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Abstract

The prevalence of lipids devoid of phosphorus suggests that the availability of phosphorus

limits microbial growth and activity in many anoxic, stratified environments. To better under-

stand the response of anaerobic bacteria to phosphate limitation and starvation, this study

combines microscopic and lipid analyses with the measurements of fitness of pooled bar-

coded transposon mutants of the model sulfate reducing bacterium Desulfovibrio alaskensis

G20. Phosphate-limited G20 has lower growth rates and replaces more than 90% of its

membrane phospholipids by a mixture of monoglycosyl diacylglycerol (MGDG), glycuronic

acid diacylglycerol (GADG) and ornithine lipids, lacks polyphosphate granules, and synthe-

sizes other cellular inclusions. Analyses of pooled and individual mutants reveal the impor-

tance of the high-affinity phosphate transport system (the Pst system), PhoR, and glycolipid

and ornithine lipid synthases during phosphate limitation. The phosphate-dependent syn-

thesis of MGDG in G20 and the widespread occurrence of the MGDG/GADG synthase

among sulfate reducing @-Proteobacteria implicate these microbes in the production of

abundant MGDG in anaerobic environments where the concentrations of phosphate are

lower than 10 μM. Numerous predicted changes in the composition of the cell envelope and

systems involved in transport, maintenance of cytoplasmic redox potential, central metabo-

lism and regulatory pathways also suggest an impact of phosphate limitation on the suscep-

tibility of sulfate reducing bacteria to other anthropogenic or environmental stresses.

Introduction

Sulfate reducing microbes couple the oxidation of organic matter or hydrogen to the reduction

of sulfate and link the cycles of sulfur, carbon and oxygen in anaerobic marine environments

and sulfate-rich lakes. Studies of microbial sulfate reduction have focused primarily on the
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energy conservation, reduction of heavy metals, the degradation of particular organic sub-

strates, and the geochemical signals of this process in the environment [1, 2], as well as the

responses of Desulfovibrio vulgaris Hildenborough to biocides, oxygen, nitrite, high tempera-

ture and pH stress [3–9]. Currently, much less is known about adaptations and responses of

sulfate reducing bacteria to environmental limitations other than the lack of sulfate or electron

donors [10].

The low availability of phosphate, a key reactant in various biosynthetic, metabolic and reg-

ulatory pathways, is thought to limit the cell growth and primary productivity in marine sur-

face waters [11, 12]. To reduce the cellular requirement for phosphate in oxygenated soils and

waters, some marine cyanobacteria and aerobic heterotrophic bacteria, and some soil bacteria

synthesize glycolipids, amino lipids or teichuronic acids all of which are devoid of phosphorus

[13–19]. Recent studies have shown that up to 80% of the total polar lipids in suboxic and

anaerobic environments including the Black Sea, Labrador Sea and Baltic Sea do not contain

phosphorus [20–22], perhaps in response to phosphate limitation. This stoichiometric signal is

unexpected, because organic degradation and the microbial cycling of nitrogen in suboxic and

anoxic marine waters and sediments are thought to increase the P:C and the P:N ratios [23–

25]. These processes increase the concentrations of phosphate to 4–10 μM in the water column

or 80 μM in sediments [26], i.e., orders of magnitude above the concentrations in oxygenated

surface oceans. Yet, given that similar or even higher concentrations of phosphate induce

phosphate limitation in cultures of some aerobic heterotrophic Proteobacteria (e.g., [13, 27,

28]), adaptations of anaerobic marine microbes to phosphate limitation warrant a closer look.

System-level studies of relevant model organisms can improve our ability to recognize and

interpret signals of environmental phosphate limitation, particularly of sulfate reducing @-Pro-

teobacteria of the genera Desulfovibrio, Desulfosarcina/Desulfococcus and Desulfobacterium
along with other known inhabitants of suboxic and sulfidic marine sediments and the water

column [29–33]. To date, only few such reports exist [34, 35], and they do not address the

composition of polar lipids, a geochemical parameter that is commonly used to characterize

the microbial diversity and processes in environmental samples. To bridge this gap, this study

identifies genes important for fitness during phosphate-limited growth and the survival after

phosphate starvation of the model sulfate reducing @-Proteobacterium Desulfovibrio alaskensis
G20 using barcoded transposon mutants. Microscopic, chemical and lipid analyses of wild-

type cells and individual gene mutants grown at environmentally relevant phosphate concen-

trations further characterize mechanisms by which G20 adapts to phosphate limitation and

shore up the evidence for widespread phosphate limitation in suboxic and anaerobic marine

environments.

Methods

Strains and culture conditions

We used the wild-type G20 cured of a plasmid from the strain collection in the Deutschbauer

laboratory. The barcoded transposon mutant pools and individual transposon mutant strains

used in this study were previously described [36]. Wild-type G20, the mutant pools, and the

individual transposon mutants were grown in batch cultures within an anaerobic chamber

with an atmosphere composed of 90:5:5% N2, CO2 and H2. The growth temperature for exper-

iments was 30˚C, unless stated otherwise. All glassware was rinsed and autoclaved with nano-

pure water three times to remove any adsorbed phosphate. Hungate tubes were closed by butyl

rubber stoppers with aluminum seals.

All strains grew in MOLS4 medium [37] with modified concentrations of phosphate (see

descriptions of experiments below for details). Basal MOLS4 (pH 7.2) contained 60 mM
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sodium lactate, 30 mM sodium sulfate, 8 mM magnesium chloride, 20 mM ammonium chlo-

ride, 2 mM potassium chloride, 0.6 mM calcium chloride, 30 mM Tris-HCl buffer (pH 7.4),

iron(II) chloride-EDTA (0.06 mM), 6 ml/L of trace element solution and 1 ml/L of Thauer’s

vitamin solution [38]. The trace element solution was prepared in 10% (v/v) HCl and con-

tained per 1 liter; 1.5 g FeCl2, 4H2O; 0.20 g CoCl2, 6H2O; 0.1 g MnCl2, 4H2O; 70 mg ZnCl2; 8

mg H3BO3; 40 mg Na2MoO4, 2H2O; 25 mg NiCl2, 6H2O; 10 mg CuCl2, 2H2O; 8 mg Na2SeO3;

15 mg Na2WO4, 2H2O; 10 mg V2O5. MOLS4 was boiled and flushed with anaerobic gas, auto-

claved and transferred to the anaerobic chamber while still warm. Sterile medium was reduced

before inoculation by the addition of 1 mM Na2S from a sterile, anaerobic 1 M stock solution.

All individual strains and mutant pools were recovered from frozen stocks by growth in

MOLS4 medium with 0.5 mM K2HPO4 and 0.1% yeast extract (rich medium). Recovered cells

were harvested in mid-log phase, washed three times by anaerobic centrifugation at room tem-

perature in phosphate-free MOLS4 lacking yeast extract and inoculated into basal MOLS4 to

the initial OD600 value of 0.02. To achieve desired concentrations of phosphate in the cultures

we added sterile, anaerobic K2HPO4 to a final concentration of 2, 10 or 500 μM. To establish

comparable concentrations of potassium in all cultures, we added 0.5 mM KCl from a sterile 1

M stock solution to cultures containing 0, 2 and 10 μM K2HPO4. The growth was monitored

by measurements of optical density at 600 nm (OD600) using a ThermoScientific Spectronic

20D+ spectrophotometer or by measuring the OD600 values of 150 μl subsamples on a Synergy

2 Multi-Mode microplate Reader (BioTek, Winooski, VT). To adapt cells to low phosphate

concentrations, we grew them in media with the desired low phosphate concentrations as

described above and transferred these vegetatively growing cells at 5% v/v into media with the

same initial concentration of phosphate. All analyses were conducted on samples harvested

during vegetative growth and repeated twice. Sulfide concentrations were measured colorimet-

rically as described previously [39, 40].

Transposon insertions in Dde_3613, Dde_3661 and the wild-type G20 strain were analyzed

by transmission electron and epifluorescence microscopy after growth in MOLS4 in 100 ml

triplicate cultures with a 100% N2 atmosphere at 27˚C after one wash and two transfers, as

described above. To establish more comparable culture conditions between these experiments

and our previous studies of sulfate-reducing bacteria [40, 41], we reduced the high concentra-

tions of sodium lactate and sodium sulfate from the original MOLS4 recipe (see above) to 20

and 21 mM, respectively. This did not change the growth rates or yields of phosphate-limited

cultures, but it limited the supply of the electron donor in cultures containing 200 μM phos-

phate or more.

Fitness assays of pooled mutants

All fitness assays used two pools of G20 transposon mutants as described previously [36, 42]

and quantified the abundances of uniquely tagged strains that carry transposon deletions in

different genes under phosphate-limited conditions of interest, as well as in control, phos-

phate-replete conditions. Pool 1 contained 4,069 unique strains and Pool 2 contained 4056

unique strains [43]. The G20 transposon mutants contain TagModules, or unique DNA bar-

codes, that serve as unique strain identifiers that can be quantified in parallel by microarray

hybridization or DNA barcode sequencing. Together, the two pools of mutants probed the fit-

ness of 2,338 out of 3528 unique protein-coding genes in the genome of G20 (66%). If a gene

has negative score (fitness defect), mutants lacking this gene grow less well in the tested condi-

tion relative to the control condition. Conversely, a gene will have a positive fitness score (fit-

ness benefit) if mutants lacking this gene grow better in the tested condition relative to the

control condition.
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The two pools of mutants were recovered from frozen stocks in rich media, washed and

grown separately to mid-logarithmic phase (OD600 ~ 0.6) in MOLS4 containing 500 μM phos-

phate (phosphate-replete condition) without yeast extract. These cells were harvested as the

“start” control for all fitness assays. Additional aliquots of the two recovered pools were washed

three times by centrifugation at 14,000 rpm for 2 min and resuspension in MOLS4 without

phosphate. The washed cells were inoculated into cultures for fitness assays at initial OD600

values of 0.02.

Fitness assays of pooled D. alaskensis G20 mutants employed two different approaches: the

first probed fitness during phosphate-limited growth, the second one at multiple time points

during phosphate starvation. Because the final cell densities in phosphate-limited cultures

were low and only a few doublings occurred, we transferred and regrew the cultures twice to

increase the number of population doublings. Briefly, G20 pools grew with 10 μM initial phos-

phate (limiting concentration) until their OD600 values were 0.2. One-ml aliquots from these

cultures were transferred into two separate Hungate tubes containing 9 mL of sterile medium

with 10 μM phosphate. This was repeated one more time, and the entire 10 ml culture volumes

of the two mutant pools were then collected for fitness assays. The OD600 value was 0.21 at the

time of collection, compared to the maximum OD600 value of 0.35 for the wild type cultures

after two transfers into MOLS4 with 10 μM initial phosphate. Cells were pelleted by centrifuga-

tion at 8,000 rpm at 4˚C for 8 minutes and stored at -20˚C until further analyses (DNA extrac-

tion, quantification of the abundances of different uniquely tagged strains).

A different assay measured the abilities of different mutants to survive phosphate starvation

and resume growth upon encountering nutrient-replete conditions. We grew Pools 1 and 2

separately in 9 ml of the medium containing 500, 10 or 0 μM phosphate and sampled 1 ml of

each culture 5, 10 and 15 days after the onset of stationary phase, as determined from the mea-

surements of OD600 values. The final OD600 values in cultures with 500, 10 and 0 μM initial

phosphate, respectively, were 0.8, 0.26 and 0.17, respectively. To recover cells after starvation

and obtain visible cell pellets, we inoculated the sampled 1-ml aliquots of stationary phase cul-

tures into 9 ml of MOLS4 with 500 μM phosphate and yeast extract (rich medium). Cells from

cultures with 500 μM phosphate attained OD600 values of 0.8, i.e., the maximum OD value in

two days. Those from cultures with 0 and 10 μM initial phosphate took three or more days to

reach the same OD600 value. This suggested that more cells had died or become non-viable

during phosphate starvation. The recovered mutant pools in late exponential or early station-

ary phase (OD600 value 0.8) were harvested by anaerobic centrifugation at 14,000 rpm for 2

min at room temperature and stored at -20˚C until further analyses (DNA extraction, quantifi-

cation of the abundances of different uniquely tagged strains).

We extracted genomic DNA from all samples and used PCR to amplify the DNA barcodes

that uniquely identify mutant strains [43, 44]. Previous studies of G20 mutant pools mixed the

PCR reactions with amplified “uptags” and “downtags” from each sample and hybridized

them to an Affymetrix 16K TAG4 microarray [36, 42–45]. However, for the present work, we

sequenced amplified “uptags” on an Illumina MiSeq using a BarSeq method [46]. For BarSeq,

gene fitness values were calculated as described in Wetmore et al. [46].

The fitness value for a gene was calculated as the average of fitness values for all relevant

strains with insertions in that gene from both pools, as previously described [36, 42]. The

reported data present only the averaged gene fitness values normalized to a zero-density distri-

bution [42]. The use of both pools provided internal replicates and a test of internal consis-

tency, because 1091 strains were present in both pools. Each gene fitness value reported in this

paper was measured as the ratio of the gene fitness values for “start” cultures relative to gene

fitness values at the end of the experiment, log2(start/end).

Adaptations of Desulfovibrio alaskensis G20 to Phosphate-Limited Conditions
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We filtered the original data set (S1 and S4 Tables) to remove genes with fitness scores that

varied little across the seven probed conditions (standard deviation < 0.3) and were thus

unlikely to be important for fitness under conditions of interest. The remaining genes were

identified as important for fitness under our experimental conditions if: 1. their fitness scores

in both phosphate-starved cultures (with 0 or 10 μM added phosphate) differed by more than

0.95 units from the score in the corresponding phosphate-replete control condition, or if 2. the

fitness score in the vegetatively growing culture (with initial 10 μM phosphate) differed by

more than 0.95 units from the score in the starting control culture. This corresponded to

1.93-fold (20.95) increases or decreases of the relevant mutants relative to their abundances in

the control conditions. Next, we excluded genes important for fitness in all conditions: the

absolute values of their scores were greater than 0.95, but the scores were not significantly dif-

ferent (> = 0.95 units) between the vegetatively growing culture and all cultures in stationary

phase. We also excluded genes important for fitness during stationary phase (|score| > 0.95),

but not in specific response to phosphate; their scores were not more than 0.95 units different

in both phosphate starved cultures and the corresponding control condition.

The fitness patterns of genes identified in this manner were analyzed as a function of exper-

imental conditions in Multiple Expression Viewer (MEV by TIGR) [47]. Genes and conditions

with similar patterns of normalized fitness scores [48] among the seven tested conditions were

identified by hierarchical clustering analysis (HCL in MEV), optimizing the gene leaf order

and the sample leaf order. The nine clusters of important genes (Table 1, S1 Fig) contained

genes with fitness scores with linear (Pearson) correlation coefficients higher than 0.62 across

all seven experimental conditions. We also used MEV to compare the fitness scores of impor-

tant genes measured in our study to the fitness scores measured for the same genes under dif-

ferent growth and stress conditions. The results of previous experiments were downloaded

from the microbesonline.org database [36, 49–51]. We used OperonDB http://operondb.cbcb.

umd.edu/cgi-bin/operondb/pairs.cgi?genome_id=329 and microbesonline.org to determine

whether genes occurred in the same operon.

To verify the results of fitness assays with pooled mutants, we measured the growth of six

individual mutant strains in phosphate-limited MOLS4 (Dde_3661, Dde_3613, Dde_2285,

Dde_1023, Dde_3255 and Dde_1565, as underscored in Table 1) relative to wild-type G20.

Two successive transfers of individual strains (see the sections Strains and Culture Conditions
and Fitness Assays of Pooled Mutants above) into separate duplicate cultures of MOLS4 with

10 μM initial phosphate increased the number of doublings during phosphate-limited growth.

The reported growth curves show OD600 values of duplicate vegetative cultures growing at 30˚C

after the second transfer and confirm the fitness defects for all strains (S2 Fig). Supporting Infor-

mation contains measurements of OD600 in the cultures of wild-type G20 and various mutants.

Lipid analyses

Wild-type G20, Dde_3613 and Dde_3661 were grown in duplicate 10 ml cultures (containing

500 μM initial phosphate) or 45 ml cultures (containing 10, 2 and 0 μM initial phosphate) as

described in the section about Strains and Culture Conditions. The cells were harvested by cen-

trifugation of 30-ml culture volumes at 9000 rpm at 4˚C for 5 min. The addition of 5 ml of 50

mM Zn-acetate precipitated sulfide and facilitated the centrifugation. Pelleted cells were stored

at -80˚C before analyses. Cultures of Dde_3613 and Dde_3661 that lacked any added phos-

phate had very low biomass, so we were not able to analyze the lipids or measure growth in

these cultures.

A modified Bligh-Dyer method [52] was used to extract lipids from cell pellets. The cell pel-

lets were transferred into solvent-cleaned polytetrafluoroethylene tubes, amended with ca. 2 g

Adaptations of Desulfovibrio alaskensis G20 to Phosphate-Limited Conditions
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Table 1. Fitness scores of genes important during phosphate-limited growth and for the survival after phosphate starvation.

Gene ID Product 5d, 0 5d, 10 5d, 500 10d, 0 10d, 10 10d, 500 Veg. 10 Function

Cluster I

Dde_3134 adenosylhomocysteinase -2.22 -3.02 -2.73 -3.11 -3.68 -2.65 -4.68 amino acid biosynthesis&,#

Dde_1061 PstC -0.40 -0.58 -0.28 -0.50 -0.92 -0.05 -1.49 PstC, phosphate transport

Dde_2386 PstB -0.78 -0.69 -0.15 -0.77 -1.41 0.28 -3.09 PstB, phosphate transport

Dde_1060 PstA -0.57 -0.73 -0.29 -0.76 -1.64 0.06 -3.74 PstA, phosphate transport

Dde_1062 PstS -0.40 -0.65 -0.34 -0.87 -1.69 -0.03 -3.81 PstS, phosphate uptake

Dde_1447 dephospho-CoA kinase -0.11 -0.12 -0.14 -0.85 -0.95 -0.25 -4.71 CoA biosynthesis

Dde_3661 putative ornithine lipid synthase -0.07 -0.09 0.02 -0.91 -0.39 0.27 -1.56 OlsF homolog, ornithine lipid biosynthesis, cell

envelope biosynthesis

Dde_1329 ABC-type dipeptide transport system,

periplasmic component

-0.92 -1.33 -0.51 -2.86 -2.01 -0.86 -3.05 transport

Dde_2210 permease component of zinc ABC

transporter

-1.68 -2.43 -0.99 -3.93 -3.72 -1.61 -5.30 transport

Dde_2201 geranyltranstransferase -2.42 -2.24 -1.57 -2.81 -2.13 -1.25 -2.86 lipid biosynthesis

Dde_3782 multi-sensor signal transduction histidine

kinase

-1.84 -1.47 -0.19 -1.55 -1.44 0.10 -2.51 PhoR homolog, phosphate metabolism

Dde_3613 glycosyltransferase group I -0.96 -0.47 0.13 -0.45 -0.05 0.22 -1.29 Agt homolog, glycolipid biosynthesis, cell envelope

biosynthesis

Cluster II

Dde_0362 Sugar transferase -0.93 -0.88 -0.1 -0.95 -1.09 -0.46 -0.95 cell envelope biogenesis

Dde_0652 HmcB, 40.1 kd protein in hmc operon 0.08 0.12 1.36 0.07 0.12 1.31 0.41 electron transfer

Dde_0649 HmcE, 25.3 kd protein in hmc operon 0.06 0.13 1.50 0.04 0.05 1.39 0.43 electron transfer

Dde_0653 HmcA, high molecular weight cytochrome

c

-0.56 -0.39 0.97 -0.71 -0.76 1.00 0.01 electron transfer

Dde_3385 hypothetical protein -1.23 -1.03 -0.70 -1.51 -1.68 -0.39 -1.41 unknown

Dde_3255 UDP-N-acetylglucosamine 2-epimerase -1.58 -0.91 -0.57 -1.71 -1.58 -0.21 -0.97 polysaccharide biosynthesis, cell envelope

biosynthesis

Dde_3008 hypothetical protein -1.52 -1.20 -0.93 -1.78 -1.80 -0.37 -1.12 unknown

Dde_1565 ABC-type dipeptide transport system,

periplasmic component

-1.16 -0.81 -0.64 -1.43 -1.49 -0.26 -0.94 transport

Dde_2301 VacJ family surface lipoprotein -1.35 -0.89 -0.79 -1.80 -1.62 -0.26 -1.09 cell envelope

Dde_2299 MlaD homolog -1.33 -1.30 -0.62 -1.63 -1.92 -0.49 -1.09 cell envelope

Dde_3561 methyl-accepting chemotaxis protein -1.26 -0.90 -0.39 -1.37 -1.60 -0.26 -0.81 signaling, chemotaxis

Dde_2298 ATPase, MlaF homolog -1.25 -0.94 -0.77 -1.48 -1.82 -0.46 -1.03 phospholipid transport, MlaF homolog, cell envelope

Dde_2300 toluene tolerance family protein -1.13 -0.81 -0.56 -1.49 -1.70 -0.29 -0.81 unknown

Dde_0534 putative transposase protein -1.18 -0.99 -0.50 -1.71 -1.93 -0.45 -0.92 nucleic acid processing and recombination

Dde_3092 heat shock protein, class I, Hsp20 -1.61 -1.44 -1.19 -2.21 -2.41 -0.96 -1.48 stress response

Dde_2297 Orf, hypothetical protein -1.38 -1.19 -0.86 -2.34 -2.76 -0.68 -1.39 unknown

Dde_1246 type 11 methyltransferase -1.16 -1.03 -0.85 -1.74 -1.71 -0.57 -1.20 unknown

Dde_2655 biotin synthase -1.11 -0.93 -1.04 -1.52 -1.62 -0.25 -1.05 vitamin biosynthesis

Dde_0341 ATP-dependent RNA helicase DeaD

(deaD)

-0.26 -0.34 0.07 -0.38 -0.52 0.62 -0.14 RNA processing

Dde_2366 Flp pilus assembly protein TadD, contains

TPR repeats

-0.78 -0.25 0.17 -0.24 -0.65 0.96 0.2 pilus assembly&,^

Cluster III

Dde_1684 nitrogen-specific histidine kinase NtrB -1.49 -1.30 -0.2 -0.52 -0.54 -0.40 -0.42 nitrogen metabolism

Dde_2945 phosphomannomutase/

phosphoglucomutase

-3.10 -3.12 -2.03 -2.73 -2.60 -2.07 -2.30 cell envelope biosynthesis

Cluster IV

Dde_1023 molecular chaperone DnaK -1.06 -1.42 -1.54 -3.13 -3.39 -1.94 -2.70 recombination and regulation&

Dde_2285 1,4-alpha-glucan branching enzyme -0.26 -0.14 0.08 -2.64 -3.00 -0.76 -1.35 polysaccharide metabolism

Dde_1781 RNA metabolizing metallo-beta-lactamase 0.01 -0.09 0.01 -1.56 -0.94 0.87 -0.78 RNA processing

Dde_3232 hypothetical protein -0.57 -0.51 -0.32 -1.28 -1.23 -0.25 -0.94 unknown

Dde_0774 sensor histidine kinase/response regulator -2.34 -1.58 -0.85 -5.08 -3.13 -0.88 -3.07 signaling and sensing, CheY-like

(Continued)
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Table 1. (Continued)

Gene ID Product 5d, 0 5d, 10 5d, 500 10d, 0 10d, 10 10d, 500 Veg. 10 Function

Dde_2555 hypothetical protein -1.43 -0.95 -0.24 -3.23 -1.92 -0.27 -1.89 unknown

Dde_0359 sugar O-acyltransferase, NeuD family -1.54 -1.96 -1.01 -3.58 -2.79 -1.50 -3.07 cell envelope biosynthesis

Dde_0014 methionyl-tRNA formyltransferase -2.63 -3.56 -2.85 -4.24 -4.29 -2.14 -3.15 folate metabolism, peptide biosynthesis, amino acid

metabolism&

Dde_0572 carboxynorspermidine synthase -2.38 -3.04 -2.59 -3.81 -3.76 -2.45 -2.79 polyamine biosynthesis&

Dde_3105 citrate-dependent iron(III) transport protein -1.69 -1.18 -1.41 -2.11 -2.63 -1.07 -1.05 iron transport

Cluster V

Dde_1569 (p)ppGpp synthetase II -3.52 -3.24 -4.14 -1.97 -3.04 -4.77 -0.86 regulation&

Dde_1008 bifunctional histidinal dehydrogenase -5.42 -5.60 -6.18 -4.75 -5.26 -6.22 -4.60 amino acid metabolism#

Dde_3719 BadM/Rrf2 family transcriptional regulator -1.98 -1.88 -2.83 -0.48 -1.19 -3.84 -0.82 regulation

Dde_0979 Conserved hypothetical protein -2.90 -3.43 -3.97 -2.51 -3.03 -4.80 -2.57 unknown

Dde_1106 5-enolpyruvylshikimate-3-phosphate

synthase

-1.25 -1.33 -1.64 -1.04 -1.13 -2.41 -0.75 amino acid metabolism#

Dde_3717 response regulator containing CheY-like

receiver

-0.64 -1.62 -2.11 -0.04 -0.31 -1.86 -0.55 regulation

Dde_3711 conserved hypothetical protein -0.90 -1.32 -2.03 -0.14 -0.36 -1.85 -0.57 unknown

Dde_3718 multi-sensor signal transduction histidine

kinase

-0.55 -0.87 -1.75 0.08 0.01 -1.42 -0.33 regulation, in operon with Dde_3717

Dde_0398 acetolactate synthase catalytic subunit -1.22 -1.07 -2.07 -0.07 -0.31 -1.90 -0.63 amino acid metabolism&

Dde_3712 universal stress protein family -1.03 -0.97 -1.67 0.01 -0.27 -1.56 -0.46 stress response

Dde_3713 UspA domain-containing protein -1.19 -1.47 -1.98 -0.10 -0.27 -1.65 -0.63 stress response

Dde_1775 PTS system fructose transporter -0.75 0.06 -1.00 0.50 0.38 -1.32 0.16 sugar transport

Dde_3715 multi-sensor signal transduction histidine

kinase

0.12 0.03 -1.19 0.23 0.15 -0.88 -0.24 regulation

Dde_0480 O-antigen polymerase 0.38 0.27 -1.11 -0.22 0.39 -1.15 -0.21 cell envelope biosynthesis

Dde_3469 metallophosphoesterase 0.53 0.31 0.05 -0.05 -0.04 -1.09 -0.22 protein, lipid or nucleic acid processing

Dde_3450 DNA polymerase I -2.43 -2.92 -3.45 -3.47 -3.59 -7.38 -3.36 replication

Dde_0537 ribonuclease E (rne) 0.00 -0.87 -2.09 -1.25 -1.26 -3.96 -1.01 RNA processing&

Dde_2512 transcription elongation factor GreA 0.34 0.15 -0.61 0.34 0.17 -1.04 0.13 transcription#

Dde_2672 hypothetical protein -0.68 -0.57 -1.61 -0.61 -0.89 -2.22 -0.60 unknown&

Dde_1114 conserved hypothetical protein -3.91 -3.62 -4.59 -3.67 -4.32 -5.97 -4.11 unknown&

Dde_2076 cytochrome B561 -0.59 -0.36 -0.68 -0.57 -0.31 -1.57 -0.67 electron transfer&

Dde_1175 RNA-binding protein -0.68 -0.20 -1.34 -0.89 -0.57 -2.78 -0.68 unknown

Dde_2414 Hypothetical -0.24 -0.03 -0.45 -0.25 -0.05 -1.32 0.12 unknown

Dde_1807 hypothetical -0.63 -0.55 -0.72 -0.44 -0.46 -1.63 -0.38 B6 dependent amino acid metabolism&

Dde_1028 AsmA protein, putative -0.28 -0.31 -0.71 -0.33 -0.30 -1.94 -0.05 cell envelope biosynthesis&

Dde_1806 apolipoprotein N-acyltransferase 0.10 0.15 -0.02 0.05 0.13 -1.48 0.22 lipoprotein biosynthesis, cell envelope biosynthesis

Dde_0249 GTP cyclohydrolase subunit MoaC -0.70 -0.53 -0.54 -0.32 -0.17 -2.50 -0.57 molybdenum cofactor biosynthesis protein C&

Dde_0709 molybdopterin biosynthesis, protein A -0.52 -0.37 -0.29 -0.26 -0.24 -2.16 -0.24 cofactor biosynthesis&

Dde_3228 molybdenum cofactor biosynthesis protein

(moeA-1)

-0.62 -0.30 -0.32 -0.19 -0.13 -2.07 -0.09 Mo cofactor biosynthesis&,

Dde_1390 molybdenum cofactor synthesis domain-

containing protein

-0.82 -0.45 -0.32 -0.44 -0.17 -2.01 -0.12 cofactor biosynthesis&

Dde_2944 4Fe-4S ferredoxin -0.33 -0.10 -0.12 -0.39 -0.08 -1.64 -0.06 electron transfer

Dde_2943 aldehyde ferredoxin oxidoreductase (aor-

2)

-0.38 -0.14 0.01 -0.44 -0.12 -1.61 -0.16 electron transfer

Dde_0230 molybdopterin biosynthesis -0.89 -0.33 -0.22 -0.85 -0.26 -2.10 -0.37 cofactor biosynthesis&,

Cluster VI

Dde_0382 ParA homolog ATPase -4.18 -4.40 -3.93 -2.99 -2.38 -4.64 -4.81 chromosome partitioning, cell division&

Dde_3596 aspartate transaminase -1.47 -2.32 -2.50 -1.55 -1.67 -2.91 -2.96 amino acid metabolism, oxoacid metabolism#

Cluster

VII

Dde_0043 ferredoxin-like protein -0.94 -0.87 -0.12 0.14 0.05 -1.09 0.12 carbon metabolism^

(Continued)

Adaptations of Desulfovibrio alaskensis G20 to Phosphate-Limited Conditions

PLOS ONE | DOI:10.1371/journal.pone.0168719 December 28, 2016 7 / 29



of combusted sand and suspended in 20 ml of a solvent mixture consisting of 2:1:0.8 (v:v:v)

methanol:dichloromethane(DCM):phosphate buffer solution (K2HPO4, 50 mM, pH 7.4). Two

extraction steps were performed where the samples were ultrasonicated for 10 minutes, centri-

fuged for 10 min at 2500 rpm and the supernatant collected in a separatory funnel. To separate

an aqueous and organic phase, we added 20 ml DCM and deionized water and washed each

phase two times with DCM and deionized water, respectively. The lipid-containing organic

phase was collected and evaporated to dryness under nitrogen gas. An aliquot of the total lipid

extract was directly analyzed via high performance liquid chromatography mass spectrometry

(HPLC-MS) using a Dionex Ultimate 3000RS UHPLC coupled to a Bruker maXis high resolu-

tion quadrupole time-of-flight (Q-TOF) mass spectrometer with an electrospray ionization

interface (ESI) in positive ionization mode [53].

Intact polar lipids (IPLs) were separated by hydrophilic interaction (HILIC) chromatogra-

phy using a Waters Acquity UPLC BEH Amide column (3.5 μm, 2.1 x 150 mm) after [53]. The

solvent system was set from 99% A and 1% B to 5% B in 4 min and 25% B in 22.5 min and

finally raised to 50% B in 26.5 min. These conditions were held for 1 min before returning to

the initial conditions for 8 min. Column temperature was held constant at 40˚C (A: acetoni-

trile:dichloromethane:NH3(aq):HCOOH, 75:25:0.01:0.01, v/v; B: methanol:water:NH3(aq):

HCOOH, 50:50:0.4:0.4, v/v).

IPLs were identified by exact masses and fragmentation patterns using automated data-

dependent fragmentation of base peak ions and compared to commercially available standards

and literature data [27, 54, 55]. To quantify changes in the relative abundances of IPLs, peak

areas were corrected for their response factors using commercially available standards for

Table 1. (Continued)

Gene ID Product 5d, 0 5d, 10 5d, 500 10d, 0 10d, 10 10d, 500 Veg. 10 Function

Cluster

VIII

Dde_1261 integral membrane sensor hybrid histidine

kinase

0.65 0.40 0.18 0.65 0.44 0.13 1.38 regulation^

Dde_1256 fumarate reductase, iron sulfur protein 0.61 0.20 0.11 0.62 0.28 0.00 1.13 carbon metabolism

Dde_1260 Fis family transcriptional regulator 0.68 0.36 0.23 0.69 0.41 0.03 1.29 regulation^

Dde_1258 Fumarate reductase respiratory complex 0.71 0.26 0.22 0.65 0.26 -0.05 1.33 carbon metabolism^

Dde_2673 ferrous iron transporter component feoA -3.40 -5.45 -4.14 -4.18 -5.01 -6.04 -1.74 iron transport&,

Dde_1254 fumarate hydratase, class I -0.11 -0.70 -0.17 -0.36 -0.51 -0.86 1.09 carbon metabolism

Dde_0153 hypothetical protein 0.07 0.04 0.08 -0.02 -0.01 0.06 2.52 unknown, in operon with Mo ABC transporter

permease and a periplasmic Mo-binding protein

Cluster IX

Dde_3201 cobyrinic acid ac-diamide synthase -3.30 -5.04 -4.47 -5.88 -5.42 -6.71 -3.98 cofactor biosynthesis&,

Dde_3707 hypothetical -0.11 -0.93 -2.28 -2.51 -3.77 -3.70 -1.93 unknown

Dde_3774 hypothetical 1.04 -0.87 -1.89 -1.60 -1.92 -2.39 -1.69 unknown

Dde_3773 hypothetical protein -1.10 -2.19 -3.72 -2.85 -3.15 -4.27 -2.98 unknown

&Differences between phosphate replete and phosphate starved cultures decrease 15 days after the onset of stationary phase by more than 0.59 units or

change sign in at least one phosphate starved culture.
# Fitness defect increases by more than 0.59 units in phosphate replete culture 15 days after the onset of stationary phase.
$ Fitness defects increase in both phosphate starved cultures 15 days after the onset of stationary phase by more than 0.59 units.
^Fitness benefits increase in one or both phosphate starved culture by more than 0.59 units 15 days after the onset of stationary phase.

Blue shading identifies genes with predicted direct roles in phosphorus homeostasis, rose-colored shading identifies genes with predicted or confirmed

direct roles in the biosynthesis of the cell envelope, yellow shading identifies genes with predicted roles in transport and green shading shows genes

encoding the Hmc complex. The same color scheme identifies the same genes in Fig 3.

doi:10.1371/journal.pone.0168719.t001
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phosphatidylglycerol diC16:0 diacylglycerol (16:0 PG), phosphatidylethanolamine diC16:0 dia-

cylglycerol (16:0 PE), C18:1 cardiolipin (18:1 cardiolipin) and monogalactosyl diacylglycerol

with multiple fatty acid combinations (MGDG; Avanti Polar Lipids, Inc. USA). Commercial

standards for ornithine lipids (OL), N-acyl-PE, N-acetyl-PE and glycuronic acid diacylglycerol

(GADG) standards were not available. Thus, we used the observed range of response factor for

tested IPL standards, including diC16:0 phosphatidylcholine (16:0 PC) and digalactosyl diacyl-

glycerol with multiple fatty acid combinations (DGDG; Avanti Polar Lipids, Inc. USA) to

assume that apolar compounds that do not ionize very well were underestimated at most eight

times relative to PE and that polar compounds that ionize well were overestimated at most

three times. The concentrations of injected lipid extracts were adjusted according to the linear

range of the instrument, which was three orders of magnitude, from 0.1 to 10 ng on column,

for the commercially available standards. Because the concentrations of individual compounds

varied strongly within a given sample, formation of dimers caused by high concentrations of

analyzed lipids could not always be avoided. Therefore, we considered the peak areas of dimers

in the quantification of lipids. S5 and S6 Tables present raw data from lipid analyses and lipid

quantification using response factors.

Epifluorescence, scanning and electron microscopy

Cells analyzed by epifluorescence microscopy and transmission electron microscopy (TEM)

grew at 27˚C and were harvested during vegetative growth. Cells examined by epifluorescence

microscopy were fixed by 2.5% glutaraldehyde in ddH2O, stained by Sybr Green stain for

nucleic acids (ThermoFischer Scientific, catalog number S7563), imaged using a Zeiss Axio

M1 fluorescence microscope (Carl Zeiss Microscopy, LLC), counted and measured using

Axiovision Imaging Software (Carl Zeiss Microscopy, LLC). S7 Table presents data used to

plot growth curves for wild-type G20 and various mutants and measurements of cell sizes.

Cells harvested for TEM were submerged in fixative comprised of 0.1 M sodium cacodylate,

0.05% CaCl2 and 2.5% glutaraldehyde at pH 7.4, and stored at 4˚C for at least 2 hours. Samples

used for scanning electron microscopy (SEM) were washed three times in the buffer contain-

ing 0.1 M sodium cacodylate, 0.05% CaCl2 and 0.2M sucrose at pH 7.4, and three times with

ddH2O, dehydrated in an ethanol series: 30%, 50%, 70%, 80%, 90%, 2x10min 100%; 20 min for

each step, filtered through 0.2 μm pore-size polycarbonate filter, coated with a 10 nm-thick

Au-Pd coat, and imaged using a field emission Zeiss Supra 55VP SEM with Energy dispersive

X-ray spectrometer (EDS) at 10 kV at the Center for Nanoscale Science, Harvard University.

Cells analyzed by transmission electron microscopy (TEM) were postfixed with a 1:1 mixture

of 2% osmium tetroxide (OsO4) and 3% potassium ferrocyanide and washed with ddH2O

three times. Postfixed and washed samples were incubated in 1% aqueous uranyl acetate for

one hour in the dark, washed again with ddH2O three times and dehydrated in the following

ethanol series: 50%, 70%, 90%, 2x10min 100%; 20 min for each step. After the dehydration, the

samples were submerged in propylene oxide for 1 hr and infiltrated by a 1:1 mixture of propyl-

ene oxide and Low Viscosity Embedding Media Spurr’s Kit (Electron Microscopy Sciences

Catalog number 14300) by overnight shaking. The following day, the cells were embedded in

100% Low Viscosity Spurr’s resin, dried in the oven at 60˚C for 48 hours, sectioned and

imaged by FEI Technai Transmission Electron Microscope at the W. M. Keck Microscopy

Facility at the Whitehead Institute at MIT. The widths of periplasmic spaces and the dimen-

sions of other ultrastructural features were measured in TEM images using the tools in Adobe

Illustrator.

The composition of intracellular granules in G20 cells was analyzed by epifluorescence

microscopy (Axioplan M2, Carl Zeiss, Inc.) and energy dispersive X-ray spectroscopy (EDS) at
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the Harvard Center for Nanoscience. To test for the presence of polyphosphate, the cells were

stained by 5 μg/ml of DAPI (4,6-diamidino-2-phenylindole, Sigma-Aldrich), incubated for 10

minutes in the dark and imaged with the excitation at 365/10 nm and 474/28 nm and emission

at 525/50 nm. The peak of DAPI emission spectrum shifts from 475 nm to 525 nm when

DAPI binds to polyphosphate [56] and this method is used to visualize polyphosphate granules

in environmental microbes [57]. EDS confirmed the presence of phosphorus in cells grown in

MOLS4 containing 200 μM initial phosphate.

To test for the presence of starch, the cells were stained by a 2%KI, 1% I2 (w/v) solution,

incubated for 10 minutes in the dark and visualized (474/28 nm excitation, 525/50 nm emis-

sion) [58]. This method did not reveal the presence of starch or glycogen in G20.

To test for the presence of polyhydroxyalkanoate bodies, unfixed G20 cells were stained by

Nile Red (Sigma Aldrich) using a protocol adapted from Rattanapoltee and Kaewkannetra

[59]. Briefly, 1-ml aliquots of vegetatively growing cultures were centrifuged for 1 min at

14,000 rpm, resuspended in 100 μl of 25% DMSO, microwaved for 1 min, stained by the addi-

tion of 1 mg/ml stock solution of Nile Red stain in DMSO to a final concentration of 10 μg/ml,

microwaved for 1 min, incubated in the dark for 10 minutes and centrifuged for 1 min at

14,000 rpm to remove the supernatant. The pellet was resuspended in ~25 μl of the remaining

liquid, a drop of this suspension was placed onto the glass slide, and the red fluorescence was

visualized using 474/28 nm excitation and 525/50 nm and> 610 nm emission.

Results

Growth and cell structure

D. alaskensis G20 had lower final cell densities and slower doubling times in batch cultures

when the initial concentrations of phosphate were lower than 10 μM (Fig 1A). The composi-

tion of cell membranes changed strikingly as a function of phosphate availability. G20 grown

in phosphate-replete cultures (500 μM) had membranes composed primarily of phospholipids

that were previously described as major lipids in other Desulfovibrio species [60, 61]: phospha-

tidylethanolamine (PE), phosphatidylglycerol (PG) and cardiolipin (CL) (Fig 1B; S3 Fig). Two

additional phospholipids were detected in trace amounts and were identified as N-acyl-PE

with varying chain lengths in the N-acyl head group (S4 Fig) and N-acetyl-PE [55]. Further-

more, we observed trace amounts of two unidentified diacylglycerol lipid series with molecular

ions in the mass range from m/z 700 to 800 and currently structurally unassigned head group

losses of 199 Da eluting at 7 min and 213 Da eluting at 8 min. Ornithine lipids (OL) were pres-

ent in traces, but glycolipids were not detectable (Fig 1B).

In contrast, the membranes of wild-type G20 contained more than 80% of monoglycosyl

diacylglycerol (MGDG), glycuronic acid diacylglycerol (MGADG) and ornithine lipids (OL)

in all phosphate-limited conditions (Fig 1B, S5 Fig). Moreover, in cultures grown with 2 μM

initial phosphate, PE, PG and CL were below the detection limit and phosphorus-free lipids

were the only lipids present. Thus, G20 responded to phosphate limitation by synthesizing

membranes that contained abundant glyco- and aminolipids.

Microscopic analyses revealed morphological differences between the cells grown in phos-

phate-replete and phosphate-limited cultures. The cell lengths were 1.6±0.3 μm (N = 120 cells)

when phosphate was plentiful (Fig 2A) and 2.2±0.3 μm (N = 120 cells, p<0.0001) in cultures

grown with 2 μM initial phosphate (Fig 2C), but the widths of cells did not change measurably

(0.46±0.04 μm vs. 0.47±0.05 μm, N = 120 cells, p<0.14). These changes increased both the sur-

face area and the volume of the curved vibrios in phosphate-limited cultures, but kept a con-

stant ratio of surface area to volume. This increase in biomass per cell contributed to the lower

sulfate reduction rates per unit biomass, even though sulfate reduction rates per cell did not
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change (46.7 fmol sulfide/cell/day produced at 200 μM initial phosphate and 46.2 fmol sulfide/

cell/day at 2 μM initial phosphate). Similarly elongated cells and increases in the surface area

of some phosphate-limited aerobic bacteria [62] are hypothesized to increase the uptake of

phosphorus into the cell [63]. To determine whether the cells contained different amounts of

phosphorus, we imaged the green fluorescence of DAPI-stained cells and analyzed their

Fig 1. Growth and lipid composition of G20 in media with different initial concentrations of phosphate. (A) Growth at 37˚C in duplicate

cultures with different initial concentrations of phosphate in the medium and growth at 30˚C with 10 μM initial phosphate. (B) The composition of

polar lipids in duplicate cultures of G20 grown at 37˚C with 500, 10, 2 and 0 μM initial phosphate. PE: phosphatidylethanolamine, PG:

phosphatidylglycerol, CL: cardiolipin, OL: ornithine lipids, MGDG: monoglucosyl diacylglycerol, GADG: glycuronic acid diacylglycerol, Other:

includes N-acetyl-PE, N-acyl-PE and two unidentified lipids with head group losses of 199 Da and 213 Da.

doi:10.1371/journal.pone.0168719.g001
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elemental composition by energy dispersive X-ray spectroscopy (Methods). Both approaches

detected phosphorus in cells grown with plentiful phosphate (Fig 2B, S6 Fig), and showed that

phosphorus was below the detection limit in the cells grown in phosphate-limited medium

(Fig 2D, S6 Fig).

To describe ultrastructural changes including those in the composition and distribution of

macromolecules in the cell wall, capsule, extracellular material and storage polymers, we

imaged the cells by TEM. Cells grown with abundant phosphate had a distinct inner

Fig 2. Transmission electron and epifluorescence micrographs of G20 from phosphate-replete and

phosphate-limited cultures. (A) Blue fluorescence of DAPI-stained G20 cells not limited by phosphorus. (B)

Green fluorescence of DAPI-stained G20 not limited by phosphorus indicates the presence of polyphosphate. (C)

Blue fluorescence of elongated, DAPI-stained G20 cells limited by phosphorus. (D) Green fluorescence of DAPI-

stained G20 cell limited by phosphate is not detectable due to the absence of polyphosphate granules. Panels (A)-

(D) are shown on the same scale. (E) Cells grown at 27˚C in MOLS4 with 200 μM initial phosphate. (F) Cells grown

at 27˚C in MOLS4 with 2 μM initial phosphate. Panels (E) and (F) are shown at the same scale shown in (F). Insets

in (E) and (F) show enlarged areas outlined by the black rectangles. Black arrows point to the inner and outer

membranes, p indicates the periplasm, Pi marks polyphosphate granules, bm labels a representative area filled with

bright material, dg marks a small dark granule.

doi:10.1371/journal.pone.0168719.g002

Adaptations of Desulfovibrio alaskensis G20 to Phosphate-Limited Conditions

PLOS ONE | DOI:10.1371/journal.pone.0168719 December 28, 2016 12 / 29



membrane and a crenulated outer membrane, both visible as thin bilayers (Fig 2E). The two

membranes enclosed the 17–42 nm wide periplasmic space (average thickness 26 nm, N = 51

points from 3 cells) containing the cell wall composed of dark, granular material. Material with

a similar, densely clustered granular appearance was present in the extracellular space. The

cytoplasm contained numerous electron-dense granules wider than 40 nm (Fig 2E), likely con-

taining polyphosphate (Fig 2B, S6 Fig). The outer and the inner membranes of cells grown

with 2 μM initial phosphate exhibited a lower contrast (Fig 2F) in comparison to the distinct,

dark bilayers of cells from phosphate-replete cultures (Fig 2E). The outer membrane of phos-

phate-limited cells formed larger crenulations and protuberances, expanding the average

thickness of the periplasmic space to 36 nm (N = 51 points from 3 cells). The cell wall and exo-

polymeric substances in the extracellular space were composed of smaller and lighter grains

relative to those observed in phosphate-replete cultures. The cytoplasm of phosphate-limited

cells contained irregularly shaped regions filled with bright material and occasional small, dark

granules (Fig 2F). The bright material resembled storage lipids or glycogen (e.g., [64, 65]) and

could also be seen in the TE micrographs of phosphate-limited, nalidixic acid-sensitive G100A

[66], the parental strain of G20. To test for the presence of starch granules or neutral lipids,

respectively, we stained the cells with KI/I2 and Nile red, respectively, but did not observe any

fluorescence in KI/I2 stained cells or patterns consistent with these storage polymers in cells

stained by Nile red (S6 Fig). The disappearance of phosphorus-rich and the synthesis of car-

bon-rich storage granules pointed to a changed balance between the metabolisms of carbon

and phosphorus and was consistent with the reported formation of glycogen by phosphate-

limited Corynebacterium [67], the formation of PHA in a marine Pseudovibrio [62] and the

increased C:P ratio in some aerobic environmental bacteria [68].

Genes important for fitness during phosphate-limited growth and the

survival of phosphorus starvation

To better characterize the system-wide response of G20 to phosphate limitation and identify

genes that underpin some of the observed compositional and ultrastructural changes, we mea-

sured the fitness of a previously described collection of G20 mutants with uniquely tagged and

mapped transposon insertions [36]. Because these measurements score fitness as the logarith-

mic changes in the relative abundances of individual mutants during competitive growth

experiments, at least four population doublings are typically required to detect the changed

abundances. These conditions cannot be easily met in phosphate-limited cultures of G20 due

to low cell densities (Fig 1A), so we developed two different experimental approaches. The first

one increased the number of doublings by two sequential transfers in MOLS4 with 10 μM ini-

tial phosphate (see Methods) and measured fitness during vegetative growth. The second one

probed the survival at three time points during phosphate starvation induced by the depletion

of phosphorus in phosphate-limited media (see Methods). This assay measured the relative

abilities of mutants to survive starvation and resume growth in nutrient-rich condition. Fitness

scores of all genes were determined relative to the scores of the same genes in starting mutant

pools grown in MOLS4 with yeast extract (see Methods).

S1 Table presents the fitness scores of all 2338 genes at all analyzed time points. The fitness

scores of most genes (2096/2338) exhibited small standard deviations across all conditions

(< 0.3) and were therefore excluded from further analyses (see Methods). Where negative, the

fitness scores of a gene reflect fitness defects of the corresponding transposon mutants, where

positive, they show benefits due to the lack of a gene. To identify genes important for the fit-

ness of G20 in phosphate-limited conditions, we applied numerical criteria described in the

Methods to the fitness scores of the remaining genes. Briefly, these criteria searched for genes
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with fitness defects or benefits that were 1.93-fold larger during phosphate-limited growth

than the starting condition and/or genes with fitness defects or benefits that were 1.93-fold

larger during phosphate starvation than at the same point during general starvation. The num-

ber of genes important for fitness in stationary phase nearly doubled after 15 days (165 genes,

7.1%, S2 Table) and the patterns of their fitness scores were less similar to other data sets (Pear-

son correlation coefficients lower than 0.75, S3 Table). Hence, we excluded this time point

from the analyses shown below.

In total, 91 genes were important during phosphate-limited growth and phosphate starva-

tion after 0, 5 and 10 days (Table 1). Based on the similarity of patterns of fitness scores across

these experimental conditions, these genes formed nine clusters with Pearson correlation

coefficients > 0.62 for the normalized fitness scores within each cluster (Table 1, Fig 3, Meth-

ods). Clusters I-IV contained 44 genes with stronger fitness phenotypes during phosphate lim-

itation, phosphate starvation or both. Thus, these genes had a potential to inform about

responses specific to the low availability of phosphorus. On the other hand, Clusters V-IX con-

tained 47 genes with large fitness defects (negative scores) in phosphate-replete control cul-

tures or large fitness benefits (positive scores) during phosphate-limited growth. As such, these

genes were more important for fitness under conditions of high rates of growth and biosynthe-

sis, i.e., when phosphate was not limiting.

Next, we asked whether the 44 genes with stronger fitness defects in phosphate-limited con-

ditions may also be important for adaptations to other growth conditions or stresses. To do so,

we compared their fitness scores measured in our and previous experiments (see Methods).

Some of the genes identified in our study also contributed to fitness to the following, previ-

ously tested conditions: survival in the presence of 20% and 10% oxygen in the headspace, 150

mM NaNO3, incubation at 42˚C, 800 mM NaCl, daily addition of 200 μM H2O2, 100 μg/ml

FCCP, 1 mM monofluorophosphate, 0.1 mM THPS, 0.01 mM selenate, sodium dodecyl sulfate

(SDS), growth on lactate/sulfate plates, pyruvate fermentation in co-cultures with Methanos-
pirillum hungatei (Mh) and Methanococcus maripaludis (Mps), respectively, and at pH 9.5, 8.5

and 6 (Fig 3). The following sections describe genes and gene products important during phos-

phate-limited growth and starvation, discuss the contributions of the same genes to fitness

under other conditions and test the roles of genes with predicted functions in the biosynthesis

of phosphorus-free lipids.

Uptake and metabolism of phosphorus. Five genes important for growth and survival at

low phosphate concentrations had direct predicted roles in the uptake of phosphate and regu-

lation of phosphorus metabolism (Table 1). Dde_1060, Dde_1061, Dde_1062 and Dde_2386

are components of the high-affinity phosphate transport system (Pst), whereas Dde_3782 is a

homolog of PhoR, a known regulator of the Pho regulon in other bacteria [69]. All five genes

had highly correlated fitness scores in our experiments (Pearson correlation

coefficient > 0.93) and large defects both during phosphate-limited growth and phosphate

starvation (Table 1). Their defects were further exacerbated after 15 days of phosphate starva-

tion (S2 Table). Comparisons with other experimental conditions revealed that these five

genes had the largest fitness deficits in phosphate-limited cultures, but were important for

growth and survival in very few other conditions (Fig 3). The contribution of PstB, a compo-

nent of the high-affinity phosphate transporter, is in agreement with the high levels of pstB
transcripts in phosphate-limited cultures of G. sulfureducens and S. meliloti [34, 70]. Other

genes with predicted roles in phosphorus homeostasis, such as a phosphate transport regulator

Dde_3780, were not important under our experimental conditions or their fitness deficits

could not be measured due to the absence of relevant mutants from the mutant pools.

Our fitness assays suggest a complex and temporally variable contribution of PhoU, the

negative regulator of the Pho regulon and a global regulator in other bacteria. Phosphate
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Fig 3. Comparison of fitness scores of genes important during phosphorus-limited growth and phosphate starvation

and seventeen other previously tested stresses or growth conditions. Genes with the potential to inform about responses

specific to phosphate-limited conditions are listed along the y-axis on the right. Experimental conditions are labeled on top, along

the x-axis. The color bar in the top right corner shows colors assigned to the numerical values of fitness scores: negative scores

representing fitness defects are blue, positive scores representing fitness benefits are yellow, and fitness-neutral scores are

black. The first seven columns starting from the left show scores measured and reported in the current study, the adjacent

seventeen columns show scores measured by previous studies and stored in the microbesonline.org database. The names of

genes with predicted direct roles in phosphorus homeostasis are labeled by light blue-colored boxes. The names of genes with

predicted or confirmed direct roles in the biosynthesis of the cell envelope are labeled by rose-colored boxes. The names of

genes with predicted roles in transport are labeled by yellow-colored boxes, those encoding the Hmc complex are labeled by

green-colored boxes.

doi:10.1371/journal.pone.0168719.g003
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limitation induces the transcription of phoU in G. sulfureducens, and a strain of S. meliloti [34,

70], and the transcription of phoU may be similarly induced in G20. However, our experi-

ments only measured a fitness phenotype in G20 mutants in the phoU homolog (Dde_2835)

after 15 days of phosphate starvation (S1 and S2 Tables). At this time point, mutants lacking

phoU (Dde_2835) had enhanced fitness in the two cultures starved for phosphate (fitness score

values 8 and 3.5, respectively) relative to the corresponding control culture. This large increase

in fitness with the increasing age of the stationary cultures may stem from a metabolically

hyperactive status and a reduced frequency of metabolically quiescent bacteria, as reported for

phoU mutants of E.coli in stationary phase [71].

G20 likely scavenges phosphorus from nucleic acids, likely from dead cells, during phos-

phate-limited vegetative growth, as suggested by fitness deficits of a ribonuclease (Dde_1781),

a putative transposase (Dde_0534) and Dde_4011, an excinuclease. Additional proteins

involved in DNA repair, recombination and RNA processing were important only 15 days

after the onset of stationary phase: Dde_0534, a putative transposase, and Dde_0173, a ribonu-

clease. Strong induction of nuclease-coding genes is also reported in phosphate-limited B.

licheniformis [72].

Metabolism and biosynthesis. Various phosphate-limited or starved bacteria have lower

abundances of gene transcripts encoding ribosomal proteins or proteins with functions in the

synthesis of amino acids, proteins, nucleotides and coenzymes [34, 70, 72]. Mutants in essen-

tial genes encoding ribosomal RNA and proteins are absent from the mutant library of G20

and their fitness could not be measured. In spite of this absence, the lower growth rates in

phosphate-limited cultures of G20 (Fig 1) imply a much lower content of phosphorus-rich

ribosomes and a much reduced cellular requirement for phosphorus during phosphate limita-

tion [19]. This likely explains the lesser importance of most genes with products that had pre-

dicted roles in the metabolism and biosynthesis of proteins, amino acids, selenoaminoacids,

nucleotides and nucleobases, lipids, quinones, polysaccharides, vitamins and co-factors, the

regulation of nitrogen metabolism and glycolysis (Table 1, S7 Fig).

The stronger fitness defect of 1,4 alpha amylase, Dde_2285 during phosphate limitation was

an exception to this general trend (Table 1), and is likely involved in the synthesis of abundant

bright intracellular granules consistent with glycogen in phosphate-limited cultures (Fig 2).

Transport. The fitness of G20 during phosphate limitation and starvation depended on

the periplasmic component of ABC-type Mn2+/Zn2+ transporter (Dde_2210) (Table 1). Based

on the large fitness defects of Dde_2210 in the presence of O2, the uncoupler FCCP and SDS

(Fig 3), lignin, during growth on thiosulfate and in media that lack a reductant, we hypothesize

that the transport of Zn2+ or Mn2+ across the cell membrane contributes to the maintenance

of intracellular redox potential and ion gradients during phosphate limitation.

A citrate-dependent iron transporter, Dde_3105, was important during phosphate limita-

tion and starvation (Table 1), but in few other previously tested conditions (Fig 3). The metab-

olism of phosphorus interacts with the metabolism of iron in some soil bacteria and pathogens

[70, 73, 74]. The transcripts of an outer membrane metal efflux protein also increase in phos-

phate-limited G. sulfurreducens [34]. Two different ABC-type transporters of dipeptides

(Dde_1329, Dde_1565, Table 1) were also important during phosphate-limited growth and

starvation. In contrast, phosphate limitation represses the synthesis of two periplasmic peptide

permeases in E. coli [75]. Given that the topological properties and stabilization of LacZ, some

amino acid transporters, ion channels, aquaporins and other membrane proteins depend on

the presence of specific lipids such as PE, CL or PG [76, 77], changed stabilities and impaired

functions of various transporters, or even alternative enzymes can be expected in the phospho-

lipid-poor membranes of G20.
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General stress response and response regulators. Microbial response to phosphate limi-

tation is thought to activate complex regulatory networks, with diverse downstream effects

and cross-talk between stresses [69, 78]. Dde_3092 encodes a heat shock protein and was more

important in phosphate-starved cultures after ten days than in the corresponding control cul-

ture (Table 1). Phosphate starvation was associated with the greatest fitness defect of

Dde_1023, a homolog of DnaK with a weak ATPase activity and function in protein folding

and response to heat shock [79] (Table 1, Fig 3). Other genes with predicted regulatory func-

tions, including Dde_1569, a number of genes regulated by the Sigma-54-dependent family of

positive activators (Dde_3712, Dde_3713, NtrB Dde_3715 and Dde_3711) and Dde_1260 and

Dde_1261, an operon containing a Sigma-54-dependent DNA-binding response regulator and

a transcriptional regulator, were more important during general starvation relative to phos-

phate starvation (Table 1, S7 Fig). The smaller defects of these genes in phosphate-limited cul-

tures are consistent with the slower growth and biosynthetic rates and activity during

phosphate starvation.

Electron transfer. Hmc, a transmembrane electron transfer complex, had fitness benefits

during phosphate-replete stationary phase and was neutral in phosphate-starved cultures

(Table 1, Fig 3). Hmc is thought to transport electrons from the cytoplasm to the periplasm

and is important for survival in the presence of O2 stress, FCCP and for growth on plates (Fig

3). Fumarate reductase (Dde_1256, Dde_1258) and fumarate hydratase (Dde_1254) had fitness

benefits during phosphate-limited vegetative growth (Table 1) and were similarly or more

mildly detrimental under other conditions when fumarate and malate are not used as the elec-

tron donors [42, 50] (S7 Fig). We tentatively attribute these observations to the impact of phos-

phate limitation on the maintenance of the membrane redox potential.

Composition and integrity of the cell envelope during phosphate limitation. Eleven

genes with predicted roles in the biosynthesis of the cell envelope and extracellular material,

and the maintenance of membrane integrity were important during phosphate limitation or

starvation (Table 1, Fig 3). Genes with fitness defects included Dde_0362, a sugar transferase,

with an expected role in the biosynthesis of lipopolysaccharide, Dde_0359, a sugar O-acyl-

transferase similar to NeuD, a protein contributing to the capsular synthesis in E. coli [80] and

Dde_2945, a phosphomannomutase/phosphoglucomutase similar to those with roles in the

synthesis of lipopolysaccharide [81]. In contrast, three genes with predicted functions in the

biosynthesis of the lipopolysaccharide, Dde_0480, Dde_1806 and Dde_1028 (homolog of

AsmA) had fitness defects only during stationary phase in phosphate-replete cultures

(Table 1).

Fourteen genes had very similar fitness patterns in our seven experiments (Pearson correla-

tion coefficient > 0.87, p< 0.0001). They had strong fitness defects in the corresponding

mutants during phosphate-limited growth or starvation or in the presence of SDS (Fig 3).

Among these were Dde_3255, a UDP-n-acetylglucosamine 2-epimerase responsible for the

synthesis of the capsular polysaccharides [80] and an operon containing Dde_2297, Dde_2298,

Dde_2299, Dde_2300 and Dde_2301. Dde_2298, Dde_2299 and Dde_2301 are the respective

homologs of MlaD, MlaF and MlaA, proteins from a complex responsible for the integrity of

outer membrane, transport of phospholipids to the inner membrane and the maintenance of

membrane asymmetry [82]. E. coli mutants lacking genes from this operon are more suscepti-

ble to lysis in the presence of SDS [82] and the same likely applies to G20 (Fig 3). Based on the

observed fitness patterns and changes in the composition of membrane lipids during phos-

phate limitation (Fig 1B), the mla pathway is involved in the maintenance of the outer mem-

brane and lipid trafficking even when phospholipids are almost entirely replaced by

glycolipids and ornithine lipids (Fig 1B).
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Biosynthesis and functions of phosphate-lacking lipids in G20. Mutants in Dde_3613

(agt) and Dde_3661 (olsF) had fitness defects primarily during vegetative growth in phos-

phate-limited cultures (Table 1, Fig 4). The closest homologs of Dde_3613 and Dde_3661 are

proteins involved in the synthesis of phosphorus-free membrane lipids. Dde_3613 is homolo-

gous to Agt, a glycosyltransferase that can synthesize both MGDG and MGADG during phos-

phate-limited growth of Agrobacterium tumefaciens [83]. Dde_3661 is homologous to OlsF,

protein that is responsible for the synthesis of ornithine lipids in phosphate-limited Serratia
proteamaculans [84]. These mutants grew equally fast and attained the same final cell densities

as the wild type when the initial concentration of phosphate was 500 μM (Fig 4A). The fitness

defects became obvious in cultures containing 10 or 2 μM initial phosphate, where the two

mutants grew more slowly and to lower final cell densities than the wild type (Fig 4B and 4C).

Of the two mutants, Dde_3613 grew more slowly and had lower final cell densities than

Dde_3661, particularly at the lowest initial concentration of phosphate (2 μM, Fig 4C).

To verify the predicted functions we analyzed the polar membrane lipids of mutants in

Dde_3613 and Dde_3661 (Fig 5). When phosphate was abundant, the membranes of both

mutants and the wild type had the same composition. However, as expected from the homol-

ogy between Dde_3613 and Agt, a phosphate-limited Dde_3613 mutant lacked any glycolipids,

but contained phospholipids and ornithine lipids (Fig 5B). Ornithine lipids increased from

<1% to nearly 20%, and their abundances were comparable to those in phosphate-limited

wild-type G20. However, these aminolipids were not able to compensate for the phosphorus

demand during membrane lipid biosynthesis at low P concentrations. Instead, the relative

amounts of the anionic phospholipids PG, N-acyl-PE and N-acetyl-PE (shown as “Other” in

Fig 5D) increased during phosphate limitation from 25% to over 50%, indicating the impor-

tance of these anionic lipids during stress response when neutral glycolipids are lacking (Fig

5D). As expected, ornithine lipids were absent from a phosphate-limited Dde_3661 mutant,

which had more than 90% of glycolipids, a higher percentage of phospholipids than the wild

type grown under the same conditions and lower cell densities at 2 μM initial phosphate (Figs

2, 4C and 5D).

To test for the presence of ultrastructural differences, we compared the TEM images of

phosphate-limited mutants in Dde_3613, Dde_3661 and the wild type (Figs 2 and 5). Only

one, smooth membrane bilayer was readily distinguishable on the outer surfaces of both

mutants. This membrane enclosed a periplasmic space that exhibited poor contrast with

respect to the inner membrane and the cytoplasm (Fig 5A and 5C). Numerous bright granules

filled the cytoplasm. The dark, grainy material was present on both sides of the outer mem-

brane (Fig 5) instead of being restricted to the periplasmic space (Fig 2), indicating changes in

the composition and distribution of polysaccharides and other macromolecules forming the

cell wall, the LPS and the capsule.

OlsF and ornithine lipids in sulfate reducing bacteria are likely to have functions under a

broader range of conditions than Agt and glycolipids. For example, eight marine Desulfovibrio
sp. grown under conditions that are not phosphate-limited have an overall much higher con-

tent of ornithine lipids that also depends on the growth temperature [61]. Fitness assays of

G20 did not identify Dde_3661 (ΔolsF) as more important at 42˚C than 30˚C, but mutants in

this gene have mildly enhanced fitness in the presence of 1 mM Tetrakis(hydoxymethyl)phos-

phonium sulfate (THPS) and 1 mM monofluorophosphate (MFP, FPO3
2-) (fitness score values

0.69 and 0.5, respectively). THPS is commonly used in the oil industry to prevent the growth

of sulfate reducing bacteria [3] and its mode of action involves the release of reactive aldehydes

that cross-link cell envelopes and proteins. MFP is a selective inhibitor of the sulfate reduction

pathway and also releases cytoplasmic fluoride ion, inhibiting enzymes that rely on hydroxide
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ion for catalysis (e.g. enolase) [51]. Therefore, we hypothesize that treatments of sulfate reduc-

ing microbes with MFP or THPS may be more efficient during phosphate limitation.

A Dde_3613 mutant grew poorly in phosphate-limited media (Fig 4B and 4C). This is con-

sistent both with the roles of MGDG and GADG as the major substitutes for phospholipids in

wild-type G20 and the larger proportion of phospholipids in this mutant (Fig 5). Because

Dde_3613 (Agt) was only important for fitness during phosphate limitation (Fig 3) and G20

did not contain even trace amounts of glycolipids during growth with 500 μM initial

Fig 4. Growth of wild-type G20 and mutants unable to synthesize ornithine lipids, Dde_3661 (ΔolsF), or

glycolipids,Dde_3613 (Δagt). (A) Growth curves in the presence of 500 μM initial phosphate, when growth is

not limited by phosphate. (B) Growth curves in the presence of 10 μM initial phosphate, when growth is limited

by phosphate. (C) Growth curves in the presence of 2 μM initial phosphate, when growth is limited by

phosphate. Legend in panel (A) applies to all panels.

doi:10.1371/journal.pone.0168719.g004

Fig 5. The ultrastructure and composition of polar lipids of Dde_3613 (Δagt) and Dde_3661 (ΔolsF). (A)

Representative TEM of the Dde_3613 mutant. Bm marks a representative area filled with bright material. Black

arrows point to the inner and outer membranes, p indicates the periplasm. (B) Polar lipid composition of the

Dde_3613 mutant grown at different initial phosphate concentrations. (C) Representative TEM of the Dde_3661

mutant. Bm marks a representative area filled with bright material. (D) Polar lipid composition of the Dde_3661

mutant grown at different initial phosphate concentrations. (A) and (C) are shown on the same scale shown by the

scale bar in panel (C). Abbreviations for the polar head groups: PE is phosphatidylethanolamine, PG is

phosphatidylglycerol, CL is cardiolipin, OL is ornithine lipids, MGDG is monoglycosyl diacylglycerol, GADG is

glycuronic acid diacylglycerol. Other lipids include N-acyl-PE and N-acetyl-PE and two unidentified lipids with head

group losses of 199 Da and 213 Da.

doi:10.1371/journal.pone.0168719.g005
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phosphate (Fig 1B), glycolipids appear to be produced specifically in response to phosphate

limitation. To the best of our knowledge, glycolipids were not detected by previous studies of

@-Proteobacteria, although the genomes of more than 50 other species and strains contain agt
homologs (BLAST threshold e-value < e-100). Based on our data, we predict that these

microbes will synthesize glycolipids only when limited by phosphate.

Discussion

Studies of phosphate limitation have greatly benefited from the genetic tractability of E. coli
and B. subtilis, but the responses of these organisms may differ greatly from those of environ-

mental microbes adapted to growth at low phosphate concentrations [19, 68]. Various marine

Alphaproteobacteria and Flavobacteria remodel their lipids during phosphorus starvation, but

appear to do so less completely, retaining 20% or more of phospholipids [18, 85]. The near

absence of phospholipids is reported in phosphate-limited continuous cultures of Gammapro-

teobacteria Pseudomonas fluorescens NCMB 179 and P. diminuta [16, 17], as well as in early

stationary-phase cultures of phosphate-limited freshwater Actinobacteria, Alpha- and Gam-

maproteobacteria [19]. Although these phylogenetically and physiologically diverse bacteria

exhibit a similar trend toward phosphorus-lacking lipids, the synthesis of MGDG as the major

glycolipid appears to be a distinct feature of phosphorus-limited G20. Similar prevalence of

MGDG was previously reported in environmental samples [20, 21], but not in culture

experiments.

The presence of neutral MGDG as the main membrane lipid in phosphate-limited G20 and

the frequency of very similar agt homologs in numerous @-Proteobacteria suggest that: 1.

These organisms contribute to the levels of MGDG in the suboxic and the anoxic zones of the

Black Sea and the Eastern Northern Tropical Pacific [20, 21] and 2. Microbes at these sites

experience phosphorus limitation. Other possible sources of MGDG in these environments

are anaerobic or microaerophilic microbes with agt homologs, e.g., Epsilonproteobacteria

(Arcobacter, Sulfurovum and Thiovulum sp.) and some Planctomycetes, but it remains to be

determined whether they accumulate MGDG or other lipids under phosphate-limiting condi-

tions. Further confirmation of widespread phosphorus limitation in these environments may

also come from transcriptomic studies, if transcripts of agt and components of the Pho regulon

in environmental samples occur in the same samples.

Our study shows the nearly complete replacement of phosphorus containing lipids by lipids

devoid of that element in a sulfate reducing bacterium under laboratory conditions. Further-

more, our data demonstrate additional changes in the composition of the cell envelope (Fig 1,

Table 1) during phosphate-limited growth of G20 and identify various genes that are impor-

tant for fitness both during phosphate limitation or the survival of phosphorus starvation, as

well as in the presence of stresses induced by environmental factors and man-made inhibitors

(Fig 3). These observations suggest that the availability of phosphorus may modify the micro-

bial response to various environmental and anthropogenic stressors. System-wide assays and

mutant libraries provide valuable tools by which to test this prediction.

Conclusions

Slower growth, nearly complete replacement of phospholipids by glycolipids and ornithine lip-

ids, synthesis of carbon-rich intracellular granules, an increase in the cell length and changed

appearances of the outer membranes, peptidoglycan and exopolymeric substances accompany

phosphate-limited growth of the sulfate reducing bacterium Desulfovibrio alaskensis G20

at< 20 μM PO4
3-. Fitness analyses with a library of transposon mutants identify 91 genes

important for the adaptation to phosphate-limited growth and starvation including genes
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involved in high-affinity phosphate uptake, transport, stress response and those that control

the composition and structure of the cell envelope. Lipid analyses of mutants lacking

Dde_3613 and Dde_3661, respectively, confirm the roles of these genes in the synthesis of gly-

colipids and ornithine lipids, respectively. Fitness assays predict impacts of phosphate limita-

tion on the microbial responses to other environmental stresses, biocides, inhibitors and

organisms. The identification of MGDG as the main phosphorus-free lipid in growing cultures

of phosphate-limited G20 supports the interpretation of abundant MGDG in some anaerobic

marine environments as a stoichiometric signal of phosphate limitation. This signal is likely

produced by heterotrophic and/or chemolithotrophic microbes that live at micromolar con-

centrations of phosphate.

Supporting Information

S1 Fig. Fitness patterns of genes important during phosphate-limited growth and for the

survival of and recovery after phosphate starvation. Hierarchical clustering analysis identi-

fied nine clusters with distances smaller than 0.5 using the Pearson correlation coefficient as a

distance metric and average linkage clustering. “Veg” denotes vegetatively growing pool cul-

tures and “stat” denotes cultures in stationary phase after 5 or 10 days of starvation at 0, 10 or

500 μM initial phosphate in the medium.

(JPG)

S2 Fig. Growth of wild-type G20 and four mutants carrying transposons in genes impor-

tant during phosphate limited growth: Dde_2285, Dde_1023, Dde_3255 and Dde_1565.

All mutants had fitness defects in pure cultures as well as in mutant pool experiments. G20

WT is the wild-type G20.

(JPG)

S3 Fig. Representative HPLC-MS chromatograms showing changes in the polar membrane

composition of G20. (A) Wild-type G20 in phosphate-replete cultures. (B) Dde_3613 (Δagt)
in phosphate-limited culture. (C) Wild-type G20 in phosphate-limited cultures. (D) Dde_3661

(ΔolsF) in phosphate-limited culture. The HPLC-MS chromatograms are depicted as density

maps. The x-axis shows the retention time, the y-axis shows m/z, the relative peak intensity is

shown in color. PE: phosphatidylethanolamine, PG: phosphatidylglycerol, CL: cardiolipin, OL:

ornithine lipids, MGDG: monoglycosyl diacylglycerol, GADG: glycuronic acid diacylglycerol.

Dimers form in the ion source during elevated concentrations of analyzed compounds.

(TIF)

S4 Fig. Identification of N-acylphosphatidylethanolamine (N-acyl-PE) and N-acetylpho-

sphatidylethanolamine (N-acetyl-PE) by high-resolution accurate-mass quadrupole time

of flight mass spectrometry in positive ion mode. (A) Dominant protonated N-acyl-PE ions

detected during full scan (MS1) at 7.5–8 min reflect typical acyl chain heterogeneity. The star

(�) denotes complementary ammonium adducts of the protonated molecular ions. (B) High-

resolution accurate-mass quadrupole MS2 mass spectrum of N-acyl-PE ions m/z 956.768 and

m/z 942.768. The chemical formulas represent neutral losses and products after MS2 fragmen-

tation. As with other multiple-acylated intact polar lipids, a given molecular mass of N-acyl-PE

can represent several distinct molecular species. Changes in the acyl chain length can occur

both in the diacylglycerol core lipid or the N-acyl-PE head group. For instance, at least two

species can explain the ion m/z 956.768, one with a combined diacylglycerol acyl chain length

of C32:1 and N-acyl-PE acyl chain length of C17:0 or a combination of C33:1 and C16:0 for

diacylglycerol or N-acyl-PE acyl chains, respectively. (C_ Dominant protonated N-acetyl-PE

ions detected during full scan (MS1) at 8.5–9.5 min. The star (�) denotes the complementary
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ammonium adducts to the protonated molecular ions. (D) High-resolution accurate-mass

quadrupole MS2 mass spectrum of N-acetyl-PE ions m/z 732.517 and m/z 720.517. The neutral

loss of 183.03 observed for these ions indicates the loss of the N-acetyl-PE head group.

(TIF)

S5 Fig. Identification of ornithine lipids (OL) and monoglycosyl diacylglycerol (MGDG)

by high-resolution accurate-mass quadrupole time of flight mass spectrometry in positive

ion mode. (A) Dominant protonated OL ions detected during full scan (MS1) at 12.5–13 min

reflect typical acyl chain heterogeneity. (B) High-resolution accurate-mass quadrupole MS2

mass spectrum of OL ion m/z 639.567, showing major fragments and their chemical formulas.

As with other multiple-acylated intact polar lipids, a given molecular mass of OL can represent

several distinct molecular species. At least two species can explain the ion m/z 639.567, one

with an acyl chain length of C16:0 for the ß-OH fatty acid amide-linked to the ornithine head-

group and a C17:0 acyl chain length for the fatty acid esterified to the hydroxyl group and vice

versa. (C) Dominant MGDG ions with ammonium adducts detected during full scan (MS1) at

4–5 min. (D) High-resolution accurate-mass quadrupole MS2 mass spectrum of MGDG ion

m/z 788.626. The chemical formulas represent neutral losses and products after MS2 fragmen-

tation.

(TIF)

S6 Fig. Phosphorus content and the staining patterns of G20 stained by Nile red. (A) EDS

spectrum of cells grown in the phosphate-replete medium contains a phosphorus peak. Inset:

Scanning electron micrograph of analyzed cells on a polycarbonate filter. (B) EDS spectrum of

cells grown in phosphate-limited medium lack a detectable phosphorus peak. All samples were

coated by Au and Pd. (C) Epifluorescence micrograph of cells stained by Nile red after growth

in phosphate replete medium. (D) Epifluorescence micrograph of cells stained by Nile red

after growth in phosphate limited medium. The scale shown in panel (D) applies to both pan-

els (C) and (D).

(JPG)

S7 Fig. Fitness scores of important genes from Clusters V-IX in our experiments and in

the presence of other stresses. The top seven rows show fitness scores measured in our exper-

iments. Subsequent rows show fitness scores of the same genes during the survival in the pres-

ence of 20% and 10% oxygen in the headspace, 150 mM NaNO3, incubation at 42˚C, 800 mM

NaCl, the daily addition of 200 μM H2O2, 100 μg/ml FCCP, 1 mM monofluorophosphate, 0.1

mM THPS, 0.01 mM selenate, sodium dodecyl sulfate (SDS), growth on lactate/sulfate plates,

pyruvate fermentation in co-cultures with Methanospirillum hungatei (Mh) and Methanococ-
cus maripaludis (Mps), respectively, and at pH 9.5, 8.5 and 6.

(JPG)

S1 Table. Fitness scores of all 2338 genes at all analyzed time points.

(ZIP)

S2 Table. Genes important for survival after 15 days of phosphate starvation. Genes are

important if: 1. their fitness scores differ by more than 0.95 between the phosphate replete cul-

ture in stationary phase and the two phosphate starved cultures; 2. the fitness score during P-

limited vegetative growth is> 0.95 or <-0.95, and more than 0.58 units different from the

scores in phosphate starved or phosphate replete culture sampled 15 days after the onset of sta-

tionary phase. Colors mark clusters of genes with Pearson correlation coefficients >0.65.

Genes with italicized functions are also important at previous time points or only during
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