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Whether it is glass, ceramics, cement, or concrete, minimizing thermal conduction through

disordered materials is a determining factor when it comes to reducing the energy consumption of

cities. In this work, we explore underlying physical processes involved in thermal conduction

through the disordered glue of cement, calcium-silicate-hydrates (CSH). We find that at 300 K,

phonon-like propagating modes in accordance with the Boltzmann transport theory, propagons,

account for more than 30% of the total thermal conductivity, while diffusons, described via the

Allen-Feldman theory, contribute to the remainder. The cumulative thermal conductivity proves to

be close to both equilibrium molecular dynamics calculations and experimental values. These find-

ings help us establish different strategies, such as localization schemes (to weaken diffusons) and

scattering mechanisms (to constrain propagons), for reduction of thermal conductivity of CSH

without sacrificing its mechanical properties. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4975159]

Minimizing thermal conduction in buildings proves to be

indispensable when it comes to reducing the energy con-

sumption and carbon footprint of cities.1 The thermal conduc-

tion through disordered materials, e.g., glass, ceramics,

cement, and concrete, dominates this massive energy loss, yet

we have not found effective ways to reduce their thermal con-

ductivity. For instance, increasing cement’s porosity lowers

its thermal conductivity, while this significantly decreases its

mechanical properties. In a community driven by interest in

superior strength and stiffness,2–5 it is imperative to seek

solutions that reduce the thermal conductivity of the construc-

tion material without decreasing its mechanical properties. In

the glass community, researchers6–13 have shown that both

phonon-like propagating modes (propagons) and diffusive

modes (diffusons) contribute significantly to the thermal

conductivity. This motivates us to obtain an in depth under-

standing of cement’s heat transport, in terms of propagon and

diffuson contributions. In this letter, we employ computa-

tional physics tools such as molecular dynamics, lattice

dynamics, Boltzmann transport equation (BTE), and Allen-

Feldman (AF) theory,8 to probe the fundamental mechanisms

of heat transport in calcium-silicate-hydrates (CSH), the bind-

ing phase of cement, at the atomic level. This helps us pro-

pose different strategies to effectively reduce the thermal

conductivity of this class of disordered materials.

The molecular structure of CSH has been the subject of

extensive research in the past decade.2,14–16 The proposed

structures are produced by introducing vacancy defects in

drierketten silicate chains of Tobermorite minerals.17 Here,

we use the molecular structure containing 501 atoms pro-

posed by Qomi et al.,2 which is in agreement with a variety

of analytical experiments. As depicted in Fig. 1(a), CSH’s

structure is composed of intra-layer calcium oxide layers

tethered by broken tetrahedral silicate chains. These defec-

tive calcium-silicate layers are negatively charged and are

neutralized by inter-layer calcium ions. The inter-laminar

spacing is also filled with nano-confined water that screens

ionic correlation forces and exhibits composition-dependent

anomalous glassy behavior.3,18 Here, the inter- and intra-

molecular interactions are described using core-only

CSH-force filed potential.19 We use large-scale atomic/

molecular massively parallel simulator package in all MD

simulations20 and adopt the Velocity Verlet finite difference

algorithm with 0.1 fs time step to fully resolve dynamics of

O-H bonds. Initially, we perform a single MD simulation in

canonical ensemble (NVT) using a Nosè-Hoover thermostat

at T ¼ 300 K for 1 ns. Subsequently, we sample at 5 statisti-

cally independent points along the NVT trajectory and run

5 ns-long simulations in micro-canonical ensemble (NVE) to

record coordinates, velocities, and kinetic and potential ener-

gies as well as heat fluxes in adequate intervals.

To calculate the thermal conductivity of CSH, jGK, we

use the Green-Kubo method within the equilibrium MD

(EMD) approach,

jGK ¼
V

3kBT2

ð1
0

h~J0 � ~Jsids; (1)

where ~Js is the volumetric heat flux vector at time s, kB is the

Boltzmann constant, V is the simulation cell volume, and h:i
denotes an average over time.21 Fig. 1(b) provides the heat

flux autocorrelation function (HFACF) and Green-Kubo ther-

mal conductivity for CSH. We find the average thermal con-

ductivity of CSH to be roughly 1.0 W/mK. Convergence

studies on 2� 1� 1, 2� 2� 1, and 2� 2� 2 supercells indi-

cate that Green-Kubo results are not size dependent as the

medium-range order in our amorphous system is considerablya)Electronic mail: mjaq@uci.edu
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smaller than the smallest side of the unit cell, see supplemen-

tary material. These results are in agreement with

homogenization-based inverse estimates calculated from mac-

roscopic thermal conduction measurements.22 However, our

EMD analysis does not provide the necessary description of

underlying physics of heat carriers in CSH and hence fails to

provide effective approaches to reduce its thermal

conductivity.

To this end, we resort to mode-dependent thermal con-

ductivity approaches to measure the contribution of each

phonon in overall thermal conductivity. Based on the single

mode relaxation time approximation (SMRT),23 we can

describe the thermal conductivity of a system via the

Boltzmann transport equation (BTE),

jBTE ¼
1

V

X
i

Civ
2
i si; (2)

where Ci, vi, and si are, respectively, the specific heat, group

velocity, and relaxation time of the ith vibrational mode.

Here, we use the classic harmonic limit of specific heat,

Ci ¼ kB. To calculate the vibrational density of states

(VDOS), VDOSð�Þ, we use both Fourier transformation of

the velocity autocorrelation function (VACF) over EMD tra-

jectories and the eigenvalue decomposition of the dynamical

matrix (EDDM).22 The eigenvalues and eigenvectors are cal-

culated using general utility lattice program (GULP) lattice

dynamics software.24,25 Fig. 2(a) presents almost identical

result of VDOS for CSH from VACF and EDDM

approaches. We note that at low frequencies, VDOS scales

with �2; VDOSð�Þ ¼ 6V�2

v3
a

, in agreement with the Debye

model, where V is the volume of the system and va is the

acoustic velocity.

For a disordered system, even at low frequencies, most

of the vibrational modes cannot be properly assigned a unique

wave vector, making it hard to predict the group velocity for

each individual mode. Except for acoustic modes, there is no

widely accepted way to predict the group velocity for a disor-

dered system. The longitudinal and transverse acoustic veloc-

ities from the slope of the dispersion curves at the gamma

point are reported in Table I. These results are in complete

agreement with the acoustic velocities calculated from the

bulk and shear moduli,25,26 see Table I for comparison. The

transverse and longitudinal acoustic velocities yield the aver-

age acoustic velocity,27 va ¼ ½13 ð 1
v3

l

þ 2
v3

t
Þ��

1
3. To obtain a quali-

tative understanding of group velocities at high frequencies,

we calculate the conventional “dispersion group velocity,”
via the forward finite difference technique at the gamma

point, see supplementary material for details. To investigate

the thermal activation degree of phonons, we compute the

participation ratio of each vibrational mode.28 This ratio char-

acterizes the fraction of atoms that vibrate at a given vibra-

tional mode. It can be expressed as 1
Pi
¼ N

P
n

P
a e�a;nðiÞ
��

ea;nðiÞÞ�2, where N is the total number of atoms and ea;nðiÞ is

the ath coordinate component of the normalized eigenvector

corresponding to the ith eigenmode of atom n. Fig. 2(b)

shows that for acoustic modes where frequency equals zero,

over 60% of atoms participate in the vibration, which is

nearly the entire structure minus nano-confined water

FIG. 2. Analysis of phonons in CSH. (a) Vibrational Density of States

(VDOS) of CSH calculated via the eigenvalue decomposition of the dynami-

cal matrix (EDDM), and Fourier transformation of the velocity autocorrela-

tion function (VACF). The blue line indicates a �2 scaling at low frequency.

(b) Participation ratio Pi of the vibrational modes, which indicates the frac-

tion of atoms vibrating in a given vibrational frequency. Modes associated

with O-H bonds are not included in the figure.

TABLE I. Longitudinal and transverse acoustic velocities for CSH obtained

from the dispersion relation and the elastic moduli.

Method vl vt

Dispersion relation 6286 3167

Elastic moduli 6012 3224

FIG. 1. The molecular structure and

thermal conductivity of CSH at 300 K.

(a) The atomic structure of glassy CSH

at Ca/Si¼ 1.7. Silicon, oxygen, hydro-

gen, intra- and inter-layer calcium

atoms are, respectively, shown in yel-

low, red, white, brown and cyan. (b)

CSH thermal conductivity predicted by

equilibrium molecular dynamics’

Green-Kubo approach. The value is in

agreement with the homogenization-

based inverse estimates, which is also

shown in the plot. The inset shows that

the normalized heat flux autocorrela-

tion function (HFACF) goes to zero

after 2 ps, indicating that MD simula-

tion reaches equilibrium.
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molecules and hydroxyl groups. However, as the frequency

increases, Pi decreases gradually to zero. Similar behavior is

also reported for other disordered systems.7,11 Such an obser-

vation already signals that phonon propagation might not be

sufficient to describe thermal conduction in CSH.

Following Larkin and McGaughey11 we calculate the

phonon relaxation time, si, using Lorentzian fit of phonon

spectral energy density function (SEDF).11 Fig. 3(a) shows

computed phonon relaxation time of each vibrational mode

in CSH. The low frequency s scales with ��2, while higher

frequencies roughly follow a ��1 trend. The ��2 scaling of

the relaxation time has also been observed in experiments

and other theoretical studies for crystals, as a result of anhar-

monic scattering.26,29 If we compute the thermal conductiv-

ity of CSH by substituting the dispersion group velocity and

the relaxation time of each vibrational mode into Eq. (2), we

get a thermal conductivity value that is an order of magni-

tude less than EMD, jBTE � jGB. This is not only because

the dispersion group velocities we get from the dispersion

relation cannot be treated as the actual group velocity for our

disordered system but also because there exist nonpropagat-

ing vibrations that do not propagate but carry heat diffu-

sively.6,7 This already suggests that the thermal conduction

can be decomposed into propagating, jpr, and diffusive, jdif,

contributions,

jvib ¼ jpr þ jdif : (3)

The contribution to thermal conductivity from diffusons

can be computed using the Allen-Feldman (AF) theory,7,9

jdif ¼
1

V

X
i

C �ið ÞDdif �ið Þ; (4)

where Ddifð�iÞ is the nonpropagating mode diffusivity. It is

given by6 Ddifð�iÞ ¼ pV2

h2�2
i

P
j 6¼i jSijj2dð�i � �jÞ, where h is the

Planck constant, Sij is the heat current operator, and d is the

Dirac delta function. In our calculation, Ddifð�iÞ is obtained

by GULP and a Lorentzian broadening of 2dxavg, where

dxavg is the average mode frequency spacing of CSH. To

compensate for the simulation box size effect, we use the

integral expression of solution to the BTE equation to

describe propagons,7,12,30

jpr ¼
2p
V

ð�cut

0

VDOS �ð ÞC �ð ÞDpr �ð Þd�: (5)

Here, �cut is the highest frequency at which modes propagate.

Dpr is the propagating mode diffusivity, Dprð�Þ ¼ 1
3
v2

asð�Þ.
This expression is obtained by the phonon-gas model within

the SMRT approximation, and it allows us to model modes

that fall in the low-frequency region through an extrapolation

scheme. This eliminates the need to measure properties of

vibrational modes near the gamma point.7,11

The propagating mode diffusivity, Dpr, and nonpropa-

gating mode diffusivity, Ddif , of CSH are calculated for all

vibrational frequencies, Fig. 3(b). Dpr is equal or greater than

Ddif for all modes, and it follows the same scaling relation as

the relaxation time si in Fig. 3(a). Here, we consider modes

whose relaxation times scale with ��2 as propagons, and

model s as

sð�Þ ¼ b��2; (6)

where b is a temperature-dependent constant. Here, for CSH at

300 K, b ¼ 3:81� 1014 s�1. We set the cut-off frequency �cut

to be 2.47 THz, where the average values of Dpr and Ddif start

to become very close to each other. Furthermore, the cut-off

frequency lies in the range (2.2–2.8 THz) in which we observe

the slope change in mean relaxation time, Fig. 3(a). This fre-

quency also falls at the far right side of Debye frequency

range. There is an uncertainty associated with the determina-

tion of cut-off frequency as it is not a clear cut value.

Nevertheless, we find that the value of the total thermal con-

ductivity is hardly affected when we move the cut-off point

within a reasonable range (2.5 6 0.3 THz). We treat modes

with �6 2:47 THz as propagons and compute their contribu-

tion to the thermal conductivity using Eq. (5). For � > 2:47

THz, modes are considered as diffusons, and we employ Eq.

(4) to predict their thermal conductivity contribution. The

cumulative thermal conductivity of CSH in the frequency

domain is presented in Fig. 4(a). jvib is slightly smaller than

jGK, but the difference is within uncertainties caused by the

choice of �cut, the AF broadening factor, and neglecting the

contribution of the nano-confined water in the inter-laminar

spacing. From our calculations, it turns out that more than 30%

of the thermal conductivity of CSH comes from propagons,

while 70% is attributed to the contribution from diffusons. Our

convergence study shows that jvib is not affected by the size of

the simulation box, see supplementary material.

Incorporating macroscale porosity in the CSH matrix is

the traditional approach to decrease its thermal conductivity.

According to the mean field homogenization theory,22,32,33

also known as the effective medium theory, both bulk

FIG. 3. Phonon relaxation time and mode diffusivity in CSH. (a) Relaxation

time of each vibrational mode si calculated from fitting phonon spectral

energy density function (SEDF). si scales with ��2 at low frequencies and

shows a scaling that is closer to ��1 at higher frequencies. The inset shows

the Lorentzian fit of the SEDF at a certain vibrational mode. (b) Propagating

mode diffusivity Dpr and nonpropagating mode diffusivity Ddif for each

vibrational mode. Dpr also shows a ��2 scaling for the low-frequency region.

We present results for three cut-off frequencies of 2.2, 2.47, and 2.8 THz

that separate propagons and diffusons.
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modulus and thermal conductivity of CSH decrease with

increasing pore volume fraction, see Fig. 4(b) and supple-

mentary material for details. Here, we propose an alternative

approach to tune the thermal conductivity of CSH without

losing its stiffness properties. We can diminish the contribu-

tion of propagons by exploiting the notion of the size effect.

Such solutions effectively reduce the mean free path of prop-

agons, Ki
pr–pr, by scattering the low-frequency acoustic

waves. In practice, we can achieve this by mixing CSH with

mismatch nanoparticles with the condition that their mean

separation distance, �Ksep, is comparable to the propagon

mean free path, �Ksep < Kpr–pr. Assuming that propagon-

propagon scattering and propagon-nanoparticle scattering

are statistically independent processes, the Matthiessen

rule34 provides their combined action as follows:

1

Ki
eff

¼ 1
�Ksep

þ 1

Ki
pr–pr

; (7)

where Ki
eff is the effective mean free path of the ith propagat-

ing mode located in the low-frequency acoustic region.

Assuming spherical nanoparticles with diameter of a few

nanometers and bulk mean free path of phonons much

greater than their diameters, then according to the modified

effective medium theory,35 the effective thermal conductiv-

ity becomes a function of the inclusion S parameter,

S ¼ Cnpvnp, where Cnp and vnp are, respectively, the volumet-

ric specific heat and phonon group velocity of the nanoparti-

cle. Fig. 4(b) shows the effect of nanoparticle inclusions of

2 nm diameter with S ¼ 109 and 1011J=sm2K. The increase

in volume fraction of nanoparticles, fv, decreases the contri-

bution of the propagons and the thermal conductivity as a

result, while nanoparticles’ S parameter does not alter ther-

mal conductivity significantly. If we choose nanoparticles

that render higher bulk modulus Ki than CSH, the effective

bulk modulus can be increased by nanoparticle inclusions.

Therefore, by adding appropriate nanoparticles into the CSH

system, both thermal and mechanical properties can be

improved. Based on the effective medium theory, if we fabri-

cate such a nanocomposite, the aforementioned scattering

mechanism would only reduce jpr � 0:3jvib. However, the

presence of nanoparticles might further alter propagon-

diffuson population and subsequently affect the mode-

nanoparticle interaction. This would potentially decrease the

thermal conductivity below the amorphous limit and requires

full atomistic simulation for further verification. Furthermore

exploiting the ideas in topological constraints theory36 and

dopant-induced phonon localization37 might prove to be

worthwhile venues to reduce jdif .

See supplementary material for more details on simula-

tion convergence, dispersion curves, and effective medium

theory.
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