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Microbiome-based classification models for fresh produce safety 
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ABSTRACT Small sample sizes and loss of sequencing reads during the microbiome 
data preprocessing can limit the statistical power of differentiating fresh produce 
phenotypes and prevent the detection of important bacterial species associated with 
produce contamination or quality reduction. Here, we explored a machine learning-
based k-mer hash analysis strategy to identify DNA signatures predictive of produce 
safety (PS) and produce quality (PQ) and compared it against the amplicon sequence 
variant (ASV) strategy that uses a typical denoising step and ASV-based taxonomy 
strategy. Random forest-based classifiers for PS and PQ using 7-mer hash data sets 
had significantly higher classification accuracy than those using the ASV data sets. We 
also demonstrated that the proposed combination of integrating multiple data sets and 
leveraging a 7-mer hash strategy leads to better classification performance for PS and 
PQ compared to the ASV method but presents lower PS classification accuracy compared 
to the feature-selected ASV-based taxonomy strategy. Due to the current limitation of 
generating taxonomy using the 7-mer hash strategy, the ASV-based taxonomy strategy 
with remarkably less computing time and memory usage is more efficient for PS and 
PQ classification and applicable for important taxa identification. Results generated from 
this study lay the foundation for future studies that wish and need to incorporate and/or 
compare different microbiome sequencing data sets for the application of machine 
learning in the area of microbial safety and quality of food.

IMPORTANCE Identification of generalizable indicators for produce safety (PS) and 
produce quality (PQ) improves the detection of produce contamination and quality 
decline. However, effective sequencing read loss during microbiome data preprocess­
ing and the limited sample size of individual studies restrain statistical power to 
identify important features contributing to differentiating PS and PQ phenotypes. We 
applied machine learning-based models using individual and integrated k-mer hash and 
amplicon sequence variant (ASV) data sets for PS and PQ classification and evaluated 
their classification performance and found that random forest (RF)-based models using 
integrated 7-mer hash data sets achieved significantly higher PS and PQ classification 
accuracy. Due to the limitation of taxonomic analysis for the 7-mer hash, we also 
developed RF-based models using feature-selected ASV-based taxonomic data sets, 
which performed better PS classification than those using the integrated 7-mer hash 
data set. The RF feature selection method identified 480 PS indicators and 263 PQ 
indicators with a positive contribution to the PS and PQ classification.

KEYWORDS produce safety, produce quality, machine learning, random forest, k-mer 
hash, amplicon sequence variant

N ext-generation sequencing approaches for the analysis of microbial communities in 
fresh produce include amplicon-based sequencing (e.g., 16S rRNA gene sequenc­

ing) and metagenomic sequencing (e.g., shotgun sequencing). These technologies 
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help identify microbial populations within individual produce samples, traditionally by 
aligning sequenced reads to known genomes to quantify the presence of known 
species in a sample (1). When multiple samples are sequenced, statistical and machine 
learning (ML) approaches can be leveraged to identify microbes of importance to 
produce safety (PS) and produce quality (PQ) (2–12). PS and PQ are the food safety 
and quality of produce. Generally, food safety has been defined as “the biological, 
chemical, or physical status of a food that will permit its consumption without incurring 
excessive risk of injury, morbidity, or mortality” (13). Food quality represents the sum 
of all properties and assessable attributes, including sensory value, suitability value, 
and health value, of a food item (14). In this study, PS and PQ refer to microbial food 
safety and quality. Interactions between pathogenic and/or spoilage microorganisms 
and other native or background microbiota shine a light on the identification of potential 
antagonistic microorganisms from produce microbiota to protect and improve the safety 
and quality of fresh produce (9, 11, 12, 15, 16).

Alignment-free k-mer hash-based ML technique has emerged in various metagenome 
studies. Rowe et al. (17) trained and tested a random forest (RF) classifier using a k-mer 
hash data set containing 108 novel metagenomic microbiome samples from a cohort of 
premature neonates (17). The classifier predicted whether a neonate was treated with 
antibiotics in 97% accuracy. Johnson et al. (18) constructed RF models with metage­
nomic data sets in the k-mer format from healthy and pathogen-infected plants, which 
performed with an accuracy over 90% to detect plant diseases (18). However, limited 
information has been reported on the application of k-mer hash-based ML models in 
amplicon sequencing microbiome studies.

Of particular interest in this study is the use of ML to identify indicators: bacterial 
species whose presence is correlated with PS or PQ. Our previous study (11) has applied 
the linear discriminant analysis effect size method to identify Arthrobacter, Shewa­
nella, Brochothrix, Rhizobium, Novosphingobium, Lactococcus, Ochrobactrum, Variovorax, 
Dyadobacter, Methylotenera, Yersinia, and Wautersiella as indicators for Escherichia coli 
O157:H7 contamination of spring mix salad. Indicators can be identified by constructing 
classification models that identify produce sample features that distinguish samples of 
different PQ or PS statuses. Both the accuracy of the classifiers and the quality and 
reproducibility of the indicators identified from them typically increase with data set 
and sample sizes (19). When reviewing and processing published produce microbiome 
data sets, we found no overlap of PS-related indicators across three PS-related studies 
(11, 12, 20) and only one indicator, Leuconostoc, was observed in two (9, 20) out of 
three PQ-related studies (9, 11, 20) as illustrated in Fig. S6 and S7. This poor overlap 
of indicators suggests an opportunity to explore alternative indicator identification 
strategies that identify more reproducible indicators across studies.

The poor overlap of indicators identified by different studies may be driven by two 
reasons. The first reason is due to the limited sample sizes in each individual study. 
On average, 110 samples are analyzed in previously published studies (1, 4–12, 21), 
which is much smaller than that suggested given the large number of microbial species 
being identified in each sample (22). Small sample sizes coupled with the profiling of 
much more microbial species can lead to more spurious (false) indicators or correlations 
between bacterial species occurrence and pathogen contamination or quality decline 
and ultimately yield poor reproducibility between studies (11, 12, 15). Secondly, this poor 
overlap might be caused by low effective reads of each produce sample. For the 16S 
rRNA gene sequencing data analysis, in addition to the sequencing depth limitations, 
a large number of reads can be lost through the denoising step in the microbiome 
data analysis. During the denoising process, up to 50% of reads for the 16S rRNA gene 
sequencing can be removed due to their low-quality or noising sequences (23, 24). 
This loss of nearly half of the sequencing reads may reduce the power to identify low 
abundant species or sequence variations (25); we hypothesize that some of these reads 
still contain distinguishing information for contributing to the classification of sample 
phenotypes.

Research Article Microbiology Spectrum

April 2024  Volume 12  Issue 4 10.1128/spectrum.03448-23 2

https://doi.org/10.1128/spectrum.03448-23


Here, we proposed a computational strategy to address both challenges in order to 
better identify bacterial indicators broadly correlated with both PS and PQ phenotypes. 
First, we used an approach based on counting short k-mers in sequencing reads (26, 
27) to classify fresh produce samples based on detecting the differences in microbial 
DNA sequences between distinct PS or PQ statuses (Fig. 1A). We showed that k-mer 
hash-based models were significantly better at predicting both PS and PQ compared 
to the commonly used approach of counting amplicon sequence variants (ASVs) but 
had lower PS classification accuracy than feature-selected ASV-based taxonomy models. 
Second, we integrated PS and PQ data sets before analysis to boost data set size and 
power, and by doing so, we are able to identify taxa that are more broadly associated 
with PS and PQ.

FIG 1 Construction and evaluation of ML-based PS and PQ classifiers. (A) Schematic comparison of the preprocessing including denoising of the ASV approach 

and ASV approach and ASV-based taxonomy approach for constructing IPS and IPQ based on RF in the following section against the preprocessing of the k-mer 

hash approach for constructing PS and PQ classifiers. (B) Heatmap of the accuracies achieved by RF-based models using fresh produce microbiome data sets 

associated with PS and PQ in ASV format and k-mer hash format (k from 3 to 7). Accuracies are measured using 10-fold cross-validation. GQ and DQ represent 

good-quality produce and decreasing-quality produce, respectively. CA is classification accuracy. Partial icons in A were obtained from “BioRender.com.” 

Non-parametric Wilcoxon rank sum test was applied to analyze the difference in classification accuracy between ASV-based models and 7-mer hash-based 

models. The * represents P < 0.05 obtained in the statistical test indicating that a statistically significant difference was detected between the two models.
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MATERIALS AND METHODS

Fresh produce microbiome data sets

Four published fresh produce microbiome studies that generated 16S rRNA gene 
sequencing data were selected, as they all have complete metadata information and 
are associated with PS and/or PQ. These four studies are named Zhang18 (12) (n = 
236), Kusstatscher19 (9) (n = 227), LiaoSm21 (11) (n = 72), and LiaoRl21P (20) (n = 
36). (Table 1). The published non-contaminated samples (LiaoRl21P) (20) and unpub­
lished data from pathogen-contaminated samples (LiaoRl21U, n = 72) prepared and 
sequenced for this paper were combined as one LiaoRl21 data set for use. The prepara­
tion of the contaminated samples, DNA extraction step, and library preparation and 
sequencing followed the protocol published by Liao and Wang (11) and addressed 
in the additional experimental details. The new data have also been uploaded to the 
National Center for Biotechnology Information database, and the accession number 
is PRJNA792031. Based on the three PS-related studies, we created the PS data set 
composed of case-control studies in which fresh produce was artificially inoculated with 
E. coli O157:H7 (LiaoSm21 and LiaoRl21), Listeria monocytogenes (LiaoRl21), or Salmonella 
Infantis (Zhang18). Produce samples without contamination of pathogens were labeled 
as non-contaminated, while all other samples were given the uniform label contamina­
ted. Also, from the three PQ-related studies, we created the PQ data set in which samples 
were either labeled as good-quality (GQ samples sequenced before their use by dates or 
showing no decaying signs) or decreasing-quality (DQ samples after their use by date or 
decayed) (LiaoSm21, LiaoRl21, and Kusstatscher19).

ASV data set and k-mer hash data set preparation

For each data set, raw 16S rRNA gene sequences were imported into the QIIME 2 (version 
2021.8) pipeline (28) by using the “qiime tools import” command. The barcodes and 
primers were removed by using “qiime cutadapt trim-paired/single” plugin of cutadapt 
(29). Bases in reads with median Phred quality scores of less than 30 were removed by 

TABLE 1 Characteristics of fresh produce microbiome data setsa

Data 
set

Produce 
types

Sequencing 
instrument

Sequencing region Factors Sample size References Database
(accession number)

1 Lettuce Illumina MiSeq 515F/806R (V4) • Contamination 
treatment

• Sample type

• Soil texture

• Cultivar

• Harvest time

236 Zhang et al. (12) NCBI (PRJNA289142)

2 Spring mix 
salad

Illumina MiSeq 314F/785R (V3 and V4) • Contamination 
treatment

• Quality

• Brand

72 Liao and Wang (11) EMBL-EBI (ERP112563)

3 Romaine 
lettuce

Illumina MiSeq 314F/785R (V3 and V4) • Contamination 
treatment

• Quality

• Brand

• Season

• Farming practice

108 This study NCBI (PRJNA792031)

4 Sugar beet Illumina MiSeq 515F/926R (V4 and V5) • Quality

• Location

• Clamp type

• Amplicon type

227 Kusstatscher et al. (9) NCBI (PRJEB28964)

aEMBL-EBI, European Molecular Biology Laboratory’s European Bioinformatics Institute; NCBI, National Center for Biotechnology Information.
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truncating reads with a certain length using the “qiime dada2 denoise-paired/single” 
plugin of DADA2 (30, 31). During this process, raw sequences were filtered, denoised, 
chimera-removed, dereplicated, and clustered into ASV (32). Sequences with barcode 
and primer sequences that were removed were then processed for quality control by 
truncating bases with the median Phred quality scores of less than 30 with the DADA2 
package in R without ASV clustering (30, 31). After that, the processed sequences were 
used to compute k-mer hash signatures (k = 3, …, 7) for each sample by using the 
“sourmash sketch dna” command in the sourmash pipeline (version 4.2.3) (26).

Common sum scaling

As the sequencing depth varies across samples, data sets, and studies as shown in Fig. S1, 
the common sum scaling (COM) method was applied to normalize the sequencing depth 
among them for both ASV and k-mer hash methods. The ASV and k-mer hash counts 
were scaled to the minimum depth of each sample with the following equation (33):

COM ωi j = round ω1j m minm j …, round ωpj m minm j   ϵ ℝn × p,
where i = 1,…, p is the ASV or k-mer index, j = 1,…, n is the sample 

index, ωi j  is the read count of ASV or k-mer i in sample j, and m j  is the total ASV or k-mer hash count number for sample j, where 

m j =  i = 1

p ωij;  m min = min m 1 ,  m 2 ,  …,  m n  and round  is an operator rounding 

the fraction to be the nearest integer.

Data integration and the removal of confounding factors

Data integration by using the Combat function in the “sva” R package (version 3.42.0) 
was applied to remove batch effects or confounding effects indicated in the study’s 
metadata, including sample type and study of origin for the PS data sets and location 
and study of origin for the PQ data sets (34). The parameter “par.prior” was set as “false” 
to use the non-parametric adjustments, and the parameter “mean.only” was set to “true” 
to adjust the mean of the batch effect across batches (34).

Classification of fresh PS and quality samples

Classifiers for PS and PQ using either the processed ASV or k-mer hash data sets 
were constructed. Three different classification methods, including RFs (35), k-nearest 
neighbors (k-NNs) (36), and fully connected, feed-forward neural networks (NNs) (37), 
were evaluated (Fig. S2 and S3). For RF, the number of decision tree (ntree) was set at 
500, and the number of features randomly sampled as candidates at each split (mtry) 
was set to the square root of the total number of input features. RF-based models 
were trained by using the “randomForest” R package (38) (version 4.7-1.1). Predicted 
class labels were decided based on the majority vote (>50%) by 500 decision trees. 
The k-NN-based classifiers were trained by using the “caret” R package (version 6.0-94). 
k values ranging from 1 to 10 were tested in order to identify k values with the best 
classification performance (Fig. S2 and S3). The feed-forward NN was trained by using the 
“nnet” R package (version 7.3-19), with hyperparameters set as the same as Arbajian et al. 
(39) and Džal et al. (40). The “nnet” fits a feed-forward NN with a single hidden layer. The 
number of nodes in the hidden layer was set to 5, the decay parameter was set to 0.1, 
and the activation function was set to the logistic activation function.

Model validation

For the individual data set classification experiments, we used 10-fold cross-validation 
to measure the accuracy of RF-, k-NN-, and NN-based classifiers using the “caret” R 
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package (version 6.0-94). Unweighted total classification accuracy across both the case 
and control phenotypes was measured, as the classification experiments were generally 
well balanced (Table S1). Each experiment was conducted in five replicates. As we found 
RF-based models using 7-mer hash data sets had better PS or PQ classification perform­
ance than the k-NN- and NN-based models, the following experiments were only carried 
out based on the RF method.

A number of cross-study classification experiments were also conducted in order to 
test the generalization performance of PS and PQ classifiers. In the cross-study classifica­
tion experiments for PS, we constructed pairs of training and test data sets in which 
one study formed the test data set and the remaining studies formed the training data 
set. For example, for the PS experiments, we constructed a training data set consisting 
of individuals or a combination of the LiaoRl21 and Zhang18 studies, while using the 
LiaoSm21 study as a test data set.

Evaluation of feature importance

To evaluate and quantify the importance of individual features identified based on 
the ASV or the k-mer hash method, features were ranked by their mean decrease in 
accuracy (MDA) calculated by the RF-based classification model. The MDA quantifies the 
importance of a variable by measuring the decrease in prediction accuracy when the 
variable is randomly permuted in comparison with the original observations (41).

Taxonomic analyses

To profile the bacterial communities within individual produce samples and carry out the 
differential abundance analysis between phenotypes, taxonomic analyses at the genus 
level were conducted by using the QIIME 2 (version 2022.8) pipeline for the ASV data set. 
The QIIME 2 plugin “q2­feature­classifier” (42) was used to assign ASV to the SILVA 138 
small subunit rRNA database as the taxonomy reference (43). Chloroplast, mitochondria, 
and unassigned taxa were filtered by using “qiime taxa filter­seqs” command in QIIME 2 
(44). For integrated taxonomic data sets, the COM method was first employed for data 
normalization. Data integration was carried out by using Combat to regress out study 
of origin and sample types for PS and study of origin and location for PQ data sets. The 
processed taxonomic data sets were employed for the differential abundance analysis 
between “contaminated” and “non-contaminated” samples and between GQ and DQ 
samples.

For taxonomic analysis of 16S rRNA gene sequences based on the k-mer hash data 
sets, the SILVA 138 database was first downloaded, and the taxonomic sequences 
were computed for 7-mer hash using the command “sourmash sketch dna” in the 
sourmash pipeline. The sourmash lowest common ancestor (LCA) taxonomy database 
was established by using a “sourmash lca index” command on the processed 7-mer hash 
of taxonomic sequences from the SILVA 138 database, followed by taxonomic classifica­
tion of query 7-mer hash data sets against the established sourmash LCA taxonomy 
database carried out by using a command “sourmash lca classify” (26). However, the 
query k-mer hashes could not be correctly assigned to the sourmash LCA taxonomy 
database based on the SILVA database. This issue may be due to the inappropriateness 
of the current algorithm of LCA taxonomic classification in the sourmash pipeline for 16S 
rRNA gene sequences. This is an established issue (https://github.com/sourmash-bio/
sourmash/issues/1421). Therefore, the taxonomic analysis here was performed only on 
the ASV representation of the data.

In addition to establishing RF-based models using integrated PS (IPS) and integrated 
PQ (IPQ) data sets in ASV and 7-mer hash formats, the integrated ASV-based taxonomic 
data sets and feature-selected taxonomic data sets with features only associated with 
positive MDA values were also used to construct RF-based models for the prediction 
of PS and PQ statuses. The classification performance was evaluated by comparing the 
classification accuracy, computing time, and computing memory usage with those from 
the 7-mer hash-based PS and PQ models.
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Data visualization and statistical analysis

The non-parametric Wilcoxon rank sum test was applied to test for significant differen­
ces in classification accuracy between pairs of RF-based, k-NN-based, and NN-based 
classifiers. The analysis of the composition of the microbiome with bias correction 
(ANCOM-BC) test and the RF feature selection method mentioned above were employed 
to identify the bacterial indicators that had significant abundance changes in one group 
over another (45). All the above statistical analyses were conducted in R (version 4.2.2).

RESULTS

k-mer hash analysis leading to more accurate classification of microbiome 
samples

We first tested the hypothesis that using a k-mer hash strategy to analyze 16S rRNA gene 
sequencing data that avoid the effective data loss in the ASV strategy would improve 
PS and PQ classification accuracy and indicator identification. Figure 1A illustrates the 
conceptual differences between the two strategies. For each individual PS and PQ study, 
we constructed ML-based classifiers by selecting one of three methods (RF, k-NN, and 
NN) and training them using either the ASV or k-mer hash representations of the study 
data. Overall, the RF-based classifiers using 7-mer hash (Fig. 1B) representations showed 
higher classification accuracy than k-NN-based and NN-based for both PS (Fig. S2) and 
PQ (Fig. S3). RF-based classification using the 7-mer hash representation also generally 
outperformed classification using the ASV representation by 8% on average, except for 
the LiaoSm21_PS and LiaoSm21_PQ studies (Fig. 1B). In LiaoSm21_PS, both the ASV 
and 7-mer hash versions of the data yielded an accuracy of 100%. To test if the trained 
models were overfitting, we split each of the LiaoSm21 data sets into a training set and 
test set at the ratios of 8:2 or 5:5. The results showed that the classification accuracy 
of tested models using LiaoSm21 data sets in ASV and 7-mer hash was still 100% (Fig. 
S4). We also found that the k-mer hash data sets performed better with larger k values 
within the range of 3–7. This is unsurprising because larger k values lead to more 
features extracted from the sequencing data, which in turn provides more opportunities 
to distinguish DNA sequence signatures between cases and controls.

Integrated microbiome data analysis leading to more generalizable classifica­
tion

To increase the effective sample sizes of published microbiome studies and therefore 
identify taxa that are robustly associated with PS and PQ, a single IPS data set and a 
single IPQ data set were established by applying batch correction and merging studies 
within each category. We computed ASV and 7-mer hash representations of the IPS 
and IPQ data sets and used them to construct RF-based models whose classification 
performance was compared against our previous models constructed on individual 
studies. Consistent with the analyses conducted on the individual studies, the integrated 
7-mer hash representation achieves higher classification accuracy compared to ASV 
representation by 5% and 17% for the IPS and IPQ data sets, respectively (Fig. 2A), 
supporting the notion that the 7-mer hash data set retains more actionable information 
in sequencing reads. Figure 2B illustrates the performance differences separated by 
component study, and we see that the classification performance of the 7-mer hash 
representation is systematically higher in samples from all studies, not just a selected 
study. We also found that for the IPS data set, when we replaced the binary labels 
with the pathogen­specific labels (E. coli O157:H7, L. monocytogenes, and Salmonella 
Infantis), performance similarly was higher for 7-mer representations (85%) compared 
to ASV (78%) (Fig. S5). The accuracy of the 7-mer hash IPS classifier was 82% for the PS 
classification, and when the IPS classifier was used to predict specific pathogens, it rose 
to 85% (Fig. S5). Our IPS classifier, therefore, performs as well as the commonly used 
culture-dependent approach using selective agars that does not rely on sequencing 
(46). Given that the size and number of PS data sets will increase over time, we expect 
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sequencing base classifiers to outperform the culture-dependent approach in the future. 
For the IPQ classifiers that achieved 82% accuracy, there are no benchmarks to compare 
their performance against as this was the first time that predictive models were used to 
evaluate the quality of fresh produce using microbiota and identify microbial indicators 
associated with GQ and DQ of fresh produce.

To gain insight into which samples were better classified under the integrated 7-mer 
hash data set, we then visualized the label predictions of individual samples generated 

FIG 2 Evaluation of RF-based IPS and IPQ classifiers. (A) Barplot of classification performance of RF-based models on the IPS and IPQ data sets, represented 

using either ASV or 7-mer hashes. The Wilcoxon rank sum test was used for the pairwise comparison of the accuracies of the IPS and IPQ classifiers. (B) Barplot of 

classification performance of classifiers established by using individual data sets from IPS and IPQ data sets in ASV and 7-mer hash. (C) Barplot of the prediction 

of PS samples with the true label of contamination. The prediction was made by votes of 500 decision trees in RF-based classifiers established by using ASV 

and 7-mer hash. The cutoff voting rate (50% votes) indicates whether a labeled sample is predicted correctly or not. Ctrl and Cont represent non-contaminated 

samples and contaminated samples. The * stands for P < 0.05. (D) Same as C, but barplot of the prediction of PS samples with the true label of control. (E) Same as 

C, but barplot of the prediction of PQ samples with the true label of DQ. (F) Same as C, but barplot of the prediction of PQ samples with the true label of GQ.
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by the RF-based classifiers. Figure 2C through F compares the voting rates based on 
ASV and 7-mer hash for predicted versus true labels of each sample in IPS and IPQ. 
For the IPS samples, while the number of correctly predicted contaminated samples is 
similar (254 and 264 for 7-mer hash and ASV, respectively) (Fig. 2C), there is a marked 
increase in accuracy for 7-mer hash predictions of the non-contaminated samples (85 
and 52 for 7-mer hash and ASV, respectively) (Fig. 2D). Similarly, in the analysis of the IPQ 
samples, the 7-mer hash representations led to similar prediction of the DQ samples (174 
and 163 for 7-mer hash and ASV, respectively) (Fig. 2E), while the number of correctly 
predicted GQ samples was higher for 7-mer hash predictions (100 versus 62 for 7-mer 
hash and ASV, respectively) (Fig. 2F). Our results support our hypothesis that the 7-mer 
hash representations lead to better classification performance of microbiome samples, 
consistent with our results on individual samples.

We next wondered to what extent the integration of microbiome data from multiple 
studies explicitly led to the construction of more generalizable classifiers, compared 
to classifiers trained on individual studies. We, therefore, performed six experiments 
(three for each of IPS and IPQ), in which we repeatedly removed one study as a test 
(held-out) study, and compared the model performance of RF classifiers when trained 
on the remaining two studies separately versus combined (Fig. 3). In principle, classifiers 
trained on the combined 7-mer hash data sets would be encouraged to learn features 
that are more broadly associated with either produce pathogen contamination or PQ 
decline, because both the case and control samples in the combined data set will be 
more heterogeneous compared to the samples in the individual studies. Figure 3 shows 
that across the six experiments, the integrated data sets performed significantly better 
than the individual data sets alone in three of them (Fig. 3A, B and D), achieving on 
average 17% higher accuracy than individual data sets. In comparison, for only one 
experiment, combining data led to significantly (P = 0.012) worse performance based 
on non-parameter Wilcoxon rank sum test (Fig. 3C). For Fig. 3C, RF models were trained 
using data sets of LiaoSm21, Zhang18, and IPS without the LiaoRl21, respectively. The 
training classification accuracy of the RF-based models was 100%, 75%, and 82% (Fig. 
S6A), which decreased to 67%, 63%, and 49% for the testing classification accuracy of the 
models shown in Fig. 3C. The MDA-positive features that contribute to the PS classifica­
tion of the models using individual data sets and that of the model using integrated 
data sets were compared. LiaoSm21 has a much lower number of MDA-positive features 
(343 versus 3,255). Among the MDA-positive features, there are 198 shared features, and 
LiaoSm21 has 145 unique ones (Fig. S6B). For Zhang18, the number of MDA-positive 
features was also lower than that of the integrated data set (2,713 versus 3,255). Among 
these features, 1,204 features are shared, and Zhang18 has 1,509 unique features (Fig. 
S6B). The unique MDA-positive features in each single data set could be a reason for 
causing the testing accuracy of the single data set-trained model higher than that of 
the integrated data set-trained model. The unique features with higher MDA values 
play a more important role in the PS or PQ prediction (Table S2). These results suggest 
that it can be sensible to combine data from multiple studies containing case and 
control samples together, which tend to lead to better generalizable performance of the 
classifiers for both PS and PQ.

Integrated taxonomic analysis identifying generalizable taxa associated with 
PS and quality

The higher classification performance of the integrated data sets suggests that there are 
taxa that are broadly associated with PS and PQ identified by the classifiers. We analyzed 
taxonomy based on the ASV representation of the IPS and IPQ data sets. Subsequently, 
we trained RF models on the ASV-based taxonomy data sets for predicting PS and PQ 
status and then compared their classification performance with that of 7-mer hash-based 
models.

The PS and PQ classification performance between RF-based models constructed 
using ASV-based taxonomic data sets and 7-mer hash data sets was evaluated based on 
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classification accuracy, computing time, and computing memory usage. For classification 
accuracy, the models trained on the feature-selected taxonomic data sets with positive 

FIG 3 Comparison of the classification performance of classifiers trained on individual PS and PQ data sets and IPS and IPQ 

data sets. (A) Classifiers were trained on individual LiaoRl21 or Zhang18 data sets, and a classifier was trained on an integrated 

data set excluding LiaoSm21, denoting IPS (∆LiaoSm21). The LiaoSm21 was used as a testing set. (B) Classifiers were trained on 

individual LiaoRl21 and Kusstatscher data sets and an integrated data set excluding LiaoSm21, denoting as IPQ (∆LiaoSm21). 

The LiaoSm21 was used as a testing set. (C) Same as A, but individual and IPS classifiers were tested on LiaoRl21. (D) Same as 

B, but individual and IPQ classifiers were tested on LiaoRl21. (E) Same as A, but individual and IPS classifiers were tested on 

Zhang18. (F) Same as B, but individual and IPQ classifiers were tested on Kusstatscher19. Wilcoxon rank sum tests were applied 

for testing the significance of the difference in testing accuracy (%) of individual and IPS and IPQ classifiers. PS and PQ mean 

produce safety and produce quality, respectively. The * represents P < 0.05; the ** stands for P < 0.01; and the ns represents no 

significance.
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MDA values had significantly higher PS classification accuracy than those based on 7-mer 
hash (Fig. 4A), but the selected taxonomy-based models had lower PQ classification 
accuracy compared to the 7-mer hash-based models (Fig. 4B). The models trained on 
the feature-selected taxonomic data sets had significantly higher classification accuracy 
for both PS and PQ than the models trained on the whole taxonomic data sets. For the 
computing time, the ASV-based taxonomy strategy spent significantly less time than the 
7-mer hash strategy for both PS classification (Fig. 4C) and PQ classification (Fig. 4D). 

FIG 4 Comparison of PS and PQ classification performance between RF-based models constructed using ASV-based 

taxonomic data sets and 7-mer hash data sets. (A and B) PS and PQ classification accuracy of models using ASV-based 

taxonomic data sets, feature-selected taxonomic data sets with positive MDA, and 7-mer hash data sets, respectively. (C and 

D) Computing time (s) of PS and PQ classification by the models using the three types of data sets mentioned above. (E and 

F) Computing memory usage (MB) of PS and PQ classification by the models. “*” strands for P < 0.05, indicating significant 

differences present between groups of samples. MB, megabyte; s, second.
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Within the taxonomy strategies, the models based on the feature-selected taxonomic 
data sets saved more time for PQ classification compared to the models based on the 
full taxonomic data sets. Similarly, for computing memory usage, the taxonomy strategy 
used remarkably less memory than the 7-mer hash strategy for both PS classification (Fig. 
4E) and PQ classification (Fig. 4F). The models based on the feature-selected taxonomic 
data sets used less memory than that based on the full taxonomic data sets for both PS 
classification and PQ classification (Fig. 4E and F).

For the IPS taxonomic analysis, 1,357 genera were identified in total. The most 
dominant genus in the bacterial communities across fresh produce samples was 
Pseudomonas (with relative abundance ranging from 0.07% to 57.95%), followed by 
Flavobacterium (1.31% to 41.31%). Among the genera, 226 unclassified genera were 
identified. The total relative abundance of the unclassified genus group across samples 
ranged from 4.54% to 43.61%. The most abundant unclassified genus under Comamona­
daceae (0.0012%–24.06%) in this group ranked as the fifth largest taxa.

The ANCOM-BC test was applied to identify bacteria at the genus level that have 
significantly different relative abundance between contamination groups (contaminated 
samples versus non-contaminated samples) or pathogen groups (E. coli O157:H7, L. 
monocytogenes, and Salmonella Infantis). Five genera were identified as indicators for the 
contaminated group, including Escherichia-Shigella, Listeria, Bacteroides, Peredibacter, and 
Faecalibacterium, and two indicators (Rheinheimera and Pseudomonas) were identified for 
the non-contaminated group (Fig. 5A). Their significance values were listed in Table S3. 
We noticed that the contaminating pathogens, E. coli O157:H7 and L. monocytogenes, 
were identified as Escherichia-Shigella and Listeria. Our previous study (11) reported that 
no Escherichia could be identified in contaminated spring mix samples when the E. coli 
O157:H7 inoculation level was at 5.5 Log CFU/mL by using 16S rRNA gene sequencing. 
The authors assumed that the concentration of E. coli O157:H7 was below the limit of 
detection of 16S rRNA gene sequencing method. However, the present study showed 
that Escherichia-Shigella was identified for E. coli O157:H7 with relative abundance from 
0.019% to 0.18%. One explanation for the difference is that the present study conducted 
the taxonomic analysis based on the SILVA 16S rRNA sequence database, while Liao and 
Wang (11) applied the Greengenes database, which contains less annotated taxonomic 
references than the SILVA database (11).

On the other hand, the Salmonella Infantis was not identified using the Zhang18 
study (12). One explanation is that 104 copies/mL of Salmonella Infantis located in the 
root of lettuce was below the limit of detection of 16S rRNA gene sequencing. In this 
study, Peredibacter was identified as an indicator for Salmonella Infantis-contaminated 
samples although Salmonella Infantis could not be detected. Our result indicates that 
Bacteroides could be also applied as pathogen contamination indicator for produce. 
Davidov and Jurkevitch (47) reported that Peredibacter is a member of Bdellovibrio-and-
like organisms that are highly motile microbes preying on other Gram-negative bacteria. 
Lu and Cai (48) reported that Peredibacter sp. strain BD2GS significantly retarded the 
growth of Salmonella Typhimurium within 3–12 hours through lysing prey cells (48). 
Based on these, the elevated relative abundance of Peredibacter might be triggered 
by contamination of Salmonella Infantis. Bacteroides is an obligate anaerobic bacte­
rium making up a remarkable portion of fecal bacterial communities, which has been 
suggested to be used as fecal indicator organisms for water samples (49). Bacteroides and 
Faecalibacterium have been reported as commensal bacteria of the human gastrointesti­
nal microbiota (50, 51) and classified as fecal indicator bacteria (52). Savichtcheva et al. 
(53) reported that 16S rRNA gene marker of Bacteroides had a better prediction for the 
presence of bacterial enteric pathogens than total and fecal coliforms (53).

For the taxonomic analysis at the genus level of integrated microbiome data sets 
related to PQ, 760 genera were identified. The most relatively abundant genus was 
Pseudomonas (0.10%–58.84%), followed by Flavobacterium (0.73%–38.53%). Among the 
genera, 97 unclassified genera were identified. The total relative abundance of the 
unclassified genus group across samples ranged from 5.49% to 55.52%. The most 
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relatively abundant unclassified genus under Yersiniaceae (0.015%–45.9%) in this group 
ranked as the 10th largest taxa. Through the ANCOM-BC test, five genera, including 
Leuconostoc, Gluconobacter, Lactobacillus, Acetobacter, and Clostridium, were identified as 
indicators in DQ samples (Fig. 5B). Their significance values were listed in Table S4. Del 
Árbol et al. (54) mentioned that Gluconobacter and Acetobacter are acetic acid bacte­
ria, which can generate acetic acid to spoil fruits causing bacterial rot and browning. 
Leuconostoc and Lactobacillus are commonly known as psychrotrophic spoilage lactic 
acid bacteria that spoil meat products and fresh fruits and vegetables during 4°C storage 
(55, 56). Clostridium spp. have also been reported to be associated with meat and 
cheese spoilage (57, 58). In the Kusstatscher et al. (9) study, except for Clostridium, the 
other four genera identified as indicators in DQ samples in the present study were 
recognized as core microbiota in decaying samples. Six genera, including Sphingomonas, 
Pedobacter, Parablastomonas, Paracoccus, Pir4_lineage, and Nocardioides, were identified 
as indicators in GQ samples. These six indicators for GQ samples were reported to be 

FIG 5 Identification of bacterial indicators related to PS or PQ. (A and B) Volcano plots based on the W statistic values and −log10(P) values obtained from the 

ANCOM-BC test presenting the differential abundances of genera among two contamination groups for PS and PQ, respectively. (C and D) Heatmaps of the 

relative abundances of bacterial indicators identified from individual and IPS data sets and individual and IPQ data sets, respectively. Cont means contaminated 

samples. Ctrl represents non-contaminated samples. DQ represents decreasing-quality samples. GQ represents good-quality samples.
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related to agriculture rhizosphere soil (59–64). Three genera, Sphingomonas, Pedobacter, 
and Nocardioides, were also identified as core microbiota in healthy samples in the 
Kusstatscher et al. study (9).

Most of the indicators identified in the integrated data sets were covered by 
the indicators identified from individual data sets (Fig. S7 and S8). For the PS-rela­
ted data sets, seven indicators for the contaminated group identified from the indi­
vidual data sets (Fig. S7) were also identified in the integrated data set. However, 
seven indicators identified for the contaminated group in the individual data sets 
were not identified in the integrated data set, including Eubacterium, Janthinobacte­
rium, Serratia, Carnobacterium, Phascolarctobacterium, Brochothrix, and Exiguobacterium. 
Twelve indicators identified for the non-contaminated group in the individual data 
sets were not identified in the integrated data set including KF.JG30.B3, Gemmatimo­
nas, Candidatus_Solibacter, SWB02, Conexibacter, Pedomicrobium, Bryobacter, Reyranella, 
Gaiella, Duganella, Pedobacter, and Pantoea. (Fig. 5C).

For PQ data sets, 10 indicators identified in the integrated data set were covered 
by the indicators identified in the individual data sets (Fig. S8). Interestingly, Paracoccus 
was identified as a new indicator for the GQ group only in the integrated data set. To 
the best of our knowledge, Paracoccus has not been reported to be associated with 
PQ. However, this genus contains a number of species that can produce astaxanthin 
(65), which has been reported to exhibit antagonism against food spoilage bacteria (66). 
Fourteen bacteria identified as indicators for the GQ group in the individual data sets 
were not identified in the integrated data set, including Flavobacterium, Ferruginibacter, 
Devosia, Skermanella, Luteimonas, Methylobacterium, Novosphingobium, Dyadobacter, 
Bacteroides, Exiguobacterium, Pantoea, Eubacterium, Escherichia-Shigella, and Listeria, 
and four indicators recognized for the DQ group in the individual data sets were not 
identified in the integrated data set, including Brevundimonas, Rhizobium, Pedobacter, 
and Dyadobacter (Fig. 5D).

In addition to identifying critical features associated with PS and PQ using the 
ANCOM-BC test, we ranked the features based on the MDA measures from RF-based 
PS and PQ classifiers established using individual and integrated ASV or 7-mer hash 
data sets and classified them into three groups, including negative, zero, and positive 
contributions to PS and PQ classification (Fig. S9; Table. S5). RF-based classifiers using the 
7-mer hash representation utilized on average 62% of the 8,192 hash features provided 
to RF for the integrated data sets, compared to an average of 9% of the ASV features 
provided to RF for the integrated data sets (Table S5). Our interpretation is that the 
7-mer hash representation may lead to better classification performance in part because 
so many features are leveraged in the classification; this may make classification more 
robust by making individual feature weightless toward the label prediction.

In addition, we evaluated the importance of identified genera contributing to PS 
or PQ classification through MDA measures from RF-based models using ASV-based 
taxonomy. In summary, the identified IPS genera contained 480 genera with a posi­
tive contribution, 205 genera with a negative contribution, and 447 genera with zero 
contribution to PS classification (Fig. 6A). The identified IPQ genera covered 263 genera 
with a positive contribution, 100 genera with a negative contribution, and 302 gen­
era with zero contribution to PQ classification (Fig. 6B). These genera with a positive 
contribution were regarded as the potential indicators related to PS and PQ classifica­
tion. Among the IPS positive-contributing genera, 194 were considered contamination 
indicators, and 287 were considered non-contamination indicators. The top 10 most 
important genera for PS classification were Listeria, Escherichia-Shigella, Faecalibacte­
rium, Bacteroides, Butyricimonas, Blautia, Ruminococcus, Fusobacterium, Pseudomonas, 
and Roseburia (Fig. 6C). Except for Pseudomonas, the nine genera were identified as 
contamination indicators. In comparison, the PS-related indicators identified by the RF 
feature selection method covered all the indicators identified by the ANCOM-BC. The 
top 10 most important genera included four contamination indicators, Escherichia-Shi­
gella, Listeria, Bacteroides, and Faecalibacterium, and one non-contamination indicator, 
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Pseudomonas, were identified by the ANCOM-BC method. In addition, five indicators, 
Butyricimonas, Blautia, Ruminococcus, Fusobacterium, and Roseburia, were not identified 
by ANCOM-BC. Our previous study (11) has reported that Fusobacterium was identified 
as an indicator for E. coli O157:H7 contamination of spring mix salad. The other four 
indicators have not been reported as related to food contamination. However, previous 
research has reported that all of them are anaerobic bacteria that inhabit the gastroin­
testinal tract of humans (67–70). Our results indicate that the presence of foodborne 
pathogens can induce the growth of these gut microbes on fresh produce.

Among the IPQ positive-contributing genera, 109 were considered DQ indicators, 
and 154 were considered GQ indicators. The top 10 most important contributors to 
PQ classification were Leuconostoc, Sphingomonas, Bacteroides, Pedobacter, Azospira, 
Flavobacterium, Gluconobacter, Pir4_lineage, Verticiella, and Stenotrophomonas (Fig. 
6D). Among them, Leuconostoc, Gluconobacter, Verticiella, and Stenotrophomonas were 
recognized as DQ indicators, and the other six were GQ indicators. In comparison, 
all the PQ-related indicators identified by the ANCOM-BC method were included in 
those from the RF feature selection. The top 10 most important genera covered two 
DQ indicators, Leuconostoc and Gluconobacter, and three GQ indicators, Sphingomonas, 
Pedobacter, and Pir4_lineage, were also identified by the ANCOM-BC method. In addition, 
two DQ indicators, Verticiella and Stenotrophomonas, and three GQ indicators, Bacter­
oides, Azospira, and Flavobacterium, from the 10 top genera were not identified by 
the ANCOM-BC. Verticiella, Stenotrophomonas, and Azospira have been reported to be 
present in fruit, plants, or soil (71–73), but their relation to PQ was still unclear. Our results 
filled the knowledge gap to illustrate the importance of Verticiella and Stenotrophomonas 

FIG 6 Importance of features evaluated by MDA provided by RF-based classifiers established using ASV-based taxonomy strategy. (A) Contribution of taxonomic 

features to PS classification. (B) Contribution of taxonomic features to PQ classification. (C) The top 10 most important genera with a positive contribution to 

IPS classification. (D) The top 10 most important genera with a positive contribution to IPQ classification. Ctrl represents the non-contaminated group, and Cont 

represents the contaminated group. GQ represents good quality, and DQ represents decreasing quality.
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during quality decline and that of Azospira in GQ indication. Our above result indicates 
that Bacteroides as fecal indicator organisms for water samples could be also applied 
as a pathogen contamination indicator for produce. Although our result indicates that 
Bacteroides contribute to GQ, we may consider Bacteroides more to be a contamination 
indicator. Previous research reported Flavobacterium as the dominant genera in bagged 
spring mix salad and lettuce (11, 74). Interestingly, Flavobacterium has been reported to 
be associated with the spoilage of meat, milk, and seafood (75), while our result indicates 
that Flavobacterium contributes to the GQ of produce.

DISCUSSION

The IPS and IPQ classifiers using 7-mer hash data sets had significantly higher accuracy 
than the models using ASV data sets. Two reasons are proposed: first, to obtain the 
ASV representations, the DADA2 plugin in QIIME 2 was used to process the primer-
removed sequences, including quality filtering, denoising, chimera removing, derepli­
cating, and/or pair-end sequence joining. Although the parameters “--p-trim-left” and 
“--p-trunc-len” were set as 0 to trim or truncate no base due to the median quality 
score of bases at each position across all reads greater than 30 in this study, 1.66%–
40.94% of sequences from the integrated data set related to PS were still discarded 
(Fig. S10A), and 0.50%–46.98% of overall sequences from integrated data set related to 
PQ were discarded (Fig. S10B). The discarded reads may contain abundant sequence 
variation information, which contributed to the downstream PS and PQ classification. For 
the k-mer hash representations, the raw sequences were directly used to generate the 
k-mer hash data sets by using the sourmash pipeline as all the median phred quality 
scores of nucleotides in reads were greater than 30 (31). Werner et al. (25) reported 
that 43% of the total 16S rRNA gene sequences were discarded after the denoising 
process (25). Second, the 7-mer hash computed from the original reads could improve 
the detection sensitivity of bases than ASV in a longer size (up to 421 bp). The raw 
sequences were subsequenced into seven-base subsequences (7-mer), then transformed 
into hash codes, and finally randomly picked for 8,192 of 7-mer hash signatures for 
each sample (26). The 7-mer hash data sets for establishing classification models can 
significantly shorten the computing time and improve the sensitivity of detection of 
different nucleotides among sequences compared with ASV. To confirm that the k-mer 
method enhances accuracy, the un-denoised ASV data sets were also obtained during 
the denoising step by tuning the parameters “--p-chimera-method” from “consensus” to 
“none” and “--p-max-ee” from the default setting 2 to the longest read length in the 
“qiime dada2 denoise-single” command, indicating no chimeras and erroneous bases 
removal. Subsequently, the un-denoised ASV-based IPS and IPQ data sets were applied 
to construct RF-based models. Figure S11A and B shows the 7-mer hash-based models 
present significantly higher (P = 0.012 for the IPS models and P = 0.016 for the IPQ 
models) classification accuracy than the un-denoised ASV-based models, suggesting 
that the 7-mer hash data sets containing shorter features are more effective for PS or 
PQ classification due to the increased sensitivity. In addition, the models trained on 
un-denoised ASV data sets had a significantly higher (P = 0.011 for the IPS models and 
P = 0.012 for the IPQ models) classification accuracy than that using denoised ASV data 
sets, suggesting that the discarded reads after denoising contained effective features 
contributing to the PS or PQ classification. Moreover, the RF-based models trained on 
integrated 7-mer hash data sets spent significantly less computing time (Fig. S11C and 
D) and used remarkably smaller computing memory (Fig. S11E and F) for the PS or PQ 
classification than that trained on the denoised ASV data sets or un-denoised ASV data 
sets.

The 3-mer to 7-mer hash data sets of individual studies related to PS or PQ were 
computed by using the sourmash pipeline, which was used subsequently to establish PS 
and PQ classifiers. Generally, the RF-based models using 6-mer and 7-mer hash data sets 
had similar accuracy but significantly higher accuracy than that of models using 3-mer to 
5-mer hash data sets, except for PQ models using 3-mer of LiaoRl21. Sourmash pipeline 
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generates k-mer minhash signatures of DNA sequences, which randomly samples k-mer 
content to produce small subsets as known as “sketches” (26). The Jaccard similarity of 
two sketches of sequence data sets remains approximately equal to their true Jaccard 
similarity (76). The factor “scaled” was set as 1 in “sourmash sketch dna” command 
to generate the hash signature without downsampling the number of sketches. Using 
“sourmash sketch dna” command with the k-mer size parameter set as 3–7 generated 
32, 136, 512, 2,080, and 8,192 k-mer hashes of each DNA sample, respectively. Based 
on this, 7-mer hashes with a larger size than 3-mer to 6-mer contain more sequence 
variances, which potentially contribute to the higher classification accuracy of models 
(77). In addition, a larger k size of k-mer improves the specificity of different bases among 
sequences (78). However, when k was set greater than 7, for example, when k = 8, 
there were 32,896 of 8-mer hashes computed. The computing time and memory usage 
remarkably increased while the accuracy of models had no obvious improvement (data 
not shown).

Although our results showed 7-mer hash-based models had better classification 
performance for PS and PQ than ASV-based models, a current drawback of this method 
is that taxonomy analysis based on 16S rRNA gene sequencing data in 7-mer format 
is still unavailable, which may be caused by the inappropriate LCA algorithm for the 
taxonomy analysis. In addition, although reducing the effective read loss without using 
the denoising step in 7-mer hash preprocessing improved the PS and PQ classification 
performance of RF-based models, it may decrease the accuracy of taxonomy identifica­
tion due to noising reads. The trade­off between saving effective reads and ridding 
noising reads may need to be explored. Due to these considerations, we also constructed 
the RF-based models for PS and PQ classification using ASV-based taxonomic data. 
To compare with 7-mer hash strategy, the models constructed using feature-selected 
ASV-based taxonomy presented significantly better classification performance for PS and 
a bit lower classification accuracy for PQ. However, its computing time and memory 
usage were remarkably smaller, indicating that the ASV-based taxonomy strategy can be 
more efficient and applicable for PS and PQ classification and identification of important 
associated indicators.

On the basis of the taxonomic analysis, we identified Pseudomonas and Flavobacte­
rium as dominant genera in PS- and PQ-related samples, which have been previously 
reported to be predominant in bagged spring mix salad and lettuce (11, 74). However, 
unclassified genera with high relative abundance were not often mentioned in fresh 
produce microbiota studies. The integration of data sets might bring out more unclassi­
fied genera than individual data sets, due to the limited number of taxonomic references 
available for taxonomic analysis. In the previous PS and PQ studies, a few bacterial 
indicators for produce contamination (11) or decaying produce (9) have been identified. 
However, these indicators were not consistent across the individual data sets due to the 
limited data size. In this study, we applied the data integration method to homogenize 
three PS data sets and three PQ data sets, respectively. The ANCOM-BC test was then 
employed to identify indicators for pathogen contamination and quality reduction of 
fresh produce based on individual data sets and integrated data sets. We identified 26 
genus indicators and 28 genus indicators for PS and PQ produce, respectively, from 
individual data sets. Among them, seven indicators related to PS and 10 indicators 
related to PQ were validated by the ANCOM-BC test using the integrated data sets. 
These validated indicators can provide a more generalizable and consistent indication 
or prediction of PS or PQ statuses (79). Interestingly, we also identified a new indicator, 
Paracoccus, for GQ produce only from the IPQ data set. The result indicates that more 
new indicators could be potentially identified with the size increase of integrated data 
sets. The non-validated indicators from individual data sets may be due to these studies 
having different types of fresh produce, distinct inoculated pathogens, and/or various 
storage conditions, which make the composition and diversity of bacterial communities 
largely different.
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In addition to the ANCOM-BC test, the RF feature selection method was also used 
to identify indicators for fresh produce contamination and quality reduction. Compared 
to the indicators identified by the ANCOM-BC test, we found that RF feature selection 
method can identify much more indicators for PS (480 genera) and PQ (263 genera) 
with a positive contribution to the PS and PQ classification. These features covered all 
the indicators identified by the ANCOM-BC test, indicating that the RF-based models 
are more sensitive and powerful to catch the variation of features between classification 
groups. RF feature selection method and ANCOM-BC test can be used together to 
determine the reliable indicators for indicating PS and PQ. Sheh et al. (80) reported that 
RF-based models were the most accurate models and correctly classified strictures for 
chronic gastrointestinal diseases using nine ASVs. Based on the RF-based model and 
ANCOM results, Clostridium perfringens was identified as a potential causative agent 
associated with the development of strictures.

Conclusion

In summary, we established and compared RF-based PS and PQ classifiers by using 
publicly available microbiome data sets in ASV and 7-mer hash for predicting the 
contamination conditions or quality statuses. This study illustrates that the 7-mer 
hash-based approaches are useful for building more accurate classifiers than ASV but 
not necessarily for the taxonomic analysis yet. Due to this current limitation, we also 
explored an ASV-based taxonomy strategy for PS classification and PQ classification, 
which performed significantly better than the 7-mer hash strategy for PS classification 
and were remarkably more computing­efficient. Data integration of multiple data sets 
leads to greater classification performance of the integrated RF-based models than that 
using individual data sets, with significantly higher accuracy and more features with 
positive contribution to PS or PQ classification identified. In addition, we found that more 
consistent and generalizable microbes were identified as indicators for safety and quality 
groups of fresh produce through integrated taxonomic analysis, illustrating the benefits 
of integrating data sets.
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