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Abstract

Meta-analyses suggest that the published literature represents only a small minority of the total 

data collected in biomedical research, with most becoming ‘dark data’ unreported in the literature. 

Dark data is due to publication bias toward novel results that confirm investigator hypotheses 

and omission of data that do not. Publication bias contributes to scientific irreproducibility and 

failures in bench-to-bedside translation. Sharing dark data by making it Findable, Accessible, 
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Interoperable, and Reusable (FAIR) may reduce the burden of irreproducible science by increasing 

transparency and support data-driven discoveries beyond the lifecycle of the original study. We 

illustrate feasibility of dark data sharing by recovering original raw data from the Multicenter 

Animal Spinal Cord Injury Study (MASCIS), an NIH-funded multi-site preclinical drug trial 

conducted in the 1990s that tested efficacy of several therapies after a spinal cord injury (SCI). 

The original drug treatments did not produce clear positive results and MASCIS data were stored 

in boxes for more than two decades. The goal of the present study was to independently confirm 

published machine learning findings that perioperative blood pressure is a major predictor of SCI 

neuromotor outcome (Nielson et al., 2015). We recovered, digitized, and curated the data from 

1125 rats from MASCIS. Analyses indicated that high perioperative blood pressure at the time 

of SCI is associated with poorer health and worse neuromotor outcomes in more severe SCI, 

whereas low perioperative blood pressure is associated with poorer health and worse neuromotor 

outcome in moderate SCI. These findings confirm and expand prior results that a narrow window 

of blood-pressure control optimizes outcome, and demonstrate the value of recovering dark data 

for assessing reproducibility of findings with implications for precision therapeutic approaches.

Keywords

Data science; Metascience; Neurotrauma; Reproducibility; Spinal contusion; Motor recovery; 
Autonomic; Hemodynamics

Introduction

The current system of biomedical research has generated enormous gains in knowledge, 

helping improve health outcomes over the past century. However, meta-analyses focusing 

on the practice of science have identified shortcomings in scholarly communications that 

limit the full potential of biomedical research. Estimates suggest that only 50% of completed 

clinical and preclinical studies are reported in the published literature (Chan et al., 2014). 

In addition, up to 85% of all biomedical research investment in data collection fails to yield 

publications, equating to a loss of over $200 billion in research investment worldwide per 

year (Chalmers & Glasziou, 2009; Røttingen et al., 2013). A consequence of failure to 

publish is “dark data”, where large quantities of research data remain locked away in hard-

drives and file cabinets in formats difficult to access by the public or other interested parties 

(CMAJ, 2014). Furthermore, the published literature often reflects summaries of methods, 

protocols, and experimental results (e.g., p values, means, standard errors, graphs), which 

are not as informative as granular subject-level data used to derive these statistics (Chan et 

al., 2014). Making dark data accessible would improve the return on research investment by 

granting more people access to re-analyze and explore scientific data (Ferguson et al., 2014).

To improve value of biomedical research investment, Mueck (2013) and Wilkinson, et al. 

(2016) proposed making raw biomedical research data Findable, Accessible, Interoperable, 

and Reusable (FAIR). The FAIR data stewardship principles have been endorsed by the US 

National Institutes of Health (NIH) and major publishers. A major source of dark data are 

small granular data sets collected by laboratories over the course of day-to-day research, 

so called “long-tail data” (Ferguson et al., 2014). Long-tail data contain useful information 
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such as non-targeted endpoints of experiments, alternative measures, and pilot data. In 

addition, long-tail data include results from failed experiments and ancillary records to 

published studies that were never published or disseminated. In animal research, such dark 

data often are recorded in veterinary care logs that are not considered primary endpoints 

in biomedical experiments. Recent efforts to collect and analyze dark data using advanced 

machine learning have yielded new findings with clinical implications (Hawryluk et al., 

2015; Hawryluk et al., 2020; Nielson et al., 2015; Readdy et al., 2016). Specifically, by 

applying modern machine intelligence tools to archived data we discovered that mean 

arterial blood pressure (MAP) in the perioperative phase of SCI is a robust predictor of 

neuromotor recovery (Nielson et al., 2015).

This initial MAP finding relied on data recovered from one center from the multicenter 

animal spinal cord injury study (MASCIS), a preclinical drug trial conducted in the 

1990s to compliment the National Acute SCI Study (NASCIS) human clinical trials 

comparing several experimental therapies against the anti-inflammatory glucocorticoid 

methylprednisolone in thoracic SCI. MASCIS had an enormous impact on the spinal cord 

injury (SCI) field. The consortium developed and validated the NYU-Impactor device to 

model contusive SCI (Constantini & Young, 1994), and standardized a locomotor outcome 

scale for rats (Basso et al., 1995; Basso et al., 1996). Both the NYU-Impactor and BBB 

locomotor scale remain widely used throughout preclinical SCI research (Young, 2002). 

However, the results of the treatment effects in MASCIS were never published.

The goals of the present project were to recover these dark data and make them FAIR, and 

to perform a multicenter replication/cross-validation of the previous single-center, machine-

learning discovery that MAP predicted neuromotor outcome (Nielson et al., 2015). MASCIS 

data from the Ohio State University was previously used as our hypothesis generation 

dataset, where the finding about the negative impact of perioperative hypertension on SCI 

outcomes was discovered using a novel form of machine intelligence called topological data 

analysis (TDA) (Nielson et al., 2015). In the present study we used data from the remaining 

7 sites as external cross-validation data to test the reproducibility of this hypothesis using 

traditional, confirmatory analytics.

Our team worked with original MASCIS consortium members to recover additional 

multicenter preclinical data collected across the study sites. After assembling a larger, 

and more representative MASCIS dataset from recovered paper records, we tested whether 

the Nielson et al. (2015) finding could be independently replicated using recovered data 

from the other MASCIS sites. Concurrent with this publication, we are releasing the 

recovered MASCIS data as a citable dataset (doi:https://doi.org/10.34945/F5QG66) through 

the newly formed Open Data Commons for SCI (http://ODC-SCI.org), a public data sharing 

infrastructure (Callahan et al., 2017; Fouad et al., 2020). This serves our two adjacent 

purposes: providing meaningful scientific contributions to the field by cross-validating a 

clinically relevant finding, and converting MASCIS dark data and the millions of dollars 

spent on their acquisition (NIH R01 NS032000) into FAIR data that can continue to fuel new 

discoveries for SCI research into the future (Wilkinson et al., 2016).
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Methods

MASCIS Data

Between 1993 and 1997, the NIH funded a consortium of eight laboratories (Wise Young, 

contact PI) to validate and standardize the MASCIS/NYU Impactor device used to give rats 

contusive SCI (Constantini & Young, 1994), and test promising treatments in a rat model 

for thoracic SCI. There were three studies in MASCIS. In 1994, the MP94 study assessed 

the effects of methylprednisolone (MP) on graded rat SCI across 3 injury severities (12.5, 

25 and 50 mm weight drop contusions). The second study, in 1995 (YM95), assessed the 

effects of thyrotropin releasing hormone analogue YM14673 on the same SCI models. Both 

MP and YM14673 had been shown to improve recovery following a SCI (Behrmann et 

al., 1994; Constantini & Young, 1994; Faden, 1989). The third study (MY96) compared 

MP94 and YM95 protocols from the preceding years that the consortium determined were 

most successful. All centers executed the same methods and protocols, and all was approved 

by each institution’s respective Institutional Animal Care and Use Committee. The centers 

were: Ohio State University (Center 1), University of California - San Francisco (Center 3), 

Alfred I. DuPont Institute, Georgetown University Medical Center, Medical University of 

South Carolina, New York University, University of Florida - Gainesville, and Washington 

University School of Medicine (note we were not given explicit permission to re-identify 

these centers, but this information is available upon request). The protocols established for 

MP94 remained relatively unchanged until MY96. A notable exception was the exclusion of 

the 50 mm injury severity, which was too severe to reliably measure recovery. Because we 

were not able to recover data enough data from YM95, our current study focused on the data 

collected in MP94 and MY96.

MASCIS Animals

Briefly, adult rats (age 77 ± 2 days) were randomly assigned to a graded contusion severity 

condition of either a 12.5, 25, or 50 mm weight drop for MP94, and only 12.5 and 25 

mm for MY96 at thoracic level 9–10 (T9–10). Animals were assigned at random to a 

treatment group (MP94, Supplemental Table 1; MY96, Supplemental Table 2). All groups 

included equal number of males and females, and animal assigned to different contusion 

severity conditions. Perioperative systolic and diastolic blood pressure was monitored 

after the animal was anesthetized during the contusion surgery using an arterial catheter. 

The perioperative blood pressure values were recorded three different times during the 

procedure: within 20 min before to the moment of the SCI; at the moment of injury which 

was distinguished by a sharp spike in the blood pressure recording; and within the 20 min 

after the injury. Rats assigned to the acute survival condition were euthanized 48 h post 

SCI, and those in the chronic survival condition were evaluated using the Basso-Beattie-

Bresnahan (BBB) locomotor scale (Basso et al., 1995; Basso et al., 1996) 2 days post SCI, 

and once per week for 6 weeks. All data collection were performed under institutionally 

approved animal care and use committee protocols at the constituent sites, adhering to 

federal standards.
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Legacy Data Retrieval

Our team worked with the original MASCIS team to track down the multicenter preclinical 

data collected by MASCIS across all sites. We learned that during the trials, copies of all 

data sheets from all centers, including surgery records, outcome measures, notes, etc., were 

sent to NYU (the primary center for MASCIS) to be analyzed. The treatment protocols in 

the study did not return significant findings, and the results of the treatment effects were 

never published. Shortly after MASCIS was concluded in 1997, the PI moved from New 

York University to Rutgers University and all data sheets, hard disks, computers, reports, 

protocols, and study materials were boxed up into 3 full sized moving trucks and stored in 

a commercial storage unit in Piscataway, New Jersey in a large storage unit (Neff, 2018). 

Our team of data archeologists gained access to the storage unit to search for MASCIS data 

from all study sites over two afternoons. We retrieved a few floppy disks that putatively 

contain records from the study, but we only had partial success in retrieving these data due 

to a combination of format obsolescence and ‘bit rot’ that occurs as magnetic media ages. 

In addition, we retrieved thousands of paper records which were scanned and converted to 

PDFs (Neff, 2018). The paper records were manually curated and organized into spreadsheet 

files, as had been done with the first iteration of Ohio State University data curated in the 

VISION-SCI repository (Nielson et al., 2014). Based on the results reported in the current 

paper (Fig. 1) we can surmise that the storage unit contains additional records buried within 

it or that data are lost to bit rot given the discrepancies in the intended sample size and the 

recovered sample size. That said, we have little reason to presume that the recovered data are 

not a representative sample of the population level effects.

Data Entry and Curation

After studying original documents, protocols, and data sheets, we created a digital data 

template to digitize the data we recovered. When appropriate, we matched data fields from 

the hard copy data sheets to common data elements (CDEs) used by SCI data repositories 

(Nielson et al., 2014). Unique data fields were created for variables that were not CDEs.

As the data was digitized and the dataset populated, the goal was to enter the data as it 

was originally collected and written. However, some curation took place during data entry 

by fixing simple errors made by the original data creators. This level of curation required 

little field expertise, and involved transforming data to its intended form. For example, if the 

original protocol requested an animal’s temperature to be written in Celsius and the original 

data creator wrote the temperature in Fahrenheit, we converted those value back to Celsius. 

Another example was transforming values from milligrams (mg) to micrograms μg) when 

the protocol and data sheet were intended for the data to be entered as micrograms. We also 

correct grammatical and spelling errors made by the original data creator when appropriate 

(e.g., then vs. than grammatical errors).

Though rarely employed, occasionally we omitted data if it could not be accurately 

recovered, and this required some domain expertise. Some information was lost or became 

illegible over the years, or when records were scanned for digitization. In these cases, it was 

inappropriate to guess the original data, and our team opted to leave those data points empty 

and considered them ‘missing’ in subsequent analysis. For example, if an animal’s weekly 
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BBB scores read 2, 9, 11, 10, 12, 3, 11, the score second to last score was unexpected. While 

it is possible the second to last score was 3, it was also possible information was lost. It was 

inappropriate to fill in the expected value or guess the original score, but also inappropriate 

to disregard the legible value because it could be an outlier. In these situations we opted to 

consider the data missing in attempt to maintain data integrity and harnessed formal missing 

values analysis and robust methods to make statistical inferences in the face of missingness 

(see statistical analysis).

After we digitized all of paper records, we began our post data entry curation by looking 

at the mean, median, mode, minimum, and max values to identify errors in our database. 

For example, if the average temperature for a data field was 36.2 degrees Celsius and the 

mode is 35.9 degrees Celsius, but the max is value was 381 and the minimum was 3.72, the 

curator could fix those mistakes by assuming those were mistakes made during the digitizing 

phase when the dataset was being populated. When dealing with variables that required field 

expertise or when the curator was unsure if there was a mistake (e.g., anesthesia drug dose), 

the curator checked the values on the original data record. When that was not an option, or 

when our team was unsure about the quality of the data point after checking original records, 

we opted to leave the data point empty and consider the data point missing.

VISION-SCI Data

Previously attempts to recover MASCIS data were included in the Visualized Syndromic 

Information and Outcomes for Neurotrauma-SCI (VISION-SCI) database funded by the 

National Institute of Neurological Disorders and Stroke (NINDS) to create a data repository 

by collecting retrospective data from animal models of SCI (Ferguson et al., 2011, 2013; 

Nielson et al., 2014). VISION-SCI retrieved subject-level data of approximatively 3000 

mice, rats, and monkeys from 13 different laboratories from studies unpublished and 

published between 1993 and 2013. Part of the data incorporated into VISION-SCI came 

the Ohio State site in the Multicenter Animal Spinal Cord Injury Study (MASCIS) and was 

reported in Nielson et al., 2014. For the purposes of the current paper, these prior data from 

Nielson et al., 2014-2015 were excluded from analysis to reflect an independent replication 

of the results with subjects from non-OSU sites.

Statistical Analyses

Our analysis was performed on the dataset we created from the paper records recovered. 

After digitizing and curating the records, data was analyzed using SPSS v25 (IBM 

Chicago, IL) and the statistical programing language R v3.6.0 (R Foundation for Statistical 

Computing, Vienna, Austria) with R Studio integrated development environment (R Core 

Team, 2019; RStudio Team, 2018). Missing values analysis was run using SPSS, and the 

null hypothesis that values were missing completely at random (MCAR) was tested using 

Little’s MCAR test.

Our MASCIS dataset included weekly values for BBB and weight. Some animals had 

multiple scores per week, and an aggregated score was calculated in those cases. We were 

interested in the effects of time measured in days post SCI, perioperative blood pressure, 

sex, and contusion drop height, on BBB locomotor recovery and weight gain. Using 
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systolic and diastolic blood pressure values collected during SCI surgery, we estimated the 

perioperative mean arterial blood pressure values (MAP = (SBP + 2*DBP) / 3). Weight gain 

was calculated as the percent of change in weight (Δ%weight) from baseline weight (e.g., a 

30 g weight gain by a 300 g animal is 10% gain; Δ%weight = [weight / baseline weight] – 1 

* 100). Locomotor recovery was the change in BBB score (ΔBBB) calculated by subtracting 

the subject’s initial BBB score, recorded in the first 3 days post SCI, from the final BBB 

score before the subject expired or was perfused. A previous study has demonstrated BBB 

score does not significantly improve 22 days post SCI (Hook et al., 2004), so the final BBB 

score for a subject was used to calculate the change in BBB as long as locomotor evaluation 

took place 25 days post SCI.

We tested 4 separate Linear Mixed Models (LMM). Models were generated using lmer 

function in the R package lme4 (Bates et al., 2014), and the lmerTest package generated 

the Type III Analysis of Variance Table with Satterthwaite’s method (Kuznetsova et al., 

2017). In the first pair of LMMs, we assessed BBB locomotor recovery after SCI as the 

outcome variable. Pre-injury blood pressure (MAP) collected within 20 min of SCI was 

a fixed factor the first LMM, and blood pressure (MAP) at time of injury (distinguished 

by a sharp spike in the blood pressure recording) was a fixed factor in the second LMM. 

In addition to pre-injury or at-injury blood pressure, time (days post SCI) and contusion 

severity (drop height) were fixed factors. Center and subject with a random slope by time 

were the random factor. For the third and fourth LMMs, we assessed weight gain after SCI 

as the outcome variable, as weight after injury is frequently used as a general measure of 

health and wellbeing. Pre-injury blood pressure (MAP) was a fixed factor the third LMM, 

and at-injury blood pressure (MAP) was a fixed factor in the fourth LMM. In addition to 

pre-injury or at-injury blood pressure, time (days post SCI) and contusion severity (drop 

height) were fixed factors. Center, sex, and subject with a random slope by time were the 

random factor. To explore interactions effects from the LMMs, we applied general linear 

models (GLM) using the lm function in R. Eta squared values were generated using the 

sjstats package in R (Lüdecke, 2020) or computed by custom code.

Results

Data Provenance and Descriptive Statistics on Recovered Data

According to the original MASCIS protocol, 1200 rats were planned for inclusion in 1994, 

including experiments to validate treatment protocols, anesthesia, and outcome measures 

(Supplemental Table 1)(Fig. 1). We recovered records from n = 252 rats with 2 days post 

SCI survival (Acute protocol), and n = 489 rats with 6 weeks post SCI survival (Chronic 

protocol). Records were recovered for an additional n = 31 animals, but we were unable 

to determine with certainty the intended survival time. In sum, we recovered records for 

772 rats from MP94. The MASCIS 1996 protocol designated n = 504 rats for inclusion, 

and we recovered data for n = 353 of them (Supplemental Table 2). Prior work reported on 

132 rats from MP94 and 72 from MY96, from the OSU cohort (Center 1) was described 

and accounted for in Nielson et al. (2015). We have excluded these data from analyses in 

the current work, but are making these dark data FAIR and releasing them as a companion 

to the current paper (doi:https://doi.org/10.34945/F5QG66). Assuming all planned animals 
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were included in the experiments and excluding animals from OSU, our recovery rate for 

MASCIS 1994 was 72.28% of animals, and 81.71% of animals for MASCIS 1996 (Fig. 1). 

There are 296 rats unaccounted for from MP94, 79 from MY96, and hundreds from YM95. 

During the data archeology expedition, we were not able to search all boxes in the storage 

unit, and the unaccounted for records may still be in storage. Moreover, some centers may 

not have sent copies of all their records to NYU before the study ended (e.g., in MASCIS 

1996 internal progress reports, Center 4 contributed 11 of 72 records from the planned 

subject count, and Center 8 contributed 0 of 72 planned subject counts), which may partially 

explain why the number of animals per center in our dataset is not evenly distributed.

Of the 1125 rats in our recovered dataset from MASCIS 1994 and MASCIS 1996, none 

have data records that were complete both within a test date and across all possible repeated 

measures (time-points). It is not always clear when postoperative records ended because 

perfusion dates were not always recorded in the perfusion logs we scanned. However, 

we were able to estimate our overall data recovery rate based on surgical records, which 

describes the subject’s surgery and condition for the first 48 h post injury. Surgery record 

sheets had 64 primary variables (Supplemental Table 3). Of the 1125 rats, n = 1121 had 

surgery records with at least 1 of the 64 variables completed. Our overall data recovery 

rate for surgery records was 60.44% (Fig. 2). This value might underestimate recoverable 

data. Some rats died within 48 h of injury, while others were excluded from the study for 

reasons noted in their surgery sheets including anesthesia dosage, or surgery complications. 

For these reasons, we suspect portions of some surgery records were blank on purpose. We 

are confident that n = 500 survived postoperative complications because we recovered at 

least one data point collected at least 48 h post SCI from perfusion or post-operative care 

records. For those n = 500 rats, our surgery related data recovery rate was slightly better at 

64.63%. Our objective is not to revisit data collection practices, nor compare data collection 

between centers. However, a data-driven missing values analysis demonstrated that values 

were not missing completely at random (Little’s MCAR test, p < 0.01).

Although we recovered substantial information from MASCIS, including original protocol 

and internal progress reports, we were not able to decipher the drug treatment blinding 

codes, and thus we cannot report on the results of the drug treatment protocol at the current 

time. Treatments were spread evenly between centers, animal sex, and contusion severity. 

According to the MASCIS progress reports, none of the MASCIS 1994 treatments resulted 

in better outcomes compared to control, and some treatments may have resulted in worse 

recovery and possibly death. The methylprednisolone 1 treatment in MASCIS 1996 resulted 

in better BBB recovery compared to saline. Moreover, according to unpublished MASCIS 

progress reports submitted to NIH, the independent variable that had the largest effect size 

on outcome was center. This opens the possibility that nuisance variables associated with 

specific centers drive the majority of the variance in outcome, potentially occluding drug 

effects. Our prior work strongly suggests that uncontrolled variance in operative blood 

pressure may be one such variable (Nielson et al., 2015).

Almeida et al. Page 8

Neuroinformatics. Author manuscript; available in PMC 2022 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Confirmatory Hypothesis Testing of the Blood Pressure-Locomotor Recovery Association

We used LMMs to test the relationship between perioperative (20 min pre-injury and at-

injury) blood pressure and BBB recovery, marshaling all available data recovered for each 

analysis while mitigating missing values (Nielson et al., 2020).

The first LMM targeted pre-injury MAP as a predictor of BBB locomotor scores using 

2327 observations from 441 unique rats across 6 Centers in the (Table 1; Fig. 3a). We 

found significant main effects for contusion severity and time on BBB scores. Animals with 

more severe contusions had worse BBB scores, and BBB scores improved as recovery time 

increased. There was also a significant three-way interaction between the pre-injury MAP, 

time post SCI, and contusion severity on BBB scores. This indicates that pre-injury blood 

pressure correlated with recovery of function, but this effect had different directionality 

depending on injury severity.

In the second LMM targeted at-injury MAP as a predictor of BBB locomotor outcome 

scores using 1081 observations among 197 unique rats across 4 Centers (Table 2). There 

were significant main effect for contusion severity and time on BBB scores. Locomotor 

scores improved as recovery time increased, and scores decreased as contusion severity 

increased. There was a significant two-way interaction between at-injury MAP and 

contusion severity, and a three-way interaction between at-injury MAP, time post SCI, and 

contusion severity on BBB scores.

Post hoc analyses were required to understand the precise nature of the significant blood 

pressure-recovery interactions uncovered by LMM analyses. We used a GLM to assess the 

effect of pre-injury MAP and contusion severity on ΔBBB from baseline to the time of 

the rat’s expiration (Table 3). As shown in Fig. 3b, for moderate SCI (12.5, 25 mm weight-

drop), higher pre-injury MAP associated with better outcome, whereas for severe SCI (50 

mm) higher MAP associated with worse outcomes. This indicates that pre-injury blood 

pressure affected recovery of function, and this relationship had different directionality 

depending on injury severity, with more severe SCI demonstrating a more profound negative 

influence of high blood pressure. The same form of effect was observed with at-injury MAP, 

suggesting that perioperative blood pressure is a robust predictor of BBB.

The third LMM targeted the pre-injury MAP on weight gain using 2336 unique observations 

among 414 rats across 5 Centers (Table 4; Fig. 3c). There were significant main effect 

for pre-injury MAP and time on Δ%weight, and significant two-way interactions between 

pre-injury MAP and time and pre-injury MAP and contusion severity on Δ%weight. Lastly, 

we found a significant three-way interaction between contusion severity, time post injury, 

and pre-injury MAP on Δ%weight gain.

The fourth LMM included 1349 unique observations between 276 rats across 3 Centers 

(Table 5). In this model, we found a significant main effect of time on Δ%weight, and a 

significant three-way interaction between at-injury MAP, contusion severity, and time on 

Δ%weight.
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Post hoc GLM was required to further understand the effects on Δ%weight. This analysis 

revealed a marginally significant interaction effect between pre-injury MAP and contusion 

severity (Table 6). For animals in the low and medium contusion severity conditions, higher 

blood pressure was associated with more weight recovery. The inverse was true for the 

high contusion severity group, where higher blood pressure was associated with less weight 

recovery (Fig. 3d). The analysis of weight change also showed that males recovered and 

gained more weight compared to females, but there were no significant interaction effects 

that included the sex of the animal, suggesting the interaction between perioperative blood 

pressure and contusion severity is not significantly different between males and females.

We did not find meaningful results when we included post-injury MAP as fixed factors in 

our LMMs (results not shown), and this analysis is confounded by known effects of injury 

severity on subsequent autonomic derangements (i.e., potential for associations reflecting 

‘reverse causality’ with SCI severity) (Nout et al., 2012). Altogether, the results suggest that 

perioperative hypertension is associated with poorer health and worse locomotor recovery 

in more severe SCI whereas perioperative hypotension is associated with poorer health and 

worse recovery in moderate SCI.

Discussion

In the current confirmatory study, we recovered legacy data from 1125 rats to independently 

replicate the results from Nielson et al. (2015). Our results suggest an interaction effect 

between perioperative blood pressure and contusion severity, where rats with more severe 

injuries and higher blood pressure had less recovery, while rats with milder injuries and 

higher blood pressure showed better recovery. To our knowledge, this is the first time such 

an interaction between blood pressure, injury severity, and recovery has been demonstrated 

in cases of SCI. In achieving our goal of cross validating a prior finding of high clinical 

import, we recovered value from the initial millions of dollars of investment by the NIH 

made over two decades ago in the original MASCIS trials, and demonstrated a practical 

application FAIR data principles (Table 7).

In addition, the results have direct implications for clinical care in acute SCI. Managing 

MAP in acute SCI may be critically important for preventing secondary injuries and 

neurological deficits. In the published guidelines for acute medical and surgical management 

of SCI, the American Association of Neurological Surgeons (AANS) and Congress of 

Neurological Surgeons (CNS) supported maintenance of MAP above 85 and 90 mmHg for 

patients during the first week after admission (Hadley et al., 2002; Walters et al., 2013; Yue 

et al., 2017). The rationale is that low blood pressure reduces blood flow and patients that 

are kept at a higher MAP after SCI show better recovery (Casha & Christie, 2011; Catapano 

et al., 2016; Dakson et al., 2017; Hawryluk et al., 2015; Sabit et al., 2018). Nielson et al. 

(2015) were the first to note that hypertension, in addition to hypotension, impairs recovery.

One of the important implications of our findings pertains to precision medicine. Kepler 

et al. (2015) reported that patients with pre-existing hypertension had worse recovery 

compared to controls. They proposed that blood pressure goals for those patients may have 

to be set even higher than those recommended by AANS and CNS, and further studies are 
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needed to identify the role of hypertension, blood flow to the spinal cord, and recovery 

(Kepler et al., 2015). We agree that such studies are needed, due to the lack of consensus in 

clinical protocol guidelines for maximum blood pressure for patients after SCI. The Center 

for Disease Control and Prevention estimates one in three Americans are hypertensive 

(Center for Disease Control and Prevention, 2020), and data is needed to identify MAP 

goals that would maintain tissue function without impairing the neurological recovery 

for that population. Recent retrospective clinical studies of high-resolution physiological 

monitoring further supports MAP should be maintained above 85–90 mmHg up to seven 

days upon the patient’s admission to a hospital, and the proportion of time below 85 mmHg 

correlated with impaired recovery (Hawryluk et al., 2015; Sabit et al., 2018; Walters et 

al., 2013). Physiologically, the rational is that spinal cord perfusion pressure depends on 

systemic MAP remaining high enough to sustain tissue oxygenation in the injury penumbra 

in the face of vertebral fracture and cord compression (Squair et al., 2019; Yue et al., 

2020). This SCI clinical guideline mirrors the logic of intracranial pressure monitoring 

in traumatic brain injury and other fields of cranial neurosurgery where prevention of 

hypotension using fluids and vasopressors is used to maintain intracranial pressure and 

decompressive hemicraniectomy is used to prevent pressure overshoot (Chesnut et al., 2020; 

Shah et al., 2019). However, the concept of hypertension as a driver of poor outcome 

is less well established. In the wake of Nielson et al., 2015 several clinical groups have 

begun exploring hypertension as a potential negative prognosticator of outcome. The first of 

these was recently published, in the form of a case series providing preliminary clinical 

support for the hypothesis (Ehsanian et al., 2020). Physiologically, it would stand to 

reason that hypertension may result in ‘hemorrhagic conversion’, and exacerbate bleeding 

into the spinal cord and resulting in tissue damage. In the animal literature it is well 

established that SCI compromises the blood-spinal-cord barrier and that peripheral blood 

components contribute to secondary cell death, including infiltration of circulating immune 

cells, circulating cytokines and other factors (Crowe et al., 1997; Ferguson et al., 2008; 

Kigerl et al., 2009).

The major limitation in our analysis is that it is correlational, and not causal. In addition, 

our conclusions come from incomplete retrospective data. Not all of the original data was 

recovered, and some may be permanently lost due format obsolescence and bit rot of 

magnetic media. Not included in the data recovered were the drug treatment codes. The 

rats were treated with various drugs, and we remain blinded to their treatment condition. 

According to the MASCIS progress reports, all but one treatment condition did not show 

a significant recovery associated with treatment. However, this does not rule out the 

possibility that specific dose-response and timing features for methylprednisolone and other 

tested drugs may have impacted the results. In addition, variation in animal care may 

also have introduced confounds. For example, MASCIS used the anesthetic pentobarbital, 

which is known to produce blood pressure complications (Nout et al., 2012). Some centers 

closely monitored blood oxygenation and performed resuscitation as needed, whereas other 

centers were less focused on these anesthetic complications. In addition, post-operative 

care protocols evolved over time, especially with respect to bladder care and antibiotic 

use to control mortality due to urinary tract infections. One of the centers discovered 

the fluoroquinolone Baytril was highly effective at reducing post-SCI mortality, and this 
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was later adopted by the other centers. Accordingly, analyses by the original MASCIS 

consortium determined the independent variable that affected outcomes most was center, 

and data recovered was not evenly distributed across centers. This suggests that there is 

substantial variability in healthcare records, even in a well-controlled and protocolized 

randomized control trial (RCT) in animal subjects which have greater standardization of 

housing, diet, health care and study conditions than a human RCT. The fact that large 

center effects persist even under these idealized conditions may be due to the fact that 

randomization is performed and monitored in a small number of indexed variables and 

may not apply to non-indexed variables such as high blood pressure in MASCIS. Whether 

center-to-center variability is less in animals versus human RCTs, or controlled trials versus 

observational is an interesting open question that FAIR data sharing may help resolve in 

the future. Making individual participant data FAIR could enable translational cross-walk 

meta-analysis between humans and animals, if privacy and security concerns that arise 

from multidimensional clinical data can be appropriately mitigated (Rocher et al., 2019). 

Although we statistically controlled for the effect center in the present paper, and confirmed 

blood pressure effects, this post-hoc statistical approach is less powerful than a balanced 

prospective study for inferring causal relationships. We therefore recommend a prospective 

study assessing the impact of hypertension on recovery after SCI of different severities, 

where center and treatment differences can be more directly controlled for.

Neurological trauma and related disorders are incredibly complicated to treat. Due to the 

complexity and heterogeneity of SCI and central nervous system (CNS) disorders, our 

viewpoint is that researchers would benefit by approaching these diseases as ‘big-data’ 

problem, specifically involving big data variety (Ferguson et al., 2011; Hawkins et al., 

2019; Huie et al., 2018). SCI may result in motor control and mobility impairments; 

impaired breathing and respiratory deficits; loss of bladder function; bowel and sexual 

dysfunctions; pathological pain; and/or loss of autonomy. To capture the multivariate 

syndromic outcomes of CNS disorders, researchers often collect multiple outcome measures 

for each individual subject. However, outcomes are often only assessed a few factors at a 

time. Complex and contemporary analytical methods, including those more easily associated 

with – omics, which permit researchers to explore the multidimensionality of diseases rather 

than testing a few factors at a time are becoming increasingly more accessible and common 

in biomedicine (Parikshak et al., 2015), and as was the case with Nielson et al. (2015) 

these methods will continue drive future biomedical research. Accelerating the transition 

from a univariate to a multivariate view of diseases should be a target for biomedicine, and 

making data FAIR through data sharing and data archeology are crucial and achievable steps 

in making that transition (Callahan et al., 2017; Ferguson et al., 2011, 2013; Fouad et al., 

2020).

While there are reservations about data sharing among classically trained biology 

researchers, the –omics science disciplines have successfully navigated those concerns for 

decades (Kaye et al., 2009; Lander, 1996). Genomic and other –omic published studies 

always provide the accession number to National Center for Biotechnology Information 

(NCBI) datasets used for their analyses, where all datasets are publicly available for 

download. In addition, many authors make their codes and scripts publicly available 

on platforms like GitHub (GitHub Inc., San Francisco, CA) for anybody to replicate 
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and validate their analysis. While this may be a novel concept for some, members of 

neurotrauma disciplines have established pathways for data sharing (Fisher et al., 2009; 

Fouad et al., 2020; Huerta et al.,s 1993; Lemmon et al., 2014; Marmarou et al., 2007).

Despite limitations, our study shows that even legacy data from 25 years ago may yield 

important findings, and this helps support emerging standards that all NIH funded research 

should follow FAIR data stewardship principles (Mueck, 2013; Wilkinson et al., 2016). 

The first attempt to gather subject-level data from neurotrauma studies was VISION-SCI 

(Nielson et al., 2014), but to our knowledge the present work represents the first targeted 

attempt of data retrieval of animal subject level data at this scale. The MASCIS consortium 

was a large and expensive group with a budget that exceeded $1 million annually between 

1994 and 1996, and used over 2000 animals for their experiments. Our inability to recover 

the original treatment conditions for rats from MASCIS is not unusual given the regulatory 

standards under which these data were collected. For the majority of grant funded research, 

historically, NIH mandated that data be maintained for 3–5 years post-study completion 

(NIH Office of Extramural Research, 2019). Having retrieved data for over 1000 animals 

at an estimated data recovery rate above 60%, our experience retrieving part of that dataset 

was overall successful because we increased the retained value from the original investment. 

Additionally, we are adding these data to our prior recovered data from OSU in our public 

release of the MASCIS data as part of this paper yielding a total of 1459 animals data 

records made FAIR through data archeology.

While data archeology may increase the initial investment in some circumstances, such 

as those presented here from the MASCIS study, we strongly recommend and endorse 

pursuing a policy of applying FAIR data principles for neuroscience as data are collected, 

and specifically making raw subject level data accessible to the greater scientific community. 

Efforts to incorporate this into study designs at the onset of data collection would ensure 

FAIR data access moving forward. While it is unclear whether data archeology is as 

laborious as prospective data collection, the scientific community risks losing data if is not 

collected and disseminated adherent to FAIR principles as we demonstrated in this project. 

The NIH and NINDS CDEs greatly facilitate the opportunities of researchers sharing data 

among collaborators or colleagues, and new platforms to facilitating data sharing already 

exist or will soon be available for many disciplines in biomedical research (Hawkins et al., 

2019).

The present work extends the concept of meta-analysis to raw source data, which opens 

new possibilities to develop higher evidence for preclinical studies (currently classed as 

level 4–5 evidence) (Biering-Sørensen, 2005). At the current time it remains unclear to what 

extent systematic reviews and meta-analyses can be relied upon to be correct reflections 

of raw data (Gøtzsche et al., 2007) as they are based primarily on statistics reported in 

papers. In addition, reviews suggest that over 80% of published manuscripts in a biomedical 

science journal contains a least one statistical error (Simundic & Nikolac, 2009), and there 

are no indications that statistical rigor is increasing in biomedical research (Ercan, 2015; 

Ercan et al., 2017). Thus, there is much to be gained by granting the next generation of 

scientist’s access to FAIR datasets derived by data archeology, data recovery, and application 

of modern data stewardship and analytic tools of the sort applied here.
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Fig. 1. 
This flow chart describes the number of rats used in each of the three MASCIS studies, 

the number of rats for which data was recovered from each MASCIS study represented by 

solid or dashed lines, and where that data can be retrieved. An unknown number of rats were 

used in YM95. Data from Center 1 (OSU) were used in Beattie et al., 1997, Young 2002; 

Ferguson et al., 2004, and Nielson et al., 2015. The current paper describes data recovered 

from Centers 2–8, collectively titled MASCIS 2020. Note that Center 2 did not contribute 

data in MY96, and Center 8 only contributed data in MY96. The compiled dataset can be 

retrieved in odc-sci.org and is titled “ODC-SCI MASCIS”. Upon request or with permission, 

some centers can be unmasked
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Fig. 2. 
This heatmap demonstrates data recovered from the surgery record sheets of MP94 and 

MY96. Each row represents a unique rat (n = 1125), and each column represents a unique 

variable from the surgery records (n = 64), and each individual square a data point

Almeida et al. Page 20

Neuroinformatics. Author manuscript; available in PMC 2022 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Change in BBB score (a) and weight gain (c) over time are shown with SEM bars for 

each time point. The linear relations between pre-injury blood pressure and ΔBBB (b) and 

Δ%weight (d) depicted, and the shaded areas represents the 95% confidence interval
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