).

134



1e−04

1e−03

1e−02

harp QIIME default

Method

S
um

 o
f s

qu
ar

ed
 e

rr
or

s

●

●

●

4.0

4.5

5.0

ac
tu

al

ha
rp

Q
IIM

E
 d

ef
au

lt

Method

S
ha

nn
on

 d
iv

er
si

ty
Figure A.3: Larger community comparison of harp to QIIME. harp produces better species

relative abundance estimates than QIIME (left), leading to better estimates of diversity (right).

[Simulations of 75bp reads from a pool of 200 species at 1000x pooled coverage]

A.3 Discussion

This short analysis shows that estimates of the relative abundances of taxa in a mixed sample

can be improved by the maximum likelihood method of Chapter 2, whether these taxa are dis-

tinguished at the species level or a higher taxonomic level. The improvement comes from the

incorporation of base quality scores into the likelihood calculation and from combining the in-

formation from reads across the sequenced region (16S in this case). As a result, estimates of

community diversity are also improved.

We note that in this analysis we have assumed that we have a set of reference sequences

that includes all the constituent species in the pool. Before running harp to compute relative

abundances, the raw sequence reads must first be mapped to each reference sequence to obtain

a haplotype likelihood for each reference species. This poses a potential performance issue as

the number of reference sequences increases. One possible approach to handle this issue is to

map reads to multiple references simultaneously, where the reference sequences are stored in
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Figure A.4: Larger community comparison of harp to QIIME. harp produces better relative

abundance estimates than QIIME at higher taxonomic levels. [Simulations of 75bp reads from

a pool of 200 species at 1000x pooled coverage; L6=genus, L5=family, L4=order, L3=class,

L2=phylum]

a tree structure that reflects the phylogenetic relationships between the reference species. This

approach would speed up read mapping by, for example, avoiding attempts to map a read to a

particular locus in groups of closely related species once it has been established that the read

does not map to that locus in one representative species.

Further discussion of the use of this method in the metagenomics context can be found in

Chapter 2.
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Figure A.5: Estimated vs. true diversity. Shown are comparisons of diversity estimates of

harp and QIIME vs. true diversity, at different taxon levels. (top row) species, genus, family

(bottom row) order, class, phylum [Simulations of 75bp reads from a pool of 200 species at

1000x pooled coverage]
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frequencies by combining data from large DNA pools with database information. IEEE/ACM

Transactions on Computational Biology and Bioinformatics / IEEE, ACM, 8(1), 36–44.

Gillespie, J. H. (2004). Population Genetics: A Concise Guide. Johns Hopkins University Press,

2nd edition.

Grossman, S. R., Shlyakhter, I., Shylakhter, I., Karlsson, E. K., Byrne, E. H., Morales, S.,

Frieden, G., Hostetter, E., Angelino, E., Garber, M., Zuk, O., Lander, E. S., Schaffner, S. F.,

and Sabeti, P. C. (2010). A composite of multiple signals distinguishes causal variants in

regions of positive selection. Science, 327(5967), 883–886.

140



Haiminen, N., Utro, F., Lebreton, C., Flament, P., Karaman, Z., and Parida, L. (2013). Effi-

cient in silico chromosomal representation of populations via indexing ancestral genomes.

Algorithms, 6(3), 430–441.

Hastings, I. M. and Smith, T. a. (2008). MalHaploFreq: a computer programme for estimating

malaria haplotype frequencies from blood samples. Malaria Journal, 7, 130.

Hastings, I. M., Nsanzabana, C., and Smith, T. a. (2010). A comparison of methods to detect

and quantify the markers of antimalarial drug resistance. The American Journal of Tropical

Medicine and Hygiene, 83(3), 489–95.

Hernandez, R. D. (2008). A flexible forward simulator for populations subject to selection and

demography. Bioinformatics, 24(23), 2786–2787.

Hill, W. G. and Robertson, A. (1966). The effect of linkage on limits to artificial selection.

Genet. Res., 8(3), 269–294.

Hoban, S., Bertorelle, G., and Gaggiotti, O. E. (2011). Computer simulations: tools for popula-

tion and evolutionary genetics. Nat. Rev. Genet., 13(2), 110–122.

Huang, W., Richards, S., Carbone, M. a., Zhu, D., Anholt, R. R. H., Ayroles, J. F., Duncan,

L., Jordan, K. W., Lawrence, F., Magwire, M. M., Warner, C. B., Blankenburg, K., Han, Y.,

Javaid, M., Jayaseelan, J., Jhangiani, S. N., Muzny, D., Ongeri, F., Perales, L., Wu, Y.-Q.,

Zhang, Y., Zou, X., Stone, E. a., Gibbs, R. a., and Mackay, T. F. C. (2012). Epistasis dom-

inates the genetic architecture of Drosophila quantitative traits. Proceedings of the National

Academy of Sciences, pages 1–7.

Hudson, R. R. (2002). Generating samples under a Wright-Fisher neutral model of genetic

variation. Bioinformatics, 18(2), 337–338.

Hudson, R. R. and Kaplan, N. L. (1988). The coalescent process in models with selection and

recombination. Genetics, 120(3), 831–840.

141



Human Microbiome Project Consortium (2012). Structure, function and diversity of the healthy

human microbiome. Nature, 486(7402), 207–14.

Hunt, P., Fawcett, R., Carter, R., and Walliker, D. (2005). Estimating SNP proportions in pop-

ulations of malaria parasites by sequencing: validation and applications. Molecular and Bio-

chemical Parasitology, 143(2), 173–82.

International Human Genome Sequencing Consortium, Lander, E. S., Linton, L. M., Birren, B.,

Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W.,

Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine,

R., McEwan, P., McKernan, K., Meldrim, J., Mesirov, J. P., Miranda, C., Morris, W., Naylor,

J., Raymond, C., Rosetti, M., Santos, R., Sheridan, A., Sougnez, C., Stange-Thomann, N.,

Stojanovic, N., Subramanian, A., Wyman, D., Rogers, J., Sulston, J., Ainscough, R., Beck, S.,

Bentley, D., Burton, J., Clee, C., Carter, N., Coulson, A., Deadman, R., Deloukas, P., Dunham,

A., Dunham, I., Durbin, R., French, L., Grafham, D., Gregory, S., Hubbard, T., Humphray, S.,

Hunt, A., Jones, M., Lloyd, C., McMurray, A., Matthews, L., Mercer, S., Milne, S., Mullikin,

J. C., Mungall, A., Plumb, R., Ross, M., Shownkeen, R., Sims, S., Waterston, R. H., Wilson,

R. K., Hillier, L. W., McPherson, J. D., Marra, M. A., Mardis, E. R., Fulton, L. A., Chinwalla,

A. T., Pepin, K. H., Gish, W. R., Chissoe, S. L., Wendl, M. C., Delehaunty, K. D., Miner,

T. L., Delehaunty, A., Kramer, J. B., Cook, L. L., Fulton, R. S., Johnson, D. L., Minx, P. J.,

Clifton, S. W., Hawkins, T., Branscomb, E., Predki, P., Richardson, P., Wenning, S., Slezak,

T., Doggett, N., Cheng, J. F., Olsen, A., Lucas, S., Elkin, C., Uberbacher, E., Frazier, M.,

Gibbs, R. A., Muzny, D. M., Scherer, S. E., Bouck, J. B., Sodergren, E. J., Worley, K. C.,

Rives, C. M., Gorrell, J. H., Metzker, M. L., Naylor, S. L., Kucherlapati, R. S., Nelson,

D. L., Weinstock, G. M., Sakaki, Y., Fujiyama, A., Hattori, M., Yada, T., Toyoda, A., Itoh,

T., Kawagoe, C., Watanabe, H., Totoki, Y., Taylor, T., Weissenbach, J., Heilig, R., Saurin,

W., Artiguenave, F., Brottier, P., Bruls, T., Pelletier, E., Robert, C., Wincker, P., Smith, D. R.,

Doucette-Stamm, L., Rubenfield, M., Weinstock, K., Lee, H. M., Dubois, J., Rosenthal, A.,

142



Platzer, M., Nyakatura, G., Taudien, S., Rump, A., Yang, H., Yu, J., Wang, J., Huang, G.,

Gu, J., Hood, L., Rowen, L., Madan, A., Qin, S., Davis, R. W., Federspiel, N. A., Abola,

A. P., Proctor, M. J., Myers, R. M., Schmutz, J., Dickson, M., Grimwood, J., Cox, D. R.,

Olson, M. V., Kaul, R., Raymond, C., Shimizu, N., Kawasaki, K., Minoshima, S., Evans,

G. A., Athanasiou, M., Schultz, R., Roe, B. A., Chen, F., Pan, H., Ramser, J., Lehrach, H.,

Reinhardt, R., McCombie, W. R., de la Bastide, M., Dedhia, N., Blocker, H., Hornischer, K.,

Nordsiek, G., Agarwala, R., Aravind, L., Bailey, J. A., Bateman, A., Batzoglou, S., Birney, E.,

Bork, P., Brown, D. G., Burge, C. B., Cerutti, L., Chen, H. C., Church, D., Clamp, M., Copley,

R. R., Doerks, T., Eddy, S. R., Eichler, E. E., Furey, T. S., Galagan, J., Gilbert, J. G., Harmon,

C., Hayashizaki, Y., Haussler, D., Hermjakob, H., Hokamp, K., Jang, W., Johnson, L. S.,

Jones, T. A., Kasif, S., Kaspryzk, A., Kennedy, S., Kent, W. J., Kitts, P., Koonin, E. V., Korf,

I., Kulp, D., Lancet, D., Lowe, T. M., McLysaght, A., Mikkelsen, T., Moran, J. V., Mulder,

N., Pollara, V. J., Ponting, C. P., Schuler, G., Schultz, J., Slater, G., Smit, A. F., Stupka, E.,

Szustakowski, J., Thierry-Mieg, D., Thierry-Mieg, J., Wagner, L., Wallis, J., Wheeler, R.,

Williams, A., Wolf, Y. I., Wolfe, K. H., Yang, S. P., Yeh, R. F., Collins, F., Guyer, M. S.,

Peterson, J., Felsenfeld, A., Wetterstrand, K. A., Patrinos, A., Morgan, M. J., de Jong, P.,

Catanese, J. J., Osoegawa, K., Shizuya, H., Choi, S., Chen, Y. J., and Szustakowki, J. (2001).

Initial sequencing and analysis of the human genome. Nature, 409(6822), 860–921.

Ito, T., Chiku, S., Inoue, E., Tomita, M., Morisaki, T., Morisaki, H., and Kamatani, N. (2003).

Estimation of Haplotype Frequencies, Linkage-Disequilibrium Measures, and Combination

of Haplotype Copies in Each Pool by Use of Pooled DNA Data. American Journal of Human

Genetics, (2001), 384–398.

Johansson, A. M., Pettersson, M. E., Siegel, P. B., and Carlborg, O. (2010). Genome-wide

effects of long-term divergent selection. PLoS Genet., 6(11), e1001188.

Keightley, P. D. and Bulfield, G. (1993). Detection of quantitative trait loci from frequency

changes of marker alleles under selection. Genetical Research, 62(3), 195–203.

143



Kessner, D. and Novembre, J. (2014). forqs: forward-in-time simulation of recombination,

quantitative traits and selection. Bioinformatics, 30(4), 576–577.

Kessner, D., Turner, T. L., and Novembre, J. (2013). Maximum likelihood estimation of frequen-

cies of known haplotypes from pooled sequence data. Mol. Biol. Evol., 30(5), 1145–1158.

Kim, Y. and Stephan, W. (1999). Allele frequency changes in artificial selection experiments:

statistical power and precision of QTL mapping. Genet. Res., 73, 177–184.

Kirkpatrick, B., Armendariz, C. S., Karp, R. M., and Halperin, E. (2007). HAPLOPOOL:

improving haplotype frequency estimation through DNA pools and phylogenetic modeling.

Bioinformatics, 23(22), 3048–55.

Kofler, R. and Schlotterer, C. (2014). A guide for the design of evolve and resequencing studies.

Mol. Biol. Evol., 31(2), 474–483.

Kofler, R., Orozco-terWengel, P., De Maio, N., Pandey, R. V., Nolte, V., Futschik, A., Kosiol,

C., and Schlötterer, C. (2011). PoPoolation: a toolbox for population genetic analysis of next

generation sequencing data from pooled individuals. PLOS ONE, 6(1), e15925.

Korte, A. and Farlow, A. (2013). The advantages and limitations of trait analysis with GWAS:

a review. Plant Methods, 9(1), 29.

Kuk, A. Y. C., Zhang, H., and Yang, Y. (2009). Computationally feasible estimation of haplotype

frequencies from pooled DNA with and without Hardy-Weinberg equilibrium. Bioinformat-

ics, 25(3), 379–86.

Lai, C. Q., Leips, J., Zou, W., Roberts, J. F., Wollenberg, K. R., Parnell, L. D., Zeng, Z. B.,

Ordovas, J. M., and Mackay, T. F. (2007). Speed-mapping quantitative trait loci using mi-

croarrays. Nat. Methods, 4(10), 839–841.

144



Lambert, B. W., Terwilliger, J. D., and Weiss, K. M. (2008). ForSim: a tool for exploring the

genetic architecture of complex traits with controlled truth. Bioinformatics, 24(16), 1821–

1822.

Lange, K. (2010). Numerical Analysis for Statisticians (Statistics and Computing). Springer,

2nd ed. edition.

Laurie, C. C., Chasalow, S. D., LeDeaux, J. R., McCarroll, R., Bush, D., Hauge, B., Lai, C.,

Clark, D., Rocheford, T. R., and Dudley, J. W. (2004). The genetic architecture of response

to long-term artificial selection for oil concentration in the maize kernel. Genetics, 168(4),

2141–2155.

Ley, R., Turnbaugh, P. J., Klein, S., and Gordon, J. I. (2006). Human gut microbes associated

with obesity. Nature, 444.

Li, H. and Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler

transform. Bioinformatics, 26(5), 589–95.

Li, H. and Homer, N. (2010). A survey of sequence alignment algorithms for next-generation

sequencing. Brief. Bioinformatics, 11(5), 473–483.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.,

and Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics,

25(16), 2078–9.

Li, X., Foulkes, A. S., Yucel, R. M., and Rich, S. M. (2007). An expectation maximization

approach to estimate malaria haplotype frequencies in multiply infected children. Statistical

Applications in Genetics and Molecular Biology, 6(1), Article33.

Long, Q., Jeffares, D. C., Zhang, Q., Ye, K., Nizhynska, V., Ning, Z., Tyler-Smith, C., and

Nordborg, M. (2011). PoolHap: inferring haplotype frequencies from pooled samples by next

generation sequencing. PLOS ONE, 6(1), e15292.

145



Mackay, T. F. (2001). Quantitative trait loci in Drosophila. Nat. Rev. Genet., 2(1), 11–20.

Mackay, T. F., Stone, E. A., and Ayroles, J. F. (2009). The genetics of quantitative traits: chal-

lenges and prospects. Nat. Rev. Genet., 10(8), 565–577.

Mackay, T. F. C., Richards, S., Stone, E. a., Barbadilla, A., Ayroles, J. F., Zhu, D., Casillas,

S., Han, Y., Magwire, M. M., Cridland, J. M., Richardson, M. F., Anholt, R. R. H., Barrón,

M., Bess, C., Blankenburg, K. P., Carbone, M. A., Castellano, D., Chaboub, L., Duncan, L.,

Harris, Z., Javaid, M., Jayaseelan, J. C., Jhangiani, S. N., Jordan, K. W., Lara, F., Lawrence, F.,

Lee, S. L., Librado, P., Linheiro, R. S., Lyman, R. F., Mackey, A. J., Munidasa, M., Muzny,

D. M., Nazareth, L., Newsham, I., Perales, L., Pu, L.-L., Qu, C., Ràmia, M., Reid, J. G.,
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