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ABSTRACT

We present measurements of the angular diameter distance to and Hubble parameter at
z = 0.57 from the measurement of the baryon acoustic peak in the correlation of galaxies
from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. Our anal-
ysis is based on a sample from Data Release 9 of 264,283 galaxies over 3275 square de-
grees in the redshift range 0.43 < z < 0.70. We use two different methods to provide
robust measurement of the acoustic peak position across and along the line of sight in or-
der to measure the cosmological distance scale. We find DA(0.57) = 1408 ± 45 Mpc and
H(0.57) = 92.9 ± 7.8 km/s/Mpc for our fiducial value of the sound horizon. These results
from the anisotropic fitting are fully consistent with the analysis of the spherically averaged
acoustic peak position presented in Anderson et al. (2012). Our distance measurements are a
close match to the predictions of the standard cosmological model featuring a cosmological
constant and zero spatial curvature.

1 INTRODUCTION

The expansion history of the Universe is one of the most funda-
mental measurements in cosmology. Its importance has been mag-
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2 Anderson et al.

nified in the last 15 years because of the discovery of the late-time
acceleration of the expansion rate (Riess et al. 1998; Perlmutter
et al. 1999). Precision measurements of the cosmic distance scale
are crucial for probing the behavior of the acceleration and the na-
ture of the dark energy that might cause it (Weinberg et al. 2012).

The baryon acoustic oscillation (BAO) method provides a
powerful opportunity to measure the cosmic expansion history in
a manner that is both precise and robust. Sound waves propagat-
ing in the first 400,000 years after the Big Bang create an excess
of clustering at 150 comoving Mpc in the late-time distribution of
matter (Sunyaev & Zeldovich 1970; Peebles & Yu 1970; Bond &
Efstathiou 1987; Hu & Sugiyama 1996). This length scale, known
as the acoustic scale, results from simple physics: it is the distance
that the sound waves travel prior to recombination. Because the
acoustic scale is large, the measurement is altered only modestly
by subsequent non-linear structure formation and galaxy clustering
bias (Meiksin et al. 1999). Simulations and analytic theory predict
shifts below 1% in conventional models (Seo & Eisenstein 2003;
Springel et al. 2005; Huff et al. 2007; Seo & Eisenstein 2007; An-
gulo et al. 2008; Padmanabhan & White 2009; Seo et al. 2010;
Mehta et al. 2011).

The robustness of the scale of this distinctive clustering signa-
ture allows it to be used as a standard ruler to measure the cosmic
distance scale. By observing an feature of known size in the Hub-
ble flow, one can use the redshift spread along the line of sight to
measure the Hubble parameter H(z) and one can use the angular
spread in the transverse direction to measure the angular diameter
distance DA(z). By repeating this at a variety of redshifts, one can
map out the cosmic expansion history and constrain the properties
of dark energy (Eisenstein 2002; Blake & Glazebrook 2003; Hu &
Haiman 2003; Linder 2003; Seo & Eisenstein 2003).

The imprint of the baryon acoustic oscillations has been de-
tected in a variety of low-redshift data sets. The strongest signals
have been in galaxy redshift surveys, including the Sloan Digital
Sky Survey (SDSS Eisenstein et al. 2005; Hütsi 2006; Tegmark
et al. 2006; Percival et al. 2007, 2010; Kazin et al. 2010; Chuang
et al. 2012; Chuang & Wang 2012; Padmanabhan et al. 2012; Xu
et al. 2012), 2dF Galaxy Redshift Survey (Cole et al. 2005), Wig-
gleZ survey (Blake et al. 2011a,b), 6dF Galaxy Survey (Beutler
et al. 2011), and the SDSS-III Baryon Oscillation Spectroscopic
Survey (BOSS Anderson et al. 2012). The BAO feature has also
been detected in imaging data sets using photometric redshifts
(Padmanabhan et al. 2007; Blake et al. 2007; Seo et al. 2012) and
in galaxy cluster samples1 (Hütsi 2010). Most recently, the acoustic
peak has been detected in the Lyman α forest (Busca et al. 2012;
Slosar et al. 2013; Kirkby et al. 2013), thereby extending the mea-
surement of cosmic distance to z ≈ 2.3.

Most of these detections of the BAO have used spherically
averaged clustering statistics, yielding a measurement of DV =

D
2/3
A (cz/H(z))1/3. However, it is important to separate the line-

of-sight and transverse information for several reasons. First, mea-
suring H(z) and DA(z) separately can give additional cosmolog-
ical constraints at high redshift (Alcock & Paczynski 1979). Sec-
ond, the interplay of shot noise and sample variance varies with
the angle of a pair to the line of sight, so one can weight the data
more optimally. Third, the acoustic peak is degraded in the line of
sight direction by redshift-space distortions both from large scales
(Kaiser 1987) and small-scale fingers of god (Jackson 1972). Fully

1 For early work on cluster samples, see also (Miller et al. 2001).

tracking all of the BAO information requires a non-spherical anal-
ysis of the clustering signal.

Such anisotropic analyses have been performed on SDSS-II
data (Okumura et al. 2008; Gaztañaga et al. 2009; Chuang & Wang
2012; Xu et al. 2013). Because of the moderate redshift of this
data, z ≈ 0.35, the split of H(z) and DA(z) does not improve
the cosmological constraints 2 above those of the DV (z) measure-
ments. But these papers have been important for developing analy-
sis methods to be applied to higher redshift samples. Of particular
relevance to this paper, Kazin et al. (2012) present a method that
uses a split of the full correlation function based on the angle of the
pair to the line of sight, resulting in a correlation function in each
of two angular wedges. Xu et al. (2013) present a method based on
the monopole and quadrupole of the correlation function that in-
cludes the effects of density-field reconstruction (Eisenstein et al.
2007a; Padmanabhan et al. 2012). Chuang & Wang (2012) extract
the anisotropic signal from direct fits to the redshift-space correla-
tion function ξ(rp, π), where π is the separation of the pairs along
the line of sight and rp is the transverse separation.

In this paper, we extend the analysis of the SDSS-III BOSS
Data Release 9 (DR9) galaxy sample presented in Anderson et al.
(2012) to include the anisotropic BAO information. This sample
has already yielded a 5 σ detection of the acoustic peak in a spheri-
cally averaged analysis (Anderson et al. 2012), the most significant
single detection of the acoustic peak yet. Anderson et al. (2012)
uses this detection to measure DV at z = 0.57 to 1.7%. In this
paper and its companion papers (Kazin et al. 2013; Sanchez et al.
2013; Chuang et al. 2013), we will decompose the acoustic peak
detection to measure H(z) and DA(z).

This paper will focus solely on the acoustic peak information.
Other cosmological information is present in the anisotropic clus-
tering data, particularly the large-scale redshift distortion that re-
sults from the growth of cosmological structure and the measure-
ment of the Alcock-Paczynski signal from the broadband shape of
the correlation function. This additional information has been stud-
ied in Reid et al. (2012), Samushia et al. (2013), and Tojeiro et al.
(2012). Sanchez et al. (2013) and Chuang et al. (2013) continue
this analysis. In this paper as well as in Kazin et al. (2013), we re-
move this additional information by including flexible broadband
clustering terms in our fits. After marginalizing over these terms,
the distance measurements are dominated by the sharp acoustic
peak. Kazin et al. (2013) presents an analysis using the cluster-
ing wedges method of Kazin et al. (2012), whereas this paper per-
forms a monopole-quadrupole analysis following Xu et al. (2013)
and presents the consensus of the two methods and a short cosmo-
logical interpretation.

We also use this analysis of the DR9 data and mock catalogs as
an opportunity to further improve and test the methods for extrac-
tion of the anisotropic BAO signal. As the detection of the BAO im-
proves in the BOSS survey and future higher redshift surveys, such
anisotropic analyses will become the preferred route to cosmol-
ogy. Extraction of the BAO to sub-percent accuracy is challenging
because of the strongly anisotropic and imperfectly predicted ef-
fect imposed by redshift distortions and the partial removal of this
anisotropy by density-field reconstruction. However, we will argue
that the extraction methods have been tested enough that the mea-
surements presented are limited by statistical rather than systematic
errors.

The outline of the paper is as follows : § 2 defines our fiducial

2 As z → 0, the different cosmological distances become degenerate.
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Measuring DA and H using BAO 3

cosmology and conventions. § 3 describes the data and mock cata-
logues and outlines the correlation function analysis methodology.
§ 4 then describes how we constrain the angular diameter distances
and Hubble parameters from the data. § 5 and § 6 summarize our
results from the mocks and data respectively, while § 6.3 compares
results with previous analyses. § 7 presents the cosmological impli-
cations of these results. We present our conclusions in § 8.

2 FIDUCIAL COSMOLOGY

We assume a fiducial ΛCDM cosmology with ΩM = 0.274,
Ωb = 0.0457, h = 0.7 and ns = 0.95. We report physical an-
gular diameter distances defined by (eg. Hogg 1999)

DA(z) =
1

1 + z

c

H0


1√
Ωk

sinh[
√

ΩkE(z)] for Ωk > 0

E(z) for Ωk = 0
1√
−Ωk

sin[
√
−ΩkE(z)] for Ωk < 0

(1)

where

E(z) =

∫ z

0

H0dz
′

H(z′)
(2)

The angular diameter distance to z = 0.57 for our fiducial cosmol-
ogy is DA(0.57) = 1359.72 Mpc, while the Hubble parameter is
H(0.57) = 93.56 km/s/Mpc. The sound horizon for this cosmol-
ogy is rs = 153.19 Mpc, where we adopt the conventions in Eisen-
stein & Hu (1998). These distances are all in Mpc, not h−1Mpc.
We note that slightly different definitions of the sound horizon are
in use; for example, the sound horizon quoted by CAMB (Lewis
et al. 2000) differs from our choice by 2%. For further discussion,
see Mehta et al. (2012).

3 ANALYSIS

3.1 Data

SDSS-III BOSS (Dawson et al. 2013) is a spectroscopic survey de-
signed to obtain spectra and redshifts for 1.35 million galaxies over
10,000 square degrees of sky and the course of five years (2009-
2014). BOSS galaxies are targeted from SDSS imaging, which was
obtained using the 2.5m Sloan Foundation Telescope (Gunn et al.
2006) at Apache Point Observatory in New Mexico. The five-band
imaging (Fukugita et al. 1996; Smith et al. 2002; Doi et al. 2010)
was taken using a drift-scan mosaic CCD camera (Gunn et al. 1998)
to a limiting magnitude of r ' 22.5; all magnitudes were corrected
for Galactic extinction using the maps of Schlegel et al. (1998).
A 1000 object fiber-fed spectrograph (Smee et al. 2012) measures
spectra for targeted objects. We refer the reader to the following
publications for details on astrometric calibration (Pier et al. 2003),
photometric reduction (Lupton et al. 2001), photometric calibration
(Padmanabhan et al. 2008) and spectral classification and redshift
measurements (Bolton et al. 2012). All of the BOSS targeting is
done on Data Release 8 (DR8 Aihara et al. 2011) photometry, and
all spectroscopic data used in this paper has been released as part
of Data Release 9 (DR9 Ahn et al. 2012).

BOSS targets two populations of galaxies, using two combi-
nations of colour-magnitude cuts to achieve a number density of
3 × 10−4 h3Mpc−3 at 0.2 < z < 0.43 (the LOWZ sample) and

0.43 < z < 0.7 (the CMASS sample). A description of both tar-
get selection algorithms can be found in Dawson et al. (2013). This
paper focuses exclusively on the CMASS sample.

3.2 Catalogue creation

The treatment of the sample is in every way identical to that pre-
sented in Anderson et al. (2012), to which we refer the reader for
full details on the angular mask and catalogue creation. We use the
MANGLE software (Swanson et al. 2008) to trace the areas covered
by the survey, and to define the angular completeness in each re-
gion. The final mask combines the outline of the survey regions and
position of the spectroscopic plates with a series of “veto” masks
used to exclude regions of poor photometric quality, regions around
the centre posts of the plates where fibers cannot be placed, re-
gions around bright stars and regions around higher-priority targets
(mostly high-redshift quasars). In total, the “veto” mask excludes
∼ 5% of the observed area.

We define weights to deal with the issues of close-pair correc-
tions, redshift-failure corrections, systematic targeting effects and
effective volume (again we refer to Anderson et al. 2012 for full
details, successes and caveats related to each weighting scheme):

(i) Close-pair correction (wcp) : We assign a weight of wcp = 1
to each galaxy by default, and we add one to this for each CMASS
target within 62′′ that failed to get a fiber allocated due to collisions.

(ii) Redshift-failure correction (wrf ) : For each target with a
failed redshift measurement we upweight the nearest target object
for which a galaxy redshift (or stellar classification) has been suc-
cessfully achieved.

(iii) Systematic weights (wsys) : We correct for an observed de-
pendence of the angular targeting density on stellar density (Ross
et al. 2012) by computing a set of angular weights that depend on
stellar density and fiber magnitude in the i-band and that minimise
this dependency.

(iv) FKP weights (wFKP) : We implement the weighting scheme
of Feldman et al. (1994) in order to optimally balance the effect of
shot-noise and sample variance in our measurements.

These weights are combined to give a total weight to each
galaxy in the catalogue as wtot = wFKPwsys(wrf + wcp − 1).
Both wrf and wcp are one in the absence of any correction, and we
therefore need subtract one (in general, one less than the number of
additive weights) from their sum.

We use 264283 galaxies in the redshift range 0.43 < z < 0.7,
covering an effective area of 3275 sq. degrees (see Table 1 of An-
derson et al. 2012 for more details). Random catalogues with 70
times the density of the corresponding galaxy catalogues and the
same redshift and angular window functions are computed for the
Northern and Southern Galactic Caps separately, using the “shuf-
fled” redshifts method defined in Ross et al. (2012). Angular com-
pleteness, redshift failures and close pairs are implemented exactly
as in Anderson et al. (2012).

3.3 Measuring the correlation function

The two-dimensional correlation function is computed using the
Landy-Szalay estimator (Landy & Szalay 1993) as:

ξ(r, µ) =
DD(r, µ)− 2DR(r, µ) +RR(r, µ)

RR(r, µ)
(3)

where µ is the cosine between a galaxy pair and the line of sight,
and DD, DR and RR are normalised and weighted data-data, data-
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4 Anderson et al.

random and random-random galaxy pair counts respectively. The
correlation function is computed in bins of ∆r = 4h−1Mpc and
∆µ = 0.01. Multipoles and wedges - the two estimators that un-
derpin the results in this paper - are constructed from ξ(r, µ) fol-
lowing Section 4.2.

3.4 Mock Catalogues

We use 600 galaxy mock catalogues of Manera et al. (2013) to
estimate sample covariance matrices for all measurements in this
paper. These mocks are generated using a method similar to the
PTHalos mocks of Scoccimarro & Sheth (2002) and recover the
amplitude of the clustering of halos to within 10 per cent. Full de-
tails on the mocks can be found in Manera et al. (2013). The mock
catalogues correspond to a box at z = 0.55 (and do not incorporate
any evolution within the redshift of the sample, which is expected
to be small), include redshift-space distortions, follow the observed
sky completeness and reproduce the radial number density of the
observed galaxy sample.

Figure 1 shows the average monopole and quadrupole and
transverse and radial wedges of the correlation function over the
600 mocks (see § 4.2 for definitions).

3.5 Reconstruction

Following Anderson et al. (2012), we attempt to improve the sta-
tistical sensitivity of the BAO measurement by reconstructing the
linear density field, correcting for the effects of non-linear struc-
ture growth around the BAO scale (Eisenstein et al. 2007a). The
reconstruction technique has been successfully implemented on an
anisotropic BAO analysis by Xu et al. (2013) using SDSS-II Lumi-
nous Red Galaxies at z = 0.35, achieving an improvement of a fac-
tor of 1.4 on the error on DA and of 1.2 on the error on H , relative
to the pre-reconstruction case. Anderson et al. (2012) successfully
applied reconstruction on the same dataset used here when measur-
ing DV from spherically-averaged two-point statistics. They ob-
served only a slight reduction in the error of DV , when compared
to the pre-reconstruction case, but at a level consistent with mock
galaxy catalogues.

The algorithm used in this paper is described in detail in Pad-
manabhan et al. (2012), to which we refer the reader for full details.
Briefly, reconstruction uses the density field to construct a displace-
ment field that attempts to recover a galaxy spatial distribution that
more closely reproduces the expected result from linear growth. A
summary of the implementation of the algorithm on the CMASS
DR9 dataset (as used here) is given in Section 4.1 of Anderson
et al. (2012).

Figure 2 shows the average of the multipoles and wedges
of the correlation function before and after reconstruction. Re-
construction sharpens the acoustic feature in the monopole, while
decreasing the amplitude of the quadrupole, particularly at large
scales where it goes close to zero. These changes are manifested
in the wedges as a sharpening of the BAO feature in both wedges
as well as a decrease in the difference in amplitude between the
transverse and radial wedge. This is expected since reconstruction
removes much of the large-scale redshift-space distortions. Assum-
ing the correct cosmology, an ideal reconstruction algorithm would
perfectly restore isotropy and eliminate the quadrupole 3 In the

3 Reconstruction only corrects for the dynamical quadrupole induced by
peculiar velocities. The incorrect cosmology would induce a quadrupole

wedges, this would be manifest by the transverse and radial wedge
being the same. We depart from this ideal because of an imperfect
treatment of of nonlinear evolution and small-scale effects, the sur-
vey geometry and imperfections in the implementation of the re-
construction algorithm itself. However, these imperfections affect
the broad band shape of the correlation function but do not bias the
location of the BAO feature, as we explicitly demonstrate below.

4 METHOD

4.1 Parametrization

The choice of an incorrect cosmology distorts the BAO feature
in the galaxy correlation function, stretching it in both the trans-
verse and radial directions. The shift in the transverse direction con-
strains the angular diameter distance relative to the sound horizon,
DA(z)/rs, while the radial direction constrains the relative Hub-
ble parameter cz/(H(z)rs). As is standard in the BAO literature,
when fitting for these, we parameterize with respect to a fiducial
model (indicated by a superscript fid) :

α⊥ =
DA(z)rfid

s

Dfid
A rs

, (4)

and

α|| =
Hfid(z)rfid

s

H(z)rs
. (5)

An alternative parametrization is to decompose these shifts
into isotropic and anisotropic components. We define an isotropic
shift α

α = α
2/3
⊥ α

1/3

|| , (6)

and the anisotropic shift ε by

1 + ε =

(
α||
α⊥

)1/3

. (7)

For the fiducial cosmological model, we have α = α⊥ = α‖ = 1
and ε = 0. For completeness, we note

α⊥ =
α

1 + ε
(8)

α|| = α(1 + ε)2 . (9)

The majority of previous BAO results have restricted their
analysis to the isotropically averaged correlation function and have
therefore presented their results in terms of α. In this work, the
fitting of the multipoles uses the α, ε parametrization, while the
clustering wedges use α||, α⊥. While these are formally equiva-
lent, the choices of data fitting ranges and priors imply that differ-
ent parametrizations probe somewhat different volumes in model
space, an issue we discuss in later sections. Although we use differ-
ent parametrizations, we transform to the α⊥, α|| parametrization
when presenting results for ease of comparison.

through the Alcock-Paczynski test, even in the absence of this dynamical
quadrupole (see Padmanabhan & White (2008), Kazin et al. (2012) and Xu
et al. (2013) for a detailed discussion and illustrative examples.)
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Figure 1. Average of mocks (crosses) with our model of the correlation function (solid line) overplotted. The upper panels show the monopole (left) and
quadrupole (right) while the lower panels plot the transverse (left) and radial (right) wedges. No fit to the shape was done here, but the models were normalized
to match the observed signals.

4.2 Clustering Estimators : Multipoles and Wedges

Measuring both DA and H requires an estimator of the full 2D
correlation function ξ(s, µ) where s is the separation between two
points and µ the cosine of angle to the line of sight. However, work-
ing with the full 2D correlation function is impractical, given that
we estimate our covariance matrix directly from the sample covari-
ance of the mock catalogues. We therefore compress the 2D cor-
relation function into a small number (2 in this paper) of angular
moments and use these for our analysis.

The first set of these moments are the Legendre moments
(hereafter referred to as multipoles) :

ξ`(r) =
2`+ 1

2

∫ 1

−1

dµ ξ(r, µ)L`(µ) , (10)

where L`(µ) is the `th Legendre polynomial. We focus on the
two lowest non-zero multipoles, the monopole (` = 0) and the
quadrupole (` = 2). Within linear theory and the plane-parallel
approximation, only the ` = 0, 2 and 4 multipoles are non-zero.
However, on these scales, the hexadecapole is both small and noisy;
we neglect it in our analysis. Furthermore, after reconstruction, the
effect of redshift space distortions is significantly reduced, further
decreasing the influence of the hexadecapole.

We also consider an alternate set of moments, referred to as
clustering wedges (Kazin et al. 2012):

ξ∆µ(r) =
1

∆µ

∫ µmin+∆µ

µmin

dµ ξ(r, µ) , (11)

For purposes of this study we choose ∆µ = 0.5 such that we have
a basis comprising of a “radial” component ξ||(s) ≡ ξ(µ > 0.5, s)
and a “transverse” component ξ⊥(s) ≡ ξ(µ < 0.5, s). As the clus-
tering wedges are an alternative projected basis of ξ(µ,~s), we do
not expect tighter constraints but rather find these useful for test-
ing for systematics, as well as other technical advantages. A full
in-depth description of the method, and comparison to clustering
multipoles is described in Kazin et al. (2013).

4.3 A Model for the Correlation Function

Robustly estimating DA and H from the correlation function re-
quires a model for the 2D correlation function. We start with the
2D power spectrum template :

Pt(k, µ) = (1 + βµ2)2F (k, µ,Σs)Pdw(k, µ) (12)

where

F (k, µ,Σs) =
1

(1 + k2µ2Σ2
s)2

(13)

is a streaming model for the Finger-of-God (FoG) effect (Peacock
& Dodds 1994) and the (1 + βµ2)2 term is the Kaiser model for
large-scale redshift-space distortions (Kaiser 1987). Here Σs is the
streaming scale which we set to 1h−1Mpc based on test fits to the
average mock correlation function. Note that there are currently
two similar Lorentzian models for FoG in the literature. The differ-
ence arises from the following: 1) assuming that small-scale red-
shift space distortions can be modeled by convolving the density
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Figure 2. Average of mocks before (grey) and after (black) reconstruction. We see a sharpening of the acoustic feature in the monopole, and a drastic
decrease in amplitude of the quadrupole on large scales, which is consistent with the fact that reconstruction removes large-scale redshift-space distortions.
The correlation function of both angular wedges show a clear sharpening of the acoustic feature, a reduction of amplitude on large-scales in the transverse
wedge and a corresponding increase in the amplitude in the radial wedge.

field with an exponential gives two powers of the Lorentzian in
Fourier space as in Equation (13), 2) assuming that the pairwise ve-
locity field is exponentially distributed results in only one power of
the Lorentzian as in Hamilton (1998). We let β vary in our fits (note
that β is degenerate with quadrupole bias). To limit the model from
picking unphysical values of β, we place a Gaussian prior centered
on f/b ∼ Ωm(z)0.55/b = 0.25 before reconstruction and 0 after
reconstruction with 0.2 standard deviation. The post-reconstruction
prior center of β = 0 is chosen since we expect reconstruction to
remove large-scale redshift space distortions.

The de-wiggled power spectrum Pdw(k, µ) is defined as

Pdw(k, µ) =[Plin(k)− Pnw(k)]

· exp

[
−
k2µ2Σ2

‖ + k2(1− µ2)Σ2
⊥

2

]
+ Pnw(k)

(14)

where Plin(k) is the linear theory power spectrum and Pnw(k) is a
power spectrum without the acoustic oscillations (Eisenstein & Hu
1998). Σ‖ and Σ⊥ are the radial and transverse components of Σnl,
i.e. Σ2

nl = (Σ2
‖ + Σ2

⊥)/2, where Σnl is the standard term used to
damp the BAO to model the effects of non-linear structure growth
(Eisenstein et al. 2007b). Here, the damping is anisotropic due to
the Kaiser effect. We set Σ⊥ = 6h−1Mpc and Σ‖ = 11h−1Mpc
before reconstruction and Σ⊥ = Σ‖ = 3h−1Mpc after reconstruc-
tion as in Xu et al. (2013).

Given this model of the 2D power spectrum, we decompose it

into its Legendre moments,

P`,t(k) =
2`+ 1

2

∫ 1

−1

Pt(k, µ)L`(µ)dµ (15)

which can then be transformed to configuration space using

ξ`,t(r) = i`
∫
k3d log(k)

2π2
P`,t(k)j`(kr). (16)

Here, j`(kr) is the `-th spherical bessel function and L`(µ) is the
`-th Legendre polynomial. We then synthesize the 2D correlation
function from these moments by :

ξ(r, µ) =

`max∑
`=0

ξ`(r)L`(µ) . (17)

In this work, we truncate the above sum at `max = 4.
In order to compare to data, we must map the observed

robs, µobs pairs (defined for a fiducial cosmology) to their true
values r, µ. These transformations are most compactly written by
working in transverse (r⊥) and radial (r‖) separations define by

r2 = r2
⊥ + r2

‖ (18)

µ =
r‖
r

(19)

We then simply have

r⊥ = α⊥r⊥,obs (20)

r‖ = α‖r‖,obs. (21)
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Expressions in terms of r, µ are in Xu et al. (2013) and Kazin et al.
(2013). One can then compute ξ(r, µ)obs and project on to either
the multipole or wedge basis.

Our final model for the correlation function includes nuisance
parameters to absorb imperfections in the overall shape of the
model due to mismatches in cosmology or potential smooth sys-
tematic effects. In particular, we fit

ξ0(r) = B2
0ξ0(r) +A0(r)

ξ2(r) = ξ2(r) +A2(r) (22)

and

ξ⊥(r) = B⊥ξ0,⊥(r) +A⊥(r)

ξ‖(r) = B‖ξ‖(r) +A‖(r) (23)

where

A`(r) =
a`,1
r2

+
a`,2
r

+ a`,3; ` = 0, 2,⊥, ‖ . (24)

Note that these correlation functions are all in observed coor-
dinates; we just suppress the obs subscripts for brevity. The
A`(r) marginalize errors in broadband (shape) information (eg.
scale-dependent bias and redshift-space distortions) through the
a`,1 . . . a`,3 nuisance parameters (Xu et al. 2012). B2

0 is a bias-like
term that adjusts the amplitude of the model to fit the data. We per-
form a rough normalization of the model to the data before fitting
so B2

0 should be ∼ 1. To ensure B2
0 is positive (a negative value

would be unphysical), we perform the fit in log(B2
0) using a Gaus-

sian prior with standard deviation 0.4 centered at 0 as described in
Xu et al. (2012). While the multipole analysis does not include an
analogous term for ξ2, we allow β to vary, effectively allowing the
amplitude of the quadrupole to change. In the case of the wedges
analyses, β is kept fixed, but the amplitudes of both wedges are free
to vary. No additional priors are imposed on these amplitudes. The
clustering wedges analyses fit 76 data points with 10 parameters,
while the multipole analyses fit 80 data points with 10 parameters.

We also place a 15% tophat prior on 1 + ε to limit low S/N
measurements from exploring large excursions in ε. Such a prior
should have no impact for standard cosmological models. In or-
der to demonstrate this, we sample cosmologies with ΩK , w0 and
wa free from the WMAP7 posterior distribution and compute ε for
each case. The largest (absolute) excursion is ∼ 8% with 95% of
points between−0.058 < ε < 0.045, justifying the choice of our
prior.

We assume a Gaussian likelihood for the correlation functions
:

χ2 = (~m− ~d)TC−1(~m− ~d) (25)

where ~m is the model and ~d is the data. The inverse covariance
matrix is a scaled version of the inverse of the sample covariance
matrix Cs (Muirhead 1982; Hartlap et al. 2007)

C−1 = C−1
s
Nmocks −Nbins − 2

Nmocks − 1
(26)

with the factor correcting for the fact that the inverse of the sample
covariance matrix estimated from Nmocks is a biased estimate of
the inverse covariance matrix.

The multipole and the clustering wedges analyses handle this
likelihood surface differently. The wedges analysis uses a Markov
Chain Monte Carlo algorithm to sample from the posterior distri-
bution of α⊥ and α||, marginalizing over all the remaining param-
eters. The multipole analysis maps out the likelihood surface in α
and ε, analytically marginalizing over the linear parameters in the
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Figure 3. A comparison of α⊥ and α‖ for the 600 mock catalogues before
and after reconstruction. These values have been derived from the multipole
analysis. The points mostly lie on the 1:1 line, but the number of outliers
are reduced after reconstruction.

model, but using the maximum likelihood values for the non-linear
parameters. In addition, to suppress unphysical downturns in the
χ2 distribution at small α (corresponding to the BAO feature be-
ing moved to scales larger than the range of the data being fit, see
Xu et al. (2012) for more details), we apply a Gaussian prior on
log(α) with a standard deviation of 0.15. As we see below, in the
limit of a well detected BAO feature, these differences have a small
(compared to our statistical errors) impact on the derived distances.
However, in the opposite limit of a poorly measured BAO feature,
these differences can be important. We explore this further in the
next section. Fortunately, the DR9 sample has a well defined BAO
feature and we obtain consistent results irrespective of the method.
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Table 1. Fitting results from the multipole analysis of the mock catalogues for various parameter choices. The model is given in column 1. The median α⊥ is
given in column 2 with the 16th/84th percentiles from the mocks given in column 3 (these are denoted as the quantiles in the text, hence the label Qtls in the
table). The median α‖ is given in column 6 with corresponding quantiles in column 7. The median difference in α⊥ on a mock-by-mock basis between the
model listed in column 1 and the fiducial model is given in column 4 with corresponding quantiles in column 5. The analogues for α‖ are given in columns 8
and 9. The mean χ2/dof is given in column 10.

Model α̃⊥ Qtls ∆̃α⊥ Qtls α̃‖ Qtls ∆̃α‖ Qtls 〈χ2〉/dof

Redshift Space without Reconstruction

Fiducial [f ] 1.008 +0.034
−0.037 – – 1.006 +0.072

−0.074 – – 60.06/70

(Σ⊥,Σ‖)→ (8, 8)h−1Mpc. 1.011 +0.039
−0.038 0.005 +0.006

−0.006 1.004 +0.073
−0.088 −0.007 +0.012

−0.013 60.33/70

Σs → 0h−1Mpc. 1.007 +0.035
−0.037 0.000 +0.000

−0.000 1.006 +0.071
−0.075 −0.001 +0.001

−0.001 60.04/70

A2(r) = poly2. 1.007 +0.035
−0.037 −0.000 +0.002

−0.002 1.008 +0.071
−0.075 0.001 +0.006

−0.007 60.92/71

A2(r) = poly4. 1.007 +0.035
−0.038 0.000 +0.003

−0.003 1.010 +0.070
−0.083 −0.000 +0.007

−0.007 59.20/69

30 < r < 200h−1Mpc range. 1.012 +0.040
−0.038 0.003 +0.009

−0.007 0.987 +0.075
−0.090 −0.017 +0.014

−0.022 68.87/80

70 < r < 200h−1Mpc range. 1.007 +0.033
−0.039 −0.001 +0.006

−0.007 1.010 +0.071
−0.075 0.001 +0.010

−0.012 52.28/60

50 < r < 150h−1Mpc range. 1.007 +0.035
−0.037 −0.001 +0.008

−0.009 1.010 +0.073
−0.090 0.000 +0.017

−0.020 39.34/44

Redshift Space with Reconstruction

Fiducial [f ] 1.001 +0.025
−0.026 – – 1.006 +0.041

−0.045 – – 61.06/70

(Σ⊥,Σ‖)→ (2, 4)h−1Mpc. 1.001 +0.024
−0.027 −0.001 +0.001

−0.001 1.007 +0.040
−0.045 0.001 +0.002

−0.002 61.13/70

Σs → 0h−1Mpc. 1.001 +0.025
−0.026 0.000 +0.000

−0.000 1.006 +0.041
−0.044 −0.000 +0.001

−0.001 60.99/70

A2(r) = poly2. 1.000 +0.024
−0.026 −0.001 +0.001

−0.002 1.006 +0.043
−0.046 −0.000 +0.002

−0.001 63.40/71

A2(r) = poly4. 1.003 +0.024
−0.026 0.002 +0.002

−0.003 1.003 +0.042
−0.046 −0.003 +0.004

−0.005 59.78/69

30 < r < 200h−1Mpc range. 1.004 +0.025
−0.026 0.003 +0.004

−0.004 1.008 +0.040
−0.044 0.000 +0.006

−0.005 71.25/80

70 < r < 200h−1Mpc range. 1.002 +0.023
−0.028 −0.001 +0.005

−0.004 1.008 +0.039
−0.044 0.002 +0.008

−0.007 52.48/60

50 < r < 150h−1Mpc range. 1.003 +0.023
−0.026 0.000 +0.006

−0.006 1.005 +0.044
−0.047 −0.002 +0.009

−0.011 39.95/44
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Figure 4. The distribution of α⊥ versus α‖ from the 600 mock catalogues
after reconstruction. As in Fig. 3, these values are derived from the multi-
pole analysis. The estimates of the two distances are anti-correlated, with a
correlation coefficient of ∼ −0.44. Note that H ∼ 1/α||.
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Figure 5. The errors in estimated distances, σα⊥/α⊥ versus σα‖/α‖, for
the mock catalogues. The line of sight distance is more weakly constrained
than the transverse distance.

5 MOCK RESULTS

5.1 Multipole Fits

We start by summarizing the results of analyzing the multipoles
measured from the mock catalogues; a corresponding discussion
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of the clustering wedges is in Kazin et al. (2013). A summary of
multipole results is in Table 1 and in Figs. 3 to 5.

Figure 3 and the first line in Table 1 show that we recover the
correct distances (α⊥ = α‖ = 1) both before and after reconstruc-
tion. Reconstruction does reduce both the scatter in the measure-
ments and the number of outliers, reflecting the sharpening of the
acoustic signal in the correlation function.

Even though we measure both α⊥ and α‖, Figure 4 shows
that these are correlated with a correlation coefficient of -0.441 (-
0.494 before reconstruction). Note that the sign of this correlation
reverses when we consider DA and H , since H ∼ 1/α‖.

In Figure 5, we show the post-reconstruction σα⊥/α⊥ ver-
sus σα‖/α‖ values from each mock. The errors on α⊥ and α‖ are
correlated as expected; the errors are related to the strength of the
BAO signal in any given realization. Similar results are seen before
reconstruction.

We also test the robustness of our fits by varying the fiducial
model parameters; the results of these are in Table 1. We test cases
in which Σ⊥ and Σ‖ are varied, Σs is varied, the form of A2(r)
is varied and the range of data used in the fit is varied. In general,
the recovered values of α⊥ and α‖ are consistent with the fidu-
cial model. The largest discrepancy arises in the pre-reconstruction
measurement of α‖ where we have extended the fitting range down
to 30h−1Mpc. However, we know that our model at small scales
is not particularly well matched to the mocks, as we saw in Fig-
ure 1, and hence the larger difference obtained by fitting down to
smaller scales is not surprising. The smaller discrepancies in both
α⊥ and α‖ when the other parameters are varied do not appear to
be distinguishable in any individual mock as indicated by the quan-
tiles on ∆α⊥ and ∆α‖. Xu et al. (2013) discuss similar differences
and attribute them to disagreement between the model and data at
small scales. In addition, the mock catalogues used here are derived
from a perturbation theory based approach, so they may not be fully
faithful on small scales.

5.2 Multipoles vs. Clustering Wedges

We now turn to comparisons of the results obtained in the pre-
vious section with the clustering wedges analysis in Kazin et al.
(2013). In the limit where multipoles with ` > 4 are negligible on
large scales (as is our case), the monopole/quadrupole and cluster-
ing wedges are just a basis rotation and one would expect similar
results from both. However, the marginalization of the broad band
information and the various priors will impact the two differently.
Furthermore, we adopt different techniques (and codes) in both, so
this comparison tests the robustness of these approaches.

Figure 6 and Tables 2 and 3 summarize the results for both the
measured distance scales and the estimated errors. Both methods
yield identical results on average, but we note considerable scatter
about this mean relation. Examining the individual mocks in de-
tail, we find that a majority of these outliers correspond to realiza-
tions with a weak BAO detection. We quantify this by comparing
fits with and without a BAO feature in them. Before reconstruc-
tion, 23% of the mocks have a < 3σ detection of the BAO feature
in them; after reconstruction, this number drops to 4.6%. This im-
provement is also manifest in the right column of Figure 6.

We further test this idea by recasting the mocks into 100 sets,
each of which is the average of the correlation functions of 6 of
our DR9 mocks. With an improvement in signal-to-noise ratio of
a factor of

√
6, the acoustic peak is expected to be well detected.

We present these results in Figure 7. There are none of the catas-
trophic failures of Figure 6 and very good agreement in both the

estimated distances and errors for these individual “stacked” real-
izations. This suggests that the information content in these two
approaches is indeed very similar.

5.3 Isotropic vs anisotropic BAO measurements

We now compare the results obtained from anisotropic BAO mea-
surements with those derived from their isotropically averaged
counterparts. As described in Section 4, spherically-averaged clus-
tering measurements are only sensitive to the isotropic shift α,
while anisotropic measurements provide extra constraints on the
distortion parameter ε. Figure 8 compares the constraints on α⊥
and α‖ obtained by analyzing ξ0 and ξ2 (dot-dashed lines) with
those obtained by analyzing ξ0 alone (solid lines). To avoid noise
from particular realizations, we use the average of the mock cata-
logues after reconstruction here. Analyzing the clustering wedges
give essentially identical results.

As expected, the constraints derived from ξ0(s) exhibit a
strong degeneracy well described by lines of constant α ∝ DV/rs,
shown by the dashed lines; including ξ2 breaks this degeneracy.
The degeneracy is not perfect because large values of ε strongly
distort the BAO feature in ξ(s, µ), causing a strong damping of
the acoustic peak in the resulting ξ0(s). As the peak can be almost
completely erased, these values give poor fits to the data when com-
pared to ε = 0. We note that this requires going beyond the linear
approximations used in Padmanabhan & White (2008) and Xu et al.
(2013). However, these constraints are weak and can be ignored in
all practical applications.

6 DR9 RESULTS

6.1 Basic Results

We now apply the methods validated in the previous section to the
DR9 data. We assume the same fiducial cosmology as for the mock
catalogs and use the same models and covariance matrices in our
fits. As in the previous section, we begin by focusing on the multi-
pole analysis and then compare with the companion analyses.

The DR9 data and the best-fit model (§ 4) are shown in Fig-
ures 9 for the multipoles and 10 for the wedges. Also shown are
the best fit distance parameters, α, ε for the multipoles and α⊥, α‖
for the wedges, as well as the χ2-values of the fits. We remind the
reader that although in most of the discussion we present α⊥,‖ re-
sults (to aid comparisons), the multipole analysis is done in α, ε
space. In all cases, the models are good fits to the data. As in
Anderson et al. (2012), we do not see a significant improvement
in the constraints after reconstruction. These measurements im-
ply DA(z = 0.57) = 1367 ± 44 Mpc and H(z = 0.57) =
86.6 ± 6.2 km/s/Mpc before reconstruction assuming a sound
horizon equal to the fiducial value rs = 153.19 Mpc. After re-
construction we have DA(z = 0.57) = 1424 ± 43 Mpc and
H(z = 0.57) = 95.4 ± 7.5 km/s/Mpc : a 3.0% measurement
of DA and a 7.9% measurement of H at z = 0.57. The two values
are correlated with a correlation coefficient ρDAH = 0.65 before
reconstruction and ρDAH = 0.63 after reconstruction. The differ-
ence from the expected value of ρDAH ∼ 0.4 (from the mocks) is
due to sample variance. We also test the robustness of these results
to variations in the choices made in the fitting procedure. The re-
sults are summarized in Table 4. Our results are insensitive to these
choices, similar to the mock catalogues.

Figure 11 compares the DR9 σDA/DA and σH/H values
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Figure 6. Comparison between the measurements (top rows) and estimated errors (bottom rows) for α⊥ and α|| obtained from the multipoles analysis and the
corresponding results using the wedges technique, for all 600 PTHalos mocks. Left panels show the comparison before using reconstruction, and right panels
show the comparison after reconstruction.
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Figure 7. Same as Figure 6 but using the 100 groups of mocks, each of which is the average of six mocks, to increase the signal-to-noise ratio of the BAO
feature. Note that in this case the agreement between the analysis using multipoles and wedges is much closer than in the non-stacked case.
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Table 2. Average results from the 600 mocks (top four rows) and the 100 stacked mocks (bottow four rows). The table shows the median values of α⊥, α‖,
σα⊥ , and σα‖ , together with their 68% confidence level region as shown by the 16th and the 84th percentiles in the mock ensemble. Results are shown for
both multipoles and wedges, as well as pre- and post-reconstruction. As previously, tildes represent median quantities.

α̃⊥ α̃‖ σ̃α⊥ σ̃α‖

original mocks

wedges 1.010+0.040
−0.040 0.992+0.083

−0.124 0.044+0.032
−0.012 0.102+0.062

−0.033

multipoles 1.008+0.035
−0.037 1.007+0.070

−0.076 0.044+0.016
−0.008 0.088+0.041

−0.020

recon. wedges 1.000+0.034
−0.027 0.999+0.053

−0.052 0.032+0.018
−0.009 0.061+0.047

−0.018

recon. multipoles 1.001+0.025
−0.026 1.006+0.041

−0.045 0.031+0.009
−0.005 0.067+0.037

−0.017

stacked mocks

wedges 1.003+0.012
−0.012 1.014+0.029

−0.038 0.017+0.003
−0.002 0.032+0.006

−0.004

multipoles 1.004+0.013
−0.012 1.010+0.033

−0.034 0.016+0.002
−0.001 0.031+0.008

−0.004

recon. wedges 1.000+0.012
−0.010 1.008+0.017

−0.020 0.012+0.001
−0.001 0.020+0.003

−0.002

recon. multipoles 1.001+0.010
−0.009 1.006+0.014

−0.016 0.011+0.001
−0.001 0.020+0.002

−0.002

Table 3. Average results from the 600 mocks (top two rows) and the 100 stacked mocks (bottow two rows). The table shows the median values of ∆α⊥,
∆α‖, ∆σα⊥ , and ∆σα‖ , (where ∆ denotes the difference of the results using wedges minus the ones using multipoles) together with their 68% confidence
level region as shown by the 16th and the 84th percentiles in the mock ensemble. Results are shown for both multipoles and wedges, as well as pre- and
post-reconstruction. As previously, tildes represent median quantities.

∆̃α⊥ ∆̃α‖ ∆̃σα⊥ ∆̃σα‖

original mocks

pre-recon. +0.004+0.020
−0.023 −0.015+0.046

−0.053 −0.000+0.019
−0.008 +0.009+0.036

−0.019

post-recon. +0.001+0.015
−0.014 −0.005+0.027

−0.027 +0.000+0.011
−0.005 −0.004+0.021

−0.016

stacked mocks

pre-recon. −0.001+0.008
−0.007 +0.001+0.014

−0.015 +0.001+0.002
−0.002 +0.000+0.003

−0.004

post-recon. −0.001+0.005
−0.006 +0.003+0.007

−0.012 +0.000+0.001
−0.001 +0.000+0.002

−0.002

from the multipole analysis with the distribution estimated from the
mock catalogues. Before reconstruction, the DR9 data clearly lie
towards the better constrained end of the mocks; after reconstruc-
tion, they appear more average. Indeed, our mock results indicate
that σDA/DA and σH/H are actually larger after reconstruction
∼ 10% of the time. We conclude that these measurements are con-
sistent with our expectations.

Figure 12 shows the 2D contours and marginalized 1D distri-
butions in α⊥ and α‖ as measured by the wedges and multipoles.
The likelihoods agree well before reconstruction but shift slightly
after reconstruction. These differences are again consistent with the
scatter seen in the mock catalogues: Figures 3 comparing the mul-
tipole measurements before and after reconstruction and Figure 6
comparing the multipoles and the wedges.

6.2 Consensus

The results on the mock catalogues demonstrate that both the multi-
poles and clustering wedges yield consistent results on average for
DA and H . Furthermore, the mock catalogues do not favour one
analysis technique over the other, either in terms of overall preci-
sion of the result or the robustness to outliers. In order to reach
a consensus value appropriate for cosmological fits, we choose to
average the log-likelihood surfaces obtained from both the cluster-
ing wedges and multipole measurements after reconstruction. As

Figure 12 emphasizes, the core of these surfaces is very similar
and this averaging will yield results consistent with either of the
two individual approaches. Our consensus values are H(0.57) =
92.9 ± 7.8 km/s/Mpc and DA(0.57) = 1408 ± 45Mpc with a
correlation coefficient of 0.55. This correlation implies that using
either value individually will yield sub-optimal constraints; using
them together requires correctly accounting for the correlation be-
tween them.

Along with our statistical errors, we must also estimate any
contribution from systematic errors. Systematic shifts in the acous-
tic scale are generally very small because the large scale of the
acoustic peak ensures that non-linear gravitational effects are weak.
Our analysis method uses the marginalization over a quadratic
polynomial to remove systematic tilts from the measured correla-
tion functions. The mock catalogs provide a careful check of the
ability of the fitting method to recover the input cosmology. Ta-
ble 1 shows this recovery to be better than 1%: after reconstruction,
we find for the fiducial case a 0.1% shift in α⊥ and a 0.6% shift in
α‖ using the multipole method. Other choices of fitting parameters
vary the results by O(0.2%). The shifts in the wedges results are
similar. Kazin et al. (2013) investigate the choice of fitting template
(Eq. 14) and find sub-percent dependence. Hence, we conclude that
the systematic errors from the fitting methodology are small, of or-
der 0.5%.

Beyond this, astrophysical systematic shifts of the acoustic
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Table 4. DR9 fitting results for various models. The model is given in column 1. The measuredDA(z)(rfid
s /rs) values are given in column 2 and the measured

H(z)(rs/rfid
s ) values are given in column 3. The χ2/dof is given in column 4. For DR9 CMASS, z = 0.57 and in our fiducial cosmology rfid

s = 153.19Mpc.

Model DA(z)(rfid
s /rs) H(z)(rs/rfid

s ) χ2/dof

(Mpc) (km/s/Mpc)

Redshift Space without Reconstruction

Fiducial [f ] 1367± 44 86.6± 6.2 43.29/70

(Σ⊥,Σ‖)→ (8, 8)h−1Mpc. 1371± 50 87.7± 5.8 44.54/70

Σs → 0h−1Mpc. 1367± 44 86.7± 6.2 43.26/70

A2(r) = poly2. 1366± 44 86.4± 6.1 43.72/71

A2(r) = poly4. 1367± 44 86.6± 6.3 43.29/69

30 < r < 200h−1Mpc range. 1357± 44 84.8± 5.7 56.14/80

70 < r < 200h−1Mpc range. 1365± 44 86.5± 6.4 41.68/60

Redshift Space with Reconstruction

Fiducial [f ] 1424± 43 95.4± 7.5 53.29/70

(Σ⊥,Σ‖)→ (2, 4)h−1Mpc. 1419± 42 94.9± 7.6 53.20/70

Σs → 0h−1Mpc. 1424± 43 95.6± 7.5 53.34/70

A2(r) = poly2. 1422± 43 95.6± 7.8 55.47/71

A2(r) = poly4. 1421± 43 94.9± 7.6 52.76/69

30 < r < 200h−1Mpc range. 1433± 46 94.9± 8.2 63.94/80

70 < r < 200h−1Mpc range. 1418± 40 95.4± 7.1 42.92/60

50 < r < 150h−1Mpc range. 1405± 39 94.3± 6.4 26.80/44

Figure 8. Comparison of the 65% and 95% constraints in the α‖–α⊥ plane
obtained from the mean monopole of our mock catalogues (solid lines,
orange), and from its combination with the mean quadrupole (dot-dashed
lines, green). The constraints from ξ0(s) follow a degeneracy which is well
described by lines of constant α ∝ DV/rs, shown by the dashed lines
(blue). The extra information in the anisotropic BAO measurement helps to
break this degeneracy.

scale are expected to be small. Mehta et al. (2011) showed that a
wide range of halo occupation distribution galaxy bias models pro-
duced shifts of the acoustic scale of order 0.5% or less. Moreover,
they found that the shifts vanished to within 0.1% after reconstruc-
tion was applied. It is likely that reconstruction in the DR9 survey
geometry is less effective than it was in the Mehta et al. (2011)
periodic box geometry, but we still expect the shifts from galaxy
bias to be below 0.5%. The only astrophysical bias effect known to
single out the acoustic scale is the early universe streaming veloci-
ties identified by Tseliakhovich & Hirata (2010). This effect can in
principle be detected with enough precision to negligibly affect the
final errors on the distance measurements (Yoo et al. 2011). How-
ever, we have not yet assessed this size of the signal in BOSS data,
although it is not expected to be large given the vast difference in
mass scale between CDM mini-halos and those containing giant
elliptical galaxies.

We therefore estimate any systematic errors to be below 1%,
which is negligible compared to our statistical errors. Future work
will undoubtedly be able to further limit the systematic errors from
both fitting methodology and galaxy bias.

6.3 Comparison with other Works

Figure 13 shows a comparison of the two-dimensional 68%
confidence limits from our constraints on DA(z)(rfid

s /rs) and
H(z)(rs/r

fid
s ) and those of our companion papers: Kazin et al.

(2013), Chuang et al. (2013) and Sanchez et al. (2013) as well as
the previous work by Reid et al. (2012). The corresponding one-
dimensional marginalized constraints on these quantities are listed
in Table 5 showing excellent consistency.

These analyses are based on different statistics and modelling
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Figure 9. DR9 data (multipoles) before (top) and after (bottom) reconstruction with best-fit model (§ 4) overplotted. Note that the errors are correlated between
bins. The distance parameters (α, ε)) of the best fit and the corresponding χ2 values are listed in the plots.

Table 5. Summary of the measurements of DA(z)(rfid
s /rs),

H(z)(rs/rfid
s ), and their cross-correlation, ρDAH , from the CMASS DR9

data. The upper and middle sections of the table list the values obtained
in this work from the pre- and post-reconstruction analyses of multipoles
and clustering wedges, respectively. Our consensus values, defined in
Section 6.2, are also given. For comparison, the lower section of the table
lists the results obtained in our companion papers, Kazin et al.(2013),
Sánchez et al.(2013) and Chuang et al.(2013). All values correspond to the
mean redshift of the sample, z = 0.57.

DA(z)(rfid
s /rs) H(z)(rs/rfid

s ) ρDAH

Before Reconstruction

(ξ0(s), ξ2(s)) 1367± 44 86.6± 6.2 0.65
(ξ⊥(s), ξ‖(s)) 1379± 42 88.3± 5.1 0.52

After Reconstruction

(ξ0(s), ξ2(s)) 1424± 43 95.4± 7.5 0.63
(ξ⊥(s), ξ‖(s)) 1386± 36 90.6± 6.7 0.50
Consensus 1408± 45 92.9± 7.8 0.55

Companion analyses

Kazin et al. 1386± 39 90.3± 6.1 0.48
Sánchez et al. 1379± 39 91.0± 4.1 0.30
Chuang et al. 1371± 41 88.9± 6.1 0.49
Reid et al. 1395± 39 92.7± 4.5 0.24

details. Kazin et al. (2013) explore the geometric constraints in-
ferred from the BAO signal in both clustering wedges and multi-
poles, by means of the de-wiggled template analysed here and an
alternative form based on renormalized perturbation theory (Crocce
& Scoccimarro 2006). Chuang et al. (2013) and Sanchez et al.
(2013) exploit the information encoded in the full shape of these
measurements to derive cosmological constraints. While Kazin
et al. (2013) and Chuang et al. (2013) follow the same approach
applied here and treat DA and H as free parameters (i.e. with-
out adopting a specific relation between their values), Sanchez
et al. (2013) treats these quantities as derived parameters, with
their values computed in the context of the cosmological mod-
els being tested. The consistency of the derived constraints on
DA(z = 0.57)

(
rfid
s /rs

)
andH(z = 0.57)

(
rs/r

fid
s

)
demonstrates

the robustness of our results with respect to these differences in the
implemented methodologies.

Reid et al. (2012) used the full shape of the monopole-
quadrupole pair of the SDSS-DR9 CMASS sample to extract in-
formation from the Alcock-Paczynski test and the growth of struc-
tures. Based on these measurements they constrained the parameter
combinations DV(z)

(
rfid
s /rs

)
= 2072 ± 38 Mpc and F (z) ≡

(1 + z)DA(z)H(z)/c = 0.6750.042
−0.038 at z = 0.57. From our

consensus anisotropic BAO measurements we infer the constraints
DV(z = 0.57)

(
rfid
s /rs

)
= 2076 ± 58 Mpc and F (z = 0.57) =

0.692±0.087, in excellent agreement with the results of Reid et al.
(2012).

Anderson et al. (2012) studied the isotropic BAO signal us-
ing the same galaxy sample studied here. As discussed in Sec-
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Figure 10. As in Figure 9 but for the clustering wedges.

tion 4, spherically-averaged BAO measurements constrain the ra-
tio DV(z)/rs. By combining the results obtained from the post-
reconstruction CMASS correlation function and power spectrum,
Anderson et al. (2012) obtained a consensus constraint of DV(z =
0.57)

(
rfid
s /rs

)
= 2094 ± 33 Mpc. This result corresponds to

the constraints shown by the dot-dashed lines in Figure 14, which
are in good agreement with the ones derived here. The compari-
son of these results illustrates the extra information provided by
anisotropic BAO measurements, which breaks the degeneracy be-
tween DA and H obtained from isotropic BAO analyses.

Assuming a flat ΛCDM cosmology, the information provided
by CMB observations is enough to obtain a precise prediction of the
values of DA(z = 0.57)

(
rfid
s /rs

)
and H(z = 0.57)

(
rs/r

fid
s

)
.

The dashed lines in Figure 14 correspond to the predictions for
these quantities derived under the assumption of a ΛCDM model
from the WMAP observations of Bennett et al. (2012) (computed as
described in Section 7). The anisotropic BAO constraints inferred
from the CMASS sample are in good agreement with the ΛCDM
WMAP predictions. This is a clear indication of the consistency be-
tween these datasets and their agreement with the standard ΛCDM
model.

The CMB predictions are strongly dependent on the assump-
tions about dark energy or curvature. For any choice of Ωk and
w(z), WMAP selects a different small region in the DA(z =
0.57)

(
rfid
s /rs

)
–H(z = 0.57)

(
rs/r

fid
s

)
plane. This is illustrated

by the dotted contours in Figure 14, which correspond to the
WMAP prediction obtained assuming a flat universe with dark en-
ergy equation of state parameter w = −0.7. If the assumptions
about curvature and dark energy are relaxed, i.e., these parameters
are allowed to vary freely, the region allowed by the CMB becomes

significantly larger. Then, the combination of the CMB predictions
with the BAO measurements can be used to constrain these cosmo-
logical parameters. In the next section we will explore the cosmo-
logical implications of the combination of these datasets.

7 COSMOLOGICAL IMPLICATIONS

In this section we explore the constraints on the cosmological
parameters in different cosmological models from an analysis of
galaxy BAO and CMB data, highlighting the improvements ob-
tained from the anisotropic multipole analysis of the BOSS DR9
CMASS galaxy sample introduced in this paper.

In Table 6 we summarize our main cosmological constraints
for different cosmological models: ΛCDM in which the Universe
is flat and dark energy is represented by a cosmological constant,
oCDM in which the spatial curvature (Ωk) is a free parameter,
wCDM in which we allow the equation of state of dark energy
(w) to vary, and owCDM in which we let both parameters vary.
Different columns represent different combinations of CMB and
BAO datasets. The CMB data comes from the final data release of
WMAP (WMAP9; Hinshaw et al. 2012). We combine CMB data
with BAO constraints from DR7 (SDSS-II LRGs) and DR9 (BOSS
CMASS) galaxies. The isotropic BAO constraints include SDSS-II
LRGs from Padmanabhan et al. (2012), and CMASS galaxies from
Anderson et al. (2012), with anisotropic BAO data from SDSS-II
LRGs in Xu et al. (2013) and from CMASS galaxies (this work).

As seen in Figure 14, the cosmological information contained
in the anisotropic clustering data breaks the degeneracy present in
the isotropic case between the angular diameter distance and the
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Figure 11. The DR9 σDA
/DA and σH/H values before (left) and af-

ter (right) reconstruction overplotted on the mock values. The DR9 val-
ues are consistent with the distribution expected from the mock catalogues,
with the pre-reconstruction case on the better-constrained end and the post-
reconstruction case more average.

Hubble parameter (orange contours versus gray band respectively).
Moreover, these distance measurements allow us to constrain cos-
mological parameters such as the spatial curvature Ωk or the dark
energy equation of state w. The blue contours in Figure 14 show
CMB constraints assuming a ΛCDM model where we change the
equation of state of dark energy tow = −0.7 fromw = −1 (which
is the case for a cosmological constant). We can see that the locus
of the allowed parameter space is clearly different in each of these
cases given the size of these error ellipses. We note that the dis-
tance constraints from the anisotropic BAO analysis are less tight
and hence they benefit from the complementarity of other cosmo-
logical probes, such as the CMB. This complementarity allows for
precision measurements of cosmological parameters. The allowed
parameter space can could be further reduced by combining infor-
mation from anisotropic clustering from surveys covering different
redshift ranges: such as the low-redshift BAO measurements of the
6dF Galaxy Survey (Beutler et al. 2011) to the high-redshift Lyman
α forest clustering results (Busca et al. 2012; Slosar et al. 2013;
Kirkby et al. 2013).

Figure 12. Pre- and post-reconstruction 2D 68% contours and 1D probabil-
ity distributions of DA and H measured from the DR9 data, for both the
multipoles and wedges. For consistency, both the multipoles and wedges
have been analyzed with the MCMC code in Kazin et al. (2013). The lines
mark the fiducial cosmology used in the analysis.
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Figure 13. Pre-reconstruction joint likelihood distributions (68% confi-
dence intervals) for DA(rfid

s /rs) and H(rs/rfid
s ) for different analyses

of the CMASS DR9 data : multipole-based analyses (blue, this work, pur-
ple, Reid et al. (2012) and green, Chuang et al. (2013)) and the clustering
wedges analysis (red, Kazin et al. (2013) and black, Sanchez et al. (2013)).
This work and the companion work on wedges in Kazin et al. (2013) re-
strict to fitting the BAO position only, while the remaining works fit the
full shape of the correlation function including the cosmological constraints
from redshift-space distortions. All of these agree well, with the full-shape
methods being generally more constraining than the BAO only methods.

We find an improvement in the cosmological constraints in
the owCDM cosmological model from the anisotropic BAO anal-
ysis versus the spherically-averaged isotropic BAO analysis. These
differences are apparent in Figure 15 where the BAO information
is combined with CMB data. Plotted here are the likelihood con-
tours of two cosmological parameters (from the set Ωk,w, ΩM , and
H0) while marginalizing over the remaining cosmological parame-
ters in the owCDM model. We can see that the allowed parameter
space enclosed by the 68% and 95% confidence level contours is
smaller in the anisotropic case, indicating that the anisotropic anal-
ysis provides a clear advantage in breaking the degeneracy between
curvature and the equation of state of dark energy.

In Table 7 we compare cosmological constraints from the mul-
tipoles technique (this work) with the wedges technique discussed
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Figure 14. Comparison of the 65% and 95% constraints in the DA(z =

0.57)
(
rfid
s /rs

)
–H(z = 0.57)

(
rs/rfid

s

)
plane from the CMASS consen-

sus anisotropic BAO constraints described in Section 6.2 (solid lines) and
those of the isotropic BAO measurements of Anderson et al. (2012) (dot-
dashed lines). The WMAP prediction for these parameters assuming a flat
ΛCDM model (dashed lines), shows good agreement with the CMASS con-
straints. Note that the CMASS constraints do not assume w = −1 or flat-
ness. The WMAP prediction obtained assuming a dark energy equation of
state w = −0.7 is also shown (dotted lines).

in §4. We find that the wedges analysis (Kazin et al. 2013) shows a
marginally larger error bar in the cosmological parameters as com-
pared to the multipoles technique. The table also compares the cos-
mological constraints using the consensus likelihood: the average
of the log-likelihood from both multipoles and wedges. We find
that both techniques show consistent results. When combined with
CMB data, none of these results deviate significantly from a flat
Universe with Ωk = 0.0 or a cosmological constant with w = −1.

8 CONCLUSIONS

In this paper, we have presented a detailed analysis of the
anisotropic measurement of the baryon acoustic peak in the SDSS-
III BOSS DR9 sample of 0.43 < z < 0.7 galaxies. The baryon
acoustic oscillations provide a robust standard ruler by which to
measure the cosmological distance scale. One of the important op-
portunities of the BAO method is its ability to measure the angular
diameter distance and Hubble parameter separately at higher red-
shift. The BOSS DR9 sample is large enough to provide a detection
of the acoustic peak both along and across the line of sight.

Our analysis has relied on two separate methods by which to
measure the acoustic peak in the anisotropic correlation function.
The first uses the monopole and quadrupole of the anisotropic clus-
tering, following the methods of Xu et al. (2013). The second sep-
arates the correlation function into two bins of the angle between
the separation vector of the pair and the line-of-sight, following
Kazin et al. (2012). The latter analysis is further described in Kazin
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Figure 15. Constraints on the cosmological parameters of the owCDM
model when combining WMAP9 data with the anisotropic BAO data from
CMASS presented in this work (filled blue contours). For comparison, the
constrained parameter space from the combination of WMAP9 data with
the isotropic BAO analysis in Anderson et al. (2012) is shown as black con-
tours.

et al. (2013). In both cases, we fit a model of the correlation func-
tion to the data, using reconstruction to sharpen the acoustic peak
and mock catalogs to define the covariance matrix of the observ-
ables. The fit is able to vary the position of the acoustic peak in
both the line-of-sight and transverse directions, thereby measuring
H(z) and DA(z), respectively. The fitting includes a marginaliza-
tion over broadband functions in both directions, thereby isolating
the acoustic peak information from possible uncertainties in scale-
dependent bias, redshift distortions, the reconstruction method, and
systematic clustering errors.

From these fits, we define a consensus value of
H(0.57)(rs/r

fid
s ) = 92.9 ± 7.8 km/s/Mpc (8.4%) and

DA(0.57)(rfid
s /rs) = 1408 ± 45 Mpc (3.2%). These two

measurements have a correlation coefficient of 0.55 that should be
taken into account when measuring parameters of cosmological
models. We note that the sound horizon rs is constrained to∼0.7%
rms from current CMB data in simple adiabatic cold dark matter
models (Bennett et al. 2012; Hinshaw et al. 2012); hence, the
uncertainty in rs is subdominant for the usual fits.

Our results are highly consistent with the analysis of the spher-
ically averaged acoustic peak in Anderson et al. (2012), which
yielded a measurement of DV ∝ D

2/3
A /H1/3. We find (Figure 8)

that fitting the anisotropic model to only the monopole data returns
constraints elongated in the DV direction, justifying the treatment
in Anderson et al. (2012). We further find that when using the
anisotropic data, we get constraints on DV similar to that of An-
derson et al. (2012).

The cosmological parameter measurements we achieve from
our measurement of H(0.57) and DA(0.57) are similar to those
found from DV (0.57) in Anderson et al. (2012). Because of those
similarities, we have presented only a small sampling of cosmolo-
gies; further analyses can be found in Anderson et al. (2012). We
find strong consistency with the standard flat w = −1 cosmolog-
ical model. The fact that separating DV into separate DA and H
information does not improve the cosmological parameter fits is,
we believe, largely due to the relatively low redshift of the data
set: as z → 0, DA and H provide degenerate information in all
cosmological models.

The analyses here and in Kazin et al. (2013) are focused only

c© 0000 RAS, MNRAS 000, 000–000



18 Anderson et al.

Table 6. Cosmological constraints from anisotropic BAO in CMASS DR9 data. Different rows show constraints on different cosmological models. Columns
indicate different combinations of CMB and BAO datasets, where ’isotropic’ indicates the isotropic BAO analysis of Anderson et al. (2012), and ’anisotropic’
corresponds to the anisotropic BAO analysis presented here. The DR7 data include the analysis of the SDSS-II LRGs for the isotropic BAO in Padmanabhan
et al. (2012) and the anisotropic results in Xu et al. (2013). The Hubble constant H0 is in units of km s−1 Mpc−1.

Cosmological Parameter WMAP9 WMAP9 WMAP9 WMAP9 WMAP9
model +DR9 +DR9 +DR7+DR9 +DR7+DR9

(isotropic) (anisotropic) (isotropic) (anisotropic)

ΛCDM
ΩM 0.300±0.016 0.295±0.017 0.296±0.012 0.290±0.012 0.280±0.026
H0 68.3 ± 1.3 68.8 ±1.4 68.7 ±1.0 69.1±1.0 70.0 ±2.2

oCDM
ΩM 0.304±0.016 0.298±0.016 0.293±0.012 0.290±0.012 0.507±0.236
H0 67.1 ±1.5 67.8 ±1.7 68.2 ±1.1 68.7±1.2 56.2 ±12.4
Ωk -0.006 ±0.005 -0.005±0.005 -0.004±0.005 -0.003±0.005 -0.056±0.060

wCDM
ΩM 0.333±0.041 0.313±0.042 0.297±0.027 0.297±0.022 0.302±0.096
H0 64.5 ±5.0 66.6 ±5.6 68.5 ±4.0 68.1±3.2 69.9 ±11.5
w -0.84 ±0.21 -0.90 ±0.22 -0.99 ±0.19 -0.95±0.15 -0.99 ±0.35

owCDM
ΩM 0.310±0.070 0.314±0.058 0.269±0.045 0.284±0.039 0.596±0.254
H0 67.7 ±9.6 66.7 ±7.5 72.1 ±6.7 69.7±5.3 51.9 ±12.6
Ωk +0.000 ±0.011 +0.002±0.013 -0.005±0.007 -0.002±0.008 -0.072±0.066
w -0.99 ±0.44 -0.92 ±0.37 -1.19 ±0.34 -1.05±0.30 -1.02 ±0.53

Table 7. Comparison of the cosmological constraints from the analysis of wedges, multipoles, and the consensus likelihood from both techniques, using
anisotropic BAO CMASS DR9 data. Different rows show constraints on different cosmological models. The Hubble constant H0 is in units of km s−1

Mpc−1.

Cosmological Parameter WMAP9+DR9 WMAP9+DR9 WMAP9+DR9
model (consensus) (multipoles) (wedges)

ΛCDM
ΩM 0.295±0.017 0.298±0.016 0.291±0.017
H0 68.8 ±1.4 68.5 ±1.3 69.1 ±1.4

oCDM
ΩM 0.298±0.016 0.301±0.016 0.296±0.019
H0 67.8 ±1.7 67.5 ±1.6 68.0 ±2.0
Ωk -0.005±0.005 -0.005±0.005 -0.005±0.005

wCDM
ΩM 0.313±0.042 0.326±0.033 0.307±0.043
H0 66.6 ±5.6 64.9 ±4.0 67.3 ±5.8
w -0.90 ±0.22 -0.84 ±0.17 -0.93 ±0.23

owCDM
ΩM 0.314±0.058 0.327±0.050 0.297±0.059
H0 66.7 ±7.5 65.0 ±6.2 69.0 ±8.1
Ωk +0.002±0.013 +0.002±0.011 +0.000±0.011
w -0.92 ±0.37 -0.85 ±0.31 -1.03 ±0.39

on the anisotropic acoustic peak. In addition, Reid et al. (2012),
Sanchez et al. (2013), and Chuang et al. (2013) have studied the full
shape of the anisotropic large-scale clustering in the BOSS DR9
CMASS sample. Such studies require more assumptions about the
modeling of galaxy bias and redshift distortions, but offer stronger
constraints onH(z) through the use of the Alcock-Paczynski effect
on the broadband clustering signal. The conclusions reached are
consistent with those here from the acoustic peak alone.

The anisotropic measurement of the baryon acoustic oscilla-
tions has now been performed at three distinct redshifts: z = 0.35

with the SDSS-II Luminous Red Galaxy sample, z = 2.3 with the
SDSS-III BOSS Lyα forest sample, and this analysis at z = 0.57.
All three have found strong consistency with the standard cosmo-
logical model of a spatially flat Universe with acceleration driven
by a cosmological constant. These results represent only the first
third of the SDSS-III BOSS data set but mark an important mile-
stone for BAO studies. These anisotropic methods and measure-
ments define a clear path for the ambitious surveys of the coming
decade.
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