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ABSTRACT 

Chiew's equation of state for mixtures of hard-sphere chains is generalized through the 

Carnahan-Starling radial distribution function for hard-sphere mixtures at contact for both 

the bonding and non-bonding terms. When compared with computer simulations of hard-

sphere-chain mixtures, the new equation of state gives better agreement than the original 

equation of state. The new equation of state indicates the simplifying physical assumptions 

which are required to obtain the well-known Flory-Huggins athermal entropy of mixing. The 

generalization presented here is applied to mixtures of hard-sphere-chain copolymers, where 

the spherical segments of a given c4ain may have different diameters. illustrative calculations 

are presented for three types of copolymers (alternating, block and random). 



1. Introduction 

Hard-sphere chains provide a simple model for assemblies of polymer molecules. Despite 

their simplicity, the properties of hard-sphere-chain models take into account some significant 

features of real polymer liquids, including excluded-volume effects and segment connectivity .. 

. More imp0t:tant, they provide a useful reference system in statistical-mechanical perturba­

tion theories for chain-like molecular fluids, in a manner similar to the way that hard spheres 

provide a reference system in statistical-mechanical perturbation theories of simple fluids. 1 

Therefore, several authors have given attention toward establishing accurate analytical equa­

tions. of state for hard-sphere chains which can be tested with computer-generated simulation 

results. A number of methods have been developed, including the generalized Flory-Huggins 

theory2,3 and the perturbation theory of polymerization.4,5 

A particularly elegant, yet simple, method has been presented by Chiew6 who studied 

mixtures of hard-sphere chains where a chain molecule is modeled by a series of r freely­

jointed tangent spheres. Each sphere in a chain interacts with every other (non-bonded) 

sphere in the system through the hard-sphere potential. An analytical equation state for 

hard-sphere-chain mixtures was obtained based on the Percus-Yevick integral-equation the­

ory coupled with chain connectivity. The pressure, p, consists of two parts; a non-bonding 

contribution (i.e., hard-sphere mixtures prior to bonding to form chains) and a bonding 

contribution due to chain formation: 

P = Phs + pbond (1) 
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For the h~rd-sphere-:mixture term, Chiew replaced the Percus-Yevick solution with the 

more successful Boublik-Mansoori7 ,8 extension of the Carnahan-Starling equation. Chiew . " 

compared his result for hard-sphere chains with computer-simulation datafor one-component 

systems. Agreement is good but deviations are evident "at high densities. 

Here we show that a significant modification to Chiew's result can be obtained for mix-

tures of hard-sphere chains. The key idea is a reformulation of the Percus-Yevick solution 

in terms of the radial distribution functions of hard-sphere mixtures at contact in both the 

non-bonding and bonding terms. By using radial distribution functions at contact ~om the 

Boublik-Mansoori-Carnahan-Starling ·(BMCS) equation for hard-sphere mixtures, the result-

ing equation of state for hard-sphere-chain mixtures is compared with recent simulation data 
. 

for binary mixtures by Honnell and Hall.9 In general, the new equation of state for chains, 

based on the BMCS equation for hard-sphere mixtures, is more accurate than the original 

equation of state for chains, based on the Percus-Yevlck solution, especially at high densities. 

Since the hard spheres in a chain need not all have the same diameter, the new equation of 

state, like Chiew's original equation of state, can also represent hard-sphere-chain copolymers 

and their mixtures where the spherical segments have different sizes. Overall, compared to 

the original equation of state, the new equation of state for hard-sphere-chain mixtures is 
'. 

expressed more succinctly and is more convenient for application. 

Our goal is directed toward establishing a perturbed-hard-sphere chafn equation of state 

for calculating phase equilibria in solutionscolltaining solvents, polymers, and copolymers. 

3 
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To achieve this goal, however, we must first establish an equation of state f,or mixtures of 

hard-sphere chains which can serve as a useful reference system. 

2. Equation of state 

At total volume V and temperature T, we qmsider an m-component mixture of hard-

sphere chains containing Ni chains consisting of ri tangent hard spheres of diameter di where 

component i = 1,2"", mj the total number of chains is N = Ei Ni and the total number 

of harq spheres is N r = Ei riNi. Chiew6 gives details concerning the derivation of the 

equation of state for this system based on the Percus-Yevick integral theory coupled with 

chain connectivitYj these details need not be presented here. We start from Chiew's result 

[Eq. (10) in Ref. 6] \"hich is equivalent to 

P 
pkT ( P)C . ( p )py 

pkT hs + pkT bond 

= 1 + p t XiXjrirjbij9ij(dt) - t Xi(ri - 1) [gf? (dt) ~ 1] 
'J ' 

(2) 

where p is the pressure, k is the Boltzmann constant, p =NjV is the number density of chains, 

Xi = NdN is the number fraction of component i, and bij is the secondvirial coefficient of 

hard-sphere'Ipixtures prior to bonding to form ch~ns, given by 

(3) 

In Eq. (2)' superscripts c stands for compressbility and PY for Percus-Yevick. Eq. (2) 

provides a clear and succinct expression of Chiew's result because the equation of state for 

4 



mixtures of hard-sphere chains is written here only in terms of the radial distribution function 

of hard-sphere mixtures at contact in both the non-bonding and bonding terms. In Eq. (2), 

9rj(d~) is the radial distribution function of hard-sphere mixtures at contact as calculated 

from the compressibility pressure equation of the Percus-Yevick solution,10 and gf;Y (dt) is 

the Percus-Yevick radial distribution function of hard-sphere mixtures at contact.10 If the 

Percus-Yevick theory were exact, both9rj(dt) and9f;Y(d~) would be identical functions for 

a system of hard-sphere mixtures. The relation between 9fi(d~) and gf;Y(dt) islO 

C (d+) _ PY(d+) 3 elj 
9ij ij - 9ii ij +"4 (1 - 17)3 

where 17 is the packing fraction of hard-sphere mixtures 

t .. = !!..(bibi)1/3~x.r.bY3 
1.,') 4 b.. L.J. " , 

.) i 

For one-component systems and equal-monomer-size mixtures, eij = 17. 

(4) 

(5) 

(6) 

(7) 

Chiew replaced(p/ pkT)hs in the non-bonding term of Eq. (2) by the more accurate BMCS 

result,7,8 but did not utilize the Percus-Yevick radial distribution functions of hard-sphere 

mixtures prior to bonding to derive both the non-bonding and bonding terms in Eq. (2). 

Therefore we revise Chiew's result to obtain a general form of the equation of state for 

hard~sphere-chain mixtures. 

5 



The radial distribution function of hard-sphere mixtures at contac~, f)jj( dt), is iilltially 

unspecified, in both the non-bonding and bonding terms of the Percus-Yevick solution in 

. Eq. (2). We can rewrite Eq. (2) to give a more general form of the equation of state for 

hard-sphere-chain mixtures: 

(8) 

Eq. (8) indicates that the radial distribution functions of hard-sphere mixtures a:t contact, 

9i;(dt), prior to bonding to form chains, completely determine the equation of state for hard-

sphere-chain mixtures. Moreover, Eq. (8) shows the connection between the non-bonding 

and bonding terms through 9ij(dt). Finally, Eq. (8) obeys the ideal-gas law in the limit 

p --+ O. 

Although Eq. (8)is derived from the Percus-Yevick solution, we expect that better agree-

ment with simulation results can be obtained if\ve use for 9ij(dt) a result better .than the 

Pe~cus-Yevick result. For example, we could use the computer-simulation results for 9i;(dt), 

which are available at least for binary mixtures of hard spheres. ll On the other hand, 

although the (analytical) exact expression for 9i;(dt) is unknown, the Carnahan-Starling 

equation gives good results for one-component systems,12 and the BMCS equation gIves 

good res~lts for mixtures.13 

W~ approximate 9ij( dt) with the expression from the BMCS equation for hard-sphere 

6 
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mixtures: 

(9) 

3. Comparison with other results including simulation data 

Honnell and Hall9 have reported Monte Carlo computer simulations for binary mixtures 

of hard-sphere chains, including an 8-mer/monomer system and an 8-mer/4-mer system; in 

both mixtures, both components have the same hard~sphere diameters. The number fraction 

of each component is always one half. Figs. 1 and 2 show comparisons of Monte Carlo results 

with those based On Eqs. (8) and (9). We also compare our result with two other approximate 

equations of state for hard-sphere-chain mixtures: the Percus-Yevick solution,Eq. (2), and 

the result obtained by Chapman et al., 5 based on the perturbation theory of polymerization 

of Wertheim,4 which can be written as 

(10) 

Eqs. (8) and (10) differ only in the bonding term. 

Figure 1 presents comparisons for the 8-mer/monomer mixture (rl ...:- 1 and r2 = 8). 

Compressibility factor Z = pjpkT, plotted against the hard-sphere packing fraction (reduced 

density), is shown for the entire fluid range of hard spheres to the freezing density, TJ ~ 0.49. 17 

At low to moderate densities (TJ < 0.2), all three equations are almost indistinguishable from 

each other as well as from the simulation data. At higher densities, both the Percus-Yevick 

equatio,n and the equation by Chapman et a1.5 overestimate the pressure; however, Eq. (8) 

7 



shows excellent agreement with the simulation data. These observations are not surprising, 

becauseit is known that the Percus-Yevick solution for hard spheres is accurate only at low 

,to moderate densities, while the BMCS equation is superior to the Percus;" Yevick solution, 

especially at high densities near the freezing density. The observed lower accuracy of Eq. (10) 

at high densities is probably due to truncation after the first-order perturbation contribution 

in the bonding term. 

Figure 2 shows comparisons for the 8-mer/4-mer mixture (rl ,= 4 and r2 = 8). At 

low to moderate densities, conclusions are similar to those that, apply to Fig. 1; all three 

equations are accurate at '1] < 0.2. At higher densities, both Eqs. (2) and (10) again lead 

to overestimates of the pressure for the hard-sphere-chain mixtures. In contrast, Eq. (8) 

slightly underestimates the pressure but is in general more accurate than either Eq. (2) or 

Eq. (10) when compared to the simulation data. 

4. Athermal entropy of mixing 

We use Eqs. (8) and (9) to calculate the athermal entropy of mixing because we would like 

to understand the physical assumptions that are required to obtain the well-known athermal 

Flory-Huggins equation.14 

The general definition for the entropy of mixing can be written:15 

_ fOO[Nk _ (ap) ]dV _ f: tX>[Nik _ (8Pi ) ]dV; 
lv V aT V,N i lv, Vi 8T Vi,Ni I 

8 



(11) 

For athermal hard-sphere chain mixtures, we have 

(12) 

We can then rewrite Eq. (11) as 

~ . s lP (P ) dp' m l P
; (P' / ) dp· m . mix = _ __ -1 - + LXi _1- -1 _I - LXiln(XiP/ Pi) 

N k 0 pkT p i 0 Pi kT Pi i 
(13) 

The first integral refers to the mixture and the other integrals to the pure components. 

The quantity Pi = Nd~ is the molecular number density of pure component iipressu~e Pi 

is calculated from the equation of state for pure component i, which can be derived from 

Eq. (8) as 

(14) 

where gi( dt) is the radial distribution function of hard spheres at contact for pure component 

i, as calculated from the Carnahan-Starling equation, 16 

(15) 

We use the condition that the total volume is constant, that is, 

m 

V=L~' or (16) 

The final result for ~mixS is 

t:.. . S m m . m . m ;.;Z = -P ~XiXjrirjbijXij + ~xi(ri-1)Yii + ~xiHi - ~xiln(xiP/Pi) (17) 
. IJ I 1 I 

' .. 

9 



wh'ere 

- ! l P 

9ijdp 
P 0 

In{1--: TJ) + 3eij [_TJ_ +In(1- Tf)] _ elj [In(l-7]) + _TJ _ _ .!: 7]2 ] 
TJ 2TJ2 1-7] 27]3.. 1- 1] 2 {I _7])2 

(18) 

l p dp 3 (, 1 e· 
}i. = (9i' -1)- = -In(l- Tf) + __ '3_ + _ '3 

3 0 3 P 21--7] 4(1-7])2 
(19). 

Hi _ 'lPi(~ -1) dPi 
o Pi kT Pi 

2 . 2 

_ r.[ 4TJi + 1]i ]-{r'-I)[-ln(I-7]')+~~+! TJi ] 
, 1 - 7]i (1- 7]i)2 ' . '21 -7]i 4 (1 - 1]i)2 

(20) 

Eq. (17) consists of four terms; each has a particular significance. The first term rep-

resents the entropy of the (non-bonded) hard-sphere mix~ure. The second term takes into 

account the connectivity between tangent spheres in the mixture. The third term subtracts 

the entropy of pure components, including both the non-bonding and bonding contributions. 

All three terms come from the equation of state and represent free-volume eff~cts. The last 

term is associated with the condition of mixing at constant total volume. 

We now discuss the physical assumptions that are required to reduce Eq. (17) to the 

well-known athermal Flory-Huggins equation for the incompressibie lattice mixture:14 

(21) 

which is also equivalent to 

(22) 

10 



where <Pi is the segment fraction of component i, defined as 

,1..., '_ TiNi _ Xiri 
'1-'1 - - m 

N r 2:i Xiri 
(23) 

The incompressible lattice model cannot respresent the. effects of free volume; therefore, 

the key to reducing Eq. (17) to Eq. (21) or Eq. (22) is the elimination of the first three terms 

in Eq. (17). 

Since all sites are of equal volume in the incompressible lattice model, the first physical 

condition is that all hard spheres in the mixtures must have the sa.me diameter d: 

(24) 

This assumption alone, however, does not eliminate free-volume effects. To do so, a second 

condition requires equal packing fractions for all pure components before mixing: 

/ 

7]1 = 7]2 = ... = 7]m (25) 

Presumably this packing fraction is at some high density; for example, it should be close to 

that at closest packing, but this detail is irrelevant for our purposes. 

Under the above two 'conditions, we can show, from Eq. (16), that: 

(26) 

which is also equivalent to 

7] = 7]1 = ... = TJm (27) 

11 



That is, the packing fraction for the mixture is the same as those for pure components. 

Substituting Eqs. (24), (25), (26), and (27) into Eq. (17), we find that the first three terr~s 

together are zero and the last term is identical to the Flory-Huggins equation, Eq. (21), for 

the incompressible athermallattice mixture. 

However, even if mixing is performed at constant total volume and the packing fractions of 

pure components are equal, significant deviations from the Flory-Huggins entropy of mixing 

occur when components in the, mixture have different hard-sphere diameters. These devia-­

tions are illustrated in Fig. 3 where the entropy of mixing is calculated for a monomer/lOO­

mer mixture as a function of the segment fraction of 100-mer for different values of the ratio 

of segmental diameters. The packing fraction of the pure components is chosen to be that at 

closest packing. As the ratio of diameters increases, large deviations nom the Flory-Huggins 

. equation appear accompanied by a shift iIi the maximum to lower polymer concentrations. 

These effects of segment size cannot be rigorously included in lattice models of polymer 

mixtures. 

5. Extension to copolymers 

An important advantage of Chiew's model for hard·sphere-chain mixtures is that the 

spheres in a chain molecule need not all have tile same diameter. Therefore, the model can 

be used to represent heteronudear hard-sphere chains (i.e., copolymers) and their mixtures 

w~ere different spheres have different diameters. Extension of Eq.(2) to copolymer systems 

follows from a statistical-mechanical theory based on the Percus-Yevick approximation cou-, 

12 



pled with chain connectivity.6 Here we use the generalized Eq. (8), rather than Eq. (2), for 

the extension to copolymer systems. The final results can also be expressed in terms of the 

radial distribution functions at contact for hard-sphere copolymers and mixtures. We gener.:. 

alize the radial distribution functions at contact from the BMCS equation [Eq. (15) for hard 

spheres,and Eq. (9) for hard-sphere mixtures] to include copolymers and their mixtures. \Ve 

first present the result for pure components: 

A. Pure copolymers 

Consider a pure copolymer system where each hard-sphere chain consists of T spheres 

(segments) but each sphere has a different diameter, indicated by d( a), a = A, B, C, ... ,r. 

Following Chiew's work,6 we represent this system as a hard-sphere mixture consisting of 

Nr = TN different sized spheres (each sphere as a component), subject to connectivity 

constraints which lead to the formation of N chains. Under these conditions, Eq. (8), is 

generalized for the pure copolymer system: 

r r-l 

:T = 1 + p L: b( a,B)g( a,B) - L:[g( a, a + 1) - 1] 
P ~ a 

(28) 

where b(a,B) is the second virial coefficient, 

1 ' 
d(a,B) = "2[d(a) +d(,8)], a,/3 == A,B,C,···,T (29) 

and g( a(3) is the radial distribution function at contact between a sphere of diameter d( a) 

and a sphere of diameter d(,B). 

13 



To obtain an explicit equation of state for pure copolymers, however, a suitable mathe-

matical form for g(oi(J) must be found. Toward'that end, we generalize the radial distribution 

functions at contact from the BMCS equation to include hard-sphere copolymers. Since the 

copolymer system is modeled as a hard-sphere mixture with chain connectivity, the radial 

distributio~ function at contact, g(a:(J), must satisfy two conditions for a binary mixture. 

Only a binary mixture needs to be considere~ because all radial distribution functions for 

multcomponent hard-sphere mixtures are in terms of segment pairs. 

Condition 1: When all spheres have the same diameter (i.e.; homopolymers), g(et(J) must 

reduce to the Carnahan-Starling equation for one-component hard spheres, 

where 7] is the packing fraction 

1 ~ TJ/2 
g(a: = (J) = (1- 7])3 

. p r 

TJ = - E b(a:) 
4 a 

(30) 

(31) , 

Condition 2: In the limit d(a:) » d«(J), spheres of type (J can be represented as point 

particles [i.e., d(f3) -+ 0]. In this case, the configurational integral, Q, for a binary mixture 

factors into the product of the configurational integrals for each component, 

Q =Q(a:)Q«(J) (32) 

Eq. (32) says that type-f3 spheres (point particles) do not affect the configuration of type-a: 

spheres ,and type-a: spheres (large particles) do not affect the configuration of type-(J spher~s 

except through inaccessible volume, V(l-7]). Consequently, the type a: spheres behave like a 

14 



pure hard-sphere system, so that the radial distribution function at contact for the like-pair, 

g(aa), is the same as that in Eq. (30) for pure hard spheres: 

1- 7] /2 
g(aa) = (1 -7])3 (33) 

For type-(3 spheres, since the only interaction with type-a spheres is through inaccessible 

volume, the radial distribution function at contact for the like-pair, g((3{3), and that for the 

unlike-pair, g(a(3), must be the same, 

g(af3) = g(f3(3) (34) 

Since type-(3 spheres are point particles, the configurational integral Q(f3) can be computed 

as 

.. [V(1-7])]N(I3) 
Q({3) = N(f3)! (35) 

where N«(3) is the number of type-(3 spheres. The pressure is related to the configurational 

integral by 

p = kT(81nQ) 
, 8V 

In the limit d(f3) -+ 0, Eq. (36) reduces to 

P 
kT (

81nQ(a») (alnQ«(3») 
BV + av 

_ p(a) + N(f3)_l_ 
kT V 1 - 7] 

(36) 

(37) 

where p(a) is the pressure calculated from the configurational integral of type-a spheres 

alone, 

p(a) = (8h1Q(0:») 
kT 8V 

(38) 

15 



Next,· the pressure equation is expressed in terms of the radial distribution functions at 

" 

contact for both pure hard spheres and binary mixtures which can be written, respectively, 

as 

p(~) .. 
p(a)kT = 1 + b(a)p(a)g(aa) (39) 

< pkT = 1 + p[x2(a)b(a)g(aa) + 2x(a)x(f3)b(af3)g(af3) + x2(f3)b(f3)g(f3{3)J (40) 

where 

N(a) 
p(a) = ----v-'. and x(a) = N(a) 

N 
(41) 

are the number density and fraction of type-a spheres, respectively. When d({3) ~ 0, Eq. (40) 

reduces to 

p . 2 .. 
pkT = 1 + p[x (a)b(a)g(aa) + 2x(a)x(f3)b(a{3)g(a{3»), 

On combining Eqs (37) and (39), we obtain 

and b( af3) = b( a) 
8 

-kP = 1 + p[x2(a)b(a)g(aa) + 2x(a)x(f3)b(a{3)-.1_). 
p -T . 1- 77 

We then find from comparison with Eq. (42), 

1 
g(a{3) = g(f3f3) = -, as d(f3) ~ O. 

. 1-77 

(42) 

(43) 

(44) 

A generalization of the radial distribution function at contact from the Carnahan-Starling 

equation to the copolymer systems is found, by requiring that it satisfy the two conditions 

indicated above. The result is 

(45) 

16 



where 

e(a{3) = !!.. [b(a)b({3)] 1/3tb2/3(-y) 
4 b( a(3) 'Y . 

(46) 

For homopolymers,e(a{3) = 7]. In that case, Eq. (45) reduces to Eq. (30) for pure hard 
, . 

spheres. When d((3) -+ 0, e(a(3) -+ 0, Eq. (45) becomes Eq. (30) for aa pairs, and Eq. (44) 

for a(3 and (3(3 pairs. 

B. Mixtures of copolymers 

Extension of Eq. (28) to mixtures of copolymers is straightforward. Here we present only 

the final result: . 

where bij (o:{3) is the second virial coefficient 

bij ( a(3) _ ~?rd~.(a(.l) 3 13 jJ, 

i,j=1,2""m; a=A,B,C,···,Ti; (3=A,B,C,· .. ,rj (48) 

and 9ij(a(3) is the radial distribution function at ~ontact. Indices i and j, denoting com-

ponents in the mixture, should not be confused with indices 0: and (3, labeling species of 

spheres. 

Once again, we need to find a suitable mathematical expression for 9ij( af3) so that we 

may use Eq. (47) for obtaining an equation of state for mixtures of copolymers. We extend 
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Eq. (45) to mixtures of copolymers with the result 

(49) 

where 

·(50) 

.. t .. ( f.J) = E. [b i (o:)bj ({3)] 1/3 ~ ~ b2/ 3 ( ) 
':.13 O:p 4 b .. ( t:l) L.....t :Xl L.....t I 'Y 

. I) O:p I., 
(51) 

c. Specific copolymer systems 

To illustrate the usefulness of the equations derived above for copolymers, we now derive 

pertinent equations of state for specific copolymers. The discussion here is limited to pure 

hard-sphere copolymers which consist of only two segments that have different sizes (A 

and B). Extension to mixtures is straightforward and not included here. Three common 

types (illustrated in Fig. 4) are alterriating, block, and random copolymers. Copolymer 

composition, Xi, is defined as 

With these simplifications Eq.(28) becomes 

P 
pkT 

- 1 + r2p[X1b(AA)9(AA) + 2XAXB b(AB)g(AB) 

+ X~b(BB)g(BB)] - I:lg(o:, Q.+ 1) - 1J 
Q 

(52) 

(53) 

Eq. (53) has two important features. First, the properties of the copolymer are only a 

function of the pair distribution functions at contact for the unhonded hard-sphere mixture. 

18 



Second, the sequence of the .copolymer need only be accounted for in the bonding term [the 

last term of Eq. (53)] 
r-l 

2)g(a, a + 1) -1] (54) 
a 

. The radial distribution function at contact in Eq. (54) is only for neighboring segments in 

the chain; therefore, for the case of a two-segment copolymer, Eq. (54) can be rewritten as 

n(AA)[g(AA) - 1] + n(AB)[g(AB) - I} + n(BB)[g(BB) - 1] (55) 

where n( a(J) is the number of af3 nearest neighbors along the copolymer chain. All of the 

n(a(J} are not independent; for a linear copolymer,they are constrained by 

n(AA) + n(AB) +n(BB) = r -1 (56) 

For an alternating copolymer, r(A) = r(B) = r/2 which fixes X A = X B = 1/2. There are 

no AA or BB neighboring sequences; therefore, n(AA) = n(BB) = 0, and n(AB) = r - 1. 

Eq. (55) reduces to 

(r - 1)[g(AB) - 1} (57) 

For a block copolymer, there is only one AB' pair and the number of AA and B B pairs 

depends on the length of each block; therefore, n(AB) = 1 , n(AA) = rXA - 1, n(BB) = 

r X B - 1, and Eq. (55) reduces to 

(rXA - 1)[g(AA) -1] + [g(AB) -1] + (rXB -1)[g(BB) - I}. (58) 

For a random copolymer, the sequence is only known ina statistical sense. If the se-

quence is completely random and the total number of pairs is r - 1, then the number of af3 
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neighboring pairs is proportional to the product of the probabilities of finding a segment of 

type a and a segment of type (3 in the copolymer. The probability of finding a segment of 

type a is the fraction of a segments in the copolymer. The number of each type of pair cab. 

be approximated by 

n(AA) = (r - 1)X~ 

n(BB) = (r - 1)X~ 

n(AB) = 2(r - 1)XA X B . 

(59) 

(60) 

(61) 

The factor of two in Eq. (61) arises because there are two types of AB pairs, AB and BA. 

Substitution into Eq. (55) yields 

(r - 1){[X~[g(AA) - 1] + 2XA XB[g(AB) - 1] + X~[g(BB) - In.· (62) 

These equations can be used to calculate the effect of chain sequence on the thermody­

namic properties of hard-sphere-chain copolymers .. Figure 5, a sample calculation, shows 

the compressibility factor versus packing fraction for a copolymer consisting of 20 segments 

and composition X A .....: X B = 1/2. The ratio of diameters of the two types of spheres is 

dB/dA = 3/2. Calculations are pedormed for the three types of sequences described above. 

Also shown is a homopolymer with r = 20. (For a homopolymer the compressibility factor 

depends only upon the packing fraction and the polymer chain length.) There is a significant 

difference between the compressibility of the copolymer and that of the homopolymer; the 

block copolymer shm~s the largest difference, followed by the random copolymer and the 
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alternating copolymer. The compressibilty factor for copolymers is always less than that 

for a homopolymer with the same number of segments. Additonal calculations show that 

the difference in compressbility factor due to chain architectures increases as the ratio of 

segment diameters increases, and decreases as the chain" length rises. 

. Figure 6 shows the effects of copolymer composition and architecture on the compress­

ibilty at a fixed packing fraction (at a high, liquid-like value of TJ = 0.45). The solid curve is 

for a 20-mer homopolymer blend where the ratio of segment diameters of the two components 

is 3/2. The composition of each homopolymer is adjusted so that the total number of spheres 

of one diameter is equal to the total number of spheres in the corresponding copolymer sys­

tem. In other words, a20-mer copolymer of composition XA = 0.5 has a corresponding 

homopolymer blend having segment fraction of component 1, <PI = 0.5. The dash curve 

represents the block copolymer and the dot-dash curve represents the random copolymer. 

(An alternating copolymer is not considered since its composition is fixed at 1/2.) The block 

copolymer gives the largest deviation from "blend" behavior. For the block copolymer, the 

compressiblity is not evaluated below (or above) compositions where less than one sphere is 

of type A or B since these would be unrealistic systems. 

Sample calculations for binary copolymer blends having only two different size segments 

(dB/dA = 3/2) are shown in Figs. 7 (random copolymer blends) and 8 (block copolymer 

~lends). Both copolymers in the blelld have 20 segments. In each figure, the compressibility 

is plotted versus the fraction of copolymer 1 in the mixture for different compositions of 
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the copolymers. For simplicity, symmetric copolymer compositions are chosen such that 

X Al = 1 - X A2 where X Ai is the fraction of A segments in component i.?imilar behavior is 

observed for both types of copolymers; however, all mixtures of block copolymers give the 

same compressibility when Xl = X2 = 1/2. The largest· deviations from the compressibility 

of the pure copolymers is observed when the difference in copolymer compositions is the 

largest. 

6. Conclusions 

Following the ideas of Chiew, we have developed an equation of state for hard-sphere': 

chain mixtures in terms of the radial distribution function of hard-sphere mixtures at contact. 

Our derivation is based on the Percus-Yevick solution for hard-sphere-chain mixtures where 

our result is expressed in terms of the radial distribution function of hard-sphere mixtures . . 

at contact in both the non-bonding and bonding terms. The resulting equation of state 

for hard-sphere-chain mixtures [Eq. (8)] is reduced to practice using the Boublik-Mansoori-

Carnahan-Starling equation of hard-sphere mixtures [Eq. (9)] for the radial distribution 

function at contact. The accuracy of Eq. (8) with Eq. (9) appears to be very good, insofar 

as it can be checked against available computer-simulation data for binary mixtures of hard-

sphere chains. 

We have also presented a.generalization of the Boublik-Mansoori-Carnahan-Starling equa-

tion for hard spheres to hard-sphere chains and their mixtures where different single spheres 

have different diameters. With this result, we are able to establish equations of state for 
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athermal pure copolymers [Eq. (28)] and for mixtures of athermal copolymers [Eq. (47)]. 

The results obtained in this work provide suitable reference equations of state for' a per- . 

turbation theory for molecular fluid mixtures containing polymers, copolymers, and solvents. 
"' . 
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FIGURE CAPTIONS 

Figure 1: Compressibility factor vs. hard-sphere packing fraction (reduced density) for 

an 8-mer/monomer hard-sphere chain mixture. Points are computer-simulation results. The 

. solid curve is from Eq. (8) with Eq. (9) for 9i;(dt). The dash curve is from Eq. (2). The. 

dotted curv~ is'fro~ Eq. (10) with Eq. (9) for 9ii(d"/j). 

Figure 2: Same as Fig. 1, for an 8-mer/4-mer hard-sphere-chain mixture. 

Figure 3: Athermal entropy of mixing for monomer/1M-mer mixtures as a function of 

segment fraction of 100-mer. Mixing is performed such that the total volume is constant and 

the packing fractions of both pure components are equal to that at closest packing. Each 

curve represents a different ratio of segmental diameters, d2/d1 • The Flory-Huggins result is 

recovered only when d l = d2 • 

Figure 4: Three simple types <;>f hard-sphere copolymer chain architecture: (a) alternat­

ing, (b) block, and (c) random (one possible sequence). 

Figure 5: Compressibility factor vs. hard-sphere packing fraction for a homopolymer 

and for three different types of copolymer architecture: homopolymer (solid curve), block 

copolymer (dash curve), random copolymer (dot-dash curve), alternating copolymer (dot ted 

curve). All polymers ~onsist of 20 segments. The copolymers all havethe same composition, 

X A = XB = 1/2 and ratio of segment sizes, dB/dA ....:. 3/2. 

Figure 6: The compressibilty of a pure block copolymer (dash curve) and pure random 
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copolymer (dot-dash curve) as a function of copolymer composition at a fixed packing frac­

tion of 7] , 0.45. Both copolymers have 20 segments of type A and B and the ratio of sizes 

is dB/dA ,- 3/2. Also shown is the compressibility of ahomopolynier blend (solid curve) 

having the same segment fraction of each type of sphere as that of the corresponding copoly-

, mer (i.e., a copolymer with XA = 0.5 corresponds with a homopolymer blend with segment 

fraction of component 1, 4>1 = 0.5). 

Figure 7: Compressibility of random copolymer blends as a function of the fraction of 

copolymer 1. Both copolymers have 20 segments .and consist of segments of type A and B 

where the ratio of diameters, dB/dA = 3/2. The copolymer compositions are chosen such 

that X AI = 1- XA2. X AI is chosen as follows: 'XAI = 0.55 (solid curve), X AI = 0.65 (dotted 

curve), X AI = 0.75 (short-dash curve); X AI == 0.85 (long-dash curve), and XAI = 0.95 

(dot-dash curve). 

Figure 8: Compressibility of block copolymer blends as a function of the fraction of 

copolymer 1. Both copolymers have 20 segments and consist of segments of type A and B 

where the ratio of diameters, dB/dA = 3/2. The copolymer compositions are chosen such 

thatXAl = l-XA2 . X AI is chosen as follows: X AI = 0.55 (solid curve), X AI = 0.65 (dotted 

curve), X AI = 0.75 (short-dash curve), XAI = 0.85 (long-dash curve), and X AI = 0.95 

(dot~dash curve)~ 
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