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Abstract
A semi-parametric, information-based estimator is used to estimate strategies in prices
and advertising for Coca-Cola and Pepsi-Cola. Separate strategies for each firm are estimated
with and without restrictions from game theory. These information/entropy estimators are
consistent, are efficient, and do not require distributional assumptions. These estimates are
used to test theories about the strategies of firms and to see how changes in incomes or factor

prices affect these strategies.

KEYWORDS strategies, noncooperative games, oligopoly, generalized maximum
entropy, beverages
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1. INTRODUCTION

This paper presents two methods for estimating oligopoly strategies. The first method
allows strategies to depend on variables that affect demand and cost. The second method
adds restrictions based on a game-theoretic model. We use these methods to estimate the
pricing and advertising strategies of Coca-Cola and Pepsi-Cola.

Unlike most previous empirical studies of oligopoly behavior, we do not assume that
firms use a single pure strategy nor do we make the sort of ad hoc assumptions used in
conjectural variations models.Both our approaches recognize that firms may use either pure
or mixed (perhaps more accurately, distributional) strategies.

In our application to Coca-Cola and Pepsi-Cola, we assume that the firms’ decision
variables are prices and advertising. We divide each firm’s continuous price-advertising
action space into a grid over prices and advertising. Then we estimate the vector of probabil-
ities — the mixed or pure strategies — that a firm chooses an action within a rectangle in the
price-advertising grid. We use our estimates to calculate the Lerner index of market structure
and examine how changes in exogenous variables affect strategies.

The main advantages of using our method are that we can flexibly estimate firms’
strategies subject to restrictions implied by game theory and test hypotheses based on these
estimated strategies. The restrictions we impose are consistent with a variety of assumptions
regarding the information that firms have when making their decisions and with either pure or

mixed strategies.

! Bresnahan (1989) and Perloff (1992) survey conjectural variations and other structural
and reduced-form "new empirical industrial organization" studies.
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For example, suppose that a firm’s marginal cost in a period is a random variable
observed by the firm but not by the econometrician. Given the realization of marginal cost,
the firm chooses either a pure or a mixed strategy, which results in an action: a price-
advertising pair. The econometrician observes only the firm’s action and not the marginal
cost. As a consequence, the econometrician cannot distinguish between pure or mixed strate-
gies. If both firms in a market use pure strategies and each observes its rival’s marginal cost,
each firm can anticipate its rival’s action in each period. Alteratively, firms might use pure
strategies and know the distribution but not the realization of their rival’'s cost. Due to the
randomness of the marginal cost, it appears to both the rival and the econometrician that a
firm is using a mixed strategy. The equilibrium depends on whether firms’ private informa-
tion is correlated.

All of these possibilities — firms have only public information, firms observe each
other’s private information but the econometrician does not, or a firm only knows that its
private information is correlated or uncorrelated with its rival's — lead to restrictions of the
same form. For expositional simplicity, we concentrate on the situation where firms have
private, uncorrelated information about their own - but not their rival’s - marginal costs (or
some other payoff-relevant variable) and choose a pure or mixed strategy.

There have been few previous studies that estimated mixed or pure strategies based on
a game-theoretic model. These studies (Bjorn and Vuong 1985, Bresnahan and Reiss 1991,
and Kooreman 1994) involve discrete action spaces. For example, Bjorn and Vuong and
Kooreman estimate mixed strategies in a game involving spouses’ joint labor market

participation decisions using a maximum likelihood (ML) technique. Our approach differs
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from these studies in three important ways. First, they assume that there is no exogenous
uncertainty. Second, they allow each agent a choice of only two possible actions. Third, in
order to use a ML approach, they assume a specific error distribution and likelihood function.
Despite the limited number of actions, their ML estimation problems are complex.

Our problem requires that we include a large number of possible actions in order to
analyze oligopoly behavior and allow for mixed strategies. Doing so using a ML approach
would be difficult if not impossible. Instead, we use a generalized-maximum-entropy (GME)
estimator. An important advantage of our GME estimator is its computational simplicity.
Using GME, we can estimate a model with a large number of possible actions and impose
inequality and equality restrictions implied by the equilibrium conditions of the game. In
addition to this practical advantage, the GME estimator does not require strong, arbitrary
distributional assumptions. However, a special case of our GME estimator is identical to the
ML multinomial logit estimator (when the ML multinomial logit has a unique solution).

In Golan, Karp, and Perloff (1998 — henceforth GKP), we used the GME method to
estimate mixed strategies for an airline duopoly. Our problem here is more general in two
respects. The more important of these is that we allow the firms’ strategies to be conditioned
on the exogenous random variables observed by the econometrician. The second generaliza-
tion is that we allow firms to make decisions over two variables, price and advertising, rather
than just one, price.

In the next section, we present a game-theoretic model of firms’ behavior. In the third

section, we describe a GME approach to estimating this game. The fourth section contains
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estimates of the strategies of Coke and Pepsi. In the final section, we discuss our results and

possible extensions.

2. OLIGOPOLY GAME

Our objective is to determine the strategies of oligopolistic firms using time-series data
on prices, advertising, quantities, and variables that affect cost or demand, such as input
prices or seasonal dummies. We assume that two firmsdj, play a static game in each
period of the sample.

The econometrician observes payoff-relevant public information, such as demand and
cost shiftersz, but does not observe private information known only to the firms. Firm
(and possibly Firnj), but not the econometrician, observes Fiteimarginal cost or some
other payoff-relevant random variabdét) in periodt = 1, ..., T. Where possible we suppress
the time variabld for notational simplicity. The set df possible realizations,
{€,, &, ..., &}, is the same every period for both firms. The distributions are constant over
time but may differ across firms. The firms, but not the econometrician, know these distribu-
tions. To simplify the description of the problem, we assume ¢hahde! are private,

uncorrelated information.

2.1 Strategies
The set ofn possible actions (price-advertising pairs) for Firnis {x!, X5, ..., x'}. We
now describe the problem where the random state of nature is private information and

uncorrelated across firms.
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The profit of Firmi in a particular time period ist,(2) = (X, X, €, 2), wherer is
the action chosen by Firmands is the action chosen by Firfn In statek, Firm i’s strategy
is 0(2) = (a},(2), (D), ..., 04,(2), Wherea, (2) is the probability that Firm chooses action
X. given private informatiorg, and public informatiorz. If Firm i uses a pure strategy,,(2)
is one for a particular and zero otherwise.

Firm j does not observe Firms private information, so it does not know the condi-
tional probabilitya; (2). Firm j knows, however, the distribution of Firits private informa-
tion. The Nash assumption is that Fijnknows the unconditional probability of Firmusing
actionr. This probability is the expectation over Firits private information:ai(2) = E,
a,.(2), where E is the expectations operator. Similarly Fiinknows the unconditional
probability al(2) of Firm j.

In statek, Firm i choosey,(2) to maximize expected profitg, ai(2)m.(2), where the
expectation is taken over its rival’'s actions. Mf(2) is Firm i’'s maximum expected profits

given g, andz, then Firmi’s expected loss from using actionis

(2.1) Li(@) =Y ol(@) M (2) - Y (2) <0,

S

which is non-positive. If it is optimal for Firmi to use actiorr with positive probability, the

expected loss of using that action must be 0. Hence, optimality requires that

(2.2) L.\ (2) a,(z) = 0.

The equilibrium to this game may not be unique. Our estimation method selects the pure or

mixed strategy equilibrium that is most consistent with the data.
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2.2 Econometric Implications
Our objective is to estimate the firms’ strategies subject to the constraints implied by
optimization, Equations 2.1 and 2.2. We cannot use these constraints directly, however,
because they involve private informatieph By taking expectations, we eliminate these
unobserved variables and obtain usable restrictions.
We defineY(2) = E, Yi(2) andTi(2) = E, m4(2). Taking expectations with respect ko

of Equations 2.1 and 2.2 and using the previous definitions, we obtain

(2.3) Y al(z) mMe(z) - Y(2z) <0,

S

' ‘ i O i i

(2.4) 3 (@) m(2) - Y (@) (2) 8 (2) = 0,
Lls U

whered! = cov(L, a!,) = 0. For each Firm = 1, 2, we can estimate the unobservable

strategies'(2) subject to the conditions implied by Firits optimization problem, Equations

2.3 and 2.4.

2 If ¢ and¢ are correlated or observed by both firms, the restrictions are slightly more
complicated. If information is correlated, it would be reasonable to suppose thai’'&irm
beliefs abouf’s actions depend on the realizationgf so thata. is replaced byal.. If
information is observed by both firms, Firiis beliefs would also be conditioned on the
realization ofe). In both cases, we can take expectations with respect to the private informa-
tion and obtain equations analogous to 2.3 and 2.4. However, with either generalization, we
would have an additional additive term in 2.3, $gyand the definition o® would be
changed. The signs of bothandd would be indeterminate. This issue is discussed in GKP.
In our empirical application to the cola market, all the estima@lete positive, which is
consistent with the model in the text whedeand¢! are uncorrelated.
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Firms may use approximately optimal decisions due to bounded rationality, or there
may be measurement error. Therefore, we treat Equation 2.4 as a stochastic restriction and
include additive errors in estimation. Equation 2.4, however, already has an additive function,
0(2), which we cannot distinguish from the additive error in 2.4. Tla{g) is the only "error
term" we include in this equation.

If we tried to estimate this model (Equations 2.3 - 2.4) using traditional techniques, we
would run into several problems. First, with conventional sampling-theory estimation
techniques, we would have to specify arbitrarily an error distribution. Second, imposing the
various equality and inequality restrictions from our game-theoretic model would be very
difficult if not impossible with standard techniques. Third, as the problem is ill posed in
small samples (there may be more parameters than observations), we would have to impose
additional assumptions to make the problem well posed. To avoid these and other estimation

and inference problems, we propose an alternative approach.

3. GENERALIZED-MAXIMUM-ENTROPY ESTIMATION APPROACH

We use generalized maximum entropy (GME) to estimate the firms’ strategies. In this
section, we start by briefly describing the traditional maximum entropy (ME) estimation
procedure. Then, we present the GME formulation as a method of recovering information
from the data consistent with our game. Our GME method is closely related to the GME
multinomial choice approach in Golan, Judge, and Perloff (1996 — henceforth GJP). Unlike
ML estimators, the GME approach does not require explicit distributional assumptions,

performs well with small samples, and can incorporate inequality restrictions.
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3.1 Background: Classical Maximum Entropy Formulation
The traditional entropy formulation is described in Shannon (1948), Jaynes (1957a;
1957b), Kullback (1959), Levine (1980), Jaynes (1984), Shore and Johnson (1980), Skilling
(1989), Csiszéar (1991), and Golan, Judge, and Miller (1996). In this approach, Shannon’s
(1948) entropy is used to measure the uncertainty (state of knowledge) we have about the
occurrence of a collection of events. Lettinde a random variable with possible outcomes
Xy S=1, 2, ...,n, with probabilitiesa, such thatt, o, = 1, Shannon (1948) defined the

entropyof the distributiona = (a,, a,, ..., a,)’, as

(3.1) H=-Y o lna,

where 0 In 0= 0. The functionH, which Shannon interprets as a measure of the uncertainty

in the mind of someone about to receive a message, reaches a maximunawhen = ...

=a, = Ih. To recover the unknown probabilities Jaynes (1957a; 1957b) proposed maxi-
mizing entropy, subject to available sample-moment information and adding up constraints on
the probabilities.

The frequency that maximizes entropy is an intuitively reasonable estimate of the true
distribution when we lack any other information. If we have information from the exper-
iment, such as the sample moments, or nhon-sample information about the random variable,
such as restrictions from economic theory, we want to alter our "intuitively reasonable”
estimate. The method of Maximum Entropy proceeds by choosing the distribution that

maximizes entropy, subject to the sample and non-sample information.
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In our game, the firms’ price-advertising decisions are the random variables that
correspond tx in the previous example. We want to estimate the firms’ strategies, which are
their probability distributions over their actions. The next two subsections explain how we
incorporate sample and non-sample (theory) information. In our application, the sample
information for cola manufacturers consists of time series of price-advertising pairs for each
firm, quantities sold, and time series of exogenous variables that affect demand (a seasonal
dummy and income) and cost (an interest rate, a wage rate, and the price of sugar). The

game-theoretic restrictions, Equations 2.3 - 2.4, contain all the non-sample information.

3.2 Incorporating Sample Information

We incorporate the sample information into our GME estimator of the stratejjes,
by maximizing the entropy ofi' subject to the moment or consistency conditions that contain
sample information. We can use either of two approaches, as shown in GJP. If we require
that the moment restrictions hold exactly, we derive a ME estimator, which is identical to the
ML multinomial logit estimator (when the ML estimate is unigde)f we view the moment
conditions as stochastic restrictions, we obtain a GME estimator, which is a generalization of
the multinomial logit. With either the ME or GME approaches, we obtain estimates of the

probabilitiesa’ as a function of the public informatios,

® The number of parameters to be estimated using the ML multinomial logit 4sLjL,
(whereL = the dimension of, the number of covariates) because of the normalization used
where the parameters for one category are set equal to zera.- f)L < T and all categories
are observed in the sample, the ML estimator may provide a unique solution. Otherwise, the
ML problem is ill-posed. Even where the ML problem is ill-posed, the ME and GME estima-
tors provide unigue estimates, although the ME estimator is no longer equivalent to the
(nonexistent) multinomial logit ML estimator.
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In our problem, there are actions, which are price-advertising pairs. The variakle
equals one in periotif actionr is observed and zero otherwise. The variahlés a

function of the public information:

(3.2) Yo = GEZ L) + & =ay -6,

fori =1, 2, wherey, andz are observed and, €,, and{ are unknown parameters to be
estimated.

By eliminating€ from Equation 3.2 and assuming tha¢-) is a known cdf such as the
logistic or the normal, we can estimate this model using maximum likelihood multinomial
logit or probit. To avoid having to assume a specific cdf, we follow GJP and relate the set of
covariates to the datay, and the unknowm, and€,. We multiply Equation (3.2) by each
covariate variablez,, and sum over observations to obtain the stochastic sample-moment

(data consistency) restrictions:

(3.3) Z yt: Z, = Z O(itr Zy + Z et: Zy
t t t

for |1 =1, ...,L, which is the number of covariates mandr = 1, ...,n. We obtain the basic
GME estimator by maximizing the sum of the entropy corresponding to the strategy probabili-
ties, o', and the entropy from the noisé, subject to that data consistency condition (3.3).

The GME objective is a dual-criterion function that depends on the weighted sum of
the entropy measures from both the unknown and unobsergélaled€. By increasing the
weight on theeg component of entropy, we improve the accuracy of estimation (decrease the

mean square errors of the estimatesi)f By increasing the weight on th& component of
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entropy, we improve prediction (correct assignment of observations to price-advertising
categories). The ME estimator is a special case of the GME, in which no weight is placed on
the noise component and is similar to maximizing the logistic likelihood function. As a
practical matter, our GME objective weights theand € entropies equally because we lack
any theory that suggests other weights.

As we discussed in Section 3.1, the arguments of the Shannon’s entropy measures
must be probabilities. The elementsaifare probabilities, but the elements @frange over
the interval [-1, 1]. To determine the entropy @f we reparameterize its elements using
probabilities. We start by choosing a set of discrete points, called the support gpace,

[V, V5, ..., vyy]’ of dimensionM > 2, that are at uniform intervals, symmetric around zero, and
span the interval [ 1//T 1//T 1, wher& is the number of observations in the sample.

Each error terme has corresponding unknown weights w[w,, W, ..., W,,]' that have the

properties of probabilities: @ W, < 1 andZ,, W, = 1.

m —

We rewrite each error element ds= 3, viw,,. For example, ifM = 3, thenv' =

(-1//T. 0, 1//T ), and there exista;, w;, andw; such that each noise component can be

written asée = -w,; /T + w,3/{/T. Using this parameterization, we represent the GME

consistency conditions, Equation 3.3, as

Zwa=2%a+gda
= Z qitr z, + Z Z Wtrimvni]Zt: .
t t m

(3.4)
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Other thanM, no subjective information on the distribution of probabilities is assumed.
It is sufficient to have two pointsM = 2) in the support ofs, which converts the errors from
[-1, 1] into [0, 1] space. This estimation process recowdrs 1 moments of the distribution
of unknown errors, so a largé permits the estimation of more moments. Monte-Carlo
experiments (GJP; Golan, Judge, Miller, 1996) show a substantial decrease in the mean
square error (MSE) of estimates whEhincreases from 2 to 3. Further increasedvin
provide smaller incremental improvements. The estimates hardly chaMyésifncreased
beyond 7.

For notational simplicity, we now drop the firm superscript. If we assume that the
actions,x, and the errorsg, are independent and defimeas the vector which contains the

elementsw,,,, the GME problem for each firm is

(3.5) max H(a,w) = -a"Ina -w'Inw,

a, w

subject to the GME consistency conditions, Equation 3.4, and the normalization constraints

(3.6) Ta =1,

(3.7) Tw =1.
fors=1,2,...,nandt=1, 2, ...,T.

The Lagrangean to the GME problem is

Q(A’Qa’ QW) - _ZZ atr In atr - ZZ Z Wtrm In Wtrm
(38) N XI:Z )\Ir (zt: ytr Ztl B zt: C(tr Ztl B szmwtrm Ztl)
3Pl -2a) -+ )y pr(d-1'w).

= —r
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where), p% andp" are vectors that stack the Lagrange multipliers. The vektos the L-
dimensional sub-vector of containing the Lagrangean multipliexs, | = 1, 2, ...,L. We can

write the GME estimates as functions kf the multipliers that minimize 3.8:

exp(—itxr) _ex —27\)

59 R Zx)
X _ZtAv ) _ exp(—_ZrArvm)
(3.10) Wirm o p(__zt A,Vm) B W,

The Hessian is negative definite (the firselements on the diagonal areal/the rest are
-1hv,.,, and the off-diagonal elements are 0) so the solution is globally udique.
We can reformulate the GME problem as a generalized logit likelihood function,
which includes the traditional logit as a special case. Substituting Equations 3.9 and 3.10 into

3.8 to eliminate Ino and Inw, we can rewrite the first three elements of the Lagrangean as

L)

—zza”[—;;lxlr—met} EYYw { LR |nw4

trm
tor

(311) N %:XI:)\Ir{Xt:ytr ZII B %:atr ;I XI:EV Wtrm%l}

EETy, 7, +Eln§:exp( 2 I)E+E§3ln§:exp< £ 2,A, v,

[ |

—EEEy”;I vt E Ing, + XX InW,

tor

4 Equation 3.9 has the same form as the logistic CDF. GJP show thati0en
Equation 3.3 ther, = -A,, whereG(-) in Equation 3.2 is logistic. This result shows that the
ME estimator is equivalent to the ML logistic estimator when the latter is unique.
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The second equality is obtained by noting that probabilities sum to one and simplifying.
Minimizing the last equality in Equation 3.11 with respectitgields the same estimates as
those obtained from maximizing the original formulation represented by Equations 3.4, 3.5,
3.6, and 3.7. The formulation in Equation 3.11 is computationally more efficient than the
original formulation.

Henceforth we refer to the GME that uses only sample information as "the GME"

estimator. When using the GME estimator, we may estiraanda’ separately.

3.3 Incorporating the Non-Sample (Game-Theoretic) Information

The "GME-Nash" estimator is obtained by adding the game-theoretic restrictions,
Equations 2.3 and 2.4, to the GME estimator. Initially, we suppose that we know the parame-
ters of the profit functionyi. To use the GME-Nash estimator, we need to estiraatnd
o’ jointly because both strategy vectors appear in Equation 2.4. Further, we also have to esti-
mated'(2), i = 1, 2, from Equation 2.4. As we discussed in Section &(2) is nonzero if the
econometrician does not observe firms’ private information or if firms make mistakes in
optimization. Our first step is to reparameter@€) using probabilities. Let? be a vector

of dimensionJ? > 2 with corresponding unknown weighés' such that

(3.12) Y oo =1,

i

(3.13) V¥ = a,

_r
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for a = &', 8 The support spaces are defined to be symmetric around zero foraaft
Lety = (", ¥), a=(@",d), w=W,w),andw = (', o). As above, we
assume independence between the actions and the errors. The GME-Nash problem is

(3.14) Max H(a, w, @) = -d'Ina -w' Inw - o In w

subject to the data consistency conditions 3.4 for each firm, the necessary economic condi-
tions 2.3 and 2.4 for each firm, and the adding-up conditionsxfar, andw. The termsd!.

in Equation 2.4 are defined by Equations 3.12 and 3.13. Solving the problem (3.14) yields
the estimatesi, W, and®. As with the GME estimator, Equation 3.14 is a dual-loss objective
where we maximize the sum of the entropies of the strategiasd the error components

{w, w}.

In order to write the Lagrangean for this problem, we need to determine how to
impose the game-theoretic restrictions. Ideally, we would require that the game-theoretic
restrictions hold for all possible values af We cannot impose these restrictions for all
values because we cannot wrd€z) in closed form independent of the unknown Lagrangean
multipliers. Instead, we impose the weaker condition that the game-theoretic restrictions,
Equations 2.3 and 2.4, hold at some or all of the valuesiofour sample.

Because of the large number of restrictions for each valugifour application, we

impose the restrictions for only a subset of the observations. These restrictions, however,

® We do not have natural boundaries fiy so we use the "three-sigma rule"
(Pukelsheim, 1994; Miller 1994; Golan, Judge, and Miller 1996) to choose the limits of these
support spaces, where sigma is the larger of the empirical standard deviation of the discrete
action space of prices or advertising.
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affect thea for all observations through the Lagrangean multipliers corresponding to the
sample information (the moment conditions Equation 3.2).

If we do not know the parameters of the profit functions, we simultaneously estimate
the strategies and the parameters of the profit function, which depend on the demand and cost
functions. We do not have observations on cost, but we observeiBimutput,q, and some
factor-cost (wages, price of sugar, and interest rate) variapledVe assume that Firmis
cost is given by a cost functio@'(q, z; n'), wheren' are parameters. Similarly, we assume
that the demand for Firriis product isq (X, ¥, z,; @), wherez, are demand shifters (income
and a seasonal dummy) apdare parameters. We substitute these functions in the Con-
straints 2.3 and 2.4 and estimateand ¢ jointly with the other parameters. Because we
observe demand (but not cost) we have an additional set of data consistency (sample)
restrictions in the form of demand equations for each Rirm

q =d, %, z; @) + u,
whereu' is an error term. We estimate the parametgrandn' using the same method
described in the previous subsection for estimating parameters that are not probabilities (see
Appendix 1). That is, we choose a support for each such parameter and estimate the
probability distribution over that support. We perform this estimation by maximizing the sum
of all the entropy measure in equation 3.14 plus the entropy associated with the unknown

demand and cost parameters.

3.4 Properties of the Estimators and Normalized Entropy
Both the GME and GME-Nash estimators are consistent, but they differ in efficiency

and information content. GJP shows that the GME estimator is consistent given an appropri-
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ate choice of the bounds of the error term in the data consistency constraint 3.4. Under the
assumption that a solution to the GME-Nash estimation problem exists for all samples,
Appendix 2 uses a minor modification of the argument used in GKP to show that the GME-
Nash estimator is consistent.

GJP show that the GME estimatesahave smaller variances than the ME-ML
multinomial logit estimates. The possible solution space for the GME-Nash estimatés af
subset of the solution space of the GME estimate.ofThus, we conjecture that the GME-

Nash estimator has a smaller variance than the GME. GKP reports sampling experiments that
support this conjecture.

We can quantify the added information contained in the game-theoretic restrictions by
comparing the normalized entropy afwith and without the restrictions. The normalized
entropy measure iS(a) = -(Z, a, In a,)/(In n). The normalized entropy measureS&) = 1
if all outcomes are equally likely, and Ba) = 0 if we know which action will be taken with
certainty. The magnitude of the change in normalized entropy from imposing the game-
theoretic restrictions provides a measure of the information they contain. See Appendix 2 for

a derivation of the properties and inferences results for this estimator.

4. COLAS
Using quarterly data for 1968-1986, we estimate the price and advertising strategies
for Coca-Cola and Pepsi-Cola using the GME and GME-Nash approaches. The Coca Cola

Company and Pepsico, Inc. dominate the cola and soft-drink markéts. use quarterly data

® In 1981 for example, Coca-Cola’s share of colas was 44.4% and its share of the
national carbonated soft-drink market was 27.8% (according t@é&werage Industry Annual
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for 1968-86, which were obtained from a variety of secondary sources and are described in
Gasmi (1988), Gasmi and Vuong (1991), and Gasmi, Laffont, and Vuong (1992).
We assume that firms set prices and advertising and use the demand specification from

these earlier studies:

(4.1) G =@+ @p - P @A)+ @ (A - @sd - sl +ul,

wherei = 1, 2,i # j; d is the quantity soldp' is the real price charged, aid is the real
advertising by Firmi; d is a seasonal dummy;is income;u’ is an error termgp, is negative;

@, and @, are positivé. In Appendix 1, we show how to reparameterize 4.1 so that it can be
estimated along with the other parameters in the GME-Nash model. We assume that the
marginal and average cost of Firnis ¢’ = n} + n} x real price of sugar H, x real unit cost

of labor in the nondurable manufacturing secton’x real yield on a Moody’s AAA corpo-

rate bond, wher@,, n,, N, N; = 0.2

for 1986). The corresponding shares for Pepsi were 34.6% and 21.6%.

" The data were generously provided by these authors. We especially thank Farid Gasmi
for patiently describing the data and making suggestions about the specification of our model.

8 Some of the previous studies included output lagged one quarter as a proxy for the
effects of advertising on market demand. We leave out that term because such intertemporal
relationships are inconsistent with our assumption that the firms play repeated static games.

® The earlier studies did not include a constant term. Moreover, some of them used
separate interest rates for the two companies. Because the correlation between these two
interest rate measures is 0.99, we use only one.
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4.1 Cola Estimates

For both the GME and GME-Nash models, firms have 35 possible actions in each
period. We divide the range of possible prices into seven intervals and the range of possible
advertising levels into five intervalS.

To estimate the GME-Nash model, we impose sign restrictions from economic theory
on both the cost (all cost coefficients are non-negative) and demand parameters (demand falls
with a firm’s own price and rises with the other firm’s price and its own advertising) and the
game-theoretic restrictions in 15 periods (every fifth quarter starting with the third quarter).
By only imposing the restrictions in about one-fifth of the periods, we greatly reduce the size
of the estimation problem.

The Coca-Cola demand coefficients &= 4.549,¢,= -1.079,¢@, = 2.137,¢, = 0.741,

@, = -0.232,¢, = 7.730,¢, = 0.737. The corresponding demand coefficients for Pepsi-Cola
are -20.021, -1.596, 0.582, 0.808, -0.211, 5.592, and 2.056. The correlation coefficients
between observed quantities and those predicted by the demand equation are 0.93 for Coke
and 0.94 for Pepsi.

For the GME-Nash, the estimated cost parameters)are13.482,n, = n, = 0 (due to
the theoretical restriction that the coefficient be non-negative),rarel 0.208 for Coca-Cola.

The corresponding cost coefficients for Pepsi-Cola are 7.251, 0, 0, and 0.

19 Within the sample, the prices range between $10.886 and $17.790 for Coca-Cola and
between $6.646 and $9.521 for Pepsi-Cola. This difference in price levels is apparently due
to the greater use of Coke syrup at fountains. Advertising expenditures range between 5.726
and 71.966 for Coca-Cola and from 7.058 to 50.814 for Pepsi-Cola.
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The GME and GME-Nash estimating procedures produce estimates of the Lagrangean
multipliers, which are the negative of the coefficients that would be estimated by a ML
multinomial logit. Table 1 shows the GME estimates for Coca-Col&rom the estimated
coefficients, we can calculate the strategy probabilittesfor each period. We show the esti-
mates for the first quarter of 1977, near the midpoint of the sample, for Coca-Cola in Figure
1 and Pepsi-Cola in Figure 2. In both figures, panel a shows the GME estimates and panel b
shows the GME-Nash estimates.

For both companies, the GME probability estimates are more uniform (reflect greater
entropy) than the GME-Nash estimates. These figures illustrate that the game-theoretic condi-
tions contain additional information beyond that in the data alone. If this theoretical
information is true, it improves our estimates.

The corresponding marginal distributions for price and advertising strategies for both
the GME and GME-Nash models are shown in Figure 3 for Coke and in Figure 4 for Pepsi.
The GME-Nash marginal distributions put more weight on the category with the largest
probability than do the GME marginal distributions.

This pattern is repeated in virtually all periods. We can compare the different
estimators empirically using the normalized entropy (information) mea&are The
normalized entropy measures for the GME, 0.66 (Coke) and 0.73 (Pepsi), are closer to one
(the upper bound of entropy) than are the corresponding GME-Nash measures, 0.31 and 0.41.

These numbers show the extent to which the game theoretic restrictions bind: They measure

1 To save space, we do not report the coefficients for Pepsi or the two tables for the
GME-Nash. These tables are available from the authors.
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the amount of additional information contained in the restrictions. The psgtdehich is
the expected value of 1¥-) for both firms (see Appendix 2), is 0.31 for the GME model
and 0.64 for the GME-Nash model.
The GME-Nash model is flexible enough to allow for both pure and mixed strategies.
Out of the 76 periods of the sample, there are three periods for each firm where it uses a pure

strategy.

4.2 Tests

We now test whether our theory is consistent with the firms’ behavior (data), using
tests derived in Appendix 2. The entropy-ratio test statistic i{(ZME) - 2H(GME-Nash)]
= 359.38 <x%ys0 0.0s WhereH(:) is the optimal value of the objective function. Thus, we
conclude that the economic theory represented by the set of conditions (2.3) and (2.4) is
consistentwith the data.

We now compare the strategies (estimat@df the GME and the GME-Nash models
using the cross-entropy’ test (Appendix 2}> We reject the null hypothesis that the GME
and GME-Nash estimated strategies are identical in 34 periods (out of the 76 total periods)
for Coke and in 25 periods for Pepsi. Thus, we conclude that the profit-maximizing, Nash
restrictions are consistent with the data and contain useful information, so that imposing these

restrictions affects our estimates of the strategies.

12 These test results are for a 0.05 significance level. As there are seven support points
for the price strategy and five for the advertising strategy, there are (7 - 1) x (5-1) = 24
degrees of freedom.
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Next, we compare the strategies of the two firms for the GME-NASH model. We
reject the null hypothesis that the two sets estimated strategies are identical in 74 out of the
76 periods. That is, the firm ugdifferentstrategies.

For example, by comparing Figures 1b and 2b, we see that Coke and Pepsi had very
different strategy distributions in the middle of the sample. Coke had a single-modal strategy
distribution with most weight on a moderate price-moderately intense advertising strategy,
whereas Pepsi had a bimodal distribution with the most weight on a high price-intensive
advertising strategy.

Next, we investigate the significance of the individual covariatesjncome, price of
sugar, wage, and bond rate. That is, we test whether the estimated coefficient is zego (H
= 0) or nonzero (K z # 0). Thex? test-statistic values are 54.41, 34.38, 78.07, and 56.51
for income, price of sugar, wage, and bond rate respectively. As a result, we reject the null
hypothesis forall the covariates at the = 0.01 level. Thus, though the factor prices do not
greatly affect the marginal costs of the firms, they do affect the strategies the firms use (see
Section 4.4).

These estimators fit the data reasonably well, as Table 2 shows. For example, the
GME-Nash estimator correctly predicted which of the seven price categories Coke chose 55%
of the periods. Moreover, it missed by more than one category in only 11% of the periods.

In this study, the GME predictions are more accurate than those of the GME*Nash.

13 Based on simulations in GKP, the GME-Nash can predict better than the GME. If the
GME-Nash restrictions are correct, we expect the GME-Nash to have lower mean squared
errors than the GME.
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4.3 Lerner Measures

A standard measure of market power is the Lerner index, which is the percentage by
which price is set above marginal cost. Usually, the Lerner index ranges between zero
(competition) and one.

As we discuss in Appendix 3, we use our estimates of probabilities to calculate the
expected Lerner index, Bf(- ¢)/p] = =, o'[(p! - ¢)/p]], wherec is our estimate of Firn's
marginal cost. We suppress the dependence of all functions on the public infornzatma,
hold z constant for purposes of this discussion. In our study, the average adjusted Lerner
index is 0.24 for Coke and 0.27 for Pepsi.

For comparison, we also calculated the Lerner index for the Bertrand-Nash model
using the coefficients from Model 1 of Gasmi, Laffont, and Vuong (1992). Averaged over
the sample, the index for Coke is 0.42 and for Pepsi is 0.45. Thus, the GME-Nash estimates
indicate that firms have less market power than do ML estimates of a Bertrand-Nash

equilibrium?**

4.4 Effects of the Exogenous Variables
Using our estimated models, we can calculate the effect of a change in each of the
exogenoug variables on the strategy probabilities, using the same approach as is used
with logit and probit models. Table 3 shows the average strategy elasticities using the GME-

Nash estimates (the percentage change in expected action divided by the percentage change in

4 These differences in the Lerner indexes are largely due to differences in the estimates
of costs. Our GME-Nash cost estimates are substantially higher than their ML-Bertrand
estimates.
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a z variable)’® Some of these elasticities are large in absolute value because the correspond-
ing probabilities are close to zero.

By inspection of Table 3, we see that an increase in income, which shifts out demand,
increases the probability that Coke, and to a lesser extent Pepsi, charge higher prices. The
elasticity of Coke’s expected price with respect to income is 0.154 and the corresponding
elasticity for Pepsi is 0.0013.

An increase in income (and demand) spreads a unit cost of advertising over a greater
volume of sales, so we expect higher income to shift the distribution for advertising to the
right. Pepsi's advertising strategy does shift to the right, but for Coke more probability
weight is shifted to both tails. The elasticity of expected advertising with respect to income
is -0.097 for Coke and 0.03 for Pepsi.

We can calculate similar elasticities with respect to the other exogenous variables.
According to our estimates, the corporate bond rate does not directly affect Pepsi’s costs, and
it has a negligible effect on Pepsi’s strategy. Despite the absence of a direct effect (via
costs), the bond rate might indirectly affect Pepsi's strategy, possibly because Pepsi thinks
that it alters Coke’s strategy. Coke’s costs increase with the interest rate. For Coke, an

increase in the interest rate changes the mix of probabilities of charging a high price. An

> First, we calculate the derivatives of probabilities and average them over the 59
periods where we do not impose the game-theoretic constraints. Then, we average the
probabilities for these periods. Using these averages, we summed over categories to compute
the marginals of the averages, and used the results to calculate the elasticities of the margin-
als. By using the periods where we do not impose the constraints, we are able to use an
explicit formula for probabilities when calculating the derivatives. Had we used the periods
where the game theoretic constraints are imposed, we would have had to calculate the
derivatives of a system of 70 implicit equations.
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increase in the interest rate shifts more weight to the tails of Coke’s advertising strategy. The
elasticities with respect to the corporate bond rate are 0.004 for Coke’s expected price, 0.032
for Coke’s expected advertising, 0.004 for Pepsi’'s expected price, and 0.0005 for Pepsi’s

expected advertising. Thus, for changes in either income or bond rates, Coke responds more

than does Pepsi.

5. CONCLUSIONS

We developed two methods of estimating the strategies of firms, which are the
probabilities of taking particular actions. In our application to the cola market, the actions are
price-advertising pairs. Both methods are free of parametric assumptions about distributions
and ad hoc specifications such as those used in conjectural-variations models. Unlike
previous studies of oligopoly behavior that only allowed for pure strategies, we allow for both
pure and mixed strategies.

Our simplest approach is to use generalized maximum entropy (GME) to estimate the
strategies for each firm using only sample information. This method is more flexible and
efficient than the standard maximum likelihood multinomial logit (ML) estimator. Both the
traditional ML and the GME estimators ignore restrictions imposed by economic theory and
some information about demand and costs.

Our generalized-maximum-entropy-Nash (GME-Nash) approach estimates firms’
strategies consistent with the underlying data generation process and the restrictions implied
by game theory. The application to the cola market demonstrates that both the GME and

GME-Nash models can be used practically.
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Tests show that the profit-maximizing, Nash restrictions are consistent with the data
but that, because they contain information, alter our estimates of firms’ strategies. We our
able to use our estimates to show how changes in exogenous variables such as income or
factor prices affect the firms’ strategies.

Our GME and GME-Nash approaches to estimating games can be applied to many
problems in addition to oligopoly, such as wars and joint decisions by husbands and wives.

To do so only requires replacing profits with an appropriate alternative criterion.
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Appendix 1: GME-Nash with Unknown Demand Coefficients

In order to use the GME-Nash estimator when the parameters of the demand curves
are unknown, we estimate the demand curves simultaneously with the rest of the model. We

rewrite the demand equation for Firmnfrom Equation 4.1 in matrix form as

(A1.2) g =Xg +u,

whered is the quantity vectory is a vector of error termsX' is a matrix, andg is a K-

dimensional vector of parameters. To use an entropy approach, we need to map the unknown
parametergg andu into probability space. For notional simplicity, we suppress the firm

indexi. Following Golan, Judge, and Miller (1996), we model these unknown parameters as
discrete random variables with finite supports. Ipdbe in the interior of an open, bounded
hyperrectangleA 0O 0¥, and, for eachp,, let there be a discrete random variablewith M >

2 possible realizationg,,,..., a,, and corresponding probabilitiés,,..., b,,, such that

(A12) (pk = XM: bkmakm'
m=1

Letting A be theM-dimensional support fog,, any @ [J A may be expressed as

a O 0 b O
5 HA
. a 0
(AL3) 0-Ab-0 = ‘é%?%
- 0. . g
O [l E
2 0 - aghH
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whereA is a K x KM) matrix andb is a KM-vector of weights such thdd, >> 0 andby 1,,
= 1 for each demand parameter for 1, 2,...,K. The upper and lower bounds af, a,, and
a,,, are far apart and known to contajp Further, we use our knowledge of the signs of the
unknown parameters from economic theory when specifying the support 8pace

The unknown and unobservable errang,are treated similarly. For each observation,
the associated disturbanag, is modelled as a discrete random variable with realizatigns,
vy O VW with corresponding probabilities!,..., ;. That is, each disturbance may be

modelled as

J
(A1.4) 0w Yy,
j=1

for eacht = 1,...,T. The elements of the vectef form an evenly spaced grid that is
symmetric around zero.
Given a sample of datg, a simple way to determine the upper and lower bound"of
is to use the three-sigma rule together with the sample standard deagtidfor example, if
J =3, thenv' = (-30,,, 0, 30,). Golan, Judge, and Miller (1996) has a detailed discussion of
the statistical implications of the choice of bounds and sampling experimens éoid J.
Having reparameterized the system of demand equation in this manner, the GME-Nash

model with unknown demand parameters is

(A1.5) max Ha,w,p,w) = -a’'Ina -winw-binb -« In w,

awbw
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subject to the consistency conditions 3.4, the necessary economic conditions 2.3 and 2.4, the

two demand equations for Firmsandj, Equations Al.1, and the normalizations forw, b,

andw, where = (o, o*,w',w")’. The bounds of the error supports for the demand equa-

tions are +§,,.
Estimating the unknown cost parameters is handled similarly by reparameterizing the
cost parameters in the profit function. The associated probabilities enter directly into the

objective function.
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Appendix 2: The GME-Nash Estimator

A2.1 Consistency
Call the GME-Nash estimates of the stratedieshe GME estimates, and the ME-
ML estimatesd. We make the following assumptions:
Assumption 1 A solution of the GME-Nash estimatoéi( W, &) exists for any
sample size.
Assumption 2 The expected value of each error term is zero, its variance is
finite, and the error distribution satisfies the Lindberg condition (Davidson and
MacKinnon, 1993, p. 135).
Assumption 3 The true value of each unknown parameter is in the interior of
its support.
We want to prove

Proposition Given assumptions 1-3, and lettiad) the end points of the error
support spaces {for each firm) be normed b%? , plid) = plim(@) = a.

This result holds even when the profit parameters are unknown.
According to this proposition, the GME-Nash estimat@&sand the GME basic estimatas,
are equal to each other and to the true strategies in the limit as the sample size becomes

infinite, T -~ . That is, all the estimators are consistent.
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Proof:

i) The consistency of the GME estimator is proved in GJP. Let the end points of the
error supports of, v, andv,, be -1/,/T and1/,/T respectively. A§ - oo, g, — 1 for all

sin the dual-GME, Equation 3.12. Thuk, In P(A) - 0 and plimg; = a.

i) The GME-Nash with known profit parameters is consistent: By Assumption 1,
after we have added the restrictions 2.3 and 2.4, we still have a solution. The argument in (i)
together with Assumption 2 implies that plify = a.

iii) The GME-Nash with unknown profit parameters is consistent. Given Assumption
3, the GME is a consistent estimator @in Equation Al.1 (Mittelhammer and Cardell,
1996): plim@; = @. By the argument in (i), plinfi; = o. These asymptotic properties can
also be established via the empirical likelihood approach (Owen, 1990; Qin and Lawless,
1994; Golan and Judge, 1996).
A2.2 Hypothesis testing

On the basis of the consistency of the estimators, we can define an "entropy ratio
statistic" which has a limiting® distribution. We use this statistic to test hypotheses. In
general, let\* be the vector of Lagrange multiplies fall the model’'s constraints. Let
H.(A%) be the entropy value of the problem wheée= 0, or equivalently all the parameters
(strategies as well as demand coefficients) are set equal to zero (orcarttezof their
supports). ThusH,,(A%) is the maximum value of the joint entropies (objective function). It
can be obtained by maximizing Equation (3.11) subject to no constraints (except for the
requirement that all distributions are proper). Doing so yields the total entropy value of the

three sets of discrete, uniform distributioasw, andw. Now, letH (A*) be the objective
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(total entropy) value for the full GME-Nash model — the optimal value of Equation (3.14) —
whereA* is the set of estimated values (that is, they are not forced to equal zero).
The entropy-ratio statistidor testing the null hypothesid, that all parameters are

zero is

&(parameters= 0) = 2H,, (parameters= 0) - 2H (G, W, ©).

Under the mild assumptions we made above (or the assumptions of Owen, 1990 and Qin and

Lawless, 1994).% (parameters= 0) - Xi as - o when H is true andK is the number of

restrictions. The approximate-level confidence intervals for the estimates are obtained by

setting & (-) < C, whereC, is chosen so that Pg§ < C,) = a. Similarly, we can test any

other hypothesis of the forH,: a = a, for all, or any subset, of the parameters. We use
these entropy-ratio statistics to test whether the economic and Nash restrictions are consistent
with the data.

We use the same line of reasoning as above (each constraint, or data point, represents
additional potential information that may lower the value of the objective function but can

never increase it) to derive a "goodness of fit" measure for our estimator:



whereR" = 0 implies no informational value of the data set, &d= 1 implies perfect
certainty or perfect in-sample prediction.

The small-sample approximated variances can be computed in a number of ways. We
discuss two simplest approaches here. First, for each equation (say the two sets of demand

equations), we calculate

where 0, = Z a;;’] V,-u andvar((gi() 0 aiz(x/x )1 for each parametgr Similarly, for each
i

set of equations, the relevaat is estimated.

Because our model is a system of a large number of equations, the elements of the
asymptotic variance-covariance matr®, for the error terms of the entire system are
estimated in the traditional way, taking into account all the data and all the restrictions
(Equations 2.3, 2.5, 2.6, and A.6).

Finally, we note the relationship between the entropy objective any’tsatistic.
This relationship is used for comparison of various estimated strategies and various estimated

distribution. The cross-entropy measures is defined as
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(A2.1) I(a,a°) =Y a n(ojoy),

wherea® is a proper prior probability distribution. Now, leti{} be a set ofK observed
frequencies (strategies) over a setkobbserved prices. Let the null hypothesistig a =

a®, then

2 1
Xk-1 = Z —O(GK - o)’
kK O

A second-order approximation of (A2.1) is

I(g'go) DEZ io(uk - GE)Zl
2% o

which is the entropy-ratio statistic (for evaluatifigversus@®) that we previous discussed.

We conclude by noting that two times the entropy-ratio statistic corresponds (at the limit) to

2
X(k-1)
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Appendix 3: Expected Lerner Index

In the text, we report an expected Lerner indexpE{(c)/p] = Z, o![(p} - ¢)/p]],
wherec is our estimate of Firni’'s marginal cost. We suppress the dependence of alll
functions on the public informatiorz, and holdz constant for purposes of this discussion. In
the absence of private information (and with no fixed cost such as advertising), the estimate
of a firm’s expected profit is positive if and only if the estimate of the expected Lerner index
is positive. If there is private information, however, our estimate of the expected Lerner
index can be negative even though our estimate of expected profits is positive.

We first note that Firni’s expected profit, conditional upon using its priga, and
advertisingA), is , alrt, = Zol[p; - cla(pl, p,, A, A) - A, whereq(:) is Firmi’s demand
function. Taking expectations with respect to Fifs actions, we can rewrite Firris
expected profit asp{ - ¢)Q(p!, A) - A, whereQ(p!, A) = =, alg(p!, p, A, A) is the expected
quantity demanded from Firmnconditional upon taking actiornt choosingp! andAl. Using

these expressions in Equation 2.4 and rearranging terms, we find that

(A3.1) (' -cHQ(p, A - A - Yia <3 = 0.

By dividing both sides of Equation 3A.1 by a probability that is strictly positive, we find

that the expected Lerner indeX!, for Firm i given it takes actiom is

P, b’ Qp., A')
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As discussed in Section 2.2, with private uncorrelated informafpn,0. If it is
optimal to use actiom with positive probability for all realizations of private informatiaf
the lossL!, = O for all k, andd. = cov(L!,, a!,) = 0. If, however, there are song when it is
not optimal to use action, thend. > 0. Thus, Equation 3A.2 shows that expected profits,
and the expected Lerner index can have opposite signs.

Suppose, for example, that there is no advertisig; 0, or other fixed costs and that
the market is very competitive so that expected profitsare zero. It may still be the case
that for some states, it is optimal to use actiom (that is,a’ > 0) and for some| it is not
optimal to use actiom, so8, > 0. GivenAl =Y = 0, the Lerner index is never positive for
any action, so the expected Lerner index is strictly negative. If we perturb the game so that
equilibrium expected profits become slightly positive, then — assuming that the mixed
strategies vary continuously — we could observe positive expected profits and a negative
expected Lerner index. Indeed in our estimates, we observe negative Lerner indexes for some
periods.

Thus, this Lerner index may be a misleading measure of market power. It is contami-
nated by the econometrician’s lack of knowledge about private information. The reason that
we estimate negative values in some periods is that our estim&@eth& term which
incorporates private information of firms, is positive. From the viewpoint of Fird) = 0,
so if that firm calculated its own Lerner index, it would obtain a positive value where we

estimate a negative one.
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We can avoid this problem by using an adjusted Lerner indéxthat "purges" the
original Lerner index of this private-information effect. By taking expectations over the

actionsr, we obtain:

3 o
Ir/\ir+i—rii%
pr Q(priAr)D

N =Y}

r

Doe00

This adjusted Lerner index is unit free and has the same sign as expected profit if there are

no fixed costs such as advertisitg.

6 We can only calculate this adjusted measure reported in the text for the periods in
which we impose the game-theoretic restrictions because we only have estimatésrof
those periods. The corresponding unadjusted Lerner indexes are -0.09 for Coke and 0.10 for
Pepsi (these averages are the same for the entire sample and for just those quarters where the
restrictions were imposed).
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Table 1
GME Estimates of Coefficients for Coca-Cola
Seasonal Price Bond
Price Advertising Constant  Dummy Income of Sugar Wage Rate
1 2 -46.738 1.851 0.832 1.207 49.393 -0.077
1 3 -43.588 -1.188 0.822 0.295 49.534 -0.115
1 4 1.441 0.017 -0.013 -0.098 -0.955 0.002
1 5 1.428 0.017 -0.013 -0.098 -0.940 0.002
2 1 77.525 0.834 -1.384 -0.041 -90.107 -0.052
2 2 10.040 0.896 -0.274 0.823 -11.263 -0.275
2 3 -20.309 -1.695 0.586 1.785 11.465 -0.396
2 4 51.699 -0.287 -0.860 -0.441 -60.512 -0.277
2 5 33.840 -1.141 -0.769 -0.266 -30.543 -0.024
3 1 1.428 0.017 -0.013 -0.098 -0.940 0.002
3 2 9.887 1.542 -0.196 -0.841 -12.846 -0.021
3 3 -13.102 -0.128 0.203 1.646 7.332 0.109
3 4 -61.368 -1.401 1.070 2.526 65.273 0.420
3 5 -0.719 -0.671 -0.190 1.200 5.090 0.357
4 1 21.993 0.756 -0.262 -2.909 -23.202 -0.168
4 2 -19.817 2.187 0.354 -2.500 25.788 -0.034
4 3 -5.802 0.697 -0.110 -0.903 11.068 0.291
4 4 59.688 -1.339 -1.201 -2.096 -59.023 0.281
4 5 1.428 0.017 -0.013 -0.098 -0.941 0.002
5 1 1.441 0.017 -0.013 -0.098 -0.955 0.002
5 2 1.425 0.017 -0.013 -0.098 -0.938 0.002
5 3 -22.607 -1.331 0.543 -0.379 23.203 -0.110
5 4 1.452 0.017 -0.013 -0.099 -0.966 0.002
5 5 1.462 0.017 -0.014 -0.099 -0.977 0.002
6 1 1.433 0.017 -0.013 -0.098 -0.947 0.002
6 2 1.438 0.017 -0.013 -0.098 -0.952 0.002
6 3 1.418 0.017 -0.013 -0.098 -0.930 0.002
6 4 -23.977 -1.188 0.479 0.901 24.449 0.037
6 5 1.453 0.017 -0.013 -0.099 -0.968 0.002
7 1 1.420 0.017 -0.013 -0.098 -0.932 0.002
7 2 -29.797 1.311 0.546 1.344 29.438 0.026
7 3 1.453 0.017 -0.013 -0.099 -0.968 0.002
7 4 1.418 0.017 -0.013 -0.098 -0.930 0.002
7 5 1.457 0.017 -0.013 -0.099 -0.972 0.002

Notes: The first two columns show the price and advertising categories. The coefficients in
the missing first row are normalized to zero.
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Table 2 Percent of Categories Correctly Predicted

GME GME-Nash

Price Advertising Price Advertising

Coke 70 68 55 63

Pepsi 61 33 54 32
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Table 3: Strategy Elasticities

Categories
1 2 3 4 5 6 7
Interest Rate
Coke Price .000 .000 .000 .001 -2.920 2.998 -.192
Pepsi Price .000 .000 -.003 .003 .000 .000 .000
Coke Advertising .262 .000 -.005 -1.266 3.767
Pepsi Advertising -.004 .000 .000 .000 .003
Income
Coke Price .000 .000 -.000 .015 -87.737 64.180 15.077
Pepsi Price .000 .000 -.165 204 .000 .001 .000
Coke Advertising 10.825 .000 .635 -32.756 75.448

Pepsi Advertising -.265 .000 .000 .000 155
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Table 2: Percent of Categories Correctly Predicted

GME GME-Nash
Price Advertising Price Advertising
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Pepsi 61 33 54 32
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Figure 1b: GME-Nash Estimates of Coke’s Strategies (First Quarter 1977)
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Figure 2a- GME Estimates of Pepsi's Strategies (First Quarter 1977)
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Figure 2b: GME-Nash Estimates of Pepsi’'s Strategies (First Quarter 1977)
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Figure 3: GME and GME-Nash Marginal Strategy Distributions for Coke (First Quarter 1977)
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Figure 4: GME and GME-Nash Marginal Strategy Distributions for Pepsi (First Quarter 1977)
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