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Abstract

The elimination model is proposed as an account of the in-
verse base-rate effect (D. L. Medin & S. M. Edelson, 1988).
A key-assumption is that participants sometimes rely on
eliminative inference to decide among candidate categories. A
new prediction is that there will be an inverse base-rate effect
also for an entirely novel symptom presented in the transfer
phase—a prediction that contrasts with that by ADIT (J. K.
Kruschke, 1996). This was tested and confirmed in 2 experi-
ments.

Introduction’

In 1988, Medin and Edelson reported an interesting but
complex pattern of findings regarding how people utilize
base-rates. In their experiments, participants were asked to
decide whether patients with ambiguous symptom patterns
were suffering from previously learned common or rare
diseases. Surprisingly, in some cases participants chose the
less frequent of the diseases. A number of explanations of
this base-rate inverse (BRI) effect have been proposed
(Kruschke, 1996; Medin & Bettger, 1991; Medin &
Edelson, 1988; Shanks, 1992).

In this paper, we propose a further mechanism that may
contribute to both the BRI effect and the unspecified
guessing strategy reported by Kruschke (1996). Basically,
the elimination model suggests that the participants eliminate
options that are inconsistent with well-supported inference
rules, leading to the prediction of an intricate pattern of
responses in which participants sometimes favor the
common diseases, and sometimes the rare ones. A
presentation of the details, and the fit of a quantitative
implementation of the elimination model, is provided in
Juslin, Wennerholm, and Winman (1999). In this paper we
will focus on one prediction by the elimination model that
goes beyond what previous models can predict or account
for, the prediction of a novel symptom phenomenon.

'"The research reported here was supported by the Swedish coun-
cil for Research in the Humanities and Social Sciences.
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The Experimental Paradigm

The basic task introduced by Medin and Edelson (1988)
involves a training- and a transfer phase. On each training
trial a pair of symptoms is presented, and participants are
requested to choose which of six fictitious diseases the
hypothetical patient is suffering from. After each choice the
participant is informed about the proper diagnosis (disease),
after which another training trial is presented. The critical
manipulation concerns the base-rate of each disease, with the
common diseases occurring three times more often than the
remaining rare ones (see Table 1).

Table 1: The basic design of the training phase in the Medin
and Edelson Experiment 1 (1988).

Base- Symptoms Disease Inference

rate rule
3 I|+PC| C II+PC|—>C1
1 I +PR R, I +PR —R,
3 I+PC, C, 1,+PC—C,
1 I +PR, R, 1,+PR —R,
3 ."3-|-PC3 C3 1,+PC —C,
1 I.+PR, R, 1,.+PR >R,

During training every instance of a common disease, C,
occurs in the presence of two symptoms: One imperfect, I,
and one perfect, PC. Similarly, every instance of a rare
disease, R, has two symptoms: One imperfect, I, and one
perfect, PR. Thus, each imperfect predictor is associated
with both a common and a rare disease, and each perfect
predictor is uniquely associated with only one disease.

In a succeeding transfer phase participants are tested with
previously uncombined symptoms. Medin and Edelson
(1988) found that when tested with the imperfect symptom,
I, the majority of participants chose the common disease.
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When tested with the ambiguous combination, [+PC+PR
(the combined probe), the participants again tended to
choose the common disease. However, when tested with two
perfect predictors, PC+PR (the conflicting probe), the
majority of participants chose the rare disease in contrast (o
the base-rate—the inverse base-rate effect (Figure 2C
below).

Accounts of The Inverse Base-rate Effect

Most previous accounts of the BRI effect revolve around a
common theme: Because of cue-competition, symptom PR
becomes more strongly associated with disease R than
symptom PC does with disease C (Gluck & Bower, 1988;
Kruschke, 1996; Shanks, 1992).

Kruschke (1996) suggested that ADIT can explain both
the inverse base-rate effect and apparent base-rate neglect
(Gluck & Bower, 1988). By the application of two separate
mechanisms: (a) A base-rate bias, that participants apply
consistently on all training trials, and (b) an attention-
shifting mechanism that rapidly shifts attention from typical
to distinctive features, ADIT provided a good fit to the
transfer data. Specifically, because the common disease C,
occurs more often than the rare one, R, participants first
learn to associate both the imperfect symptom I, and the
perfect symptom PC with the common disease. Later in
training when they are presented with the symptoms that are
associated with the rare disease, R, they focus on the
symptom that is perfectly predictive of that disease, PR, and
thereby encode it by this single symptom. This explains why
participants choose the rare disease on the PC+PR
(conflicting) test case. When confronted with the remaining
two ambiguous test cases, I and I+PC+PR, people apply
both their base-rate knowledge and their associative
knowledge, where the base-rate knowledge dominates the
responses.

Although ADIT provides a good quantitative fit to transfer
data, Kruschke (1996) reported that his participants
responded better-than-chance for the rare categories—an
effect he attributed to an unspecified non-random guessing
strategy (Kruschke, 1996). Likewise, when ADIT was fitted
to the training data it performed much worse than human
learners on carly training trials. Thus, although appealing,
ADIT fails to fully account for the complete pattern of data
observed with the Medin and Edelson (1988) design.

The Elimination Model

To illustrate the inferential mechanisms of the elimination
model, consider the following example: You are told that a
friend of yours has bought a pet animal called George who is
either a goldfish or a Psittaciformes. Not being a zoologist,
you have a pretty good idea of what a goldfish is, but you
have no notion whatsoever of what a Psittaciformes is. Your
task 1s to guess what kind of pet animal George is. First, you
receive the cue George lives in water. George is thus similar
to a goldfish in the sense that he lives in water. In the
absence of knowledge about what a Psittaciformes is you
might be tempted to guess that George is a goldfish. This
tllustrates one (weak) form of induction.

Now consider the situation where you instead are given
the cue George can fly. In this case you would probably
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guess that George is a Psittaciformes—he is certainly not a
goldfish (in fact a Psittaciformes is a parrot). You would use
your knowledge about the category goldfish to eliminate the
possibility that George is a goldfish. The elimination model
takes this latter kind of inference into account.

A reasonable assumption in the Medin and Edelson (1988)
design is that the participants perceive the task as involving a
set of perfectly valid inference rules (see Nosofsky, Palmeri,
& McKinley, 1994, for similar approaches). If the
participants succeed to learn these rules, they will make 100
percent correct classifications at the end of training (see
Table 1).

In the quantitative implementation in Juslin et al. (1999),
we assume that at each trial the inference rule appropriate
for the presented training probe is formed with a rule-
activation probability. This probability, that is higher for the
early training trials (implementing “freezing™ at the initial
stages of learning, cf. Medin & Bettger, 1991), is controlled
by a single parameter. From these rule-activation
probabilities, we can compute the probability ¢ that the rule
appropriate for a common disease is active and accessible at
the transfer phase, and the corresponding probability r that
the rule appropriate for a rare disease is accessible.

In the training phase, every probe precisely matches one of
the six inference rules (see Table 1). In the transfer phase,
however, the participants’ inferences will have to be based
on the similarity between the new symptom combinations
and the conditions of the inference rules. The elimination
model consists of two decision mechanisms that determine
how an inference rule is applied to a probe:

(1). The induction mechanism applies when the probe has
exactly the symptoms in the condition-part of the inference
rule, or when the symptoms of the probe are perceived to be
sufficiently similar to the rule conditions. Whenever
similarity is larger than a similarity criterion the induction
mechanism applies, and the probe is assigned to the category
with the most similar rule. If the probe is equally similar to
several rules, the participants will decide randomly among
the set of equally similar rules.

(2). When a probe is dissimilar to the rule-conditions, as
indicated by a similarity smaller than the similarity criterion,
the elimination mechanism is used to eliminate the
possibility that the probe belongs to the category and the
probe is assigned randomly to any category but the
dissimilar one. For example, if there is no basis for induction
and the probe eliminates one or several of the categories, the
participant will have to decide randomly among the still
admissible categories—the diseases that are not inconsistent
with the symptoms of the probe.

When the elimination model is applied to the Medin and
Edelson design, we need to impose a similarity structure on
the probes presented in the transfer phase. There are two
crucial assumptions: (a) The conflicting probe, PC+PR, is
less similar to the inference rules formed in the training
phase for C and R than the combined probe, I+PC+PR and
the imperfect probe, 1. While the combined probe is
ambiguous in the sense of being consistent with two
inference rules, the conflicting probe actually contradicts
both. (b) The similarity criterion for induction versus
elimination is located between the similarities of the



combined and the conflicting probes implying that the
combined probe elicits induction and the conflicting probe
elimination. The example of such a similarity structure,
derived from the multiplicative similarity rule of the original
context model (Medin & Schaffer, 1978), is provided in
Juslin et al. (1999).

If we refer to the common-rare disease-pairs relevant to a
particular probe (e.g., C, and R, in Table 1) as the focal
disease-pair, a participant may be in one of four knowledge
states when entering the transfer phase. State 1: With
probability (1-c) (1-r) neither the inference rule for the focal
common C; nor the focal rare disease R, is accessible. State
2: With probability (c-cr) only the inference rule for the
focal common disease C, is accessible. State 3: With
probability (r-cr) only the inference rule for the focal rare
disease R, is accessible. State 4: With probability (cr) both
of the focal inference rules, C, and R, are accessible Table
2 shows an example of Knowledge State 1, the state in which
neither of the rules for the focal diseases are accessible.

The predicted response patterns may be exemplified by
reference to the combined and the conflicting probes. For
example, imagine that you are presented with the symptom
combination II+PC l+PR1. These three symptoms are
consistent with two of the six inference rules, the first and
the second in the right-most column of Table 1. If you are in
Knowledge state 2 you will only know the rule I ,PC —C,
which is executed by the induction mechanism. If]you are in
Knowledge state 3 you will only know the rule I +PR —R,
which is executed by the induction mechanism. Because of
the base-rate manipulation the probability of Knowledge
state 2 is higher and most responses will thus favor C,.
Knowledge states 1 and 4 are assumed to elicit random
decisions favoring neither common nor rare categories.

Now you are presented with the conflicting probe,
PC,+PR, that is dissimilar to both the first and the second
inference rule.

Table 2: An example of a hypothetical Knowledge State.

Ratio Symptoms Disease Rule

3 1;: Stomach pain C,: Coralgia Unknown
PC,: Loss of hair

1 1;: Stomach pain R;: Buragamo Unknown
PR,: Impaired hearing

3 I;: Epidermophytosis C,: Midosis Known or
PC;: Back pain Unknown

1 I;: Epidermophytosis R;: Namitis Known or
PR,: Loosening of the Unknown
teeth

3 I;:Visual defect Cy: Terrigitis Known or
PC;:  Impaired short- Unknown
term memory

1 1;: Visual defect R;: Althrax Known or
PR;: Swollen arms Unknown

If you are in Knowledge state 2 you will eliminate the rule
[ +PC —C; If you are in Knowledge state 3 you will
eliminate the rule I +Pr —R,. Again, because of the base-
rate manipulation Knowledge state 2 is more probable, and

most eliminations will concern C, and thus favor the choice
of a rare disease category. Given the particular knowledge-
state and the similarity between the inference rules formed
and the presented transfer probe, the decision mechanisms of
induction and elimination can be applied in the manner
specified above. Although this is straightforward in
principle, application to the Medin and Edelson design is
complicated by the fact that the number of unknown diseases
is a random variable.

This can be illustrated by reference to the example in
Table 2. You may be faced with the conflicting probe loss of
hair + impaired hearing. Because you are in Knowledge
state 1 and know neither of the focal rules, there is no
possibility for an inductive inference with the focal rules.
The choice of an unknown category in this case amounts to
an elimination of any of the four non-focal diseases that
possibly are known. The number of unknown diseases is a
random variable controlled by the same parameter that
defines c and r; that is, one to four of the non-focal rules may
have been activated the training. Thus, in knowledge State 1,
the guessing rate of responses in the focal common category
(C,) is anything between 1/6 (no disease has been learned) to
1/2 (all the four non-focal diseases have been learned).

The predicted response proportions for each probe
therefore equal the proportions of inductive inferences that
fall in this category plus the expected value of the guessing
rates when the participant eliminates, where the probability
of induction and elimination is jointly determined by the
knowledge-state and the similarity between the probe and
the known inference rules. Since both the probabilities of the
knowledge states and the expected guessing-rates are
controlled by the parameter that defines the rule-activation
probability, predicted response proportions are controlled by
a single parameter. These computations are detailed in Juslin
et al. (1999).

In Juslin et al. (1999) the quantitative predictions were
fitted to the data from Experiment 1 by Medin and Edelson
(1988), to Kruschke (1996, Exp. 1), and to the data from the
two experiments reported below. In all of these data sets, the
model reproduced the observed pattern of base-rate findings,
in general with an impressive quantitative fit given the use of
one single free parameter. Figure 1 illustrates the fit of the
model to the data from Kruschke’ s (1996) Experiment 1.
Although factors such as cue competition probably play an
important role in the Medin and Edelson paradigm, the
quantitative predictions presented above demonstrate that
the elimination mechanism alone has the potential to
reproduce the BRI effect.

The Novel Symptom Phenomenon

A straightforward prediction by the model is that the
presentation of a novel symptom in the transfer phase will
lead to a preponderance of rare-disease responses, mirroring
the BRI effect for the conflicting symptoms. Participants will
notice that the novel symptom is dissimilar to the symptoms
of known categories and as a result they will guess on some
of the unknown diseases.

By virtue of the base-rate manipulation these unknown
categories are likely to be rare rather than common ones.
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This prediction is important for two reasons: First, it is the
most critical test of the presence of eliminative inferences.
To the extent that this type of inferences underlies both the
responses for the conflicting and novel transfer probes, the
response patterns observed for these probes should be
similar. Second, this prediction amounts to a response
pattern contrary to that by ADIT (Kruschke, 1996). The
novel transfer probe has not been affected by any shift of
attention during training, thus the only factor at work is the
base-rate bias toward common-disease responses. As we
have seen, the elimination model predicts rare-disease
responses that mirror those observed for the conflicting test
probe. Next, we present results from two experiments that
confirm this prediction.
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Figure 1: The model fitted to Kruschke (1996, Exp.1). A)
Predicted/Observed response proportions. B) The pattern of
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data predicted for the transfer probes, and C) the

corresponding observed pattern.

Experiment 1: A Test of the Novel Symptom
Phenomenon

The main purpose of Experiment 1 was to test the prediction
of a BRI effect for novel symptoms. One hundred and nine
participants were divided into a 3:1 base-rate ratio group and
a 7:1 base-rate ratio group (cf. Shanks, 1992). The material,
stimuli and procedure were more or less identical to those
used by previous researchers (see e.g., Medin & Edelson,
1988; Kruschke, 1996, Shanks, 1992). Participants were told
that they would be allowed to practice on 168 patients with
feedback informing them if they had made a correct or
incorrect diagnosis. They were instructed to apply the
knowledge they had acquired during the training phase to 24
patients in a transfer phase with no feedback. For each
participant nine of the twelve symptoms were randomly
selected and matched with the six different diseases (see
Tables 1 and 2). The three remaining ‘“‘novel* symptoms
were used in the transfer phase in order to test the novel
symptom phenomenon.

On the transfer trials participants were required to make
responses to six perfect predictors, PC and PR, three
imperfect predictors, I, three combined probes, [+PC+PR,
three conflicting probes, PC+PR, and three novel probes, N.
The remaining six test trials in which the imperfect
predictors were paired with perfect predictors were mainly
used to disguise the purpose of the transfer phase. The
transfer trials were followed by a short break after which
another training - and transfer phase followed. The purpose
of this manipulation was to see whether additional training
would decrease the BRI effect. The experiment including the
break lasted approximately one hour.

Training Results

As in most previous studies, only those participants who had
reached asymptotic learning were used in the subsequent
analysis. Participants with more than one incorrect answer in
the last 24 trials of the first training session were excluded.
In the 3:1 ratio group, 40 participants out of 55 (73%) met
this criterion. In the 7:1 ratio group, 41 out of 54 (76%)
participants met the criterion. Whereas the 7:1 group showed
evidence of slightly faster learning, both groups converged
on asymptotic learning at the end of the first session and
these levels of performance were maintained throughout the
second training session.

Transfer Results for the 3:1 Group

For the perfect predictors, PC and PR, in the 3:1 condition,
most responses were assigned to the disease that the cue had
been a perfect predictor of, both after training session 1 and
2 (all t(39) = 15 with p< .05, given a null-hypothesis of .5).
The use of base-rate information is evident for the imperfect
transfer probes, I, both after training sessions 1 and 2 (.67,
t(39) = 5.77, p<. 05, and .66, t(39) = 4.03, p<.05,
respectively), and for the combined transfer probe,
[+PC+PR, both after training sessions 1 and 2 (.62, t(39) =
3.60, p<.05, and .62, t(39) = 2.07, p<.05, respectively).



The results show a BRI effect for the conflicting transfer
probe, PC+PR, although the trend is non-significant. After
session 1, the proportion of common category responses, C,
was 410, t(39) = 1.42, N. S. After training session 2, the
proportion increased to .483, t(39) = .24, N. S. Finally, the
results for novel symptoms, N, mirror the result for the
conflicting probe, PC+PR (see Figure 2A). Although slightly
less pronounced, the participants favor the rare diseases
(response proportion .45, t(39) = 1.12, N. S.). After training
session 2, the participants have altered into base-rate use
(response proportion .58, t(39) = 1.74, N. §.).

Transfer Results for the 7:1 Group

Results for the 7:1 group parallel those for the 3:1 group,
although the effects were larger, and in contrast to the 3:1
condition there was a significant BRI effect for the
conflicting transfer probe (see Figure 2B, session 1:
proportion .38, t(40) = 2.10, p< .05: session 2; proportion
40, t(40) = 1.65, N. S.). As described above, the elimination
model is supported if the BRI effect on the conflicting and
novel probes is similar Figure 2 presents the mean response
proportions for the novel and conflicting transfer probes in
the 3:1 and 7:1 base-rate ratio conditions of Experiment 1,
and of the (single) 3:1 condition of Experiment 2

As can be seen, the response patterns are similar for novel
and conflicting probes in both conditions, a result predicted
by the elimination model but contrary to ADIT (Kruschke,
1996).

Experiment 2: Does the Inverse Base-Rate Ef-
fect Disappear with Additional Training?

Experiment 1 replicated the base-rate effects of the Medin
and Edelson (1988) study. Interestingly, however, the BRI
effect was diminished after training session 2, and it
vanished altogether for the novel transfer probes. This could
however be due to the testing between the first and second
training phase. When the novel transfer probe has been
presented in the transfer phase after training session 1, it will
obviously not be "novel” when the retested in the second
transfer phase. As a result Experiment 2 was designed to test
whether the diminished BRI effect was due to the repeated
transfer exposure. Another potential explanation is that the
BRI effect disappears after extensive training. Medin and
Bettger (1991), for example, discussed the possibility that
“with enough experience the BRI effect that we have
attributed to competitive learning may be overcome
altogether” (p. 328). Thus, the alternative hypothesis was
that the diminished effect was due to the higher extent of
learning. Experiment 2 involved a prolonged training phase
without transfer phases interspersed midways through the
training trials. If the BRI effect would persist even with this
prolonged training, it would suggest that the diminished BRI
effect after training session 2 in Experiment 1 was a
consequence of the repeated exposures. On the other hand, if
the correct explanation lies in the increased learning the BRI
effect should be gone after four times as many trials.
Twenty-five students participated in Experiment 2.
Procedures were identical to Experiment 1, with the
differences that (a) the number of training trials was 672
(168 x 4), and that (b) the base-rate ratio was 3:1 for all
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participants. Between the first and second half of learning
phase the participants were given a one-hour lunch break. At
the end of training session 2 they were presented with the
transfer phase (identical to the one in Experiment 1).
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Figure 2: Mean response proportions for the conflicting and
novel transfer probes in the 3:1 (Panel A) and the 7:1 (Panel
B) base-rate ratio condition of Experiment 1, and in Experi-
ment 2 (Panel C).

Results

As in Experiment 1, the learning criterion was set at 96%
correct responses in the last training block of 24 trials.
Again, Experiment 2 replicated the standard pattern found
by Medin and Edelson: The common disease was chosen
more often than the rare one for the imperfect (common
response proportion .66, t(22) = 3.6, p<.05) and the
combined probes (common response proportion .46, t(22) =
.38, N. S), but the rare disease was chosen for the conflicting
probe (common response proportion .39, 1(22) =1.1, p<.28,
N. S) - the BRI effect. Although not significant, the effect is
not diminished in size after ample learning (see Figure 2C).
Finally, a BRI effect for the novel symptoms was observed
too (common other response proportion .40, t(22) =1.59,
p<.125, N. S). We found it hard to obtain statistical



significance due to the very high measurement error.
Therefore, it should be noted that if all data in Figure 2 are
collapsed, there is no doubt a reliable BRI effect (t(103)
=27, p<.0l) as well as a reliable novel symptom
phenomenon (1(103) = 2.6, p<.01).)

In sum, it seems that the diminished BRI effect after
training session 2 reported in Experiment 1 is due to the
repeated exposures with the transfer probes rather than to
more extensive training. Similar to Experiment |1,
participants guessed on a rare disease category when
presented with a novel symptom, as predicted by the
elimination model but in contrast to ADIT (Kruschke, 1996).

General Discussion

In this paper, a new mechanism has been proposed that may
contribute to the base-rate effects observed with the Medin
and Edelson design. The main merits of the elimination
model are threefold: First, the model has intuitive appeal in
the sense that it seems hard to deny that people at least
sometimes rely on eliminative inferences. Second, in terms
of the psychological mechanisms involved, the model is
simple: The participants either make inductive or
eliminative inferences depending on the similarity of the
probe to the known diseases. Finally, the model provides a
good quantitative account of the data given the reliance on
one single free parameter (Juslin et al., 1999). ADIT is
unable to account for the novel symptom phenomenon, and
Kruschke (1996, p. 20) noted that ADIT needs “additional
mechanisms not implemented in the model” to account for
the non-random guessing strategy observed in the early
training trials. The elimination model provides such a
mechanism.

Nevertheless, we do not suggest that the mechanism
proposed by the elimination model is the only factor that
contributes to the BRI effect. The ideas of cue-competition
have immense support in the literature on animal learning
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and Kruschke's (1996) proposal of a rapid attention-shifting
mechanism is both reasonable and appealing. We do,
however, take the confirmation of the novel symptom
phenomenon as fairly strong evidence that eliminative
inferences are at work at least to some extent. The
quantitative formulation of the elimination model in Juslin et
al. (1999) serves to demonstrate that these processes alone
have the potential to produce an BRI effect. The relative
importance of explanations in terms of attention-shifting

mechanisms and eliminative inferences needs to be
determined by future research.
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