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Abstract

Collaborative Targeted Maximum Likelihood Estimation

by

Susan Gruber

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Mark J. van der Laan, Chair

Collaborative targeted maximum likelihood estimation is an extension to targeted maximum like-
lihood estimation (TMLE), first introduced in van der Laan and Rubin (2006a). TMLE is an
efficient, double robust (DR), semi-parametric methodology for estimating a pathwise differential
parameter of a statistical distribution given censored data. The TMLE procedure involves a para-
metric fluctuation of an initial estimate of the relevant factor of the density of the observed data
(Q), that involves estimating the nuisance portion of the likelihood—censoring mechanism, g. DR
estimators are consistent when at least one of these is estimated consistently, when assumptions
described below are met. As an efficient estimator, under regularity conditions TMLE achieves
the semi-parametric efficiency bound when both are estimated consistently. TMLE is also a sub-
stitution estimator, and as such respects global bounds on the parameter and the data. TMLE is
especially valuable in high dimensional settings, where parametric approaches fail due to the curse
of dimensionality, and the bias/variance tradeoff made by other semi-parametric approaches is not
designed to be optimal for the parameter of interest.

Though the best approach to nuisance parameter estimation is a current topic of debate in the lit-
erature, methods typically rely on maximizing a likelihood, possibly constrained to ensure that pre-
dicted probabilities are bounded away from (0, 1) (e.g., Cao et al. (2009); Tan (2006, 2010)). How-
ever, by establishing the collaborative double robustness of the efficient influence curve, van der
Laan and Gruber (2010) provides a theoretical justification for moving away from the practice
of external nuisance parameter estimation. That article also presents the collaborative TMLE (C-
TMLE), and provides an algorithm for constructing the estimator. Starting with an initial estimate
of theQ portion of the likelihood, C-TMLE builds a series candidate nuisance parameter estimates,
gn,k, based on their ability to improve the goodness of fit for Q, while simultaneously increasing
the goodness of fit for g. These index a series of candidate TMLEs. The candidate selected by
minimum loss-based cross-validation is the C-TMLE estimator. This approach to targeted maxi-
mum likelihood estimation is especially useful when the true censoring mechanism is unknown,
and adjusting for a large number of correlated confounders leads to highly variable estimates. It
is also particularly effective when there is sparsity in the data that renders a statistical parameter
borderline identifiable.
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This dissertation discusses C-TMLE, and extensions and applications of TMLE primarily in
the context of binary point treatment effect estimation, but results generalize. For example, C-
TMLE has already been extended to survival analysis (Stitelman and van der Laan, 2010). The
dissertation is structured as follows. After a brief review of TMLE and defining the notation used
throughout, Chapter 2 discusses collaborative double robustness of the efficient influence curve.
The implications of this property provide an understanding of the requirements for nuisance param-
eter estimation that led to the development of C-TMLE. Chapter 3 defines the TMLE for bounded
continuous outcomes that enforces known global constraints on the statistical model. The C-TMLE
algorithm is presented in Chapter 4, along with simulation studies designed to illustrate the be-
havior of C-TMLE, and an analysis of genomics data where high correlations among mutations
make it difficult to obtain meaningful estimates of fully-adjusted association measures. Chapter 5
considers estimator performance under sparse data conditions and model misspecification. This
chapter clearly demonstrates that exploiting collaborative double robustness can yield big gains
with respect to bias and variance. It also highlights another important aspect of TMLEs, their
ability to incorporate data-adaptive estimation while still providing valid influence-curve based in-
ference. Much of the work made use of super learning, an ensemble method for prediction that
uses cross-validation to select the optimal convex combination of predictions from individual pre-
diction algorithms (van der Laan et al., 2007). Data-adaptivity lessens the reliance on a priori
specified models, and results in Chapter 5 demonstrate the benefits of this approach. In addition,
Chapter 6 demonstrates that when these a priori specified models are included in the model space
searched over by the super learner, results using the most aggressive procedures are identical (bias
and variance) to those obtained by relying on a pre-specified parametric model that happens to be
correct. The main focus of Chapter 6 is the application of TMLE to the meta-analysis of safety
data. An appendix describes tmle, an R package for targeted maximum likelihood estimation.
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Chapter 1

Introduction

Collaborative targeted maximum likelihood estimation is an extension to targeted maximum
likelihood estimation (TMLE), first introduced in van der Laan and Rubin (2006a). TMLE is an
efficient, double robust (DR), semi-parametric methodology for estimating a pathwise differential
parameter of a statistical distribution given censored data. The TMLE procedure involves a para-
metric fluctuation of an initial estimate of the relevant factor of the density of the observed data
(Q), that involves estimating the nuisance portion of the likelihood—censoring mechanism, g. DR
estimators are consistent when at least one of these is estimated consistently, when assumptions
described below are met. As an efficient estimator, under regularity conditions TMLE achieves
the semi-parametric efficiency bound when both are estimated consistently. TMLE is also a sub-
stitution estimator, and as such respects global bounds on the parameter and the data. TMLE is
especially valuable in high dimensional settings, where parametric approaches fail due to the curse
of dimensionality, and the bias/variance tradeoff made by other semi-parametric approaches is not
designed to be optimal for the parameter of interest.

Though the best approach to nuisance parameter estimation is a current topic of debate in the lit-
erature, methods typically rely on maximizing a likelihood, possibly constrained to ensure that pre-
dicted probabilities are bounded away from (0, 1) (e.g., Cao et al. (2009); Tan (2006, 2010)). How-
ever, by establishing the collaborative double robustness of the efficient influence curve, van der
Laan and Gruber (2010) provides a theoretical justification for moving away from the practice
of external nuisance parameter estimation. That article also presents the collaborative TMLE (C-
TMLE), and provides an algorithm for constructing the estimator. Starting with an initial estimate
of theQ portion of the likelihood, C-TMLE builds a series candidate nuisance parameter estimates,
gn,k, based on their ability to improve the goodness of fit for Q, while simultaneously increasing
the goodness of fit for g. These index a series of candidate TMLEs. The candidate selected by
minimum loss-based cross-validation is the C-TMLE estimator. This approach to targeted maxi-
mum likelihood estimation is especially useful when the true censoring mechanism is unknown,
and adjusting for a large number of correlated confounders leads to highly variable estimates. It
is also particularly effective when there is sparsity in the data that renders a statistical parameter
borderline identifiable.
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This dissertation discusses C-TMLE, and extensions and applications of TMLE primarily in
the context of binary point treatment effect estimation, but results generalize. For example, C-
TMLE has already been extended to survival analysis (Stitelman and van der Laan, 2010). The
dissertation is structured as follows. After a brief review of TMLE and defining the notation used
throughout, Chapter 2 discusses collaborative double robustness of the efficient influence curve.
The implications of this property provide an understanding of the requirements for nuisance param-
eter estimation that led to the development of C-TMLE. Chapter 3 defines the TMLE for bounded
continuous outcomes that enforces known global constraints on the statistical model. The C-TMLE
algorithm is presented in Chapter 4, along with simulation studies designed to illustrate the be-
havior of C-TMLE, and an analysis of genomics data where high correlations among mutations
make it difficult to obtain meaningful estimates of fully-adjusted association measures. Chapter 5
considers estimator performance under sparse data conditions and model misspecification. This
chapter clearly demonstrates that exploiting collaborative double robustness can yield big gains
with respect to bias and variance. It also highlights another important aspect of TMLEs, their
ability to incorporate data-adaptive estimation while still providing valid influence-curve based in-
ference. Much of the work made use of super learning, an ensemble method for prediction that
uses cross-validation to select the optimal convex combination of predictions from individual pre-
diction algorithms (van der Laan et al., 2007). Data-adaptivity lessens the reliance on a priori
specified models, and results in Chapter 5 demonstrate the benefits of this approach. In addition,
Chapter 6 demonstrates that when these a priori specified models are included in the model space
searched over by the super learner, results using the most aggressive procedures are identical (bias
and variance) to those obtained by relying on a pre-specified parametric model that happens to be
correct. The main focus of Chapter 6 is the application of TMLE to the meta-analysis of safety
data. Appendix A includes derivations of the influence curve for the log relative risk and log odds
ratio parameters, and the contribution to the influence curve from the estimation of the censor-
ing mechanism for causal effect parameters commonly reported in the literature: additive effect,
relative risk, log relative risk, odds ratio, log odds ratio. R software for TMLE and C-TMLE is
available on the world wide web (Gruber, 2010b,a). A document describing the tmle package for
the R statistical programming environment (Team, 2010) is in Appendix B.

1.1 TMLE Review
Consider observations O = (O1, . . . On) ∼ P0, a true underlying probability distribution that

gives rise to the data. Often, a particular feature of P0, Ψ(P0), is of scientific interest. Global
maximum likelihood estimation procedures for estimating P0 can make a bias/variance tradeoff
that is sub-optimal for estimation of Ψ(P0). The goal of TMLE is to improve this tradeoff.

Consider the application of TMLE to causal effect estimation. The counterfactual framework
discussed in Rubin (1974) frames the estimation of causal effects as a missing data problem. Sup-
pose we are interested in assessing the marginal difference in an outcome, Y , if everyone re-
ceived treatment (A = 1) vs. everyone not receiving treatment (A = 0). If we could actually
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measure the outcome under both scenarios for all individuals, the full data would be given as
XFull = (Y1, Y0,W ), where Y1 is the counterfactual outcome corresponding to treatment (A = 1),
Y0 is the counterfactual outcome under no treatment (A = 0), andW is a vector of baseline covari-
ates. A causal quantity of interest could be the additive causal effect E0Y1−E0Y0. This parameter
is defined non-parametrically on full data XFull as ψF0 = E0Y1−E0Y0, and identified from the ob-
served data O = (W,A, Y = YA) as Ψ(P0) = E0[E0(Y | A = 1,W )− E0(Y | A = 0,W )] under
the randomization assumption and positivity assumption. Here ψF0 denotes the causal quantity of
interest, and ψ0 is the statistical counterpart that can be interpreted as the causal effect ψF0 under
these assumptions. We note that Ψ represents a mapping from a probability distribution of O into
a real number, and Ψ is called the target parameter mapping.

Non-parametric structural equation modeling (NPSEM) provides an alternative paradigm for
defining causal effect parameters (Pearl, 2010b). The following system of equations expresses the
knowledge about the data generating mechanism:

W = fW (UW ),

A = fA(W,UA),

Y = fY (W,A,UY ),

where UW , UA, and UY are exogenous error terms. This NPSEM allows the definition of counter-
factual outcomes Ya = fY (W,a, UY ), corresponding with the intervention that sets the treatment
node A equal to a, and thereby the causal quantity of interest, such as E0Y1−E0Y0. The functions
fW , fA, fY may be unspecified, one might assume exclusion restriction assumptions, or one might
even assume parametric forms.

The statistical association measure ψ0 can be interpreted as the additive causal effect of A on
Y providing two assumptions are met: 1) Coarsening at random (CAR) is an assumption of con-
ditional independence between treatment assignment and the full data given measured covariates,
A ⊥ X | W (Heitjan and Rubin (1991), Jacobsen and Keiding (1995), Gill et al. (1997)). This
assumption indicates there are no unmeasured confounders of the effect of treatment on the out-
come, i.e., UA is independent of UY in the NPSEM. 2) The positivity assumption, also known as
the experimental treatment assignment assumption (ETA), is that ∀a ∈ A, P (A = a | W ) > 0.
In other words, if no observations within some stratum defined by W receive treatment at level
A = a, then the data do not provide sufficient information to compare the effect of treatment at
level a with no treatment, or with treatment at some other level. The parameter is borderline iden-
tifiable when there is a practical ETA violation, ∃a ∈ A : P (A = a | W ) < ε, for some small ε
relative to sample size.

The NPSEM approach and the counterfactual framework offer distinct formulations for dis-
cussing causality, yet each provides an equivalent foundation for defining causal effects as param-
eters of statistical distributions. When causal assumptions are not met, the statistical parameter
represents an association measure that may still be of scientific interest.

A number of estimation procedures have been applied to causal effect estimation, including
the maximum likelihood-based G-computation estimator (Robins, 1986), the inverse-probability-
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of-treatment-weighted (IPTW) estimator (Hernan et al., 2000b; Robins, 2000b), the augmented
IPTW estimator (Robins and Rotnitzky, 2001; Robins et al., 2000; Robins, 2000a). Scharfstein
et al. (1999) presented a doubly robust regression-based estimator for the treatment specific mean,
later extended to time-dependent censoring (Bang and Robins, 2005). See Rosenblum and van der
Laan (2010) for a discussion of TMLE in relation to these other estimators. TMLE is a maximum
likelihood based G-computation estimator that targets the fit of the data generating distribution
towards reducing bias in the parameter of interest, generally one particular low-dimensional feature
of the true underlying distribution.

TMLE is more generally referred to as Targeted Minimum Loss-based Estimation. At its core,
in the above application, TMLE methodology involves fluctuating an initial estimate of the con-
ditional mean outcome, and minimizing a loss function to select the magnitude of the fluctuation.
The targeting fluctuation is parameter-specific. The loss function is not unique, but must be chosen
with care to ensure that the fluctuated estimate is a parametric sub-model M ∈ M, and that the
risk of the loss function is indeed minimized at the truth. Targeted maximum likelihood estimation
corresponds with choosing the negative log-likelihood loss function.

An orthogonal factorization of the likelihood of the data is given by

L(O) = P (Y | A,W )P (A | W )P (W ).

We refer to P (W ) and P (Y | A,W ) as the Q portion of the likelihood, Q = (QW , QY ), and
P (A | W ) as the g portion of the likelihood. Further define

Q̄0(A,W ) ≡ E0(Y | A,W )

g0(1 | W ) ≡ P0(A = 1 | W )

where the subscript ‘0’ denotes the truth, and a subscript ‘n’ will denote the corresponding quantity
estimated from data. P0(W ) is estimated by the empirical distribution on W , the non-parametric
MLE. Q̄n(A,W ) can be obtained by regressing Y on A and W . For some applications g0 may be
known, (e.g., treatment assignment in randomized controlled trials), so that consistent estimation
will be guaranteed. It has been shown that estimation of g0 leads to increased efficiency even when
the true g0 is known (van der Laan and Robins, 2003).

The parameter of interest of the probability distribution P0 of O is therefore defined non-
parametrically as ψ0 = EW (E(Y | A = 1,W ) − E(Y | A = 0,W )). Under the appropriate
causal graph assumptions ψ0 corresponds with the G-computation formula for the marginal addi-
tive causal effect.

The probability distribution/density of O can be factored as P0(O) =
Q0(O)g0(A | W ), where Q0(O) = QY 0(Y | A,W )QW0(W ) and g0(1 | W ) = P0(A = 1 | W ).
We used the notation QY for a conditional distribution of Y , given A,W , and QW for the marginal
distribution of W . For notational convenience, let Q̄0(A,W ) = E0(Y | A,W ) be the true con-
ditional mean of Y , given A,W , which is thus a parameter of QY 0. We note that ψ0 = Ψ(Q0)
only depends on the data generating distribution P0 through its Q0-factor. The targeted maximum
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likelihood estimator of ψ0 is a particular substitution estimator

Ψ(Q̄n) =
1

n

n∑
i=1

(Q̄n(1,Wi)− Q̄n(0,Wi)),

where Q̄n(A,W ) is an estimated conditional mean of Y given A,W , and the marginal distribution
QW0 is estimated with its empirical probability distribution.

Targeted maximum likelihood estimation involves obtaining an initial estimate of the true con-
ditional mean of Y givenA andW , and subsequently fluctuating this estimate in a manner designed
to reduce bias in the estimate of the parameter of interest. Let Q̄0

n(A,W ) be the initial estimate of
the true conditional mean Q̄0(A,W ). For example, if Y is binary, then one constructs a paramet-
ric (least favorable) model logit(Q̄0

n(ε)(A,W )) = logit(Q̄0
n + εH∗), fluctuating the initial estimate

Q̄0
n, where ε is the fluctuation parameter. The functionH∗(A,W ), known as the “clever covariate”,

depends on the treatment assignment mechanism g0, and is given by

H∗(A,W ) =
I(A = 1)

g0(1 | W )
− I(A = 0)

g0(0 | W )
.

The theoretical basis for this choice of clever covariate is given in van der Laan and Rubin (2006a).
In particular, it has the bias-reduction property that if one estimates εwith the parametric maximum
likelihood estimator, and one sets Q̄1

n equal to the resulting update, then the resulting substitution
estimator Ψ(Q̄1

n) is asymptotically unbiased, even if the initial estimator Q̄0
n is inconsistent. These

results indicate that estimating g0 is crucial for reducing bias.

1.1.1 Influence curve-based inference
TMLEs are asymptotically normally distributed with mean µ = ψ0 and variance σ2/n, where

σ2 is the variance of the influence curve for Ψ(Q̄). For the parameter of interest specified above,
σ2 is estimated from the data as:

σ̂2 =
1

n

n∑
i=1

ÎC
2
(Oi)

ÎC(Q∗n, g,Ψ(Q∗n)) = H∗(A,W )(Y −Q∗n(A,W )) +Q∗n(1,W )−Q∗n(0,W )− ψn(Q∗n).

Ninety-five percent confidence intervals are calculated as ψn(Q∗n)±1.96σ̂/
√
n. A test statistic can

be used to test a null hypothesis of the form H0 : ψ0 = 0:

T =
ψn√
σ̂2/n

.
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1.2 Further Remarks
The fundamental themes underlying C-TMLE were present in van der Laan and Rubin’s sem-

inal paper: building a sequence of TMLEs that are increasing in likelihood, targeting nuisance
parameter estimation towards the parameter of interest, and using cross-validation to select among
TMLEs. For example, this quote from Section 2.2 of the technical report version of the paper
(van der Laan and Rubin, 2006b) describes constructing a sequence of TMLEs with increasing
likelihood:

As a potentially useful practical modification of this targeted MLE algorithm Φ∗(Pn)
for ψn we suggest that at each step one does not necessarily need to select the max-
imizer ε(Pn | pin), but instead one might simply select an ε so that Pn log pkn(ε) >
Pn log pon, thereby still guaranteeing that the likelihood increases at each step. The im-
portant property driving the asymptotics of the resulting estimator is that the algorithm
is such that for k converging to infinity the likelihood increases at each step, and (as a
consequence) the maximizer of ε→ Pn log pkn(ε) converges to zero so that in the limit
limk PnD(pkn)) = 0.

where Φ(Pn) is a density estimator, Φ∗(Pn) is a targeted density estimator, andD(p) is the efficient
influence curve.

Section 2.3 discusses targeting the nuisance parameter estimate:

Although the efficient influence curves dependence on the [nuisance parameter]
is such that the properties of [the nuisance parameter estimate] only affects the sec-
ond order terms in the resulting targeted ML estimator of ψ0 (see e.g. van der Laan
and Robins (2002)), it is still of practical interest to also make the estimator of [the
nuisance parameter] targeted towards estimation of D(p0).

Section 2.5 recommends cross-validation to select between two targeted (unbiased) estimators:

The log likelihood loss function provides a sensible criteria for comparing densities
which perform equally well with respect to the parameter of interest, ψ0.

Paraphrasing Section 2.5: Consider two targeted estimators based on two different initial estimates
of Q. Both solve the efficient influence curve equation for the target parameter, and are therefore
unbiased for the target parameter. But in finite samples we don’t necessarily have that Ψ(p1

n) =
Ψ(p2

n) = ψ0. Instead, we know that P0(Dp) ≈ Ψ(p0) − Ψ(pn) = ψ0 − ψn. Any deviation of
ψ0 = ψn from 0 is due to nuisance parameters needed to identify D. A final quote provides
the rationale for utilizing cross-validation (for theoretical justification see also van der Laan and
Dudoit (2003)):
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For example, consider two possible increases in fit of the nuisance parameters
needed to fit D(p0), but suppose that one of the fits results in a large gain of the log-
likelihood during the targeted MLE algorithm, while for the other fit the targeted MLE
algorithm yields only a small increase in log-likelihood. Then a comparison of the log-
likelihood for the two targeted fits will select the increase in nuisance parameter fit
which results in the subsequent maximal increase in log-likelihood during the targeted
MLE algorithm. That is, . . . the criteria rewards increases in fits of the density which
are directly relevant for estimation of the parameter of interest.

Each of these key ideas is presented in a separate context in the 2006 technical report. The
theory of collaborative double robustness ties the pieces together.
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Chapter 2

Implications of Collaborative Double
Robustness of the Efficient Influence Curve

2.1 Introduction
Under regularity conditions a double robust estimator is consistent and asymptotically normal

if either the outcome regression model estimating Q̄0 or the censoring mechanism model for g0 is
correctly specified (Scharfstein et al., 1999; Neugebauer and van der Laan, 2005). The theory be-
hind collaborative double robustness reveals that there can exist combinations (Q̄n, gs) that provide
consistent parameter estimation even when neither is correctly specified (van der Laan and Gru-
ber, 2010). This fundamental property of the efficient influence curve applies to all estimators that
solve the efficient influence curve estimating equation, and has implications for effective nuisance
parameter estimation when the goal is optimizing the bias/variance tradeoff for the parameter of
interest.

The data consists of n independent and identically distributed copies of O = (W,A, Y ) ∼ P0.
The likelihood of the data factorizes as

L(O) = P (Y | A,W )︸ ︷︷ ︸
QY

P (A | W )︸ ︷︷ ︸
G

P (W )︸ ︷︷ ︸
QW

.

Consider estimation of the additive treatment effect parameter of a binary point treatment,A, on an
outcome Y , adjusted for baseline covariates W , ψ0 = E0(Y (1)− Y (0)). The Let Q = (QY , QW ).
The efficient influence curve for this parameter is given by,

D(ψ0, G,Q) =

(
2A− 1

g(A | W )

)
(Y − Q̄(A,W )) + Q̄(1,W )− Q̄(0,W )− ψ0.

and P0D(ψ0, G,Q) = 0 if an estimate of either Q̄0 or g0 is consistent.
We next define the collaborative double robustness (C-DR) property of the efficient influence

curve, referring to van der Laan and Gruber (2010) for technical details. Define G(Q,P0) as the
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set of all true conditional distributions of A given W s, where W s is a function of W such that
Q−Q0 depends on W through a reduction W s. Then, for any g ∈ G(Q,P0), P0D(ψ0, g, Q) = 0.
The implication of this result for all estimators that rely on D as an estimating function (including
IPTW and AIPTW) is that the estimator remains unbiased when and gs ∈ G(Q,P0) is substituted
for g0,

P0D(Q, gs) = 0→ Ψ(Q) = Ψ(Q0).

For TMLEs, this property implies that further targeting an already targeted TMLE, Q∗n using g′s ∈
G(Q,P0) will not bias the estimate.

We use the term “sufficient” to describe the conditional distributions gs ∈ G(Q,P0), because
in conjunction with Q, each gs ∈ G(Q,P0) is sufficient for consistent estimation of ψ0. G(Q,P0)
includes

1. g0, the true conditional distribution of A given W,

2. any conditional distribution of A given W s that conditions on at least (Q − Q0(0,W ), Q −
Q0(1,W )),

3. any conditional distribution that conditions on variables in addition to those included in (1)
or (2).

In the next section we demonstrate the C-DR property for IPTW, AIPTW and TMLE in the particu-
lar case that the initial estimate of Q is non-informative. Subsequent chapters describe C-TMLE in
more detail, and demonstrate the C-DR property under misspecified and correctly specified models
for Q.

2.2 Demonstration of collaborative double robustness
The following examples illustrate this property when the inverse probability of treatment

weighted estimator (IPTW), and TMLE are applied to estimate an additive treatment effect (Ex-
ample 1), and for application of AIPTW (Example 2). The IPTW and TMLE estimators for the
additive treatment effect are defined as

ψIPTWn =
1

n

n∑
i=1

[I(Ai = 1)− I(Ai = 0)]
Yi

gn(Ai,Wi)

ψTMLE
n =

1

n

n∑
i=1

Q̄∗n(1,Wi)− Q̄∗n(0,Wi)

where Q̄∗n(A,W ) is a targeted estimate of E0(Y | A,W ). IPTW estimation does not incorporate
any estimate of Q̄0. TMLE can be made comparable to IPTW by setting Q̄0

n(A,W ) = 0, thus
forcing TMLE to rely entirely on gn.
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2.2.1 Example 1: TMLE and IPTW
The true data generating distribution is given by

W1,W2,W3 ∼ Bernoulli(0.5)

A = expit(−2 +W1 + 2W2 + 3W3)

Q̄0(A,W ) = A+W1.

Note that g0 depends on (W1,W2,W3), however W1 is the only confounder, and therefore an
unbiased estimate of ψ0 can be obtained by adjusting only for W1. This indicates that g0(1 |
W1,W2,W3) ∈ G(0, P0) and gs(1 | W1) = E0(g0(1 | W )|W1) ∈ G(0, P0). Table 2.1 lists stratum-
specific treatment assignment probabilities for each of these conditional distributions. We observe

Table 2.1: Example 1: Stratified treatment assignment probabilities.

W1 W2 W3 g0 gs

0 0 0 0.12 0.575
0 0 1 0.73 0.575
0 1 0 0.50 0.575
0 1 1 0.95 0.575

1 0 0 0.27 0.715
1 0 1 0.88 0.715
1 1 0 0.73 0.715
1 1 1 0.98 0.715

that although stratum-specific treatment assignment probabilities vary, the conditional distribution
of A given the lone confounder, W1, is the same under g0 and gs, Pg0(A | W1) = Pgs(A | W1). An
imbalance of non-confounders between treatment and control groups does not bias an estimate of
the treatment effect, thus the distribution of A conditional on non-confounders is irrelevant.

Effect estimates shown in Table 2.2 were obtained for 500 samples of size n = 106 to illustrate
asymptotic estimator behavior. Adjusting for gs removes bias as effectively as adjusting for g0,
and can be more efficient. (TMLE is not semi-parametric efficient in this setting because Q̄0 is
misspecified.) For these data, estimating gs is 3 to 25 times more efficient than estimating g0.

There are more sufficient conditional distributions than just these two. For example, when
Q̄0
n = 0 it is necessary for gs to condition on all confounders in g0. Predicted probabilities

based on gs equal an expectation of g0 over non-confounders that are not conditioned upon. Non-
confounders in g0 can either be conditioned upon or integrated over, which confirms the non-
uniqueness of gs ∈ G(Q,P0). In addition, distributions that condition on all confounders plus
additional covariates beyond the true confounders are sufficient, however finite sample perfor-
mance suffers when their inclusion leads to violations of the positivity assumption. Table 2.3
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Table 2.2: IPTW and TMLE estimates using different models for g, setting Q0
n = 0, varying

sample sizes.

g0(A|W1,W2,W3) gs(A|W1)
IPTW TMLE IPTW TMLE

bias -9.61e-05 -1.14e-03 -9.76e-05 -9.76e-05
var 1.71e-05 1.44e-04 5.11e-06 5.11e-06
MSE 1.70e-05 1.45e-04 5.11e-06 5.11e-06

relMSE∗ 1 1 0.30 0.04
∗relative to g0 for that estimator

Table 2.3: Example 1: IPTW and TMLE results using gs and g′s.

gs g′s
IPTW TMLE IPTW TMLE

n = 106

bias -9.8e-05 -9.8e-05 -4.1e-05 -4.1e-05
var 5.1e-06 5.1e-06 6.0e-06 6.0e-06
MSE 5.1e-06 5.1e-06 5.9e-06 5.9e-06

relMSE∗ 0.30 0.04 0.35 0.04

n = 500
bias -3.9e-04 -3.9e-04 2.2e-03 2.2e-03
var 9.3e-03 9.3e-03 1.2e-02 1.2e-02
MSE 9.3e-03 9.3e-03 1.2e-02 1.2e-02

relMSE∗ 0.26 0.01 0.33 0.01
∗relative to g0 for that estimator at the same sample size

provides a comparison of results for gs defined above , and an additional conditional distribution,
g′s ∈ G(Q,P0) ≡ P (A = 1 | W1,W2). We see that bias reduction and improved efficiency in finite
samples (n = 500) mirrors asymptotic behavior.
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Table 2.4: Example 2: AIPTW, Q̄0
n correctly specified and misspecified.

(n = 500) Bias Var MSE

Qcor

OLS −0.0019 0.0091 0.0091
AIPTW, g0 0.0004 0.0107 0.0106
AIPTW, gs −0.0021 0.0092 0.0092

Qmis

OLS −0.2354 0.0200 0.0753
AIPTW, g0 0.0013 0.0116 0.0116
AIPTW, gs −0.0020 0.0094 0.0093

2.2.2 Example 2: AIPTW
AIPTW was applied to estimate ψ0 from 500 datasets drawn from a data generating distribution

defined as follows:

W1,W2,W3 ∼ Bernoulli(0.5)

A = expit(0.2− 0.5W1 + 0.4W2 + 1.2W3)

Q̄0(A,W ) = A+ 2W1 +W2

The AIPTW estimator of the additive treatment effect is given by

ψAIPTW =
1

n

n∑
i=1

(
I(Ai = 1)

g(1 | Wi)
− I(Ai = 0)

g(0 | Wi)

)
(Yi − Q̄(Ai,Wi)) + Q̄(1,Wi)− Q̄(0,Wi).

TMLE and AIPTW are both DR, which indicates there is no residual bias in an estimated ψn based
on a correctly specified fit for Q̄0(A,W ). Consider a specific misspecified estimate, Q̄n,mis(A,W )
= E(Y | A,W2). Residual bias is due to confounding by (W1,W2), therefore G(Q̄n,mis, P0) in-
cludes g0 = P (A = 1 | W1,W2,W3), gs = P (A = 1 | W1,W2), and more.

Table 2.4 shows results of applying AIPTW to 500 samples of size n = 500. Estimates were
obtained using a correctly specified regression model to estimate Q̄0, and also using the misspeci-
fied model for Q̄0. g0 and gs defined above are both in G(Q̄n,mis, P0). Notice that when the initial fit
for Q̄0 is correctly specified (Q̄n,cor−Q̄0) = 0, thus G(Qn,cor) includes all conditional distributions
of A given W , and in particular, includes all the conditional distributions that are in G(Q̄n,mis, P0).
This is not just a small finite sample result. Sample size was increased to n = 106, and estimates
were obtained for 500 samples (Table 2.5).

Results confirm that gs that adjusts only for (Q̄0 − Q̄) is sufficient to remove bias. Also note
AIPTW using gs is super-efficient. That is to say, when the estimate of Q̄0 is correctly specified,
AIPTW variance is less than the semi-parametric efficiency bound in the semi-parametric model,
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Table 2.5: Example 2: AIPTW, Q̄0
n correctly specified and misspecified.

(n = 106) Bias Var MSE rel Eff

Qcor

OLS 7.41e− 05 4.66e− 06 4.66e− 06 0.89
AIPTW, g0 2.34e− 05 5.27e− 06 5.26e− 06 1
AIPTW, gs 8.02e− 05 4.71e− 06 4.70e− 06 0.89

Qmis

OLS −2.30e− 01 8.97e− 06 5.30e− 02 104

AIPTW, g0 −1.47e− 05 5.26e− 06 5.25e− 06 1.00
AIPTW, gs 1.33e− 05 4.69e− 06 4.69e− 06 0.89

M where it is not known that W3 is a non-confounder. In an alternate, restricted, model space
where such knowledge is known, gs defined above would be considered g0, and AIPTW estimates
based on gs would be considered efficient, but not super-efficient. This distinction explains the
super-efficient behavior of C-TMLE in simulations in subsequent chapters.

In summary, understanding that any gs ∈ G(Q,P0) provides sufficient bias reduction allows
us to tailor nuisance parameter estimation to improve the bias/variance tradeoff for ψn. A known
g0 that does not lead to violations of the positivity assumption will always asymptotically remove
residual bias (e.g., treatment assignment probabilities in randomized controlled trials). At other
times, the use of gs may improve identifiability of ψ0, gs may be easier to estimate than g0, and
effective nuisance parameter estimation procedure should exploit the knowledge that g can be fit
based on (Q0 −Q). The likelihood for g is not the best guide, nor is an ad hoc procedure without
good asymptotic properties ideal. The C-TMLE algorithm presented in Chapter 4 is a principled
approach with a strong theoretical foundation.

2.3 Fluctuating an already targeted Q∗n
Consider Q∗n, a TMLE that was obtained by fluctuating some initial Q0

n with gs known to be a
member of G(Q0

n, P0), such that P0D(Q∗n, gs) = 0, and thus Ψ(Q∗n) is unbiased for ψ0. Attempting
to further target Q∗n with a parametric fluctuation based on any g ∈ G(Q0

n, P0) will not bias the
estimator. To see why, consider an ε fluctuation ofQ∗n(A,W ), where ε is fit by maximum likelihood
such that f(ε) = argminε ∼ P0L(Q∗n(ε)), and assuming the existence a local maximum.

Q∗∗n (A,W ) = Q∗n(A,W ) + ε1H
∗
g′s

(A,W )

RecallQ∗n is already targeted, and therefore f ′(ε = 0) = P0D(Q∗n, gs) = 0. By the assumption of a
local maximum, ε = 0 is therefore a unique solution, such that Q∗∗n = Q∗n, and Ψ(Q∗∗n ) = Ψ(Q∗n),
provided Pn = P0, i.e., n is sufficiently large. Example 3 demonstrates this behavior both at large
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sample size (n = 106) and in smaller samples (n = 500) for estimating the additive treatment
effect parameter using data generated as in Example 1 above,

W1,W2,W3 ∼ Bernoulli(0.5)

A = expit(−2 +W1 + 2W2 + 3W3)

Q̄0(A,W ) = A+W1.

We set Q̄0
n = 0, and define two sufficient conditional distributions of A given W , gs1 = P (A =

1 | W1), gs2 = P (A = 1 | W1,W2). A parameter estimate Ψ(Q̄∗n) is obtained by applying
the mapping, Ψ, to a targeted estimate of Q̄0, Q̄∗n = Q̄0

n + ε1H
∗(gs1), with ε1 fit by maximum

likelihood. A second parameter estimate, Ψ(Q̄∗∗n ) is obtained by apply the mapping Ψ to a further
targeted estimate of Q̄0, Q̄∗∗n = Q̄∗n + ε2H

∗(gs2), ε2 also fit by maximum likelihood. The column
labeled ε̄1 in Table 2.6 shows the mean value of ε1 over 500 samples at each sample size, ψ̄n1 is
the mean estimate of ψ0, (ψ0 = 1). The column labeled ε̄2 lists the mean value of ε2 over the 500
replicates, and ψ̄n2 is the mean parameter estimate. As expected, ψn1 is unbiased, ε2 ≈ 0, even at
relatively small sample size, and ψn2 remains unbiased.

Table 2.6: Example 3: Further targeting a TMLE.

gs1 gs2

n ε̄1 ψ̄n1 ε̄2 ψ̄n2

106 0.222 1.000 0.000011 1.000
500 0.221 0.998 0.000036 0.999
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Chapter 3

Targeted Maximum Likelihood Estimation
for Bounded Continuous Outcomes

3.1 Introduction
This chapter describes a recently developed targeted maximum likelihood estimator for esti-

mating a causal effect of a binary treatment on a continuous outcome. This estimator is more ro-
bust than a previously presented TMLE procedure when there is sparsity in the data that decreases
the identifiability of the parameter of interest.

Sparsity is defined as low information in the dataset for the purpose of learning the target
parameter. Formally, the Fisher information, I , is defined as sample size n divided by the variance
of the efficient influence curve: I = n/var(D∗(O)), where D∗(O) is the efficient influence curve
of the target parameter at the true data generating distribution. The reciprocal of the variance of
the efficient influence curve can be viewed as the information one observation contains for the
purpose of learning the target parameter. Since the variance of the efficient influence curve divided
by n times the variance of an asymptotically efficient estimator converges to 1 when the sample
size converges to infinity, one can also think of the information I as the reciprocal of the variance
of an efficient estimator of the target parameter. Thus, sparsity with respect to a particular target
parameter corresponds with small sample size relative to the variance of the efficient influence
curve for that target parameter.

Section 3.2 provides background on the application of TMLE methodology in the context of
sparsity, and its power relative to other semi-parametric efficient estimators by being a substitution
estimator respecting global constraints of the semi-parametric model. Even though an estimator
can be asymptotically efficient without utilizing global constraints, the global constraints are in-
strumental in the context of sparsity with respect to the target parameter, motivating the need for
semi-parametric efficient substitution estimators, and for a careful choice of fluctuation function
for the targeted MLE step that fully respects these global constraints. A rigorous demonstration
of the proposed targeted MLE of the causal effect of a binary treatment on a bounded continuous
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outcome follows, and it is contrasted to a targeted MLE that makes use a fluctuation function that
does not respect the bounds.

Simulation studies described in Section 3.3 compare the new TMLE estimator of the causal
effect, which relies on a logistic fluctuation of an initial density estimate, with the traditional
TMLE estimator, with and without sparsity in the data. Results for other commonly applied es-
timators, the inverse-probability-of-treatment weighted estimator (IPTW) (Hernan et al., 2000b;
Robins, 2000b), a double robust augmented IPTW estimator (AIPTW) (Robins and Rotnitzky,
2001; Robins et al., 2000; Robins, 2000a) that is efficient but not a substitution estimator, and
the maximum likelihood substitution estimator according to a parametric model (MLE) (Robins,
1986) are also presented.

3.2 TMLE for causal effect estimation on a continuous out-
come

The targeted MLE is a semi-parametric efficient substitution estimator of a target parameter
Ψ(P0) of a true distribution P0 ∈ M, based on sampling n i.i.d. O1, . . . , On from P0. Here P0 is
known to be an element of a semi-parametric statistical modelM. We will start with providing a
succinct summary of how TMLE works, see van der Laan et al. (2009) for details.

Firstly, one notes that Ψ(P0) = Ψ(Q0) only depends on P0 through a relevant partQ0 = Q(P0)
of P0. Secondly, one proposes a loss function L(Q)(O) so that Q0 = arg minQ∈QE0L(Q)(O),
where Q = {Q(P ) : P ∈ M}. Thirdly, one uses minimum loss-based learning, such as super
learning (van der Laan et al., 2007), fully utilizing the power and optimality results for loss-based
cross-validation to select among candidate estimators, to obtain an initial estimator Q0

n of Q0.
Fourthly, one proposes a parametric fluctuation Q0

ng(ε), possibly indexed by nuisance parameter
g0 = g(P0), so that

d

dε
L(Q0

ng(ε))(O)

∣∣∣∣
ε=0

= D∗(Q0
n, g)(O), (3.1)

where D∗(Q0, g0) is the canonical gradient/efficient influence curve of Ψ :M→ IR at P0. Fifthly,
one computes the amount of fluctuation

εn = arg min
ε

n∑
i=1

L(Q0
ngn(ε))(Oi),

where gn is an estimator of the unknown nuisance parameter g0. This yields an update Q1
n =

Q0
ngn(εn). This updating of an initial estimator Q0

n into a next Q1
n is iterated till convergence

resulting in a Q∗n. Since at the last step the amount of fluctuation εn ≈ 0, this final Q∗n will solve
the efficient influence curve estimating equation

0 =
1

n

n∑
i=1

D∗(Q∗n, gn)(Oi),
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representing a fundamental ingredient for establishing asymptotic efficiency of
Ψ(Q∗n): recall that an estimator is efficient if and only if it is asymptotically linear with influ-
ence curve equal to the efficient influence curve D∗(Q0, g0). Finally, the targeted MLE of ψ0 is the
substitution estimator Ψ(Q∗n).

Thus we see that the targeted MLE involves constructing a parametric modelQ0
n(ε) through the

initial estimator Q0
n with parameter ε representing an amount of fluctuation of the initial estimator,

where the score of this fluctuation model at ε = 0 equals the efficient influence curve. The latter
constraint can be satisfied by many parametric models, since it represents only a local constraint
of its behavior at zero fluctuation. However, it is very important that the fluctuations stay within
the model for the observed data distribution, even if the parameter can be defined on fluctuations
that fall outside the assumed observed data model. In particular, in the context of sparse data, a
violation of this property can heavily affect the performance of the estimator.

One important strength of the semi-parametric efficient targeted MLE relative to the alternative
semi-parametric efficient estimating equation methodology (van der Laan and Robins, 2003) is that
it does respect the global constraints of the observed data model since it is a substitution estimator
Ψ(Q∗n) withQ∗n an estimator of a relevant partQ0 of the true distribution of the data in the observed
data model. The estimating equation methodology does not result in substitution estimators and
thereby often ignores important global constraints of the observed data model, though Tan (2008)
introduces a non-parametric likelihood based approach to constructing a double robust estimator
that is not a substitution estimator, and offers a comparison with other estimators, including TMLE
that is not constrained to remain within the bounds of the observed data model. Ignoring constraints
comes at a price in the context of sparsity. Indeed, simulations have confirmed this gain of targeted
MLE relative to the efficient estimating equation method in the context of sparsity (Stitelman and
van der Laan, 2010), and it is again demonstrated in the simulations described below. However, if
the targeted MLE starts violating this principle of being a substitution estimator by allowing Q∗n
to fall outside the assumed observed data model, this advantage is compromised. Therefore, it is
crucial that a fluctuation model is used that is guaranteed to stay within the desired observed data
model.

To demonstrate this important consideration of selecting a valid fluctuation model in the con-
struction of targeted MLE, we consider the problem of estimating a causal effect of a binary treat-
ment A on a continuous outcome Y , based on observing n i.i.d. copies of O = (W,A, Y ) ∼ P0,
where W is the set of confounders. Under non-parametric structural equation model (NPSEM)
W = fW (UW ), A = fA(W,UA), Y = fY (W,A,UY ) with a structure on the exogenous variables
U = (UW , UA, UY ) satisfying the no unmeasured confounders assumption (A ⊥ Y (a) | W for the
counterfactuals Y (a) defined by this NPSEM), the additive causal effect E(Y (1) − Y (0)) can be
identified from the observed data distribution through the following statistical parameter of P0:

Ψ(P0) = E0(E0(Y | A = 1,W )− E0(Y | A = 0,W )).

Suppose that it is known that Y ∈ [a, b] for some a < b. Alternatively, one might have
truncated the original data to fall in such an interval and focus on the causal effect of treatment on
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this truncated outcome, motivated by the fact that estimating conditional means of unbounded, or
very heavy tailed, outcomes requires very large data sets.

Let Y ∗ = (Y − a)/(b− a) be the linearly transformed outcome within [0, 1], and define

Ψ∗(P0) = E0(E0(Y ∗ | A = 1,W )− E0(Y ∗ | A = 0,W )).

We note that
Ψ(P0) = (b− a)Ψ∗(P0).

An estimate, limit distribution, and confidence interval for Ψ∗(P0) is now immediately mapped
into an estimate, limit distribution, and confidence interval for Ψ(P0), by simple multiplication by
(b − a). As a consequence, without loss of generality, we can assume a = 0 and b = 1 so that
Y ∈ [0, 1].

The efficient influence curve of the statistical parameter Ψ : M → IR, defined on a non-
parametric statistical modelM for P0, at the true distribution P0, is given by

D∗(P0) =
2A− 1

g0(A | W )
(Y − Q̄0(W,A)) + Q̄0(W, 1)− Q̄0(W, 0)−Ψ(Q0),

where Q̄0(W,A) = E0(Y | A,W ), and Q0 = (QW , Q̄0) denotes both this conditional mean Q̄0 as
well as the marginal distributionQW ofW . Note that indeed Ψ(P0) only depends on P0 through Q̄0

and the marginal distribution of W . We will use the notation Ψ(P0) and Ψ(Q0) interchangeably.
We will now define a targeted MLE of Ψ(Q0) as follows. Let Q̄0

n be an initial estimator of
Q̄0(W,A) = E(Y | A,W ) with predicted values in (0, 1). In addition, we estimate PW with the
empirical distribution of W . Let Q0

n denote the resulting initial estimator of Q0. The targeted
MLE step will also require an estimator gn of g0 = PA|W . Only the conditional mean Q̄0

n will
be modified by the targeted MLE procedure defined below: this makes sense since the empirical
distribution of W is already a non-parametric maximum likelihood estimator so that no bias gain
with respect to the target parameter will be obtained by modifying it.

We can represent the estimator Q̄0
n as Q̄0

n = 1
1+exp(−f0

n)
with f 0

n = log(Q̄0
n/(1− Q̄0

n)). Consider
now the fluctuation model

Q̄0
n(ε) =

1

1 + exp(−{f 0
n + εh})

,

with parameter ε, indexed by a function

h(gn)(W,A) =
2A− 1

gn(A | W )
.

Equivalently, we can write this as logitQ̄0
n(ε) = logitQ̄0

n + εh(gn).
Consider now the following loss function for Q̄0:

−L(Q̄)(O) = Y log Q̄(W,A) + (1− Y ) log(1− Q̄(W,A)).
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Note that this is the log-likelihood of the conditional distribution of a binary outcome Y , but now
extended to continuous outcomes in [0, 1]. (See also Wedderburn (1974), McCullagh (1983) for
earlier use of logistic regression for continuous outcomes.) It is thus known that this loss function
is a valid loss function for the conditional distribution of a binary Y , but we need that it is a valid
loss function for a conditional mean of a continuous Y ∈ [0, 1]. We have the following lemma
establishing this result about this loss function.

Lemma 1 We have that
Q̄0 = argmin

Q̄

E0L(Q̄),

where the minimum is taken over all functions of (W,A) which map into (0, 1). In addition, define
the fluctuation function

logitQ̄(ε) = logitQ̄+ εh.

For any function h we have

d

dε
L(Q̄(ε))

∣∣∣∣
ε=0

= h(W,A)(Y − Q̄(W,A)).

Proof: Let Q̄1 be a local minimum and consider the fluctuation Q̄1(ε) defined above. Then the
derivative of E0L(Q̄1(ε)) at ε = 0 equals zero. However,

− d

dε
L(Q̄1(ε))

∣∣∣∣
ε=0

= h(W,A)(Y − Q̄1(W,A)).

Thus, it follows that

E0h(W,A)(Y − Q̄1(W,A)) = E0h(W,A)(Q̄0 − Q̄1)(W,A).

But this needs to hold for any function h(W,A), which proves that Q̄1 = Q̄0 a.e. 2
This proves that L(Q̄) is a valid loss function for the conditional mean Q̄0. Indeed, we can use

L(Q̄) as loss function to construct an initial estimator of Q̄0, and or use cross-validation to select
among candidate targeted maximum likelihood estimators, such as in the collaborative targeted
MLE procedure. For the purpose of construction of an initial estimator one could also use a mini-
mum loss-based super learner based on the squared error loss function L2(Q̄) = (Y − Q̄(W,A))2,
possibly with weights.

Given an initial estimator Q̄0
n, and our proposed fluctuation function Q̄0

n(ε), we have

d

dε
L(Q̄0

n(ε))

∣∣∣∣
ε=0

= h(g)(W,A)(Y − Q̄0
n(W,A)),

giving us the desired first component D∗1 of the efficient influence curve D∗ = D∗1 +D∗2.
Let’s use the log-likelihood loss function, −logQW , as loss function for the marginal distribu-

tion of W , so that our combined loss function is given by L(Q) = −logQW + L(Q̄). In addition,
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we use as fluctuation of the empirical distribution QWn, QWn(ε1) = (1 + ε1D
∗
2(Q))QWn, where

D∗2(Q) = Q̄(W, 1)− Q̄(W, 0)−Ψ(Q) is the remaining component of the efficient influence curve.
With these choices we indeed now have that

d

dε
L(Q(ε))

∣∣∣∣
ε=0

= D∗(Q, g).

This shows that we succeeded in defining a loss function for Q0 = (QW , Q̄0) and fluctuation
function so that the desired derivative (3.1) indeed yields the efficient influence curve.

The MLE of ε1 equals zero, so that the update of QWn equals QWn itself. The empirical mean
of the component D∗2 = Q̄(W, 1) − Q̄(W, 0) − Ψ(Q) of the efficient influence curve is always
equal to zero, due to the fact that we estimate the marginal distribution of W with the empirical
distribution of W .

The amount of fluctuation of ε for fluctuating Q̄0
n is given by

ε0n = argmin
ε

PnL(Q̄0
n(ε)).

This “maximum likelihood” estimator of ε can be computed with generalized linear regression
using the binomial link, i.e. the logistic regression MLE procedure, simply ignoring that the out-
come is not binary, which also corresponds with iterative re-weighted least squares estimation
using weights 1/Q̄(1− Q̄).

This provides us with the targeted MLE update Q1
n = Q0

n(ε0n), where the empirical distribution
of W did not get updated, and Q̄0

n did get updated as Q̄0
n(ε0n). Iterating this procedure now defines

the targeted MLE Q∗n, but as in the binary outcome case, we have that Q2
n = Q1

n(ε1n) = Q1
n since

the next MLE ε1n = 0. Thus convergence occurs in one step, so that Q∗n = Q1
n. The targeted MLE

of ψ0 is thus given by Ψ(Q∗n) = Ψ(Q1
n). As predicted, we have that the targeted MLE Q∗n solves

the efficient influence curve estimating equation PnD∗(Q∗n, gn,Ψ(Q∗n)) = 0.
An inspection of this efficient influence curve,

D∗(P0) =
2A− 1

g0(A | W )
(Y − Q̄0(W,A)) + Q̄0(W, 1)− Q̄0(W, 0)−Ψ(Q0),

reveals that there are two potential sources of sparsity. Small values for g0(A | W ) and large
outlying values of Y inflate the variance. Enforcing (e.g., known) bounds on Y and g0 in the
estimation procedure provides a means for controlling these sources of variance. We note that,
even if there is strong confounding causing some large values of hg0

n
, the resulting targeted MLE

Q̄∗n remains bounded in (0, 1), so that the targeted MLE Ψ(Q∗n) fully respects the global constraints
of the observed data model. On the other hand, the augmented IPTW estimator obtained by solving
PnD

∗(Q0
n, gn, ψ) = 0 in ψ yields the estimator

ψn =
1

n

n∑
i=1

h0
gn(Wi, Ai)(Yi − Q̄0

n(Wi, Ai)) + Q̄0
n(Wi, 1)− Q̄0

n(Wi, 0),

which can easily fall outside [0, 1] if for some observations Wi, gn(1 | Wi) is close to 1 or 0. This
represents the price of not being a substitution estimator.
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Contrasting with targeted MLE using linear fluctuation function. Alternatively, we would
employ the targeted MLE using the L2(Q̄) = (Y − Q̄(W,A))2 loss function, and fluctuation
function Q̄0(ε) = Q̄0 + εh(g), so that (3.1) is still satisfied. In this case, large values of h(g)
will result in predicted values of Q̄0(εn) that are out of the bounds [a, b]. Therefore, this version
of targeted MLE is not respecting the global constraints of the model, i.e., the knowledge that
Y ∈ [a, b]. A comparison based on simulated data of the targeted MLE using the logistic fluctuation
function and the targeted MLE using this linear fluctuation function is provided in the next section.

3.3 Simulation studies for the additive effect of a
binary point treatment on a continuous outcome

Two simulation studies illustrate the effects of employing a logistic vs. linear fluctuation on
TMLE estimator performance with and without sparsity in the data, where a high degree of sparsity
corresponds to a target parameter that is borderline-identifiable. As above, the parameter of interest
is defined as the marginal effect of a binary point treatment on the outcome, ψ0 = EW (E(Y | A =
1,W )− E(Y | A = 0,W )).

The “traditional” targeted maximum likelihood approach to estimating an additive treatment
effect when the outcome is continuous is to fluctuate the initial density estimate on a linear scale.
Given Q̄0

n(W,A), an initial estimate of the conditional mean of Y given (W,A), the fluctuation
function is defined as Q̄0

n(ε) = Q̄0
n + ε(hgn) and the loss function L(Q̄) is chosen to be the squared

error loss function, so that we still have the required constraint (3.1). The estimate εn can be
obtained by estimating ε with a linear regression of Y on hgn , using the initial fit, Q̄0

n(W,A), as
offset.

A second TMLE using the logistic fluctuation method described in Section 3.2 is also obtained.
Y is transformed into Y ∗ ∈ [0, 1] by shifting and scaling the values. In the simulation setting, Y is
not bounded, so that we do not have an a priori a and b bound on Y . Instead of truncating Y and
redefining the target parameter as the causal effect on the truncated Y , we still aim to estimate the
causal effect on the original Y . Therefore, we set a = min(Y ), b = max(Y ), and

Y ∗ =
Y − a
b− a

.

An initial estimate, Q̄0,Y ∗
n (W,A) = E(Y ∗|W,A), is obtained, and then represented as a logistic

function of its logit-transformation. Note that logit(x) is not defined when x = 0 or 1, therefore
in practice Q̄0,Y ∗

n (W,A) is bounded away from 0 and 1 by truncating it at (α, (1 − α)). We used
α = 0.005 in these simulation studies, which did not yield appreciably different results than setting
α = 0.001 or α = 0.01. The function Q̄0,Y ∗

n is fluctuated on the logit scale with logitQ̄0,Y ∗
n (ε) =

logitQ̄0,Y ∗
n +εh(gn), using the same clever covariate, hgn(W,A), employed in the linear fluctuation

described above. Fitting ε is again carried out using standard software, but this time using logistic
regression of Y ∗ on hgn(W,A) with offset logit(Q0,Y ∗

n (W,A)). This results in the updated Q̄1,Y ∗
n .
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Fitted values for Q̄1,Y ∗
n (W,A) are mapped back to the original scale: Q̄1,Y

n = Q̄1,Y ∗
n (W,A) ∗ (b −

a) + a. The marginal distribution is estimated with the empirical distribution of W , giving the
Q∗n = Q1

n = (QW,n, Q̄
1,Y
n ) of (QW , Q̄0). The estimate

ψn = Ψ(Q∗n) =
1

n

n∑
i=1

Q̄1,Y
n (Wi, 1)− Q̄1,Y

n (Wi, 0)

is the targeted MLE of the desired additive causal effect ψ0.
Parameter estimates were also obtained using the augmented inverse probability of treatment

weighed estimator (AIPTW),

ψAIPTWn =
1

n

n∑
i=1

2A− 1

gn(Ai | Wi)
(Yi − Q̄0

n(Wi, Ai))

+
1

n

n∑
i=1

(Q̄0
n(Wi, 1)− Q̄0

n(Wi, 0)).

Both the targeted MLE and the augmented IPTW estimator are double robust so that these estima-
tors will be consistent for ψ0 if either gn or Q̄0

n is consistent for g0 and Q̄0, respectively. Both the
targeted MLE and the augmented IPTW estimator are asymptotically efficient if both gn and Q̄0

n

are consistent.
Although the utilization of super learning is recommended in practice, in this simulation study

simple parametric MLEs are used as initial estimators Q̄0
n and gn, . The purpose of this simulation

is to investigate the performance of the updating step under misspecified and correctly specified
Q̄0
n, and for that purpose we can work with parametric MLE fits.

Results from two estimation methods that are not double robust and semi-
parametric efficient are included as well. The maximum likelihood estimator according to a para-
metric model for Q̄0 (MLE), used as initial estimator in the targeted MLE and augmented IPTW, is
included for the sake of evaluating the bias reduction step carried out by these two semi-parametric
efficient procedures. Inverse probability of treatment weighted (IPTW) estimators are consistent
when gn(A | W ) is a consistent estimator of the treatment mechanism g0(A | W ) = P (A = 1|W ),
but are known to be inefficient. These two estimators are defined as

ψMLE
n =

1

n

n∑
i−1

Q̄0
n(Wi, 1)− Q̄0

n(Wi, 0),

ψIPTWn =
1

n

n∑
i=1

(2A− 1)
Yi

gn(Ai | Wi)
.

3.3.1 Data generation
Covariates W1,W2,W3 were generated as independent binary random variables,

W1,W2,W3 ∼ Bernoulli(0.5).
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Two treatment mechanisms were defined that differ only in the values of the coefficients for each
covariate:

g0(1 | W ) = P (A = 1 | W ) = logit−1(aW1 + bW2 + cW3).

We consider two settings:

a1 = 0.5, b1 = 1.5, c1 = −1 and a2 = 1.5, b2 = 4.5, c2 = −3.

We refer to these two treatment mechanisms as g0,1 and g0,2, respectively. The observed outcome
Y was generated as

Y = Q̄0(W,A) + e, e ∼ N(0, 1),

Q̄0(W,A) = Aj + 2W1 + 3W2 − 4W3.

For both simulations the true additive causal effect equals one: ψ0 = 1. In both simulations
predicted values for gn(A | W ) are bounded away from 0 and 1 by truncating at (p, (1 − p)),
with p = 0.01. Treatment assignment probabilities based on mechanism g0,1 range from 0.269
to 0.881, indicating no sparsity in the data for simulation 1. In contrast, simulation 2 poses a
challenging estimation problem in the context of sparse data. Treatment assignment probabilities
based on mechanism g0,2 range from 0.047 to 0.998. These extreme values are nevertheless not
uncommon for data from observational studies (see for example Dehejia and Wahba (2002); Stukel
et al. (2007)).

Estimates were obtained for 1000 samples of size n = 1000 from each data generating distri-
bution. Treatment assignment probabilities, g0(A | W ), were estimated using a correctly specified
logistic regression model. A correctly specified main terms regression model was used to obtain
Q̄0
cor(W,A). In addition, a misspecified initial estimate, Q̄0

mis(W,A), was obtained by regressing
Y on A.

We expect MLE estimates based on Q̄0
cor to be unbiased and efficient, while those based on

Q̄0
mis will be biased. IPTW estimates only depend on consistent estimation of g0, thus are identical

regardless of how Q̄0 is estimated. For both simulations gn is a consistent estimator, thus it is
reasonable to expect unbiased IPTW estimates, with more variation in simulation 2 estimates. The
targeted MLE and the augmented IPTW are known to be unbiased if gn is consistent, and asymp-
totically efficient when both Q̄0 and g0 are consistently estimated. Though correctly estimating
g0 will asymptotically correct for any bias due to misspecification of Q̄0

n, this is not guaranteed in
finite samples, especially when there is sparsity. For simulation 2 we expect TMLElog, using the
logistic fluctuation, to outperform TMLElin, using the linear fluctuation.

3.3.2 Results
Table 3.1 reports the average estimate, bias, empirical variance, and mean squared error (MSE)

for each estimator, under different specifications of the initial estimator Q̄0
n. In all cases gn is con-

sistent, and bounded at (0.01, 0.99). In simulation 1, when Q̄0 is correctly estimated all estimators
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Table 3.1: Estimator performance for simulations 1 and 2 when the initial estimator of Q̄0 is correct
and misspecified. Results are based on 1000 samples of size n = 1000.

Q̄0 correctly estimated Q̄0 incorrectly estimated
ave bias var MSE ave bias var MSE

Simulation 1
MLE 1.003 0.003 0.005 0.005 3.075 2.075 0.030 4.336
IPTW 1.006 0.006 0.009 0.009 1.006 0.006 0.009 0.009
AIPTW 1.003 0.003 0.005 0.005 1.005 0.005 0.010 0.010
TMLElog 0.993 −0.007 0.005 0.005 0.993 −0.007 0.006 0.006
TMLElin 0.993 −0.007 0.005 0.005 0.993 −0.007 0.006 0.006

Simulation 2
MLE 1.001 0.001 0.009 0.009 4.653 3.653 0.025 13.370
IPTW 1.554 0.554 0.179 0.485 1.554 0.554 0.179 0.485
AIPTW 0.999 −0.001 0.023 0.023 1.708 0.708 0.298 0.798
TMLElog 0.989 −0.011 0.037 0.037 0.722 −0.278 0.214 0.291
TMLElin 0.986 −0.014 0.042 0.042 −0.263 −1.263 2.581 4.173

perform quite well, though as expected, IPTW is the least efficient. However, when Q̄0 is incor-
rectly estimated, the MLE estimator is biased and has high variance relative to the other estimators.
Because gn(A | W ) is correctly specified, IPTW and AIPTW provide unbiased estimates, as do
both TMLEs. TMLElog is on a par with TMLElin, as there is no sparsity in the data, and both are
more efficient than any of the other estimators.

In simulation 2 all estimators except IPTW are unbiased when Q̄0 is correctly estimated. In
this case, both TMLE estimators have higher variance than AIPTW, and all three are more efficient
than IPTW, but less efficient than the parametric MLE estimator. Though asymptotically the IPTW
estimator is expected to be unbiased in this simulation, since gn is a consistent estimator of g02 ,
these results demonstrate that in finite samples, heavily weighting a subset of observations not only
increases variance, but can also bias the estimate.

When the model for Q̄0 is misspecified in simulation 2, The MLE estimator is even more biased
than it was in simulation 1. The efficiency of all three double-robust efficient estimators suffers
in comparison with simulation 1 as well. Nevertheless, TMLElog, using the logistic fluctuation,
has the lowest MSE of all estimators. Its superiority over TMLElin in terms of bias and variance
is clear. TMLElog also outperforms AIPTW with respect to both bias and variance, and performs
much better than IPTW or MLE.
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3.4 Discussion
When an estimation procedure incorporates weights, observations with large weights can heav-

ily influence the point estimate and inflate the variance. Truncating these weights is a common
approach to reducing the variance, but it generally introduces bias. The presented TMLE of an ad-
ditive causal effect of a point treatment intervention, incorporating a logistic fluctuation of the ini-
tial conditional mean estimate, dampens the effect of these heavily weighted observations, thereby
heavily reducing the reliance on truncation. As a substitution estimator, the proposed TMLE of the
additive causal effect respects the global constraints of the observed data model. Simulation study
results indicate that this approach is on a par with, and in the context of sparsity often superior to,
fluctuating on the linear scale. In particular it is more robust when there is sparsity in the data,
outperforming MLE, IPTW, and AIPTW.

For the sake of demonstration we considered estimation of the additive causal effect. However,
the same targeted MLE, using the logistic fluctuation, can be used to estimate other point-treatment
causal effects, including parameters of a marginal structural model. The newly proposed loss func-
tion also has applications in prediction of a bounded outcome, and for targeted MLE of the causal
effect of a multiple time point intervention in which the final outcome is bounded and continuous.
We also pointed out that the proposed fluctuation function and loss function, and corresponding tar-
geted MLE, should also be used for continuous outcomes for which no a priori bounds are known,
by simply using the minimal and maximal observed outcome values. In this way, these choices
naturally robustify the targeted MLE by enforcing that the updated initial estimator will not predict
outcomes outside the observed range.

The TMLE approach presented here using a logistic fluctuation of an initial estimate of the
conditional mean of the continuous outcome retains all properties of targeted maximum likeli-
hood estimators, including influence curve-based inference. The method presented here extends to
collaborative targeted maximum likelihood estimation without modification.
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Chapter 4

Collaborative Targeted Maximum
Likelihood Estimation Methodology

4.1 Overview
Collaborative targeted maximum likelihood estimation (C-TMLE) is an extension of targeted

maximum likelihood estimation (TMLE) that pursues an optimal strategy for nuisance parame-
ter estimation. Observed data are viewed as realizations of random variables arising from some
true underlying data-generating distribution, P0. An association or causal effect corresponds with
some particular parameter of P0, and can be specified as a mapping Ψ(P0). The TMLE/C-TMLE
methodology can be applied in a variety of settings, including survival analysis, gene association
studies, and longitudinal data structures with time-dependent covariates. This chapter focuses on
the application of C-TMLE to estimating the marginal additive effect of a dichotomous point treat-
ment on an outcome, adjusting for pre-treatment covariates measured at baseline. This estimation
problem is sufficiently rich to convey the essential elements of the procedure, and can be extended
to more complex data structures.

The parametric approach to estimating this causal effect is to focus on estimating a coefficient
in front of the treatment term in a regression model, where the type of regression (e.g. linear,
logistic, poisson) is typically chosen for convenience. An alternative, theoretically sound, approach
is to first define the parameter of interest non-parametrically, in terms of the underlying distribution,
and then apply an efficient data-adaptive procedure to consistently estimate the target parameter.

The density, p0, factorizes asQ0∗g0, whereQ0 = P0(Y |A,W )P0(W ) is the relevant portion of
the likelihood for parameter estimation, and g0 = P0(A |W ), the treatment assignment mechanism,
is a nuisance parameter that is vital for targeting an initial estimate of Q to reduce bias, but not
required to evaluate the parameter. Recall, however, that the double robustness property of targeted
maximum likelihood estimators guarantees consistent estimation of ψ0 if either Q or g is correctly
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specified, and that TMLEs achieve the semi-parametric efficiency bound when both Q and g are
correctly specified. Nuisance parameter estimation is therefore an important, integral part of the
targeted maximum likelihood estimation procedure.

In common with other estimators in the literature, TMLE relies on external estimation of g.
The likelihood for g is the only available guide, yet not all predictors of treatment are necessarily
also predictive of the outcome. This approach is inherently limited, therefore, by its inability
to identify true confounders. In contrast, the C-TMLE procedure incorporates estimation of g
based on the likelihood for Q, i.e., targeted towards the parameter of interest. Theory advanced
in van der Laan and Gruber (2010) provides the key insight that only the portion of the nuisance
parameter that is not adequately accounted for in the first stage needs to be incorporated into
the second stage fluctuation. This collaborative double robustness result indicates that full bias
reduction can be achieved using a sufficient nuisance parameter estimate, gn, that targets a true
conditional distribution of treatment that conditions on a reduction of the complete covariate set,
representing only the covariates that can reduce residual bias. The idea is that the space for the joint
distribution of (Q, g) with g ∈ G is reduced to a space for Q and a space for g that is shrunk down
by the initial fit of Q. This dimension reduction yields gains in both bias and variance. The term
“collaborative” refers to the fact that what constitutes the relevant portion of g0 depends upon the
bias with respect to the target parameter that remains after initial estimation of Q0. This theoretical
result has important implications for finite sample behavior:

• The C-TMLE estimator targets the residual bias, and thus can be more efficient in finite
samples than the standard TMLE estimator that utilizes an estimate of the entire nuisance
parameter in the targeting step. This finite sample gain is particularly striking in the context
of sparse data.

• Selecting the best adjustment set is difficult when a large number of correlated baseline co-
variates have been measured for each subject. The C-TMLE procedure grows the adjustment
set judiciously by, for example, preferring covariates most strongly associated with residual
confounding over those that are highly predictive of treatment but unrelated to the outcome.

The data-adaptive C-TMLE approach to nuisance parameter estimation rests on a strong the-
oretical foundation, and simulation studies provide empirical evidence of its utility in practice.
Given Q̄0

n(A,W ), an initial estimate of the conditional mean of Y given A and W , stage two of the
C-TMLE procedure creates a series of candidate TMLE estimators, each obtained by fluctuating
the initial Q̄0

n. The candidate TMLE estimators are based on a sequence of nuisance parameter
estimates that grow increasingly larger, i.e., more and more non-parametric. Construction of the
nuisance parameter estimates is guided data-adaptively based on the goodness-of-fit of the candi-
date targeted MLE possibly penalized by an estimate of the mean squared error of the estimate of
the target parameter. In other words, each nuisance parameter estimate in the sequence is carefully
constructed to provide the next in a series of fluctuations of the initial density estimate, and each
fluctuation is carried out to create a series of candidate TMLE estimators. The C-TMLE estimator
is defined as the best among the set of candidate TMLE estimators as chosen by likelihood-based
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cross-validation. The procedure can be carried out for multiple stage one estimators, and cross-
validation can choose among TMLE candidates indexed by stage one and stage two estimators.

For simplicity the remainder of the chapter describes the procedure for a single stage one es-
timator, and the algorithm is first described for a continuous outcome, using a linear fluctuation.
The extension to binary outcomes is straightforward, with logistic regression replacing linear re-
gression to obtain Q̄0

n, and the fluctuation carried out on the logit scale. The logistic fluctuation
is also recommended for bounded continuous outcomes. Chapter 3 describes how this choice of
fluctuation constrains the parameter estimate to remain within the bounds of the semi-parametric
model. C-TMLE should also respect these global constraints. Simulation studies at the end of this
chapter demonstrate that C-TMLE’s parsimonious approach to nuisance parameter estimation in
conjunction with the logistic fluctuation is particularly advantageous when analyzing sparse data.

4.2 Collaborative targeted maximum likelihood estimation
We are interested in estimating the marginal additive treatment effect of a point treatment on

an outcome, given a data set containing n independent and identically distributed observations,
O1, . . . , On, of a random variable O = (W,A, Y ), where W is a set of baseline covariates, A is a
treatment variable, and Y is the outcome variable. For simplicity we initially focus on a continuous
Y and binary A, A = 1 denotes treatment, and A = 0 denotes control. The parameter of interest
of the probability distribution P0 of O is defined non-parametrically as ψ0 = EW{E(Y | A =
1,W )−E(Y | A = 0,W )}. Under the appropriate causal graph assumptions ψ0 corresponds with
the G-computation formula for the marginal additive causal effect.

The probability distribution/density of O can be factored as P0(O) =Q0(O)g0(A | W ), where
Q0(O) = QY 0(Y | A,W )QW0(W ) and g0(1 | W ) = P0(A = 1 | W ). We used the notation QY

for a conditional distribution of Y , given A,W , and QW for the marginal distribution of W . For
notational convenience, let Q̄0(A,W ) = E0(Y | A,W ) be the true conditional mean of Y , given
A,W , which is thus a parameter of QY 0. We note that ψ0 = Ψ(Q0) only depends on the data
generating distribution P0 through its Q0-factor. The targeted maximum likelihood estimator of ψ0

is a particular substitution estimator

ψn = Ψ(Qn) =
1

n

n∑
i=1

(Q̄n(1,Wi)− Q̄n(0,Wi))

where Q̄n(A,W ) is an estimated conditional mean of Y given A,W , and the marginal distribution
QW0 is estimated with its empirical probability distribution.

Targeted maximum likelihood estimation involves obtaining an initial estimate of the true con-
ditional mean of Y givenA andW , and subsequently fluctuating this estimate in a manner designed
to reduce bias in the estimate of the parameter of interest. Let Q̄0

n(A,W ) be the initial estimate of
the true conditional mean Q̄0(A,W ). For example, if Y is binary, then one constructs a paramet-
ric (least favorable) model logit(Q̄0

n(ε)(A,W )) = logit(Q̄0
n(A,W )) + εH∗(A,W ), fluctuating the
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initial estimate Q̄0
n, where ε is the fluctuation parameter. The function H∗(A,W ), known as the

“clever covariate”, depends on the treatment assignment mechanism g0, and is given by

H∗(A,W ) =
I(A = 1)

g0(1 | W )
− I(A = 0)

g0(0 | W )
. (4.1)

The theoretical basis for this choice of clever covariate is given in van der Laan and Rubin
(2006a). In particular, it has the bias-reduction property that if one estimates ε with the parametric
maximum likelihood estimator, and one sets Q̄1

n equal to the resulting update, then the resulting
substitution estimator Ψ(Q1

n) is asymptotically unbiased, even if the initial estimator Q̄0
n is incon-

sistent. These results indicate that estimating g0 is crucial for reducing bias. However, the choice
of an estimator gn should be evaluated by how it affects the mean squared error of the resulting
targeted maximum likelihood estimator Ψ(Q1

n), making it a harder and different problem than
estimating g0 itself.

Collaborative double robustness implies that if the initial estimator converges to a possibly
misspecified Q, then gn needs to only converge to a conditional distribution of A that properly
adjusts for a covariate that is a function of Q0−Q. This result is intuitively a natural consequence
of the fact that the clever covariate can only reduce bias if it is predictive of the outcome after
taking into account the initial estimator.

A particular method for construction of a collaborative estimator gn involves building candidate
treatment mechanism estimators (propensity scores) that grow towards an asymptotically unbiased
estimator of g0. In a departure from current practice, the construction of these candidates is guided
by the log-likelihood loss function forQ0 at targeted maximum likelihood estimators implied by an
initial estimator of Q0 and a choice of estimator of g0, thus not by the log-likelihood loss function
for the conditional distribution of A given W .

Clever covariates based on these candidates give rise to a sequence of updated estimates,
Q̄1
n(Q̄0

n, g
1
n), . . . , Q̄K

n (Q̄0
n, g

1
n, . . . , g

K
n ), each of which provides a candidate TMLE estimate of

ψ0. The C-TMLE estimate is the best among these candidates, as determined by V-fold Q0-log-
likelihood-based cross-validation. The estimator is defined as

ψn =
1

n

n∑
i=1

(Q̄∗n(1,Wi)− Q̄∗n(0,Wi))

where Q̄∗n(A,W ) is the targeted estimate selected using cross-validation.

4.3 The C-TMLE procedure
One particular implementation of the C-TMLE procedure uses a collaborative targeted forward

selection algorithm to build nested candidate estimators g1
n, . . . , g

K
n .
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Algorithm 6.1 C-TMLE Algorithm

Step 1. Estimate Q̄0
n = Ê(Y | A,W )

Step 2. Create candidate TMLE estimators Q̄∗1(g1
n), . . . Q̄∗K(gKn ) using collabora-

tive
targeted forward selection to build candidate estimates, g1

n, . . . , g
K
n

Step 3. Select the best candidate, Q̄∗n = Q̄∗k(g
k
n), using likelihood-based cross vali-

dation

Step 4. Evaluate parameter: ψn = Ψ(Q∗n), based on substitution of Q̄∗n and the
empirical distribution as estimator of the marginal distribution of W .

Step 1: Obtain an estimate Q̄0
n of Q̄0.

A data-adaptive machine learning approach to obtaining this initial estimate is recommended.
The super learner (SL) is a prediction algorithm that creates a weighted combination of pre-
dictions of many individual prediction algorithms, with weights selected using V-fold cross-
validation (van der Laan et al., 2007). In practice, it is important to include algorithms in
the SL library of predictors that cover different model spaces, e.g. support vector machines,
splines, neural nets, etc., since the true best estimation method is unknown.

Step 2: Generate candidate second stage estimators Q̄k
n.

Theory requires that the sequence of g estimators grows towards and arrives at a consistent
estimator of the true g0. Building nested candidate g estimators satisfies this requirement,
and ensures that for all m < k, gkn is a better empirical fit for the treatment mechanism
than gmn . Each move in the collaborative targeted forward selection procedure incorporates
a single covariate, Wk, that minimizes a loss function for Q, into the model for g. Each
move improves the fit for g in a way that maximally increases the fit for the Q portion of the
likelihood, the relevant portion for the parameter of interest.

One begins with the intercept model for g to construct a first clever covariate, H∗1 , used
to create the first targeted maximum likelihood candidate, Q̄1

n.

g1
n(1 | W ) = P (A = 1)

g1
n(0 | W ) = P (A = 0)

H∗1 =

(
I[A = 1]

g1
n(1 | W )

− I[A = 0]

g1
n(0 | W )

)
.
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Let Q̄1
n = Q̄0

n + ε1H
∗
1 , where ε1 is fitted by least-squares regression of Y on H∗1 with offset

Q̄0
n, be the first targeted candidate TMLE estimator.

The second candidate TMLE estimator will be based on an updated model for g that
contains the intercept and one term. The best main term is selected based on a penalized log-
likelihood criterion for the targeted MLE fit. This loss function, defined as the empirical sum
of squared residuals at the resulting Q0-fit plus a penalty term proportional to the estimated
variance of substitution estimator of this Q0-fit of the target parameter, is asymptotically
minimized at the true Q0, and thereby represents a valid loss function. The variance of the
substitution estimator of the target parameter is estimated using the empirical variance of
efficient influence curve D∗, at the resulting Q0-fit and the candidate g-fit.

Consider the example presented in Figure 4.1, illustrating the process of choosing the
best term to add to the intercept model for g given W = (W1,W2,W3). Each model for g of
size one gives rise to a “tentative” targeted estimate, Q̄2a

n , Q̄
2b
n , Q̄

2c
n .

Example: W = (W1, W2, W3)
� Construct tentative candidate estimators

� g2a
n : regress A on W1

� g2b
n : regress A on W2

� g2c
n : regress A on W3

� Obtain each updated estimate
Q̄2x

n = Q̄0
n + �2xH

∗
g2x

n
(A, W )

� Evaluate L(Q̄2x
n )(O)

L1

negative likelihood

L2cL2b L2a

L2L3b L3aL3c L3dL3L4L4

Figure 4.1: Construction of candidate TMLE estimator Q̄2
n.
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The corresponding values of the loss functions are plotted on the number line, along with L1,
the value of the loss function for Q̄1

n. The addition of covariate W2 (i.e., 2b) to the current
model for g minimizes the loss function, so the first move is the selection of W2. This choice
defines our second candidate TMLE estimator:

Q̄2
n = Q̄0

n + ε2H
∗
g2
n
.

This process continues as long as the addition of a term to the model for g increases
the overall penalized log-likelihood for the resulting Q̄0-targeted MLE fit. In the event that
no terms in the model for g increase the penalized likelihood of the resulting Q̄0-fit, the
targeted MLE update is carried out using the most recent clever covariate, and then the
process continues by fluctuating this updated estimator with a new clever covariate based
on the next (larger) model for g in the series. This approach guarantees that the overall
likelihood continues to increase, though the penalized likelihood may not improve.

Continuing the example from above, in Figure 4.2 we are trying to create the third can-
didate TMLE estimator, but find that neither the addition of W1 nor W3 minimizes the loss
function in comparison with L2, the value of the loss function L(Q̄2

n)(O).

Example: W = (W1, W2, W3)

Example: W = (W1, W2, W3)

Construct tentative candidate estimators for g3
n

� g3a
n : regress A on W2, W1

� g3b
n : regress A on W2, W3

� Obtain each updated estimate
Q̄3x

n = Q̄0
n + �3xH

∗
g3x

n
(A, W )

� Evaluate L(Q̄3x
n )(O)

L1

negative likelihood

L2L3b L3a

L3c L3dL3L4L4

Figure 4.2: Construction of candidate TMLE estimator Q̄3
n, no term improves the likelihood.

Each estimator in the series of candidate TMLE estimators must represent an improve-
ment over the previous one, yet in this example no single fluctuation of the initial estimate
can achieve that goal. Therefore, the third candidate will instead be based on two fluctuations
of Q̄0

n. Equivalently, we can say that g3
n is estimated in collaboration with Q̄2

n:

Q̄3
n = Q̄2

n + ε3H
∗
g3
n
(A,W )

= Q̄0
n + ε2H

∗
g2
n
(A,W ) + ε3H

∗
g3
n
(A,W )
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Example: W = (W1, W2, W3)

Example: W = (W1, W2, W1)

Construct tentative candidate estimators g3
n in collaboration with

Q2∗
n

� g3c
n : regress A on W2, W1

� g3d
n : regress A on W2, W3

� Obtain each updated estimate
Q̄3x

n = Q̄2∗
n + �3xH

∗
g3x

n
(A, W )

� Evaluate L(Q̄3x
n )(O)

L1

negative likelihood

L2

L3b L3a

L3c L3d

L3L4L4

Figure 4.3: Construction of candidate TMLE estimator Q̄3
n requires a second clever covariate.

Figure 4.3 shows that the addition of either covariate would further minimize the loss func-
tion. Estimator g3c

n corresponding to a model containing the two terms, (W1,W2), is the best
choice.

This targeted forward selection procedure continues as long as covariates remain that can
be incorporated into the model for g. Each move gives rise to a candidate TMLE estimator,
although as we’ve seen, each move does not result in the creation of a new clever covariate.

To state it more generally, suppose that in addition to the intercept term, m terms, ordered
1, . . . ,m, are incorporated into the model for g, at which point no further increase of the
penalized log-likelihood is possible. We define candidate estimators Q̄2

n through Q̄m+1
n as:

Q̄2
n = Q̄1

n + ε2H
∗
2

Q̄3
n = Q̄1

n + ε3H
∗
3

...
Q̄m+1
n = Q̄1

n + εm+1H
∗
m+1

where the corresponding models gi+1
n contains all the terms in the model for gin plus one

additional term, i = 2, . . . ,m. At this point Q̄m+1
n is considered as a new “initial” estimate

of the true regression, and the entire process starts over in order to build a second clever
covariate augmenting the previous fit gm+1

n used inH∗m+1. To continue the example, Q̄m+2
n =

Q̄m+1
n + εm+2H

∗
m+2. This process is iterated until all terms are incorporated into the final

model for g. If the maximal number of terms that can be added is given byK, then this results
in K candidate estimators Q̄k

n, k = 1, . . . , K, corresponding with treatment mechanism
estimators gkn, k = 1, . . . , K. Note that the number of clever covariates in Q̄k

n that are added
to the initial estimator Q̄0

n cannot be predicted, and depends on how many covariates can
be added to the treatment mechanism estimator in each iteration before reaching the local
maximum (not allowing a further increase of the penalized log-likelihood).
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The number of clever covariates used to update the initial estimator Q̄0
n depends entirely

on the likelihood and cannot be pre-determined. Terms are incorporated into the model for
g for a single clever covariate until there is a decrease in the likelihood. At that point the
estimate is updated from Q̄m

n → Q̄
(m+1)
n and the process iterates until all candidate TMLEs

have been constructed.

These estimators Q̄k
n and corresponding treatment mechanism estimators gkn can be rep-

resented as mappings Q̂k and ĝk applied to the empirical distribution Pn: Qk
n = Q̂k(Pn),

gkn = ĝk(Pn), k = 1, . . . , K. These mappings Pn → Q̂k(Pn) represent our candidate estima-
tors of the true regression Q̄0, and in the next step we use cross-validation to select among
these candidate algorithms.

Step 3: Select the estimator that maximizes the V-fold cross-validated penalized likelihood.

The use of likelihood-based cross-validation to select the best candidate TMLE for the given
stage one estimator avoids overfitting. Maximizing the penalized likelihood is equivalent to
minimizing the residual sum of squares (RSS) plus a penalty term corresponding to the mean
squared error (MSE), which can be decomposed into variance and bias terms.

k∗ = argmin
k

cvRSSk + cvV ark + n ∗ cvBias2
k.

These terms are defined as follows:

cvRSSk =
V∑
v=1

∑
i∈V al(v)

(Yi − Q̄k
n(P 0

nv)(Wi, Ai))
2

cvV ark =
V∑
v=1

∑
i∈V al(v)

D∗2(Q̄k
n(P 0

nv), g
k
n(Pn), Ψ̂(Q̄k

n(P 0
nv)))(Oi)

cvBiask =
1

V

V∑
v=1

Ψ(Q̂k(P 0
nv))−Ψ(Q̂k(Pn))

D∗(Q, g,Ψ(Q))(O) =
I[A = 1]− I[A = 0]

g(A | W )
(Y − Q̄(A,W ))

+
1

n

n∑
i=1

Q̄(1,W )− Q̄(0,W )−Ψ(Q)

where v ranging from 1 to V indexes the validation set V al(v) for the vth fold, Ψ(Q) is a
mapping from Q to the parameter of interest, and Q̄k

n(P 0
nv) denotes the k-th C-TMLE of Q̄0

applied to the corresponding training sample P 0
nv, containing n(1 − p) observations, with

p = 1/V .
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Note that the model for g is not restricted to main terms only. For example, variables can be
created that correspond to higher-order terms. In addition, a categorical or continuous covariate
can be split into many binary covariates, thereby allowing for more non-parametric modeling of
the effect of a single covariate. When there are many covariates it might be desirable in practice to
terminate the procedure before all covariates have been incorporated into the model for g, though
care must be taken to ensure that none of the candidates thereby excluded from the subsequent
selection process potentially maximize the penalized log-likelihood criterion. SL can be integrated
into the second stage as well. A series of increasingly non-parametric propensity score SL esti-
mates can be obtained based on different adjustment sets. These SL fits would then be used as the
main terms for the stage two forward selection to build candidate gn estimators.

4.3.1 Inference
Under appropriate conditions, C-TMLE is an asymptotically linear estimator with influence

curve
IC(P0) = D∗(Q∗n, g0, ψ0) + ICQ∗ + ICg0 .

The formula for the efficient influence curve/canonical gradientD∗(Q, g0, ψ0) is parameter-specific
(see Appendix B.2.6). For the additive treatment effect parameter this formula is given by:

D∗ =

(
A

g(1 | W )
− 1− A
g(0 | W )

)
(Y − Q̄(A,W )) + Q̄(1,W )− Q̄(0,W )− ψ0.

The additional terms ICQ∗ and ICg0 represent the contribution to the influence curve from es-
timating gn in collaboration with Q∗n. A proof and a formal statement of the conditions under
which asymptotic linearity holds, are provided in van der Laan and Rose (2011). To summarize,
first assume that Qn converges to some Q∗, and gn converges to some gs0 ∈ G(Q∗, P0), such that
P0D

∗(Q∗, gs0) = 0, which implies the estimator is consistent, Ψ(Q∗) = ψ0. If either Qn is a
consistent estimator of Q0, or gn is a consistent estimator of g0, ICQ∗ = 0. In addition, sup-
pose the set of true confounders of the treatment effect is a subset, W s, of W . In this case, if
Q̄∗ = E0(Y | A,W s), or if gs0 = P (A = 1 | W s), then again ICQ∗ = 0. In other words, if
estimation of either the relevant part of the Q or g portion of the likelihood independently guaran-
tees consistency, the estimation of Q0 does not contribute to the efficient influence curve equation.
However, when this is not the case, e.g. Q∗ = E(Y | A,W ′),W ′ ⊂ W s, and gs0 adjusts for co-
variates in the difference (W s−W ′), ICQ∗ 6= 0. There is not a closed form solution for estimating
ICQ∗ when Q̄0 is estimated semi-parametrically.

The formula for ICg0 is given by:

ICg0(O) = −a0 · ICα(O)
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where

a0 = P0(Y − Q̄(A,W ))
−→
Whα(A,W )

hα(A,W ) =

[
Agα(0 | W )

gα(1 | W )
+

(1− A)gα(1 | W )

gα(0 | W )

]
ICα(O) = P0

[−→
W
−→
W Tgα(1 | W )gα(0 | W )

]−1

(A− gα(1 | W ))
−→
W.

The notation
−→
W is used to denote the vector of main terms that is included in the logistic

regression model gαn . Note that a0 is a vector of the same dimension as
−→
W . A derivation is

provided in an Appendix.
This influence curve is estimated by its empirical analog, given by:

ÎCg0(O) = −an · ÎCα(O)

where

an =
1

n

n∑
i=1

(Yi − Q̄n(Ai,Wi))
−→
Wihαn(Ai,Wi)

hαn(Ai,Wi) =

[
Aigαn(0 | Wi)

gαn(1 | Wi)
+

(1− Ai)gαn(1 | Wi)

gαn(0 | Wi)

]
ÎCα(O) =

[
1

n

n∑
i=1

−→
W i

−→
W T

i gαn(1 | Wi)gαn(0 | Wi)

]−1

(A− gαn(1 | W ))
−→
W.

In the absence of knowledge of ICQ∗ , the standard error of the C-TMLE can be estimated as

SE(ψn) =
√
var(IC)/n, where var(IC) = 1/n

∑
i ÎC

2

i is the sample variance of the estimated
influence curve. A 95% confidence interval (CI) is constructed as ψn ± 1.96SE(ψn). In practice
confidence intervals constructed by ignoring the contribution from ICQ∗ have achieved good cov-
erage in practice across a range of simulated datasets. The bootstrap is an alternative valid method
for asymptotically valid inference.

4.3.2 Further remarks
There are many variations for obtaining ψC−TMLE

n . For example, given an a priori set of can-
didate nuisance parameter estimators, gjn, that includes highly non-parametric candidates we could
construct clever covariates H∗j (g), and then use forward selection with this set of clever covariates,
using the initial estimator as offset, to build (second stage) model-fits for Q̄0 of increasing size,
where each term in the model corresponds to one of the clever covariates. The number of clever
covariates that are added in this forward-selection algorithm can be selected using likelihood-based
cross-validation.
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Note that in contrast with the algorithm described above, in which previous coefficients are used
as fixed offsets in the regression, coefficients in front of each term are estimated by least squares,
thereby solving the efficient influence equation corresponding to each gjn, in particular the most
non-parametric of these. Because these covariates are highly correlated, refitting all coefficients
in front of clever covariates at each step in the forward selection algorithm is likely to result in
highly variable coefficient estimates, and therefore less stability in the estimate of the parameter of
interest.

Another alternative approach is to define ψC−TMLE
n = Ψ(Q1

n), where Q̄1
n = Q̄0

n + εnH
∗(gk∗n )

is the targeted MLE updating the initial estimator with the final selected clever covariate defined
by carrying out the k∗ moves in the above forward selection algorithm to obtain a g-fit, where k∗

is the optimal number of moves selected by likelihood-based cross-validation (exactly as above).
Though this variation did not improve performance in simulation studies, these alternatives are
mentioned to underscore the fact that C-TMLE methodology can be implemented in a variety of
ways, and is not limited to the specific implementation presented here.

4.4 Simulation studies
Three simulation studies illustrate the performance of the C-TMLE estimator under different

data-generating scenarios. The simulations are designed to demonstrate estimator performance in
the face of confounding of the relationship between treatment and outcome, complex underlying
data-generating distributions, and practical violations of the Experimental Treatment Assignment
(ETA) Assumption, i.e., P (A = a | W ) < α, for some small α, implying that there is very little
possibility of observing both treated and untreated subjects for some combination of covariates
present in the data. Other estimators commonly used to assess causal effects are also used to
analyze the data. A comparison of these estimators highlights the differences in their behavior,
illustrates the importance of double robustness, and underscores the need to use an estimator that
works well across a broad range of underlying probability distributions when analyzing real data
from an unknown distribution. For example,

• if a correct model for the underlying data generating distribution is known, a parametric
regression approach would be optimal.

• For rare outcomes we would not expect the initial fit, Q̄0
n, to have much predictive power.

In this case, the fully adjusted g0 is very likely needed for full bias reduction, so creating
and evaluating intermediate candidates with C-TMLE may be needlessly computationally
expensive. Standard TMLE might be a better approach.

• Adjusting for many confounders may lead to violations of the ETA assumption when n is
small relative to the number of confounders or if the confounders are very strongly predictive
of treatment. Parametric estimators rely strongly on model-based extrapolation in this case.
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C-TMLE allows extrapolation through the initial first stage estimator, but not in the second
stage, where confounders are selected based on the penalized log-likelihood.

A common misconception is that C-TMLE does not target the fully-adjusted parameter of interest.
In fact, except in a case of severe sparsity, C-TMLE delivers the same bias reduction as TMLE,
often with smaller variance.

4.4.1 Estimator review
Marginal treatment effect estimates were calculated based on the unadjusted regression of Y on

A, maximum likelihood estimation (MLE) using the G-computation formula (Robins, 1986), in-
verse probability of treatment weighted (IPTW) estimation (Hernan et al., 2000a; Robins, 2000b),
augmented IPTW (AIPTW) estimation, a double robust method (Robins and Rotnitzky, 2001;
Robins et al., 2000; Robins, 2000a), a propensity score estimator (pscore), (Rosenbaum and Ru-
bin, 1983) that calculates the marginal treatment effect as the mean across strata defined by the
conditional probability of receiving treatment, and an extension to propensity score estimators
implemented in matching, a publicly available R package (Sekhon, 2008) that matches obser-
vations in treatment and control groups based on minimizing a distance between the user supplied
covariates W . In this matching procedure, each set of matched observations indexed by m results
in a corresponding mean regression Q̄0

n(a,m) representing an estimate of E(Y | A = a,M = m)
and its contrast E(Y | A = 1,M = m)−E(Y | A = 0,M = m). The creation of the partitioning
in sets of matched observations is only a function of the data (Wi, Ai), i = 1, . . . , n, thus ignoring
the outcome data.

The unadjusted estimator is defined as

ψUnadjn =
1

n

n∑
i=1

(2Ai − 1)Yi.

When covariates confound the relationship between treatment and outcome, the unadjusted esti-
mator will be biased.

The MLE estimator

ψMLE
n =

1

n

n∑
i=1

(Q̄0
n(1,Wi)− Q̄0

n(0,Wi))

performs well when the model for Q̄0 is correctly specified. Q̄0
n refers to an initial estimate of

Q̄0(A,W ).
The IPTW estimator is defined as

ψIPTWn =
1

n

n∑
i=1

[I(Ai = 1)− I(Ai = 0)]
Yi

gn(Ai,Wi)
.
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Large weights on a small subset of observations is known to bias the IPTW estimator. This arises
in the context of sparsity, and can actually increase bias, even when the treatment mechanism is
correctly specified (Freedman and Berk, 2008).

The AIPTW estimator is defined as

ψAIPTWn =
1

n

n∑
i=1

[I(Ai = 1)− I(Ai = 0)]

gn(Ai | Wi)
(Yi − Q̄0

n(Ai,Wi))

+
1

n

n∑
i=1

(Q̄0
n(1,Wi)− Q̄0

n(0,Wi)).

AIPTW estimates are unbiased and are asymptotically efficient when both g0 and the functional
form for Q̄0 is correctly modeled, and they remain unbiased if at least one is correctly specified.
Unlike C-TMLE, AIPTW relies on external estimation of g, and may therefore include covariates
that are predictive only of treatment, tending to increase both bias and variance.

The pscore estimator is given by

ψpscoren =
1

n

n∑
i=1

(Q̄0
n(1, si)− Q̄0

n(0, si)).

Q̄0
n(a, s) is an estimator of the true conditional mean E(Y | A = a, S = s), si indicates a stratum

of the propensity score of covariate vector Wi. Propensity score methods are especially effective
when the propensity score is a function of true confounders. Estimates can suffer even when over-
all match quality based on the propensity score is high if a small subset of covariates responsible
for introducing the most bias into the estimate is unevenly distributed between treatment and con-
trol groups. Like most estimators, these estimators are known to perform poorly when there are
ETA violations (Sekhon, 2008). A practical violation of the experimental treatment assignment
assumption, also called the positivity assumption, is known to reduce the quality of the match
and introduce bias into the estimate, and can be detected once the matches have been specified.
However, without using information about the outcome the matching quality is not guided by the
potential bias reduction for the parameter of interest. Because matches are made without knowl-
edge of the outcome, these methods do not exploit all information available in the data and cannot
achieve the semi-parametric efficiency bound (Abadie and Imbens, 2006).

The matching estimator is defined as

ψmatchingn =
1

n

n∑
i=1

(Q̄0
n(1,mi)− Q̄0

n(0,mi)).

Q̄0
n(a,m) is an estimate of true conditional mean E(Y | A = a,M = m), mi indicates a set of

matched observations to which subject i is assigned. The matching algorithm estimator generalizes
the pscore approach by carefully matching observations in the treatment and control groups in an
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effort to evenly distributed potential confounders. The matching procedure relies on the genetic
algorithm (Holland and Reitman (1977)) to achieve this goal. This is a non-parametric approach
for selecting weights on covariates that are in turn are used to determine which observations are
matched. Candidate sets of matches are evaluated based on a loss function and a distance metric
specified at run-time, and are used to generate successive sets of candidates that achieve good
balance (Sekhon, 2008). The marginal treatment effect is the average effect across strata defined
by the matches. This estimator also ignores the outcome, and is less than fully efficient.

The C-TMLE estimator is defined as

ψC−TMLE
n =

1

n

n∑
i=1

(Q̄∗n(1,Wi)− Q̄∗n(0,Wi))

where Q̄∗n refers to an updated targeted estimate of Q̄0(A,W ).

4.4.2 Data generation
Covariates W1, . . .W5 are generated as independent normal random variables, while W6 is a

binary variable. Specifically,

W1,W2,W3,W4,W5 ∼ N(0, 1)

P (W6 = 1 | W1,W2,W3,W4,W5) = expit(0.3W1 + 0.2W2 − 3W3).

Two treatment mechanisms are defined:

g1,0 = P (A = 1 | W ) = expit(0.3W1 + 0.2W2 − 3W3)

g2,0 = P (A = 1 | W ) = expit(0.15(0.3W1 + 0.2W2 − 3W3)).

The observed outcome Y is generated as

Y = Q̄i,0(A,W ) + ε, ε ∼ N(0, 1)

with corresponding true outcome regressions

Q̄1,0(A,W ) = A+ 0.5W1 − 8W2 + 9W3 − 2W5

Q̄2,0(A,W ) = A+ 0.5W1 − 8W2 +W3 + 8W 2
3 − 2W5.

We consider three different data-generating distributions, (Q̄1,0, g1,0) in simulation 1, (Q̄2,0, g1,0)
in simulation 2, and (Q̄2,0, g2,0) in simulation 3. Note that W6 is strongly correlated with treat-
ment mechanism A in simulations 1 and 2 (corr=0.54), but is not an actual confounder of the
relationship between A and Y . W1,W2, and W3 are confounders. The linear nature of the con-
founding due to W3 in simulation 1 differs from that in simulations 2 and 3, where the true func-
tional form is quadratic. In this way simulations 2 and 3 mimic realistic data analysis scenarios
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in which the unknown underlying functional form is seldom entirely captured by the regression
model used in the analysis. Finally, the treatment mechanism in simulations 1 and 2 leads to ETA
violations (p(A = a | W ) ranges between 9 × 10−7 and 0.9999978, approximately one-third of
the probabilities are outside the range (0.05, 0.95)). In simulation 3 there are no ETA violations
(0.11 < P (A = a | W ) < 0.88). In each simulation the true value of the parameter of interest is
the same, ψ0 = 1.

4.4.3 Description
One thousand samples of size n = 1000 were drawn from each data generating distribution.

A main-effects model for Q̄0
n used for the MLE and AIPTW estimators was obtained using the

DSA algorithm (Sinisi and van der Laan, 2004). This data-adaptive algorithm searches over a
large space of polynomial models by adding, deleting, or substituting terms, starting with a base
user-specified regression model. The final model is selected by cross-validation using an L2 loss
function.

A model for the treatment mechanism gn used in IPTW, AIPTW, propensity score, and match-
ing estimation was also selected by DSA, restricted to main terms. The propensity score method
was implemented by dividing observations into strata based on the quintiles of the predicted con-
ditional treatment probabilities. Regression of Y on A and strata indicator variables using the full
model enabled the calculation of stratum-specific treatment effects, which were averaged to obtain
the marginal effect.

We expect to see that the estimators that rely on consistent estimation of Q̄0 are unbiased in
simulation 1, (MLE, AIPTW, C-TMLE), while estimators that are consistent given consistent esti-
mation of g0 are unbiased in simulation 3 (IPTW, AIPTW, pscore, matching, C-TMLE). Sparsity
in simulations 1 and 2 poses a challenge for estimators that rely on g.

4.4.4 Results
Mean estimates of the treatment effect and standard errors for each simulation are shown in

Table 4.1. Figure 4.4 illustrates each estimator’s behavior. As expected, estimators relying on
consistent estimation of Q̄0 are unbiased in simulation 1, those relying on consistent estimation of
g0 are unbiased in simulation 3.

The unadjusted estimator yields biased results in all three simulations due to its failure to adjust
for confounders.

The MLE estimator performs well in simulation 1 when the model is correctly specified. We
understand that misspecification (simulations 2 and 3) will often, though not always, lead to bias
in the estimates. However the plots highlight another phenomenon that is easy to overlook. the
inability of the misspecified model to adequately account for the variance in the outcome often
leads to large residual variance of the estimator, and in practice would have low power to reject a
null hypothesis.
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Table 4.1: Mean estimate and standard error (SE) for each estimator based on 1000 iterations with
sample size n = 1000. ψ0 = 1.

Simulation 1 Simulation 2 Simulation 3

ψn SE ψn SE ψn SE

Unadj −11.97 0.64 −0.98 0.91 0.29 0.86
MLE 0.99 0.09 0.76 1.22 0.95 0.68
IPTW −4.36 0.72 0.03 0.76 0.83 0.90
AIPTW 0.99 0.09 0.94 0.62 1.03 0.80
pscore -1.09 1.27 0.42 1.38 0.93 0.59
matching −1.22 0.82 0.54 0.73 0.96 0.25
C-TMLE 0.99 0.09 1.00 0.10 1.00 0.07

Truncation bias due to ETA violations causes the IPTW estimator using truncated weights to
fail in simulations 1 and 2. The estimate is not biased in simulation 3, but the variance is so large
that even in this setting where we’d expect IPTW to be reliable it would fail to produce a significant
result.

AIPTW estimates are unbiased and have low variance when the functional form is correctly
modeled by the regression equation (simulation 1). However, the variance of the AIPTW estimator
is large in simulations 2 and 3 because W6, a strong predictor of A that is not a confounder,
is always included in the estimate of the treatment mechanism, thus needlessly increasing the
variance.

Though we see little bias in the other two simulations, the variance is large due to misspecifi-
cation of the treatment mechanism. Because W6 is a strong predictor of A and is indistinguishable
from a true confounder of the relationship between Y and A it is always included in the treatment
mechanism, behavior that does not help achieve an accurate estimate of the true treatment effect.

Researchers constructing the propensity score could observe the poor performance in simula-
tions 1 and 2 when there are ETA violations and choose an alternate propensity score model, but
without using information about the outcome this choice could be based on the predictive power
of the model, but not the potential bias reduction. The propensity score method does a reasonable
job in simulation 3.

The matching estimator performs well, however, its theoretical inability to achieve the semi-
parametric efficiency bound is confirmed in the simulations, since the confidence interval are not
as tight as that of the collaborative targeted maximum likelihood estimator.

4.4.5 Summary
These simulation studies demonstrate the collaborative double robustness and efficiency of

C-TMLE methodology, which allows for consistent efficient estimation in situations when other
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Figure 4.4: Mean estimates and (0.025, 0.975) quantiles for each estimation method, (a) simulation
1, (b) simulation 2, (c) simulation 3. Dashed line in each plot is at true parameter value.

estimators can fail to perform adequately. In practice these failures may lead to biased estimates
and to confidence intervals that fail to attain the correct coverage, as suggested by the IPTW results
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in simulations 1 and 2, where weights depend on a variable highly predictive of treatment that is
not a true confounder of the relationship between Y and A. It is worth noting that the unadjusted
estimator applied to data from a randomized controlled trial in which randomization fails to evenly
distribute confounders across treatment arms will also yield (finite sample) biased results, as we
saw in simulations 1, 2, and 3.

As simulations 2 and 3 demonstrate, a misspecified parametric model not only results in biased
estimates, but can also easily fail to adequately explain the variance in the outcome. Therefore esti-
mates of the parameter of interest will have a larger variance than the semi-parametric information
bound achieved by an efficient estimator, such as C-TMLE. Such misspecified parametric models
can easily result in the construction of a confidence interval that contains 0, and therefore a failure
to reject a false null hypothesis, even when the point estimate is close to the true value of the pa-
rameter of interest. Since misspecified parametric models are the rule rather than the exception, in
the analysis of data from an unknown data-generating distribution, using C-TMLE combined with
super learning for the initial estimator, is a prudent course of action, and provides sound influence
curve-based inference.

Estimators that rely on nuisance parameter estimation (IPTW, AIPTW, TMLE, propensity
score-based estimation) break down when there are ETA violations, failing to reduce bias, or even
increasing bias, while incurring high variance that renders estimates meaningless (no statistical
significance). An effort to reduce variance through truncation introduces bias into the estimate,
and requires a careful trade-off. C-TMLE addresses these issues, in the sense that it is able to
utilize the covariates for effective bias reduction, avoiding harmful bias reduction efforts. As a
targeted-MLE, the bias-variance tradeoff is targeted towards the estimation of the parameter of
interest, not the estimate of the entire density.

The collaborative nature of the estimation of the treatment mechanism in the C-TMLE confers
three advantages:

1. The treatment mechanism model will exclude covariates that are highly predictive of treat-
ment but do not truly confound the relationship between treatment and the outcome.

2. The treatment mechanism model will include only covariates that help adjust for residual
bias remaining after stage one adjustment.

3. Cross-validation based on a penalized log-likelihood will not select a treatment mechanism
model that includes a term that leads to violations of the ETA assumption and thereby large
variance of the corresponding targeted MLE without the benefit of a meaningful bias reduc-
tion.

4.5 Comparison of C-TMLE and TMLE
The double robust property of the targeted maximum likelihood estimator minimizes the need

for accurate estimation of both Q̄0 and g0 since correct specification of either one leads to consistent
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estimates of the parameter of interest. However, accurate estimates of both are needed to achieve
the Cramer-Rao efficiency bound. Implementations of the standard targeted maximum likelihood
estimator (TMLE) therefore strive for ideal estimates of both Q̄0 and g0.

In contrast, the collaborative nature of the second stage of the C-TMLE estimation algorithm
leads to selection of an estimator, gn, that targets that portion of the treatment mechanism needed
to reduce bias not already adequately addressed by the first stage estimator for Q̄0. For example,
covariates included in the model for Q̄0

n might not be selected into the model for g because they do
not increase the penalized log-likelihood. At the same time, confounders that are not adequately
adjusted for in the initial density estimate are quickly added to model for g unless the gain in bias
reduction is offset by too great an increase in variance. When the initial estimate of the density
is a very good fit for the true underlying density, TMLE and C-TMLE have similar performance
with respect to bias, but the C-TMLE will have smaller variance by selecting a gn that targets non
fully adjusted g0, resulting in a possibly super efficient estimator. When the initial fit is less good,
C-TMLE makes informed choices regarding inclusion of covariates in the treatment mechanism.
As predicted by theory, again, this might lead to lower variances when no covariates cause ETA
violations. When inclusion of all confounding covariates does violate the ETA assumption, the
C-TMLE estimator, in essence, targets a less ambitious data adaptively selected parameter that is
identifiable. Simulation 4 illustrates these phenomena.

4.5.1 Data generation
In simulation 4 the covariates W1,W2, and W3 are generated as independent random uniform

variables over the interval [0, 1], while W4 and W5 are independent normally distributed random
variables. Specifically,

W1,W2,W3 ∼ U(0, 1)

W4,W5 ∼ N(0, 1).

Treatment mechanism g0 is designed so that W3 is highly predictive of treatment:

g0 = P (A = 1 | W )) = expit(2W1 +W2 − 5W3 +W5).

The observed outcome Y is generated as

Y = Q̄0(A,W ) + ε, ε ∼ N(0, 1)

with corresponding true outcome regression

Q̄0(A,W ) = A+ 4W1 − 5W2 + 5W4W5.
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4.5.2 Description
C-TMLE and TMLE estimates of the parameter of interest, again defined as ψ = EW{E(Y |

A = 1,W ) − E(Y | A = 0,W )}, were obtained for 1000 samples of size n = 1000 drawn from
data generating distribution implied by (Q0, g0). For this study we deliberately select a misspeci-
fied main-terms only model for Q̄0 by running the DSA algorithm on 100,000 observations drawn
from that same distribution. P (A = a | W ) for these observations ranges from 0.004 to 0.996.
Approximately 17% of the observations have covariates indicating that the probability of receiving
treatment is less than 0.05, indicating that practical ETA violations in finite samples will cause
unstable TMLE estimates.

For each iteration an initial regression, Q̄0
n, was obtained by fitting the DSA-selected model,

Y = A + W1 + W2, on n observations in the sample. We expect that any estimate of ψ0 based
solely on this model is likely to be incorrect because the model fails to take into account the effect
on the outcome of the missing interaction term, and also fails to adjust for the confounding effect
of W5. The targeting step for both targeted maximum likelihood estimators reduces this bias.

In order to construct the covariate used to target the parameter of interest in the updating step
of the TMLE algorithm we obtain an estimate gn of g0 by running the DSA algorithm, allowing
quadratic terms and two-way interaction terms to enter the model. This model was not fixed over
the 1000 iterations; the model selection process was carried out each time a sample was drawn
from the population. Similarly, covariates that were candidates for inclusion in the model for gn
in the second stage of the C-TMLE estimation algorithm include (W1, . . . ,W5, W 2

1 , . . . ,W
2
5 ), and

all two-way interaction terms (WiWj), where i 6= j.

4.5.3 Results
Results of the simulation are shown in Table 4.2. A small number of aberrant TMLE estimates

were major contributers to the variance of that estimator. The three highest TMLE estimates of
the treatment effect were (771.91, 37.22, 9.52). It is likely that these high values arise from atyp-
ical samples containing observations that presented unusually strong ETA issues. In contrast, all
C-TMLE estimates calculated from those same samples range between 0.307 and 1.698. Both es-
timators’ average treatment effect estimates are not far from the true value, ψ0 = 1. As expected,
the variance of the TMLE estimator is many times larger than that of the C-TMLE estimator.

Not surprisingly, W3, the strong predictor of treatment that is not a true confounder of the
relationship between treatment and outcome, is included in every one of the 1000 models for gn
selected by the DSA algorithm, but it is included in only 35 of the models constructed in the
second stage of the C-TMLE algorithm. At the same time, the interaction term W4W5 is included
in only two out of 1000 models for g0 selected by DSA, but is present in 576, more than half, of
the collaborative models.

This clearly demonstrates the differences between TMLE’s reliance on an external estimate of
g0 and the collaborative approach to estimating the treatment mechanism used by C-TMLE. How-
ever, we note that the degradation of TMLE performance under sparsity is due to the unbound-
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Table 4.2: Simulation 4: Comparison of C-TMLE and TMLE estimators at different levels of
truncation. Mean estimate and variance based on 1000 iterations.

Truncation # Obs
level truncated ψn Variance

C-TMLE ∞ 0 0.98 0.04

TMLE ∞ 0 1.73 597.52
40 1 1.36 162.38
10 2 0.94 1.99
5 9 0.92 1.68

edness of the fluctuation function, and can be mitigated by employing an alternative fluctuation
function that respects known bounds on the data model.

4.5.4 Confidence Intervals
The variance of the influence curve provides the basis for calculation of a 95% confidence

interval for the C-TMLE estimate.

95%CI = ψC−TMLE ± 1.96
√
var(IC)/n

Two sets of confidence intervals were constructed for each of the 1000 iterations in simulation
4, with Q̄0

n misspecified by a main-terms only regression model. As described above, one set
of CIs is based on D∗(Q, g), the first term of the IC. The second set is based on the variance
of D∗(Q, g) + ICg, which includes the contribution from the estimation of gn. Table 4.3 shows
that CIs based on D∗ alone are conservative when the model for Q0

n is misspecified, as expected.
In contrast, observed coverage closely approximates the nominal 95% coverage rate when the
contribution from the ICg term is taken into account.

Confidence intervals were also created for an additional 1000 samples from the same data gen-
erating distribution that were analyzed using a correct model for Q̄0

n. Coverage rates for these
confidence intervals are given in Table 4.3. When Q̄0

n is correctly specified we observe little differ-
ence in the coverage rate whether or not we take the contribution from ICg into account, indicating
zero contribution to the variance from the estimate of gn. Attaining the nominal rate indicates that
inference is reliable even when the estimator is super efficient.
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Table 4.3: Empirical coverage of 1000 confidence intervals constructed at a nominal 95% level.
SE calculated as

√
var(IC)/n, where the IC was estimated with and without ICg.

Coverage
D∗(Q, g0) D∗(Q, g0) + ICg

Q̄0
n misspecified .979 .943

Q̄0
n correct .932 .933

4.6 HIV Mutation Data Analysis
We apply the C-TMLE estimator to an observational dataset previously analyzed with the goal

of identifying HIV mutations that affect response to the antiretroviral drug lopinavir. (Bembom
et al., 2009, 2008) The data includes observations on O = (W,A, Y ), where the outcome, Y , is the
change in log10 viral load measured at baseline and at follow-up after treatment has been initiated.
If follow-up viral load was beneath the limit of detection Y was set to the maximal change seen
in the population. A ∈ {0, 1} is an indicator of the presence or absence of a mutation of interest,
taking on the appropriate value for each of the 26 candidate mutations in 26 separate analyses. W
consists of 51 covariates including treatment history, baseline characteristics, and indicators of the
presence of additional HIV mutations. Practical ETA violations stemming from high correlations
among some of the covariates and/or low probability of observing a given mutation of interest make
it difficult to obtain stable low variance estimates of the association between A and Y . Bembom
used a targeted maximum likelihood estimation approach incorporating data-adaptive selection of
an adjustment set that relies on setting a limit on the maximum allowable truncation bias intro-
duced by truncating treatment probabilities less than α to some specified lower limit. Covariates
whose inclusion in the adjustment set introduces an unacceptable amount of bias are not selected.
That study’s findings showed good greement with Stanford HIVdb mutation scores, values on a
scale of 0 to 20 (http://hivdb.stanford.edu, as of September, 2007, subsequently modified), where
20 indicates evidence exists that the mutation strongly inhibits response to drug treatment and 0
signifies that the mutation confers no resistance. Because the C-TMLE method includes covariates
in the treatment mechanism only if they improve the targeting of the parameter of interest without
having too adverse an effect on the MSE, we expect similar performance without having to specify
truncation levels or an acceptable maximum amount of bias.

4.6.1 Analysis description
The dataset consists of 401 observations on 372 subjects. Correlations due to the few subjects

contributing more than one observation were ignored. Separate analyses was carried out for each
mutation. In each, an initial density estimate, Q̄0

n, was obtained using DSA restricted to addition
moves only to select a main-terms model containing at most 20 terms, where candidate terms in
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W include pre-computed interactions detailed in Bembom et al. A was forced into the model. An
estimate of the effect on change in viral load was recorded for each mutation. Influence curve-
based variance estimates incorporating the contribution from estimating g given by the ICg term,
was used to construct 95% confidence intervals.

4.6.2 Results
Table 4.4 lists the Stanford mutation score associated with each of the HIV mutations under

consideration, as well as the C-TMLE estimate of the adjusted effect of mutation on lopinavir
resistance. 95% confidence intervals were constructed based on the variance of the IC. Confidence
intervals entirely above zero indicate a mutation increases resistance to lopinavir. Eight of the
twelve mutations having a mutation score of 10 or greater fall into this category. Point estimates for
the remaining four mutations were positive, but the variance was too large to produce a significant
result. Only one of the six mutations thought to confer slight resistance to lopinavir was flagged
by the procedure, though with the exception of p10FIRVY point estimates were positive. Stanford
mutation scores of 0 for four of the five mutations found to have a significantly negative effect on
drug resistance support the conclusion that these mutations do not increase resistance, but are not
designed to offer confirmation that a mutation can decrease drug resistance. However, Bembom et
al. report that there is some clinical evidence that two of these mutations, 30N and 88S, do indeed
decrease lopinavir resistance.

These findings are quite consistent with the Stanford mutation scores and with the results from
the previous analysis using the data-adaptively selected adjustment set targeted maximum likeli-
hood estimation approach. The C-TMLE method was able to achieve these results without relying
on ad hoc or user-specified tuning parameters.



CHAPTER 4. C-TMLE METHODOLOGY 50

Table 4.4: Stanford score (2007), C-TMLE estimate and 95% confidence interval for each muta-
tion. Starred confidence intervals do not include 0.

Mutation Score Estimate 95% CI

p50V 20 1.703 ( 0.760, 2.645)∗

p82AFST 20 0.389 ( 0.091, 0.688)∗

p54VA 11 0.505 ( 0.241, 0.770)∗

p54LMST 11 0.369 ( 0.002, 0.735)∗

p84AV 11 0.099 (-0.139, 0.337)
p46ILV 11 0.046 (-0.222, 0.315)
p82MLC 10 1.610 ( 1.377, 1.843)∗

p47V 10 0.805 ( 0.282, 1.328)∗

p84C 10 0.602 ( 0.471, 0.734)∗

p32I 10 0.544 ( 0.325, 0.763)∗

p48VM 10 0.306 (-0.162, 0.774)
p90M 10 0.209 (-0.063, 0.481)
p33F 5 0.300 (-0.070, 0.669)
p53LY 3 0.214 (-0.266, 0.695)
p73CSTA 2 0.635 ( 0.278, 0.992)∗

p24IF 2 0.229 (-0.215, 0.674)
p10FIRVY 2 −0.266 (-0.545, 0.012)
p71TVI 2 0.019 (-0.243, 0.281)

p23I 0 0.822 (-0.014, 1.658)
p36ILVTA 0 0.272 (-0.001, 0.544)
p16E 0 0.239 (-0.156, 0.633)
p20IMRTVL 0 0.178 (-0.111, 0.467)
p63P 0 −0.131 (-0.417, 0.156)
p88DTG 0 −0.426 (-0.842,-0.010)∗

p30N 0 −0.440 (-0.853,-0.028)∗

p88S 0 −0.474 (-0.781,-0.167)∗
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4.7 C-TMLE for bounded continuous outcomes
Chapter 3 described the importance of respecting global constraints on the estimation problem

for bounded continuous outcomes, and introduced a logistic fluctuation procedure that ensures that
TMLE estimates of Q̄0(A,W ) remain within the bounds of the semi-parametric model. This is
especially relevant in sparse data situations, when outlying values for Y or Q̄0(A,W ), or extreme
conditional treatment assignment probabilities inflate the variance of the efficient influence curve
of the parameter of interest. C-TMLE’s parsimonious approach to nuisance parameter estimation
addresses both these sources of variance, and increase the practical identifiability of the param-
eter. Selecting the smallest sufficient model for g often yields less extreme predicted values for
gn(1 | W ) than those based on the fully adjusted g0, and the penalized targeted forward selec-
tion approach to building candidate estimators Q̄∗n(g1

n), . . . , Q̄∗n(gKn ) tends to keep the variance of
the early candidates in check, while ensuring that the likelihood for Q increases monotonically.
The logistic fluctuation procedure also addresses both sources of variance by producing targeted
estimates that always remain within the known bounds. An analysis of simulated data illustrates
that employing a logistic fluctuation of Q̄0

n in the targeting step of the C-TMLE procedure further
robustifies the C-TMLE estimator with respect to sparsity.

4.7.1 The logistic fluctuation procedure
The targeting step of the TMLE procedure for a binary outcome uses logistic regression of

Y on H∗(A,W ) with offset logit(Q̄0
n) to fit ε, a parameter that dictates the magnitude of the

fluctuation of the initial estimate. This naturally constrains the updated estimate, Q̄1
n(A,W ) =

expit(logit(Q̄0
n(A,W ))+εH∗(A,W )), to be between 0 and 1. If instead Y represents a continuous

outcome known to be bounded between (0, 1), for example, a proportion, then it is equally true
that any observed or fitted value for Y should fall between 0 and 1. Fluctuating an initial estimate
Q̄0
n ∈ (0, 1) for the conditional mean of this continuous Y on the logit scale will yield a targeted

estimate, Q̄1
n that is guaranteed to fall between 0 and 1.

Now suppose there is instead a continuous outcome Y known to be bounded by (a, b), with
a < b. Ideally, an estimate of the conditional mean of Y givenA andW should remain within [a, b].
We’ve just seen that this is easily arranged when (a, b) = (0, 1). Chapter 3 showed that for arbitrary
(a, b), Y ∈ [a, b] can be mapped to Y ∗ ∈ [0, 1], Y ∗ = (Y − a)/(b− a). We define the causal effect
of treatment on the bounded outcome Y ∗ as Ψ∗(P0) = E0{E0(Y ∗ | A = 1,W ) − E0(Y ∗ | A =
0,W )}. The same C-TMLE procedure outlined in Algorithm 6.1 is applied to O∗ = (W,A, Y ∗) to
obtain an estimate ψ∗n that immediately maps to a ψn of the causal effect on the original scale, using
the relation Ψ(P0) = (b− a)Ψ∗(P0). A confidence interval for ψ0 can be obtained by multiplying
the bounds on the confidence interval for Ψ∗(P0) by (b − a). Similarly, the estimated variance σ̂2

of ψn is obtained by multiplying the estimated variance σ̂2∗ of ψ∗n with(b− a)2.
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Figure 4.5: Simulation 5 DAG shows the relationship between covariates collected at baseline W ,
treatment, A, and outcome Y . Solid lines represent causal relationships, dashed lines represent
non-causal correlations.

4.7.2 Simulation study
Data generation

Simulation 5 was designed to highlight different aspects of estimator performance in the con-
text of sparsity. The directed acyclic graph (DAG) in Figure 4.5 shows the relationship between
covariates W = (W1,W2,W3,W4,W5,W6), binary treament, A, and continuous outcome Y . Data
were generated as follows: covariates W1,W2,W3 are trivariate normal, W4,W5,W6 are indepen-
dent binary variables, and specifically,

W1,W2,W3 ∼ N(µ1, µ2, µ3,Σ), µ1 = µ2 = µ3 = 0, Σ =

 2 1 0
1 1 0.2
0 0.2 1


W4 ∼ Bernoulli(0.2)

W5 ∼ Bernoulli(0.6)

W6 ∼ Bernoulli(0.7).

The treatment mechanism g0 is given by

g0 = P (A = 1 | W )) = expit(2W1 + 0.25W2 − 0.5W3 +W4).

The observed outcome Y is generated as

Y = Q̄0(A,W ) + ε, ε ∼ N(0, 1)

with corresponding true outcome regression

Q̄0(A,W ) = A+ 2AW5 +W1 +W2 −W3W5.
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Notice that covariates (W1,W2,W3,W4) are causally associated with treatment assignment. The
covariates W1,W2, and W3 are also causally related to treatment, and therefore confound the re-
lationship between treatment and the outcome. The lack of an arrow from W4 to Y in Figure 4.5
indicates that W4 is not causally related to Y , and is thus not a confounder of the relationship be-
tween treatment and outcome. Covariate W6 was measured at baseline but has no association with
either the treatment or the outcome. Covariate W5 is an effect modifier. The effect of treatment
is larger for subjects having W5 = 1 than for subjects having W5 = 0. The marginal treatment
effect depends on the joint distribution of covariates W1,W2,W3,W5 in the population, which is
estimated as the empirical distribution in the observed data. Though approximately one half of sub-
jects receive treatment (P (A = 1) = 0.53 marginally), true treatment assignment probabilities are
between (0.0002, 0.9999), and for approximately 9% of observations, the conditional probability
of receiving treatment given the measured covariates is outside (0.05, 0.95).

1000 samples of size n = 1000 were drawn from this data generating distribution. Observed
values for Y and initial estimated conditional mean values were truncated at the (0.01, 0.99) quan-
tiles of the full data (-5.83, 8.48). The true value of the marginal additive treatment effect is
ψ0 = 2.192.

Comparison of C-TMLE using logistic fluctuation and C-TMLE using a linear fluctuation

Two C-TMLE estimators were applied to estimate the additive causal effect, C-TMLElog, using
a logistic fluctuation, and C-TMLElin using a linear fluctuation. In order to demonstrate the impact
the targeting step has on reducing bias, instead of data-adaptively estimating Q̄0

n, the first stage
estimate of Q̄0

n was obtained in two ways: 1) using the correct parametric regression model for Q̄n,
and 2) using a misspecified model for Q̄n, i.e., the unadjusted regression of Y on A.

Results in Table 4.5 illustrate that, as expected, when the model for Q̄n is correctly specified
there is little difference between fluctuating on the logistic or linear scale. The C-TMLE procedure
tends to select the intercept model for g0 when the model for stage one estimation of Q̄0

n is cor-
rectly specified. When this correct model for Q̄0

n already contains the treatment variable, A, and
H∗gn(A,W ) is based on a gn(A,W ) modeled as the marginal treatment assignment probability, the
MLE for ε is 0. Thus, in this case the scale of the fluctuation is irrelevant. Values for ε will also be
close to 0 when Q̄0

n is correctly specified and H∗gn(A,W ) is based on some larger model for gn, as
there will typically be little to no residual confounding after stage one estimation of Q̄0

n.
Differences emerge when the model for Q̄0

n is deliberately misspecified. At each level of
bound on gn, the linear fluctuation yields estimates that are much more biased and have higher
variance than the logistic fluctuation-based estimates. We see that increasing the bound on gn
from 0 to 0.025 reduces both bias and variance for the linear fluctuation estimates, but imposes a
bias/variance tradeoff on the logistic fluctuation estimates. In this simulation the MSE is smaller
when gn is bounded at (0.025, 0.975) than when the bounds are closer to (0, 1), but this is not
always the case.
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Table 4.5: Simulation 5: Comparison of C-TMLElog with C-TMLElin at different bounds on gn.

Q correctly specified Q misspecified
Ave Bias Var MSE Ave Bias Var MSE

gn bound = 0
C-TMLElog 2.222 0.030 0.008 0.009 2.154 −0.038 0.033 0.034
C-TMLElin 2.221 0.029 0.008 0.009 1.992 −0.200 0.349 0.389

gn bound=0.01
C-TMLElog 2.222 0.030 0.008 0.009 2.151 −0.041 0.032 0.034
C-TMLElin 2.221 0.029 0.008 0.009 2.057 −0.135 0.297 0.315

gn bound=0.025
C-TMLElog 2.222 0.030 0.008 0.009 2.146 −0.046 0.027 0.029
C-TMLElin 2.221 0.029 0.008 0.009 2.116 −0.076 0.054 0.060

Multiple estimator comparison

As is often true when study data are collected, not all covariates generated for simulation 5 are
related to both treatment and the outcome. Though domain knowledge can be useful for identi-
fying potential confounders, and can be incorporated into model selection techniques, treatment
assignment may in fact partly depend on covariates that are not related to the outcome. In situa-
tions like these, incorporating information about Y in a systematic, prescribed manner that does
not introduce bias can be beneficial. Simulation 5 is designed to provide the opportunity for this
potential gain in relative efficiency.

Table 4.6 shows results of applying the estimators defined in Section 4.4.1 above, and the
TMLE, of the additive treatment effect under the data generating distribution scheme for simulation
5. Estimators that make use of gn(A,W ) were given values estimated using the correct regression
formula, and subsequently bounded at (p, 1 − p), for p = (0, 0.01, 0.025). Observed values for Y
were truncated at the values of the (0.01, 0.99) quantiles. TMLE and C-TMLE results presented
were obtained using the logistic fluctuation.

These results indicate that when the parametric model for Q̄0 is correctly specified, estimators
that rely on consistent estimation of Q0 perform very well. However, estimators that rely only on
consistent estimation of g0 and fail to exploit the information from estimation ofQ0, (IPTW, pscore,
and matching), are less efficient, in spite of being given the correct model for g0. Misspecifying
the model for Q̄0 does not harm these estimators, but in situations like the one in this simulation,
they are still less efficient than TMLE and C-TMLE.

The unadjusted estimate is biased due to confounding by covariates W1,W2,W3. MLE has
the smallest mean squared error when the model for Q̄0 is correctly specified, but is not robust to
misspecification of this model. IPTW, AIPTW, matching TMLE, and C-TMLE estimators, all of
which rely on gn, show improvements in MSE as the bounds on g increase from 0 to 0.025 due to
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decreases in the variance at the cost of increasing bias. The IPTW estimator provides consistent
parameter estimation, but is not maximally efficient. AIPTW has lower bias than IPTW, but pays
a high price in variance when Q̄n is inconsistent. The pscore estimator is quite stable across all
truncation levels for gn, however its lack of data-adaptiveness yields an estimate that is quite biased
in comparison with the other methods. The matching estimator is less biased than pscore, and also
quite stable with respect to changes in the bounds on gn. The MSE of the matching estimator is
slightly smaller than the MSE of TMLE when Q̄n is inconsistent, and approximately the same as
C-TMLE, but the matching estimate is more biased than either TMLE or C-TMLE. TMLE and
C-TMLE are able to exploit information that is unavailable to the matching algorithm when Q̄n is
consistent, and thus have lower bias and variance than the matching estimator. These results also
indicate that C-TMLE may trade off a small increase in bias for a larger reduction in variance,
relative to TMLE, thus minimizing overall MSE.
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Figure 4.6: Mean estimates and (0.025, 0.975) quantiles, gn(1 | W ) bounded at (0.025, 0.975),
Q correctly specified (l) and misspecified (r). Dashed line at true parameter value.

MSE provides only one of several points of comparison for estimators. Minimizing MSE is
an important goal, and as we’ve just seen, C-TMLE can make a beneficial data-adaptive trade-off,
but Figure 4.6 illustrates that relying on a biased, low-variance, low MSE estimator such as the
pscore estimator, can be problematic. The plot in Figure 4.6 shows the mean and (0.025, 0.975)
quantiles of the estimates obtained from the 1000 generated samples. 91% of the pscore estimates
were larger than ψ0. This suggests that though an estimate far from the null with a tight confidence
interval may look convincing, it might in fact be misleading, and that confidence intervals for the
pscore estimator might fail to achieve the nominal coverage rate under circumstances resembling
those found in this simulation. This is in marked contrast to TMLE and C-TMLE, double-robust,
unbiased, locally efficient substitution estimators that have good properties across a range of data-
generating distributions.
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4.7.3 Summary
Simulation 5 posed a challenging estimation problem that serves to clarify the distinctions be-

tween double robust and non-double robust estimation, and between substitution estimators that
remain within the bounds of the semi-parametric model and those that do not. TMLE coupled with
the logistic fluctuation for binary and bounded, continuous outcomes is doubly robust to violation
of assumptions on Q0 and g0, and also robust to outliers. C-TMLE’s collaborative, targeted ap-
proach to nuisance parameter estimation strengthens that robustness, and is especially valuable for
sparse data.
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Table 4.6: Simulation 5, comparison of estimators at different bounds on gn(1 | W ), ψ0 = 2.192.

Q correctly specified Q misspecified
Bias Var MSE Rel MSE∗ Bias Var MSE Rel MSE∗

gn bound=(0, 1)
Unadj 2.398 0.021 5.771 1.000 2.398 0.021 5.771 1.000
MLE 0.031 0.007 0.008 0.001 2.398 0.021 5.771 1.000
IPTW 0.018 0.090 0.090 0.016 0.018 0.090 0.090 0.016
AIPTW −0.006 0.011 0.011 0.002 0.001 0.157 0.157 0.027
pscore 0.262 0.014 0.083 0.014 0.262 0.014 0.083 0.014
matching 0.124 0.018 0.033 0.006 0.124 0.018 0.033 0.006
TMLE −0.007 0.011 0.011 0.002 −0.018 0.049 0.049 0.008
C-TMLE 0.030 0.008 0.009 0.002 −0.038 0.033 0.034 0.006

gn bound=(0.01, 0.99)
Unadj 2.398 0.021 5.771 1.000 2.398 0.021 5.771 1.000
MLE 0.031 0.007 0.008 0.001 2.398 0.021 5.771 1.000
IPTW 0.033 0.063 0.064 0.011 0.033 0.063 0.064 0.011
AIPTW −0.005 0.011 0.011 0.002 0.024 0.092 0.093 0.016
pscore 0.262 0.014 0.083 0.014 0.262 0.014 0.083 0.014
matching 0.125 0.018 0.033 0.006 0.125 0.018 0.033 0.006
TMLE −0.006 0.011 0.011 0.002 −0.024 0.044 0.044 0.008
C-TMLE 0.030 0.008 0.009 0.002 −0.041 0.032 0.034 0.006

gn bound=(0.025, 0.975)
Unadj 2.398 0.021 5.771 1.000 2.398 0.021 5.771 1.000
MLE 0.031 0.007 0.008 0.001 2.398 0.021 5.771 1.000
IPTW 0.085 0.041 0.049 0.008 0.085 0.041 0.049 0.008
AIPTW −0.004 0.010 0.010 0.002 0.093 0.055 0.064 0.011
pscore 0.262 0.014 0.083 0.014 0.262 0.014 0.083 0.014
matching 0.127 0.018 0.034 0.006 0.127 0.018 0.034 0.006
TMLE −0.005 0.010 0.010 0.002 −0.040 0.031 0.032 0.006
C-TMLE 0.030 0.008 0.009 0.002 −0.046 0.027 0.029 0.005
∗Relative to unadjusted estimator
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Chapter 5

Relative Performance of Targeted
Maximum Likelihood Estimators Under
Sparsity

5.1 Introduction
There is an active debate in the literature on censored data about the relative performance of

model based maximum likelihood estimators, IPCW-estimators, and a variety of double robust
semiparametric efficient estimators. Kang and Schafer (2007) demonstrate the fragility of double
robust and IPCW-estimators in a simulation study with positivity violations. They focus on a sim-
ple missing data problem with covariates where one wishes to estimate the mean of an outcome
that is subject to missingness. Responses by Robins et al. (2007), Tsiatis and Davidian (2007),
Tan (2007) and Ridgeway and McCaffrey (2007) further explore the challenges faced by double
robust estimators and offer suggestions for improving their stability. This chapter presents a num-
ber of different targeted maximum likelihood estimators (TMLEs). We demonstrate that TMLEs,
particularly those that guarantee that the parametric submodel employed by the TMLE-procedure
respects the global bounds on the continuous outcomes, are especially suitable for dealing with
positivity violations because in addition to being double robust and semiparametric efficient, they
are substitution estimators. We demonstrate the practical performance of TMLEs relative to other
estimators in the simulations designed by Kang and Schafer (2007) and by Freedman and Berk
(2008), and in modified simulations with even greater estimation challenges.

5.2 Kang and Schafer Simulations
The translation of a scientific question into a statistical estimation problem often involves the

formulation of a full-data structure, a target parameter of the full-data probability distribution rep-
resenting the scientific question of interest, and an observed data structure which can be viewed
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as a mapping on the full data structure and a censoring variable. One must identify the target pa-
rameter of the full-data distribution from the probability distribution of the observed data structure,
which often requires particular modeling assumptions such as the coarsening at random assump-
tion on the censoring mechanism (i.e., the conditional distribution of censoring, given the full-data
structure). The statistical problem is then reduced to a pure estimation problem defined by the
challenge of constructing an estimator of the estimand, defined by the identifiability result for the
target parameter of the full-data distribution. The estimator should respect the statistical model
implied by the posed assumptions on the censoring mechanism and the full-data distribution.

For semiparametric (e.g., nonparametric) statistical models, many estimators rely in one way
or another on the inverse probability of censoring weights (IPCW). Such estimators can be biased
and highly variable under practical or theoretical violations of the positivity assumption, which is
a support condition on the censoring mechanism that is necessary to establish the identifiability
of the target parameter –e.g., Robins (1986, 1987, 2000a); Neugebauer and van der Laan (2005);
Petersen et al. (2010). A particular class of estimators are so called double robust estimators
(see, e.g., van der Laan and Robins (2003)). Double robust (DR) estimators, which rely on both
IPCW and a model of the full-data distribution, are not necessarily protected from the bias or
inflated variance that can result from positivity violations, and in recent literature, there is much
debate on the relative performance of DR estimators when the positivity assumption is violated. In
particular, Kang and Schafer (2007) (KS) demonstrate the fragility of DR estimators in a simulation
study with near, or practical, positivity violations. They focus on a simple missing data problem
in which one wishes to estimate the mean of an outcome that is subject to missingness and all
possible covariates for predicting missingness are measured. Responses by Robins et al. (2007),
Tsiatis and Davidian (2007), Tan (2007) and Ridgeway and McCaffrey (2007) further explore the
challenges faced by DR estimators and offer suggestions for improving their stability.

Under regularity conditions, DR estimators are asymptotically unbiased if either the model of
the conditional expectation of the outcome given the covariates or the model of the conditional
probability of missingness given the covariates is consistent. DR estimators are semiparametric
efficient (for the nonparametric model for the full-data distribution) if both of these estimators are
consistent. In their article, KS introduce a variety of DR estimators and compare them to non-
DR IPCW estimators as well as a simple parametric model based ordinary least squares (OLS)
estimator. As the KS simulation has practical positivity violations, some values of both the true
and estimated missingness mechanism are very close to zero. In this situation, the IPCW will be
extremely large for some observations of the sample. Therefore, DR and non-DR estimators that
rely on IPCW may be unreliable. As a result, KS warn against the routine use of estimators that
rely on IPCW, including DR estimators: this is in agreement with other literature analyzing the
issue (Robins (1986, 1987, 2000a); Robins and Wang (2000); van der Laan and Robins (2003)),
showing simulations demonstrating the extreme sparsity bias of IPCW-estimators (e.g., Neuge-
bauer and van der Laan (2005)), diagnosing violations of the positivity assumptions in response
to this concern (Petersen et al. (2010); Wang et al. (2006a); Moore et al. (2009); Cole and Hernan
(2008); Kish (1992); Bembom and van der Laan (2008)), data adaptive selection of the truncation
constant to control the influence of weighting (Bembom and van der Laan (2008), and selecting
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parameters that are relying on realistic assumptions (see van der Laan and Petersen (2007), and
Petersen et al. (2010)).

The particular simulation in KS also gives rise to a situation in which under dual misspecifica-
tion, the OLS estimator outperforms all of the presented DR estimators. While this is an interesting
issue, it is not the main focus of this chapter. In our view, dual misspecification brings up the need
for other strategies for improving the robustness of estimators in general, such as incorporating
data adaptive estimation instead of relying on parametric regression models for the missingness
mechanism and the conditional distribution of responses, an idea echoed in the responses by Tsi-
atis and Davidian (2007) and Ridgeway and McCaffrey (2007), and standardly incorporated in the
UC Berkeley literature on targeted maximum likelihood estimation (e.g., van der Laan and Rubin
(2006a); van der Laan et al. (2009)). In particular, we note that a statistical estimation problem is
also defined by the statistical model, which, in this case, is defined by a nonparametric model: such
models require data adaptive estimators in order to claim that the estimator is consistent. Nonethe-
less, we explicitly demonstrate the impact of the utilization of machine learning on the simulation
results in Section 5.2.5.

In their response to the KS paper, Robins et al. (2007) point out that a desirable property of
DR estimators is “boundedness,” in that for a finite sample, estimators of the mean response fall
in the parameter space with probability 1. Estimators that impose such a restriction can introduce
new bias but avoid the challenges of highly variable weights. Robins et al. (2007) discuss ways
in which to guarantee that “boundedness” holds and present two classes of bounded estimators–
regression DR estimators and bounded Horvitz-Thompson DR estimators. We define examples
of these estimators below, and we evaluate their relative performance. The response by Tsiatis
and Davidian (2007) offers strategies for constructing estimators that are more robust under the
circumstances in the KS simulations. In particular, to address positivity violations, they suggest an
estimator that uses IPCW only for observations with missingness mechanism values that are not
close to zero, while using regression predictions for the observations with very small missingness
mechanism values. One might consider either a hard cutoff for dividing observations or weighting
each part of the influence curve by the estimated missingness mechanism. Tan (2007) also points
to an improved locally efficient double robust estimator (Tan (2006)) that is able to maintain double
robustness as well as provides guaranteed improvement relative to an initial estimator, improving
on such type of estimators that had an algebraic similar form but failed to guarantee both properties
(Robins et al. (1994), and see also van der Laan and Robins (2003)). Many responders also make
valuable suggestions regarding the dual misspecification challenge.

In the current paper, we add targeted maximum likelihood estimators (TMLEs), or more gen-
erally, targeted minimum loss based estimators (van der Laan and Rubin (2006a)) to the debate on
the relative performance of DR estimators under practical violations of the positivity assumption in
the particular simple missing data problem set forth by KS. TMLEs involve a two-step procedure
in which one first estimates the conditional expectation of the outcome, given the covariates, and
then updates this initial estimator, targeting bias reduction of the parameter of interest, rather than
the overall conditional mean of the outcome given the covariates. The second step requires spec-
ification of a loss-function (e.g., log-likelihood loss function) and a parametric submodel through
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the initial regression, so that one can fit the parametric sub-model by minimizing the empirical risk
(e.g., maximizing the log-likelihood). The estimator of the target parameter is then defined as the
corresponding substitution estimator. Because TMLEs are substitution estimators, they not only
respect the global bounds of the parameter and data (and thus satisfy the “boundedness” property
defined by Robins et al. (2007)), but, even more importantly, they respect the fact that the true
parameter value is a particular function of the data generating probability distribution.

TMLEs are double robust and asymptotically efficient. Moreover, TMLEs can incorporate
data-adaptive likelihood or loss based estimation procedures to estimate both the conditional ex-
pectation of the outcome and the missingness mechanism.The TMLE also allows the incorporation
of targeted estimation of the censoring/treatment mechanism, as embodied by the collaborative
TMLE (C-TMLE), thereby fully confronting a long standing problem of how to select covariates
in the propensity score/missingness mechanism of DR-estimators. In this chapter, we compare the
performance of TMLEs to other DR estimators in the literature using the exact simulation study
presented in the KS paper. We also make slight modifications to the KS simulation, in order to
make the estimation even more challenging.

The remainder of this chapter is organized as follows. Section 5.2.1 presents notation, which
deviates from that presented in KS, for the data structure and parameter of interest. Section 5.2.2
formally defines the positivity assumption and gives an overview of causes, diagnostics and re-
sponses to violations. Section 5.2.3 defines the estimators on which we focus in this paper, in-
cluding a sample of estimators in the literature and TMLEs. Section 5.2.4 compares estimator
performance in the original and modified KS simulations. Section 5.2.5 then looks at coupling
TMLEs with machine learning. Section 5.2.6 concludes with a discussion of the findings.

5.2.1 Data Structure, Statistical Model, and Parameter of Interest
Consider an observed data set consisting of n independent and identically distributed (i.i.d)

observations of O = (W,∆,∆Y ) ∼ P0. W is a vector of covariates, and ∆ = 1 indicates
whether Y , a continuous outcome, is observed. P0 denotes the true distribution of O, from which
all observations are sampled. We view O as a missing data structure on a hypothetical full data
structure X = (W,Y ), which contains the true, or potential, value of Y for all observations, as if
no values are missing. We assume Y is missing at random (MAR) such that P0(∆ = 1 | X) =
g0(1 | W ). In other words, we assume there are no unobserved confounders of the relationship
between missingness ∆ and the outcome Y .

We define Q0 = {Q0,W , Q̄0}, where Q0,W (w) ≡ P0(W = w) and Q̄0(W ) ≡ E0(Y | ∆ =
1,W ). We make no assumptions about Q0. The generalized Cramer-Rao information bound for
any parameter of Q0 does not depend on the statistical model for the missingness mechanism g0.
The parameter of interest is the mean outcome E0(Y ) for the sampled population, as if there were
not missing observations of Y . Due to the MAR assumption and the positivity assumption defined
below, our target parameter is identified from P0 by the following mapping from Q0:

µ(P0) = E0(Y ) = E0(Q̄0(W )).
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5.2.2 The Positivity Assumption
The identifiability of the parameter of interest µ(P0) requires MAR and adequate support in the

data. Regarding the latter, it requires that within each stratum of W , there is positive probability
that Y is not missing. This requirement is often referred to as the positivity assumption. Formally,
for our target parameter, the positivity assumption requires that:

g0(∆ = 1 | W ) > 0 P0-almost everywhere. (5.1)

The positivity assumption is specific to the the target parameter. For example, the positivity
assumption of the target parameterE0{E0(Y | A = 1,W )−E0(Y | A = 0,W )} of the probability
distribution ofO = (W,A, Y ), representing the additive causal effect under causal assumptions, re-
quires that within each stratum there is a positive probability for all possible treatment assignments.
For example, if A is a binary treatment, then positivity requires that 0 < g0(A = 1 | W ) < 1.
(The assumption is often referred to as the experimental treatment assignment (ETA) assumption
for causal parameters.) In addition to being parameter-specific, the positivity assumption is also
model-specific. Parametric model assumptions, which extrapolate to regions of the joint distribu-
tion of (A,W) that may not be supported in the data, allow for weakening the positivity assumption
(Petersen et al. (2010)). However, analysts need to be sure that their parametric assumptions actu-
ally hold true, which may be difficult if not impossible.

Violations and near violations of the positivity assumption can arise for two reasons. First, it
may be theoretically impossible or highly unlikely for the outcome Y to be observed for certain
covariate values in the population of interest. The threat to identifiability due to such structural
violations of positivity exists regardless of the sample size. Second, given a finite sample, the
probability of the outcome being observed for some covariate values might be so small that the
observed sample cannot be distinguished from a sample drawn under a theoretical violation of
the positivity assumption. The effect of such practical violations of the positivity assumption are
sample size specific, and the resulting sparse data bias and inflated variance are often as dramatic
as under structural violations.

Several approaches for diagnosing bias due to positivity violations have been suggested (see
Petersen et al. (2010) for an overview). Analysts may assess the distribution of ∆ within covariate
strata (or in the case of causal parameters, the distribution of treatment assignment), but this method
is not practical with high dimensional covariate sets or with continuous or multi-level covariates,
and also provides no quantitative measure of the resulting sparse-data bias. Analysts may also
assess the distribution of the estimated missingness mechanism scores, gn(∆ = 1 | W ), or inverse
probability weights. While this approach may indicate positivity violations, it does not provide any
information on the extent of potential bias of the chosen estimator. Wang et al. (2006b) introduce
and Petersen et al. (2010) further discuss a diagnostic that provides an estimate of positivity bias
for any candidate estimator, which is based on a parametric bootstrap. Bias estimates of similar or
larger magnitude than an estimate’s standard error can raise a red flag to analysts that inference for
their target parameter is threatened by lack of positivity.
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When censoring probabilities are close to 0 (or 1 in the case of an effect parameter), a common
practice is to truncate the probabilities or the resulting inverse probability weights, either at fixed
levels or at percentiles (Petersen et al. (2010); Wang et al. (2006a); Moore et al. (2009); Cole
and Hernan (2008); Kish (1992); Bembom and van der Laan (2008)). The practice limits the
influence of observations with large unbounded weights, which may reduce positivity bias and
rein in inflated variance. However, this practice may also introduce bias, due to misspecification of
the missingness mechanism gn. The extent to which truncating gn hurts or helps the performance
of an estimator depends on the level of truncation, the estimator and the distribution of the data.
In our simulations below, we examine the effect of truncating missingness probabilities for all
estimators that we introduce in the next section.

5.2.3 Estimators of a Mean Outcome when the Outcome is Subject to Miss-
ingness

Estimators in the Literature

As a benchmark, KS compare all estimators in their paper to the ordinary least squares (OLS)
estimator. For the target parameter, the OLS estimator is equivalent to the G-computation estimator
based on a linear regression model. It is defined as:

µn,OLS =
1

n

n∑
i=1

Q̄0
n(Wi).

where Q̄0
n = mβn is a linear regression initial fit of Q̄0, and βn is given by:

βn = arg min
β

n∑
i=1

∆i(Yi −mβ(Wi))
2.

(Note that in our notation, the subscript n refers to an estimation, and the superscript indicates
whether the estimation is from an initial fit (0

n), or as we introduce below, a refit (′n) or a fluctuated
fit (∗n).) Under violation of the positivity assumption, the OLS estimator, when defined, extrapo-
lates from strata of W in which there is support to strata of W that lack adequate support. The
extrapolation depends on the validity of the linear regression model, and misspecification leads to
bias.

KS present comparisons of several DR (and non-DR) estimators. We focus on just a couple of
them here. Using our terminology with the terminology and abbreviations from KS in parenthesis
the estimators we compare are: the weighted least squares (WLS) estimator (regression estima-
tion with inverse-propensity weighted coefficients, µn,WLS) and the augmented IPCW (A-IPCW)
estimator (regression estimation with residual bias correction, µn,BC−OLS). Both of these DR esti-
mators are defined below.
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The WLS estimator is defined as:

µn,WLS =
1

n

n∑
i=1

mβn(Wi),

where

βn = arg min
β

n∑
i=1

∆i

gn(1 | Wi)
(Yi −mβ(Wi))

2.

The A-IPCW estimator, introduced by J.M. Robins and Zhao (1994), is then defined as:

µn,A−IPCW = Q̄0
n(Wi) +

1

n

n∑
o=1

∆i

gn(1 | Wi)
(Yi − Q̄0

n(Wi)).

Both of these estimators rely on estimators of Q̄0 and g0. They are consistent if Q̄0
n or gn is con-

sistent, and efficient if both are consistent. Under positivity violations, however, these estimators
rely on the consistency of Q̄0

n, and require that gn converges to a limit that satisfies the positivity
assumption (see e.g., van der Laan and Robins (2003)).

Additionally, in comments on KS, Robins et al. (2007) introduce bounded Horvitz-Thompson
(BHT) estimators, which, as the name suggests, are bounded, in that for finite sample sizes the
estimates are guaranteed to fall in the parameter space. A BHT estimator is defined as:

µn,BHT = Q̄0
n(W ) +

1

n

∑
i

∆i

gnEXT (1 | Wi)
(Yi − Q̄0

n(Wi)).

This is equivalent to the AIPTW estimator, but estimating g0(1 | W ) by fitting the following
logistic regression model

logitPEXT (∆ = 1 | W ) = αTW + φhn(W ),

and hn(W ) = Q̄0
n(W )− 1

n

∑n
i=1 Q̄

0
n(Wi).

We also include another important class of doubly robust, locally efficient, regression-based es-
timators introduced by Scharfstein et al. (1999), further discussed in Robins (1999) and compared
to the TMLEs as defined in this paper in Rosenblum and van der Laan (2010). This estimator
is based on a parametric regression model which includes a “clever covariate” that incorporates
inverse probability weights. We use the abbreviation PRC. The estimator is defined as:

µn,PRC =
1

n

n∑
i=1

Q̄′n(Wi),

where Q′n(W ) = mβn,εn(W ) and mβ,ε(W ) is a parametric model, which includes the clever co-
variate H∗gn(W ) = 1

gn(1|W )
, and (βn, εn) is the OLS.
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Cao et al. (2009) presents a DR estimator that achieves minimum variance among a class of DR
estimators indexed by all possible linear regressions for the initial estimator, when the estimator
of missingness mechanism is correctly specified (see also Rubin and van der Laan (2008) for
empirical efficiency maximization), while it preserves the double robustness. They also address
the effect of large IPCW by enhancing the missingness mechanism estimator in order to constrain
the predicted values. Their estimator is defined as

µn,Cao =
n∑
i=1

∆iYi
gn(1 | Wi)

− ∆i − gn(1 | Wi)

gn(1 | Wi)
m(Wi, βn).

Cao’s enhanced missingness mechanism estimator is given by:

gn(1 | W ) = πen(W, δn, γn) = 1− exp(δn + W̃γn)

1 + exp(W̃γn)
.

Here W̃ = [1,W ], and the parameters γ and δ are estimated subject to the constraints 0 <
π(W, δ, γ) < 1 and

∑n
i=1 ∆i/π

en(Wi, δn, γn) = n. A quasi-Newton method implemented in
the constrOptim.nl function in the R package alabama was used to estimate (δn, γn) (Varadhan,
2010). We used OLS to estimate βn, which corresponds to Cao’s µ̂enusual.

Tan (2010) presents an augmented likelihood estimator that is a more robust version of estima-
tors originally introduced in Tan (2006) that respect boundedness and is semi-parametric efficient.
This estimator is defined as

µn,Tan =
1

n

n∑
i=1

∆iYi

ω(W ; λ̃step2)
,

where ω(W ; λ̃step2) is an enhanced estimate of the missingness mechanism based on an initial
estimate, πML(W ). Specifically, ω(W ;λ) = πML(W ) + λThn(W ), where hn = (hTn,1, h

T
n,2),

hn,1 = (1− πn,ML(W ))νn(W ),

hn,2 =
∂π

∂γn,ML

(W ; γn,ML),

νn(W ) = [1, Q̄0
n(W )]T ,

and γn,ML is a maximum likelihood estimator for the propensity score model parameter. An es-
timate λn that respects the constraint 0 < ω(Wi, λ) if ∆i = 1 can be obtained using a two-step
procedure outlined in Tan’s article. Following Tan’s recommendation, non-linear optimization was
carried out using the R trust package (Geyer, 2009). We consider the two variants of Tan’s LIK2
augmented likelihood estimator that performed best in Tan’s simulations under misspecification of
Q. Our estimator TanWLS relies on a weighted least squares estimate of Q̄0

n. TanRV relies on the
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empirical efficiency maximization estimator of Rubin and van der Laan (Rubin and van der Laan,
2008),

Q̄n,RV =
n∑
i=1

∆i

g(1 | Wi)
(Yi −m(W ; βn)) +m(W ; βn),

βn = arg min
β

n∑
i=1

∆i(1− gn(1 | Wi))

gn(1 | Wi)2
(Yi −mβ(Wi))

2.

TMLEs

We compare the above estimators with several versions of TMLEs. The targeted maximum
likelihood procedure was first introduced in van der Laan and Rubin (2006a). For a compilation of
current and past work on targeted maximum likelihood estimation, see van der Laan et al. (2009).

In contrast to the estimating equation-based DR estimators defined above (WLS, A-IPCW,
BHT, Cao, and Tan), the PRC estimator and TMLEs are DR substitution estimators. TMLEs
are based on an update of an initial estimator of P0 that fluctuates the fit with a fit of a clever
parametric submodel. Assuming a valid parametric submodel is selected, TMLEs do not only
respect the bounds on the outcome implied by the statistical model or data, but also respect that
the true target parameter value is a specified function of the data generating distribution. Due to
respecting this information, the TMLE does not only respect the local bounds of the statistical
model by being asymptotically (locally) efficient (as the other DR estimators), but also respect the
global constraints of the statistical model. Being a substitution estimator is particularly important
under sparsity, as implied by violations of the positivity assumptions.

Although our target parameter involves a continuous Y , to introduce the TMLE for the mean
outcome, we begin by defining the TMLE for a binary Y . In this case, the TMLE is defined as:

µn,TMLE =
1

n

n∑
i=1

Q̄∗n(Wi), (5.2)

where we use the logistic regression submodel

logitQ̄∗n(W ) = logitQ̄0
n(W ) + εH∗gn(W ),

the clever covariate is defined as H∗gn(W ) = 1
gn(1|W )

, and ε, the fluctuation parameter, is estimated
by maximum likelihood in which the loss function is thus the log-likelihood loss function:

−L(Q̄)(O) = ∆
{
Y log Q̄(W ) + (1− Y ) log(1− Q̄(W ))

}
. (5.3)

Thus εn is fitted with univariate logistic regression, using the initial regression estimator Q̄0
n as an

off-set:

εn = arg min
ε

n∑
i=1

L(Q̄0
n(ε))(Oi).
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For estimators Q̄0
n and gn, one may specify a parametric model or use machine learning or even

super learner, which uses loss-based cross-validation to select weighted combination of candidate
estimators (van der Laan et al. (2007)).

Next, consider that Y is continuous, but bounded by 0 and 1. In this case, we can implement
the same TMLE as we would for binary Y in (5.2). That is, we use the same logistic regression
submodel, and the same loss function (5.3), and the same standard software for logistic regression
to fit ε, simply ignoring that Y is not binary. The same loss function is still valid for the conditional
mean Q̄0 (see Chapter 3, and Wedderburn (1974)):

Q̄0 = arg min
Q̄
E0L(Q̄).

Finally, given a continuous Y ∈ [a, b] we can define Y ∗ = (Y − a)/(b− a) so that Y ∗ ∈ [0, 1].
Then, let µ∗(P0) = E0(E0(Y ∗ | ∆ = 1,W )). This approach requires setting a range [a, b] for
the outcomes Y . If such knowledge is available, one simply uses the known values. If Y would
not be subject to missingness, then one would use the minimum and maximum of the empirical
sample which represents a very accurate estimator of the range. In these simulations Y is subject
to informative missingness, so that the minimum or maximum of the biased sample represents a
biased estimate of the range, resulting in a small unnecessary bias in the TMLE (negligible relative
to MSE). We enlarged the range of the complete observations on Y by setting a to 0.9 times
the minimum of the observed values, and b to 1.1 times the maximum of the observed values,
which seemed to remove most of the unnecessary bias. We expect that some improvements can
be obtained by incorporating a valid estimator of the range that takes into account the informative
missingness, but such second order improvements are outside the scope of this chapter. We now
compute the above TMLE of µ∗(P0), and we use the relation µ(P0) = (b− a)µ∗(P0) + a.

We note that the estimator proposed by (Scharfstein et al., 1999) and discussed in the KS de-
bate is a particular special case of a TMLE (Rosenblum and van der Laan (2010)). It defines a
clever parametric initial regression for which the update step of the general TMLE-algorithm in-
troduced in van der Laan and Rubin (2006a) results in a zero-update, and is thus not needed. Such
a TMLE falls in the class of TMLEs defined by an initial regression estimator, a squared error
loss function and univariate linear regression sub-model (coding the fluctuations of the initial re-
gression estimator for the TMLE-update step). Such TMLEs for continuous outcomes (contrary
to the excellent robustness of the TMLE for binary outcome based on the log-likelihood loss func-
tion and logistic regression submodel) suffer from great sensitivity to violations of the positivity
assumptions, as was also observed in the simulations presented in the Kang and Schafer debate.
As explained in Chapter 3, the problem with this TMLE defined by the squared error loss function
and univariate linear regression submodel is that its updates are not subject to any bounds implied
by the statistical model or data: that is, it is not using a parametric sub-model, an important princi-
ple of the general TMLE algorithm. The valid TMLE for continuous outcomes above, defined by
the quasi-binary-log-likelihood loss and a univariate logistic regression parametric submodel, was
presented in Chapter 3, where it was demonstrated that the previously observed sensitivity of these
two estimators to the positivity assumption was due to those specific choices.



CHAPTER 5. TMLES UNDER SPARSITY 68

Our TMLE for continuous outcomes that uses a squared error loss and linear fluctuation func-
tion, uses the same clever covariate as introduced by Scharfstein et al. (1999). However, as also
discussed in an addendum to Rosenblum and van der Laan (2010), the Scharfstein et al. (1999)
it is a special type TMLE due to using a clever parametric regression as initial estimator, thereby
removing the need for the TMLE-update, but also restricting the estimator to parametric regres-
sion models. Both of these TMLEs (squared error loss and linear fluctuation) suffer from the same
sensitivity to lack of positivity.

Finally, a natural extension of all of the above TMLEs is to make a more sophisticated estimate
of g0. Therefore, estimator µn,C−TMLE is defined by (5.2) as well, but the algorithm for computing
Q∗n differs. For the C-TMLE, we generate a sequence of nested-logistic regression model fits of
g0, gn,1, . . . , gn,K , and we create a corresponding sequence of candidate TMLEs Q∗k,gn,k , using gn,k
in the targeted MLE step, k = 1, . . . , K, such that the loss-function (e.g., log-likelihood) specific
fit of Q∗k,gn,k is increasing in k. Finally, we use loss-function specific cross-validation to select
k. The precise algorithm is presented in Chapter 3, and the software is available, and posted on
http://www.stat.berkeley.edu/˜laan. As a result, the resulting estimator gn used in
the TMLE is aimed to only include covariates that are effective in removing bias w.r.t. the target
parameter: the theoretical underpinnings in terms of collaborative double robustness of the efficient
influence curve is presented in van der Laan and Gruber (2009).

5.2.4 Simulation Studies
In this section, we compare the performance of TMLEs to the estimating equation-based DR

estimators (WLS, AIPTW, BHT, Cao, TanWLS, TanRV) as well as PRC and OLS, in the context
of positivity violations. The goal of the original simulation designed by KS was to highlight the
stability problems of DR estimators. We explore the relative performance of the estimators under
the original KS simulation and a number of alternative data generating distributions that involve
stronger and different types of violations of the positivity assumption. These new simulation set-
tings were designed to provide more diverse and even more challenging test cases for evaluating
robustness and thereby finite sample performance of the different estimators.

For the four simulations described below, all estimators were used to estimate µ(P0) from
250 samples of size 1000. We include TMLE and C-TMLE estimators based on the squared er-
ror loss function and the linear regression submodel, as well as TMLE, TMLEY*, C-TMLE and
C-TMLEY* estimators based on the quasi-log-likelihood loss function and the logistic regres-
sion submodel. We evaluated the performance of the estimators by their bias, variance and mean
squared error (MSE).

We compared the estimators of µ(P0) using different specifications of the estimators of Q̄0

and g0. In each of the tables presented below, “Qcgc” indicates that the estimators of both were
specified correctly; “Qcgm” indicates that the estimator of Q̄0 was correctly specified, but the
estimator of g0 was misspecified ; “Qmgc” indicates that the estimator of Q̄0 was misspecified,
but the estimator of g0 was correctly specified, and “Qmgm” indicates that both estimators were
misspecified. For the modified simulations we present results for the “Qmgc” specification only,
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in order to focus on the performance of each estimator when reliance on gn is essential. Additional
results for the other model specifications are available as supplemental materials.

Also, for all estimators, we compared results with no lower bound on gn(1 | W ) with truncating
gn(1 | W ) at a lower bound set at 0.025. We note that neither KS nor Robins et al. (2007) included
bounding gn(1 | W ) when applying their estimators. Although, not bounding gn(1,W ) has the
advantage that in any given application it is difficult to determine which bounds to use, the theory
teaches us that the DR estimators can only be consistent if gn is bounded from below, even if in
truth g0 is unbounded. In addition, some of the estimators above incorporate implicit bounding
of gn, so that such estimators would appear to be particularly advantageous, while the gain in
performance might all be due to the implicit bounding of gn (which would be good to know).
Additional results when gn is bounded from below at 0.01 and 0.05 demonstrate similar behavior,
and are also available on the web.

Kang and Schafer Simulation

Kang and Schafer (2007) consider n i.i.d. units ofO = (W,∆,∆Y ) ∼ P0, whereW is a vector
of 4 baseline covariates, and ∆ is an indicator of whether the continuous outcome, Y , is observed.
Kang and Schafer are interested in estimating the following parameter:

µ(P0) = E0(Y ) = E0(E0(Y | ∆ = 1,W )).

Let (Z1, . . . , Z4) be independent normally distributed random variables with mean zero and vari-
ance 1. The covariates W we actually observe are generated as follows:

W1 = exp(Z1/2)

W2 = Z2/(1 + exp(Z1)) + 10

W3 = (Z1Z3/25 + 0.6)3

W4 = (Z2 + Z4 + 20)2.

The outcome Y is generated as

Y = 210 + 27.4Z1 + 13.7Z2 + 13.7Z3 + 13.7Z4 +N(0, 1).

From this one can determine that the conditional mean Q̄0(W ) of Y , given W , which equals the
same linear regression inZ1(W ), . . . , Z4(W ), whereZj(W ), j = 1, . . . , 4, are the unique solutions
of the 4 equations above in terms ofW = (W1, . . . ,W4). Thus, if the data analyst would have been
provided the functions Zj(W ), then the true regression function is linear in these functions, but the
data analyst is measuring the terms Wj instead. The other complication of the data generating
distribution is that Y is subject to missingness, and the true censoring mechanism, denoted by
g0(1 | W ) ≡ P0(∆ = 1 | W ), is given by:

g0(1 | W ) = expit(−Z1(W ) + 0.5Z2(W )− 0.25Z3(W )− 0.1Z4(W )).
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Figure 5.1: Sampling distribution of (µn − µ0) with no bounding of gn, Kang and Schafer
simulation.

With this data generating mechanism, the average response rate is 0.50. Also, the true population
mean is 210, while the mean among respondents is 200. These values indicate a small selection
bias.

In these simulations, a linear main term model in the main terms (W1, . . . ,W4) for either the
outcome-regression or missingness mechanism is misspecified, while a linear main term model in
the main terms (Z1(W ), . . . , Z4(W )) would be correctly specified. Note that in the KS simulation,
there are finite sample violations of the positivity assumption. Specifically, we find g0(∆ = 1 |
W ) ∈ [0.01, 0.98] and the estimated missingness probabilities gn(∆ = 1 | W ) were observed to
fall in the range [4× 10−6, 0.97].

Figure 5.1 and Table 5.1 present the simulation results without any bounding of gn. Tan’s esti-
mator imposes internal bounds on the estimated missingness mechanism, however we report per-
formance of TanWLS and TanRV estimators when given an initial estimate gn that is not bounded
away from 0. All estimators have similar performance when Q̄0

n is correctly specified. When both
models are misspecified Cao’s estimator performs as well as OLS. OLS, CAO and C-TMLEY*
are the least biased, and TanRV has the smallest MSE. The performance of all other estimators
degrades under dual misspecification. Arguably, the most interesting test case for all estimators
(given that they are all enforced to use parametric models) is Qmgc. TanWLS, TanRV, C-TMLEY*,
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WLS have the smallest MSE, and TanRV, TanWLS are least biased. The superior performance
of both Tan estimators can in part be attributed to their internal bounding of gn.

Figure 5.2 and Table 5.2 compare the results for each estimator when gn is bounded from
below at 0.025. Bounding gn appears to be crucial for PRC and TMLE in the case of Qmgm, and
improves the performance of Cao’s estimator for the Qmgc specification, but has little effect on
the performance of the other estimators. However, this result does not generalize to other data
generating distributions, where the selection bias is greater and sparsity is more extreme, as the
next simulation demonstrates.
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Figure 5.2: Sampling distribution of (µn − µ0) with gn bounded at 0.025, Modification 1 of Kang
and Schafer simulation.

Modification 1 of Kang and Schafer Simulation

In the KS simulation, when Q̄0 or g0 are misspecified the misspecifications are small, and the
selection bias is small. Therefore, we modified the KS simulation in order to increase the degree
of misspecification and selection bias. This creates a greater challenge for estimators, and better
highlights their relative performance.

As before, let Zj be i.i.d. N(0, 1). The outcome Y is generated as Y = 210 + 50Z1 + 25Z2 +
25Z3 + 25Z4 +N(0, 1). The covariates actually observed by the data analyst are now given by the
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following functions of (Z1, . . . , Z4):

W1 = exp(Z2
1/2)

W2 = 0.5Z2/(1 + exp(Z2
1)) + 3

W3 = (Z2
1Z3/25 + 0.6)3 + 2

W4 = (Z2 + 0.6Z4)2 + 2.

From this one can determine the true regression function Q̄0(W ) = E0(E(Y | Z) | W ). The
missingness indicator is generated as follows:

g0(1 | W ) = expit(−2Z1 + Z2 − 0.5Z3 − 0.2Z4).

A misspecified fit is now obtained by fitting a linear or logistic main term regression inW1, . . . ,W4,
while a correct fit is obtained by providing the user with the terms Z1, . . . , Z4, and fitting a linear or
logistic main term regression in Z1, . . . , Z4. With these modifications, the population mean is again
210, but the mean among respondents is 184.4. With these modifications, we have a higher degree
of practical violation of the positivity assumption: g0(∆ = 1 | W ) ∈ [1.1 × 10−5, 0.99] while the
estimated probabilities, gn(∆ = 1 | W ), were observed to fall in the range [2.2× 10−16, 0.87].

Table 5.3 present results for misspecified Q̄0
n without bounding gn, and with gn bounded at

0.025. Bounding dramatically reduces the variance of all estimators, except OLS, Tan.WLS and
Tan.RV, but recall that Tan estimators always internally bound gn away from 0. This improved
efficiency comes at the cost of a slight increase in bias for all estimators except PRC, TMLE,
and C-TMLE. The variance and MSE of C-TMLEY* is less than half of the other non-TMLE
estimators. These results also demonstrate the effect of implementing a logistic fluctuation for
TMLE and C-TMLE on bias and variance. TMLE is nearly twice as biased as TMLEY*, and
twice as variable. The slight increase in bias of C-TMLEY* relative to the bias of C-TMLE is
mitigated by the increase in efficiency. In contrast to the results on the previous simulation, Cao,
Tan.WLS, and Tan.RV exhibit a lack of robustness at this level of sparsity when forced to rely on
gn at misspecified Q̄0

n.

Modification 2 of Kang and Schafer Simulation

For this simulation, we made one additional change to Modification 1: we set the coefficient
in front of Z4 in the true regression of Y on Z equal to zero. Therefore, while Z4 is still as-
sociated with missingness, it is not associated with the outcome, and is thus not a confounder.
Given (W1, . . . ,W3), W4 is not associated with the outcome either, and therefore as misspecified
regression model of Q̄0(W ) we use a main term regression in (W1,W2,W3).

This modification to the KS simulation enables us to take the debate on the relative perfor-
mance of DR estimators one step further, by addressing a second key challenge of the estimators:
that they often include non-confounders in the censoring mechanism estimator. This unnecessary
inclusion could unnecessarily introduce positivity violations. Moreover, this unnecessary inclusion
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Table 5.3: Modification 1 of Kang and Schafer simulation, Q misspecified.
Qmgc Qmgm

lb on gn Bias Var MSE Bias Var MSE
OLS 0 −35.56 16.58 1.3e+3 −35.56 16.58 1.3e+3

0.025 −35.56 16.58 1.3e+3 −35.56 16.58 1.3e+3
WLS 0 −4.40 41.95 61.15 −34.67 15.95 1.2e+3

0.025 −5.52 31.62 61.93 −34.67 15.95 1.2e+3
A-IPCW 0 −1.83 1.9e+2 2.0e+2 −34.75 17.19 1.2e+3

0.025 −5.88 42.63 77.09 −34.75 17.19 1.2e+3
BHT 0 −3.04 64.63 73.59 −34.75 17.17 1.2e+3

0.025 −5.03 32.89 58.02 −34.75 17.17 1.2e+3
PRC 0 80.64 8.7e+3 1.5e+4 1.25e+11 1.74e+25 1.75e+25

0.025 9.27 2.2e+2 3.0e+2 -34.38 15.28 1.2e+3
Cao 0 −6.17 44.68 82.52 −35.57 16.58 1.3e+3

0.025 −24.25 21.79 6.1e+2 −35.50 17.87 1.3e+3
Tan.WLS 0 −3.59 24.29 37.07 −33.64 42.37 1.2e+3

0.025 −3.64 22.95 36.09 -33.49 50.00 1.2e+3
Tan.RV 0 5.22 93.77 1.2e+2 −34.69 63.16 1.3e+3

0.025 5.28 94.11 1.2e+2 −34.65 64.21 1.3e+3
TMLE 0 42.07 2.4e+3 4.2e+3 -5.4e+9 5.1e+22 5.1e+22

0.025 1.87 46.81 50.12 −34.75 16.93 1.2e+3
TMLEY* 0 −0.04 89.33 88.98 −33.74 6.48 1.1e+3

0.025 1.00 22.05 22.96 −33.74 6.48 1.1e+3
C-TMLE 0 4.93 89.20 1.1e+2 −34.08 6.29 1.2e+3

0.025 0.45 23.20 23.31 −34.10 6.58 1.2e+3
C-TMLEY* 0 −0.64 15.55 15.90 −34.26 6.66 1.2e+3

0.025 −1.50 11.96 14.17 −34.19 6.82 1.2e+3
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Figure 5.3: Sampling distribution of (µn − µ0) with gn bounded at 0.025, Modification 2 of Kang
and Schafer simulation.

can itself introduce substantial bias and inflated variance, sometimes referred to as Z-bias. If the
relationships between the variables are linear, the inclusion on non-confounders in the censoring
mechanism will always increase bias (Bhattacharya and Vogt, 2007; Wooldridge, 2009). In the
non-parametric case, the direction of the bias is less straightforward, but increasing bias is a real
possibility (Pearl, 2010). While this problem is not presented in the Kang and Schafer paper nor the
responses, it is highlighted in the literature, including Bhattacharya and Vogt (2007); Wooldridge
(2009) and Pearl (2010).

Figure 5.3 and Table 5.4 show that C-TMLE estimators have similar or superior performance
relative to estimating equation-based DR estimators when not all covariates are associated with
Y . As discussed earlier, the C-TMLE algorithm provides an innovative black-box approach for
estimating the censoring mechanism, preferring covariates that are associated with the outcome
and censoring, without “data-snooping.”
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Table 5.4: Modification 2 of Kang and Schafer simulation, Q misspecified.
Qmgc Qmgm

lb on gn Bias Var MSE Bias Var MSE
OLS 0 −34.25 15.24 1.2e+3 −34.25 15.24 1.2e+3

0.025 −34.25 15.24 1.2e+3 −34.25 15.24 1.2e+3
WLS 0 −3.64 39.52 52.61 −33.09 15.18 1.1e+3

0.025 −4.92 28.65 52.75 −33.09 15.18 1.1e+3
A-IPCW 0 −1.11 1.8e+ 2 1.8e+2 −33.14 16.47 1.1e+3

0.025 −5.39 39.01 67.89 −33.14 16.47 1.1e+3
BHT 0 −2.27 72.06 76.91 −33.14 16.43 1.1e+3

0.025 −4.57 29.73 50.49 −33.14 16.43 1.1e+3
PRC 0 77.78 7.7e+3 1.4e+4 5.4e+11 4.5e+25 4.5e+25

0.025 9.11 2.0e+2 2.8e+2 −32.79 14.13 1.1e+3
Cao 0 −5.55 40.60 71.21 −34.25 15.25 1.2e+3

0.025 −23.37 20.54 5.7e+2 −34.16 16.48 1.2e+3
Tan.WLS 0 −2.95 23.74 32.32 −32.02 49.66 1.1e+3

0.025 −3.11 23.32 32.91 −32.02 43.37 1.1e+3
Tan.RV 0 6.87 65.77 1.1e+2 −32.95 89.67 1.2e+3

0.025 6.94 65.02 1.1e+2 −32.87 71.78 1.2e+3
TMLE 0 41.04 2.1e+3 3.8e+3 1.5e+10 9.5e+22 9.5e+22

0.025 2.13 41.48 45.84 −33.02 16.10 1.1e+3
TMLEY* 0 0.15 76.03 75.75 −31.99 5.64 1.0e+3

0.025 1.26 17.77 19.29 −32.00 5.60 1.0e+3
C-TMLE 0 4.60 65.60 86.47 −32.48 6.21 1.1e+3

0.025 0.72 19.79 20.23 −32.43 6.09 1.1e+3
C-TMLEY* 0 −0.88 10.69 11.42 −32.58 5.83 1.1e+3

0.025 −1.37 8.48 10.34 −32.68 8.48 1.1e+3
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Modification 3 of Kang and Schafer Simulation

In some rare cases, C-TMLEs can be a super efficient estimator because they use a collaborative
estimator gn that takes into account the fit of the initial estimator Q̄0

n (van der Laan and Gruber,
2009). As a consequence, it is of particular interest to investigate the behavior of C-TMLEs in
the previous simulation but with the coefficient in front of Z4 set equal to C/

√
n for a number

of values of C. We report the results for C ∈ {10, 20, 50}. Table 5.5 provides the results for all
estimators when Q̄0

n is misspecified, gn bounded at 0.025 for each level of C. We note that neither
C-TMLE nor C-TMLEY* break down, even under these particularly challenging conditions.

Table 5.5: Modification 3 to Kang and Schafer simulation, C/
√
n perturbation, gn bounded at

0.025.

C = 10 C = 20 C = 50
Bias Var MSE Bias Var MSE Bias Var MSE

Qmgc
OLS −34.28 15.25 1.2e+3 −34.29 15.25 1.2e+3 −34.34 15.24 1.2e+3
WLS −5.13 28.24 54.44 −5.13 28.25 54.50 −5.15 28.28 54.68
A-IPCW −5.47 38.63 68.38 −5.47 38.64 68.45 −5.49 38.69 68.67
BHT −4.62 29.60 50.85 −4.63 29.61 50.90 −4.64 29.63 51.08
PRC 9.21 2.0e+2 2.8e+2 9.21 2.0e+2 2.8e+2 9.21 2.0e+2 2.8e+2
Cao −23.42 20.47 5.7e+2 −23.43 20.47 5.7e+2 −23.46 20.48 5.7e+2
Tan.WLS −3.25 21.00 31.45 −3.25 20.94 31.42 −3.26 20.78 31.35
Tan.RV 6.94 64.90 112.84 6.93 65.23 1.1e+2 6.88 66.37 1.1e+2
TMLE 2.05 41.84 45.85 2.04 41.85 45.86 2.04 41.91 45.89
TMLEY* 1.17 18.03 19.34 1.17 18.02 19.32 1.16 18.02 19.29
C-TMLE 0.51 20.18 20.35 0.40 20.54 20.61 0.39 20.74 20.81
C-TMLEY* −1.63 8.01 10.64 −1.66 8.49 11.21 −1.68 8.83 11.63

Qmgm
OLS −34.28 15.25 1.2e+3 −34.29 15.25 1.2e+3 −34.34 15.24 1.2e+3
WLS −33.00 14.79 1.1e+3 −33.03 14.79 1.1e+3 −33.09 14.78 1.1e+3
A-IPCW −33.05 16.39 1.1e+3 −33.07 16.38 1.1e+3 −33.13 16.35 1.1e+3
BHT −33.05 16.36 1.1e+3 −33.07 16.35 1.1e+3 −33.13 16.32 1.1e+3
PRC −32.39 14.45 1.1e+3 −32.42 14.44 1.1e+3 −32.49 14.40 1.1e+3
Cao −34.18 16.50 1.2e+3 −34.20 16.49 1.2e+3 −34.25 16.48 1.2e+3
Tan.WLS −32.76 73.05 1.1e+3 −32.72 76.88 1.1e+3 −32.75 76.83 1.1e+3
Tan.RV −33.29 71.11 1.2e+3 −33.13 55.13 1.2e+3 −33.17 62.77 1.2e+3
TMLE −33.05 16.06 1.1e+3 −33.07 16.05 1.1e+3 −33.14 16.03 1.1e+3
TMLEY* −32.03 5.57 1.0e+3 −32.05 5.56 1.0e+3 −32.12 5.54 1.0e+3
C-TMLE −32.41 5.75 1.1e+3 −32.45 5.64 1.1e+3 −32.59 6.08 1.1e+3
C-TMLEY* −32.64 5.82 1.1e+3 −32.74 5.94 1.1e+3 −32.75 6.22 1.1e+3
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5.2.5 TMLEs with Machine Learning for Dual Misspecification
The KS simulation with dual misspecification (Qmgm) can illustrate the benefits of coupling

data-adaptive (super) learning with TMLE. The C-TMLE (C-TMLEY∗) constrained to use a main
terms regression model with misspecified covariates (W1,W2,W3,W4) has smaller variance than
µn,OLS , but is more biased. The MSE of the TMLE fluctuated on the logit scale (TMLEY∗) is
larger than the MSE of C-TMLEY∗, with increased bias and variance. We ask how the estimation
process would be affected if we assume that models are seldom correctly specified and that main
term regression techniques generally fail in capturing the true relationships between predictors and
an outcome. Our answer is to incorporate data-adaptive machine learning.

We coupled super learning with TMLE and C-TMLE to estimate both Q̄0 and g0. For C-
TMLEY*, four missingness-mechanism score-based covariates were created based on different
truncation levels of the propensity score estimate gn(1 | W ): no truncation, and truncation from
below at the 0.01, 0.025, and 0.05-percentile. These four scores were supplied along with the mis-
specified main terms W1, . . . ,W4 to the targeted forward selection algorithm in the C-TMLEY*
used to build a series of candidate nested logistic regression estimators of the missingness mecha-
nism and corresponding candidate TMLEs. The C-TMLEY* algorithm used 5-fold cross-validation
to select the best estimate from the eight candidate TMLEs. This allows the C-TMLE algorithm
to build a logistic regression fit of g0 that selects among the misspecified main-terms and super-
learning fits of the missingness mechanism score gn(1 | W ) at different truncation levels.

An important aspect of super learning is to ensure that the library of prediction algorithms in-
cludes a variety of approaches for fitting the true function Q̄0 and g0. For example, it is sensible
to include a main terms regression algorithm in the super learner library. Should that algorithm
happen to be correct, the super learner will behave as the main terms regression algorithm. It is
also recommended to include algorithms that search over a space of higher order polynomials,
non-linear models, and, for example, cubic splines. For binary outcome regression, as required
for fitting g0, classification algorithms such as classification and regression trees (Breiman et al.,
1984), support vector machines (Cortes and Vapnik, 1995)), and k-nearest-neighbor algorithms
(Friedman (1994)), could be added to the library. The point of super-learning is that we cannot
know in advance which procedure will be most successful for a given prediction problem. Super
learning relies on the oracle property of V-fold cross-validation to asymptotically select the opti-
mal convex combination of estimates obtained from these disparate procedures (van der Laan and
Dudoit (2003); van der Laan et al. (2004), van der Laan et al. (2007)).

Consider the misspecified scenario proposed by KS. The true full-data distribution and the
missingness mechanism are captured by main terms linear regression of the outcome on Z1, Z2, Z3,
Z4. This simple model is virtually impossible to discover through the usual model selection
approaches when the observed data consists of misspecified covariates O = (W1,W2,W3,W4,
∆,∆Y ), given
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Z1 = 2log(W1),

Z2 = (W2 − 10)(1 + 2W1),

Z3 =
25(W3 − 0.6)

2log(W1)
,

Z4 = 3
√
W4 − 20− (W2 − 10)(1 + 2W1).

This complexity illustrates the importance of including prediction algorithms that attack the esti-
mation problem from a variety of directions. The super learner library we employed contained the
algorithms listed below. The analysis was carried out in the R statistical programming environ-
ment v2.10.1 (Team, 2010), using algorithms included in the base installation or in the indicated
package.

• glm (base) main terms linear regression.

• step (base) stepwise forward and backward selection using the AIC criterion (Hastie and
Pregibon, 1992).

• ipredbagg (ipred) bagging for classification, regression and survival trees (Peters and Hothorn,
2009; Breiman, 1996).

• DSA (DSA) Deletion/Selection/Addition algorithm for searching over a space of polynomial
models or order k (k set to 2). (Neugebauer and Bullard, 2010; Sinisi and van der Laan,
2004)

• earth (earth) Building a regression model using multivariate adaptive regression splines
(MARS) (Milborrow, 2009; Friedman, 1991, 1993).

• loess (stats) Local polynomial regression fitting (W. S. Cleveland and Shyu, 1992).

• nnet (nnet) Single-hidden-layer neural network for classification (Venables and Ripley, 2002b;
Ripley, 1996).

• svm (e1071) Support vector machine for regression and classification (Dimitriadou et al.,
2010; Chang and Lin, 2001).

• k-nearest-neighbors∗ (class) classification using most common outcome among identified
k nearest nodes (k set to 10) (Venables and Ripley, 2002a; Friedman, 1994)

∗ only for binary outcomes, added to library for estimating g
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Results

Table 5.6 reports the results when super learning is incorporated into TMLEY* and C-TMLEY*
estimation procedures, based on 250 samples of size 1000, with predicted values for gn(1 | W )
truncated from below at 0.025. Using the data-adaptive estimator approach improved bias and
variance of both estimators. TMLEY* efficiency improved by a factor of 8.5, and C-TMLEY*
efficiency improved by a factor of 1.5 In addition, the MSE for both data-adaptive estimators is
smaller than the MSE of the estimator that performed the best when both Q and g were misspeci-
fied, µn,OLS (MSE = 2.82).

Table 5.6: Results with and without incorporating super learning into TMLE and C-TMLE,
Qmgm,
gn truncated at 0.025.

Bias Var MSE

TMLEY* -4.12 3.10 20.0
TMLEY* + SL -0.77 1.51 2.10
C-TMLEY* -1.37 2.30 4.16
C-TMLEY* + SL -1.05 1.54 2.64

5.2.6 Discussion
By mapping continuous outcomes into [0,1] and using a logistic fluctuation, we show that the

TMLEs (both TMLEY* and C-TMLEY*) are more robust to violations of the positivity assump-
tion than the TMLEs using the linear fluctuation function. By being a substitution estimator, it
follows that the impact of a single observation on TMLEY* is bounded by 1/n while many of the
other estimators do not have such a robustness property. We also show that C-TMLEs have su-
perior performance relative to estimating equation-based DR estimators when there are covariates
that are strongly associated with the missingness indicator, while weakly or not associated with the
outcome Y . The C-TMLE algorithm provides an innovative approach for estimating the censor-
ing mechanism, preferring covariates that are associated with the outcome Y and missingness, ∆.
C-TMLEs avoid data snooping concerns because the estimation procedure is fully specified before
the analyst observes any data (or at least, not any data beyond some ancillary statistics). Even in
cases in which all observed covariates are associated with Y , C-TMLEs still perform well.

Related work is also being done with respect to other parameters of interest. Both Cao et al.
(2009) and Tan (2006) include discussions on applying their estimators to causal effect parameters.
In addition, Freedman and Berk (2008), focus on a causal effect parameter, and demonstrate that
DR estimators (and the WLS estimator in particular) can increase variance and bias when IPCW
are large, as is discussed in the next section.
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Overall, comparisons of estimators, beyond theoretical studies of asymptotics as well as robust-
ness, will need to be based on large scale simulation studies, including all available estimators, and
cannot be tailored towards one particular simulation setting. Future research should be concerned
with setting up such a large scale objective comparison based on publicly available software, and
we are looking forward to contribute to such an effort.

The research underlying TMLEs was motivated, in part, by the goal of increasing the stability
of DR estimators, and the KS simulations provide a demonstration of the merits of TMLEs under
violations of the positivity assumption. TMLEs are estimators defined by the choice of loss func-
tion, and parametric submodel, both chosen so that the linear span of the scores at zero fluctuation
w.r.t. the loss function includes the efficient influence curve/efficient score. All such TMLEs are
double robust, asymptotically efficient under correct specification, and substitution estimators, but
the choice of loss function and submodel can affect the finite sample robustness, as observed in
the current simulations. In addition, TMLEs can be combined with super learning and empirical
efficiency maximization (Rubin and van der Laan (2008) and van der Laan and Gruber (2009)) to
further enhance their performance in practice. We hope that by showing that these estimators per-
form well in simulations and settings created by other researchers, for the purposes of showing the
weaknesses of DR estimators, as well as in modified simulations that make estimation even more
challenging, we provide probative evidence in support of TMLEs. Of course, much can happen
in finite samples, and we look forward to further exploring how these estimators perform in other
settings.

5.3 Freedman and Berk Simulations
We have seen that sparse data poses a challenge to efficient unbiased estimation of statisti-

cal parameters. Estimates obtained from parametric regression procedures rely on model-based
extrapolation, and can be biased under model misspecification. Propensity score-based estimates
typically have high variance under sparsity due to large weights on rare observations. Efforts to
control the variance by using stabilized or truncated weights can introduce bias into the estimate.
The performance of double robust (DR) estimation procedures that do not respect known bounds
on the model is similarly impaired. TMLE and C-TMLE, DR methods that exploit this knowledge,
are more robust in situations where sparsity affects the identifiability of the parameter of interest.

Freedman and Berk (2008) (FB) compares weighted and unweighted regression approaches
to estimating coefficients in parametric causal models, with the intention of demonstrating that
in many situations propensity score weighting can increase bias and/or variance of the estimates
relative to unweighted regression, even when the true propensity score model is known. We ap-
ply targeted maximum likelihood estimation (TMLE), collaborative targeted maximum likelihood
estimation (C-TMLE), and and augmented IPTW (AIPTW) estimator, three DR estimators, to es-
timation problems proposed in FB, estimation of the marginal additive treatment effect of a binary
treatment on a continuous outcome.
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The additive treatment effect is defined non-parametrically as ψ0 = EW{E(Y |A = 1,W ) −
E(Y |A = 0,W )}, where n i.i.d. copies of O = (W,A, Y ) ∼ P0 is observed data, with outcome
Y , binary treatment assignment A, and covariates W . This parameter is numerically equal to the
coefficient in front of the treatment variable in a linear regression model where no terms involve
interactions with treatment.

FB simulation 1 presents weighted and unweighted linear regression results based on the cor-
rect model and two misspecified parametric models, using a data-generating distribution that vi-
olates the positivity assumption that the conditional probability of treatment given the covariates
is bounded away from 0 and 1. Actual treatment assignment probabilities are between (0.03 and
0.99995). We first formally define each estimator, then present results from applying each esti-
mator to FB simulation 1, and additional results using modified data-generating distributions that
provide insight into estimator performance.

5.3.1 FB Simulations
Three data-generating distributions are defined. For each one, 250 samples of size n = 1000

are drawn from the given data generating distribution. A propensity score g0(A | W ) is estimated
using the correct probit model for treatment. The correct linear regression model for the outcome
and two increasingly misspecified models are defined as

correct model: Y ∼ A+W1 +W2,

misspecified model 1: Y ∼ A+W1,

misspecified model 2: Y ∼ A.

Estimates of the marginal additive treatment effect are obtained based on each of these parametric
models paired with gn(A | W ), a maximum likelihood estimator according to a correct parametric
model for g0.

Data generation

Simulation 1 replicates FB simulation 1. Both covariates, W1 and W2, confound the relationship
between treatment and the outcome, so we expect OLS to be biased when the regression
model for Q is misspecified. Incorporating estimated propensity scores should allow the
remaining estimators to be unbiased, at the cost of higher variance.

Y = a+ bX + c1W1 + c2W2 + U, U ∼ N(0, 1),

g0,1 = P (A = 1 | W ) = Φ(e+ f1W1 + f2W2),

(W1,W2) is bivariate normal, N(µ,Σ),withµ1 = 0.5, µ2 = 1, Σ =

[
2 1
1 1

]
,
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with a = b = c1 = d = 1, c2 = 2, e = 0.5, f1 = 0.25, f2 = 0.75. Φ is the CDF of the
standard normal distribution, thus the treatment mechanism conforms to a probit model.

These settings for d, f1, and f2 lead to practical violations of the positivity assumption, also
known as the experimental treatment assignment (ETA) assumption, that the probability of
receiving treatment at all levels given baseline covariates is bounded away from 0 and 1.
Conditional treatment probabilities g(1,W ) = P (A = 1|W ) range from .03 to 0.99995.

Simulation 2 allows us to examine the effect of including a covariate in the treatment mechanism
model that is predictive of treatment but not of the outcome. The only difference between
simulation 1 and simulation 2 is the treatment assignment mechanism.

g0,2 = P (A = 1 | W ) = Φ(e+ f1W1 + f2W2 + f3W3).

W3 ∼ N(0, 1), e = 0.15, f1 = .075, f2 = .225, f3 = −0.9. Both W1 and W2 are less
predictive of treatment than in simulation 1. W3 is a strong predictor of treatment, but
not associated with the outcome. This treatment assignment mechanism lead to sparsity.
The true conditional probability of receiving treatment is between (0.004 and 0.99995). We
expect the C-TMLE estimator to give strong preference to covariates W1,W2 when building
the candidate treatment mechanism estimators, and because of a tendency to exclude W3

from the model for gn have smaller variance in the parameter estimates across all samples.

Simulation 3 demonstrates that weighting can introduce bias in the estimate of the additive treat-
ment effect under sparsity, even when the the correct propensity score model is known. In
this simulation,P (A = 1 | W ) is between (0.0003 and 0.9997). The linear form of the re-
lationships between the covariates and the outcome is unchanged, but the strengths of those
relationships are altered to weaken the association between W1 and W2, and between W2

and A, but strengthen the relationships between W1 and Y and W2 and Y . As in simulation
2, W3 is associated with A, but not with the outcome Y .

Y = a+ bA+ c1W1 + c2W2 + U, U ∼ N(0, 1),

P (A = 1 | W ) = Φ(f1W1 + f2W2 + f3W3),

(W1,W2) is bivariate normal, N(µ,Σ),with µ1 = 0.5, µ2 = 1, Σ =

[
2 0.1

0.1 1

]
,

with a = b = d = 1, c1 = 5, c2 = 10, f1 = 0.25, f2 = 0.001, f3 = 1.

5.4 Results
OLS, WLS, AIPTW, TMLE, and C-TMLE estimators were applied to each simulated dataset.

Two sets of C-TMLE results were obtained. For the first, labeled C-TMLE in Tables 5.7- 5.9, the
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covariate set W used to create the series of treatment mechanism estimators is restricted to main
term covariates. In the second set, labeled C-TMLE(augW),W is augmented with four terms corre-
sponding to the propensity score estimate supplied to all other estimators and truncated propensity
scores, truncated at level (p, 1− p), with p set to (0.1, 0.25, 0.5).

In all simulations, when the model for Q is correctly specified OLS, the unweighted paramet-
ric estimator, has the smallest MSE, but when Q is misspecified all other estimators out-perform
OLS with respect to both MSE and bias. Simulation 1 results suggest that TMLE and C-TMLE
are more robust than WLS and AIPTW to sparsity. C-TMLE results in Simulation 2 demonstrate
that performance improves under sparsity by using a procedure that estimates only the necessary
portion of the treatment mechanism. C-TMLE’s MSE and variance are superior to the other esti-
mators that incorporate propensity score estimates. Under extreme misspecification (misspecified
model 2) bias is almost entirely removed. In simulation 3 augmenting the covariate set improves
performance of the C-TMLE estimator. Augmentation confers the greatest benefit when Q is most
severely misspecified.

5.4.1 Discussion
FB cautions against blindly relying on weights to remove bias due to possible model misspec-

ification. Results presented here indicate that even under extreme sparsity in the data, intelligently
incorporating weights in double robust estimation procedures does little harm when the model is
correctly specified, and can greatly reduce bias and MSE in the more common situations when
the model is misspecified. In addition to being a double robust substitution estimator that respects
global constraints C-TMLE’s internal collaborative estimation of g proved especially robust in this
setting.

Domain knowledge can be incorporated into both stages of the TMLE and C-TMLE estimation
procedures. One example is the use of the augmented covariate set when the true treatment assign-
ment mechanism is known. The strength of this approach is most clearly illustrated in simulation
3 with Q modeled as Qmis2, where the right thing to do is adjust for all covariates, yet that causes
strong ETA violations. In this case, the inclusion of truncated propensity scores in W offered a
more refined choice beyond simply including or excluding an entire covariate. These additional
terms can be helpful in situations where including a particular covariate causes an ETA violation,
but in fact, experimentation is lacking in only some portion of the covariate values.
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Table 5.7: Simulation 1.

gn unbounded gn bound = (0.025, 0.975)
Bias Var MSE RelMSE∗ Bias Var MSE RelMSE∗

Unadj 4.061 0.046 16.538 4.061 0.046 16.538

Correct Model
OLS 0.010 0.009 0.010 1.000 0.010 0.009 0.010 1.000
WLS 0.012 0.039 0.039 4.144 0.016 0.024 0.024 2.526
AIPTW 0.019 0.058 0.059 6.153 0.014 0.017 0.017 1.766
TMLE 0.190 0.475 0.509 53.460 0.019 0.027 0.027 2.834
C-TMLE 0.004 0.014 0.014 1.449 0.013 0.013 0.013 1.410
C-TMLE (augW) 0.011 0.010 0.010 1.092 0.014 0.014 0.014 1.501

Misspecified Model 1
OLS 1.138 0.020 1.314 1.000 1.138 0.020 1.314 1.000
WLS 0.133 0.115 0.133 0.101 0.295 0.040 0.127 0.096
AIPTW 0.120 0.344 0.357 0.272 0.433 0.033 0.220 0.167
TMLE −0.588 0.380 0.724 0.551 −0.001 0.048 0.048 0.037
C-TMLE 0.262 1.516 1.579 1.202 −0.412 0.098 0.267 0.203
C-TMLE (augW) −0.242 1.068 1.122 0.854 −0.077 0.054 0.060 0.046

Misspecified Model 2
OLS 4.061 0.046 16.538 1.000 4.061 0.046 16.538 1.000
WLS 0.431 0.660 0.843 0.051 1.070 0.091 1.234 0.075
AIPTW 0.381 3.039 3.172 0.192 1.507 0.130 2.402 0.145
TMLE −0.451 1.392 1.590 0.096 −0.132 0.120 0.137 0.008
C-TMLE 1.885 5.358 8.889 0.537 0.456 0.276 0.482 0.029
C-TMLE (augW) −0.046 0.158 0.160 0.010 0.011 0.063 0.063 0.004

*relative to OLS estimator using the same model specification
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Table 5.8: Simulation 2.

gn unbounded gn bound = (0.025, 0.975)
Bias Var MSE RelMSE∗ Bias Var MSE RelMSE∗

Unadj 1.136 0.043 1.333 1.136 0.043 1.333

Correct Model
OLS 0.001 0.004 0.004 1.000 0.001 0.004 0.004 1.000
WLS 0.004 0.012 0.012 2.921 0.003 0.008 0.008 1.977
AIPTW 0.005 0.016 0.016 3.810 0.003 0.008 0.008 1.962
TMLE 0.015 0.022 0.022 5.394 0.004 0.009 0.009 2.250
C-TMLE 0.000 0.004 0.004 1.068 0.001 0.004 0.004 1.056
C-TMLE (augW) 0.002 0.005 0.005 1.155 0.001 0.005 0.005 1.211

Misspecified Model 1
OLS 0.275 0.010 0.086 1.000 0.275 0.010 0.086 1.000
WLS −0.005 0.030 0.030 0.349 0.016 0.012 0.013 0.147
AIPTW −0.009 0.041 0.041 0.476 0.020 0.012 0.013 0.149
TMLE −0.102 0.035 0.045 0.529 −0.020 0.014 0.015 0.172
C-TMLE −0.007 0.008 0.008 0.091 −0.013 0.008 0.008 0.090
C-TMLE (augW) −0.017 0.008 0.008 0.094 −0.018 0.007 0.008 0.088

Misspecified Model 2
OLS 1.136 0.043 1.333 1.000 1.136 0.043 1.333 1.000
WLS 0.003 0.090 0.090 0.067 0.076 0.031 0.037 0.027
AIPTW −0.012 0.143 0.142 0.107 0.094 0.033 0.042 0.031
TMLE −0.147 0.137 0.158 0.119 −0.074 0.041 0.046 0.034
C-TMLE −0.001 0.005 0.005 0.004 −0.001 0.005 0.005 0.004
C-TMLE (augW) 0.008 0.010 0.010 0.007 0.009 0.009 0.009 0.007

*relative to OLS estimator using the same model specification
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Table 5.9: Simulation 3.

gn unbounded gn bound = (0.025, 0.975)
Bias Var MSE RelMSE∗ Bias Var MSE RelMSE∗

Unadj 3.022 0.688 9.816 3.022 0.688 9.816

Correct Model
OLS 0.002 0.004 0.004 1.000 0.002 0.004 0.004 1.000
WLS 0.002 0.012 0.012 3.175 0.004 0.009 0.009 2.476
AIPTW 0.004 0.018 0.018 4.694 0.004 0.009 0.009 2.470
TMLE 0.001 0.067 0.067 17.676 0.002 0.011 0.011 3.003
C-TMLE 0.002 0.004 0.004 0.991 0.002 0.004 0.004 0.989
C-TMLE (augW) 0.001 0.004 0.004 1.044 0.001 0.004 0.004 1.059

Misspecified Model 1
OLS 0.024 0.447 0.446 1.000 0.024 0.447 0.446 1.000
WLS −0.108 0.500 0.510 1.143 −0.037 0.223 0.224 0.501
AIPTW −0.144 0.830 0.847 1.898 −0.037 0.223 0.224 0.502
TMLE −0.127 1.077 1.089 2.440 −0.053 0.291 0.293 0.656
C-TMLE −0.077 0.050 0.056 0.125 −0.077 0.047 0.053 0.118
C-TMLE (augW) −0.091 0.042 0.050 0.112 −0.094 0.045 0.054 0.120

Misspecified Model 2
OLS 3.022 0.688 9.816 1.000 3.022 0.688 9.816 1.000
WLS −0.077 1.686 1.685 0.172 0.186 0.392 0.425 0.043
AIPTW −0.167 3.727 3.740 0.381 0.232 0.406 0.459 0.047
TMLE −0.940 1.357 2.235 0.228 −0.294 0.555 0.639 0.065
C-TMLE 0.002 0.073 0.073 0.007 −0.005 0.021 0.021 0.002
C-TMLE (augW) −0.049 0.073 0.075 0.008 −0.033 0.045 0.046 0.005

*relative to OLS estimator using the same model specification
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Chapter 6

An Application of Targeted Maximum
Likelihood Estimation to the Meta-Analysis
of Safety Data

6.1 Introduction
Safety analysis poses a challenging statistical problem because a study that is powered for es-

timating the effect of treatment on an efficacy outcome, is typically under-powered with respect
to estimating the effect of treatment on rare adverse events. In addition, the follow-up period for
collecting safety data may extend beyond the primary endpoint, thus safety data are increasingly
subject to censoring. An estimator that does not account for informative censoring will be biased,
and in addition, even when censoring is non-informative, sacrifices efficiency. This chapter com-
pares the performance of TMLE with that of several other estimators in the meta-analysis of real
and simulated data.

Multi-center phase three randomized controlled trials (RCT) were conducted to study the ef-
fectiveness of a new antibiotic for a range of conditions with the potential to severely compromise
the health of the patient. Four different comparator drugs were used in the trials’ control arms,
corresponding to four distinct indications for treatment among the trials. Though RCTs are de-
signed to investigate the treatment effect on some primary outcome, the effect on the occurrence
of adverse events is often also of interest. Several estimation methodologies described below were
used to analyze safety data from seven RCTs to estimate the effect of treatment with the study drug
versus a comparator drug on subsequent mortality.

Each study is summarized in Table 6.1. The raw numbers in the table indicate that with the
exception of study 5 (indication C), in each study there were more deaths in the treatment arm than
in the control arm. Overall, 4.0% of subjects given the study drug died, as compared to 3.2% of
subjects randomized to a comparator drug. Estimates of risk differences (RD), risk ratios (RR),
and odds ratios (OR) stratified by the indication for treatment were obtained. Additional pooled
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Table 6.1: Summary of subjects in each study.

Indication Study Number of subjects Number of deaths

Treatment Control Treatment Control Total

A 1 295 288 4 1 5
2 275 271 1 0 1

B 3 417 416 16 10 26
4 409 415 5 3 8

C 5 212 213 4 4 8
6 220 214 6 4 10

D 7 473 471 55 52 107

parameter estimates were calculated as a weighted combination of the indication-specific effects.
Although each study is an RCT, because there is variation in the indication for treatment and

the comparator drug, the treatment effect is likely to be heterogeneous. In addition, because differ-
ences in study populations might confound the effect of treatment on mortality when studies are
combined, an unadjusted estimate has the potential to be biased. Targeted maximum likelihood
estimation (TMLE), a methodology designed to exploit covariate information to reduce bias, was
therefore applied to estimate the stratified and pooled effect of the study drug on mortality (van der
Laan and Rubin, 2006a; van der Laan et al., 2009). TMLE results are compared with those of other
causal effect estimators in the literature, the inverse-probability-of-treatment-weighted estimator
(IPTW) (Hernan et al. (2000b), Robins (2000b)), the maximum likelihood based G-computation
estimator (Gcomp) (Robins, 1986), and the augmented IPTW estimator (AIPTW) (Robins and Rot-
nitzky (2001); Robins et al. (2000); Robins (2000a)). These estimators are defined in Section 6.2.

Section 6.3 describes the meta-analysis of the RCT data. Estimates and 95% confidence in-
tervals obtained for each estimator are quite similar to the unadjusted regression of mortality on
treatment. Confidence intervals for all stratified parameter estimates include the null value. The
95% confidence interval for the pooled estimate of the risk difference just barely excludes the null.
Agreement between the naive unadjusted estimator and the more sophisticated estimation proce-
dures does not mean that the use of a sophisticated estimation procedure was unwarranted. On
the contrary, the only assurance we have that the unadjusted estimate is not biased is that more
advanced procedures confirm the results of the naive approach. This implies that estimators that
perform equally well in both the presence or absence of confounding should be used routinely.

A simulation study was designed to illustrate the relative performance of each estimator when
there is missingness in the outcome, (Section 6.4). Missing outcome data is not unusual when
adverse events are self-reported, and/or compiled from post-followup or post-market data. When
not adequately addressed, this reporting bias might lead to either false acceptance or false rejection
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of the null hypothesis of no treatment effect. Simulation results indicate that efficient double-
robust estimators (AIPTW and TMLE) work well in a variety of settings, with TMLE having the
additional property that estimates are guaranteed to remain within the parameter space.

6.2 Statistical Methods
The dataset contains observations from seven studies involving K = 4 unique indications for

treatment. Consider the data for indication k as nk i.i.d. copies of Ok = (Wk, Ak, Yk) ∼ P0,k,
where Wk is a vector of baseline covariate information, Ak is a binary treatment indicator variable,
(Ak = 1 for treatment, Ak = 0, for control), and Yk is a binary outcome variable set to 1 if
mortality occurs.

Observations O1,k, ..., Onk can be viewed as realizations of random variables sampled from an
underlying data generating distribution, P0,k. P0,k factorizes into (Q0,k, g0,k), whereQ0,k is the true
conditional distribution of outcome Yk given Ak and Wk, and the marginal distribution of covariate
W . g0,k is the treatment assignment mechanism, the conditional probability that Ak = 1 given
Wk. In this analysis of RCT data treatment assignment probabilities are known to be 0.5 for all
subjects. Though the true g0,k is known, efficiency may be improved when this is estimated from
the data (van der Laan and Robins, 2003). Q0,k is unknown, and therefore must be estimated from
the data.

A comparison of the effect of the study drug on subsequent mortality versus a comparator
drug can be quantified as a parameter of P0,k. Let µ1,k = EWk

(E(Yk | Ak = 1,Wk) and µ0,k =
EWk

(E(Yk | Ak = 0,Wk), then the indication-specific marginal risk difference, risk ratio, and
odds ratio parameters are defined non-parametrically as:

ψRD0,k = µ1,k − µ0,k

ψRR0,k =
µ1,k

µ0,k

ψOR0,k =
µ1,k/(1− µ1,k)

µ0,k/(1− µ0,k)
.

Note that these parameters are functions of only the Q portion of the likelihood, and in fact, aside
from the marginal distribution of W , only require knowledge of the conditional mean of Y given
(A,W ), not the entire density.

Five estimation procedures were applied to estimate the stratified and pooled RD, RR, and OR:
unadjusted estimation, inverse-probability-of-treatment-weighted (IPTW) estimation, augmented
IPTW estimation (AIPTW), maximum likelihood G-computation (Gcomp), and targeted maxi-
mum likelihood estimation (TMLE). One (stratified) analysis was carried out for each subset of
observations having the same indication for treatment.

In the following descriptions ψn denotes a parameter estimate, Q̄n(A,W ) corresponds to an
estimate of the regression of Y on treatment assignment A and baseline covariates, W . Indexing
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by indication k is suppressed in the notation. Q̄∗n(A,W ) is a targeted estimate of the conditional
mean, an update of an initial Q̄0

n(A,W ) designed to reduce bias in the estimate of the parameter of
interest, as described more fully below. A = 1 for subjects in the treatment group, A = 0 indicates
the subject is in the control group, n is the number of observations.

unadj: The unadjusted estimates are functions of the mean mortality in treatment and control
arms. The unadjusted estimators for the RD, RR, and OR are given by,

ψRDn,unadj = µ1,unadj − µ0,unadj

ψRRnunadj =
µ1,unadj

µ0,unadj

ψORn,unadj =
µ1,unadj/(1− µ1,unadj)

µ0,unadj/(1− µ0,unadj)

where

µ1,unadj =

∑n
i=1 I(Ai = 1)Yi∑n
i=1 I(Ai = 1)

µ0,unadj =

∑n
i=1 I(Ai = 0)Yi∑n
i=1 I(Ai = 0)

.

When there is no informative missingness and treatment is randomized, this estimator is
unbiased.

IPTW: The inverse-probability-of-treament-weighted estimator was calculated as a weighted
linear regression of outcome, Y , on treatment indicator, A. The weight for each observa-
tion was set to the inverse of the marginal probability of receiving the observed treatment
assignment. The IPTW estimators are given by,

ψRDn,IPTW = µ1,IPTW − µ0,IPTW

ψRRn,IPTW =
µ1,IPTW

µ0,IPTW

ψORn,IPTW =
µ1,IPTW/(1− µ1,IPTW )

µ0,IPTW/(1− µ0,IPTW )

where

µ1,IPTW =
n∑
i=1

I(Ai = 1)Yi
gn(1 | Wi)

µ0,IPTW =
n∑
i=1

I(Ai = 0)Yi
gn(0 | Wi)

.

The IPTW estimator is consistent when g0 is estimated correctly, however it is an ineffi-
cient estimator, yielding estimates with wider confidence intervals than those based on more
efficient approaches.
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AIPTW: The double-robust augmented IPTW estimator incorporates estimates of both the re-
gression of Y on A,W and the propensity score.

ψRDn,AIPTW = µ1,AIPTW − µ0,AIPTW

ψRRn,AIPTW =
µ1,AIPTW

µ0,AIPTW

ψORn,AIPTW =
µ1,AIPTW/(1− µ1,AIPTW )

µ0,AIPTW/(1− µ0,AIPTW )

where

µ1,AIPTW =
1

n

n∑
i=1

(
I(Ai = 1)(Yi − Q̄n(1,Wi))

gn(1 | Wi)
+ Q̄n(1,Wi)

)
µ0,AIPTW =

1

n

n∑
i=1

(
I(Ai = 0)(Yi − Q̄n(0,Wi))

gn(0 | Wi)
+ Q̄n(0,Wi)

)
.

Gcomp: G-computation estimates of the risk difference parameter are consistent when Q̄n

provides a consistent estimate of the conditional mean of Y given A and W .

ψRDn,Gcomp = µ1,Gcomp − µ0,Gcomp

ψRRn,Gcomp =
µ1,Gcomp

µ0,Gcomp

ψORn,Gcomp =
µ1,Gcomp/(1− µ1,Gcomp)

µ0,Gcomp/(1− µ0,Gcomp)

where

µ1,Gcomp =
1

n

n∑
i=1

Q̄n(1,Wi)

µ0,Gcomp =
1

n

n∑
i=1

Q̄n(0,Wi).

TMLE: The targeted maximum likelihood estimator is a double-robust substitution estimator.

ψRDn,TMLE = µ1,TMLE − µ0,TMLE

ψRRn,TMLE =
µ1,TMLE

µ0,TMLE

ψORn,TMLE =
µ1,TMLE/(1− µ1,TMLE)

µ0,TMLE/(1− µ0,TMLE)
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where

µ1,TMLE =
1

n

n∑
i=1

Q̄∗n(1,Wi)

µ0,TMLE =
1

n

n∑
i=1

Q̄∗n(0,Wi).

Q̄∗n(A,W ) refers to a targeted estimate of the regression of Y on (A,W ), obtained by fluc-
tuating an initial estimate, Q̄0

n(A,W ), in a manner designed to reduce bias in the target
parameter estimate. The direction of the fluctuation, H∗, is derived from the efficient influ-
ence curve of the target parameter mapping. Because the RD, RR, and OR are all functions
of µ1 = EY1 and µ0 = EY0, these two conditional means are the target parameters. Though
it is possible to directly target each of the parameters (RD, RR, OR) in three separate analy-
ses, this leads to redundant calculations, so was not the approach taken here. Instead the two
conditional means were targeted simultaneously:

H∗1 (A,W ) =
I(A = 1)

gn(1 | W )

H∗0 (A,W ) =
I(A = 0)

gn(0 | W )

Q̄∗n(A,W ) =
1

1 + e−m
, m = log

(
Q̄0
n(A,W )

1− Q̄0
n(A,W )

)
+ ε1H

∗
1 (A,W ) + ε0H

∗
0 (A,W ),

and ε1, ε0 were fitted using logistic regression.

Targeted maximum likelihood estimation and AIPTW incorporate estimates of both Q̄0 and g0.
These estimators are double robust, meaning that consistent estimation of either Q̄0 or g0 implies
consistent estimation of the parameter, ψ0. In contrast, the Gcomp estimator is consistent only
when Q̄n is a consistent estimator of Q̄0, and the IPTW estimator relies on consistent estimation
of g0.

Main terms linear regression was used to obtain an estimate of Q̄0 for the AIPTW and Gcomp
procedures. The super learner (SL), a data-adaptive prediction algorithm, was used as initial es-
timator of Q̄0

n in the TMLE procedure (Polley, 2010; van der Laan et al., 2007). Specifically, a
discrete super learner was implemented to select the best prediction algorithm among the candi-
dates in the super learner library and the super learner itself. Honest cross validation was then used
to compare super learner performance with an unadjusted regression of Y on A. The unadjusted
estimate was used as the initial estimate unless the super learner provided at least a 10% improve-
ment. For indications where the number of events was small (< 25), super learner was not used.
The SL library contained prediction algorithms that search over different portions of the model
space.
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• glm generalized linear models, main terms logistic regression (Team, 2010)

• k-nearest-neighbors classification using most common outcome among identified k nearest
nodes (k set to 10 and 20) (Venables and Ripley, 2002a; Friedman, 1994)

• gam generalized additive models, tuning parameter set to 3 and 4,(Hastie, 2009)

• DSA Deletion/Selection/Addition algorithm for searching over a space of polynomial mod-
els or order k (k set to 2). (Neugebauer and Bullard, 2010; Sinisi and van der Laan, 2004)

Although the true treatment assignment probability is known to be 0.5 for all subjects by de-
sign, estimating the treatment mechanism can help to adjust for any empirical confounding, and
may improve efficiency (van der Laan and Robins, 2003). The treatment mechanism was estimated
as the marginal probability of being assigned to treatment or control. The probability for an obser-
vation having Aik = a, a ∈ {0, 1} was set equal to the indication-specific empirical proportion of
subjects assigned treatment at level a. Note that when gn is equal to the empirical proportion of
subjects in the treatment group the IPCW estimator is equivalent to the unadjusted estimator.

6.3 Data Analysis

6.3.1 Preprocessing steps
Missing data were imputed using covariate data collected in the same study using the aregIm-

pute function for predictive mean matching (Harrell Jr, 2010). The imputation was stratified by
study; only observations from the same study contributed data for the imputation procedure. A
binary imputation indicator variable was created for each covariate that had more than 2% missing
values. Tables 6.2 and 6.3 list all covariates that had missing values, and the number of missing val-
ues per study. Note that no APACHE scores were recorded for five studies, and were not imputed
for these studies. Categorical APACHE covariates for which less than 2% of the observations were
missing were assigned the most common study-specific value. Only two APACHE covariates had
more than 2% missing, ARTPH in three studies, (3, 4, 7), and OXYG in study 7. A full description
of the covariates is given in Table 6.13.

Indicators were created for levels of factor variables having a p-value of≤ 0.1 for the univariate
association with the outcome. Only ten out of forty-two countries were associated with one or more
of the outcomes stratified by indication, so ten binary indicator variables were utilized in place the
COUNTRY variable, implicitly creating an eleventh country category, “other.” Covariates that
were not measured for any subject in a particular study were set to 0 for all subjects in that study.

6.3.2 Stratification by indication
When an outcome is rare, as is the case for three of the four indications studied, there is in-

sufficient power to fit large models. A is included in all adjustment sets, and we apply a rule of
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Table 6.2: Number of missing values for each covariate, by study. Covariates not listed had no
missing values. Study size shown in parentheses.

Study 1 Study 2 Study 3 Study 4 Study 5 Study 6 Study 7
(583) (546) (833) (824) (425) (434) (944)

BMI 7 4 8 3 6 1 9
APACHE 583 546 5 1 425 434 7
ALBUMIN 47 43 31 116 36 26 42
ALKPHOS 27 27 21 58 28 19 27
ALT 22 5 15 19 26 8 17
AST 19 10 29 16 25 16 19
PROTTOT 43 11 39 50 36 18 30
CREATIN 12 4 10 9 12 1 11
POTASSIU 16 5 11 9 13 3 12
HEMOGLOB 26 3 9 9 10 3 11
WBC 16 3 9 8 9 2 9
PLATELET 38 4 12 11 11 4 24

thumb that sets the maximum number of additional covariates, W , to (2 * num events /15 - 1).
For each indication-specific outcome, covariates were ordered by p-value based on each univariate
logistic regression of Y on Wi, using as offset the fitted values from a regression of outcome Y
on A, on the logit scale. At most wk covariates having a p-value ≤ 0.1 were incorporated into the
adjustment set for each indication (Table 6.5). Fewer covariates were retained for indication D due
to a lack of association with the outcome.

6.3.3 Inference
Variances and 95% confidence intervals for the RD, RR, and OR parameters were obtained

with the bootstrap and influence curves. Both methods are in good agreement. The large width
of the bootstrap confidence intervals for RR and OR for indications 1 and 5 reflects the instability
of these estimates under extreme sparsity in the data, and illustrates the challenge of constructing
valid confidence intervals in these settings.

The bootstrap Parameter estimates were obtained for 1000 bootstrap samples for each indication
and outcome. The (0.025, 0.975) quantiles of the bootstrap estimates provide the bounds on
a 95% confidence interval reported in Table 6.6 below.

Influence curve-based inference Theory tells us that (ψn−ψ0), the difference between a param-
eter estimate obtained from a regular asymptotically linear estimator and the truth, converges
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Table 6.3: Number of missing values for each APACHE covariate, by study. Covariates not listed
had no missing values. Studies not listed had no APACHE values recorded. Study size shown in
parentheses.

Study 3 Study 4 Study 7
(833) (824) (944)

TEMP 6 1 7
ARTPRESS 5 3 12
OXYG 833 824 573
AGEPTS 5 1 7
APACHE 5 1 7
HEARTRAT 5 4 11
RESPRATE 833 824 13
ARTPH 238 244 323
SERSOD 8 3 11
SERPOT 9 3 11
SERCREA 8 3 10
HEMAT 6 6 11
WBCPTS 6 2 8

to a Normal limit distribution, √
(n)(ψn − ψ0)

D→ N(0,Σ),

where Σ is the covariance matrix of the (possibly multi-dimensional) parameter. In practice,
this provides a means for estimating the variance of the estimator as the variance of the
empirical influence curve divided by the sample size, n. The parameter-specific influence
curves are given below. Asymmetrical confidence intervals for the RR and OR parameters
are constructed on the log scale, based on the influence curves for the log(RR) and log(OR),
respectively. Estimates and 95% confidence intervals are reported in Table 6.7.
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Table 6.4: Number of events and maximum size of adjustment set for each stratified analysis.

wk
Indication num events max adj set size

A 6 0
B 34 3
C 18 1
D 107 13

Table 6.5: Covariates included in adjustment set for each stratified analysis.

Indication Covariates

A (none)

B AGEPTS, I.APACHE, CHFHIST

C SVK

D ACIN, AUS, BACTER, CHFHIST, COPDHIST, HRV,
I.APACHE, IND, PER

note: covariate names beginning with I are imputation or study id indicator variables

ICRD(O) =

(
A

g0(1 | W )
− 1− A
g0(0 | W )

)
(Y − Q̄0(A,W )) + Q̄0(1,W )− Q̄0(A,W )− ψ0

IC logRR(O) =
1

µ10

(
A

g0(1 | W )
(Y − Q̄0(A,W )) + Q̄0(1,W )− µ10

)
− 1

µ00

(
1− A

g0(0 | W )
(Y − Q̄0(A,W )) + Q̄0(0,W )− µ00)

)

IC logOR(O) =
1

µ10(1− µ10)

(
A

g0(1 | W )
(Y − Q̄0(A,W )) + Q̄0(1,W )

)
− 1

µ00(1− µ00)

(
1− A

g0(0 | W )
(Y − Q̄0(A,W )) + Q̄0(0,W )

)
Each of these influence curves can be estimated by substituting the appropriate estimates

gn,k(A | W ), Q̄n,k(A,W ). For the unadjusted and IPTW estimators with gn estimated from



CHAPTER 6. SAFETY ANALYSIS 98

the data one obtains the wished influence curves by setting Q̄0(A,W ) = EY | A,W ), and
Q̄0(1,W ) = Q̄0(0,W ) = 0. For the Gcomp and AIPTW procedures these conditional means were
estimated using a main terms logistic regression of Y on A and the covariates listed in Table 6.5.
For the TMLE the conditional means were estimated with the targeted estimators Q̄∗n,k(A,W ),
Q̄∗n,k(1,W ), Q̄∗n,k(0,W ). gn,k(1 | W ) corresponds to the empirical proportion of subjects in the
treatment group (A = 1) for all estimators.

6.3.4 Results
For the Gcomp and AIPTW estimators Q̄0 was estimated with a main terms linear regression

of Yk on the covariates shown in Table 6.5. TMLE used a discrete SL to obtain an initial estimate
of Q̄0; cross validation resulted in the selection of the unadjusted regression of Y on A to estimate
the conditional means for all analyses.

Table 6.6 lists point estimates and 95% confidence intervals corresponding to the (0.025, 0.975)
quantiles of 1000 bootstrap estimates are reported for all estimators. The super learner algorithm
selected the unadjusted regression in each of our data analyses. Therefore, for the sake of reducing
computer time, in this bootstrap we used the unadjusted regression as the initial estimator Q̄0

n. The
bootstrap also does not include covariate selection by indication. Confidence intervals based on
influence curve variance estimates are also reported. Table 6.7 lists these same point estimates and
influence-curve based 95% confidence intervals.

Pooled estimates of the risk difference, risk ratio, and odds ratio were calculated as a weighted
average of the indication-specific parameter estimates, with weights equal to the inverse of the
estimated bootstrap variances. Odds ratio and risk ratio estimates and confidence intervals were
constructed on the log scale.

ψRDn,pooled =

∑K
k=1w

RD
k ψRDn,k∑K

k=1 w
RD
k

, wRDk =
1

var(ψRDn,k )

ψRRn,pooled = exp

(∑K
k=1 w

RR
k log(ψRRn,k )∑K
k=1 w

RR
k

)
, wRRk =

1

var(log(ψRRn,k ))

ψORn,pooled = exp

(∑K
k=1 w

OR
k log(ψORn,k )∑K
k=1w

OR
k

)
, wORk =

1

var(log(ψORn,k ))

Pooled estimates of the risk difference, risk ratio, and odds ratio calculated for each estima-
tion procedure are given in Table 6.8. Weights used to obtain the pooled estimates are given in
Table 6.9. Pooled risk ratio and odds ratio results are not listed for the AIPTW estimator because
some estimated risk ratios and odds ratios in the bootstrap estimates used to calculate the vari-
ance were negative for indication A, where there was only one event in the control arm. Though
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influence curve estimated variances are available, this problem illustrates a known drawback of
the estimating equation-based augmented IPTW methodology—predicted values do not respect
known bounds on the estimation problem, so parameter estimates may fall outside the range of
possible values.

Table 6.6: Risk difference, risk ratio, and odds ratio estimates. 95% CI corresponds to
(0.025, 0.975) quantiles of 1000 bootstrap estimates.

Risk Difference Risk Ratio Odds Ratio
est 95% CI est 95% CI est 95% CI

Indication A
unadj 0.01 (-0.0003, 0.02) 4.90 (0.93, 774) 4.94 (0.93, 784)
IPTW 0.01 (-0.0003, 0.02) 4.90 (0.93, 778) 4.94 (0.93, 785)
MLE 0.01 (-0.0003, 0.02) 4.90 (0.93, 774) 4.94 (0.93, 784)
AIPTW 0.01 (-0.0003, 0.02) 4.90 (-1e+10, 1e+10) 4.94 (-1e+10, 1e+10)
TMLE 0.01 (-0.0003, 0.02) 4.90 (0.93, 774) 4.94 (0.93, 784)

Indication B
unadj 0.01 (-0.003, 0.02) 1.63 (0.87, 3.85) 1.64 (0.87, 3.92)
IPTW 0.01 (-0.003, 0.02) 1.63 (0.87, 3.85) 1.64 (0.87, 3.92)
MLE 0.01 (-0.004, 0.02) 1.53 (0.80, 3.56) 1.55 (0.80, 3.63)
AIPTW 0.01 (-0.004, 0.02) 1.53 (0.80, 3.56) 1.55 (0.80, 3.63)
TMLE 0.01 (-0.003, 0.02) 1.63 (0.87, 3.85) 1.64 (0.87, 3.92)

Indication C
unadj 0.00 (-0.01, 0.02) 1.24 (0.49, 3.43) 1.24 (0.48, 3.50)
IPTW 0.00 (-0.01, 0.02) 1.24 (0.49, 3.43) 1.24 (0.48, 3.50)
MLE 0.00 (-0.02, 0.02) 1.19 (0.47, 3.38) 1.19 (0.46, 3.45)
AIPTW 0.00 (-0.02, 0.02) 1.19 (0.47, 3.38) 1.19 (0.46, 3.45)
TMLE 0.00 (-0.01, 0.02) 1.24 (0.49, 3.43) 1.24 (0.48, 3.50)

Indication D
unadj 0.01 (-0.03, 0.05) 1.05 (0.73, 1.55) 1.06 (0.70, 1.64)
IPTW 0.01 (-0.03, 0.05) 1.05 (0.73, 1.55) 1.06 (0.70, 1.64)
MLE 0.00 (-0.04, 0.05) 1.04 (0.73, 1.51) 1.05 (0.71, 1.59)
AIPTW 0.00 (-0.04, 0.05) 1.04 (0.73, 1.51) 1.05 (0.71, 1.59)
TMLE 0.01 (-0.03, 0.05) 1.05 (0.73, 1.55) 1.06 (0.70, 1.64)
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Table 6.7: Risk difference, risk ratio, and odds ratio estimates, influence curve-based 95% CIs.

Risk Difference Risk Ratio Odds Ratio
est 95% CI est 95% CI est 95% CI

Indication A
unadj 0.01 (-0.001, 0.02) 4.90 (0.59, 40.59) 4.94 (0.59, 41.14)
IPTW 0.01 (-0.001, 0.02) 4.90 (0.57, 42.01) 4.94 (0.57, 42.58)
MLE 0.01 (-0.001, 0.02) 4.90 (0.59, 40.46) 4.94 (0.59, 41.00)
AIPTW 0.01 (-0.001, 0.02) 4.90 (0.57, 41.88) 4.94 (0.57, 42.44)
TMLE 0.01 (-0.001, 0.02) 4.90 (0.57, 41.88) 4.94 (0.57, 42.44)

Indication B
unadj 0.01 (-0.004, 0.02) 1.63 (0.81, 3.25) 1.64 (0.81, 3.33)
IPTW 0.01 (-0.004, 0.02) 1.63 (0.81, 3.25) 1.64 (0.81, 3.32)
MLE 0.01 (-0.005, 0.02) 1.53 (0.78, 3.00) 1.55 (0.78, 3.07)
AIPTW 0.01 (-0.005, 0.02) 1.53 (0.79, 3.00) 1.55 (0.78, 3.06)
TMLE 0.01 (-0.004, 0.02) 1.63 (0.82, 3.22) 1.64 (0.82, 3.30)

Indication C
unadj 0.00 (-0.01, 0.02) 1.24 (0.49, 3.11) 1.24 (0.48, 3.19)
IPTW 0.00 (-0.01, 0.02) 1.24 (0.49, 3.13) 1.24 (0.48, 3.21)
MLE 0.00 (-0.02, 0.02) 1.19 (0.48, 2.93) 1.19 (0.47, 3.00)
AIPTW 0.00 (-0.02, 0.02) 1.19 (0.48, 2.95) 1.19 (0.47, 3.02)
TMLE 0.00 (-0.01, 0.02) 1.24 (0.49, 3.10) 1.24 (0.48, 3.18)

Indication D
unadj 0.01 (-0.04, 0.05) 1.05 (0.72, 1.54) 1.06 (0.69, 1.62)
IPTW 0.01 (-0.04, 0.05) 1.05 (0.72, 1.54) 1.06 (0.69, 1.63)
MLE 0.00 (-0.03, 0.04) 1.04 (0.74, 1.47) 1.05 (0.71, 1.55)
AIPTW 0.00 (-0.03, 0.04) 1.04 (0.74, 1.47) 1.05 (0.71, 1.55)
TMLE 0.01 (-0.03, 0.05) 1.05 (0.74, 1.51) 1.06 (0.71, 1.59)
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Table 6.8: Pooled estimates and 95% confidence intervals for risk difference, risk ratio, and
odds ratio parameters.

Risk Difference Risk Ratio Odds Ratio
est 95% CI est 95% CI est 95% CI

unadj 0.01 (7e-04, 0.01) 1.16 (0.85, 1.59) 1.19 (0.84, 1.67)
IPTW 0.01 (7e-04, 0.01) 1.16 (0.85, 1.59) 1.19 (0.84, 1.67)
MLE 0.01 (3e-04, 0.01) 1.13 (0.83, 1.54) 1.16 (0.83, 1.62)
AIPTW 0.01 (3e-04, 0.01)
TMLE 0.01 (7e-04, 0.01) 1.16 (0.85, 1.59) 1.19 (0.84, 1.67)

Table 6.9: Weights used for pooled estimates of risk difference, risk ratio, and odds ratio parameters
by estimator.

Risk Difference Risk Ratio Odds Ratio
A B C D A B C D A B C D

unadj 0.62 0.24 0.12 0.03 < 0.01 0.19 0.1 0.72 < 0.01 0.22 0.11 0.67
IPTW 0.62 0.24 0.12 0.03 < 0.01 0.19 0.1 0.72 < 0.01 0.22 0.11 0.67
MLE 0.61 0.24 0.12 0.03 < 0.01 0.18 0.1 0.72 < 0.01 0.21 0.11 0.68
AIPTW 0.61 0.24 0.12 0.03
TMLE 0.62 0.24 0.12 0.03 < 0.01 0.19 0.1 0.72 < 0.01 0.22 0.11 0.67
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6.4 Simulation Studies
Estimation procedures that do not adequately account for missingness in the outcome can yield

biased results when missingness is not independent of the outcome. In addition, p-values and con-
fidence intervals around these biased estimates may lead to false acceptance or rejection of a null
hypothesis of no treatment effect. A simulation study was designed to illustrate this phenomenon.
Data are generated once, then three separate missingness mechanisms are applied to set approx-
imately 26% of outcomes to missing: 1) missing completely at random (MCAR), 2) missing at
random (MAR), and 3) missing at random, with weak positivity violations, meaning that for a sub-
set of observations there is sparsity in the data because the probability of observing the outcome is
small (MAR.sp).

6.4.1 Estimators
In addition to the five estimators defined above, multiple imputation (MI) is also applied to

estimate the risk difference under each of these missingness scenarios. The unadjusted estima-
tor, IPTW, Gcomp, AIPTW, and TMLE estimators defined above are modified to accommodate
missing data.

The unadjusted regression is simply carried out for subjects where the outcome is observed.
The Gcomp estimate also ignores missingness, fitting a regression model on observations where
the outcome is observed. The multiple imputation approach used was predictive mean matching
as implemented in the aregImpute procedure in R. Missing values were imputed to create m = 5
complete datasets, that were then analyzed using Gcomp. The MI estimate is the mean of the m
estimates from each complete dataset.

The model for Q̄0 used for MI, Gcomp and AIPTW estimators was set to a regression of Y
on A,AGE,ACIN,GRAMNEG,STAPH,BACTER, and interaction term A ∗ AGE, fitted
using the observed data. For all estimators that rely on the g portion of the likelihood, this now
factorizes into the treatment assignment and missingness mechanisms. The treatment assignment
mechanism was set to the marginal probability of receiving the assigned treatment. Missingness
was modeled as a regression of ∆ on all main terms plus interactions with A for MI, IPTW, and
AIPTW. TMLE fits for Q̄0 and P (∆ = 1 | A,W ) were obtained data-adaptively using super
learning, described further below.

The IPTW estimator is a weighted regression of Y on A using observations with ∆ = 1, with
weights

wt =
1

πn(∆ | A,W )gn(A | W )
.

Large weights are known to lead to unstable estimates, therefore the product of the probabilities in
the denominator was bounded at (0.01, 0.99).

Both the AIPTW and TMLE estimators of the risk difference parameter for the more general
data structure O = (W,A,∆,∆Y ) are solutions of the efficient influence curve equation, and can
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thereby be represented as

ψRDn =
1

n

∑
i

∆i

πn(∆i | Ai,Wi)

(
I(Ai = 1)

gn(Ai |Wi)
− I(Ai = 0)

gn(Ai |Wi)

)
(Yi − Q̄n(Ai,Wi))

+ Q̄n(1,Wi)− Q̄n(0,Wi)

where the product of the probabilities g(A | W ) and π(∆ = 1 | A,W ) was bounded at (0.01, 0.99),
and Q̄0(A,W ) = E0(Y |A,W,∆ = 1). In contrast with AIPTW, the TMLE is a substitution
estimator ψRDn = Ψ(Q̄∗n) = 1/n

∑
i Q̄
∗
n(1,Wi) − Q̄∗n(0,Wi), based on a targeted estimate Q̄∗n of

Q̄0.
Estimation of Q̄0 involves regressing outcome Y on treatment and covariates among the non-

missing observations (∆ = 1). Covariates used in the TMLE targeting step incorporate missing-
ness. Coefficients ε1 and ε2 are fitted using only observations where the outcome is observed, with
the given weights.

h1(A,W ) = A

h0(A,W ) = 1− A

wt =
1

πn(∆ | A,W )gn(A | W )
.

For TMLE the super learner was used to estimate Q̄0 and P (∆ = 1 | A,W ). Prediction algorithms
include DSA, glm, knn. Settings for DSA specified a search over a model space that includes poly-
nomials of degree three. Linear regression models that included main terms only, all second order
interactions, and the regression model used for the MI, Gcomp and AIPTW estimators were in-
cluded in the super learner library. The k-nearest neighbors algorithm was run with neighborhoods
of size 10, 20 and 40.

6.4.2 Data generation
Baseline covariates and treatment data were taken from n=934 observations in Study 7. The

dataset consists of five baseline covariates, ACIN,AGE,BACTER,GRAMNEG,STAPH ,
treatment indicator A = 1 if the subject was treated with the study drug, 0 otherwise. A simulated
outcome Y was generated as

P (Y = 1|A,W ) = expit(β0+β1A+β2GRAMNEG+β3A∗AGE+β4STAPH∗GRAMNEG).

Coefficient values β0 = −4, β1 = 1.4, β2 = 1, β3 = −0.05, β4 = 3 and β5 = −0.05 give a marginal
event proportion = 0.06. The true value of the risk difference parameter, ψ0 = −0.0429 (−4.29%).

Three missingness mechanisms were defined such that marginally 26% of observations were
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set to missing.

P (∆MCAR = 1 | A,W ) = 0.74

P (∆MAR = 1 | A,W ) = expit(f(A,W ))

P (∆MAR.sp = 1 | A,W ) = expit(−1.5 + 4 ∗ f(A,W ))

f(A,W ) = 2− 0.03A ∗AGE + 0.1GRAMNEG

−0.03A ∗GRAMNEG ∗BACTER+ACIN.

6.4.3 Results
Estimates and 95% confidence intervals for each simulation are shown in Figure 6.1. Ta-

ble 6.11 contains the estimates, bootstrapped standard errors (B=1000 bootstrap samples), and 95%
confidence intervals constructed from the bootstrap SEs. When missingness is non-informative
(MCAR) all estimators are unbiased, however the unadjusted, IPTW, and MI estimators are inef-
ficient, and fail to establish statistical significance. When missingness is informative (MAR), the
unadjusted, MI, and Gcomp estimates are more biased, but the IPTW, AIPTW, and TMLE esti-
mation procedures are able to exploit covariate information to produce unbiased estimates. The
IPTW again has a higher variance than either double-robust estimator, and TMLE’s data-adaptive
targeting provides greater bias reduction than AIPTW. When missingness is informative and there
is sparsity in the data(MAR.sp) the unadjusted estimator fails completely. Multiple imputation
performance suffers because there is no longer sufficient information in the data to produce im-
puted values that capture the true correlations. Gcomp fails to produce a significant result. IPTW,
AIPTW, and TMLE estimates are all statistically significant. Again IPTW is least efficient, and
AIPTW is slightly more biased and variable than TMLE.
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Figure 6.1: Percent risk difference estimates and 95% confidence intervals when data are missing
completely at random (a), missing at random (b), and missing at random, with sparsity (c). Dashed
lines are at the NULL (0) and the true parameter value (−4.29%).
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Table 6.10: Summary of estimator performance on simulated data.

95% CI Contains ψ0 Statistically Significant Most Efficient
MCAR MAR MAR.sp MCAR MAR MAR.sp MCAR MAR MAR.sp

Unadjusted X X
IPTW X X X X X
MI X X X
Gcomp X X X X X
AIPTW X X X X X X
TMLE X X X X X X X X X

Table 6.11: Simulation study results, ψ0 = −4.29%.

95% CI
est SD lb ub p-value

MCAR
Unadj −2.82 1.73 −6.21 0.56 0.102
IPTW −3.28 1.71 −6.64 0.07 0.055
MI −3.00 1.68 −6.29 0.29 0.074
Gcomp −3.28 1.53 −6.27 −0.28 0.032
AIPTW −3.23 1.53 −6.23 −0.22 0.035
TMLE −3.20 1.47 −6.07 −0.32 0.029

MAR
Unadj −1.26 1.98 −5.14 2.61 0.523
IPTW −3.43 1.67 −6.71 −0.15 0.040
MI −2.74 1.65 −5.98 0.50 0.097
Gcomp −3.15 1.52 −6.14 −0.17 0.038
AIPTW −3.38 1.53 −6.38 −0.38 0.027
TMLE −3.49 1.46 −6.35 −0.63 0.017

MAR.sp
Unadj 0.89 2.17 −3.36 5.15 0.681
IPTW −3.32 1.62 −6.50 −0.14 0.041
MI −1.69 1.69 −5.01 1.63 0.318
Gcomp −2.84 1.54 −5.86 0.18 0.065
AIPTW −3.36 1.47 −6.25 −0.47 0.023
TMLE −3.41 1.43 −6.22 −0.61 0.017
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Results from 1000 bootstrap samples are shown in Table 6.12, including the average estimate,
standard error, bias, mean squared error (MSE), the (0.025, 0.975) quantiles of the bootstrap esti-
mates.

Table 6.12: Percent Risk Difference estimates: results from 1000 bootstrap samples.

Quantiles
Ave SD Bias MSE 0.025 0.975

MCAR
Unadj −2.91 1.73 1.39 4.90 −6.37 0.45
IPTW −3.35 1.71 0.94 3.82 −6.79 0.06
MI −3.10 1.68 1.19 4.22 −6.61 0.09
Gcomp −3.39 1.53 0.90 3.15 −6.54 −0.32
AIPTW −3.33 1.53 0.96 3.27 −6.27 −0.22
TMLE −3.48 1.47 0.81 2.81 −6.40 −0.69

MAR
Unadj −1.36 1.98 2.93 12.51 −5.34 2.41
IPTW −3.48 1.67 0.81 3.45 −6.89 −0.26
MI −2.91 1.65 1.38 4.63 −6.29 0.26
Gcomp −3.22 1.52 1.07 3.46 −6.26 −0.31
AIPTW −3.44 1.53 0.85 3.07 −6.52 −0.52
TMLE −3.69 1.46 0.60 2.48 −6.61 −0.95

MAR.sp
Unadj 0.76 2.17 5.05 30.24 −3.57 4.94
IPTW −3.33 1.62 0.96 3.55 −6.74 −0.33
MI −1.85 1.69 2.44 8.81 −5.48 1.33
Gcomp −2.90 1.54 1.40 4.31 −5.92 0.08
AIPTW −3.40 1.47 0.89 2.96 −6.31 −0.62
TMLE −3.58 1.43 0.72 2.56 −6.57 −0.91

6.5 Discussion
There is little opportunity to increase R-square when outcomes are rare. Data-adaptive esti-

mation of Q̄0 does not improve the coefficient of determination (R-square) in comparison with the
unadjusted regression of Y on A for any indications. Theory dictates that no gain in efficiency can
be expected if there is no change in R-square. As illustrated by the simulation study, the motivation
for using TMLE in these situations is therefore not to increase efficiency, but rather to correct for
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possible bias introduced through failed randomization, informative censoring or informative miss-
ingness in the outcome. Missingness coupled with sparsity is not adequately addressed through
multiple imputation without relying on unverifiable modeling assumptions. IPTW estimation can
reduce bias, but is inefficient, and relies entirely on correct specification of unknown missingness
and treatment models. The double robustness of augmented-IPTW is an improvement, but as the
analysis of the original RCT data illustrates, AIPTW estimates can fall outside the known range
of valid parameter values. TMLE estimation respect these global constraints, is asymptotically
efficient and unbiased, and has good finite sample performance. Confidence intervals presented in
Tables 6.11 and 6.12 demonstrate that influence curve-based inference is comparable with infer-
ence based on the bootstrap, without requiring additional computational resources. Meta-analysis
and simulation results demonstrate that TMLE is a worthwhile alternative to current approaches
for safety analysis.
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Table 6.13: Covariate Descriptions.

Covariate Description

ACIN presence or absence of Acinetobacter sp.
AGE age in years at baseline
AGEPTS APACHE points derived from age
ALBUMIN baseline albumin laboratory value
ALKPHOS baseline alkaline phosphotase laboratory value
ALT baseline alanine aminotransferase laboratory value
APACHE APACHE II score
ARTPH APACHE points derived from arterial pH or serum HCO3
ARTPRESS APACHE points derived from arterial pressure
AST baseline aspartate aminotransferase laboratory value
BACTER presence or absence of bacteremia
BMI body mass index
CHFHIST history of congestive heart failure (yes/no)
COPDHIST history of COPD (yes/no)
CREATIN baseline Creatinine laboratory value
GRAMNEG presence or absence of gram-negative bacteria
HEARTRAT APACHE points derived from heart rate
HEMAT APACHE points derived from hematocrit
HEMOGLOB baseline hemoglobin laboratory value
HRV Croatia, country of origin
HUN Hungary, country of origin
IND India, country of origin
OXYG APACHE points derived from oxygenation
PER Peru, country of origin
PLATELET baseline platelet laboratory value
POTASSIU baseline potassium laboratory value
PROTTOT baseline total protein laboratory value
RESPRATE APACHE points derived from respiratory reate
SERCREA APACHE points derived from serum creatinine
SERPOT APACHE points derived from serum potassium
SERSOD APACHE points derived from serum sodium
STAPH presence or absence of Staphylococcus aureus
SVK Slovakia, country of origin
TEMP APACHE points derived from temperature
WBC baseline white blood cell laboratory value
WBCPTS APACHE points derived from white blood cell count
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Appendix A

Influence Curve Equations

A.1 Using the Delta Method to Derive Influence Curve
Equations for log(OR) and log(RR) Parameters

Let D∗(µ) be the efficient influence curve for some parameter, µ . The delta method allows us
to derive the efficient influence curve equation for a function f(µ), provided the first derivative of
the function with respect to µ, f ′(µ), exists and is non-zero.

D∗(f(µ)) = f ′(µ)D∗(µ)

The delta method can be used to construct the efficient influence curves for the log relative risk
(logRR) and log odds ratio(logOR) parameters from the efficient influence curves for µ0 = E(Y0)
and µ1 = E(Y1). When treatment assignment is binary, these are given by,

D∗(µ1)(O) =
A

g0(1 | W )
(Y − Q̄(A,W )) + Q̄(1,W )− µ1

D∗(µ0)(O) =
1− A

1− g0(1 | W )
(Y − Q̄(A,W )) + Q̄(0,W )− µ0

where O is the unit of observation, A is a binary treatment indicator, W is a vector of baseline
covariates, g(1 | W ) = P (A = 1 | W ), Y is an outcome measure, and Q̄(A,W ) is the true
conditional expectation of Y given A and W .

Log relative risk parameter, ψlogRR

ψlogRR = log

(
µ1

µ0

)
= log(µ1)− log(µ0).
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The efficient influence curve for this parameter can be written as

D∗(ψlogRR)(O) =
∂

∂µ1

(ψlogRR)D∗(µ1)(O) +
∂

∂µ0

(ψlogRR)D∗(µ0)(O)

where
∂

∂µ1

(ψlogRR) =
1

µ1

∂

∂µ0

(ψlogRR) = − 1

µ0

By substitution,

D∗(ψlogRR)(O) =
1

µ1

(
A

g(1 | W )
(Y − Q̄(A,W )) + Q̄(1,W )− µ1

)
− 1

µ0

(
1− A

1− g(1 | W )
(Y − Q̄(A,W )) + Q̄(0,W )− µ0)

)
.

Log odds ratio parameter, ψlogOR

ψlog(OR) = log

(
µ1/(1− µ1)

µ0/(1− µ0)

)
= log(µ1)− log(1− µ1)− log(µ0) + log(1− µ0)

The efficient influence curve for this parameter can be written as

D∗(ψlogOR)(O) =
∂

∂µ1

(ψlogOR)D∗(µ1)(O) +
∂

∂µ0

(ψlogOR)D∗(µ0)(O)

where
∂

∂µ1

(ψlogOR) =
1

µ1(1− µ1)

∂

∂µ0

(ψlogOR) = − 1

µ0(1− µ0)

By substitution,

D∗(ψlogOR)(O) =
1

µ1(1− µ1)

(
A

g(1 | W )
(Y − Q̄(A,W )) + Q̄(1,W )

)
− 1

µ0(1− µ0)

(
1− A

1− g(1 | W )
(Y − Q̄(A,W )) + Q̄(0,W )

)
.
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A.2 Influence Curve Contribution Due to Estimating G
for Point Treatment Effects

An estimator αn of a parameter α that is asymptotically linear has the property that αn − α =
PnICα + r(n), where r(n) is a second order term. Consider gα, the conditional distribution of
binary treatment assignment A given baseline covariates, W , parameterized by α. The asymptotic
linearity of αn allows us to approximateQ(gαn)−Q(gα) as P0D

∗
gαn

(O)−D∗gα(O). We can conclude
from this that Φ(gn) as an estimator of Φg is given by

[P0f(P0)] · ICα

where [P0f(P0)] is a parameter-specific matrix, and the vector influence curve ICα is given by

ICα(O) = P0

[
W

d

dα
gα(1 | W )

]−1−→
W (A− gα(1 | W )).

When g(A | W ) follows a logistic distribution,

gα(1,W ) = (1 + e−αnW )−1

gα(0,W ) = e−αnW (1 + e−αnW )−1

d

dα
gα(1,W ) = (1 + e−αnW )−2e−αnWW

= gα(1,W )gα(0,W )W

d

dα
gα(0,W ) =

d

dα
(1− gα(1,W ))

= − d

dα
gα(1,W )

By substitution,

ICα(O) = P0

[
WW Tgα(1 | W )gα(0 | W )

]−1
(A− gα(1 | W ))

−→
W.

This influence curve is unknown, and must be estimated from data.

ÎCαn(Oi) =

[
1

n

n∑
i=1

−→
Wi
−→
Wi

Tgαn(1 | Wi)gαn(0 | Wi)

]−1

(Ai − gαn(1 | Wi))
−→
Wi (A.1)

For point treatment parameters the general form of the contribution to the influence curve from
the estimation of g is given by

ICg(O) = −a · (B−1(A− gαn(1 | W )
−→
W ))
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and estimated as
ÎCg(Oi) = −â · (B̂−1(Ai − gαn(1 | Wi)

−→
Wi))

where B̂ is given by

B̂ =

[
1

n

n∑
i=1

−→
Wi

−→
Wi

Tgαn(1 | Wi)gαn(0 | Wi)

]
,

and â is derived below for several target parameters: the additive treatment effect, population mean
under missingness, relative risk, log relative risk, odds ratio, and log odds ratio.

A.2.1 Additive treatment effect

ψATE0 = E(Y1)− E(Y0)

The efficient influence curve for this parameter is given by

D∗(O) =

(
A

g(1)
− (1− A)

g(0)

)
(Y −Q) +Q(1,W )−Q(0,W )− ψ(Q).

Q(gn)−Q(g) ≈ P0D
∗
gn −D

∗
g

= P0

[(
A

gαn(1)
− (1− A)

gαn(0)

)
(Y −Q)−

((
A

gα(1)
− (1− A)

gα(0)

)
(Y −Q)

)]
= P0(Y −Q)

[
A

(
1

gαn(1)
− 1

gα(1)

)
− (1− A)

(
1

gαn(0)
− 1

gα(0)

)]
≤ P0(Y −Q)

[
A
gα(1)− gαn(1)

g2
α(1)

− (1− A)
gα(0)− gαn(0)

g2
α(0)

]
= P0(Y −Q)

[
A
− d
dα
gα(1)(αn − α)

g2
α(1)

+ (1− A)
d
dα
gα(0)(αn − α)

g2
α(0)

]

= P0

[
(Y −Q)A

− d
dα
gα(1)

g2
α(1)

− (1− A)
d
dα
gα(1)

g2
α(0)

]
(αn − α)

= −P0

[
(Y −Q)

d

dα
gα(1)

(
A

g2
α(1)

+
1− A
g2
α(0)

)]
(αn − α)

= −P0

[
(Y −Q)

d

dα
gα(1)

(
A

g2
α(1)

+
1− A
g2
α(0)

)]
1

n

n∑
i=1

ICα(Oi)

=
1

n

n∑
i=1

−P0(Y −Q)
−→
W

(
A
gα(0)

gα(1)
+ (1− A)

gα(1)

gα(0)

)
· ICα
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This unknown influence curve can be estimated from data,

ÎCg(Oi) = âATE · ÎCαn(Oi),

âATE =

[
1

n

n∑
i=1

(Yi − Q̂(Wi, Ai))
−→
Wi

(
Ai
gαn(0 |Wi)

gαn(1 |Wi)
+ (1−Ai)

gαn(1 |Wi)

gαn(0 |Wi)

)]
.

ÎCαn(Oi) is defined in (A.1).

Population Mean under missingness

ψEY 1
0 = E(Y1)

The estimate of âEY1 for for the population mean follows trivially from this result,

âEY1 =

[
1

n

n∑
i=1

(Yi − Q̂(Wi, Ai))
−→
WiAi

gαn(0 | Wi)

gαn(1 | Wi)

]
.

A.2.2 Relative risk

ψRR0 = E(Y1)/E(Y0)

Let µ1 = E(Y1), µ0 = E(Y0). The efficient influence curve for the relative risk is given by

D∗(O) =
1

µ0

(
A

g(1,W )
(Y −Q(A,W )) +Q(1,W )

)
−µ1

µ2
0

(
1− A

1− g(1,W )
(Y −Q(A,W )) +Q(0,W )

)

Q(gn)−Q(g) ≈ P0

[
A

µ0
(Y −Q)

(
1

gαn(1)
− 1

gα(1)

)
− µ1

µ2
0

(1−A)(Y −Q)

(
1

gαn(0)
− 1

gα(0)

)]

≤ P0

[
A

µ0
(Y −Q)

(
gα(1)− gαn(1)

g2
α(1)

)
− µ1

µ2
0

(1−A)(Y −Q)

(
gα(0)− gαn(0)

g2
α(0)

)]

= P0(Y −Q)

[
A

µ0

(
gα(1)− gαn(1)

g2
α(1)

)
− µ1

µ2
0

(1−A)

(
gα(0)− gαn(0)

g2
α(0)

)]
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= P0(Y −Q)

[
A

µ0

(
−d
dα
gα(1)(αn − α)

g2
α(1)

)
− µ1

µ2
0

(1− A)

(
−d
dα
gα(0)(αn − α)

g2
α(0)

)]

= P0(Y −Q)

[
A

µ0

(
−d
dα
gα(1)

g2
α(1)

)
− µ1

µ2
0

(1− A)

(
−d
dα
gα(0)

g2
α(0)

)]
(αn − α)

= −P0(Y −Q)

[
A

µ0

(
d
dα
gα(1)

g2
α(1)

)
+
µ1

µ2
0

(1− A)

(
d
dα
gα(1)

g2
α(0)

)]
(αn − α)

= −P0(Y −Q)
d

dα
gα(1)

[
1

µ0

(
A

g2
α(1)

)
+
µ1

µ2
0

(
1− A
g2
α(0)

)]
(αn − α)

By substitution

Q(gn)−Q(g) ≈ 1

n

n∑
i=1

−P0(Y −Q)
−→
W

[
Agα(0)

µ0gα(1)
+

(1− A)µ1

µ2
0

gα(1)

gα(0)

]
· ICα

=
1

n

n∑
i=1

−P0(Y −Q)
−→
W

[
Agα(0)

µ0gα(1)
+

(1− A)µ1

µ2
0

gα(1)

gα(0)

]
· ICα

Estimated as
ÎCg(Oi) = âRR · ÎCαn(Oi),

âRR = − 1

n

n∑
i=1

(Yi − Q̂(Wi, Ai))
−→
Wi

(
Ai

gαn(0 | Wi)

µ̂0gαn(1 | Wi)
+ (1− Ai)

µ̂1

µ̂2
0

gαn(1 | Wi)

gαn(0 | Wi)

)
.

ÎCαn(Oi) is defined in (A.1).

A.2.3 Log relative risk

ψlogRR0 = log(E(Y1)/E(Y0)))

Let µ1 = E(Y1), µ0 = E(Y0). The efficient influence curve for the log relative risk is given by

D∗(O) =
1

µ1

(
A

g(1,W )
(Y −Q(A,W )) +Q(1,W )− µ1

)
− 1

µ0

(
1−A

1− g(1,W )
(Y −Q(A,W )) +Q(0,W )− µ0

)
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Q(gn)−Q(g) ≈ P0

[
A

µ1
(Y −Q)

(
1

gαn(1)
− 1

gα(1)

)
− 1−A

µ0
(Y −Q)

(
1

gαn(0)
− 1

gα(0)

)]

≤ P0

[
A

µ1
(Y −Q)

(
gα(1)− gαn(1)

g2
α(1)

)
− 1−A

µ0
(Y −Q)

(
gα(0)− gαn(0)

g2
α(0)

)]

= P0(Y −Q)

[
A

µ1

(
−d
dα gα(1)(αn − α)

g2
α(1)

)
− 1−A

µ0

(
−d
dα gα(0)(αn − α)

g2
α(0)

)]

= −P0(Y −Q)

[
A

µ1

(
d
dαgα(1)

g2
α(1)

)
+

1−A
µ0

(
d
dαgα(1)

g2
α(0)

)]
(αn − α)

= −P0(Y −Q)
d

dα
gα(1)

[
1

µ1

(
A

g2
α(1)

)
+

1

µ0

(
1−A
g2
α(0)

)]
(αn − α)

≈ 1

n

n∑
i=1

−P0(Y −Q)
−→
W

[
Agα(0)

µ1gα(1)
+

(1−A)µ1

µ0

gα(1)

gα(0)

]
· ICα

This is estimated as

ÎCg(Oi) = âlogRR · ÎCαn(Oi),

âlogRR = − 1

n

n∑
i=1

(Yi − Q̂(Wi, Ai))
−→
Wi

(
Ai

gαn(0 | Wi)

µ̂1gαn(1 | Wi)
+ (1− Ai)

µ̂1

µ̂0

gαn(1 | Wi)

gαn(0 | Wi)

)
ÎCαn(Oi) is defined in (A.1).

A.2.4 Odds ratio

ψOR0 =
EY1/(1− EY1)

EY0/(1− EY0)

Let µ1 = E(Y1), µ0 = E(Y0). The efficient influence curve for the odds ratio is given by

D∗(O) =
1− µ0

µ0(1− µ1)2

(
A

g(1)
(Y −Q(1,W ) +Q(1,W )− µ1

)
− µ1

µ2
0(1− µ1)

(
1− A
g(0)

(Y −Q(0,W ) +Q(0,W )− µ0

)

Let c1 =
1− µ0

µ0(1− µ1)2
,

c2 =
µ1

µ2
0(1− µ1)
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Q(gn)−Q(g) ≈ P0(Y −Q)

[
Ac1

(
1

gαn(1)
− 1

gα(1)

)
− (1− A)c2

(
1

gαn(0)
− 1

gα(0)

)]
≤ P0(Y −Q)

[
Ac1

(
gα(1)− gαn(1)

gα(1)2

)
− (1− A)c2

gα(0)− gαn(0)

gα(0)2

]
= P0(Y −Q)

[
Ac1

−d
dα
gα(1)

gα(1)2
− (1− A)c2

d
dα
gα(1)

gα(0)2

]
(αn − α)

≈ −P0(Y −Q)
−→
W

[
Ac1

gα(0)

gα(1)
+ (1− A)c2

gα(1)

gα(0)

]
· ICα

Estimated as,

ÎCg(Oi) = âOR · ÎCαn ,

âOR =
1

n

∑
i=1

n(Yi − Q̂(Wi, Ai))
−→
Wi

[
Aiĉ1

gαn(0,Wi)

gαn(1,Wi)
+ (1− Ai)ĉ2

gαn(1,Wi)

gαn(0,Wi)

]
.

ÎCαn(Oi) is defined in (A.1).

A.2.5 Log odds ratio

ψlogOR0 = log

(
EY1(1− EY1)

EY0(1− EY0)

)
Let µ1 = E(Y1), µ0 = E(Y0). The efficient influence curve for the log odds ratio is given by

D∗(O) =
1

µ1(1− µ1)

(
A

g0(1 | W )
(Y − Q̄0(A,W )) + Q̄0(1,W )

)
− 1

µ0(1− µ0)

(
1− A

g0(0 | W )
(Y − Q̄0(A,W )) + Q̄0(0,W )

)

Let c3 =
1

µ1(1− µ1)
,

c4 =
1

µ0(1− µ0)
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Q(gn)−Q(g) ≈ P0(Y −Q)

[
Ac3

(
1

gαn(1)
− 1

gα(1)

)
− (1− A)c4

(
1

gαn(0)
− 1

gα(0)

)]
≤ P0(Y −Q)

[
Ac3

(
gα(1)− gαn(1)

gα(1)2

)
− (1− A)c4

gα(0)− gαn(0)

gα(0)2

]
= P0(Y −Q)

[
Ac3

−d
dα
gα(1)

gα(1)2
− (1− A)c4

d
dα
gα(1)

gα(0)2

]
(αn − α)

≈ −P0(Y −Q)
−→
W

[
Ac3

gα(0)

gα(1)
+ (1− A)c4

gα(1)

gα(0)

]
· ICα

Estimated as,

ÎCg(Oi) = âlogOR · ÎCαn ,

âlogOR =
1

n

∑
i=1

n(Yi − Q̂(Wi, Ai))
−→
Wi

[
Aiĉ3

gαn(0,Wi)

gαn(1,Wi)
+ (1− Ai)ĉ4

gαn(1,Wi)

gαn(0,Wi)

]
.

ÎCαn(Oi) is defined in (A.1).
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Appendix B

tmle: An R Package for Targeted Maximum
Likelihood Estimation of Binary Point
Treatment Effects

Targeted maximum likelihood estimation (TMLE) represents an approach for construction of
an efficient double-robust semi-parametric substitution estimator of a target feature of the data
generating distribution, such as a variable importance or causal effect parameter. tmle is a newly
developed R package that implements TMLE for estimation of the effect of a binary treatment at
a single point in time on an outcome of interest, controlling for a user supplied covariates: the
additive treatment effect, the relative risk, the odds ratio. The package allows that the outcome is
subject to missingness, and that one experimental unit contributes repeated records of the point-
treatment data structure, thereby allowing this package to analyze longitudinal data structures. The
TMLE of the direct effect of the binary treatment, controlling for a binary intermediate variable
on the pathway from treatment to the outcome, is also implemented. Relevant factors of the like-
lihood may be modeled or fit by user-specified commands, or fit data-adaptively internally. Effect
estimates, variances, p values, and 95% confidence intervals are provided by the software.

B.1 Introduction
Research in fields such as econometrics, biomedical research, and epidemiology can involve

collecting data on a sample from a population in order to assess the population or group level
effect of a treatment, exposure, or intervention on a measurable outcome of interest. Obtaining
an unbiased and efficient estimate of the statistical parameter of interest necessitates accounting
for potential bias introduced through model misspecification or informative treatment assignment
or missingness in the outcome data. Due to the curse of dimensionality, parametric estimation
approaches are not feasible for high dimensional data without restrictive simplifying modeling
assumptions. However, high dimensional data is increasingly common, for example in datasets
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used for longitudinal studies, comparative effectiveness research (administrative databases), and
genomics. Targeted maximum likelihood estimation (TMLE) is an efficient, double robust, semi-
parametric methodology that has been successfully applied in these settings (van der Laan and
Rubin, 2006a; van der Laan et al., 2009). The development of the tmle package for the R statistical
programming environment (Team, 2010) was motivated by the growing need for a user-friendly
tool for effective semi-parametric estimation.

TMLE can be applied across a broad range of problems to estimate association and causal effect
parameters. The methodology readily incorporates domain knowledge, user-specified parametric
models, and optionally allows flexible data-adaptive estimation. The tmle package provides an
implementation of TMLE for estimating a variety of binary point treatment effect parameters.
These parameters include the additive treatment effect for continuous outcomes, risk difference,
risk ratio and odds ratio parameters for binary outcomes. The package allows that the outcome is
subject to missingness, where it is assumed that the missingness mechanism satisfies the missing
at random assumption. Controlled direct effect estimation, estimating the effect of treatment on
the outcome at different levels of a (binary) intermediate variable, is also available. (Pearl (2010a)
provides a discussion of controlled direct effects.)

Causal effect estimation provides a useful context for describing TMLE methodology and the
software implementation. The counterfactual framework discussed in Rubin (1974) frames the
estimation of causal effects as a missing data problem. Suppose we are interested in assessing the
marginal difference in an outcome, Y , if everyone received treatment (A = 1) vs. everyone not
receiving treatment (A = 0). If we could actually measure the outcome under both scenarios for
all individuals, the full data would be given as XFull = (Y1, Y0,W ), where Y1 is the counterfactual
outcome corresponding to treatment (A = 1), Y0 is the counterfactual outcome under no treatment
(A = 0), and W is a vector of baseline covariates. A causal quantity of interest could be the
additive causal effect E0Y1 − E0Y0. The effect estimate could easily be calculated as the average
difference over all n subjects in XFull, 1/n

∑n
i=1 Y1i − Y0i. Parameters of the full data easily

shed light on questions of scientific interest, however in reality the full data can never be known.
For each subject we can only observe the outcome corresponding to the actual treatment received.
The unobserved counterfactual outcome is missing. Assume the observed data consists of n i.i.d.
copies of O = (W,A, Y = YA) ∼ P0, where P0 is an unknown underlying probability distribution
in a model space M, that gives rise to the data, W is a vector of measured baseline covariates,
A is a treatment variable, and Y is the outcome observed under treatment assignment A. By
assuming the coarsening at random (CAR) assumption, and a positivity assumption, it follows that
the distribution of Ya can be identified from the observed data distribution P0 (see e.g., van der
Laan and Robins (2003), for general identifiability results for CAR-censored data structures). In
this special example, CAR is equivalent with assuming the randomization assumption that A is
independent of X , given W .

Non-parametric structural equation modeling (NPSEM) provides an alternative paradigm for
defining causal effect parameters (Pearl, 2010b). The following system of equations expresses the
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knowledge about the data generating mechanism:

W = fW (UW ),

A = fA(W,UA),

Y = fY (W,A,UY ),

where UW , UA, and UY are exogenous error terms. This NPSEM allows the definition of counter-
factual outcomes Ya = fY (W,a, UY ), corresponding with the intervention that sets the treatment
node A equal to a, and thereby identifies the causal quantity of interest, such as E0Y1 − E0Y0.
The functions fW , fA, fY may be unspecified, one might assume exclusion restriction assump-
tions, or one might even assume parametric forms. The randomization assumption corresponds
with assuming that UA is independent of UY .

The NPSEM approach and the counterfactual framework offer distinct formulations for dis-
cussing causality, yet each provides an equivalent foundation for defining causal effects as pa-
rameters of statistical distributions. With these definitions in place, we turn our focus to ob-
taining an efficient, unbiased estimate of the statistical target parameter. Section B.2 provides
background on causal effect estimation and defines parameters commonly reported in the liter-
ature, the additive effect (risk difference), risk ratio (relative risk), and odds ratio. This section
introduces TMLE methodology and describes influence curve-based inference. Section B.3 dis-
cusses the implementation in the tmle package, including a brief discussion of data-adaptive es-
timation using the Super Learner package, (Polley, 2010), and extensions to missing outcome
data and controlled direct effect estimation. An application of the tmle program to the analy-
sis of a publicly available dataset is provided in Section B.4. Extensions to the methodology
and the software are described in the Discussion section. An FAQ provides answers to com-
monly asked questions regarding the practical application of TMLE using the software provided
in the R package. tmle is available for download from the Comprehensive R Archive Network at
http://cran.r-project.org/web/packages/tmle/.

B.2 Targeted maximum likelihood estimation

B.2.1 Causal inference
Consider the additive effect of a binary treatment on a binary outcome with no missingness.

This parameter is defined non-parametrically on full data XFull as ψF0 = E0Y1 − E0Y0, and iden-
tified from the observed data O = (W,A, Y = YA) as Ψ(P0) = E0[E0(Y | A = 1,W ) − E0(Y |
A = 0,W )] under the randomization assumption and positivity assumption. Here ψF0 denotes the
causal quantity of interest, and ψ0 is the statistical counterpart that can be interpreted as the causal
effect ψF0 under these assumptions. We note that Ψ represents a mapping from a probability dis-
tribution of O into a real number, and Ψ is called the target parameter mapping. The statistical
association measure ψ0 can be interpreted as the additive causal effect of A on Y providing two
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assumptions are met: 1) Coarsening at random (CAR) is an assumption of conditional indepen-
dence between treatment assignment and the full data given measured covariates, A ⊥ X | W
(Heitjan and Rubin (1991), Jacobsen and Keiding (1995), Gill et al. (1997)). This assumption in-
dicates there are no unmeasured confounders of the effect of treatment on the outcome, i.e., UA is
independent of UY in the NPSEM. 2) The positivity assumption, also known as the experimental
treatment assignment assumption (ETA) is that ∀a ∈ A, P (A = a | W ) > 0. In other words, if no
observations within some stratum defined by W receive treatment at level A = a, then the data do
not provide sufficient information to compare the effect of treatment at level a with no treatment,
or with treatment at some other level. The parameter is borderline identifiable when there is a
practical ETA violation, ∃a ∈ A : P (A = a | W ) < ε, for some small ε relative to sample size.

A number of estimation procedures have been applied to causal effect estimation, including
the maximum likelihood-based G-computation estimator (Robins, 1986), the inverse-probability-
of-treatment-weighted (IPTW) estimator (Hernan et al., 2000b; Robins, 2000b), the augmented
IPTW estimator (Robins and Rotnitzky, 2001; Robins et al., 2000; Robins, 2000a). Scharfstein
et al. (1999) presented a doubly robust regression-based estimator for the treatment specific mean,
later extended to time-dependent censoring (Bang and Robins, 2005). See Rosenblum and van der
Laan (2010) for a discussion of TMLE in relation to these other estimators. TMLE is a maximum
likelihood based G-computation estimator that targets the fit of the data generating distribution
towards reducing bias in the parameter of interest, generally one particular low-dimensional fea-
ture of the true underlying distribution. TMLE is more generally referred to as Targeted Minimum
Loss-based Estimation. At its core, in the above application, TMLE methodology involves fluctu-
ating an initial estimate of the conditional mean outcome, and minimizing a loss function to select
the magnitude of the fluctuation. The targeting fluctuation is parameter-specific. The loss function
is not unique, but must be chosen with care to ensure that the fluctuated estimate is a parametric
sub-model M ∈ M, and that the risk of the loss function is indeed minimized at the truth. Tar-
geted maximum likelihood estimation corresponds with choosing the negative log-likelihood loss
function.

An orthogonal factorization of the likelihood of the data is given by

L(O) = P (Y | A,W )P (A | W )P (W ).

We refer to P (W ) and P (Y | A,W ) as the Q portion of the likelihood, Q = (QW , QY ), and
P (A | W ) as the g portion of the likelihood. Further define

Q̄0(A,W ) ≡ E0(Y | A,W ),

g0(1 | W ) ≡ P0(A = 1 | W ),

where the subscript ‘0’ denotes the truth, and a subscript ‘n’ will denote the corresponding quantity
estimated from data. P0(W ) is estimated by the empirical distribution on W , the non-parametric
MLE. Q̄n(A,W ) can be obtained by regressing Y on A and W . For some applications g0 may be
known, (e.g., treatment assignment in randomized controlled trials), so that consistent estimation
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will be guaranteed. It has been shown that estimation of g0 leads to increased efficiency even when
the true g0 is known (van der Laan and Robins, 2003).

The additive treatment effect, also referred to as the risk difference when the outcome is binary,
is defined non-parametrically asE(Y1)−E(Y0). If we let µ1 = E(Y1) and µ0 = E(Y0), the additive
treatment effect (ATE) risk ratio (RR) and odds ratio (OR) parameters for binary outcomes are
defined as:

ψATE0 = µ10 − µ00 ,

ψRR0 =
µ10

µ00

(B.1)

ψOR0 =
µ10/(1− µ10)

µ00/(1− µ00)
.

Because each of these parameters is a function of (µ0, µ1), understanding TMLE of the param-
eters µ1 and µ0 provides a sound basis for understanding the estimation of each point treatment
parameter available in the package. Notice that these parameters are functions of the Q portion
of the likelihood. TMLE of a target parameter Ψ(Q0) for a specified target parameter mapping
Ψ() is a substitution estimator of the form Ψ(Q∗n) obtained by plugging in an estimator Q∗n of
Q0 into the parameter mapping. The g portion of the likelihood is an ancillary nuisance parame-
ter. If O = (W,A,∆,∆YA), then the g-factor factorizes into a treatment assignment mechanism,
g(A | W ) and a missingness mechanism, π(∆ = 1 | A,W ), where ∆ = 1 indicates the outcome
is observed, ∆ = 0 indicates the outcome is missing. We will first discuss TMLE estimation
when there is no missingness, then show how missingness is incorporated into the estimation pro-
cedure, and describe estimation of the population mean outcome when a subset of outcomes are
unmeasured.

B.2.2 TMLE methodology
TMLE is a regular, asymptotically linear (RAL) estimator. Theory tells us that an efficient

RAL estimator solves the efficient influence curve equation for the target parameter up to a second
order term (Bickel et al., 1997). Hampel (1974) introduces influence curves and discusses their
role in robust estimation. Briefly, an influence curve is a function that describes the behavior of an
estimator under slight perturbations of the empirical distribution. For asymptotically linear estima-
tors, the empirical mean of the influence curve of the estimator provides the linear approximation
of the estimator. As a consequence, the variance of the influence curve provides the asymptotic
variance of the estimator. Among all influence curves for RAL estimators, the one having the
smallest variance is known as the efficient influence curve. Because TMLEs solve the efficient
influence curve equation, and the efficient influence curves satisfies a so called double robustness
property, TMLEs are guaranteed to be asymptotically unbiased if either Q0 or g0 is consistently
estimated. When both are consistently estimated, TMLEs achieve the semi-parametric efficiency
bound, under appropriate conditions.
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TMLE is a two-stage procedure. In stage one an initial estimate of the conditional mean out-
come, Q̄0

n(A,W ) is obtained. The second stage targets the initial estimate to reduce any residual
bias in the estimate of the parameter of interest. This is accomplished by fluctuating the initial
estimate in a manner that exploits information in the g portion of the likelihood, designed to ensure
that the TMLE solves the efficient influence curve estimating equation.

Given Q̄0
n and gn, fluctuating the initial density estimate is straightforward. The direction

of the fluctuation determined by the efficient influence curve equations for the target parameters
E(Y1), E(Y0) is given by

H∗0 (A,W ) =
I(A = 0)

g(0 | W )
, (B.2)

H∗1 (A,W ) =
I(A = 1)

g(1 | W )
. (B.3)

The TMLE targeting step for updating Q̄0
n with respect to (EY1, EY0), EY0, and EY1 is as follows:

logit(Q̄1
n(A,W )) = logit(Q̄0

n(A,W )) + ε0H
∗
0 (A,W ) + ε1H

∗
1 (A,W ),

logit(Q̄1
n(0,W )) = logit(Q̄0

n(0,W )) + ε0H
∗
0 (0,W ),

logit(Q̄1
n(1,W )) = logit(Q̄0

n(1,W )) + ε1H
∗
1 (1,W ).

Maximum likelihood (glm) is used to fit the fluctuation parameter ε = (ε0, ε1) that controls
the magnitude of the fluctuation. The MLE for ε is obtained by a logistic regression of Y on
H∗0 (A,W ), H∗1 (A,W ), with offset logit(Q0

n(A,W )). This fluctuation procedure is generally iter-
ated until convergence. For some parameters, including E(Y1) and E(Y0), one-step convergence
is guaranteed, hence Q̄∗n(A,W ) = Q̄1

n(A,W ).
The magnitude of ε determines the degree of perturbation of the initial estimate, and is a direct

function of the degree of residual confounding. For example, when Q̄0
n is correct, ε is essentially 0.

It is important to avoid overfitting Q̄0
n, as this minimizes the signal in the residuals needed for bias

reduction. Section B.2.4 describes how carrying out the fluctuation on the logit scale even when Y
is continuous ensures that the parametric sub-model stays within the defined model space,M.

As discussed above, estimating two parameters E(Y1) and E(Y0) allows us to calculate any of
the causal effect parameters available for estimation in the tmle package. The TMLE estimate of
E(Y1) is given by the G-computation formula EW,n(Q̄∗n(1,W )) = 1

n

∑n
i=1 Q̄

∗
n(1,Wi), where the

marginal distribution of W is estimated with the empirical distribution of W1, . . . ,Wn. The esti-
mate ofE(Y0) has an analogous definition,EW,n(Q̄∗n(0,W )) = 1

n

∑n
i=1 Q̄

∗
n(0,Wi). The implemen-

tation in the tmle package targets these two parameters simultaneously. It is also possible to target
them separately, or to directly target any specific parameter. For example, the covariate used to tar-
get the ATE parameter is given by H∗ATE(A,W ) = I(A = 1)/(g(1 | W )− I(A = 0)/g(0 | W ),
where g(0 | W ) = 1 − g(1 | W ). However, simultaneous targeting eliminates duplicate calcula-
tions, so is sensible from a computational perspective.



APPENDIX B. TMLE PACKAGE 132

B.2.3 Missing outcomes
One problem that frequently arises when analyzing study data is that the outcome may not have

been recorded for some observations. A naive estimation approach that considers only complete
cases is inefficient, and will be biased when missingness is informative.

Causal inference parameters Consider a randomized clinical trial measuring the effect of treat-
ment on subsequent mortality in which a subset of people in the treatment group become ill, drop
out of the study, and die shortly after being lost to follow-up. Because they are no longer in the
study, outcome data is missing for these subjects. Further assume that members of the treatment
group who remain healthy tend to stay in the study. If observations with missing outcomes are
discarded before analyzing the data the estimate of the effect of treatment on mortality will be
overly optimistic. An unbiased estimator of the treatment effect must be able to account for this
informative missingness.

TMLE does this by exploiting covariate information to reduce both bias and variance. The
data are represented in a more general data structure given by O = (W,A,∆,∆Y ), where ∆ = 1
indicates the outcome is observed, ∆ = 0 indicates the outcome is missing, and ∆Y = Y when
∆ = 1, 0 otherwise. The g-factor of the likelihood now further factorizes into gA, the treatment
mechanism described above, and g∆, the missingness mechanism: g0 = P (A | W )P (∆ | A,W ).
The identifiability result for E0Ya is now given by E0Q̄0(a,W ), where Q̄0(a,W ) = E0(Y | A =
a,W,∆ = 1). The clever covariate for targeting the initial estimator of Q̄0(A,W ) = E0(Y |
A,W,∆ = 1) with respect to EYa is now given by I(A = a,∆ = 1)/g(A,∆ | W ). Thus the
above clever covariates are now multiplied by ∆/P (∆ = 1 | A,W ). The regression Q̄0 is now
estimated based on the complete observations only.

Population mean outcome Another common research question is determining the marginal
mean outcome when some observations are missing the outcome, in the absence of any treat-
ment assignment. The mean outcome conditional on observing the outcome is a biased estimate
of the marginal mean outcome (E(Y1) parameter) when missingness is informative. TMLE can
reduce this bias when missingness is a function of measured baseline covariates.

B.2.4 Logistic loss function for continuous outcomes
One obvious approach to applying TMLE with continuous outcomes is to carry out the pro-

cedures described above on the linear scale instead of the logit scale, and indeed this has been
done successfully in the past. However, particularly when there are ETA violations, this approach
can lead to violations of the requirement that the fluctuations of the initial density estimate is a
parametric sub-model of the observed data modelM. A linear fluctuation provides no assurance
that the targeted estimate of the conditional mean remains within the parameter space. Gruber and
van der Laan (2010a) demonstrates that the negative log-likelihood for binary outcomes is also a
valid loss function for continuous outcomes bounded between 0 and 1, and provides a procedure
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for mapping Y , a continuous outcome bounded by (a, b), into Y ∗, a continuous outcome bounded
by (0,1): Y ∗ = (Y − a)/(b− a). Estimates on the Y ∗ scale are easily mapped to their counterparts
on the original scale:

EY0 = EY ∗0 (b− a) + a

EY1 = EY ∗1 (b− a) + a.

Parameter estimates ψATEn , ψRRn , ψORn are then calculated as in (B.1).

B.2.5 Controlled direct effect estimation
The tmle package also offers controlled direct effect (CDE) estimation. Suppose that in addi-

tion to affecting outcome Y directly, treatment A gives rise to an intermediate random variable,
Z, that itself has an effect on Y . For example, consider the effect of exercise, A, on weight, Y .
Exercise burns calories, directly causing weight loss. Exercise may also affect caloric intake (Z),
which has its own effect on weight. One research question might be, How does weight change
with daily exercise? A second researcher might ask, What is the effect of daily exercise on weight
if caloric intake remains unchanged? The former requires estimation of the full treatment effect of
A on Y , as described above. The latter is an example of a causal effect mediated by an intermediate
variable, and requires a modified estimation approach.

The data consists of n i.i.d. copies of O = (W,A,Z,∆,∆Y ) ∼ P0, and the likelihood now
factorizes as L(O) = P (Y | ∆ = 1, Z, A,W )P (∆ = 1 | Z,A,W )P (Z | A,W )P (A | W )P (W ).
Each factor can again be estimated from the data. The tmle package restricts controlled direct
effect estimation to mediation by a binary variable, Z. Continuing the weight loss example, Z = 0
could indicate caloric intake is unaffected by the exercise program, whileZ = 1 indicates increased
caloric intake. CDE estimates calculated at each level of Z provide answers to the second research
question posed above.

The first stage of the modified TMLE procedure estimates Q̄0(Z,A,W ). In the second stage
Q0
n(Z,A,W ) is fluctuated separately at each level of Z, using modified covariates:

H∗0 (∆, Z, A,W ) =
I(Z = z)

gZ(z | A,W )

I(A = 0)

gA(1 | W )

1

g∆(1 | Z,A,W )
,

H∗1 (∆, Z, A,W ) =
I(Z = z)

gZ(z | A,W )

I(A = 0)

gA(0 | W )

1

g∆(1 | Z,A,W )
.

Here gZ refers to the conditional distribution of Z given A and W , and ε is fit using observations
where ∆ = 1 and Z = z, by default using a logistic fluctuation model.

B.2.6 Inference
Theory tells us that the difference between a parameter estimate obtained from an RAL es-

timator and the true parameter value converges at a root-n rate to a Normal limit distribution,
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√
n(ψn − ψ0)

D→ N(0,Σ), where Σ is the covariance matrix of the (possibly multi-dimensional)
parameter. In practice, this provides a means for estimating the variance of the estimator as the
variance of the empirical influence curve divided by the number of i.i.d. units of observation, n.
The parameter-specific influence curves are given below. Asymmetric confidence intervals for the
RR and OR parameters are constructed on the log scale, based on the influence curves for the
log(RR) and log(OR), respectively.

ICEY1(O) =
∆

g0∆
(1 | A,W )

(Y − Q̄0(A,W )) + Q̄0(1,W )− ψEY1
0

ICATE(O) =

(
A

g0A(1 | W )
− 1− A
g0A(0 | W )

)
∆

g0∆
(1 | A,W )

(Y − Q̄0(A,W ))

+ Q̄0(1,W )− Q̄0(A,W )− ψATE0

IC logRR(O) =
1

µ10

(
A

g0A(1 | W )

∆

g0∆
(1 | A,W )

(Y − Q̄0(A,W )) + Q̄0(1,W )− µ10

)
− 1

µ00

(
1− A

1− g0A(1 | W )

∆

g0∆
(1 | A,W )

(Y − Q̄0(A,W )) + Q̄0(0,W )− µ00)

)

IC logOR(O) =
1

µ10(1− µ10)

(
A

g0A(1 | W )

∆

g0∆
(1 | A,W )

(Y − Q̄0(A,W )) + Q̄0(1,W )

)
− 1

µ00(1− µ00)

(
1− A

1− g0A(1 | W )

∆

g0∆
(1 | A,W )

(Y − Q̄0(A,W )) + Q̄0(0,W )

)
Each IC is evaluated by substituting estimates of the true unknown quantities in the above for-

mulas, µ̂0, µ̂1, gnA , gn∆
, and in particular, the targeted estimate Q̄∗n(A,W ) in place of Q̄0(A,W ). A

conservative estimate of the variance of the parameter estimate is given by σ̂2 = var(ÎC(O))/n,
where n is the number of i.i.d. units of observation. If the dataset contains repeated measures
on independent subjects, the subject is considered the unit of observation, and the unit’s contribu-
tion to the influence curve is equal to the mean contribution for that subject. Ninety-five percent
confidence intervals are calculated as ψn(Q∗n) ± 1.96σ̂/

√
n for the ATE and EY1 parameters, and

exp(log(ψn(Q∗n)) ± 1.96σ̂/
√
n) for the RR and OR parameters, with σ̂ equal to the estimated

standard error of the log(RR) or log(OR) estimates, respectively.
For CDE parameters a term reflecting the contribution of estimating Z is incorporated into each
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influence curve:

ICEY1(O) =
I(Z = z)

g0Z (Z | A,W )

∆

g0∆
(1 | A,W )

(Y − Q̄0(A,W )) + Q̄0(1,W )− ψEY1
0

ICATE(O) =
I(Z = z)

g0Z (Z | A,W )

(
A

g0A(1 | W )
− 1− A
g0A(0 | W )

)
∆

g0∆
(1 | A,W )

(Y − Q̄0(A,W ))

+ Q̄0(1,W )− Q̄0(A,W )− ψATE0

IC logRR(O) =
1

µ10

(
I(Z = z)

g0Z (Z | A,W )

A

g0A(1 |W )

∆

g0∆(1 | A,W )
(Y − Q̄0(A,W )) + Q̄0(1,W )− µ10

)
− 1

µ00

(
I(Z = z)

g0Z (Z | A,W )

1−A
g0A(0 |W )

∆

g0∆(1 | A,W )
(Y − Q̄0(A,W )) + Q̄0(0,W )− µ00)

)

IC logOR(O) =
1

µ10(1− µ10)

(
I(Z = z)

g0Z (Z | A,W )

A

g0A(1 |W )

∆

g0∆(1 | A,W )
(Y − Q̄0(A,W )) + Q̄0(1,W )

)
− 1

µ00(1− µ00)

(
I(Z = z)

g0Z (Z | A,W )

1−A
g0A(0 |W )

∆

g0∆(1 | A,W )
(Y − Q̄0(A,W )) + Q̄0(0,W )

)

B.3 Implementation in the tmle package
The TMLE algorithm is given by:

1. Obtain Q̄0
n(A,W ), an initial estimate of P (Y | A,W )

2. Estimate g factors needed to fluctuate Q̄0
n(A,W ) to obtain targeted estimate, Q̄∗n(A,W )

3. Apply target parameter mapping Ψ to targeted estimate Q∗n using the empirical distribution
as estimator of the distribution of W .

The tmle function determines which causal effect parameter(s) to estimate based on the values of
arguments specified by the user. The data arguments Y, A, W, Z, Delta, are the outcome, binary
treatment, baseline covariates, mediating binary variable, and missingness indicator, respectively.
Only (Y, W) must be specified. If A is NULL or has no variation (all A are set to 1, or all A are set
to 0), the EY1 parameter estimate is returned. When A is specified, the additive treatment effect
is evaluated. If Y is binary, the RR and OR estimates are returned as well. If Z is not NULL, the
parameter estimates are calculated at each level of Z ∈ (0, 1). Each of these estimation procedures
refers to Delta to take missingness into account, but missingness does not dictate which parameters
are estimated.
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When the logistic fluctuation is specified for continuous outcomes, an internal pre-processing
step maps Y ∈ [a, b] to Y ∗ ∈ [0, 1] prior to calling the estimateQ function to carry out Step 1.
estimateQ returns an estimate of Q̄0

n(A,W ) on the scale of the linear predictors needed for Step
2: the logit scale for a logistic fluctuation, linear scale for a linear fluctuation. In Step 2, the
estimateG function is called to estimate each factor of the nuisance parameter required for calcu-
lating H∗0 (A,W ) and H∗1 (A,W ), ε is fit using maximum likelihood, and Q̄∗n(A,W ) is calculated.
The calcParameters function estimates each parameter value, variance, p value, and constructs a
95% confidence interval. The function returns these estimates, along with values for Q̄0

n(A,W ),
Q̄∗n(A,W ), and each factor of g. The package provides flexible options for estimating each rel-
evant factor of the likelihood, allowing the procedure to be tailored to the needs of the analysis.
These options and their effects are described next.

B.3.1 Stage 1: Estimating Q̄
The goal of the first stage of the TMLE procedure is to fit Q̄0 well. A target parameter estimate

based on an initial fit that explains a large portion of the variance in Y generally has smaller
variance than a target parameter based on a poor initial fit, and a good initial fit also minimizes
the reliance on the targeted bias reduction step. Several arguments to the tmle function provide
flexibility in how the initial fitted values are obtained:

• Q optional fitted values for Q̄0
n(A,W )

– Q an n × 2 matrix, (E(Y | A = 0,W ), E(Y = 1 | A = 1,W )) For CDE estimation,
these values should be fitted with Z = 0

– Q.Z1 an n× 2 matrix of values fitted with Z = 1, only used for CDE estimation

• Qform optional regression formula of the form Y A + W, suitable for call to glm

• Qbounds optional truncation levels for Y and Q̄0
n(A,W ) for continuous outcomes

• Q.SL.library optional vector of prediction algorithms for data-adaptive estimation

If values are provided for all of the first three arguments to the function, user-specified values, (Q,
Q.Z1), take precedence. Data-adaptive estimation only occurs if both Q and Qform are NULL. The
Q argument allows the user to incorporate any estimation procedure into tmle by running that pro-
cedure externally, obtaining fitted (predicted) values for each counterfactual outcome, Q̄0

n(0,W )
and Q̄0

n(1,W ) and supplying these to the tmle procedure. In essence, this option provides unlim-
ited flexibility in obtaining the required stage one estimate of the conditional mean of Y given A
and W .

The code snippet below shows a simple application of the tmle function using user-specified
parametric models to estimate Q̄ and g. The models are passed as arguments to the function, along
with data arguments (Y,A,W ). Default settings imply there is no missing outcome data and that



APPENDIX B. TMLE PACKAGE 137

observations are i.i.d. A sample of size n = 250 is drawn from a data generating distribution with
true parameter values ψATE0 = 0.216, ψRR0 = 1.395, ψOR0 = 2.659.

R> n <- 250
R> W <- matrix(rnorm(n * 3), ncol = 3)
R> colnames(W) <- paste("W", 1:3, sep = "")
R> A <- rbinom(n,1, plogis(0.6 * W[,1] + 0.4 * W[,2]
+ + 0.5 * W[,3]))
R> Y <- rbinom(n,1, plogis(A + 0.2 * W[,1] + 0.1 * W[,2]
+ + 0.2 * W[,3]ˆ2))

Next parameters are estimated based on correctly specified models for the Q and g factors of the
likelihood.

R> result.Qcgc <- tmle(Y, A, W, family = "binomial",
+ Qform = Y˜ A + W1 + W2 + W3, gform = A ˜ W1 + W2 + W3)
R> result.Qcgc
Additive Effect

Parameter Estimate: 0.21157
Estimated Variance: 0.0044941

p-value: 0.0015995
95% Conf Interval: (0.080178, 0.34297)

Relative Risk
Parameter Estimate: 1.3966

p-value: 0.0025233
95% Conf Interval: (1.1244, 1.7347)

log(RR): 0.33406
variance(log(RR)): 0.012232

Odds Ratio
Parameter Estimate: 2.5554

p-value: 0.0025418
95% Conf Interval: (1.3895, 4.6995)

log(OR): 0.93822
variance(log(OR)): 0.096621

tmle can provide data-adaptive estimation when the Super Learner package is installed Polley
(2010). Super learning is an ensemble method that relies on proven oracle properties of V-fold
cross validation to ascertain an optimal convex combination of estimates obtained from application
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of each algorithm in a user-specified library of prediction algorithms (van der Laan et al., 2007).
Because one cannot know in advance which class of procedures will be most successful for a given
problem, an important aspect of super learning is ensuring that the library of prediction algorithms
includes a variety of approaches that search over a large space of possible models. For example,
one might include a collection of pre-specified regression models (main terms, main terms plus
key interaction terms) along with other flexible modeling approaches, such as non-linear models,
cubic splines, and classifiers.

The following example applies super learning to the data generated above in order to estimate
Q̄0. The user-specified library contains three prediction algorithms: 1) SL.glm is a main terms
regression of Y on A and W , 2) SL.step calls the step function distributed with the base R in-
stallation, (Team, 2010), with forward and backward moves incorporating quadratic terms, and 3)
SL.DSA.2 calls the DSA function in the suggested DSA package that uses deletion and addition
moves to search over a space of polynomial models that is in this case constrained to order two
(Neugebauer and Bullard, 2010). In contrast to the AIC criterion used by the step procedure, DSA
model selection is based on cross-validation (Sinisi and van der Laan, 2004).

R> result.QSLgc <- tmle(Y, A, W, family="binomial",
+ Q.SL.library = c("SL.glm", "SL.step", "SL.DSA.2"),
+ gform = A ˜ W1 + W2 + W3,)
R> summary(result.QSLgc)
Initial estimation of Q
Procedure: SuperLearner
Model:
Y ˜ SL.glm_All + SL.step_All + SL.DSA.2_All

Coefficients:
SL.glm_All 0
SL.step_All 0

SL.DSA.2_All 1

Estimation of g (treatment mechanism)
Procedure: user-supplied regression formula
Model:
A ˜ (Intercept) + W1 + W2 + W3

Coefficients:
(Intercept) -0.01499195

W1 0.7587852
W2 0.2719946
W3 0.3438723
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Estimation of g.Z (intermediate variable assignment mechanism)
Procedure: No intermediate variable

Estimation of g.Delta (missingness mechanism)
Procedure: No missingness

Bounds on g: ( 0.025 0.975 )

Additive Effect
Parameter Estimate: 0.20889
Estimated Variance: 0.0045076

p-value: 0.0018622
95% Conf Interval: (0.077302, 0.34049)

Relative Risk
Parameter Estimate: 1.3884

p-value: 0.0027473
95% Conf Interval: (1.1201, 1.721)

log(RR): 0.32814
variance(log(RR)): 0.012006

Odds Ratio
Parameter Estimate: 2.5336

p-value: 0.0030238
95% Conf Interval: (1.3705, 4.6839)

log(OR): 0.92965
variance(log(OR)): 0.098287

These parameter estimates and variances using super learning are very similar to those obtained
using the correctly specified regression model for Q̄, signaling that data-adaptive estimation was
successful at discovering the true regression of Y onA andW . tmle’s default library for estimating
Q̄0 contains the three algorithms explicitly included in the example. However, a larger library that
incorporates additional estimation procedures is recommended. If the SuperLearner package is
not available, in the absence of a user-specified regression formula Q̄0 will be estimated using a
main terms regression of Y on A and W .

The summary method for tmle objects lists the procedures used to estimate the relevant Q and
g factors of the likelihood. The super learner is a convex combination of predicted values. When
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super learning is used, coefficients reported in the summary reflect each prediction algorithm’s
contribution. A coefficient of 0 signifies that incorporating predictions from that algorithm does
not substantially improve the overall fit given the predictions from algorithms with non-zero coef-
ficients, however, this should not be interpreted as a goodness-of-fit measure. For example, if two
model selection algorithms arrive at the same model, at most one will have a non-zero coefficient.

It is important to avoid overfitting Q̄0
n, as this minimizes the signal in the residuals needed

for bias reduction. The tmle function provides an option for guarding against overfits by cross-
validating the initial super learner estimate of Q̄0. The independent units of observation are evenly
divided among V folds. Observational units are identified by the id variable, an optional argument
to the function that if not specified signifies observations are i.i.d. A super learner fit is obtained
for each leave-one-fold-out subset of the data, and used to obtain predicted values for observations
in the omitted fold. This procedure is invoked by setting cvQinit = TRUE.

B.3.2 Stage 2: Targeting the initial estimate
The estimate of the parameter of interest can be biased when Q̄0

n does not consistently esti-
mate Q̄0. van der Laan and Rubin (2006a) provides a theoretical foundation for constructing a
parametric sub-model with fluctuation parameter ε that reduces residual bias that is a function of
measured covariates. As mentioned above, this fluctuation involves estimating nuisance parameter
g0. Several arguments to the tmle function give the user control over the estimation procedure. For
estimating the treatment mechanism, gA:

• g1W: the conditional probability of receiving treatment given baseline covariates W

• gform: a logistic regression model specification

• g.SL.library: a super learner library of prediction algorithms

• gbound: a value indicating symmetrical upper and lower bounds on predicted conditional
treatment assignment probabilities (gbound, 1− gbound)

The first three of these are similar to the options available for estimating Q̄0. The gbound argument
is a tuning parameter, conforming with the theoretical guideline that gn(A,W ) must be bounded
away from 0 and 1 (van der Laan and Robins, 2003). Bounding will have no effect when no
treatment assignments are rare within strata defined by W , e.g., gbound < gn < (1 − gbound).
However, when there is sparsity in the data causing a practical ETA violation, some treatment
assignment probabilities will be quite small. As a consequence, some values of H∗(A,W ) will
be very large for a subset of observations. This lack of identifiability leads to estimates with high
variability. Bounding gn away from (0,1) tends to have a beneficial effect on the variance of the
resulting estimate. However, truncation can introduce bias, necessitating a trade-off. These effects
are most pronounced when the linear fluctuation is used for continuous outcomes, and largely
mitigated by fluctuating on the logit scale (the default).
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Though the logistic fluctuation is strongly recommended, the package also provides a linear
fluctuation option for continuous outcomes by setting the argument fluctuation = ‘linear’. Bound-
ing gn very close to (0,1) typically has little effect on TMLEs obtained using the logistic fluctuation.
In contrast, estimates obtained using the linear fluctuation are particularly sensitive to the level of
bounding of gn.

The next coding example illustrates typical effects of different choices of bounds on gn(A | W )
on estimation when there is sparsity in the data. The true value for the additive treatment effect for
the simulated data is ψ0 = 1. Conditional treatment assignment probabilities gA(1 | W ) range from
0.02 to 0.99. The user-supplied regression model for estimating Q̄0 is deliberately misspecified so
that estimation is forced to rely on g. The regression formula for g(1 | W ) is correctly specified,
but practical ETA violations lead to estimates with increased bias and variance when the linear
fluctuation is employed, as compared to the logistic fluctuation when bounds on gn are smaller
than (0.05, 0.95). Parameter estimates are obtained for 250 samples of size 250.

R> n <- 250
R> niterations <- 250
R> gbd <- c(0, 0.01, 0.025, 0.05, 0.1)
R> ngbd <- length(gbd)
R> result.Qmgc <- matrix(NA, nrow = niterations, ncol = 2 * ngbd)

R> for(i in 1:niterations){
+ W <- matrix(rnorm(n * 3), ncol = 3)
+ colnames(W) <- paste("W", 1:3, sep = "")
+ logitA <- 0.5 + 0.9 * W[,1] + 0.5 * W[,2] + 0.7 * W[,3]
+ A <- rbinom(n,1, plogis(logitA))
+ Y <- A + 4 * W[,1] + 4 * W[,2] + 3 * W[,3] + rnorm(n)
+ result.Qmgc[i,] <- c(unlist(sapply(gbd, function(x){
+ tmle(Y, A, W, Qform = Y ˜ A, gform = A ˜ W1 + W2 + W3,
+ fluctuation = "linear", gbound = x)$estimates$ATE[1]})),
+ unlist(sapply(gbd, function(x){
+ tmle(Y, A, W, Qform = Y ˜ A, gform = A ˜ W1+ W2 + W3,
+ fluctuation = "logistic", gbound = x)$estimates$ATE[1]})))
+ }

Results in table B.1 indicate that the bias of estimates arising from the logistic fluctuation is robust
with respect to the choice of bound on gn, until the bias introduced by bounding at (0.1, 0.9) begins
to make a sizable contribution to the MSE. The default bound is (0.025, 0.975).

Recall that the logistic fluctuation for continuous Y requires that Y be bounded by (a, b). When
these upper and lower bounds on Y are not provided by the user via the Qbounds argument, the
default is to use the range of the observed outcomes. This may be problematic when there is
missingness in the outcome if the distribution of observed outcomes is truncated with respect to
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Linear Logistic
gn bounds Bias Var MSE Bias Var MSE

(0, 1) −0.52 0.96 1.24 −0.03 0.11 0.11
(0.01, 0.99) −0.40 0.56 0.72 −0.03 0.11 0.11

(0.025, 0.975) −0.21 0.23 0.28 −0.03 0.09 0.09
(0.05, 0.95) 0.03 0.07 0.07 0.07 0.05 0.06

(0.1, 0.9) 0.41 0.07 0.24 0.41 0.07 0.24

Table B.1: A comparison of the effect of bounding gn using a logistic or linear fluctuation in a
sparse data setting.

the true distribution of the outcome, thus using domain knowledge to specify bounds on Q̄n is
encouraged.

B.3.3 Examples with missing outcomes
The Delta argument to the tmle function is used to indicate which observations have missing

outcomes, with Delta = 1 indicating that the outcome is observed. The tmle function ignores the Y
value for observations having ∆ = 0, so in practice, no special value is reserved to signify missing,
and Yi = 0 for observation i is understood to be a valid value when ∆i = 1. When not explicitly
specified, Delta = 1 is assigned to all observations, signifying that no observations have missing
outcomes.

When Delta = 0 for one or more observations, the missingness mechanism is estimated from
the data, or can be user-supplied. When there is missingness, bounds on gn apply to the product
gn(∆, A,W ) = gA(A | W ) ∗ g∆(∆ | A,W ).

The same options are available for estimating g∆ as for estimating gA. The relevant arguments
to the tmle function are:

• pDelta1 the conditional probability of being observed given treatment assignment A and
baseline covariates.

• g.Deltaform can be used to specify a regression formula for the regression of ∆ on A and
W .

• g.SL.library specifies a super learner library of prediction algorithms. This same library is
used for all factors of g.

When there is no mediating variable, Z, optional argument pDelta1, if specified, should be an n×2
matrix, P (∆ = 1 | A = 0,W ), P (∆ = 1 | A = 1,W ). When there is a mediating variable, an
n× 4 matrix is required: P (∆ = 1|Z = z, A = a,W ), with (z, a) set to (0, 0), (0, 1), (1, 0), (1, 1),
respectively.
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Covariates H∗0 (A,W ) and H∗1 (A,W ) for this more general data structure are given by:

H∗0 (∆, A,W ) =
I(A = 0)

gA(0 | W )

1

g∆(1 | A,W )
,

H∗1 (∆, A,W ) =
I(A = 1)

gA(1 | W )

1

g∆(1 | A,W )
,

and reduce to (B.2) and (B.3), respectively, when there is no missingness. The fluctuation parame-
ter ε is fit on observations where ∆ = 1. Counterfactual outcomes are obtained for all observations.
Accounting for missingness increases efficiency, thus this is beneficial even when missingness is
non-informative.

Population mean outcome example The population mean outcome parameter, E(Y1), is es-
timated when there is no variation in the treatment assignment for all observations, or when A
= NULL, and ∆ = 0 for some observations. In the next example the true parameter value is
ψEY1

0 = 0. Q̄0
n is based on a deliberately misspecified regression model that is fit on observations

where the outcome is observed, i.e., those for which ∆ = 1. Because a correctly specified regres-
sion model is used to estimate P (∆ = 1 | W ), bias is expected to be on the order of 1/

√
n. At

sample size n = 250 used in the example, this is approximately 0.06.

R> set.seed(1960)
R> n <- 250
R> W <- matrix(rnorm(n * 3), ncol = 3)
R> colnames(W) <- paste("W",1:3, sep = "")
R> Delta <- rbinom(n, 1, plogis(0.8 + 0.3*W[,1]))
R> Y <- 2 * W[,1] + 4 * W[,2] + 3 * W[,3]+ rnorm(n)
R> Y[Delta == 0] <- NA
R> result.EY1 <- tmle(Y,A = rep(1, n), W, Qform = Y ˜ W3,
+ g.Deltaform = Delta ˜ W1, Delta = Delta)
R> result.EY1
Population Mean

Parameter Estimate: -0.043213
Estimated Variance: 0.15326

p-value: 0.9121
95% Conf Interval: (-0.81052, 0.72409)

B.3.4 Controlled direct effect estimation example
The first stage of the modified TMLE procedure for CDE estimates Q̄0(Z,A,W ). All estima-

tion options remain available to the user: user-specified values, user-specified parametric model,
super learning, cross-validated super learning. Optional user supplied values must be specified
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at each level of Z for each subject: the Q argument is used to pass in an n × 2 matrix of user-
determined values for Q̄0

n(Z = 0, A,W ). The Q.Z1 argument is used to pass in an n× 2 matrix of
user-determined values for Q̄0

n(Z = 1, A,W ).
In the second stage Q0

n(Z,A,W ) is fluctuated separately for Z = 0 and Z = 1. This requires
estimation of an additional nuisance parameter, g∆ = P (∆ = 1 | Z = z, A = a,W )). The pZ1
argument allows the user to pass in an n × 2 matrix of conditional probabilities P (Z = 1 | A =
0,W ), P (Z = 1 | A = 1,W ). Alternatively, a valid regression formula can be supplied via the
g.Zform argument. User-supplied values for the conditional mean of Z given A and W may be
specified as an n× 2 matrix, pZ1 = (P (Z = 1 | A = 1,W ), P (Z = 1 | A = 0,W ))

The following example illustrates CDE estimation in conjunction with missingness in the out-
come. A sample of size 1000 is generated, and approximately 25% of outcomes are set to missing.

R> n <- 1000
R> W <- matrix(rnorm(n*3), ncol = 3)
R> colnames(W) <- paste("W", 1:3, sep = "")
R> A <- rbinom(n,1, plogis(0.6*W[,1] + 0.4*W[,2] + 0.5*W[,3]))
R> Z <- rbinom(n,1, plogis(0.5 + A))
R> Y <- A + A*Z+ 0.2*W[,1] + 0.1*W[,2] + 0.2*W[,3]ˆ2 + rnorm(n)
R> Delta <- rbinom(n,1, plogis(Z + A))
R> pDelta1 <- cbind(rep(plogis(0), n), rep(plogis(1), n),
+ rep(plogis(1), n), rep(plogis(2), n))
R> colnames(pDelta1) <- c("Z0A0", "Z0A1", "Z1A0", "Z1A1")
R> Y[Delta == 0] <- NA

The regression formula for estimation of Q̄0 is deliberately misspecified in the next call to tmle.
Super learning is used to estimate the gA factor of the likelihood, but the specified library contains
only one algorithm, SL.glm, which performs a main terms regression of the outcome on all avail-
able covariates. Estimates of gZ and g∆ are passed in to the function. Parameter estimates are
reported at each level of Z. The true parameter values are ψATE0Z0

= 1, ψATE0Z1
= 2.

R> result.Z.missing <- tmle(Y, A, W, Z, Delta = Delta,
+ pDelta1= pDelta1, Qform = Y ˜ 1, g.SL.library = "SL.glm")
R> result.Z.missing
Controlled Direct Effect

----- Z = 0 -----
Additive Effect

Parameter Estimate: 1.1094
Estimated Variance: 0.034713

p-value: 2.6122e-09
95% Conf Interval: (0.74419, 1.4745)

----- Z = 1 -----
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Additive Effect
Parameter Estimate: 1.9056
Estimated Variance: 0.011937

p-value: <2e-16
95% Conf Interval: (1.6914, 2.1197)

B.4 FEV data analysis
TMLE was applied to assess the marginal effect of smoking on forced expiratory volume (FEV)

using data originally introduced in Rosner (1999b) and discussed in Kahn (2005). The data consists
of 654 observations with five variables recorded for each subject: age (years), fev (liters), ht (height
in inches), sex (0=female, 1=male), smoke (0=non smoker, 1=smoker) (Rosner, 1999a). FEV is a
measure of pulmonary function that is related to body size and lung capacity. Thus, the relationship
between smoking and FEV is likely to be confounded by height, age and sex, all of which influence
FEV, and are associated with smoking status. Though height does not have an obvious link to
smoking behavior, it may serve as a proxy for health and social factors that influence the decision
to smoke. The data are from an observational study of children 3 -19 years old. No children
younger than nine years old smoked cigarettes. Therefore, any attempt to estimate a marginal
effect of smoking on FEV adjusted for age incurs a theoretical ETA violation due to a complete
lack of support in the data. For this reason we restrict the analysis to the subset of data containing
n = 439 observations on subjects ages 9 - 19.

The observed data consists of n i.i.d. copies ofO = (W,A, Y ) ∼ P0, whereW = (age, ht, sex),
A is an indicator of smoking status, and Y is a continuous measure of FEV. The outcome of interest
is the marginal additive effect of smoking on FEV, defined as EW [E(Y | A = 1,W )−E(Y | A =
0,W )]. If the true regression of Y on A and W were a main terms linear regression, this parameter
would correspond to the coefficient in front of the treatment term. However, there is no reason to
believe that is the case, and an estimate of the treatment effect based on this misspecified model
for Q̄ is likely to be biased. The double-robustness property of TMLE tells us that even given a
misspecified Q̄0

n, the targeting step can reduce this bias, given a consistent estimate of the treatment
mechanism. In the next example we deliberately supply a main terms model for Q̄ that we assume
is misspecified, and use super learning to estimate gA(1 | W ). The algorithms included in the
super learner library are:

• SL.glm main terms logistic regression of A on W (Team, 2010)

• SL.step stepwise forward and backward model selection using AIC criterion, restricted to
second order polynomials (Team, 2010)

• SL.DSA.2 DSA algorithm searching over second order polynomials, substitution and addi-
tion moves enabled (Neugebauer and Bullard, 2010)

• SL.loess local fitting of a polynomial response surface (span = 0.75) (Team, 2010)
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• SL.caret random forest, with data-adaptively selected value for mtry parameter (Kuhn et al.,
2010)

• SL.bart a classifier based on a Bayesian sum-of-trees model (ntree = 300) (Chipman and
McCulloch, 2010)

• SL.knn, SL.knn20, SL.knn40, SL.knn60 k-nearest neighbor algorithm, with neighborhood
size, k, set to 10, 20 ,40, 60 (Venables and Ripley, 2002a).

R> fev <- read.table("fev.dat",
+ col.names = c("age", "fev", "ht", "sex", "smoke"))
R> fev <- fev[fev$age >= 9,]
R> g.SL.library <- c("SL.glm", "SL.step", "SL.DSA.2","SL.loess",
+ "SL.caret", "SL.bart", "SL.knn", "SL.knn20",
+ "SL.knn40", "SL.knn60")
R> smoke.Qmis <- tmle(Y = fev$fev, A = fev$smoke,
+ W = fev[ ,c(1, 3, 4)],
+ Qform = Y ˜ ., g.SL.library = g.SL.library)
R> smoke.Qmis
Additive Effect

Parameter Estimate: -0.099653
Estimated Variance: 0.0045071

p-value: 0.13771
95% Conf Interval: (-0.23124, 0.031932)

The parameter estimate after targeting is 1/n
∑n

i=1 Q̄
∗
n(1,Wi) − Q̄∗n(0,Wi) = −0.10. Users are

often curious about how targeting affects the parameter estimate. The function returns initial (un-
targeted) predicted values, Q̄0

n(0,W ), Q̄0
n(1,W ). This allows the user to calculate a parameter

estimate of -0.16 based on the initial estimate of Q̄0 as follows:

R> EY0 <- mean(smoke.Qmis$Qinit$Q[,"Q0W"])
R> EY1 <- mean(smoke.Qmis$Qinit$Q[,"Q1W"])
R> EY1 - EY0
[1] -0.1574331

Recall that TMLE is asymptotically efficient when both Q̄0 and g0 are estimated consistently. In
the next example, instead of starting with a deliberately misspecified model for Q̄0, super learning
is applied to estimate Q̄0. The prediction algorithm library includes all the algorithms specified for
the estimation of g that do not require a binary outcome (everything except the k-nearest neigh-
bor algorithms), and also a linear regression of Y on A and W that includes main terms and all
interactions of A and W . We begin by defining a new super learner wrapper function, SL.glm.int:
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R> SL.glm.int <- function(Y.temp, X.temp, newX.temp, family,...){
+ Aint <- paste("A", colnames(X.temp)[-c(1, 2)], sep = "*")
+ form <- paste("Y.temp ˜ Z + ", paste(Aint, collapse = "+"))
+ fit.glm <- glm(form, data = data.frame(Y.temp, X.temp),
+ family = family)
+ out <- predict(fit.glm, newdata = newX.temp,
+ type = "response")
+ fit <- list(object = fit.glm)
+ foo <- list(out = out, fit = fit)
+ class(foo$fit) <- c("SL.glm.int")
+ return(foo)
+ }
R> Q.SL.library <- c("SL.glm", "SL.glm.int", "SL.DSA.2",
+ "SL.loess", "SL.caret", "SL.bart")

The library for estimating Q̄0 is passed into the tmle function. Because the predicted values for
gA(1 | W ) are not affected by altering the method used to estimate Q̄0, this next example illustrates
a way to reduce computation time by passing in the treatment assignment probabilities obtained
from the previous invocation of the function.

R> smoke.QSL <- tmle(Y = fev$fev, A = fev$smoke,
+ W = fev[, c(1,3,4)], Q.SL.library = Q.SL.library,
+ g1W = smoke.Qmis$g$g1W)
R> smoke.QSL
Additive Effect

Parameter Estimate: -0.11117
Estimated Variance: 0.0038465

p-value: 0.073065
95% Conf Interval: (-0.23272, 0.010393)

When a data-adaptive approach to estimating Q̄0 is used, the parameter estimate of -0.11 is quite
close to -0.10, the estimate obtained when TMLE was forced to incorporate the misspecified model
for Q̄0

n. Super learning also improves efficiency.
Stage one of the TMLE procedure is concerned with explaining the most variance in the out-

come. Because ψ0 is a function of the Q portion of the likelihood, improving the estimate of Q̄0

tends to improve the estimate of ψ0. However, estimation procedures for Q̄0 have a different goal
with respect to the bias/variance tradeoff than do estimators of ψ0. TMLE’s goal is to optimize the
tradeoff with respect to ψ0. Though each TMLE point estimate indicates that smoking decreases
FEV, neither estimate is statistically significant. Both analyses are shown in order to highlight
salient aspects of the procedure. In practice, the use of super learning and the algorithms included
in the library should be a priori specified.
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B.5 Discussion
The tmle package was designed to provide a flexible, easily customizable implementation of

TMLE for binary point treatment effects. A novice user has only to supply the data, while advanced
users can control the estimation procedure by overriding default specifications and/or supplying
values for Q̄0

n and gn from any external estimation procedure. The function can internally estimate
any factor of the likelihood with user-supplied linear or logistic regression models, or can use super
learning to obtain data-adaptive fits. Covariate information is exploited to reduce bias and increase
efficiency in estimates when outcome data is missing. Influence curve-based inference readily
accounts for repeated measures. Additionally, the ability to incorporate data-adaptive machine
learning techniques while still providing valid inference is a desirable feature of TMLE.

Future extensions to the package include incorporating external weights on observations, and
providing TMLE for marginal structural models. Additional loss functions and fluctuation mod-
els that increase robustness with respect to outliers and sparsity are under development. TMLE
applications to estimate causal effects of multiple time-point interventions while controlling for
time-dependent covariates is under development.

Another open area of research is finding an optimal strategy for nuisance parameter estimation.
van der Laan and Gruber (2010) presents a theorem on collaborative double robustness of the
efficient influence curve that sheds light on this problem. The theorem indicates that depending
on the difference (Qn − Q0), in addition to g0 there may exist one or more conditional nuisance
parameter distributions that together with the initial estimate solve the estimating equation at the
true parameter value, ψ0. The paper describes a collaborative targeted forward selection algorithm
for fitting g that is guided by the goodness-of-fit for the corresponding TMLE ofQ0, and thus on its
utility for estimating ψ0 (see also Gruber and van der Laan (2010b)). A beta version of R software
for collaborative TMLE (C-TMLE) is available (Gruber, 2010a).

B.6 Answers to some frequently asked questions (FAQ)
Is there a way to see the parameter estimates based on the initial (untargeted)
estimate Q̄0

n? The tmle function returns the initial estimates for Q̄(0,W ), Q̄(1,W ), as a matrix,
result$Qinit$Q. EY0 can be estimated as mean(Qinit$Q[,‘Q0W’]), EY1 can be estimated
as mean(Qinit$Q[,‘Q1W’]), From there any desired parameter estimate can be calculated.
For CDE estimation, result[[1]]QinitQ corresponds to values obtained when Z = 0, and
result[[2]]QinitQ corresponds to values obtained by setting Z = 1.

Can I use the package for count data (poisson regression)? Data-adaptive estimation of Q̄0 is
not available for count data, but the package can estimate the additive effect of point treat-
ment on a poisson-distributed outcome variable by supplying a formula for poisson regres-
sion (log link only), and setting family = ‘poisson’. The fluctuation will be carried out on
the logit scale, unless fluctuation=‘linear’ is specified. In this case, despite the name, pois-
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son regression will be used to fit ε. If data-adaptive estimation of Q̄0 is desired, specify
family=‘gaussian’, and externally enforce the constraint that predicted values cannot be less
than 0 by specifying Qbounds = c(0, ub), with an appropriate value filled in for the upper
bound. Although this will ensure that the initial estimate of the conditional mean outcome
is non-negative, unless the logistic fluctuation is used there is no guarantee that the targeted
estimate will respect this constraint.

Can I call the tmle function a second time without having to re-do the initial
estimation of Q̄0? Yes. Predicted values based on the initial estimate Q̄0 are returned as re-

sult$Qinit$Q (assuming the result of the first call to tmle was assigned to the variable named
result). These values can be passed into a second call to tmle by specifying a value for the
Q argument: Q = result$Qinit$Q. For CDE estimation, values for two arguments must be
supplied, Q = result[[1]]QinitQ, Q.Z1 = result[[2]]QinitQ.

Values for the conditional probabilities for treatment assignment, intermediate variable, and
missingness are also available to be examined or passed into a second invocation of the tmle
function: g1W = result$g$g1W, pZ1 = resultg.Zg1W, pDelta1 = result$g.Delta$g1W. These
are untruncated values, regardless of the value of the gbound argument.




