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'ABSTRACT

Chiew’s equation of state for mixtures of hard-sbhere chainé is generalized through the
Carnahan-Starling ‘r‘a;dial distribution»functiqn.for lyard-sphgre mixtures at contact for both |
the bqnding and non-bonding terﬁs. Wheﬁ compé.red with gdmputer simulatiéﬁs Qf hard-
sphere-chain mixtufeé, the. new equation of state gives Better agree'meni;. thgn the original
evqua,tio’n éf stz?;te. The new éqﬁa’tion of state indicates vthe.sin>1p1ifyin'g physical as.sumptions
which a.;‘é reqﬁired to obtain the well-known ‘Flory-Huggins a.ther?x?a.l entropy of miﬁng. ’.l;.‘he
generaliza.tion presented here is applied to mixtures of ﬁard_—si;here-chéin copolymers, where
the spherical segments of a given chain may have different‘ dié“meters. ]]iustfativg calculations

are presented for three types of copolymérs (alternating, block and random).



1. Introduction

Hard-sphere chains provide a simple model for assemblies of polymer‘molecules. Despite
their simplicity, the properties of hard-sphere-chain models take into account some significant
featurés of real polymer liquids, including excluded-volume effects and segﬁlent cennectivity. .
- More impbgta.nt, they provide-e. useful reference system in statistical;meehanical perturba-
tion theories for chain-like molecular fluids, ‘in a manner similar to the way that hard spheres
provide a reference system in statistical;mecha.nical perturbation theories of simple fluids.1
Therefore, se\}eral authors have given at_tenfion t;owa.rd establishing accurate analytical equa-
_ tions of state for hard-sphere cha.iﬁe which can be tested with computei-generated simulation
results. A number of methods have been developed, including the genera.lizee Flory-Huggins
theory2'3 and the perturbation theory of polymeriza,tion.‘i'5 |

A pa,rticularly elegant, yet simple, method has been bresented by Chiew® whe studied.
mixtures of lha.,rd-sphere chains Where a chain tnolecule is modeled by a series of r freely-
jointed ta.ﬁgent spheres. Each sphere in a chejn interacts with every other (non-bended)
spherev in the system through the hard-sphere petential. An analytical equation state for
hard-sphere-chaiﬁ mixtures was obtained be.sed on the Percus-Yevick integral-equatien the- -
ory coupled with chain connectivity. The pressuie, p, consists of two parts; a non-bonding
contribution (i.e., ha,rd-spjhere mixtures prior to bonding to forin chains) and a bonding

contribution due to chain formation:

P = Dhs +pbond (1)
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For tlle hard-sphéré—_mixture term,' Chiew fepla.’ced' the Percus-Yevick sélution with the
more successﬁﬂ B'oub]ik-Marlllsoori'z'8 extension of the Carnahaq-Sta.rling equation. Chiew
compared his result for hard-sphere chains with computer-simula;tion data for one-componentl
systems. Agreement is good but deviations are eﬁdent at high densities.

Here we show that a significant modiﬁcation to Chiew’é result can be ‘obtained for mix-
tures of hard-sphere cha.ins.. The key idea is a reformulation of the Percus-Yevick solution
in terms of the radial distribution functions. of ha;d-sphere mixtures at contact in both the
'non;boxiding and bonding terms. By using radial distribution functions at contact ‘f‘rom the
Boublik-Mansoori-Carnahan—Staﬂing (BMCS) equation fof hard-sphere mixtures, the result-

ing equation of state for hard-sphere-chain mixtures is compared with recent simulation data

for binary mixtures by Honnell and Hall.9 In general, the new equation of state for chains,
based on the BMCS equation for hard-sﬁheré mixtures, 1s more accuraté than the original
equation of state for.cha.ins, based on the Pe:cus-Yevick solution, especially at high densities.

Since the hard spheres in a chain need not all h:;ve the same diameter, the new equation of
state, like Chiew’s original equation of state, can also represent hard-sphere-chain copolymers
and i';heir mixture.s.v where tﬁ.he spherica.l segments have different sizes. Overall, compared to
the original equation of state, the new équation of state for hard-sphere-chain mixtures '\is
- expressed more succinctly and is more convenieﬁt for application. |

Our goal is directed toward establishing a perturbed-hard-sphere chain equation of state

for calculating phase equilibria in solutions contahiing solvents, polymers, a,nd;copolymer's.



To achieve this goal, however, we must first establish an equation of state for mixtures of

hard-sphere chains which can serve as a useful reference system.

2. Equation of state

At total volume V a.nd temperature T, we consider an m-component mixture of hard-
sphere chains containing N; chains consisting of r; tangent hard spheres of dja,metef d; where
component z = 1,2,--.. ,fn; the total number of chains is N = EI"I N; and the total number
of hard spheres is N, = Y r;N;. Chiew® gives details concerning the derivation of the
equation of Statie for this systéin based on the Percus-Yeﬁck inteéral theory coupled with
chain cdnnectivity; thése details need not be présented here. We start from Chiew’s result

[Eq. (10) in Ref. 6] which is equivalent to

P _ (_P_) _;(_P_)”Y
pkT pkT ) he ~ \pkT/tond

ij

= 143 sy gy zm (i~ 1) 057 (@) - 1] (2)

where p is the pressure, % is the Boltzmann constant, p =N/V is the number density of chains,
z; = N;/N is the number fraction of component i, and b;; is the second virial coefficient of
hard-sphere mixtures prior to bonding to form chains, given by

2 3
b,’j = 37l'd,J, |

dj=~—2, di=d; @)

In Eq. (2) superscripts ¢ stands for compressbility and PY for Percus-Yevick. Eq. (2)
- provides a clear and succinct expression of Chiew’s result because the equation of state for
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mixtures of hard-sphere chains is written here only in terms of the radial distribution function
of hard-sphere mixtures at contact in goth thé non-.bondjng.a,nd bonding terms. In Eq. (2),
95;(d% ) is the radial distribution functlon of hard-sphere mixtures at contact as calculated
from the compressibility pressure equation of the Percus-Yevick solution,19 and gi Y(d ) is
the Percus-Yevick radial distrilﬁtion function of hard-sphere m;'xtures at contact.lq If the
47 Percus-Yevick theory were exact, both g§;(d; ) and- gP Y(d¥) wbuld bé identical functions for
~ a system of hard-sphere mixtures. The relation be_tween 95; (df) and guy(d ) is10

g5i(dh) = gf" (d} )+4(—1——)— | @

1 3 &
PY(dt) = -,
% (d" T—n 27

(5)

where 7 is the packing fraction of hard—sphere mixtures
= g Y zirib; | (6)

m () S -(7,

For one-component systems and equal-monomer-size rmxtures, &; = 1. |
Chiew replaced (p/pkT")n, in the non-bonding term of Eq. (2) by the more accurate BMCS
result,7'8 but did not utilize the Percus-Yevick radial distribution functions of hard-sphere
mixtureé prior to bonding to derive both the non-bopding and Bondigg ‘terms in Eq. (2).
Therefore we revise Chiew's result to obtain a general form of the equation of state for

hard-sphere-chain mixtures.



The radial distribution function of hard-sphere mixtures at contact, é;,-(d;*}), is initially
unspecified, in both the non-bonding and bonding terms of the Percus-Yevick solution in
- Eq. (2). We can rewrite Eq. (2) to give a more ggheral form of the equation of state for

hard-sphere-chain mixtures:

B =4S mmrisbi(a) ~ S5 = 1 sutdt) - 1 @

ij
Eq. (8) indicates that the radial distribution functions of hard-sphere mixtures at contact,
gi;(dh), prior to bonding to form chains, éompletely determipé the equation of state for hard-
spheré-chain mixtures. Moreover, Eq. (8) shows the connection between the non-bbnding
and bonding terms throﬁgh 9i;(d%;). Finally, Eq. (8) obeys the ideal-gas law in the limit
p— 0. |
Although Eq. (8)is derived from the Pe;rcus-Yevick solution, we expect that bgftcr agree-
ment with s1mulat10n results can be obtained if we use for g;;(d{;) a result better than the
-Pe_rcus-Yevick. result. For example, we could use the computer-simulation results for g,-_,-(d;';-),
which are available at least for binary mixtures of hard spheres.11 On the other hdnd,
glthough the (analytical) exact expression for gi;(df;) is unknown, the Cama.haﬁ-Starling
equation gives good results for one-component systerhs,'12 and the BMCS equation gives
‘13 .

good results for mixtures.

We approximate g,-,-(d;"j) with the expression from the BMCS equation for hard-sphere



© mixtures:

1 3 & 18
(dE) = ¢S5 (dk) = R 1 .1 R—
gJ( 17 gt](z] 1—17+2(1—77)2+2(1“7I)3

)

3. Corvnp’arison with othgr résults including. simulation. d;ta
I—io_nne]l a.nd.Hallg ha.ve r'eporfed Monte. Carlo computer simﬁla."ciohs vfor binary mixtures
of hard-sphere chéjné, including an 8-mer/monomer system and an 8—mer/4fmer system; in
both mi).ctﬁres, both components have the same hard-sphere diameters. ’I;h-e numBer fra_qtiop
of_ each f:omponent is ai&vays one half. Figs. land 2 sﬁdw comparisons of Monte Carlo results
with thos¢ based on Egs. (8) and (9). We also éompare our result with t\t;o other approximate
equations of state for hard-sphere-chain mixtures: the Pércus-Yevick solution, Eq. (2), and
‘the result obta.ined by Chapman et al .',5 based on the_ férfurbation. theory of polymerization
of Werthei'm,4 thch can be written as |

Ang;;: (d} )] (10) :

ka . 1+PVE$ er‘TJleglJ( q) Z (r, )[ ap

Egs. (8) and (10) diffei only in the bonding ternﬁ.

- Figure 1 i)resents compa.risonsufor the 8-mer/monomer mixture (ry = 1 and rp = 8).
Compressibili(*;y. factor Z = p/pkT, plotted against the hard-sphere paéking fraction (r’educéd
density), is shown for the entire fluid range of hard spheres to the vfr}gezixig density, n = 0.49; 17:
At low to moderate densities (7 < 0.2), all three equations are almost indisting‘uisha,blev from
each other as well as from the simulation data. At higher densities, both th'e'Percus-Yevic-kv

equation and the equation by Chapman et al.5 overestimate the préssure; however, Eq. (8)



shows excellent va'greement with the simulation data. These observations are not surprising,
because it is known that the Percus-Yevick solution for hard spheres is accurate only at low
.to moderate densities, whiléthe BMCS equation is superior to the Pe’rcus'—Yevick solution,
especially at high densities near the freezing density. The oﬁserved lowef accuracy of Eq. (10)
at high densities is probably due to truncation after the first-order perturba,fion contribution'
in the lbonding term.

Figuvre 2 shows co‘mparis.ons‘for. the é—mer/4fmer mixture (r; = 4 and 7, = 8). At
low to -modere_l.te densities, conclusions are similar td those that: apply to Flg 1; all three
~ equations are accurate at n < 0.2. At higher densitie;, both Egs. (2) and (10) ;gajn lead
to overestimates .of the pressure for the hard-si).her‘e-chain' mixtures. In contrast, Eq. (8)
slightly underestimates the pressure but is in gege‘ral moré accurate than either Eq. (2) or
Eq. (10) when compared .fo the simulation data..

4. Athermal entr‘opy. of mixing

We use Egs. (8) and (9) to calculate the Ia,ther‘nial'entropy of .mixing béca,use we WOﬁld like

to ﬁnderstan%l the i)llyéical aééumptions that are required to obtain thé well-known athermal |

Flory-Huggins equation.14

The general definition for the entropy of mixing can be written:19

A_.mizs ‘= Smia:ture —-f:SI v

A COMEES TR MR



+ Nkim,-ln(%). (1)

. For athermal hard-sphere chain mixtures, we have

6p) - _ D
(3T Nnv T ' (12)
We can then rewrite Eq. (11) as

Amws dp - & "-‘( P )dp. ™ |
T > i T dn(zip/ pi 13
(ka ) p +;$/o oikT p; ;-’” (1'3 ol pi) (13)
The first integral refers to the mixture and the other integrals to the pure components.

The quantity p; = N;/V; is the molecular number density of pure component i; pressure p;.

is calculated from the equation of state for pure component ¢, which can be derived from
Eq. (8) as

;{Z_T =1+ T?bipigi(d?) —(ri— 1)[9.'(‘1?;) - 1] | (14)

where g;(d}) is the radial distribution function of hard spheres at contact for pure component

2, as calculated from the Carnahan-Starling equa.tion,16

v _l-mi/2 ribip
gi( ?L) = m, i = 4 (15)

We use the condition that the total volume is constant, that is,

V=3V, or % = % . - (16)

The final result for A,,;zS is

AmizS | =, = 17
NE = —p Ea: a:Jr,r,b.JA,, + E zi(ri — )Y + Zx.-H.- - Z ziln(zip/p:) (17)

iy




where

Xy = 2, 9udp
RS [ WU I N
- 7 21?2 1—n+_1n(-1 L ] e P Y s
| (18)
) dp 3 & 1 & .
Kr‘l(%f‘”p'“ 111(1—-77)4-214_17+4(1_n)2 (19).

= [(E )%
B = ./o (p;kT 1) pi

4n; n? _ A 3 1 ‘77.'2
- r‘[l - * (1- 77:')2] —l= 1)[_,111(1 BEAET! — J_rz(l - m)z] (20)

Eq. (17) consists of four terms; each has a particular significance. The first term rep- v
resents the entropy of the (no}n‘-bonded) hard-sphere mixture. 'i‘he second term takes into -
account the connectivity between tangent spheres in the mixture. The third term subtracts
the entroby of pure components, including both the non-bonding and bonding contributions.
All tilree terms come from the equation of state and represent -free-volume effects. The last

term is associated with the condition of mixing at constant total volume.

We now discuss the physical assumptions that are required to reduce Eq. (17) to the

well-known athermal Flory-Huggins equation for the incompressibie lattice mizture:14
AmiS - & | | ‘
Nk = - Z a:;lnqS.- : (21)
which is also equivalent to 7
) Ami.rS = ¢i - .
x ‘ = -5 Zing, 22
e = -3 g | (22)
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where ¢; is the segment fraction of component ¢, defined as

- T,‘N; ' Ty

bi= N, =E;n$i7'i | _ B

(23)

The incompressible lattice model cannot vrésPresentl the effects of free volume; therefore,
the key to reducing Eq. (17) to Eq. (21) or Eq. (22) is the el_imjnation of the first three terms
in Eq. (17).

Since all sites are of equal volume in the incompressible lattice model, the first physical

condition is that all hard spheres in the mixtures must have the sdme diameter d:

bi=b;; =b; =b==xd® 24
12 ¥ . _

Wi

- This assumption alone, however, does not eliminate free-volume effécts. To do so, a second
condition requires equal packing fractions for all pure components before mixing:

/

T =T ==+ =1y o (25)

Presumably this packing fraction is at some high density; for example, it should be close to
that at closest packing, but this detail is irrelevant for our purposes.

‘Under the above two conditions, we can show, from Eq. (16), that:

pi . ( )
~which is also equivalenf to
=M =" =1 | (27)



That is,A the packing ﬁactisn for thé mixture is the same asr those for i;ure components.

Substitﬁting Eqgs. (24), (25), (26'), and (27) into Eq. (17), we find that the first three terms
together are 'zerola.nd the last term is identicz;l to thé Flory-Huggins equa,ticsn, Eq(21), for
the incémpressible athermal lattice mjxture. | |

However, even if miﬁng is perforrﬁed at constant total volume and the‘pa.‘cking fractions of
" pure components are eqt_xal, signiﬁcanf deviations from the Flory-Hugginé entropy of mixing |
~ occur when cbmponents in the mixture have different ﬁard-sphere diameters. These devia-~ |
tions are i]lustratéd in Fig. 3 whére the entropy of mixing is calculated fér a monomer/100-
mer mixture as a function .of' the segment fraction of 100-mer for diﬂ‘erént values of the ré.tio
of segmental diameters. The packing fraction of the pﬁre components is chosen to be that at
closest packing. As the ratio of diameters increases, large deviations from the Flory-Huggins
_equation appear accompanied by a shift in the‘ma.ximur»n to lower polymer concentrations.
These effects of segment size cannot be rigorously includéd in lattice models of polymer

mixtures.

5.' ‘Extension to cOpolymerS

An irﬁpozt#ng advantage of Chiew’s model for hard-sphere-chain mixtures is that the
spheres in a chain molecule need not all have the same diameter. Therefore, the modei (;an
be used to r_'epfesent heteronuclear hﬁrd-sphete chains (i..e., _copolymers) and their mixtures
| where different sphefes have different diameters. Extension of Eq. (2) to copolymer systems

follows from a statistical-mechanical theory based on the Percus-Yevick approximation cou-.

~

12 . -



pled with éhéﬁn connectivity.6 Here we use the generalized Eq. (8), rather than Eq. (2), for
the extension to copolymer systems. The final results can also be expressed in terms of the
radial distribution functions at contact for hard-sphere copolynllers and mixtures. We gener-
alize the radial distributién functions at contact from the BMCS equation [Eq (15) for hard
spheres and Eq. (9) for _hard—spher_e mixtures] to include col;olyme;rs and their mixtures. We

first present the result for pure components.

A. Pure copolymers

'Consider_a pure copolymer system where each hard-sphere éha_in consists of> r spheres
v(segments) but éz;;hv sphere has a différent ciia.meter, inciicated by d(a), a=A,B,C,- .
Following Chiew’s \‘vork,6 we re'present this sysﬁe’m as a ha.rd-sphere mixture consisting of
N, = rN different sized spheres (each sphere as a component), subject fo cbnnectivity '
constraints which lead to the formation of_,'N chains. Under these éonditions, Eq. (8) is

generalized for the pure copolymer system:

' r : r-1 '
—= =143 b(eB)g(af) - Tlg(e,a+1) - 1] | (28)
pl il . .- |
where b(qﬂ) is the second virial coefﬁciént,
b(ap) = 3rd*(aP), d(af) = 3ld(@) +dB), B =A4B,Coryr  (29)

and g(ap) is the radial distribution function at contact between a sphere of diameter d(«)

and a sphere of diameter d(3). \

13



To obtain an explicit equation of state for pure copolyiners,- however, a suitable ma,the;
matical form for g(af) must be found. Toward'that end, we generalize the radial distribution
: funqtions at contact from ti:Le BMCS equatioﬁ to include hard-sphere copolymers. Since the
copolymer system is modeled as a .ha.rd-sphere mix;;ure' with chain connectivity, the radial
distribution function at céntact, g(af), must satisfy two conditions for a binary mixture.
Only a binary mixture needé to be considerec.l because all ra.d_ial distribution functions for.
multcomponent ha.rd-.sphere mixtures are in ferms of segment pairs. | |

Condition 1: When all spheres have the same diameter (:.e.; homopolymers), g(af8) must

reduce to the Carnahan-Starling equation for one-component hard spheres, -

1-9/2 - .
- gla=p)= (—1__—17/)3 - (30)
where 7 is the packing fracti‘on ' R
“n=§zb(a) » (31) "

Condition 2: In the limit d(a) >> d(f), spheres of type B can be represented as point
particles [z.e., d(5) — 0]. In this case, the configurational integral, @, for a binary mixture

-

factors into the product of the configurational integrals for each component,
Q = Q()Q(B) | - (32)

Eq. (32) says that type-8 spheres (point particles) do not affect the configuration of type-a
spheres, and type-a spheres (large particles) do not affect the conﬁgurétion of type-f spheres
except through inaccessible volumé, V(1—17). Consequently, the type a spheres behave like a

14



pure hard-sphere system, so that the radial distribution function at contact for the like-pair,
g(@a), is the same as that in Eq. (30) for pure hard spheres:

_1-p/2 |
g(aa) - (1—77)3 (33)

For type-f spheres, since the only interaction with type-a sphereé is through inaccessible

- volume, the radial distribution function at contact for the like-pair, g(88), and that for the

‘un].ike-pa.ir, g(aB), must be the same, /

glaf) =g(BB) - (34)
Since type- spheres are point particles, the configurational integral Q(/3) can be computed

V@ - nv®
N(B)!

where N (B) is the number of type-B spheres. The pressure is related to the configurational

Q(8) = (35)

infegral by

p=i (%) e

In the imit d(f) — 0, Eq. .(36) reduces to

P _ (8an(aj)+(3111Q(ﬂ))

kT

oV av |
ple) | N(B) 1 o ‘
kT + V 1-9 \ ' ,(37)

where p(c) is the pressure calculated from the conﬁgurationél integral of type-a spheres

alone,

A - (2 e

15



Next, the pressure equation is expressed in terms of the radial distribution functions at

contact for both pure hard spheres and binary mixtures which can be written, respectively,

p(a) _ . a ‘
p(a)ET 1+ b(a)p(a)g’],(aa) : (_39)v
. B = 1+ pla(@)b(e)g(ae) + 2e(e)z(B)boP)g(eB) + *(BNB)9(BA)]  (40)
where | | o
pla) = -]V—f,‘i) . and  z(a) = N 1(\;’) - (41)

are the number density and fraction of type-a spheres, respectively. When d(3) — 0, Eq. (40)

reduces to
P 2 e PR _ ba)
T = plz*(a)b(a)g(aa) +2z(a)e(B)b(af)g(aB)), end  blaf) = —¢ (42)
On combining Eqsv (37) ~amd (39), we obtain
;)% = 1+ pla(@b(@)g(ac) + 2a(@)e(BW(aB)T—) (43)
We then find from comparison with Eq. (42),
oaB)=g(BM) == s dp) -0 (49)

A generalization of the radial distribution function at contact from the Carnahan-Starling
equation to the copolymer systems is found, by requiring that it satisfy the two conditions

indicated above. The result is

£(af)
(1—19)3

1 3 ¢af)
9ef) =T 3 =ny

16
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where

P 4b(a)b(,3)] AR 2/3 | .
: =S|t 46
fen=4eg ] LU0 (46)
For hom0polyme;s, ¢(aB) = n. In that case, Eq. (45) reduces to Eq. (30) for pure hard
spheres. When d(ﬂ) — 0, {(af) — 0, Eq. (45) becomes Eq. (30) for e pairs, and Eq. (44)

for aff and B pairs.

'B. Mixtures of copolyrhers .
Exte}nsi.onvof Eq. (28) to mixtures of copolymers is stra.ightforwérd. ‘Here we present only
the final result:

r¢ Tj. ] . 7‘,—1 .

kT =1+ PZ Zi d’J [Z Z bij(aB) g'J(a:B) Zx, Z[g..(a a4+ 1) - 1] (47)

where b;j(af) is the second virial coefficient

by(aB) = Zrdi(aB),  dy(aB) = 3ldie) + ()]

- i,j=1,2,"‘.7;7'l;.a=.A,B,C,;'°,T;; ﬁ=.AaB,C:’v"3TJ‘ (48)

. and gi;(af) is the radial disfribution funct'ion. at contact. Indicés ) ar@ 7, depioting com-
ponénts in the mixture, should not be confused with indices a and B, labeling species of
spheres.

Once again, we need t§ find a suitaﬁlerﬁathematica.l expression fo.r gij(aB) vsq 'tliat we

may use Eq. (47) for 6btaihing an eqx_iation of state for mixtures of copolymers. We extend

17



Eq. (45) to mixtures of copolymers with the result

oo = 1 + L) 1800

T=7 Y 3a-ar 20y o)

where : : ' e '

ulof) = ‘g[b—ﬂj*()—f,-g@]l’si PO (51)

C. Specific copolymér systems-

| To illustrai;,é the uséfulness of the equations derived above fpr copolyme_rs, we now deri_ve'
pertinent equations of state for specific copolymers. ‘The discussié_n here is limited to pure
hard-sphere copolymers which consist of only two segments. that have different sizes (A
and B ). 'Extension to mixtp.res is strajghtforward and nét included here. Three common
types (ﬂiustrated in Fig. 4) are alternating, Block, aﬁd random copolymers. Copolymcr

composition, X;, is defined as

Xa = 1— Xp= r(:i)' (52)
With thesé simplifications Eg. '(.'28)' becomes
p—]fT- = 147 p[X"’b(AA) (AA) +2X XBb(AB)g(AB)
XMBRBE) - Slo(watn -1 (59

Eq. (53) has two importa.ntr features. First, the properties of the copolymer are only a
function of the pair distribution functions at contact for the unbonded hard-sphere mixture.
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Second, the sequence of the copolymer need only be accounted for in the bonding term [the

last term of Eq. (53)] o

r—1

dlg(a,a+1)—1] (54)
" The radial distribution function at contact in Eq. (54) is only for neighboring segments in

the chain; therefdre, for the case of a twd-segment copolymer, Eq. (54) can be rewritten as
- n(AA)[g(AA) - 1]+ n(AB)[g(AB) — 1} +n(BB)[¢(BB) — 1] (55)

Where n(dﬁ) is the number of o nearest neighbors along the copolymer chain. All of the

n(af) are not independent; for a linear copolymer, they are constrained by
n(AA) + n(AB) +n(BB) =r —1 | (56)

For an alternating copolymer, r(A4) = r(B) = r/2 which fixes X4 = Xp = 1/2. There are
no AA or BB neighboring sequences; therefore, n(AA) = n(BB) = 0, and n(AB) =r — 1.
Eq. (55) reduces to | | |

- (r=1g(AB)-1] . I 1)
For a block copolymer, there is dnly one AB paif and the number of AA and BB pa.i.rs
depends on the length of each block; therefore, n(AB) =1, n(AA) =rX4 — 1, n(BB) =

rXp —1, and Eq (55) ieduces to
(rXa = Dlg(A4) = 1] + [o(AB) 1] + (rX5 ~ 1)[g(BB) - 1]. (58)

For a random copolymer, the sequence is only known in a statistical sense. If the se-
quence is completely random and the total number of pairs is r — 1, then the number of of
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neighboring pairs is proportional to the product of the probabilities of finding a segment of
type a and a segment of type § in the éopolymer. The probability of finding a segment of
tSrpe‘ a is the fraction of @ segments in the copolymer. The number of each type of pair can

be approximated by

n(AA) = (r-1)X3 _ (59)
n(BB) = (r - 1)X} ‘(60)
n(AB) = 2(r _ 1)X;,XB. | (61)

The factor of two in Eq. (61) arises because there are two. types of AB pairs, AB and BA.

Substitution into Eq. (55) yields

(r = I{[X39(44) - 1] +2XsX5g(AB) — 1] + X3[g(BB) — 1]}. (62)

~ These equations can be used to ca.lclula.te the effect of chain sequence on the thermody-
namic propertiéé of ha.rd-sphere-ché.in copolymers. Figure 5, a sample calculation, shows
the coinéressibi]ity factor versus packing fraction for a copolymer consisting’ of 20 segments‘
and compdsition X4 = Xp = 1/2. The ratio of diameters of the two types of spheres is
dg/ dg =3 /2. Calculations are performed for the three types of sequences described above.
Also shown is a homopolymer \;rith r = 20. (For a homopolymer the cémpressibility faci;or
'Idepends only upon tile packing fraction é,nd the polymer chain length.) Thereis a signiﬁcant

difference between the compressibility of the copolymer and that of the homopolymer; the

block copolymer shows the largest difference, followed by the random copolymer and the
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altérnating copolymer. The compreséibﬂty factor for copcﬂymers is always less than that
for a homopolymer with the same number of segmenfs. Additonal calculations show that
the difference in éompresébility factor due to chain architectures increaseé a,sv the ra.tio. 6f
ségment diameters increases, and deqreasés as thé chain .ler'xgth rises.

Figure 6 shows the effects of copolymer composition and a;chitecture on the compress-
ibiity at a fixed packing fraction (at‘a high, ]iciuid-like value of n = 0.45). Thé solid curve is
for a 20-mer homopolym;ar blend where the ratio. of segment diameters of the two components |
is 3/2. The composition of each homopolyme; is adjusted 50 tha.t’ the t;)tal' nuﬁxber of spheres
of one diameter is eqﬁa.l to thé total number of spheres in the <;o_rre3ponding coplolymer sys-
tem. In other xlvords, a 20-mer copolymer of composition X A = 0.5 has a corresponding
.homopolymei blend havipg segment Lrac_:tion of component 1, ¢;- = 0.5. The dash curve
reéresents the.blvoc]; copolymer and the dot-dash .curve répr_esents fhe raﬁdoni copolymer.
(Aﬁ alternating copblymer is not considered since its comi;bsition is. fixed at 1/ 2.). The block
copolymer gives the largest deviation from “blend” behavior. For the block copoiyméf, the
B compressiblity is not evduated below (or above) conipositibns where less than. one sphere is
of type A or B since these would be unrea]iétic systéms. |

Sample célculations for binary copélymer blends having only two different size segments
(dp /dA = 3/2) are shown in Figs. 7 (ra;nd;)m copolfmer blends) and 8 (block copolymer
blends). Both copoly@ers m th’é blend have 20 segments.' In each ﬁgu?e, the compressibilit&

is plotted versus the fraction of copolymer 1 in the mixture for different compositions of
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the copolymers. For simplicitjf, symmetric copolymer compositions are chosen such that
X1 =1— X4, where X Ai is the fraction of A segrﬁents in component z'.v_,Simila;r behavior is
‘observed for botﬁ types of copol_ymers; however, all mixture;_ of ‘block copolymers give the
same compfessibility when z; = z, = 1/2. The largest : deviations from £he compressibility
of the pure copolyme;s is observed when the djfferencé in copolymer compositions is the

largest.

6. Coﬁclusions

Following the ideas of Chiéw, we have devéloped an 'equation of state for hard-sphere-
chain mixtures in terms of the radial distribution function of hard-sphere mixturgs at contact.
Ouf derivation is‘ based on the Percus-Yevick solution for hard-sphere-chain mixtures Where
our result is exp'reSSed in terms of thé radial distribution function of hard-sphere mixtures
~at contact in both the non-bonding and bonding Aten‘ns. The resulting equa.tioﬁ of state
for hard-sﬁllere-chajn mixtures [Eq. (8)] ié reduced to practice using the Boﬁblik—Ma.néoo_ri-
Carnahan-Starling equation of hard-sphere mixtures’[Eq. (9)] for the radial distributio#
function at contact. The accuracy of Eq. (8) with Eq. (9) appears to be ve'ry. good,._insofar
as it can be checked against available computer-simulatfon data for binar& mixtures of hard-
sphere chains. | |

We have also piesented a genefalization of the Boublik-Mansoori-Carnahan-Starling equa- - '
tion for hard sphéres to hard-sphere ‘cha.ins-a,nd‘their mixturés where different single spheres

- have different diameters. With this result, we are able to establish equations of state for
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athermal pure copolymers [Eq. (28)] and for mixtures of athermal copolymers [Eq. (47)].
- The results obtained in this work provide suitable reference equations of state for a per-

turbation theory for molecular fluid mixtures containing polymers, copolymers, and solvents.
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FIGURE CAPTIONé

Figure 1: Compressibility factor vs. hard-sphere packing fraction (redu(:ed_ densit}‘r)‘for
an 8-mer/monomer hard-sphere chain mixture. Points are computer-siﬁdation results. The
“solid curVe. is from Eq. (8) with Eq. (9) for gi; (d%). The dash curve is from Eq. (2). The

dotted curve is'from Eq. (10) with Eq. (9) for gi;(d¥).
Figure 2: Same as Fig. 1, for an 8-mer/4-mer hard-sphere-chain mixture.

Figure 3: Athermal entropy of mixing for monomer/100-mer mixtures as a function of
segment fraction of 100-mer. Mixing is performed such that the total volume is constant and
the packing fractions of both pure components are equal to that at closest packing. Each .

curve represents a different ratio of segmental diameters, d;/d;. The Flory-Huggins result is

. recovered only when d; = d,.

Figure 4: Three simple types of hard-sphere ‘copolymer chain architecture: (a). alternat-

ing, (b) block, and (c) random (one possible sequence).

Figur'e 5: Compressibility factor vs. hai'd-sphere packing fraction for a homopolymer
and for three different types of copolymer arcliitectl;re: homopolymer (solid curve), block
copolymer ‘V(da.sh curve), random copolymer (dot-dash curve), altern‘ating. copolymer (dotfed
curve). All polymers consist of 20 segments. The copolymers all have the same comppsitibn,

X4 = Xp = 1/2 and ratio of segment sizes, dg/d4 = 3/2.

Figure 6: The compressibilty of a pure block copolymer (dash curve) and pure random
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.copolyxvne'rl (dot-dash curvé) as a function qf copolymer céﬁiposition at a fixed packing frac-
tion of n = 0.45. Both copolymers. ha.ve_,. 20 segments of 'type A and B and the ratio of sizes |
is dé /d‘Aj = 3/2. ‘Also shown is the compreésibility of .a,hémobolym'er blend (solid cufve)
having the same segment ﬁaction_ of each fc}fpe of sphere as that of t.he corresponding c’opbly-
- mer (i.e., a copolymer with X4 = 0.5 corresponds with a homopolymer blend with segment

fraction of component 1, ¢; = 0.5).

Figure T7: Comprgssibih'ty of random copolymer blends as a function .of the 'frac.ti.on of
co.polymer l.v Both copolymers have 20 segments _and_ consist of segnienis of type A and B-
~where the rafio of diameters, dp/ JA = 3/2. The éopolymer compositions are chosen such
“that X4 = 1— Xao. Xa1is chbsen as follows: ‘X 4; = 0.55 (solid cur_ve), "Al = 0.65 (dotted
cufve), Xa1 = 0.75 (short-dash curve); X,; = 0.85 (long-dash curve), and X4 = 0.95

(dot-dash cufve).

Figure 8: Compressibiiity of block copolymer blends as a function of the fraction .of
copolymer 1. Bo’tl; copolymers have 20 ségments and consist of segments.of type A and B
where the fatip of diameters, dB /da = 3/2. The copolymer compositions are chosen such
tha;: Xar = 1= Xz, X is chosen as follows: Xa3 = 0.55 (solid curve), X1 = 0.65 (dotted

curve), Xq1 = 0.75 (s.hort-dashrcurve), Xi1 = 0.85 (long-dash cur\;e); and X4 = 0.95

(dot-dash curve).
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Figure 6
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Figure 8
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