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ABSTRACT OF THE DISSERTATION
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Gleason grading system serves as an essential component in risk stratification and treatment

planning for prostate cancer patients. Currently, Gleason grading relies on pathologists

to examine glass tissue slides at scanning magnification and localize suspicious regions for

higher power examination. Such process can be time-consuming and prone to inter- and

intra- observer variability. Moreover, the Gleason grading system may be constrained by its

categorization system, which cannot fully capture the disease’s continuous feature spectrum.

With the recent development of digital slide scanners and the approval of using digitized

slides for primary diagnosis by the Food and Drug Administrations (FDA), large numbers

of traditional glass slides have been digitized into high resolution whole slide images (WSIs),

opening opportunities in developing computational image analysis tools to reduce patholo-

gists’ workload and potentially improve inter- and intra- observer agreement.

This research attempts to address several challenges in WSI analysis and assist the

histopathologic evaluation of prostate cancer. A tile-level semantic segmentation model,
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which explicitly leverages multi-scale representations, is first proposed to generate pixel-wise

Gleason pattern predictions and facilitate estimation of percentage of different patterns. An

expectation-maximization (EM)-based semi-supervised learning framework is then developed

to exploit information embedded in weakly-labeled samples to further improve the perfor-

mance of segmentation models, which alleviates the need of expensive pixel-wise annotations.

Besides building segmentation tools for tiles extracted from WSIs, a novel multi-resolution

multiple instance learning-based model, which can be trained with slide-level labels, is pro-

posed to identify informative regions and provide slide-level Gleason grade group prediction.

The model is developed and validated on a large-scale prostate biopsy dataset. Furthermore,

a deep learning system, which leverages histopathological features and attention-based ag-

gregation, is built to facilitate predictions of progression-free survival after radical prostatec-

tomy. Together, these models demonstrate the potential of several computer aided diagnosis

tools, and pave the road for utilizing computational approaches to optimize and improve the

efficiency of prostate cancer diagnosis and risk stratification.

iii



The dissertation of Jiayun Li is approved.

Alex Anh-Tuan Bui

Benjamin M. Ellingson

Shyam Natarajan

Corey W. Arnold, Committee Co-Chair

Denise R. Aberle, Committee Co-Chair

University of California, Los Angeles

2021

iv



Dedicated to my family and friends

Special gratitude to my beloved parents and husband

v



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Semantic image segmentation for histopathological images . . . . . . 3

1.1.2 Classification and region of interest localization for whole slide images 4

1.1.3 Progression-free survival analysis with self-supervised learning . . . . 5

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Outline of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Prostate cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Gleason grading system . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Whole slide images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Computer aided diagnosis tools for whole slide images . . . . . . . . . . . . . 13

2.2.1 Semantic image segmentation models for whole slide images . . . . . 15

2.2.2 Semi-supervised semantic image segmentation for whole slide images 20

2.2.3 Classification and region of interest detection for whole slide images . 21

2.3 Computer aided progression model . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Survival analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.2 Progression-free survival analysis with pathomics features . . . . . . . 30

3 Semantic Image Segmentation with Multi-scale Information: A Multi-scale

U-Net Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vi



3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Multi-scale U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Experiment and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.1 Additional experiments results . . . . . . . . . . . . . . . . . . . . . . 46

3.6.2 Color normalization for whole slide images . . . . . . . . . . . . . . . 48

4 Semantic Image Segmentation with Weak Labels: An EM-based Semi-

supervised segmentation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Dataset and image preprocessing . . . . . . . . . . . . . . . . . . . . 57

4.3.2 Evaluation metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.3 Details on model implementation and training . . . . . . . . . . . . . 59

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vii



5 Whole Slide Image Classification: A Multi-resolution Multiple Instance

Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.2 Attention-based MIL with instance dropout . . . . . . . . . . . . . . 69

5.2.3 Attention-based tile selection . . . . . . . . . . . . . . . . . . . . . . 70

5.2.4 Multi-resolution WSI classification . . . . . . . . . . . . . . . . . . . 71

5.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.1 Dataset and data preprocessing . . . . . . . . . . . . . . . . . . . . . 71

5.3.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.3 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.4 Model visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.5 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7.1 Detailed model architecture . . . . . . . . . . . . . . . . . . . . . . . 88

5.7.2 Blue ratio conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7.3 K means clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7.4 Different CNN architectures for the feature extractor . . . . . . . . . 92

5.7.5 Tissue region detection . . . . . . . . . . . . . . . . . . . . . . . . . . 92

viii



6 Progression-free Analysis with Pathomic Features . . . . . . . . . . . . . . 95

6.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1.1 Tumor region detection . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1.2 Histopathological feature extraction . . . . . . . . . . . . . . . . . . . 98

6.1.3 Aggregate tile-level features for progression free survival analysis . . . 101

6.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.1 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3.1 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.3 Comparison models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.7.1 Tumor detection stage model performance . . . . . . . . . . . . . . . 112

7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

ix



LIST OF FIGURES

1.1 Overview of deep learning methods developed in this dissertation to improve the

diagnosis of prostate cancer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Examples of various artifacts that exist in WSI datasets. (A) shows a slide

with pen markers and dust. (B) presents a slide that contains many bubbles

in both background and tissue regions. An example of tissue folding artifact is

demonstrated in (C). Note these images are downsampled and cropped from the

original WSIs for better visualization purposes. . . . . . . . . . . . . . . . . . . 14

2.2 Examples on different computer vision tasks. 1) Image classification models usu-

ally assign one or more labels to the whole image; 2) In addition to labels, image

detection models also output bounding boxes that localize relevant objects; 3)

The goal of semantic image segmentation is to output class labels for each pixel

within the image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 An example of a CNN architecture. CNNs usually contain multiple different

layers, such as convolutional layers, pooling layers, non-linear activation layers

and fully connected layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 An example of an FCN architecture. Different from CNNs, which output one or

more global labels for the entire image, FCNs generate predictions for each pixel.

Up-sampling convolution operations are utilized to recover spatial resolution of

features maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

x



2.5 Differences between fully supervised image classification models and MIL models

in a binary classification scenario. Orange triangles denote positive samples and

blue triangles represent negative samples. For fully supervised classification tasks,

each input data is usually associated with one or more labels as shown in the top

row. Yet, MIL models mainly deal with the scenario where a bag of images has

one or more labels as demonstrated in the bottom row. Figures are better viewed

in color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Variations in gland size. (a) shows a tile with heterogeneous Gleason grades

(G3, G4 and benign glands). Pathologist annotation mask is shown in (b). The

high-grade cancer (G4) areas are shown in red, low-grade cancer (G3) areas are

denoted as pink, benign glands are indicated by green, and stroma areas are

represented by blue. These images demonstrate the heterogeneity of glands both

between grades (e.g., glands A and C) and within the same grade (e.g., glands A

and B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Architecture of the multi-scale patch-based U-Net. The whole image was divided

into multiple non-overlapping 100 × 100 sub-tiles. To capture contextual infor-

mation, a 200 × 200 patch (framed in yellow) and a 400 × 400 patch (framed

in black) were extracted around each centered 100 × 100 patch (framed in red).

Features of different sizes were either down-sampled or up-sampled to 200× 200,

and concatenated into 64 × 200 × 200 feature maps that were input to a U-Net

model. The final layer output a 4 × 100 × 100 probability map, each channel of

which corresponded to a probability map of one class. . . . . . . . . . . . . . . . 37

xi



3.3 Segmentation masks generated by the U-Net and the multi-scale U-Net. Both

ground truth masks and predictions are overlaid on original image tiles for easy

interpretation. Colors follow the same schema illustrated in Figure 3.1. The first

row shows segmentation results for an image tile with three tissue types (benign,

stroma, and G3 cancer). The second row shows a representative image tile with

three tissue types (stroma, G3 and G4 cancer). White arrows point to border

areas that both models struggle with. . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Segmentation results comparison for the multi-scale U-Net and the U-Net. Colors

follow the same schema illustrated in Figure 3.1. The multi-scale U-Net success-

fully segmented the large irregular benign gland, while the U-Net with single scale

input did not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Segmentation results for two challenging tiles. Colors follow the same schema

illustrated in Figure 3.1. The first row shows an image tile containing G4 cancer

with poorly-formed glands. Glands were less differentiated on that tile, likely

increasing segmentation difficulty. The second row presents a tile with a mixture

of small high-grade glands and small low-grade glands. . . . . . . . . . . . . . . 43

3.6 Original histopathological images and normalized images with various methods:

Reinhard [RAG01], Macenko [MNM09] and Vahadane [VPS16]. Images before

normalization contain considerable variations as shown in the first row. Images

are better viewed in color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7 Additional examples on original and normalized histopathological images. . . . . 51

xii



4.1 Differences between coarse contours and pixel-wise annotations. (A) A whole slide

image with contour annotations visualized at 0.4x. Many tiles can be extracted

from these contours. (B) A 1200 × 1200 tile sampled from one of the G3+G3

contours on A. It only has an image-level label of G3 inherited from the contour-

level label. (C) A tile with pixel-wise annotations. The low-grade cancer (G3)

and stromal areas are indicated by pink and blue colors respectively. (Figures are

best viewed in color.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Overview of EM-based semi-supervised semantic segmentation. LMAs are gen-

erated by pathologists so that enclosed regions only contain tissues of the desig-

nated label (e.g., A ‘G3+3’ contour should contain purely G3 glands and stroma,

devoid of benign glands or glands of other grades). EM-based algorithms are ini-

tialized with a multi-scale U-Net (as shown in B) trained on small amount of tiles

with gland-level annotations, and trained on tiles with only image-level labels (as

shown in A) extracted from LMAs on histopathological slides. In the E-step, the

current model is applied to generate pixel-wise probability maps (as shown in C).

To prevent the model from degeneracy, these probability maps are updated by a

bias that has been adaptively selected by minimizing the KL divergence between

the prior stroma versus epithelium distribution and the average model output

distribution. Prediction masks (as shown in D) generated from the E-step are

utilized to optimize model parameters in the M-step. To improve training, a small

portion of patches with gland-level annotations are combined with patches with

image-level labels in each batch. The EM-based method will iteratively update

segmentation masks and model parameters until convergence. (Figures are best

viewed in color.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xiii



4.3 Segmentation masks for tiles in the test set. Stromal and benign areas are denoted

by blue and green colors respectively. The high-grade (G4, G5) and low-grade

(G3) cancer areas are represented by red and pink colors respectively. The first

column shows that the initial model delivers inferior performance in segmenting

epithelial areas, likely due to the small amount of available supervised training

data. Both EM-based models (shown in the second and third columns) are able

to improve segmentation performance using weakly labeled tiles. The best per-

formance is achieved by adding 0.3 strongly labeled tiles during EM training.

(Figures are best viewed in color.) . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Overview of the proposed whole slide image detection and classification model.

The model consists of two stages: a cancer detection stage at a low magnification

and a cancer classification stage at a higher magnification for suspicious regions.

Both stages contain a CNN feature extractor, which is trained in the MIL frame-

work with slide-level labels. Specifically, the detection stage model is trained with

all tiles extracted from slides at 5x to differentiate between benign and malignant

slides. The attention module in the detection stage model produces a saliency

map, which represents relative importance of each tile for predicting slide-level

labels. Then we use the K-means clustering method to group tiles into clusters

based on tile-level features. The number of tiles selected from each cluster is

determined by the mean of cluster attention values. Discriminative tiles iden-

tified by the detection stage model are then extracted at 10x and fed into the

classification stage model for cancer grade classification. . . . . . . . . . . . . . 68

5.2 ROC and PR curves for detection stage models on our test set and external

dataset. In the detection stage, models were trained to distinguish malignant

and benign slides with all tiles extracted from slides at 5x. . . . . . . . . . . . . 79

xiv



5.3 WSIs overlaid with attention maps generated from the first stage cancer detection

model. Pen markers as mentioned in §5.3.1 indicate cancerous regions. The first

row shows attention maps from the model with instance dropout, while the second

row is from the model without using instance dropout. Figures are best viewed

in color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Visualization of discriminative regions within tiles for TP and FP predictions.

For each slide, we selected the top three tiles with the highest attention weights

from the model, which were then forwarded to the model to generate activations

and gradients for Grad-CAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 t-SNE visualization of slide-level features. Black dots denote benign, purple dots

indicate LG, and orange dots represent HG slides. (A) is the slide-level repre-

sentations from the detection stage model. There is distinct separation between

benign and cancerous slides. (B) shows the slide-level features from the classifi-

cation stage model. We can see a better separation between LG and HG slides. 82

5.6 Confusion matrix for Gleason grade group prediction. . . . . . . . . . . . . . . . 84

5.7 Br conversion. We performed Br conversion for slides at 5x. The first two rows

demonstrate tiles from a benign slide and the bottom two show ones from a

malignant slide. (A) are 3 tiles with the highest average tile-level Br values, and

(B) are ones with the lowest Br values. We can see that the br conversion is able

to highlight regions with most nuclei. . . . . . . . . . . . . . . . . . . . . . . . . 91

5.8 Examples of tissue detection results for biopsy slides. The processing pipeline

is able to separate background and pen markers from tissue regions. This could

help downstream models focus on the relevant tissue regions. . . . . . . . . . . . 93

5.9 Additional examples of tissue detection results for prostatectomy slides. . . . . . 94

xv



6.1 Overview of the proposed PFS prediction system. The system mainly consists of

two stages: 1) tumor detection stage, where a tile-level cancer classification model

is applied to produce cancer probability map for each slide; 2) PFS prediction

stage, where representations are extracted from selected tiles and aggregated into

a slide-level feature vector for PFS prediction. The figure shows an example for

self-supervised learning-based feature extraction with the MoCo model. Rather

than using task specific labels, MoCo utilizes contrastive loss, which encourages

smaller distances between features from augmented views of the same tile, but

larger distance among other tiles. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Examples of cancer probability maps produced from the tile-level cancer classi-

fication model. Top tiles with highest cancer probabilities are selected for PFS

prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xvi



LIST OF TABLES

3.1 Model performances on segmenting prostate cancer (PCa), benign glands (BN)

and stroma (ST). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Model performances on segmenting Gleason 4 (G4), Gleason 3 (G3), benign

glands (BN), and stroma (ST). . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Overall model segmentation performances. For each model, results from 5-fold

cross validation were gathered into a overall confusion matrix. Evaluation metrics

were then computed from the confusion matrix. . . . . . . . . . . . . . . . . . . 47

3.4 Average processing time for different stain normalization methods. . . . . . . . . 49

4.1 Model performances on segmenting stroma, high-grade (HG), low-grade (LG),

and benign (BN) glands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Number of slides for each Grade group. . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Model performance on BN, LG, and HG slides classification. Cohen’s Kappa and

overall accuracy are reported in the table. To evaluate model performances on

detecting malignant slides, probabilities for LG and HG are combined. AUROC

and AP for cancer detection are also included in the table. . . . . . . . . . . . . 83

5.3 Details on models for experiments. . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Cancer detection stage model architecture. . . . . . . . . . . . . . . . . . . . . . 89

5.5 Cancer classification stage model architecture. . . . . . . . . . . . . . . . . . . . 90

5.6 Model performance on BN, LG, and HG slides classification . . . . . . . . . . . 92

6.1 Handcrafted features used for survival analysis. Tiles are first converted into HSV

color space. H channel and the binary mask for tissue regions are fed into the

Pyradiomics package is used to compute features. . . . . . . . . . . . . . . . . . 101

xvii



6.2 Concordance index (c-index) of models using different feature pipelines and ag-

gregation methods on predicting progression-free survival for prostate patients

after radical prostatectomy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xviii



ACKNOWLEDGMENTS

I would like to give my utmost appreciation and respect to my Ph.D advisor, Dr. Corey

Arnold for his continuous support, inspiration and guidance throughout my Ph.D journey.

His visions, knowledge, motivations have deeply inspired me to keep learning, improving

and growing my skills in the scientific field. I want to offer my sincere gratitude to Dr.

Denise Aberle. She inspired and encouraged me to pursue my studies and research in this

interdisciplinary area. I also want to thank my other committee members: Dr. Alex Bui, Dr.

Benjamin Ellingson, and Dr. Shyam Natarajan for their invaluable insights and feedbacks

for this research.

I want to thank Dr. William Speier for providing constructive suggestions, discussions

and help on this research. I’m extremely thankful to Dr. Anthony Sisk, Dr. William D.

Wallace, and Dr. Huihui Ye for helping me understand essential clinical knowledge related

to this dissertation, and providing labels for our research dataset. I also want to express my

appreciation to Dr. Frank Meng, Dr. Ricky Taira, and Dr. William Hsu for their mentorship

on various machine learning and informatics topics. I would like to thank Shawn Chen for

helping set up servers and providing technical support to this research. I would like to thank

Isabel Rippy and Denise Luna for helping me with administrative issues during my Ph.D

study.

I would also like to acknowledge all current and past members of computational diagnos-

tics (CDx) group and medical imaging informatics (MII) group for creating such a supportive

and collaborative culture. Special thanks to my colleagues Wenyuan Li, Johnny Ho, Karthik

Sarma, Zichen Wang, and Shiwen Shen, who have collaborated with me on many different

projects and provided valuable suggestions on my paper writing and presentations. I want

to thank Jennifer Polson, Harry Zhang, and Yiwen Meng for their help and support during

my Ph.D journey.

In addition, I want to thank our collaborators from Cedars-Sinai medical center: Dr.

xix



Arkadiusz Gertych, Dr. Beatrice Knudsen, Nathan Ing, and Zhaoxuan Ma for collaborations

on the semantic image segmentation project and sharing us annotated datasets.

I would also like to thank UCLA for offering the Graduate Division Fellowship and the

Bioengineering Fellowship for my study and research. This research is also supported by the

UCLA Radiology Department Exploratory Research Grant Program (16-0003), NIH/NCI

5P50CA092131-15:R1 and NIH/NCI R21CA220352.

Last but not least, I would like to thank my friends and my family. They have provided

emotional support and encouraged me to always stay strong and be optimistic especially

during difficult times.

xx



VITA

2011–2015 B.S. (Electronic and Information Science and Technology), Fudan Univer-

sity, Shanghai, China.

2015-2021 Graduate Student Researcher, Computational Diagnostic and Medical

Imaging Informatics lab, UCLA, Los Angeles, California.

2018 Data scientist intern (summer), Ancestry.com

2019 & 2020 Software engineer intern in machine learning (summer), Google

PUBLICATIONS

Li J, Sarma KV, Ho KC, Gertych A, Knudsen BS, Arnold CW. A multi-scale U-Net for

semantic segmentation of histological images from radical prostatectomies. In AMIA Annual

Symposium Proceedings 2017 (Vol. 2017, p. 1140).

Li J, Speier W, Ho KC, Sarma KV, Gertych A, Knudsen BS, Arnold CW. An EM-based semi-

supervised deep learning approach for semantic segmentation of histopathological images

from radical prostatectomies. Computerized Medical Imaging and Graphics. 2018 Nov

1;69:125-33.

Li J, Li W, Gertych A, Knudsen BS, Speier W, Arnold CW. An attention-based multi-

resolution model for prostate whole slide image classification and localization. In CVPR

2019 MVD Workshop.

xxi



Li J, Li W, Sisk A, Ye H, Wallace WD, Speier W, Arnold CW. A Multi-resolution Model

for Histopathology Image Classification and Localization with Multiple Instance Learning.

Computers in Biology and Medicine. 2021 Feb 10:104253.

Wang Z*, Li J*, Pan Z, Li W, Sisk A, Ye H, Speier W, Arnold CW. Hierarchical graph

pathomic network for progression free survival prediction. In submission.

Li W, Li J, Sarma KV, Ho KC, Shen S, Knudsen BS, Gertych A, Arnold CW. Path R-CNN

for prostate cancer diagnosis and gleason grading of histological images. IEEE transactions

on medical imaging. 2018 Oct 12;38(4):945-54.

Ing N, Ma Z, Li J, Salemi H, Arnold C, Knudsen BS, Gertych A. Semantic segmentation for

prostate cancer grading by convolutional neural networks. In Medical Imaging 2018: Digital

Pathology 2018 Mar 6 (Vol. 10581, p. 105811B).

Ebrahimpour MK, Li J, Yu YY, Reesee J, Moghtaderi A, Yang MH, Noelle DC. Ventral-

dorsal neural networks: object detection via selective attention. In 2019 IEEE Winter Con-

ference on Applications of Computer Vision (WACV) 2019 Jan 7 (pp. 986-994). IEEE.

Li W, Wang Z, Li J, Polson J, Speier W, Arnold CW. Semi-supervised learning based on

generative adversarial network: a comparison between good GAN and bad GAN approach.

In CVPR Workshops 2019 May 16.

Li W, Wang Z, Yue Y, Li J, Speier W, Zhou M, Arnold C. Semi-supervised learning using

adversarial training with good and bad samples. Machine Vision and Applications. 2020

Sep;31(6):1-1.

xxii



CHAPTER 1

Introduction

Prostate cancer accounts for nearly 20% of new cancer diagnosed in men, and is the most

prevalent and second deadliest non-skin cancer in men in the United States [SMJ19]. About

one man in nine will be diagnosed with prostate cancer during his lifetime and about one

in 41 will die of their disease [QBD13]. Most men are diagnosed with indolent disease

that do not require immediate definitive local therapy (i.e., surgery or radiotherapy). To

risk-stratify these patients for management, three clinical measurements are routinely used:

pre-treatment serum abundances of prostate specific antigen (PSA), tumor size and extent

as estimated by DRE or sometimes multi-parametric MRI (mpMRI), and tumor grade,

as quantified by International Society of Urological Pathology (ISUP) Grade Groups (and

formerly via the closely related Gleason score) [EZS16]. These three simple clinical features

are used to stratify newly-diagnosed prostate cancers into low-, intermediate- and high-

risk cases. Patients are treated differently depending on their risk groups, with low-risk

patients typically receiving active surveillance (AS) while high-risk patients receive definitive

local therapy (surgery or radiotherapy at equipoise), often with adjuvant hormone therapy.

Interpretation and grading of histopathological slides plays an essential role in treatment

planning for prostate cancer patients. Histopathological evaluation of prostate cancer mostly

relies on pathologists to qualitatively summarize heterogeneous histological growth patterns

with the Gleason grading system.

Currently, Gleason grading system is the current best method for prostate cancer di-

agnosis and is a critical component in clinical survival assessment and treatment planning
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[EZS16]. However, the process of looking through the large tissue slide for suspicious ar-

eas, which potentially only occupy a small percentage of the entire surface area, can be

tedious and time-consuming. Studies have also shown that the diagnosis of Gleason grades

can be prone to inter- and intra-observer disagreements [LD12, HKZ14, OSY96, SM85].

Moreover, risk stratification based on Gleason grading system may be imperfect. For ex-

ample, up to a third of men with intermediate-risk disease will suffer a relapse, indicative

of under-treatment. The Prostate Testing for Cancer and Treatment (ProtecT) trial found

no significant difference in mortality at 10 years between patients on AS and those who

underwent immediate surgery [HDL16].

1.1 Motivation

The aforementioned challenges underscore the need of computer aided diagnosis (CAD)

tools that could assist pathologists to localize suspicious regions, serve as a second reader to

potentially improve rater agreements, as well as extract and effectively aggregate underlying

representations from digitized histopathological slides for better risk stratification.

The recent development of digital whole slide scanners has enabled traditional glass

tissue slides to be scanned into high resolution images (also referred as whole slide images),

which has led to a new wave of image analysis research on this new source of “big data”.

Machine and deep learning methods have demonstrated promising results in many medical

computer vision tasks such as classification, tumor detection and segmentation [BSR19,

CGZ20, SCM20].

Yet, there are unique challenges in analyzing these whole slide images (WSIs): 1) the

size of WSIs is enormous (i.e., each WSI may contain over billions pixels); 2) tissue contents

within a WSI are highly heterogeneous; 3) available labels for WSIs are usually at global

levels and sparse (e.g., one label for billions of pixels) and how to aggregate local information

for global predictions is challenging; 4) artifacts such as stain variations, tissue folding, and
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pen markers appear frequently in WSIs.

1.1.1 Semantic image segmentation for histopathological images

Previous studies have been done in developing automated Gleason grading systems to help

improve diagnostic accuracy. A commonly used approach is to extract handcrafted features

and apply classifiers on pre-selected small image tiles, each of which only contains one tissue

class [FSJ07, DFT10, NSJ12]. Yet, the requirement of pre-extracted image tiles with ho-

mogeneous tissue content precludes their utility as computerized tools for much larger and

more heterogeneous WSIs. Semantic image segmentation methods, in contrast, could pro-

vide dense predictions for each pixel and estimate percentage distribution of different tissue

classes, which could also be used as a pre-step for quantitative histopathological features

extraction.

Training fully convolutional neural networks for histopathological images could be chal-

lenging due to the high resolution nature of these images, limited available memory of a

graphics processing unit (GPU) and limited amount of annotated samples. Two approaches

to handling this challenge are resolution downsampling and patch extraction. In down-

sampling, high resolution images are scaled down to more manageable sizes, at the cost of

the loss of potentially discriminative fine details. In patch extraction, images are divided into

(possibly overlapping) sub-patches that are then treated as independent training samples.

This approach allows for the analysis of full resolution data, but may lead to the loss of

context information. Moreover, both morphological patterns of glands and fine-grained fea-

tures of nuclei are useful in prostate histopathological image diagnosis. In this dissertation,

a multi-scale U-Net model is developed to leverage representation from different scales to fa-

cilitate pixel-wise Gleason grade prediction for histopathological images with heterogeneous

tissues. This may enable more precise estimation of percent of different Gleason patterns,

which are shown to be related to long-term outcomes [CDL07, CMS16].

Semantic segmentation models demonstrated promising results in generating dense lo-
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cal predictions of Gleason grades. However, training image segmentation models requires

large amount of samples annotated at pixel-level, which are expensive to obtain especially

in the medical domain. This may limit the performance and the transferability of segmen-

tation models. Conversely, image-level labels derived from region annotations can be easily

generated. Thus, leveraging information from large-scale weakly labeled dataset can be an

alternative way to improve semantic image segmentation. Learning with image-level labels

for segmentation can be challenging, since the relationship between labels and predictions

becomes many-to-one rather than one-to-one. Some previous work utilized pre-defined func-

tions such as maximum pooling and mean pooling to combine pixel-wise predictions, which

were generated from the fully convolutional networks, to an image-level prediction. Loss was

then backpropagated from image-level labels. In this dissertation, pixel-wise labels are con-

sidered as hidden variables and an expectation maximization (EM)-based semi-supervised

image segmentation approach, which exploits weakly annotated samples, is developed to

further improve the performance of the multi-scale U-Net model.

1.1.2 Classification and region of interest localization for whole slide images

Semantic segmentation models and tile-level classification models could provide predictions

at local levels. Yet, the diagnosis of WSIs is usually done at a global level. Therefore, how

to effectively summarize local predictions into a slide-level output that can potentially be

used as a second reader during histological evaluation remains a challenge.

In addition, though the size WSIs is very large, suspicious regions may only take up a

small portion of it with other regions being background, stroma, and benign tissues. Cur-

rently, pathologists need to scan through a histopathological slide at a relative low magnifi-

cation (e.g., 4x), searching for relevant regions on which to zoom in at a higher magnification

(e.g., 10x) and ascertain Gleason scores. Pathologists may need to zoom in and out several

times to evaluate and grade multiple suspicious regions. Therefore, a CAD tool, which could

localize areas of interest and provide slide-level predictions, can potentially save significant
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amount of time on screening benign regions or cases and looking for cancerous areas. Unlike

most previous work that relied on labor intensive labels or utilized fixed aggregation func-

tions, this dissertation presents a multi-resolution multiple instance learning model for WSI

classification and localization. The model follows the diagnosis workflow by pathologists,

which first detects cancerous areas and then zooms in on the suspicious regions to make

grade prediction.

1.1.3 Progression-free survival analysis with self-supervised learning

Gleason grading system, which is commonly used by pathologists to evaluate histopatho-

logical slides of prostate cancer patients, is a strong predictor for prostate cancer prognosis.

Yet, the grading system describes diverse tumor histology with fixed numerical categories,

and may not be able to model the complex biological signals and capture the full spectrum

of underlying various histopathological patterns. Also determining Gleason grades remains

a process that is relatively subjective and has been shown to have low inter-observer agree-

ment across pathologists [LD12, HKZ14, OSY96, SM85]. Development of CAD tools that

can provide second opinions during diagnosis is one possible way to alleviate these challenges

by improving the efficiency and reproducibility of the pathology evaluation. Computer aided

progression systems, on the other hand, could leverage quantitative features to measure un-

derlying tumor characteristics and further facilitate better risk stratification. Deep learning

method, when trained with sufficient amount of data, can be a powerful tool for extracting

discriminative visual and sub-visual representations from images. Nevertheless, obtaining a

large-scale dataset with outcome labels is non-trivial. Using hand-crafted features generated

from pre-selected regions of interest has been widely utilized in previous work for prostate

cancer progression prediction. This dissertation exploits a self-supervised learning-based

method to extract informative features from suspicious tiles and investigates different ag-

gregation methods, such as attention-based and graph convolutional neural network-based

approaches, to combine tile-level features for case-level progression-free survival prediction.
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1.2 Contributions

In a nutshell, in order to address aforementioned challenges, two types of deep learning-

based CAD tools have been developed in this work to assist the pathological evaluation of

WSIs for prostate cancer. To further facilitate characterization of heterogeneous histopatho-

logical patterns embedded in the WSIs, a deep learning system that incorporates self-

supervised learning-based representations and trainable aggregation methods is developed

for progression-free survival prediction.

Main contributions of this dissertation can be summarized in the following specific aims:

Aim1. Develop fully supervised multi-scale semantic segmentation models that produce

pixel-wise Gleason grading, using tiles from whole mount prostatectomies and cor-

responding manual annotations from pathologists.

a. To investigate different color normalization algorithms to account for color varia-

tions in WSIs due to inconsistencies in raw material preparation, staining protocols,

scanning condition, and etc.

b. To develop computational algorithms to produce dense predictions on large high-

resolution histopathological images.

c. To improve segmentation performance with multi-scale architectures such as U-

Net, which can extract deep representations both from nuclei and glandular struc-

tures.

Aim2. Develop semi-supervised approaches to leverage the full potential of large-scale

weakly-labeled clinical data for refining and further improving visual semantics

learned under Aim 1.

a. To develop an EM-based semi-supervised semantic segmentation model with a

small set of fully annotated data and a large set of weakly annotated data.
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b. To improve the semi-supervised learning by incorporating prior knowledge about

epithelium-stroma distribution as bias into EM training.

Aim3. Develop a CAD tool for whole slide image analysis that could localize suspicious

regions and produce the slide-level Gleason grade prediction, using slides from a

large-scale non-curated prostate biopsy dataset.

a. To develop a multiple instance learning-based model that can be trained with

slide-level labels instead of relying on fine-grained annotations at pixel or region

level.

b. To develop a multiple resolution model that first processes the entire slide at

relatively low magnification to detect potentially cancerous regions and then zooms

in on these areas for Gleason grading.

c. To investigate the effectiveness of attention-based informative tiles selection

method and visualize the learned model and features.

Aim4. Develop a progression-free survival prediction model to better characterize diverse

histopathological representations embedded in the WSIs by incorporating self-supervised

learning features and aggregation strategies.

a. To develop a system that can identify suspicious regions and leverage rich prog-

nostic information embedded in WSIs for better progression-free survival prediction.

b. To investigate the effectiveness of deep representations learned from a self-

supervised learning model for capturing underlying histopathological patterns.

c. To investigate different aggregation methods including attention-based and graph

convolutional neural network-based approaches for combining local information into

global representations.
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Figure 1.1: Overview of deep learning methods developed in this dissertation to improve the

diagnosis of prostate cancer.

1.3 Outline of the dissertation

Figure 1.1 presents a diagram of core models developed in this research, including two CAD

tools for semantic image segmentation and slide classification, and a deep learning model for

progression survival prediction. This dissertation is organized as follows:

Chapter 2 provides the background on prostate cancer diagnosis, risk stratification, whole

slide images, supervised and semi-supervised deep learning methods for se-

mantic image segmentation, multiple instance learning framework, survival

analysis, and selected review of related work.

Chapter 3 presents a novel multi-scale U-Net model for semantic image segmentation

of histopathological images from prostatectomy slides. The model can deal

with images with heterogeneous tissue contents and produce pixel-wise Gleason

grading.
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Chapter 4 extends the fully-supervised segmentation models with an EM-based semi-

supervised learning framework, which enables training of a segmentation model

with samples labeled at image-level. This leverages information contained

in weakly-labeled dataset and alleviates the need of expensive fine-grained

annotations for segmentation models.

Chapter 5 demonstrates a multi-resolution multiple instance learning-based model for

WSIs classification and localization. The model addresses several challenges

in analyzing the entire WSI and can be trained with slide-level labels.

Chapter 6 builds a deep learning system for progression-free survival prediction of prostate

cancer patients. The proposed pipeline detects suspicious areas, extracts dis-

criminative representations from selected regions, and aggregates tile-level in-

formation for case-level survival predictions.

Chapter 7 summarizes results of this dissertation, discusses limitations and potential fu-

ture directions.
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CHAPTER 2

Background

2.1 Prostate cancer

Prostate cancer is the most common and second deadliest non-skin cancer in American men

[SMJ19]. Most prostate cancer cases are diagnosed while the tumor is still localized to

the gland. Patients are stratified into low-, intermediate- and high-risk groups based on

clinical measurements: pre-treatment serum abundances of prostate specific antigen (PSA),

tumor size and extent as estimated by DRE or sometimes multi-parametric MRI (mpMRI),

and tumor grade obtained from transrectal ultrasound-guided (TRUS) biopsies [MBB10].

Low-risk patients typically monitored by active surveillance (AS), while patients in the high-

risk group may be intervened with radiotherapy and radical prostatectomy, with or without

hormonal therapy.

However, patients within the same risk group may still have heterogeneous prognosis,

and the over-diagnosis and over-treatment of clinically insignificant prostate cancer are also

challenges for patient management [SA12, PPP15, LBN14]. Over-diagnosis is the detection

of cancer, mostly through screening, that is asymptomatic, non-growing or slow growing

that would not benefit from treatment and would not result in cancer-related death even if

untreated. Over-treatment largely occurs because health care providers cannot definitively

discriminate non-aggressive (low-risk) and aggressive (high-risk) cancer[SA12]. As a result

of over-treatment, men receive unnecessary interventions with potentially severe side effects,

including erectile dysfunction, urinary incontinence, and infertility [KZL10]. Although over-
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diagnosis will occur with any disease that is detected by screening, the over-diagnosis rate

for prostate cancer is high and increases with age [SA12]. The 2018 Evidence Report and

Systematic Review for the US Preventive Services Task Force found that over-diagnosis was

as high as 50.4% in tumors detected as a result of screening, with 27 men needing to be diag-

nosed and potentially treated to prevent one prostate cancer death [FWD18]. Additionally,

over-diagnosis and over-treatment of low-risk cancers lead to significant healthcare spending,

with an estimated cost of $5,227,306 to prevent one prostate cancer death [SA11].

2.1.1 Gleason grading system

Histopathologic assessment is a key component for diagnosis of many diseases including

prostate cancer. The evaluation mainly relies on pathologists using visual classification

system to qualitatively describe diverse tumor histology. Gleason grading system is one

such system that is commonly used to measure tumor growth patterns for prostate cancer.

The Gleason grading system consists of five different histologic patterns from Gleason 1

(G1) indicating tissue that closely resembles normal prostate glands to Gleason 5 (G5)

representing undifferentiated carcinoma and exhibiting the highest risk for dissemination.

The final Gleason score (GS) is generated by summing the most (primary Gleason pattern)

and second most (secondary Gleason pattern) prevalent patterns in the tissue section.

A recent study proposed to revise the Gleason grading system with 5 Gleason Grade

groups (GGs) to reduce the over-treatment of low-grade prostate cancer [EZS16]: GG 1 (GS

≤ 6), GG 2 (G3 + G4), GG 3 (G4 + G3), GG 4 (GS = 8) and GG 5 (GS ≥ 9). Patients

with intermediate- to high-risk localized prostate cancer (GG ≥ 2) may be intervened with

radiotherapy and radical prostatectomy, with or without hormonal therapy.

Currently, the diagnosis of prostate cancer relies on pathologists to examine multiple

levels of biopsy cores at the scanning magnification, and identify suspicious regions for high

power examination and immunohistochemistry if necessary. This process can be tedious and

time-consuming. More importantly, some patterns, e.g., ill-defined G4 versus tangentially
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sectioned G3, are prone to inter- and intra-observer variability. Therefore, the current clinical

practice can be improved by computer aided diagnosis (CAD) tools that can function as

primary screening, to localize suspicious regions, and be utilized as a second reader for

Gleason grading.

2.1.2 Whole slide images

With the recent development of digital whole slide scanners with faster scanning speed and

higher image quality, an increasing number of traditional glass tissue slides are being digitized

into high-resolution slides. These digitized slides are referred as whole slide images (WSIs)

or histopathological slides. The Food and Drug Administrations (FDA) have approved the

use of WSIs for primary diagnosis [Gar16, HRS19, HPE15, NCJ20]. This facilitates the

wider adoption of digital slides in routine clinical workflows and opens new research oppor-

tunities for analyzing this new type of data with various machine learning models including

segmentation, detection, classification and etc [BSR19, SCM20].

Different from natural images, which usually have small to moderate sizes (e.g., the

size of CIFAR-10 images [KH09] is 32 × 32 and the average resolution for images in the

ImageNet dataset [DDS09] is 469 × 387), WSIs could contain over a billion of pixels. This

makes it almost impossible to forward the entire slide at high scanning magnification into

GPUs. Moreover, though slide labels can be easily extracted from pathology reports, contents

within a slide can be highly heterogeneous (e.g., a slide labeled as G3+G4 could contain G3

glands, G4 glands, benign glands, stroma and etc.). In addition, preparation procedures,

scanning protocols and conditions could cause many variations and artifacts such as stain

variations, pen markers, dust, air bubbles, tissue folding, tissue tear, tangential cut and

etc [TSS18, RPA13], which may potentially hamper the performance of downstream image

analysis algorithms. The enormous image size, the heterogeneity of tissues and various

possible artifacts create unique challenges on developing machine learning models for WSIs.

Some examples of artifacts of WSIs are shown in Figure 2.1. The preprocessing pipeline
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including tissue detection and stain normalization are implemented in this work to reduce

some of aforementioned artifacts. Details on stain normalization are discussed in §3.6.2 and

§5.7.5 presents details on the tissue detection pipeline.

2.2 Computer aided diagnosis tools for whole slide images

CAD tools for digital pathology are systems that are designed to assist pathologists to

interpret slides. These tools usually take digitized slides or selected regions as inputs and

output quantitative measurements such as histologic grading, cell counting and etc based

on underlying visual patterns. CAD tools could potentially 1) help reduce the diagnosis

time (e.g., a CAD tool, which can detect regions of interests, will help pathologists quickly

find diagnostic relevant regions and reduce the time spent on benign areas.); 2) operate

as a second reader and improve the reproducibility and consistency of pathology diagnosis;

3) retrieve and search for cases with similar histologic patterns (e.g., content-based image

retrieval systems).

With the increasing availability of digitized slides, development of CAD tools is becom-

ing an active research area and many tools have been developed for various disease types.

For example, Bejnordi et al evaluated algorithms for automated detection and classifica-

tion of lymph node metastases for breast cancer patients as part of the CAMELYON16

challenge [BVV17]. Top algorithms achieved comparable performances as pathologists’ di-

agnosis without time constraint. Steiner et al evaluated the potential impact of CAD tools

on helping pathologists detecting breast cancer metastasis [SML18]. The study showed that

the CAD tool significantly increased the sensitivity of detecting micrometastases and greatly

reduced the average review time per slide [SML18]. Hekler et al utilized a ResNet50 model

to classify cropped image sections from WSIs of melanomas and nevi [HUE19a]. The model

significantly outperformed the 11 pathologists regarding overall accuracy, sensitivity and

specificity [HUE19a, HUE19b]. A two-stage deep learning system developed by Nagpal et al

13



Figure 2.1: Examples of various artifacts that exist in WSI datasets. (A) shows a slide with

pen markers and dust. (B) presents a slide that contains many bubbles in both background

and tissue regions. An example of tissue folding artifact is demonstrated in (C). Note

these images are downsampled and cropped from the original WSIs for better visualization

purposes.
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was utilized to provide automated Gleason grading for prostatectomy slides [NFL19, NFT20].

Besides detecting regions and providing automated diagnosis, CADs may improve clinical

decision making by helping retrieve similar cases for references during diagnosis. Hegde et al

proposed a similar image search (SMILY) system for histopathological data, which utilized

embeddings generated from a deep ranking network to create a condensed patch representa-

tion for retrieval [HHL19, WSL14]. The system included refinement tools that enabled query

with selected regions, query with example and query with concept [CRH19, HHL19]. Future

evaluation conducted by [CRH19] demonstrated that the system could potentially open the

“black-box” for deep learning models and increase the user trust in algorithms.

Two types of CAD tools for prostate WSIs are mainly developed in this dissertation:

a tile-level segmentation tool, which could provide pixel-wise Gleason grade prediction and

facilitate the estimation of percentage of different cancer grades; a slide-level classification

and localization tool, which can highlight suspicious regions on large-scale images and be

utilized as a second reader for Gleason grading.

2.2.1 Semantic image segmentation models for whole slide images

Different from image classification, which classifies the entire image into one or more classes,

or object detection that localizes objects of interest, semantic image segmentation is a com-

puter vision task that focuses on classifying each pixel into a certain class. Figure 2.2

demonstrates differences between various computer vision tasks.

2.2.1.1 Convolutional neural network

Convolutional neural networks (CNN) is among the most promising and widely used architec-

tures for many computer vision tasks. After the CNN was initially proposed by Fukushima

[FM82], weights sharing and gradient back propagation based training strategies were in-

troduced by [WHH89]. LeCun et al developed the LeNet CNN architecture for document
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Figure 2.2: Examples on different computer vision tasks. 1) Image classification models

usually assign one or more labels to the whole image; 2) In addition to labels, image detection

models also output bounding boxes that localize relevant objects; 3) The goal of semantic

image segmentation is to output class labels for each pixel within the image.

recognition [LBB98].

CNNs, which can extract hierarchical representations from images, mainly consist of three

different types of layers: convolutional layers, pooling layers and non-linear activation layers.

Feature maps are flattened and forwarded into fully connected layers for class prediction.

Figure 2.3 shows an example for a CNN.

Convolutional layers contain parameterized kernels, also known as filters, which convolve

with inputs to extract features. Local connectivity and weight sharing are two important

characteristics of filters. Specifically, local connectivity refers to the concept that each unit

(i.e., neuron) is only connected to a small region (i.e., receptive field) of the input feature map

or image [LBB98, LBH15]. Weights of filters within a feature map are shared across different

spatial locations, which represents the concept of weight sharing [WHH89, LBB98, LBH15].

These design paradigms effectively reduce the number of model parameters and retain the

power of feature learning by exploiting the observation that pixels can be highly correlated

with neighbors and local patterns are invariant to spatial locations.

Non-linear layers apply a non-linear activation function on feature maps, which enables the
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network to learn complex non-linear functions. Most commonly used non-linear activation

functions include Sigmoid, Tanh, ReLU [Aga18] and LeakyReLU [XWC15].

Pooling layers reduce the spatial size of feature maps by aggregating representations within

a small region into one. A unit in a pooling layer connects to a local area of the previous

feature map and summarizes features with some statistical measures such as mean and max.

Therefore, the pooling layer not only reduces the number of parameters required by the

following layers but also improves the robustness of the network to small shifting.

Fully connected layers are usually incorporated at the end of the CNN and used to

produce class scores. Different from convolutional layers where each neuron only connects

to a small region, neurons in fully connected layers connect with all neurons in the previous

layer.

In addition, batch normalization [IS15], instance normalization [UVL16], dropout [SHK14]

and etc are also widely used layers that are developed to prevent model overfitting and fa-

cilitate model training. By stacking various layers, CNNs are powerful models for learning

hierarchical representations from images. The deeper layers can connect to increasingly

larger receptive fields and are able to learn high-level and class specific features, while shal-

lower layers mostly extract low-level patterns such as edge and texture features. Some most

commonly used CNN architectures include AlexNet [KSH17], VGG [SZ14], ResNet [HZR16],

DenseNet [HLV17], EfficientNet [TL19], and MobileNet [HZC17].

2.2.1.2 Fully convolutional neural network

CNNs demonstrate significantly improved performances on image classification, detection

and etc. Different from the image classification, image segmentation requires dense predic-

tions for each pixel. Applying the CNN in a sliding window manner to produce predictions

for centered pixels is a direct way to adopt CNNs for the segmentation task [CGG12, HAG14,

GGA14]. Yet, this method is not efficient since it requires multiple passes through CNNs.
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Figure 2.3: An example of a CNN architecture. CNNs usually contain multiple different

layers, such as convolutional layers, pooling layers, non-linear activation layers and fully

connected layers.

In CNNs, feature maps from the last convolutional layer are flattened and fed into the fully

connected layers with fixed number of neurons. This discards spatial information of features,

which is important in producing dense pixel-wise predictions. To keep spatial relationships,

a fully connected layer can be converted into a convolutional layer by using convolutions with

filter size equal to the feature map. For instance, instead of having a output vector of size

C × 1 to represent probabilities for C classes, fully convolutional neural networks (FCNs)

output a score map of size C × k × k, which represents class probabilities at corresponding

spatial locations.

Stacking of convolutional and pooling layers effectively increases receptive fields of filters

without inducing too much computational cost. However, these operations reduce the spatial

resolution of the input image (i.e., k may be much smaller than the input image). Direct

up-sampling the reduced size score map may lead to coarse segmentation maps [LSD15,

SLD17]. Long et al proposed [LSD15, SLD17] to use upsampling convolution, also known as

deconvolution or transposed convolution, to recover the score map resolution. In practice,

this can be achieved by using convolution with fractional stride. The transposed convolution

utilizes parameterized filters to learn how to up-sample the input feature map, and it can be

considered as a reverse operation of the convolution. Figure 2.4 demonstrates an example of
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Figure 2.4: An example of an FCN architecture. Different from CNNs, which output one or

more global labels for the entire image, FCNs generate predictions for each pixel. Up-sam-

pling convolution operations are utilized to recover spatial resolution of features maps.

FCN with up-sampling convolutions.

To further refine the segmentation output, Long et al exploited skip connections that

fused features from shallower layers with those from deeper layers [LSD15, SLD17]. Shal-

low layer features mostly capture fine-grained local patterns, while deeper layers generally

extract global features. Combining features from shallower and deeper layers enables the

models to produce local predictions in the context of global structures. The encoder-decoder

based architecture is another type of deep segmentation models, which consists of sym-

metric contracting and expansion paths [NHH15, BKC17, RFB15]. For example, SegNet

proposed by Badrinarayanan [BKC17] utilized an encoder with topologically identical struc-

ture as VGG16 and a decoder that used pooling indices for up-sampling [BKC17]. U-Net

is another encoder-decoder based architecture that was designed for segmenting microscopy

images [RFB15]. Data augmentations were excessively used to deal with limited training

data, and it significantly outperformed other models in the ISBI cell tracking challenge 2015

[RFB15]. U-Net has been utilized and extended in various biomedical image segmentation

tasks [MNA16, MBP20, DZY20]. R2U-Net, which replaced the feedforward convolutional

layers with recurrent residual modules, was developed for end-to-end nuclei segmentation

[AYT18]. Mehta et al extended the U-Net and developed a Y-Net for segmentation of breast

biopsy images, which included a separate branch for classification [MMB18]. Y-Net was con-
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ceptually similar to the Mask R-CNN model [HGD17], but didn’t require a region proposal

network or instance-level annotations.

In this work, we further extend the U-Net model by explicitly exploiting multi-scale

information for segmentation of prostate histopathological images. Details on the multi-

scale U-Net model are included in Chapter 3.

2.2.2 Semi-supervised semantic image segmentation for whole slide images

Previous methods have achieved significant performances on semantic segmentation with

FCNs. However, these models require pixel-wise labels. A large-scale dataset with expert

annotations at gland-level or pixel-level is both time-consuming and expensive to obtain,

especially in the medical domain. Several existing approaches have been developed to address

the challenge of leveraging information embedded in data with weak annotations such as

image tags, and bounding boxes [DTC16, KBF16, PC15, XZE12, XZE14, WYH15]. Learning

with weak labels is often formulated in the multiple instance learning (MIL) framework

[ATH02, DLL97, JHE17, XZE14] where training data consists of labeled bags with multiple

unlabeled instances, with the goal to predict labels of unseen bags or instances. Noisy-OR

[ZPV06], Generalized Mean (GM) [ZPV06], and log-sum-exponential (LSE) [RD00] are some

commonly utilized methods to aggregate pixel-level probabilities into image-level prediction.

For example, Pathak et al used the maximum pooling to combine predictions from heatmaps

generated by the FCN for each class [PSL14]. Jia et al developed a constrained weakly

supervised FCN model, which utilized the GM function to aggregate pixel-wise probabilities

into image-level labels in order to segment cancerous areas on histopathological images of

colon cancer [JHE17]. An aggregation function can be easily incorporated into an FCN

network, but training errors are propagated through pixels with large prediction confidence,

which can be affected by few significantly misclassified pixels [HSK16]. Thus, this type of

method could be sensitive to initialization [PSL14].

EM-based weakly-supervised approaches usually consider pixel-wise labels as hidden vari-
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ables and find the optimal solution by iteratively updating prediction masks and optimiz-

ing model parameters. Papandreou et al trained an EM model and employed a bias on

model output to encourage at least ρ percentage of each image to be assigned to fore-

ground [PCM15]. Those approaches require initialization with pre-trained models on the

large ImageNet dataset, and tuned with a weakly labeled dataset for semantic segmentation.

Different from their approaches, the EM-based segmentation model developed in this dis-

sertation starts with an undertrained model, and leverages new information embedded in a

weakly labeled dataset to improve the segmentation performance. The proposed EM-based

approach is regularized by an estimated prior distribution, and significantly improves the

segmentation performance of the initial fully supervised model.

2.2.3 Classification and region of interest detection for whole slide images

Another type of CAD tools developed in this dissertation focuses on classifying the entire

whole slide image and identifying regions of interest (ROIs). This type of model could

potentially function as primary screening, to localize suspicious regions, and be utilized as a

second reader for Gleason grading.

Classification of small homogeneous ROIs pre-selected by pathologists has been the main

focus of most early work in WSI image classification [FSJ07, DFT10, NSJ12]. Farjam et

al developed a method to segment prostate glands with texture-based features, and then

used the size and shape features of glands to classify image tiles into benign or malignant

glands [FSJ07]. Nguyen et al used structural features of prostate glands to classify pre-

extracted ROIs into benign, G3, and G4, achieving an overall accuracy of 85.6% [NSJ12]. In

the work by Gorelick et al, a two stage Adaboost model was applied to classify around 991

sub-images extracted from 50 whole-mount sections of 15 patients [GVG13]. They achieved

85% accuracy for distinguishing high-grade (G4) cancer from low-grade cancer (G3).

However, the above algorithms require a set of pre-extracted image tiles with homoge-

neous tissue contents, which may not be generalizable to larger and more heterogeneous
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images. Moreover, accurate localization of such small image tiles is a non-trivial problem

[DFT10]. Rather than attempting to classify the entire image tile, some work has addressed

this challenge by developing segmentation models that can provide pixel-wise predictions

for tiles with various tissue contents [GIM15, LSH18, LSH17, IML18, LLS18]. Li et al de-

veloped a novel region-based segmentation model (i.e., Path RCNN), with an epithelial

network head and a grading network for multi-task prediction [LLS18]. The model achieved

the state-of-the-art performance in Gleason pattern segmentation.

However, these models still analyzed tiles instead of the entire slide. With an increas-

ing number of scanned slides and computing power, research in WSI has been shifting to

slide-level analysis [NFL19, NFT20, NKG19]. Litjens et al developed a deep convolutional

neural network (CNN)-based model, which classified patches into cancer and non-cancer,

and then predicted slide-level labels by applying the patch-level classifier to every pixel in

a sliding window [LST16]. The model was trained and evaluated on 225 prostate biopsy

slides randomly selected from a cohort of 238 patients. In order to train patch-level models,

the authors collected contour-based annotations from pathologists. Nagpal et al proposed

a two-stage deep learning system for GG classification of whole slide images from prosta-

tectomy specimens [NFL19, NFT20]. The first stage model was an ensemble deep CNN,

which was trained with 112 million labeled patches extracted from 912 slides with pixel-level

annotations. In the second stage, a k-nearest-neighbor-based (KNN) model was utilized to

aggregate patch-level results.

While these papers demonstrated promising performance in slide-level predictions [NFL19,

LST16, NFT20], they required a large number of expensive pixel or patch-level manual an-

notations for training. Bulten et al utilized a semi-automated labeling technique for prostate

biopsy slide classification [BPB19, BPB20]. Specifically, the authors used a pre-trained tissue

segmentation network to identify tissue areas, within which cancerous regions were localized

by a pre-trained tumor detection network. Non-epithelial areas were excluded from identified

cancerous regions with an epithelium detection model. Detected epithelial areas from slides
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with a single Gleason pattern inherited slide-level labels and formed their initial training

set for a U-Net model. Slide-level predictions were determined by percentage of Gleason

patterns obtained from the segmentation network. However, this framework was built upon

three pre-trained preprocessing modules, each of which still required pixel-wise annotations.

2.2.3.1 Multiple instance learning

Multiple instance learning (MIL) is a type of supervised learning, which is proposed to

deal with problems with incomplete training labels. Specifically, traditional fully supervised

image classification models are usually developed on datasets where each input image has

one or more corresponding labels, while MIL framework is proposed to address the challenge

that only one label is available for a set of images as shown in Figure 2.5. MIL is firstly

proposed to solve the drug activity prediction problem [DLL97]. The drug is considered as

effective if it can strongly bind to a target binding site of a molecular, which could have more

than one possible three-dimensional shapes, known as conformations. The label about drug

effectiveness is only available for a bag of conformations [DLL97, ATH03, Amo13]. Other

examples where MIL models can be useful include image segmentation with merely image-

level labels [JHE17, XJW17], tumor detection [MGM15, MGM14, QLC16] and classification

[HSK16, TBO19, MAM17, WZY19, ITW18, YZP16].

In the MIL, each input data is considered as an instance and a label is available for a bag

of instances. The basic assumption of MIL models for binary classification is that the bag is

positive, if it has at least one positive instance. This is also referred as the standard multiple

instance assumption (SMI). MIL models can be roughly divided into two main categories:

1) bag-level approaches; 2) instance-level approaches.

Instance-level approaches. The discriminative information is considered to be at the

instance-level for instance-level methods. Specifically, models are firstly trained to classify

instances. Bag-level labels are obtained by aggregating instances scores with different func-

tions such as maximum pooling, mean pooling, noisy-or pooling, noisy-and pooling, convex
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Figure 2.5: Differences between fully supervised image classification models and MIL models

in a binary classification scenario. Orange triangles denote positive samples and blue trian-

gles represent negative samples. For fully supervised classification tasks, each input data is

usually associated with one or more labels as shown in the top row. Yet, MIL models mainly

deal with the scenario where a bag of images has one or more labels as demonstrated in the

bottom row. Figures are better viewed in color.
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maximum operator and etc [RD00, ML97, KBF16, FZ17, PC15, ZLV17, ZPV06]. Since la-

bels for individual instance are unavailable for MIL models, instance-level methods usually

utilize bag-level classification accuracy to represent instance-level performances.

Models fall in this category include axis-parallel rectangle (APR) [DLL97], diverse density

(DD) [ML97], EM-DD [ZG02], multiple instance support vector machine (MI-SVM), mi-SVM

[ATH02] and etc [Amo13]. The mi-SVM, for example, utilized an iterative training strategy

similar as the EM method. It imputed labels for instances in positive bags. The SVM model

was trained to optimize the decision boundary for each instance, and then utilized to update

instance labels. Label assignment and SVM training steps were iterated until convergence

[ATH02].

Besides predicting bag-level labels, instance-level methods can also be used for instance

classification, since these models produce predictions for individual instance before classifying

bags. However, it has been shown analytically and empirically that the accuracy at instance-

level and bag-level is not always consistent and depends on various factors such as the number

of instances in the bag and the class imbalance [CCG18, VFB16]. Instance-level models usu-

ally achieve inferior performances on bag-level classification tasks [CTL15, ITW18, CCG18].

Bag-level approaches. Different from instance-level models, which consider each instance

separately and combine instance-level scores to form bag-level predictions, bag-level methods

treat a bag of instances as a whole and directly optimize for bag-level predictions. To address

the challenge of bag-level optimization, we can measure distances between two bags (i.e., two

sets of points in k dimension) with different functions such as earth movers distance (EMD)

[ZML07] and Hausdorff distance [WZ00], which can be plugged in distance-based classifiers

such as SVM and KNN for bag-level classification. Kernel functions that computes the

similarity between bags can also be used.

Some examples of bag-level methods include MI-Graph [ZSL09], citation-KNN [WZ00],

EMD-SVM [RTG00], MIMLSVM [ZZ07], MILES [CBW06], BP-MIP [ZZ04] and etc. MILES

model, for example, projected each bag into an embedding space where the similarity of a
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bag to different instances can be represented by its’ location. 1-norm SVM was utilized to

select discriminative features and build the bag-level classifier.

Empirically, bag-based methods usually demonstrate better performance for tasks where

global (i.e., bag-level) predictions are more important. Nevertheless, they suffer from a

lack of interpretability and cannot be used for instance-level classification, since instance

predictions are often unavailable [ITW18].

Attention-based MIL model Different from pre-defined aggregation function used in

many instance-level models, Ilse et al developed an attention-based MIL model that replaces

fixed aggregation method with a parameterized two-layer neural network (i.e., an attention

module) to enable more flexible combination of instance-level information. Specifically, given

a bag of n instances Xi, i = {1, 2, 3, ..., n}, feature vectors extracted from instances V were

multiplied by weights W produced from the attention module and formed a bag-level rep-

resentation. The bag-level feature vector was then forwarded into the final classifier. The

learned attention weights can visualize the relative contribution of instances for final predic-

tion, thus, improve the interpretability of the model without sacrificing bag-level prediction

performances [ITW18]. The model was utilized to identify epithelial and malignant patches

within small tiles extracted from WSI for colon cancer and breast cancer datasets, respec-

tively [GBO08, SAT16]. However, they did not address the challenge of classifying much

larger and more heterogeneous WSIs and the potential of using attention maps for relevant

regions selection wasn’t explored in the paper. Moreover, as pointed out in the paper, learned

attention maps were sparse (i.e., not only few relevant instances had large attention weights,

while others had small values).

2.2.3.2 Multiple instance learning for medical images

The MIL paradigm assumes that only the global label for a set of instances are available,

while labels for individual instance are hidden variables. This fits well for WSI analysis,

where the global diagnosis is assigned to the entire slide containing billions of pixels and
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each pixel or tiles that occupy smaller regions on the WSI can be viewed as instances with

unknown labels. §2.2.2 reviews several previous works that used FCN and MIL for weakly-

supervised image segmentation. This section mainly focuses on MIL for WSI classification

and detection.

Sudharshana et al compared multiple MIL-based methods for differentiating benign and

malignant histopathological images, including APR, DD, MI-SVM, citation-kNN, a non-

parametric MIL method and a MIL CNN-based approach [SPS19]. Models were evaluated

on a public dataset containing 8000 biopsy images from 82 patients. The paper showed that

MIL-based models outperformed models under the single instance classification framework

[SPS19]. Tomczak et al developed an instance-level MIL model, which combined patch-level

prediction scores with permutation invariant operators such as noisy-or [HS13], integrated

segmentation and recognition operator [KRL91] and etc [TIW17], for the classification of

breast cancer biopsy slides. Campanella et al employed an instance-based approach to dis-

criminate between malignant and benign prostate WSIs [CHG19, NFT20]. They considered

the top k tiles with the highest probabilities from positive slides after applying the CNN

model as pseudo positive training samples, which were updated in each training epoch. In the

second stage, they investigated aggregation functions to produce a final slide-level prediction.

The model achieved promising performances on three different types of large-scale clinical

datasets. However, the more difficult problem of Gleason grading was not investigated in

the paper.

2.3 Computer aided progression model

Histopathological slides are known to contain rich information about disease prognosis and

are essential in disease diagnosis. Current pathology diagnosis workflow relies on grading

systems such as Gleason grading system for prostate cancer, which summarizes diverse histo-

logical patterns into certain categories. Yet, these methods may suffer from inter- and intra-
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reader variability [AMJ01]. Also studies have demonstrated that patients within the same

category may have heterogeneous outcomes [WSM20, KZL10, LIS14]. Thus, there remains

a need for developing computer aided tools that could extract quantitative histopathological

features from large-scale WSIs to enable more precise risk stratification for patients. Basic

models for survival analysis are presented in §2.3.1. §2.3.2 reviewed several related previous

work on using pathomic features for survival analysis.

2.3.1 Survival analysis

The survival analysis is to predict the expected duration until one or more events occur.

Each subject i in the dataset for survival analysis usually contains three parts (Xi, t, ei):

the event indicator ei, the covariates Xi (e.g., features extracted from WSIs of a patient)

and the time to event ti. If the event is observed, ei = 1. Otherwise, the observation is

censored ei = 0. The survival function S(t) = Pr(ei ≥ t) describes the probability of the

event hasn’t occurred at t. The hazard function, which measures the risk of events, models

the conditional probability that the event will happen within [t, t+δ) given it hasn’t occurred

before as defined in Equation (2.1).

λ(t|Xi) = lim
δ→0

Pt(t ≤ T < t+ δ)

δ
(2.1)

Larger hazard indicates higher risk of events. The standard linear regression method,

however, fails to handle right censored observations. The most commonly used method for

survival analysis is the Cox proportional hazard model (CPH) [Cox72]. One of the key

assumption for CPH is the proportional hazards function assumption. Specifically, the cox

model assumes each covariate xi has a multiplicative relationship with the hazard and the

ratio of hazards remains constant over time. The hazard function for the CPH can be defined

in Equation (2.2). It measures the hazard at t given the covariate vector Xi for subject i.

λ0 is the baseline hazard function, which denotes the hazard with all covariate equals to
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0. h(Xi) = exp(βTXi) is the risk function, which represents the relationship between the

hazard and predictors (i.e., covariates).

λ(t|Xi) = λ0 exp(β1xi,1 + β2xi,2 + ...+ βjxi,j) (2.2)

To estimate parameters β, we can maximize the partial likelihood that the event is

observed for subject i at Ti, given a set of subjects j ∈ R(Ti) where events hasn’t occurred

as shown in Equation (2.3) [Cox72, KSC16].

l(β) =
∏
i:ei=1

exp(βTXi)∑
j∈R(Ti)

exp(βTXi)
(2.3)

We can take log transform of the likelihood function and minimize the negative log partial

likelihood as defined in Equation (2.4):

l(β) = −
∑
i:ei=1

(βTXi − log
∑

j∈R(Ti)

exp(βTXj)) (2.4)

Coefficients learned with the CPH method represent effects of predictors on the hazard,

which makes the CPH model easy to interpret. However, the CPH model may fail with high

dimensional features (e.g., the number of predictors is larger than the number of samples).

This could be potentially be overcome by including penalty terms such as L1 (i.e., LASSO

regression) and L2 penalties (i.e., ridge regression) [SFH11]. The ElasticNet penalty com-

bines both L1 and L2 penalties as defined in Equation 2.5. γ ∈ [0, 1] controls the relative

strength of L1 and L2 penalties.

arg min
β
{l(β) + α(γ

∑
j

|βj|+
1− γ

2

∑
j

β2
j )} (2.5)

The CPH assumes a linear association between predictors and hazard. To address the

challenge of modeling non-linear interactions between predictors and the hazard, Faraggi
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and Simon developed an approach that utilized feed forward neural network to model non-

linear relationships [FS95]. They optimized the similar partial likelihood as the CPH, but

replaced the linear function h(X) with a neural network. Kartzman et.at., [KSC16] proposed

the DeepSurv, which extended the model [FS95] by adding hidden layers and including

modern neural network training and regularization techniques such as weight decay, ReLU

[NH10], batch normalization [IS15], dropout [SHK14], gradient clipping [PMB12] and etc.

The DeepSurv model outperformed most state-of-the-art survival models and was able to

model complex relationships between covariates and the survival.

2.3.2 Progression-free survival analysis with pathomics features

Many previous work on progression prediction with histopathological images mainly focused

on extracting pre-defined morphological features of glands and nuclei from manually iden-

tified ROIs, and then correlated extracted representations with survival [DAH18, YZB16,

CLL20, LJE19, LRW18].

Chandramouli et al developed a model that utilized quantitative histomorphometric fea-

tures to categorize patients on active surveillance into low- and high-risk group for dis-

ease progression [CLL20]. They first segmented nuclei with watershed-based segmentation

method. Then 219 handcrafted morphology features were extracted based on segmentation

results, including graph-related features, nuclear shape features, nuclear disorder features

and cell cluster graph features [CLL20]. In the work by Leo [LJE19], glandular features

such as gland shape, arrangement and disorder were used in a Cox model to predict the

risk of biochemical recurrence after radical prostatectomy. Lu et al extracted shape and

orientation features of nuclei from tissue microarray images to predict survival of patients

with early-stage breast cancer [LRW18].

Instead of relying on hand-crafted features from pre-defined ROIs, the framework devel-

oped by Zhu et al utilized adaptive sampling to randomly sample patches from WSIs, which

were then clustered into groups. Then they assumed each patch inherited the same survival
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label from that patient, and trained a patch-wise survival model with the Cox loss function

[KSC16, ZYZ17]. Features from clusters with sufficient accuracy were aggregated via the

pre-defined function for case-level survival analysis. Ren et al considered disease free time

as the time variable and proposed a Cox survival model, which combined image features

from CNNs and genomic pathway scores, to better predict risk of progression for patients

diagnosed with Gleason score 7 prostate cancer [RKG18]. Wulczyn1 et al proposed a deep

learning system to predict disease specific survival for colorectal patients [WSM20]. The

system mainly contained two models: 1) a fully-supervised tumor segmentation model for

detecting ROIs; 2) a prognostic model, which extracted features from patches sampled from

tumor regions identified by the first model, for survival prediction. The simple mean pooling

was used to aggregate patch-level predictions into case-level results [WSM20].

However, no previous study has done to investigate models that can leverage effectiveness

of self-supervised deep features, attention-weighted aggregation and spatial distribution of

learned features for progression-free survival prediction for prostate cancer. In this disser-

tation, a deep learning system is developed to predict progression-free survival as recom-

mended in [LLH18]. The progression included biochemical recurrence, distant metastasis,

locoregional recurrence and new primary tumor [LLH18].
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CHAPTER 3

Semantic Image Segmentation with Multi-scale

Information: A Multi-scale U-Net Model

3.1 Overview

Semantic image segmentation is often considered as an important pre-step for quantitative

pathological image feature extraction. Previous work have demonstrated promising results

on classifying small image tiles with homogeneous tissue contents, which were usually pre-

selected by pathologists [FSJ07, NSJ12, GVG13, DFT10]. However, it can be difficult to

extend these models for large whole slide image analysis due to the need of selecting and

accurately localizing such small homogeneous tiles. This chapter demonstrates a novel multi-

scale U-Net model for semantic segmentation of histopathological images with heterogeneous

tissue contents from radical prostatectomies. The model can potentially be used to facilitate

the estimation of percentage of different Gleason patterns, which is required in determining

primary and secondary patterns in prostate pathology diagnosis.

The proposed method utilizes multi-scale information to generate pixel-wise predictions

for four tissue classes (i.e., stroma, benign, Gleason 3 and Gleason 4 glands). The dataset

used for this study is described in §3.2. Details about the model are described in §3.3.

Evaluation and results are summarized in §3.4. In §3.5 we discuss strengths and limitations

of the proposed method. This chapter is based on the content of [LSH17] and [IML18].
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3.2 Dataset

Our model is developed on the dataset containing histopathological images of prostate radical

prostatectomy. Specifically, radical prostatectomy specimens from 20 patients with a diag-

nosis of Gleason 3 (G3) or Gleason 4 (G4) prostate cancer according to the contemporary

grading criteria [FAB12, BME13] were retrieved from archives in the Pathology Department

at Cedars-Sinai Medical Center (IRB approval no. Pro00029960) [GIM15]. The specimens

were previously stained with hematoxylin and eosin (H & E) for histological evaluation of

the tumor.

Slides were digitized by a high resolution whole slide scanner SCN400F (Leica Biosystems,

Buffalo Grove, IL). The scanning objective was set to 20x. The output was a color RGB image

with the pixel size of 0.5µm× 0.5µm and 8 bit intensity depth for each color channel. Areas

with tumor previously identified by the pathologist were extracted from whole slide images

(WSIs) and then saved as 1200×1200 pixel tiles for analysis. 224 tiles were selected by three

collaborating pathologists who identified stroma (ST), benign glands (BN), G3 cancer, and

G4 cancer containing cribriform and non-cribriform growth patterns. Individual glands and

stroma in each tile were annotated manually using a custom graphical user interface [GIM15].

All annotated image tiles were cross-evaluated by the pathologists, and corrections made if

there was no consensus. This collection contains: BN (n=32), G3 (n=24), G4 (n=22), G3

and BN (n=29), G4 and BN (n=6), G3 and G4 (n=80), and G3 and G4 and BN (n=31)

image tiles. All tiles were normalized to account for stain variability [RAG01].

3.3 Method

3.3.1 Multi-scale U-Net

CNNs achieved promising results on image classification. Unlike classification that classifies

the whole image into categories, segmentation requires local predictions for each pixel. To
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extend the CNN for segmentation tasks, we can apply the model in a sliding window way

and produce pixel-wise predictions. However, this method requires extracting patches and

applying the model around every pixel, therefore can be inefficient even for images with

moderate size.

The FCN proposed by Shelhamer and Long et al [LSD15, CPK17] uses up-sampling

and fully convolutional layers to generate pixel-wise predictions efficiently in a single pass.

The pooling operation makes CNNs relatively invariant to spatial transformations and also

reduces spatial resolution of feature maps. To enable making local predictions with global

context, the U-Net [RFB15] extends an FCN with a U-shape architecture, which allows

features from shallower layers to combine with those from deeper layers [LSD15, RFB15].

One intuitive way of performing semantic segmentation with FCN is to use the entire

image as the input. However, training FCN with large images may lead to larger number of

parameters. Thus it may require a huge number of samples and also can cause high GPU

memory requirement. Downsampling could effectively reduce the image size, but it causes

loss of spatial resolution. Some discriminative features such as nuclear features may only be

available at higher resolution. To solve these problems, large images are divided into several

relatively smaller patches, and the overlap tile strategy is used for seamless segmentation

[RFB15]. This method, however, requires the size of the patch to be carefully chosen so

that the patch can be segmented with sufficient contextual information. Yet, the size of

cellular structures such as glands may vary greatly as shown in Figure 3.1. In addition, both

local nuclear patterns available at high resolution and global morphological representations

of glands such as shape, which require a larger receptive field but can be available at low-

resolution, are important in cancer grading and needs to be considered together. For example,

the prominence of nucleoli is an important feature in prostate cancer grading, but it should

only be considered in the context of glandular structures to avoid over-diagnosis or under-

diagnosis. Single scale input with sufficient receptive fields and spatial resolution may require

deeper models and large number of training data.
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Figure 3.1: Variations in gland size. (a) shows a tile with heterogeneous Gleason grades (G3,

G4 and benign glands). Pathologist annotation mask is shown in (b). The high-grade cancer

(G4) areas are shown in red, low-grade cancer (G3) areas are denoted as pink, benign glands

are indicated by green, and stroma areas are represented by blue. These images demonstrate

the heterogeneity of glands both between grades (e.g., glands A and C) and within the same

grade (e.g., glands A and B).
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The aforementioned challenges motivate the design of a multi-scale architecture that

extracts different types of features with inputs of different scales. Specifically, to better

segment tissue structures with variable size, we propose a multi-scale U-Net architecture

that incorporates patches (sub-tiles) of three different sizes: 400 × 400, 200 × 200, and

100 × 100 to explicitly provide contextual information at multiple scales [HDW17]. The

larger patch is designed to capture glandular features, while the smaller patch is designed to

extract fine-grained nuclei features. To handle border patches that cause one of these patch

sizes to extend past the boundary of a given image tile, the tile is padded with reflection of

the border [RFB15]. A detailed overview of our multi-scale U-Net architecture is shown in

Figure 3.2. Instead of taking the whole 1200× 1200 image tile as input, we divided images

into 100× 100 subtiles and extracted the three patches of varying size around each of these

image subtiles. Features from different sizes of patches were then concatenated together and

used as inputs for the multi-scale U-Net model. The commonly used fully connected layer

was replaced by a 4× 1× 1 convolutional layer that output pixel-wise probabilities for four

classes (G3, G3, ST, and BN).

In this experiment, we trained two FCN models. The first was the baseline U-Net model

that followed an existing work [RFB15]. The other is the multi-scale U-Net. Both models

were trained with batch gradient descent (batch size: 25) and backpropagation. A momen-

tum of 0.9 and a learning rate of 0.05 were used. A heuristic was followed to improve the

learning of deep neural network model [KSH17], where the learning rate was decreased by 10x

when validation errors stopped decreasing. Models were implemented in Torch7 [CKF11],

and the training was done on two NVIDIA Titan X GPUs. The dataset of 20 patients

was divided into 10 folds resulting in two patients in each fold. This patient-based cross

validation ensured independence of training and testing data.
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Figure 3.2: Architecture of the multi-scale patch-based U-Net. The whole image was divided

into multiple non-overlapping 100 × 100 sub-tiles. To capture contextual information, a

200× 200 patch (framed in yellow) and a 400× 400 patch (framed in black) were extracted

around each centered 100× 100 patch (framed in red). Features of different sizes were either

down-sampled or up-sampled to 200 × 200, and concatenated into 64 × 200 × 200 feature

maps that were input to a U-Net model. The final layer output a 4× 100× 100 probability

map, each channel of which corresponded to a probability map of one class.
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3.3.1.1 Semantic image segmentation with a deep convolutional neural network

For baseline comparison, a deep CNN model was trained to produce pixel-wise class predic-

tions in a sliding window way. The tile dataset was split into a training set containing 187

tiles and a testing set containing 37 tiles. In order to avoid correlations between data in

the training and tests sets, tiles belonging to the same patient were restricted to either the

training set or the testing set, yielding 17 unique patients in the training set, and 3 unique

patients in the testing set (cross-validation was not used due to the large time requirements

for evaluating the model).

Specifically, the Inception V3 CNN model [SLJ15] was used with an input size of 299×299

pixels. Patches of size 299 × 299 were extracted from the pathology image tiles and then

used for training and evaluation of the network. The label for any given patch was set

to be the true label of the central pixel of the patch. Because there are a large number

of possible 299 × 299 patches (each tile has over 800,000 possible 299 × 299 patches), it is

impractical to train a network on every patch that exists in the dataset. Instead, patches were

sampled (with replacement) from the training set using balanced random sampling. In this

approach, patches were sampled with equal probability for each class. Within a given class,

every potential patch that would fall into the class had equal probability of being sampled.

Because of the class imbalance of the dataset, in this methodology, individual potential

patches from different classes would have unequal probability of being sampled. Training

was performed using an RMSProp (LR = 0.001, ρ = 0.9, ε = 10−8) [TH17] optimizer using

Keras [Cho18] with Tensorflow [AAB16] on two NVIDIA Titan X GPUs with synchronous

gradient updates and a batch size per GPU of 50 patches. In order to saturate the GPUs

during training, patch sampling was run in threads with separate state; one sampler thread

was used per GPU. Training was performed over 25 “epochs” of 100,000 patches.

For evaluation, every possible patch was extracted from tiles in the testing set, and any

patches that would have extended outside of the bounds of the original tile were discarded.

38



Class predictions were obtained for these patches from the network, and each pixel was

assigned a class based on the maximum prediction probability for that pixel.

3.4 Experiment and results

3.4.1 Evaluation metrics

Overall pixel accuracy, mean accuracy for each class, and Jaccard index are three commonly

used evaluation metrics for multi-class semantic image segmentation. Overall pixel accuracy

measures the proportion of correctly classified pixels, however, it can be heavily biased

by imbalanced datasets. Mean single-class accuracy calculates the average proportion of

correctly classified pixels in each class, which can also be biased by imbalanced datasets and

overestimates the true accuracy due to combining multiple negative classes into one inference

class [CLP13, EVW10, EEV15]. Jaccard index (J), also known as intersection-over-union,

overcomes the limitations of overall pixel accuracy and mean accuracy since it considers both

false positives and negatives.

Here, we report Jaccard index and overall pixel-wise accuracy for our models, which can

be obtained from a pixel-wise confusion matrix C. Cij is the number of pixels labeled as i

and predicted as j. The total number of pixels with label i is denoted as Ti =
∑n

j=1Ci,j,

where n is the number of classes. The number of pixels predicted as j is represented as

Pj =
∑

iCij [CLP13]. The Jaccard index for class i is then defined as follows:

Ji =
Cii

Ti + Pj − Cii
(3.1)

The overall pixel-wise accuracy (OP) is defined as:

OP =

∑
iCii∑

i

∑
j Cij

(3.2)
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3.4.2 Results and discussion

For the pixel-wise deep CNN model, class predictions were produced for a testing set com-

prising 30,170,133 pixels in 37 tiles across 3 patients. For the standard and multi-scale U-Net

models, pixel-wise confusion matrices were summed across all 10 folds. In the first evalua-

tion, true positive, true negative, false positive, and false negative rates for each class were

calculated for all pixels in the dataset. Gleason 3 and Gleason 4 predictions were summed

into a single inference class (PCa) for evaluation. For comparison, results from a baseline

SVM + RF model by Gertych et al [GIM15] are also included. The Jaccard index and overall

pixel accuracy of each model are reported in Table 3.1. The analysis was also performed

without combining Gleason 3 and Gleason 4 into a single class, with performance shown in

3.2. In both cases, the same network (trained on separate classes) was used for prediction.

The multi-scale U-Net architecture achieved the highest Jaccard index in both segmen-

tation tasks: mean J = 75.5% for 3 class segmentation and mean J = 65.8% for 4 class

segmentation. Both the U-Net and multi-scale U-Net models outperformed the pixel-wise

CNN and the SVM-RF model by Gertych et.al. [GIM15].

The multi-scale model obtained 2% higher J for segmentation of benign regions. Similar

performances were observed when combining G3 and G4 into one cancer class (i.e., U-net

got a J of 74.3 %, which was only 0.4% lower than the multi-scale U-Net performance.)

However, if G3 and G4 were not combined into one class, multi-scale U-Net achieved around

4% and 1% higher J for G3 and G4 pattern respectively. The relative percentage of G3 and

G4 patterns are important in diagnosis and treatment planning (e.g., patients with G4+G3

prostate cancer may have worse prognosis comparing those with G3+G4) [HKZ14]

To evaluation the efficiency of models, the approximated inference time for each model is

also measured. It took about 2 hours for pixel-wise deep CNN model, around 3 seconds for

U-Net model, and 9 seconds for multi-scale U-Net to generate predictions for a 1200× 1200

tile on one NVIDIA Titan X GPU. Dense predictions can be much more efficiently produced
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Table 3.1: Model performances on segmenting prostate cancer (PCa), benign glands (BN)

and stroma (ST).

JPCa(%) JBN(%) JST (%) JMean(%) OP (%)

Gertych et al [GIM15] 49.5 35.2 59.5 48.1 n/a

Pixel-wise CNN 66.0 59.0 71.0 65.0 63.9

U-Net [RFB15] 74.3 70.6 80.1 75.0 86.6

Multi-scale U-Net 74.7 72.6 79.3 75.5 86.7

Table 3.2: Model performances on segmenting Gleason 4 (G4), Gleason 3 (G3), benign glands

(BN), and stroma (ST).

JG3(%) JG4(%) JBN(%) JST (%) JMean(%)

Gertych et al [GIM15]1 n/a n/a 35.2 59.5 47.4

Pixel-wise CNN 23.0 25.0 59.0 71.0 45.0

U-Net [RFB15] 45.8 60.9 70.6 80.1 64.4

Multi-scale U-Net 49.8 61.5 72.6 79.3 65.8

1 The previous model (SVM+RF) by Gertych et al [GIM15]. only addressed

three class segmentation by combining G3 and G4 to PCa.

by FCNs.

Segmentation results generated by U-Net and multi-scale U-Net for two representative

image tiles are shown in 3.3. Our models performed well in segmenting different tissue types

on image tiles with heterogeneous content, but both models struggled with some border

areas due to a lack of contextual information. The small high-grade gland marked by a

white arrow in the second row in Figure 3.3, for example, was segmented as low-grade gland
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Figure 3.3: Segmentation masks generated by the U-Net and the multi-scale U-Net. Both

ground truth masks and predictions are overlaid on original image tiles for easy interpreta-

tion. Colors follow the same schema illustrated in Figure 3.1. The first row shows segmenta-

tion results for an image tile with three tissue types (benign, stroma, and G3 cancer). The

second row shows a representative image tile with three tissue types (stroma, G3 and G4

cancer). White arrows point to border areas that both models struggle with.

by both models.

In cases where global information may be more important for class prediction, the multi-

scale U-Net showed superior performance. As shown in Figure 3.4, the single input U-Net

misclassified areas with dense nuclei on a large benign gland. However, the multi-scale U-Net

was able to segment this area correctly. Though both models could segment large irregular

high-grade glands very well as seen in Figure 3.3, they had limited power in segmenting

poorly-formed high-grade areas, as shown in the first row of Figure 3.5. Models could

detect the approximate location of high-grade cancer, but failed to segment the exact areas.

Segmentation performance of both models decreased on tiles with a mixture of small high-
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Figure 3.4: Segmentation results comparison for the multi-scale U-Net and the U-Net. Col-

ors follow the same schema illustrated in Figure 3.1. The multi-scale U-Net successfully

segmented the large irregular benign gland, while the U-Net with single scale input did not.

Figure 3.5: Segmentation results for two challenging tiles. Colors follow the same schema

illustrated in Figure 3.1. The first row shows an image tile containing G4 cancer with poor-

ly-formed glands. Glands were less differentiated on that tile, likely increasing segmentation

difficulty. The second row presents a tile with a mixture of small high-grade glands and

small low-grade glands.
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grade glands and small low-grade glands. The highest Jaccard indices for G3 and G4 achieved

by the multi-scale U-Net were 49.8% and 61.5%, respectively. This reflects the reality that

differentiating G3 and G4 is a challenging task, even for pathologists. The inter-observer

agreement of clinical pathologists for distinguishing G3 from G4 is between 25% to 47%

[AMJ01, GIM15]. A larger training dataset that represents more of the natural variance of

these cancer grades could allow for improving the models’ ability to discriminate between

these classes.

3.5 Summary

In this work, we address the challenge of segmenting different tissue types on heterogeneous

histopathological image tiles by using deep learning techniques. The proposed multi-scale

U-Net with three types of inputs (400×400, 200×200, 100×100) shows superior performance

as compared with the original U-Net. Performances of three different deep learning models

(pixel-wise CNN, U-Net, multi-scale U-Net) are evaluated and compared using the Jaccard

index and overall pixel accuracy. All three models outperform a reference algorithm on three-

class (ST, BN, PCa) segmentation. Both the U-Net and multi-scale U-Net models achieve a

higher Jaccard index and require much less inference time than the pixel-wise model. The

proposed model is able to explicitly extract discriminative features from different levels and

make use of more global information without overly increasing memory requirements during

model training.

Though our model achieve promising results on segmenting prostate histopathological

images, there are some limitations in this work. Models are only evaluated with patient-

level cross validation. Performances on external validation sets could be investigated in the

future work. Models are only trained on image tiles, rather than whole histopathological

images (i.e., whole slide images). Though our method can be extended to whole image

segmentation by splitting these images into non-overlapping tiles, the prediction accuracy
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for boundary patches could be influenced by lack of contextual information and changes

in class balance. The processing time may increase linearly with the size of the whole

slide images. Also, our model doesn’t perform as well in segmenting G4 cancer with less

differentiated glands. Exploring other approaches, such as the use of two separated models

with two scales of inputs [WMR16], could improve performance in the future. In addition,

our model relies on pixel-wise annotations, which is time-consuming and expensive to obtain.

Thus, in Chapter 4 we further extend the model with an EM-based framework, which is able

to utilize image-level labels to improve performances of segmentation models.

We also plan to investigate the influence of global versus local features on predicting

dense labels, and will perform further evaluations of our models with whole histopathological

images and extend our algorithm to a computerized tool which can be used to extract reliable

and reproducible quantitative features from histopathological images.
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3.6 Appendix

3.6.1 Additional experiments results

We further evaluate the multi-scale model on an extended dataset [IML18] and compare

with other FCN models including FCN-8s [LSD15], SegNet-Full [BKC17] and SegNet-Basic

[BKC17].

3.6.1.1 Data

Besides 224 tiles (referred as set A) as described in §3.2, 289 newly collected tiles (referred

as set B) extracted from radical prostatectomies of 20 patients are included. In addition to

G3, BN and ST areas, the new set contains high-grade (G5) cancer regions and G4 with

and without cribriform patterns. Slides in set B are scanned by the Aperio scanning system

(Aperio ePathology Solutions, Vista, CA). Both sets are scanned at 20x with pixel size of

0.5µm×0.5µm. Similar as set A, tiles of size 1200×1200 are extracted from slides and then

annotated by or under the direct supervision of an expert research pathologist. 5-fold cross

validation is used to evaluate model performances.

3.6.1.2 Experiment

FCN-8s, SegNet-Full, SegNet-Basic and multi-scale U-Net model were trained with 10x im-

ages downsampled from the original 20x inputs. For FCN-8x, SegNet-Full and SegNet-Basic

models, images were generated from 512×512 sub-tiles obtained from the original 1200×1200

tiles and then downsampled to 256×256. For the multi-scale U-Net model, tiles at 10x were

divided into 100 × 100 subtiles, and features were extracted from patches of varying sizes

(i.e., 400× 400, 200× 200 and 100× 100) around each of sub-tiles as described in §3.3.

All models were optimized with stochastic gradient descent (SGD) with momentum of

0.9. FCN-8s and SegNet-Full models were initialized with weights pre-trained on PASCAL-
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VOC dataset [EVW10], while multi-scale U-Net and SegNet-Basic were trained from scratch.

Batch size of 1 and an exponential decaying learning rate started at 1 × 10−4 were used to

train the FCN-8x model. SegNet-Basic model was trained with a batch size of 16 and a

fixed learning rate of 1 × 10−4. SegNet-Full was optimized with a batch size of 6 and a

fixed learning of 1 × 10−3. For the multi-scale U-Net, we followed the same heuristic as

described in 3.3. FCN-8s, SegNet-Basic and Segnet-Full models were implemented with the

Caffe framework [JSD14], while multi-scale U-Net was developed using the Torch7 [CKF11].

We evaluated model performances on segmenting low-grade (LG i.e., G3), high-grade

(HG i.e., G4 and G5), benign (BN) and stroma (ST) areas. Same evaluation metrics as

described in 3.4: J and OP were used. The average J̄ = 1
4

∑
i Ji was reported in Table 3.3.

Ji is Jaccard index for ith class i ∈ HG,LG,BN, ST .

Table 3.3: Overall model segmentation performances. For each model, results from 5-fold

cross validation were gathered into a overall confusion matrix. Evaluation metrics were then

computed from the confusion matrix.

Models #Parameters OP(%) J̄(%)

FCN-8s 1.3× 108 87.3 75.9

SegNet-Full 2.9× 107 82.2 72.1

SegNet-Basic 1.4× 106 76.2 65.2

Multi-scale U-Net 3.1× 107 88.5 73.8

Multi-scale U-Net achieved an average OP of 88.5% and an J̄ of 73.8%. It was comparable

with performance of FCN-8s model, which obtained an average OP of 87.3% and an average

J̄ of 75.9%. However, the FCN-8s model contained 4 times more parameters than the multi-

scale U-Net.

The other observation is that model performances increased as the number of parameters
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increased with exception of the multi-scale U-Net model. The multi-scale U-Net model

achieved around 2% higher J̄ and 6% higher OP with similar number of parameters as the

SegNet-Full (3.1 × 107 for the multi-scale U-Net and 2.9 × 107 for the SegNet-Full). This

further validated the effectiveness of our design of the multi-scale architecture.

3.6.2 Color normalization for whole slide images

Whole slide images are produced by digitizing glass tissue slides that are stained with dif-

ferent types of stains such as hematoxylin (H) and eosin (E) stains. Nuclei are usually

stained blue by the hematoxylin, while cytoplasm and connecting tissues are stained pink

by eosin. Stains help pathologists to better differentiate histologic structures such as nuclei

and glands. However, there could be considerable variations in stains due to different tissue

preparation processes, staining protocols, and scanning conditions. Stain variation may af-

fect the performance and the generalizability of machine learning models [CGB17, TLB19].

Stain normalization is one of commonly used approaches to address this challenge.

Reinhard et al proposed a general normalization method that converted the source im-

age into LAB color space and then transformed mean and standard deviation of each color

channel into targeted values [RAG01]. Different from simple matching of mean and standard

deviation, matrix deconvolution-based normalization algorithms leveraged the characteristic

of histopathological images, which first found underlying stain vectors and performed color

deconvolution to normalize H and E components. For example, Macenko et al developed an

algorithm that automatically determined stain vectors for color deconvolution [MNM09]. The

method assumed each stain has a specific stain vector and the color of each pixel is a linear

combination of stain vectors in the optical density space. Singular value decomposition were

utilized to estimate stain vectors [MNM09]. This algorithm, however, didn’t consider unique

structural characteristics information of histopathological images that most tissue regions are

only activated by one type of stains. Vahadane et al proposed a structure-preserving normal-

ization algorithm that leveraged non-negativity, sparsity, and soft-classification properties of
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Table 3.4: Average processing time for different stain normalization methods.

Normalization Method Average Processing Time (second)

Reinhard [RAG01] 0.3949

Macenko [MNM09] 1.4182

Vahadane [VPS16] 3.5203

histopathological images to estimate stain vectors for stain normalization [VPS16].

We experimented these different normalization methods. Some examples are shown in

Figure 3.6 and Figure 3.7. We can see there are significant variations among original images

and normalization methods are able to greatly reduce variations. The average time required

to run each normalization algorithm on one 1200 × 1200 tile is recorded in Table 3.4. The

Reinhard [RAG01] requires the shortest processing time, which is around 10 times faster than

the Vahadane [VPS16] method. In this dissertation, the Reinhard [RAG01] normalization

method is mostly used for experiments because it’s efficient and can achieve relatively good

performance.
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Figure 3.6: Original histopathological images and normalized images with various methods:

Reinhard [RAG01], Macenko [MNM09] and Vahadane [VPS16]. Images before normalization

contain considerable variations as shown in the first row. Images are better viewed in color.
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Figure 3.7: Additional examples on original and normalized histopathological images.
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CHAPTER 4

Semantic Image Segmentation with Weak Labels: An

EM-based Semi-supervised segmentation model

4.1 Overview

A semantic segmentation model would provide Gleason grading for each pixel, which can be

used as a preliminary step to extract quantitative pathological image features that are rep-

resentative of underlying characteristics of tumor. The multi-scale U-Net model presented

in the Chapter §3 achieved promising results on segmenting different types of tissues. How-

ever, training such a model may require a large-scale dataset to be annotated at gland-level,

which would be expensive and time-consuming to produce. In contrast, image-level annota-

tions extracted from low magnification annotations (LMAs) can be generated easily. Figure

4.1 shows the difference between pixel-wise annotations and coarse contour annotations. A

model that could utilize image-level labels to train or finetune segmentation models will

greatly reduce the cost of collecting annotations and facilitate development of segmentation

tools for medical images.

In this chapter we present the EM-based semi-supervised image segmentation model,

which can leverage image-level annotations produced from LMAs to augment models trained

on the limited data with fine-grained labels. Details on the model are demonstrated in §4.2.

In §4.3.1 we introduce the dataset utilized to develop and evaluate EM algorithms. Then

we show implementation and training details about the multi-scale U-Net model and EM

methods in §4.3.3. In §4.4 we present results of our experiments. Strengths and limitations
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of this work are discussed in §4.5. Contents of this Chapter are based on [LSH18].

4.2 Method

We use the multi-scale U-Net segmentation model as shown in the Chapter 3. Specifically,

k patches of different scales (400 × 400, 200 × 200, and 100 × 100) are extracted around

each centered 100 × 100 patch. Smaller patches are designed to capture high-resolution

nuclear features at the center, and larger patches are utilized to extract low-resolution shape

features from glands. Deep visual representations from multiple scales are concatenated to

generate a semantic segmentation output for the center patch. The detailed architecture of

the multi-scale U-Net is shown in Figure 3.2.

To improve segmentation performance, we employ two different types of EM-based mod-

els: EM with fixed bias (EM-fixed) and EM with adaptive bias (EM-adaptive). In weakly

supervised segmentation, only image-level labels are available, while pixel-wise annotations

are unknown. We denote the label for tile k as yk ∈ Y, k = 1, 2, ...,M and the pixel value

at location (i, j) as xi,j ∈ X. The label for each pixel is considered as the hidden variable

zi,j ∈ Z. The complete data is {X,Z}.

To maximize the marginal likelihood of observed data as defined in Equation (4.1), the

EM algorithm iteratively alternates between making guesses about the hidden pixel labels

zi,j in the E-step and finding the optimal model parameters θ that maximize p(Z|X, θ) in

the M-step [Bis06, GC11, PCM15]. Here, we can adopt an FCN-based model (multi-scale

U-Net) to produce pixel-wise probability maps p(Z|X, θ).

P (X|θ) =
∑
Z

P (X,Z|θ) (4.1)

However, this approach doesn’t consider information from image-level labels. Also it

may fail because of the singularities of the log-likelihood function [GC11]. For example, the
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Figure 4.1: Differences between coarse contours and pixel-wise annotations. (A) A whole

slide image with contour annotations visualized at 0.4x. Many tiles can be extracted from

these contours. (B) A 1200 × 1200 tile sampled from one of the G3+G3 contours on A. It

only has an image-level label of G3 inherited from the contour-level label. (C) A tile with

pixel-wise annotations. The low-grade cancer (G3) and stromal areas are indicated by pink

and blue colors respectively. (Figures are best viewed in color.)
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model could converge to a point that predicts most pixels to be stroma. To prevent such

degeneracy, we constrain the model output based on the image-level labels. One simple

method to incorporate image-level labels is to apply a fixed bias on the output probability

maps. Specifically, the probability of any class except the labeled class and stroma is set to 0,

and the fixed bias β will be applied to incorporate our belief that the pixel has β probability

to be classified as the labeled class. Assuming that the model will output a probability P (yji )

for class j of pixel i in a tile labeled as K, and the stromal class is represented as S, the

updated probability P
′
(yji ) can be calculated by Equation (4.2):

P
′
(yji ) =

1

T


0, j 6= K or S

βP (yji ) j = K

(1− β)P (yji ) j = S

(4.2)

where T = βP (yj=Ki ) + (1−β)P (yj=Si ). The method encourages pixels to be classified as

the tile-labeled class or stroma. Yet, the hyperparameter β could affect how much percent

of pixel will be classified as the desired class. Thus β has to be carefully selected to improve

performance. Also this method may fail if the percentage of classes varies largely for different

images.

To address the challenge of searching for a fixed β for each class, we proposed an adaptive

bias to match the distribution of latent pixel-wise labels to the prior distribution Q(Z). The

proposed method is based on the assumption that the distribution of epithelial areas versus

stroma is similar for tiles within the same cancer grade, but different between grades (e.g., in

high-grade tiles, cancerous cells infiltrate into surrounding tissues, which results in reducing

of stromal areas). In practice, at each E-step we adaptively select the bias β for each class

to be applied on the output probability map (Z|X, θ) by minimizing the Kullback-Leibler

(KL) divergence between the prior distribution and the average distribution derived from

model outputs given current parameter θ, and bias β settings. If we denote the total number
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of available tiles in the fully-supervised training dataset as N, the label for each pixel as yj

and the total number of pixels of each image as M , for Gleason grade g, the Q(Zg
EP ) can be

calculated by the Equation (4.3), and Q(Zg
ST ) = 1−Q(Zg

EP ). 1 is the indicator function.

Q(Zg
EP ) =

∑N
i

∑M
j 1(yj,j∈EP )

N ×M
(4.3)

In practice, at each E-step we adaptively select the bias β for each class to be applied on

the output probability map P (Z|X, θ) by minimizing the Kullback-Leibler (KL) divergence

between the prior distribution and the average distribution derived from model outputs given

current parameter θ, and bias β settings.

The following is an overview of our EM-based approach with adaptive bias:

Initialization: Parameters obtained from the multi-scale U-Net model trained on a

small fully-annotated dataset (135 tiles) with pixel-wise annotations are used as the initial

point θ0.

E-step: Calculate P (Zt|X, θt) based on current parameters θt. Generate the average

distribution of Gleason grade predictions H(Zt) from probability maps P (Zt|X, θt). A class-

specific adaptive β is applied on probability maps in order to minimize the KL divergence

between H(Z) and the prior distribution, Q(Z). Updated probability maps are calculated

by Equation (4.1) with β = β∗:

β∗ = arg min
β

∑
t∈G

KL(H(Zt
i ), Q(Zi)), G = {Epithelium, Stroma} (4.4)

M-step: Update the model parameters. The multi-scale U-Net is trained based on the

updated pixel-wise label produced in the previous E-step:

θt+1 = arg max
θ

Q(θ, θt), where

Q(θ, θt) =
∑

logP (Zt|X, θ)
(4.5)
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Iterate E-step and M-step until convergence. To further improve the performance of this

EM-based algorithm, we add a small portion of labeled patches from the initial strongly

annotated dataset in each batch during SGD training. Figure 4.2 shows an overview of our

semi-supervised segmentation approach.

4.3 Experiment

Here, we introduce the dataset utilized to develop and evaluate EM algorithms in §4.3.1.

Then we show implementation and training details about the multi-scale U-Net model and

EM methods in §4.4.

4.3.1 Dataset and image preprocessing

Our EM-based semi-supervised models were evaluated using a dataset obtained from the

Department of Pathology at Cedars-Sinai Medical Center that consists of data from three

different cohorts:

(A) 224 tiles with a size of 1200 × 1200, which contain stroma (ST), benign glands

(BN), low-grade (G3) and high-grade areas (G4 with cribriform and non-cribriform glands)

extracted from slides of prostatectomy specimens of 20 patients [GIM15, LSH17]. These tiles

were annotated at pixel-wise level by consensus of three uropathologists [GIM15].

(B) 289 tiles with a size of 1200 × 1200, which contain ST, BN, low-grade, and high-

grade (G4 and G5) areas obtained from slides of 20 patients. These tiles were annotated in

a similar manner as set (A) by or under direct supervision of an expert research pathologist

[IML18].

(C) A research pathologist provided coarse annotations on 30 whole slide images from

prostatectomies of 30 patients by circling and grading the major foci of tumor as either

low-grade (LG), high-grade (HG) or BN areas using the Aperio ScanScope software [IML18].
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Figure 4.2: Overview of EM-based semi-supervised semantic segmentation. LMAs are gen-

erated by pathologists so that enclosed regions only contain tissues of the designated label

(e.g., A ‘G3+3’ contour should contain purely G3 glands and stroma, devoid of benign glands

or glands of other grades). EM-based algorithms are initialized with a multi-scale U-Net (as

shown in B) trained on small amount of tiles with gland-level annotations, and trained on

tiles with only image-level labels (as shown in A) extracted from LMAs on histopathological

slides. In the E-step, the current model is applied to generate pixel-wise probability maps (as

shown in C). To prevent the model from degeneracy, these probability maps are updated by

a bias that has been adaptively selected by minimizing the KL divergence between the prior

stroma versus epithelium distribution and the average model output distribution. Prediction

masks (as shown in D) generated from the E-step are utilized to optimize model parameters

in the M-step. To improve training, a small portion of patches with gland-level annotations

are combined with patches with image-level labels in each batch. The EM-based method will

iteratively update segmentation masks and model parameters until convergence. (Figures

are best viewed in color.)
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Tiles extracted from the contour were annotated with the same tile-level label as the contour.

The scanning objective for all slides was set to 20x (0.5 µm per pixel). Tiles were

normalized using color transfer algorithm [RAG01] to account for stain variability. 60% of the

tiles from set (A) were used to train a multi-scale U-Net model and the remaining 40% were

used to validate model hyperparameters. EM-based approaches initialized by that supervised

model were trained to further improve semantic segmentation performance on around 1,800

weakly labeled tiles extracted from annotated contours in set (C). Hyper-parameters were

tuned on 89 left-out tiles from set (A) and model performances were evaluated on set (B)

such that tiles from the same patient were not included in both training and testing.

4.3.2 Evaluation metric

We utilized the similar evaluation metrics as in §3.4: overall pixel accuracy (OP ) and Jaccard

index (J). OP computes the proportion of correctly pixels, which can be easily biased by

imbalanced datasets. J , also referred to as the intersection-over-union (IoU), can overcome

the class imbalanced problem since it considers both false positives and negatives.

4.3.3 Details on model implementation and training

Given the large number of model parameters, we adopted two typically used regularization

strategies: batch normalization (BN) and dropouts. The BN layer was applied after each

convolutional layer except the final fully convolutional layer [SLJ15]. Dropout layers with

0.5 probability were added in the deepest stage of the multi-scale U-Net [RFB15, LSH17].

The initial fully supervised multi-scale U-Net was trained on 135 tiles with batch stochastic

gradient descent (batch size: 25). EM-based models were initialized with the multi-scale

U-Net, and trained with stochastic gradient descent (batch size: 25) in M-steps. Hyper-

parameters (e.g., learning rate, number of epochs, weight decay, etc.) were tuned on the

validation set. The best result was obtained by using a momentum of 0.9, 0.0005 weight
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decay and a learning rate which was initialized as 0.005, reduced to and fixed at 0.001

after 5 epochs. For EM-fixed models, we used a β value of 0.6 according to the average

stroma-epithelium distribution across all classes. In EM-adaptive training, the optimal β

for each epithelial class was determined based on the prior distribution. For comparison, we

implemented the adaptive method in [PCM15].

Models were implemented in Torch 7 [CKF11] with two NVIDIA Titan X GPUs. Multiple

separate data loading threads were used to accelerate training and testing. The average time

required to generate a prediction mask for one 1, 200× 1, 200 tile was around 9 seconds.

4.4 Results

Table 4.1 shows J and OP for models: EM adaptive model w/o fully annotated samples

proposed in [PCM15], EM-fixed w/o fully annotated samples (EM-fixed w/o), EM-fixed

with 10% fully annotated samples (EM-fixed w 10%), and etc. The initial multi-scale U-Net

trained with 135 strongly annotated tiles achieved a J̄ = 35.90% on an independent test set.

EM-fixed and EM-adaptive models improved segmentation performance by incorporating

information embedded in weakly labeled tiles extracted from contours of prostatectomy

slides. Using an adaptive threshold resulted in significant improvements in J for low grade

glands, high grade glands, and stroma (p < 10−5, p < 10−25, and p < 10−18, respectively),

and a non-significant decrease in J for benign glands (p = 0.18). The average J and OP

both significantly improved when using an adaptive threshold (p < 10−18 and p < 10−19,

respectively). The baseline EM model w/o fully annotated samples [PCM15] achieved J̄ =

42.32% and OP = 71.84%, which was significantly lower than the EM-adaptive w/o (p <

10−14 and p < 10−16, respectively).

To analyze the contribution of fully annotated samples, different percentages (10%, 30%,

60%, and 90%) of fully annotated patches were mixed with weakly labeled samples in each

mini-batch during training. The performance of both EM-fixed and EM-adaptive models
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improved by adding a small portion of fully annotated samples. For example, the EM-

adaptive model with 10% fully annotated samples achieved J̄ = 47.78%, which was about 3%

higher compared to the EM-adaptive model without fully annotated samples. In addition,

the EM-adaptive models consistently performed better than the EM-fixed models. The

overall highest J̄ was obtained at 49.47% by the EM-adaptive model with 30% fully annotated

samples. In Figure 4.3, we show visual comparisons for semantic segmentation on some

representative tiles from the test set. Results for the initial fully-supervised multi-scale

U-Net model were shown in the first column, while examples for the EM-fixed and the

EM-adaptive were presented in the second and the third column respectively.

4.5 Discussion

In this chapter, we demonstrate that EM-based algorithms can learn visual representations

from weakly annotated histopathological slides. A small portion of strongly labeled samples

increased J on low grade and benign epithelium, but reduced J on high grade and stromal

areas, possibly because the limited fully-annotated dataset did not contain all types of high

grade tissues (G4 and G5). Moreover, adaptive biases based on prior knowledge of stroma-

epithelium distribution lead to better EM training.

As shown in Table 4.1, the initial multi-scale U-Net model only achieved a J̄ at 35.90%.

The initial model failed to capture the HG glands and erroneously classified those areas into

LG, or BN as shown in the first row of Figure 4.3. Since we started with a training set with

only 135 fully annotated tiles, the model may have been overfitted to this small dataset and

did not generalize well to unseen samples. Furthermore, the HG class in our initial supervised

training set only contained non-cribriform G4 and cribriform G4 growth patterns, but not

G5 areas with hardly distinguishable glands. We would argue that the multi-scale U-Net

may not have sufficient knowledge about visual representations of G5 areas.

Initialized with this undertrained model, our EM-based approaches were able to leverage
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Figure 4.3: Segmentation masks for tiles in the test set. Stromal and benign areas are

denoted by blue and green colors respectively. The high-grade (G4, G5) and low-grade (G3)

cancer areas are represented by red and pink colors respectively. The first column shows

that the initial model delivers inferior performance in segmenting epithelial areas, likely due

to the small amount of available supervised training data. Both EM-based models (shown in

the second and third columns) are able to improve segmentation performance using weakly

labeled tiles. The best performance is achieved by adding 0.3 strongly labeled tiles during

EM training. (Figures are best viewed in color.)
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Table 4.1: Model performances on segmenting stroma, high-grade (HG), low-grade (LG),

and benign (BN) glands.

JLG(%) JHG(%) JBN(%) JST (%) J̄(%) OP (%)

Multi-scale U-Net [LSH17] 25.80 27.73 24.24 65.83 35.90 64.72

Papandreou et al [PCM15] 30.80 50.13∗ 19.66 68.60 42.32 71.84

EM-fixed w/o strong labels 33.29 44.89∗ 23.11 67.26 42.14∗ 71.11∗

EM-fixed w 0.1 strong labels 46.84 30.62 35.93 62.04 43.86∗ 67.28∗

EM-fixed w 0.3 strong labels 43.59 28.17 35.11 61.76 42.16 66.62∗

EM-fixed w 0.6 strong labels 41.82 26.43 30.59 61.23 40.02 65.27

EM-fixed w 0.9 strong labels 39.30 25.61 30.17 60.77 38.96 64.58

EM-adaptive w/o strong labels 33.20 52.01∗ 23.15 70.27∗ 44.66∗ 73.87∗

EM-adaptive w 0.1 strong labels 49.67 42.08∗ 33.45 65.90∗ 47.78∗ 71.92∗

EM-adaptive w 0.3 strong labels 48.25 49.58∗ 31.20 68.85∗ 49.47∗ 74.79∗

EM-adaptive w 0.6 strong labels 46.36 42.17∗ 29.65 66.23∗ 46.10∗ 71.61∗

EM-adaptive w 0.9 strong labels 40.07 35.62∗ 31.36 64.10 42.79∗ 68.65∗

∗ Denotes significant improvement over multi-scale U-Net using Wilcoxon signed-rank tests and

Bonferroni correction for multiple comparisons.

rich information embedded in the large-scale weakly annotated dataset. Table 4.1 shows that

all EM-based methods outperformed the initial model by a large margin. The J̄ improved

over 5% by most EM-based models, which demonstrates the ability of our semi-supervised

algorithms in extracting useful signals from weakly labeled data. Both fixed and adaptive

biases were imposed on pixel-wise probability maps to encourage pixels to be classified as

the labeled class or stroma. This significantly reduced the possibility of misclassification of

epithelium, such as predicting pixels in an LG tile as HG. As shown in the first and third rows
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of Figure 4.3, the initial model predicted many HG areas as LG, BN or ST. However, the

EM-adaptive model with 0.3 strong labels correctly identified the approximate location of

HG tissues, although it might be challenging to get perfect segmentation for HG areas, which

have less recognizable glandular boundaries and may infiltrate into surrounding tissues. This

kind of imprecise segmentation may be acceptable clinically, since localization of HG areas

is considered to be more critical than accurate segmentation.

The baseline EM model [PCM15] adaptively selected bias to constrain for each tile: at

least ρ percentage of the tile to be predicted as foreground (epithelium). However, this

method didn’t take account of differences of stroma-epithelium among individual classes

(e.g., High-grade areas tend to have more epithelium). As shown in Table 4.1, the baseline

EM model achieved a similar performance as the EM-fixed model.

Different from the baseline EM model, the proposed bias was adaptively selected by

minimizing the KL divergence between the model output distribution and the prior stroma-

epithelium distribution. These models selected the optimal bias at the cost of longer training

time since prediction maps had to be updated whenever a new bias was applied. We found

that adding a small percent of strongly labeled data from the initial training set significantly

improved model performances. However, adding too much strongly labeled data might pre-

vent the model from learning new information from the large-scale weakly annotated dataset

and lead to suboptimal performance. As seen in Table 4.1, the EM-adaptive model with 30%

fully annotated samples achieved the highest J̄ = 49.47% and OP = 74.79%.

There are several limitations in our work. First, we assume that each annotated contour

contains one type of epithelium (BN, HG or LG), and tiles within the contour inherit its

annotation as image-level labels. However, there still may be a very small portion of areas

with different Gleason grades. In future work, we plan to extend our current EM-based

approach to a multi-class weakly supervised model. Second, we only use a multi-scale U-Net

proposed in our previous work as the backbone to generate segmentation masks. In future

work, different state-of-the-art multi-scale architectures will also be explored and plugged
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into our semi-supervised training pipeline. In addition, cross-applicability is important for

models that can be extended to computer aided diagnosis tools. We also plan to evaluate

our approaches on whole slide images from different institutions, which may have distinct

staining or scanning protocols.

4.6 Summary

In this chapter, we present an EM-based semi-supervised model to leverage useful represen-

tations embedded in large-scale weakly annotated datasets. Adaptive biases incorporated

prior knowledge on stroma versus epithelium distributions and are employed to prevent the

model from predicting everything as stroma. The learning of the EM-based models is further

improved by combining some fully annotated samples in each mini-batch during training.

Our best semi-supervised EM-based approach achieves an J̄ of 49.47% on an independent

test set, which is 14% higher than the supervised model. The result demonstrates that

our semi-supervised model could improve semantic segmentation performance without re-

quiring a very large dataset with time-consuming and costly pixel-wise annotations from

pathologists.
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CHAPTER 5

Whole Slide Image Classification: A Multi-resolution

Multiple Instance Learning Model

5.1 Overview

In Chapter 3 we discuss the segmentation model that can leverage information from both

gland-level and nuclei-level. The EM-based framework as described in Chapter 4 further

enables the segmentation model to be trained with image-level labels instead of relying

on expensive pixel-wise annotations. However, these models only focus on analyzing tiles

extracted from large-scale whole slide images. How to effectively identifying regions of inter-

est (ROIs) and combining information from these regions still remains as challenges. This

Chapter details a multi-resolution multiple instance learning (MRMIL) model for whole slide

image (WSIs) classification and ROI detection.

Different from most existing studies, which rely on highly curated datasets with fine-

grained manual annotations at pixel- or region-level, the MRMIL model can be trained with

only slide-level labels obtained from pathology reports. Similar to how WSIs are typically

reviewed by pathologists, the proposed model scans through the entire slide to localize sus-

picious regions at a lower resolution (i.e., at 5x), and then zooms in on the suspicious regions

to make grade predictions (i.e., at 10x). The model can potentially be utilized as a second

reader for Gleason grading, and the produced attention map can be used to help pathologists

quickly localize suspicious areas. More details on the model design are demonstrated in §5.2.

We also perform experiments to compare the proposed model and other related works, as
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shown in §5.3. Results of comparison experiments are presented in §5.4. In §5.5 and §5.6

we conclude the chapter by summarizing strengths and limitations of this work. Contents of

this Chapter are based on the [LLG19, LLS20].

5.2 Method

5.2.1 Problem definition

Due to the enormous size of WSIs, slides are usually divided into smaller tiles for analysis.

However, different from works that utilized fine-grained manual annotations, our model is

developed on the dataest with only slide-level labels (i.e., We don’t have labels for each tile,

instead, we only have a slide-level label for a set of tiles.). Therefore, we formulate the WSI

classification problem in the MIL framework. Specifically, a slide is considered as one bag.

k tiles of size N ×N extracted from the bag are denoted as instances within the bag, each

of which may have different instance-level labels yi, i ∈ [1, k]. During training, only the label

for a set of instances (i.e., bag-level) Y is available. Based on the MIL assumption, a positive

bag should contain at least one positive instance, while a negative bag contains all negative

instances [ATH03, DLL97, Amo13, CBP19] in a binary classification scenario, as defined in

Equation (5.1).

Y =


0 iff ∀i ∈ [1, k], yi = 0

1 otherwise

(5.1)

We build our system upon a bag-level MIL model, which combines instance-level rep-

resentations into a bag-level feature vector for classification using an aggregation method.

Instead of relying on a pre-defined function, such as maximum or mean pooling [ITW18],

our model utilizes a parameterized attention module that aggregates instance features and

forms the bag-level representation. Figure 5.1. shows the overview of our model.
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Figure 5.1: Overview of the proposed whole slide image detection and classification model.

The model consists of two stages: a cancer detection stage at a low magnification and a

cancer classification stage at a higher magnification for suspicious regions. Both stages

contain a CNN feature extractor, which is trained in the MIL framework with slide-level

labels. Specifically, the detection stage model is trained with all tiles extracted from slides

at 5x to differentiate between benign and malignant slides. The attention module in the

detection stage model produces a saliency map, which represents relative importance of each

tile for predicting slide-level labels. Then we use the K-means clustering method to group

tiles into clusters based on tile-level features. The number of tiles selected from each cluster

is determined by the mean of cluster attention values. Discriminative tiles identified by the

detection stage model are then extracted at 10x and fed into the classification stage model

for cancer grade classification.
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5.2.2 Attention-based MIL with instance dropout

In the attention-based MIL model, a CNN is utilized to transform each instance into a d

dimensional feature vector vi ∈ Rd. A permutation invariant function f(·) can be applied to

aggregate and project k instance-level feature vectors into a joint bag-level representation.

We use a multilayer perceptron-based attention module as f(·) [ITW18], which produces a

combined bag-level feature vector v′ and a set of attention values representing the relative

contribution of each instance as defined in Equation (5.2).

v′ = f(V) =
k∑
i=1

αivi

α = Softmax[uT tanh(WVT )]

(5.2)

where V ∈ Rk×d contains the feature vectors for k tiles, u ∈ Rh×1 and W ∈ Rh×d are

parameters in the attention module, and h denotes the dimension of the hidden layer. The

slide-level prediction can be obtained by applying a fully connected layer to the bag-level

representations v′. Both the CNN feature extractor and the attention-based aggregation

function are differentiable and can be trained end-to-end using gradient descent. The atten-

tion module not only provides a more flexible way to incorporate information from instances,

but also enables us to localize informative tiles.

However, this framework encounters similar problems as other saliency detection models

[ZWF18, HJW18, SL17]. In particular, as pointed out in [ITW18], instead of detecting

the all informative regions, the learned attention map can be highly sparse with very few

positive instances having large values. This issue may be caused by the underlying MIL

assumption that only one positive instance needs to be detected for a positive bag. Though

it might not affect the performance of the cancer detection stage model, this can affect the

performance of our classification stage model, which relies on informative tiles selected by

the learned attention map. To encourage the model to select more relevant tiles, we use

an instance dropout method similar to [SL17, SYS18]. Specifically, instances are randomly

dropped during the training, while all instances are used during model evaluation. To ensure
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the distribution of inputs for each node in the network remains the same during training and

testing, pixel values of dropped instances are set to be the mean RGB value of the dataset

[SL17, SYS18]. This form of instance dropout can be considered a regularization method

that prevents the network from relying on only a few instances for bag-level classification.

5.2.3 Attention-based tile selection

An intuitive approach to localize suspicious regions with learned attention maps is to use

the top q percent of tiles with the highest attention weights. However, the percentage of

cancerous regions can vary across different cases. Therefore, using a fixed q may cause over

selection for slides with small suspicious regions and under selection for those with large

suspicious regions. Moreover, this method relies on an attention map, which in this context

is learned without explicit supervision at the pixel- or region-level. To address these chal-

lenges, we incorporate information embedded in instance-level representations by selecting

informative tiles from clusters. Specifically, instance representations obtained from the MIL

model are projected to a compact latent embedding space using principle component analysis

(PCA). We then perform K-means clustering to group instances with similar semantic fea-

tures based on their PCA transformed instance-level representations. The relevance of each

cluster ᾱs can be determined by the average attention weights of tiles within it as defined by

ᾱs = 1
m

∑m
j=1 αj. The intuition is that clusters that contain more relevant information for

slide classification should have higher average attention weights. For example, in a cancer-

positive slide, clusters consisting of cancerous glands should have higher attention weights

compared to those with benign glands and stromal regions. Finally, we can determine the

number of tiles to extract from each cluster based on the ᾱs and the total number of tiles.
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5.2.4 Multi-resolution WSI classification

Different from most medical imaging modalities, WSIs typically contain billions of pixels,

which make them practically impossible to feed into GPU memory directly at full resolu-

tion. Though the size of WSIs is enormous, most regions typically do not contain relevant

information for slide classification, such as stroma and benign glands. Pathologists tend to

analyze the entire slide at a relatively low resolution, usually at 5x, to find suspicious re-

gions and then switch to higher magnification in these areas to render a final diagnosis. Our

proposed MRMIL model mimics this process, containing two stages as shown in Figure 5.1.

The detection stage model, which consists of an attention-based MIL with instance dropout,

is trained with all tiles extracted at a lower magnification (i.e., at 5x) to differentiate benign

and malignant slides and generate attention maps. The attention-based clustering method is

applied to select relevant tiles for the classification stage model. Selected tiles are extracted

at the same location, but at a higher magnification (i.e. at 10x) and fed into the MIL

network for cancer grade prediction.

5.3 Experiment

5.3.1 Dataset and data preprocessing

5.3.1.1 Dataset

Our dataset contains 20,229 slides from prostate needle biopsies from 830 patients pre- or

post-diagnosis (IRB16-001361). Slides’ labels extracted from their corresponding pathology

reports. There are no additional fine-grained annotations at the pixel- or region-level for

this dataset. Additionally, we did not rely on any pre-trained tissue, epithelium, or cancer

segmentation networks, and did not perform extensive manual curation to exclude slides

with artifacts such as air bubbles, pen markers, dust, etc. We randomly divided the dataset

into 70% for training, 10% for validation, and 20% for testing, stratifying by patient-level
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Table 5.1: Number of slides for each Grade group.

Train Validation Test Total

No. BN slides 3,225 2,579 5,355 11,159

No. GG 1 slides 3,224 412 807 4,443

No. GG 2 slides 1,966 307 587 2,860

No. GG 3 slides 648 95 148 891

No. GG 4 slides 306 17 129 452

No. GG 5 slides 269 67 88 424

No. Patients 575 86 169 830

Gleason grade group (GG) determined by the highest GG in each patient’s set of biopsy

cores. This process produced a test set with 7,114 slides from 169 patients and a validation

set containing 3,477 slides from 86 patients. From the rest of the dataset, we balanced

sampled benign (BN), low grade (LG), and high grade (HG) slides. Table 5.1 shows more

details on the breakdown of slides.

5.3.1.2 External dataset

We evaluated our models on a public prostate dataset, SICAPV1, collected by the Hospital

Cĺınico Universitario de Valencia, which contains 512 × 512 tiles at 10x extracted from 79

slides of prostate needle biopsies with 50% overlapping [ELC19]. 19 of these slides are benign,

and the rest are malignant.

5.3.1.3 Data preprocessing

The majority of regions on WSIs are background. Thus, we converted slides downsampled

at their lowest available magnification compressed in the .svs file into HSV color space and

thresholded on the hue channel to produce tissue masks. Morphological operations such as
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dilation and erosion were used to fill in small gaps, remove isolated points, and further refine

tissue masks. Examples on the preprocessing pipeline are presented in the Appendix 5.7.5.

We then extracted tiles of size 256×256 at 10x from the grid with 12.5% overlap. Tiles that

contain less than 60% tissue were discarded from analysis. The number of tiles per slide

ranges from 1 to 1,273, with an average of 275. To account for stain variability, we used

a color transfer method [RAG01] to normalize tiles extracted from the slide. The scanning

objective was set at 20x (0.5 µm per pixel). We downsampled tiles to 5x for the detection

stage model development.

For external dataset, we divided the 512 × 512 tiles into 4 non-overlapping 256 × 256

sub-tiles, in order to match the input size of our models. The same stain normalization

[RAG01] was applied.

5.3.2 Implementation details

We used VGG11 with batch normalization (VGG11bn) [SZ14] as the backbone for the feature

extractor in the MRMIL model for both detection stage and classification stage. A 1 ×

1 convolutional layer was added after the last convolutional layer of VGG11bn to reduce

dimensionality and generate k × 256× 4× 4 instance-level feature maps for k tiles. Feature

maps were flattened and fed into a fully connected layer with 256 nodes, followed by ReLU

and dropout layers. This produced a k×256 instance embedding matrix, which was forwarded

into the the attention module. The attention part, which generated a k×n attention matrix

for n prediction classes, consisted of two fully connected layers with dropout, tanh non-

linear activations, and a softmax layer. Instance embeddings were multiplied with attention

weights, resulting in a n× 256 bag-level representation, which was flattened and input into

the final classifier. The probability of instance dropout was set to 0.5 for both model stages.

Detailed model architectures were shown in the Appendix Table 5.4 and Table 5.5.

The CNN feature extractor was initialized with weights learned from the ImageNet

dataset [DDS09]. After training the attention module and the classifier with the feature
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extractor frozen for three epochs, we trained the last three VGG blocks together with the

attention module and classifier for 97 epochs. The initial learning rates for the feature

extractor were set at 1 × 10−5 and 5 × 10−5 for the attention module and the classifier,

respectively. The learning rate was decreased by a factor of 10 if the validation loss did not

improve for the last 10 epochs. We used the Adam optimizer [KB14] and a batch size of

one. Detection stage and classification stage models were trained separately using the same

training hyperparameter (e.g., learning rate, batch size and etc..).

For clustering-based region selection, we projected k × 256 instance embedding matrix

to k× 32 with PCA, and utilized K-Means clustering to group tiles. The number of clusters

was set to be 3 to encourage tiles to be grouped into LG, HG and BN clusters.

Hyper-parameters were tuned on the validation set. We further extended our MRMIL

model for GG prediction. The cross entropy loss weighted by reversed class frequency was

utilized to address the class imbalance problem. Hyperparameters were selected using the

validation set. Models were implemented in PyTorch 0.4.1 [PGC17], and trained on an

NVIDIA DGX-1.

5.3.3 Evaluation metrics

As our test dataset contained over 75% benign slides, accuracy (Acc) alone is biased metric

for model evaluation. In addition, we used the AUROC and AP computed from ROC and

precision and recall (PR) curves, respectively. For cancer grade classification, we measured

the Cohen’s Kappa (κ), κ = po−pe
1−pe . po is the agreement between observers and pe is the

probability of agreement by chance. All metrics were computed using the scikit-learn 0.20.0

package [PVG11].
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5.3.4 Model visualization

In addition to quantitative evaluation metrics, interpretability is important in developing

explainable machine learning tools, especially for medical applications. In order to have

a better understanding of our model predictions, we performed t-Distributed Stochastic

Neighbor Embedding (t-SNE) [MH08] of learned bag-level representations for both stage

models. t-SNE approach projects high dimensional data into two or three dimensional space

where similar data stay closer. t-SNE first produces a joint probability distribution so

that similar samples are assigned higher probabilities. It then minimizes the KL-divergence

between joint distributions of the projected low dimensional embedding and the original high

dimensional data.

To adopt the t-SNE method for visualization of bag-level features, for each slide we

utilized the flattened n×256 feature vector that is aggregated from tile-level representations

and is used as the input to the final classification layer. The learning rate of t-SNE was set

at 1.5× 102, and the perplexity was set at 30.

The saliency map produced by the attention module in the MRMIL model only demon-

strated the relative importance of each tile. To further localize discriminative regions within

tiles, we utilized Gradient-weighted Class Activation Mapping (Grad-CAM) [SCD17]. Con-

cretely, given a trained MRMIL model and a target class c, we first retrieved the top k tiles

with the highest attention weights, which were fed to the model. Assume oc was the model

output before the softmax layer for class c, gradients of oc w.r.t activations Al of l-th fea-

ture map in the convolutional layer were obtained through backpropagation. Global average

pooling over m regions was utilized to generate weights that represent the importance of

w×h feature maps. Weighted combinations of d dimensional feature maps then determined

the attention distribution of m regions[SCD17] for predicting the target class c as defined in

Equation (5.3).
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θcl =
1

Z

∑
i∈w

∑
j∈h

∂oc
∂Al

i,j

αc = ReLU(
d∑
l=1

θclA
l)

(5.3)

where Z = w × h is the normalization constant. The ReLU function removes the effect

of pixels with negative weights, since they don’t have a positive influence in predicting the

given class. αc represents obtained “visual explanation maps” for each image.

5.3.5 Model comparison

5.3.5.1 Handcrafted features

We converted input tiles at 10x into HSV color space and thresholded on the H channel to

get tissue masks. Then we utilized the PyRadiomics package [VFP17] to extract 90 features

for each tile, including 16 first-order statistics, 23 gray level co-occurrence matrix-based,

16 gray level run length matrix-based, 16 gray level size zone matrix-based, 5 neighbouring

gray tone difference matrix-based, and 14 gray level dependence matrix-based features. The

maximum pooling was applied to aggregate tile-level features, which were fed into the final

slide-level classifier. We experimented with Xgboost [CG16] and random forest (RF) [LW02]

classifiers. Grid search with 3-fold cross validation was used to select hyperparameters for

classifiers.

5.3.5.2 MIL model by Campanella et-al. [CHG19]

We compared our model with the related recent work [CHG19], which also trained slide

classification models with only slide-level labels in the MIL framework. Different from our

model, they utilized an instance-level MIL approach. The CNN model was trained on top

k tiles with high probability after applying the partially trained model, and this process

is iterated for certain epochs. Then they utilized the RNN model to aggregate features
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from top k tiles for final classification. We used the implementation provided by [CHG19]

and hyperparameters reported in the paper to re-train the model on our dataset. For fair

comparison, we also used the VGG11bn as backbone for feature learning.

5.3.5.3 MIL with different aggregation methods

To evaluate the power of using a trainable attention module, we compared our model with

MIL models with pre-defined aggregation functions. Specifically, instead of using the atten-

tion module to aggregate tile-level features to slide-level representations, we experimented

with two commonly used aggregation methods: maximum pooling and mean pooling aggre-

gation.

5.3.5.4 Single stage model

To evaluate the effectiveness of the multi-resolution model in cancer grade prediction, we

compared our model with a model trained with all extracted tiles at 5x only, referred as

Single stage.

5.3.5.5 Blue ratio selection

Blue ratio (Br) image conversion, as defined in Equation (5.4), can accentuate the blue

channel of a RGB image and thus highlight proliferate nuclei regions [CLP12].

Br =
100×B

1 +R +G
× 256

1 +R +G+B
(5.4)

where R, G, B are the red, green and blue channels in the original RGB image.

Br conversion is one of the most commonly used approaches to detect nuclei [CLP12,

SCR18] and select informative regions from large-scale WSIs [TAO17, AC18, LSF19]. To

evaluate the attention-based ROI detection, we replaced the first stage cancer detection
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model with the Br conversion to select the top q = 25% tiles with highest average Br values,

referred to as br selection.

5.3.5.6 Without instance dropout

In this experiment, denoted as w/o instance dropout, we investigated whether instance

dropout could improve the integrity of learned attention map of the vanilla attention MIL

model [LLG19] and lead to better performance.

5.3.5.7 Attention-only selection

Instead of selecting informative clusters, we only utilized the attention map by choosing the

top q = 25% tiles with the highest attention values as the input for the second stage model

in the att selection experiment.

5.4 Results

Figure 5.2 shows both ROC and PR curves for the detection stage cancer models trained at

5x. The detection stage model in the MRMIL obtained an AUROC of 97.7% and an AP of

96.7% on our internal test set. On the external dataset, it achieved an AUROC of 99.4%

and an AP of 99.8%. The model trained without using the instance dropout method yielded

a slightly lower AUROC and AP on both internal and external datasets.

Since our dataset does not have fine-grained annotations, we visualized generated atten-

tion maps and compared them with pen markers annotated by pathologists during diagnosis.

We masked out markers as mentioned in §5.3.1, thus they were not utilized for model train-

ing. Figure 5.3 presents the comparison between attention maps learned from models with

and without using instance dropout during training.

To further localize suspicious regions within a tile and better interpret model predictions,
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Figure 5.2: ROC and PR curves for detection stage models on our test set and external

dataset. In the detection stage, models were trained to distinguish malignant and benign

slides with all tiles extracted from slides at 5x.

we applied Grad-CAM on the first detection stage MIL model as shown in Figure 5.4. We

generated Grad-CAM maps for not only true positives (TP), but also false positives (FP)

to understand which parts of the tile led to false predictions. We selected three tiles with

highest attention weights from each slide for visualization.

The MRMIL model projects input tiles to embedding vectors, which are aggregated and

form slide-level representations. The t-SNE method enables high dimensional slide-level

features to be visualized at a two dimensional space as demonstrated in Figure 5.5. Figure

5.5 (A) is the t-SNE plot for the detection stage model and (B) presents bag-level features

produced by the classification stage model with selected high resolution tiles as inputs.

Table 5.2 shows model performances on BN, LG, HG classification. Details for models

in each experiment are listed in the Table 5.3. The proposed MRMIL outperformed all

baseline models and achieved the highest Acc of 92.7% and κ of 81.8% as shown in row

12. Models with handcrafted features only obtained about 57% κ as demonstrated in row 3

and 4 in the Table 5.2. As shown in row 5, the model by Campanella et-al. [CHG19] got

4% lower κ compared with our MRMIL model. Models with simple mean and maximum
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Figure 5.3: WSIs overlaid with attention maps generated from the first stage cancer detection

model. Pen markers as mentioned in §5.3.1 indicate cancerous regions. The first row shows

attention maps from the model with instance dropout, while the second row is from the

model without using instance dropout. Figures are best viewed in color.
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Figure 5.4: Visualization of discriminative regions within tiles for TP and FP predictions.

For each slide, we selected the top three tiles with the highest attention weights from the

model, which were then forwarded to the model to generate activations and gradients for

Grad-CAM.
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Figure 5.5: t-SNE visualization of slide-level features. Black dots denote benign, purple dots

indicate LG, and orange dots represent HG slides. (A) is the slide-level representations from

the detection stage model. There is distinct separation between benign and cancerous slides.

(B) shows the slide-level features from the classification stage model. We can see a better

separation between LG and HG slides.

pooling aggregation methods also achieved lower performance than the MRMIL model as

reported in row 6 and 7. Row 8 to 11 demonstrated results on ablation study of the MRMIL

model. The single stage attention MIL model trained at 5x achieved 76.3% κ. The br

selection that relied on the Br image for tile selection only obtained an Acc of 90.8% and

a κ of 76.0%. The w/o instance dropout model, got roughly 4% lower κ and 2% lower Acc

compared with the MRMIL model. In addition, we combined LG and HG predictions from

the classification model and computed the AUROC and AP for detecting cancerous slides.

For instance, by zooming in on suspicious regions identified by the detection stage model, the

MRMIL achieved an AUROC of 98.2% and an AP of 97.4%, both of which are higher than

the detection stage only model. We present the confusion matrix for the MRMIL model on

GG prediction in Figure 5.6. The MRMIL model obtained an accuracy of 87.9%, a quadratic

κ of 86.8%, and a κ of 71.1% for GG prediction.
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Table 5.2: Model performance on BN, LG, and HG slides classification. Cohen’s Kappa and

overall accuracy are reported in the table. To evaluate model performances on detecting

malignant slides, probabilities for LG and HG are combined. AUROC and AP for cancer

detection are also included in the table.

BN, LG, HG Classification Cancer Detection

Experiment Name Cohen’s Kappa (%) Acc (%) AUROC (%) AP (%)

Handcrafted + RF 57.0 81.5 93.1 83.9

Handcrafted + Xgboost 55.9 80.9 93.3 83.9

Campanella et al [CHG19] 77.2 90.7 98.3 97.3

Mean aggregation 77.1 90.8 97.9 96.6

Max aggregation 79.5 91.9 97.4 96.3

Single stage 76.3 90.5 97.4 95.8

Br selection 76.0 90.8 95.9 94.3

W/o instance dropout 77.3 91.0 97.3 96.0

Att selection 80.7 92.4 98.4 97.4

MRMIL 81.8 92.7 98.2 97.4
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Table 5.3: Details on models for experiments.

Experiment Name Model Details

Handcrafted + RF 90 radiomics features + RF at 10x

Handcrafted + Xgboost 90 radiomics features + Xgboost at 10x

Campanella et al [CHG19] MIL + RNN at 10x

Mean aggregation Mean aggregation at 10x

Max aggregation Max aggregation at 10x

Single stage Single resolution MIL at 5x

Br selection Multi-resolution + Br

W/o instance dropout Multi-resolution + Att

Att selection Multi-resolution + Att + instance dropout

MRMIL Multi-resolution + Att + instance dropout + clusters

Figure 5.6: Confusion matrix for Gleason grade group prediction.
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5.5 Discussion

Our detection stage model achieved promising results on both an internal test set and an

external dataset, which demonstrates the generalizability of the model. One potential expla-

nation for slightly better performances on external dataset is that our independent test set

is relatively large (i.e. 7114 slides from 830 patients.) and is collected from clinical database

without any data curation.

Handcrafted features-based models performed relatively well on differentiating benign

and malignant slide with an AUC of 93.3%, however, they obtained much lower κ on the

hard task of classifying LG, HG and BN slides. The model proposed by Campanella et al

[CHG19] first used an instance-based MIL approach, which considered tiles with highest

probabilities as having the same label as the corresponding slide, and then utilized the RNN

model to aggregate representations from top tiles for slide classification. In contrast, our

model used a more flexible attention aggregation method that can detect discriminative tiles

and combine tile-level features in the same time. The model [CHG19] achieved comparable

performance on detecting cancerous slides with 98.3% AUC and 97.3% AP. Yet, it showed

inferior results on predicting LG, HG, and BN classes compared with the MRMIL model.

Nagpal et al developed a two-stage model for Gleason grade prediction of prostate cancer

biopsy slides [NFT20]. Their first stage model, which was trained to provide tile-level Gleason

pattern classification, was developed using 114 million labeled tiles from over 1,000 slides of

prostatectomies and biopsies. The model obtained a κ of 71.7 % on GG1, GG2, GG3 and

GG4/5 prediction. Our model, which does not rely on fine-grained annotations and can be

trained with only slide-level labels, achieved a comparable performance (κ = 71.1%).

The quality of attention maps from the detection stage model is essential for selecting

discriminative regions for the classification stage model. As shown in Figure 5.3, attention

maps learned with only weak (i.e. slide-level) labels are consistent with cancerous regions

identified by pathologists during diagnosis. This demonstrates that our detection stage
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model not only achieves strong performance in classifying malignant versus benign slides, but

also identifies suspicious regions for classification stage models. In addition, the generated

attention maps can be integrated into a WSI viewer to potentially help pathologists more

quickly localize relevant areas and reduce diagnostic time. Figure 5.3 also shows that the

original attention-based MIL model [ITW18] (i.e. w/o instance dropout) only focuses on

a few most discriminative tiles instead of entire suspicious regions. As reflected in Table

5.2, the w/o instance dropout model obtained a κ of 77.3%, which is about 4% lower than

the one trained with instance dropout. Moreover, the performance of the model that relied

on the Br image is inferior to the models that utilized attention maps. This demonstrates

that areas with the most blue color may not be diagnostic relevant regions and that our

attention module is able to extract high-level predictive representations rather than purely

color features.

Grad-CAM visualization facilitates understanding of predictions from “black-box” deep

learning models, as shown in Figure 5.4. For TP predictions in Figure 5.4 (A), our model

captured the most relevant parts in the tile, though some cancerous regions were missed. For

example, the first tile on the fourth row contains densely clustered cancerous glands, but the

Grad-CAM in the third row only highlighted the most central area, and cancerous glands

closer to the boundary were not detected. FP predictions are usually also hard cases for

pathologists, with features that resemble prostate cancer. For example, regions highlighted

by Grad-CAM in third and fourth rows in Figure 5.4 (B) contain benign glands with increased

number of basal cells due to tangential tissue sectioning. Last two rows in Figure 5.4 (B)

show the seminal vesicle/ejaculatory duct tissue that form small outpouching glands with

amphophilic cytoplasm, which mimic malignant glands. Our model was only trained to

detect and grade acinar adenocarcinoma for prostate biopsies. Interestingly, as shown in

first two rows in Figure 5.4 (B), the model was able to identify intraductal carcinoma of

the prostate gland (IDC-P), which is usually associated with high-stage invasive cancer and

adverse prognosis.
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From Figure 5.5 (A), we can see that benign slide representations are clustered together

on the right and malignant slides form a small cluster on the left. There is no distinct

separation between features from LG and HG slides, since the objective of the detection

stage model is to classify cancerous versus benign slides. Figure 5.5 (B) shows that features

of LG and HG slides generated from the classification stage model form their own distinct

clusters, and representations from LG slides lie closer to benign slides in the embedding

space.

To quantitatively evaluate our model performance, we performed experiments to under-

stand the contribution of different model components, as summarized in Table 5.2. Using

attention maps to select higher resolution tiles improved the κ of the one with br selection by

1%. Instance dropout further boosted the κ by over 3%. The final model MRMIL with all

components achieved the highest κ for BN, LG, and HG classification, 98.2% AUROC for de-

tecting malignant slides, and a quadratic κ of 86.8% for GG prediction, which is comparable

to state-of-the-art models that require pre-trained segmentation networks [BPB19].

5.6 Summary

In this chapter, we present a novel MRMIL model that consists of a detection stage and a

grade classification stage. The model can be trained with weak supervision from slide-level

labels and localize cancerous regions. We provided visualization of saliency maps at both

the slide- and tile-level, and learned representations to enhance model interpretability. The

model was developed and evaluated on a dataset with over 20k prostate slides from 830

patients and an external dataset [ELC19], and achieved promising performance. We believe

that these types of models could have multiple applications in the clinic, including allowing

pathologists to increase their efficiency, empowering more general pathologists to perform at

the level of experts, and performing“second reads” of biopsy slides for quality assurance.
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5.7 Appendix

5.7.1 Detailed model architecture

Table 5.4 shows the detailed architecture for the first stage cancer detection stage model,

and Table 5.5 shows the architecture for the classification stage model. Two stage models

were trained separately.

5.7.2 Blue ratio conversion

Figure 5.7 demonstrates blue ratio conversion method for detecting regions from whole slide

images for fine-grained Gleason grade classification. We can see that the method can identify

areas with most nuclei, however these region may not be cancerous area (e.g., it may identify

regions with large benign glands).

5.7.3 K means clustering

We used PCA to project n× 256 instance-level embedding vectors of n tiles to n× 32 (i.e.,

the number of components is set to be 32). For K-means clustering, the k was set to be 3 to

encourage tiles to be grouped into benign, low-grade and high-grade clusters. Our attention

clustering-based selection method was robust to different initializations. Specifically, we re-

ran the K-means clustering with different random seeds for 10 times, and computed mean

intersection over union (IoU) for selected tiles. Our method achieved a mean IoU of 97.65%.
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Table 5.4: Cancer detection stage model architecture.

Module Layers # filters Filter size Output size

Input - - 3 × 128 × 128

Conv + BN + ReLU 64 3 × 3 64 × 128 × 128

Max Pool 64 2 × 2 64 × 64 × 64

Conv + BN + ReLU 128 3 × 3 128 × 64 × 64

Max Pool 128 2 × 2 128 × 32 × 32

Conv + BN + ReLU 256 3 × 3 256 × 32 × 32

Conv + BN + ReLU 256 3 × 3 256 × 32 × 32

VGG11bn Max Pool 256 2 × 2 256 × 16 × 16

Conv + BN + ReLU 512 3 × 3 512 × 16 × 16

Conv + BN + ReLU 512 3 × 3 512 × 16 × 16

Max Pool 512 2 × 2 512 × 8 × 8

Conv + BN + ReLU 512 3 × 3 512 × 8 × 8

Conv + BN + ReLU 512 3 × 3 512 × 8 × 8

Max Pool 512 2 × 2 512 × 4 × 4

Instance embedding Conv 256 1 × 1 256 × 4 × 4

FC + ReLU + Dropout - - 256

Attention module FC + Tanh + Dropout - - 512

FC - - 1

Classifier FC - - 1
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Table 5.5: Cancer classification stage model architecture.

Module Layers # filter Filter size Output size

Input - - 3 × 256 × 256

Conv + BN + ReLU 64 3 × 3 64 × 256 × 256

Max Pool 64 2 × 2 64 × 128 × 128

Conv + BN + ReLU 128 3 × 3 128 × 128 × 128

Max Pool 128 2 × 2 128 × 64 × 64

Conv + BN + ReLU 256 3 × 3 256 × 64 × 64

Conv + BN + ReLU 256 3 × 3 256 × 64 × 64

VGG11bn Max Pool 256 2 × 2 256 × 32 × 32

Conv + BN + ReLU 512 3 × 3 512 × 32 × 32

Conv + BN + ReLU 512 3 × 3 512 × 32 × 32

Max Pool 512 2 × 2 512 × 16 × 16

Conv + BN + ReLU 512 3 × 3 512 × 16 × 16

Conv + BN + ReLU 512 3 × 3 512 × 16 × 16

Max Pool 512 2 × 2 512 × 8 × 8

Instance embedding Conv 256 1 × 1 256 × 8 × 8

FC + ReLU + Dropout - - 256

Attention module FC + Tanh + Dropout - - 512

FC - - 3

Classifier FC - - 3
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Figure 5.7: Br conversion. We performed Br conversion for slides at 5x. The first two rows

demonstrate tiles from a benign slide and the bottom two show ones from a malignant slide.

(A) are 3 tiles with the highest average tile-level Br values, and (B) are ones with the lowest

Br values. We can see that the br conversion is able to highlight regions with most nuclei.
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Table 5.6: Model performance on BN, LG, and HG slides classification

MRMIL with different backbones BN, LG, HG classification Cancer detection

Cohen’s Kappa (%) Acc (%) AUROC (%) AP (%)

VGG11bn 81.8 92.7 98.2 97.4

VGG13bn 79.9 92.0 97.8 96.9

ResNet34 78.7 91.6 96.9 95.3

5.7.4 Different CNN architectures for the feature extractor

We performed experiments to evaluate our MRMIL model performances with different net-

work backbones. Experiments were performed by replacing the feature extractor in both

model stages with different CNN architectures. As shown in the Table 5.6, the VGG11bn

achieved the best performance. Our model performances were affected around 2% by using

different backbones.

5.7.5 Tissue region detection

Despite the enormous size of WSIs, tissue may only occupy small regions with most areas

being background. We developed a tissue detection pipeline to remove background and

pen markers from analysis. The slide is first converted into the hue saturation and value

(HSV) color space where the H channel controls the color, the V channel determines the

brightness of the color and the S channel specifies the saturation of color. We threshold

on the H channel to remove pen markers and the threshold on the S channel to remove

white background. Morphological operations are then applied on the generated binary mask

to remove small objects and holes. Figure 5.8 shows examples from the tissue detection

pipeline for slides from prostate biopsy. Additional examples for tissue detection on slides

from radical prostatectomy are presented in Figure 5.9.
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Figure 5.8: Examples of tissue detection results for biopsy slides. The processing pipeline

is able to separate background and pen markers from tissue regions. This could help down-

stream models focus on the relevant tissue regions.
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Figure 5.9: Additional examples of tissue detection results for prostatectomy slides.
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CHAPTER 6

Progression-free Analysis with Pathomic Features

Chapter 3 and 4 present computer aided diagnosis (CAD) tools that can produce pixel-wise

Gleason pattern predictions for a given tile from whole slide images (WSIs). Instead of

focusing on tile-level analysis, Chapter 5 details a CAD system, which can detect diagnosti-

cally relevant areas and produce slide-level Gleason grade group (GG) predictions. Though

currently Gleason grading system plays an essential role in prostate cancer diagnosis and

treatment planning, heterogeneous outcomes may be observed in patients even within the

same Gleason score [MWH16, MIW19]. For example, the study performed by McKenney

et al suggested more histologic patterns should be considered and regrouped in the current

Gleason grading system (e.g., cases with cribriform G4 patterns have a higher risk comparing

with those with G4 with poorly formed glands).

Rich visual and sub-visual patterns embedded in WSIs could provide important informa-

tion for disease prognosis. Due to the scarcity of data with progression labels, most previous

works on prostate progression analysis utilized handcrafted features or CNN models pre-

trained on natural image datasets [DDS09]. Moreover, relying on manually selected tiles or

pre-defined pooling functions (e.g., maximum and mean pooling) to convert tile-level infor-

mation to case-level predictions were mainly used in previous studies. Challenges remain

on how to effectively extract discriminative representations and combine tile-level feature

vectors for slide-level representations. In this Chapter, we further investigate the capabil-

ity of quantitative self-supervised learning features, attention and spatial-aware aggregation

in a computer-aided progression system for progression-free survival (PFS) prediction for
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prostate patients after radical prostatectomy.

Details on different components in our progression prediction system are presented in §6.1.

In §6.2 the dataset used in this work is reviewed. Experiments and model implementation

are illustrated in §6.3. Results for experiments are discussed in §6.4. Finally, in §6.5 and

§6.6 we summarize advantages and limitations of our model, and discuss potential directions

of future work.

6.1 Methods

Our progression prediction system contains two main parts: 1) a tumor region detection

model as detailed in §6.1.1, which facilitates the selection of informative tiles; 2) a deep

survival model, which aggregates discriminative tile-level features to predict the case-level

survival.

We experiment with two different approaches for tile-level representation learning: a)

handcrafted texture features; b) momentum contrast self-supervised learning model (MoCo)

[HFW20]. To summarize tile-level features, we develop two aggregation methods: 1) an

attention MIL-based method [LLG19]; 2) a graph convolutional neural network-based (GCN)

method. Figure 6.1 shows an overview of our system. Details of each module are introduced

in the following sections.

6.1.1 Tumor region detection

One challenge for analyzing large-scale WSIs is to identify suspicious regions to sample tiles.

Previous approaches relied on manually circled cancerous regions, which are expensive to

collect [VCC17, DAH18, YZB16, CLL20, LJE19, LRW18, NFT20, NFL19].

In this work, we utilize a pre-trained tile-level CNN to produce cancer probability map

for WSIs. k tiles with highest cancer probability are selected for survival analysis. Training
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Figure 6.1: Overview of the proposed PFS prediction system. The system mainly consists

of two stages: 1) tumor detection stage, where a tile-level cancer classification model is

applied to produce cancer probability map for each slide; 2) PFS prediction stage, where

representations are extracted from selected tiles and aggregated into a slide-level feature

vector for PFS prediction. The figure shows an example for self-supervised learning-based

feature extraction with the MoCo model. Rather than using task specific labels, MoCo

utilizes contrastive loss, which encourages smaller distances between features from augmented

views of the same tile, but larger distance among other tiles.
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a traditional tile-level CNN may require a large amount of expensive samples labeled at

local-level (e.g., region-level or pixel-wise). To deal with the label scarcity challenge, we

exploit a large-scale dataset with weakly-labeled biopsy slides and a small dataset containing

prostatectomy slides with region-level annotations.

Specifically, we first consider the problem of training a model to differentiate benign and

malignant tiles with global slide-level labels as a multiple instance learning (MIL) problem.

Each slide is modeled as a bag and tiles extracted from the slide are considered as instances.

Benign slides should contain only benign tiles. The slide is malignant iff it has a cancerous tile

as defined in the Equation 5.1. Thus, if tiles are sorted in descending order according to their

probabilities of being cancerous. Top Tiles within a malignant slide will have probabilities

closer to 1, while tiles from a benign slide should have probabilities closer to 0. Since tile-

level predictions are required, we optimize the tile-level CNN model under an instance-level

MIL framework in an iterative way [CHG19].

In step t, the tile-level model from step t− 1 is applied to produce cancer probability for

each tile. Top s tiles from each slide are selected and inherit the corresponding slide-level

label. s is set to be 1. Then the tile-level model is further optimized with pseudo tile-level

labels. The inference of tile labels and training of the tile-level model are iterated until

convergence.

In addition to the large-scale biopsy dataset, we leverage the small prostatectomy dataset

with regions of interest circled and graded by pathologists. The tile-level model is then fine-

tuned on this dataset using tiles extracted from annotated regions.

6.1.2 Histopathological feature extraction

6.1.2.1 Deep representation learning with MoCo model

Fully supervised CNNs are known to be “data hungry” and require lots of expensive labeled

samples. Despite the large size of WSIs, available labels for histopathological datasets are

98



usually sparse and at global-level. For example, a patient may have multiple WSIs, each of

which could contain billions of pixels, but only one overall survival label. Self-supervised

learning models are proposed to leverage information embedded in unlabeled data. Instead

of computing losses between model predictions and task specific labels, contrastive loss has

been exploited in some self-supervised learning models to learn task agnostic representations,

which can capture the underlying structure of the data [HFW20, CKN20, BHB19, OLV18].

In this work, we adopted a modified momentum contrastive learning model (MoCo) [HFW20]

to learn representations embedded in the histopathological images, which may be informative

for disease prognosis.

The main assumption for the MoCo model is that features from augmented versions of

the same image should be more similar than features from different images. Specifically,

images can be projected into feature vectors ki, i = 1, 2, 3, ... by a key encoding function

fk(·), which can be considered as keys in a dataset. Given the encoded representation qi

of a query image generated by the query encoding function fq(·), there exists one matched

key, which has the largest similarity value to qi. The similarity between a pair of feature

vectors can be measured with cosine distance: sim(qi,ki) = qiki

‖qi‖‖ki‖ . The contrastive loss,

also referred as the infoNCE [OLV18, HFW20], can be defined by the Equation 6.1.

Lq = −log
exp(sim(qiki)/γ)

exp(sim(qiki)/γ) +
∑N

j 6=i exp(sim(qikj)/γ)
(6.1)

where γ is the temperature parameter. qi and ki are feature vectors from different views

of the same image i. The numerator denotes the similarity between a positive pair and

the denominator represents the sum over similarities of one positive pair and other negative

pairs. A positive pair consists of the key and query feature vectors originated from the same

image. For example, query and key images can be obtained by applying stochastic data

augmentation methods, such as random rotation, cropping, blurring, resizing and etc, on the

original image. Identifying the matched image is used as the surrogate prediction task in
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the contrastive loss based self-supervised learning model.

Contrastive learning-based models benefit from a rich set of negative samples. However,

this may require a larger batch size, hence, a larger GPU memory. To address this challenge,

the MoCo model maintains a running queue of the dictionary containing embeddings of

key images [HFW20]. The dictionary is updated continuously with new batches of samples.

This enables the number of negative samples to be decoupled from the batch size [HFW20].

To make parameter update tractable for the key encoder fk, the MoCo model exploits the

momentum update, in which the fq is updated by back-propagation and the fk is updated

gradually by fq : fk = mfk + (1−m)fq [HFW20].

Moreover, extensive data augmentation prevents the model from shortcut solutions (e.g.,

using low-level noisy features such as color to distinguish images) and encourages it to

learn high-level, semantic representations. Color distortions is one of the most effective

transformations for improving learned representations [CKN20]. In this work, we leverage

the property of H&E stained WSIs that the image can be decomposed into two stain channels

representing nuclei and stroma areas. Random conversion to H stain channel is included as

additional color augmentation method during model training.

High dimensional tiles extracted from WSIs can then be encoded into lower dimensional

representations with the trained MoCo model for the down-stream survival prediction.

6.1.2.2 Texture-based features

Texture descriptors measure spatial distribution of intensities. Many previous work in clas-

sifying pre-selected patches from prostate WSIs utilized texture-based features. Mosquera-

Lopez et al provided a review on texture-based CAD tools of prostate cancer [MAV14]. For

comparison, we build a pipeline with the Pyradiomics package [VFP17] to extract first-order

statistics based and texture-based features. Details about features included in the pipeline

are listed in Table 6.1.
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Table 6.1: Handcrafted features used for survival analysis. Tiles are first converted into HSV

color space. H channel and the binary mask for tissue regions are fed into the Pyradiomics

package is used to compute features.

Feature Category Number of Features

First order statistics 16

Gray-level co-occurrence matrix (GLCM) 23

Gray-level size zone matrix (GLSZM) 16

Gray-level run length matrix (GLRLM) 16

Gray-level dependency matrix (GLDM) 14

Neighbouring gray tone difference matrix 5

Total features 90

6.1.3 Aggregate tile-level features for progression free survival analysis

Each suspicious tile identified by the tumor detection model can be represented by a d di-

mensional feature vector z, z ∈ Rd×1 using the MoCo model or human-engineered feature

pipelines as described in §6.1.2. However, the outcome label is at case-level. How to combine

tile-level features for case-level predictions is challenging. In this work, we mainly investigate

two types of aggregation methods: the attention MIL-based approach (att-MIL) detailed in

§6.1.3.1 and the GCN-based method introduced in §6.1.3.2. Assume an aggregated repre-

sentation zagg can be generated for each case, negative logarithm of Cox partial likelihood

as proposed in the DeepSurv model [KSC16] is utilized as the loss function for model opti-

mization. Given the event ei is observed for patient i at Ti, the Cox loss can be computed

by the Equation 6.2.

l(β) = −
∑
i:ei=1

(hθ(z
agg)− log

∑
j∈R(Ti)

exp(hθ(z
agg))) (6.2)
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where j ∈ R(Ti) represents a set of patients with events that haven’t occurred at Ti. h(·)θ

is a non-linear function (e.g., a multi-layer perceptron).

6.1.3.1 Aggregation with attention-based multiple instance learning method

The problem of weakly-supervised survival prediction can be also modeled with a MIL frame-

work, where labels are available for a bag of tiles (i.e., instances), while labels for each tile is

unknown. Bag-level MIL method is utilized, since global-level predictions are more impor-

tant for the case-level survival prediction. Rather than using pre-defined pooling functions,

we exploit a trainable attention module to summarize tile-level features into a slide-level

representation. The attention module enables weighted aggregation of tile-level features and

makes the network to focus on relevant regions.

Specifically, an attention module g(·) is added after the fully connected layer, which

produces tile-level representations, to learn weight distribution α = α1, α2, ..., αN for N

tiles. The g(·) can be modeled by a multilayer perceptron (MLP). The attention for the k

th instance can be defined by the Equation 6.3:

αi = Softmax[UT (tanh(WzTk ))] (6.3)

where U ∈ Rh×1 and W ∈ Rh×d are learnable parameters, and h is the dimension of the

hidden layer. Then each tile can have a corresponding attention value learned from the

module. The slide-level embedding z agg can be obtained by multiplying learned attentions

with instance features. Promising results have been observed with the attention-based MIL

method for cancer detection and Gleason grade prediction tasks as shown in Chapter 5. In

this chapter, we further extend it for PFS prediction.
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6.1.3.2 Aggregation with graph convolution neural network

The attention-based MIL method utilizes trainable attention module, which may fail to

model the spatial structure (i.e., topology) of tile-level features. If we consider a slide as a

graph and denote tiles as nodes associated with tile-level features, slide-level representations

can be also produced using the GCN. The GCN updates features of each node by aggregating

information from neighborhood nodes in each graph convolutional layer and creates hierar-

chical representations by stacking multiple layers. Instead of using a permutation invariant

function, GCN takes account of spatial relationships of tiles.

Specifically, the GCN extends the idea of the graph neural network (GNN) [GMS05].

A graph can be denoted by G(V , E) consisting of a vertex set V = {vi}NV
i=1 and edge set

E = {ej}NE
j=1 with feature vector zvi ∈ Rd×1 associated with vertex vi. Assume N Evi is the

neighborhood of the node vi and mean pooling is used to combine features from neighborhood

nodes, a layer of the GCN can be defined by the Equation 6.4:

gE(vi) = ReLU(W ·Mean(zvj |vj ∈ N Evi)) ,where W ∈ Rd×n is a learnable matrix (6.4)

We use a graph attention network (GAT) [VCC17] as the backbone of our model. The

GAT extends and improves the GCN by learning attention scores that indicate the im-

portance of a node’s neighborhood features. The attention mechanism is a single-layer

feedforward neural network, parametrized by a weight vector α. The weighting coefficients

computed by the attention mechanism can be expressed by the Equation 6.5:

αvi,vj =
exp(ρ(aT [Wzvi‖Wzvj ]))∑

vk∈NE
vi

exp(ρ(aT [Wzvi‖Wzvk ]))
(6.5)

where a ∈ R2d is a trainable weight vector, ‖ represents concatenation and ρ denotes the

LeakyReLU non-linear activation. In the final GCN layer, all remaining node features are
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combined using a global attention module and form a slide-level representation zagg that is

utilized for PFS estimation.

6.2 Dataset

Three datasets are utilized in this work:

1. UCLA prostate biopsy dataset. The dataset, referred as dataset-biopsy, contains 20,229

slides from prostate needle biopsies from 830 patients pre- or post-diagnosis. Slide-level

Gleason grade labels are retrieved from pathology reports. The dataset is randomly

divided into 70% for training, 10% for validation and 20% for testing, stratified by

patient-level Gleason grade group (GG) determined by the highest GG in each patient’s

set of biopsy cores. More details on label distributions of this dataset are introduced

in the §5.3.1. This dataset is mainly utilized to pre-train a tile-level cancer prediction

model under the instance-level MIL framework. Slides in dataset-biopsy are scanned

with a mixture of scanning objectives: 40x (i.e., 0.25 µm per pixel) and 20x (i.e., 0.5

µm per pixel).

2. Cedars-Sinai prostatectomy dataset. This dataset, referred as dataset-finetune, consists

of 30 WSIs from prostatectomies of 30 patients [IML18]. These slides were annotated

by a pathologist who circled and graded the major foci of tumor as either low-grade

(Gleason pattern 3), high-grade (Gleason pattern 4 and 5), or benign (BN) areas. The

tile-level cancer prediction model, which is trained with a large weakly annotated biopsy

dataset (i.e., only slide-level labels are available), is then fine-tuned on the dataset-

finetune that contains region-level annotations. The scanning objective of slides in this

dataset is set at 20x. 5-fold cross validation is used for model training and validation.

3. The Cancer Genome Atlas Program prostate dataset (TCGA-PRAD). Models for PFS

prediction are developed on the publicly available TCGA-PRAD dataset [CDS18,
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AAA15, LLH18]. Clinical data and formalin-fixed paraffin-embedded, H&E stained

diagnostic slides are retrieved using the genomic data commons (GDC) data portal.

Additional clinical follow-up data are obtained from the standardized dataset provided

by the TCGA pan-cancer clinical data resource (TCGA-CDR) [LLH18]. As recom-

mended in the TCGA-CDR, the progression-free interval (PFI) are used as the clinical

endpoint [LLH18]. The progression includes biochemical recurrence, locoregional recur-

rence, distant metastasis and new primary tumor. 399 cases with available diagnostic

slides are included in this study. Slides are scanned at 40x in this dataset. 5-fold cross

validation stratified by events is utilized for model training and validation. Within each

fold, we further split the training data into 80% for training and 20% for validation.

Model hyper-parameters are selected using the 20% validation set within the training

part of each fold, and model performances are evaluated on left out test data for each

fold to avoid overfitting.

6.2.1 Data preprocessing

The same preprocessing pipeline as described in §5.3.1 is exploited for all three datasets to

generate tissue masks and facilitate tile extraction. Some examples of generated tissue masks

are presented in appendix §5.7.5.

Tiles of size 512×512 at 20x with at least 80% of tissue areas are extracted from the grid

for the dataset-biopsy, and sampled from annotated regions for the dataset-finetune. Tiles

of size 1024 × 1024 at 40x with at least 80% tissue areas, which corresponds to 512 × 512

regions on slides scanned at 20x, are extracted from the grid for the TCGA-PRAD dataset.

Tiles from dataset-biopsy and dataset-finetune are downsampled to 10x (256 × 256) and

utilized to train and finetune the tumor detection stage model. The model is applied on

tiles from the TCGA-PRAD dataset, which are also downsampled to 10x, to select top 200

tiles with highest cancer probabilities for each slide. The MoCo model is then trained with

512× 512 tiles at 40x that are randomly cropped from tiles selected by the tumor detection
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stage model. During testing, representations are produced from the center cropped tiles.

Different staining protocols, tissue preparation procedures, scanning conditions and etc

may lead to stain variations. Thus, we utilize the Reinhard [RAG01] color normalization

method to normalize generated tiles from all three datasets.

6.3 Experiment

6.3.1 Model training

We used ResNet50 as the backbone for the MoCo model. Data augmentations including

random cropping, stain separation, Gaussian blurring and flipping were utilized for the MoCo

model training. The feature dimension was set at 128. The number of negative samples in

the key dataset was set at 65536. A learning rate of 0.015 and a batch size of 128 were

utilized. The SGD optimizer was used for model optimization. The model was trained with

4 GPUs on an NVIDIA DGX-1.

The trained query encoder of the MoCo model was used as the feature extractor to

generate a 128× 1 feature vector for each tile. Feature vectors of tiles from each slide were

combined with aggregation models, which were finetuned with progression labels. We used a

learning rate of 0.001 and a batch size of 64 for Deep-Att-MIL model training. The learning

rate and batch size for Deep-Att-MIL-clinical were set at 0.001 and 12, respectively. Adam

optimizer was used in both experiments. The learning rate was decreased 5 times if the

validation loss didn’t decrease for 2 epochs. Deep-GCN and Deep-GCN + clinical models

were trained with a batch size of 16 and a learning rate of 0.0005. Adam optimizer was also

used for parameter optimization for GCN models. Graphs were constructed by connecting

3 nearest neighbors for each node (i.e., tile).
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6.3.2 Evaluation metrics

PFS prediction models are evaluated by the concordance index (c-index), also referred as

c-statistic. c-index can be considered as a generalized area under receiver operating charac-

teristic curve (AUROC). It measures the effectiveness of predicted risk scores (i.e., hazard)

on ranking survival times (e.g., time to progression). The c-index value is between 0 and 1,

with 1 indicating the perfect concordance and 0.5 representing results from random predic-

tions. To compute c-index, slide-level predicted hazards are fed into the concordance index

function in the lifelines package [DKJ20]. For cases with multiple slides, average hazards are

utilized.

6.3.3 Comparison models

Deep-Att-MIL denotes the deep survival model that leverages self-supervised learning fea-

tures and attention MIl-based aggregation. Topological structures of learned deep represen-

tations are exploited in the GCN-based aggregation model, referred as Deep-GCN. Moreover,

in Deep-Att-MIL + clinical and Deep-GCN + clinical we incorporate clinical features by con-

catenating clinical variables with aggregated slide-level feature vector, which is then utilized

for survival estimation.

To further evaluate the effectiveness of deep representations and aggregation methods,

we implemented several baseline models. Mean pooling was used to combine tile-level infor-

mation for both handcrafted feature-based models and deep feature-based models.

Clinical features. In this experiment, we utilize clinical variables including age, psa value,

pathological T stage and GG to fit a baseline Cox model. GG and age information are

available for all cases. Missing values of psa and pathological T stage are imputed with

median.

LASSO-Cox. Linear Cox models with L1 penalty are implemented for PFS prediction.

Handcrafted features as described in §6.1.2.2 are used as covariates in the LASSO-Cox-
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Table 6.2: Concordance index (c-index) of models using different feature pipelines and ag-

gregation methods on predicting progression-free survival for prostate patients after radical

prostatectomy.

Models c-index ↑

Clinical features 0.7254 ± 0.042

LASSO-Cox-handcrafted 0.6818 ± 0.067

LASSO-Cox-deep 0.7046 ± 0.111

ElasticNet-Cox-handcrafted 0.6671 ± 0.052

ElasticNet-Cox-deep 0.7254 ± 0.101

RandomForest-Cox-handcrafted 0.6995 ± 0.048

RandomForest-Cox-deep 0.7209 ± 0.109

Deep-Att-MIL 0.7420 ± 0.089

Deep-GCN 0.7441 ± 0.123

RandomForest-Cox-handcrafted + clinical 0.7058 ± 0.052

ElasticNet-Cox-deep + clinical 0.7312 ± 0.049

Deep-Att-MIL + clinical 0.7602 ± 0.073

Deep-GCN + clinical 0.7743 ± 0.122

handcrafted experiment. The LASSO-Cox-deep experiment, on the other hand, leverages

self-supervised learning features.

ElasticNet-Cox. We implement Cox models with L1 and L2 penalties in this experiment.

The ratio of L1 penalty is set to be 0.5. The ElasticNet-Cox-deep utilizes deep representa-

tions, while the ElasticNet-Cox-handcrafted relies on handcrafted features.

RandomForest-Cox. The random forest-based Cox model is used for survival prediction.

In RandomForest-Cox-handcrafted, handcrafted features are utilized. Self-supervised learn-

ing based representations are used as predictors in RandomForest-Cox-deep.
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6.4 Results

Hazard predictions on the left-out test set for each fold are collected and utilized to compute

c-index. Average c-index and 95% confidence interval for models and ablation experiments

are shown in the Table 6.2. The baseline Cox model with clinical features (age, psa, patho-

logical T stage and GG) obtained an average c-index of 72.54%. The Deep-GCN model that

combines clinical variables achieved the highest average c-index of 77.43 %, which is over 5%

higher than the baseline model with only clinical features.

Models with deep learning representations demonstrated superior performances compar-

ing with handcrafted features. For instance, the ElasticNet-Cox model with deep represen-

tations produced an average c-index of 72.54%, which is around 6% higher than the one with

handcrafted features. GCN based aggregation method showed better results in predicting

progression comparing with ones with the att-MIL aggregation. The Deep-GCN + clinical,

for example, achieved around 1% higher average c-index than the Deep-Att-MIL + clinical.

Both Deep-GCN and Deep-Att-MIL presented better performances when fused feature vec-

tors with clinical information. For instance, the Deep-Att-MIL with clinical data obtained

around 2% higher average c-index than the one without clinical features.

6.5 Discussion

The self-supervised learning-based method is able to exploit intrinsic structures of images

and doesn’t rely on task specific labels. As demonstrated by ablation experiments, average

c-indexs for several Cox models were largely improved by using features produced from

self-supervised learning models.

Given the enormous size of WSIs and memory capacity of current GPUs, it’s almost

impossible to feed the entire WSI into a CNN model. Therefore, dividing the large slide

into multiple smaller tiles is one potential way to reduce computational requirement and
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retain sufficient resolution. Representations are then extracted from each tiles. Attention

MIL, which is invariant to tile permutation, is one of the most commonly used strategy for

combining local features into global representations. However, this method discards spatial

orders of tiles. Unlike the attention mechanism, GCN considers location information of

tile-level features and updates each node feature with representations from nearby nodes.

This enables learning of longer range dependency and facilitates spatial-aware aggregation

of local features. As demonstrated in Table 6.2, models (i.e., Deep-GCN and Deep-GCN +

clinical) with GCN based aggregation generally outperformed attention-based models (i.e.,

Deep-Att-MIL and Deep-Att-MIL + clinical).

Clinical factors are good predictors for cancer progression prediction and the baseline

Cox model achieved an average c-index of 72.54%. Yet, current grading system describes

histological growth patterns with fixed categories, which may not be able to account for

the underlying diverse patterns. As shown in Table 6.2, models with deep representations

and effective aggregation methods generally outperformed the baseline model with only clin-

ical features, which indicates the ability of self-supervised learning models in identifying

informative histopathological features for progression prediction. Performances of both deep

representation-based models and handcrafted feature-based models improved by incorporat-

ing clinical features. The best performance is achieved by aggregating deep features with

GCN and combining clinical variables with deep representations. This demonstrates the

potential of including deep features for prostate cancer progression prediction.

Though the proposed deep learning system achieves promising performances on progres-

sion prediction, there are several limitations of this work. Different treatments and surgical

margins could be confounding factors for progression and may affect model performances.

Effects of treatment options and residual tumor should be investigated in the future work.

Models were only evaluated retrospectively with 399 cases from the TCGA-PRAD dataset.

External validation on larger datasets and prospective studies could be performed in the

future work to further evaluate model performances. Moreover, in this study, we mainly
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leverage information embedded in histopathological images and clinical measurements to

estimate progression free survival. Representations from other data modalities, such as

multiparametric-magnetic resonance imaging (mp-MRI) and genomic profiling, may also

contain important information about prostate cancer prognosis. Multi-modal models that

incorporate features from different scales can be investigated in the future work.

6.6 Summary

In this Chapter, we present a deep learning system for progression-free survival prediction

of prostate cancer patients. The system leverages histopathological features embedded in

high-resolution histopathological tiles and effective aggregation approaches for progression

estimation. Models are developed on the publicly available TCGA-PRAD dataset and eval-

uated on hold-out sets in 5-fold cross validation. Deep representations produced by the self-

supervised learning model demonstrate superior performances comparing with handcrafted

features. By representing tiles as nodes in the graph, the GCN-based aggregation method

is able to model spatial distributions of tile-level features and shows better performance on

predicting prostate cancer progression than using a permutation invariant attention module.

In addition, models with deep representations outperform the baseline model with clinical

feature only. The best model, which uses deep features, exploits GCN aggregation and com-

bines clinical information, achieves an average c-index of 77.26% (around 5% higher than the

baseline model). Though other factors such as treatment need to be included and the model

performance needs to be further validated on large multi-institutional datasets, current re-

sults suggest the potential of leveraging quantitative histopathological features for better

progression prediction.
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6.7 Appendix

6.7.1 Tumor detection stage model performance

Tumor detection stage model is evaluated with the average precision (AP) and AUROC,

which are computed using the scikit-learn package [PVG11].

The weakly-supervised cancer classification model, which is trained on the dataset-biopsy

with only slide-level labels, achieves an AP of 0.9708 and an AUROC of 0.9842 for classifying

benign and malignant slides on an independent test set. The model is further finetuned on a

radical prostatectomy dataset with tile-level labels retrieved from region-level annotations.

It achieves the AP of 0.9833 ± 0.010 and the AUROC of 0.9788 ± 0.012 for tile-level cancer

prediction on 5-fold cross validation. This demonstrates the ability of the tumor detection

stage on identifying suspicious regions. Figure 6.2 shows some examples of cancer probability

maps.

Figure 6.2: Examples of cancer probability maps produced from the tile-level cancer classi-

fication model. Top tiles with highest cancer probabilities are selected for PFS prediction.
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CHAPTER 7

Conclusion and Future Work

This Chapter summarizes main contributions of this dissertation and discusses potential

future directions to investigate.

7.1 Summary of contributions

This dissertation presents models for learning discriminative representations from large-scale

whole slide images, which can potentially be incorporated into the pathology workflow to

improve the efficiency and reproducibility of prostate cancer diagnosis. Contributions of this

dissertation are summarized as follows.

1. A multi-scale U-Net model, which extends the U-Net model by explicitly leveraging

features from different scales, is developed for semantic segmentation of heterogeneous

histopathological images extracted from radical prostatectomy slides. As presented

in Chapter 3, the proposed multi-scale U-Net model outperforms a reference segmen-

tation algorithm based on handcrafted features, the pixel-wise deep CNN model and

the original U-Net model. The segmentation model enables localization of tissues of

different types and may facilitate estimation of Gleason pattern percentage.

2. An EM-based model that addresses the challenge of lack of data with fined-grained

annotations for segmentation models is built to further improve the performance of

the multi-scale U-Net model. As demonstrated in Chapter 4, the EM-based method

leverages information embedded in the weakly-labeled dataset and exploits the prior
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knowledge to refine prediction masks. The EM method with adaptive bias based on the

prior knowledge shows superior performance than the baseline EN model and the one

with fixed bias. With the proposed algorithm, segmentation models can be fine-tuned

on the dataset with only image-level labels, which greatly reduces the need of costly

pixel-wise annotations from pathologists.

3. A multi-resolution multiple instance learning-based (MRMIL) model is developed to

address the challenge of training a classification model with large-scale weakly-labeled

whole slide images. The proposed model could produce slide-level Gleason grade pre-

diction as well as localize suspicious areas. Visualization techniques as t-SNE [MH08]

and Grad-CAM [SCD17] are exploited to better understand the learned model. The

MRMIL outperforms baseline models and achieves significant performances especially

on differentiating malignant and benign slides.

4. The effectiveness of self-supervised learning-based features and different aggregation

methods on characterizing underlying histopathological patterns is investigated in a

progression-free survival prediction model. The proposed progression prediction sys-

tem consists of two main stages: the tumor detection stage and the progression-free

survival estimation stage with discriminative features extracted and aggregated from

tiles. Deep histopathological features demonstrate superior performances comparing

with models using handcrafted features and clinical factors in estimating progression.

Better performances are achieved by combining clinical variables with deep representa-

tions. This study shows the potential of utilizing quantitative deep features for better

progression prediction.

7.2 Future work

The computer aided diagnosis (CAD) tool for whole slide image classification and detection

(detailed in Chapter 5) has been developed on a large-scale prostate biopsy dataset containing
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over 14k slides, and validated on an independent internal test set as well as an external

dataset. Yet, validation with data from multiple institutions may be needed to further

evaluate the generalizability of the model. Though promising results have been obtained

for the MRMIL model, additional clinical studies with more evaluation metrics need to

be performed to measure the efficacy of incorporating a CAD tool in current pathology

workflow. User studies may need to be conducted to investigate effective ways to present

model outputs to pathologists and to enable better interactions with the CAD tool. CAD

tools are not designed to replace pathologists, but developed to assist pathologists during

diagnosis. Feedback provided by pathologists when utilizing CAD tools could help improve

performances of models. Training a new model every time to incorporate new feedback may

be computationally infeasible. Online machine learning algorithms, which could continuously

optimize models with signals from pathologists, can be an interesting direction to investigate

in the future. Moreover, deep ensemble models may be investigated to improve model

performances.

Interpretability of deep learning models is essential for building reliable, trustworthy and

transparent diagnosis tools that could be adopted by pathologists in routine evaluation of

histopathological slides. This dissertation mainly exploits methods to explain decision made

by deep learning systems and to understand structures of learned features. For instance,

attention maps, which indicate tiles that contribute most to the model prediction, are qual-

itatively evaluated by comparing with pen makers left by pathologists during diagnosis.

Grad-CAM [SCD17] then identify informative regions within a tile. t-SNE [MH08], on the

other hand, visualize lower dimensional manifolds of learned representations. However, how

to understand biological meaning of learned deep features and how to build intrinsically

explainable models that leverage domain specific knowledge such as causality, physical con-

straints and etc remain challenges[Rud19]. Models that are designed according to domain

specific knowledge and constraints may be studied in the future work. Besides providing

explanations of deep learning models, how to leverage interpretations to shed light on model
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design and improvement may need to be further investigated.

This dissertation investigates the effectiveness of quantitative histopathological features

in predicting progression-free survival in prostate cancer patients. Yet, besides PSA, age,

Gleason grade group and pathological T stage, effects of different treatment options pre-

and after radical prostatectomy, and surgical margins, which could also affect the prostate

cancer progression, should be considered in the future work.

Quality control and stain normalization are also important preprocessing steps to perform

before feeding data into deep or machine learning systems. This dissertation utilizes intensity

threshold-based method to remove noisy background and mainly exploits a computationally

efficient stain normalization method [RAG01], which is based on color transformation. Image

to image translation models based on generative adversarial network have been proposed for

more robust stain normalization [ZCH19, NCS20]. These models can be investigated and

incorporated into the current preprocessing pipeline to improve performances on downstream

prediction tasks. Though with large amount of data, deep learning models can be robust to

small percent of noisy samples, automated detection and removal of low quality slides (e.g.,

slides with out of focus regions, extensive artifacts and etc) could help construct high quality

datasets for research and clinical uses in the future.

Histopathological evaluation serves as a bridge between radiology and genomics. Mor-

phological features of histologic primitives (e.g., glands and nuclei) may reflect the under-

lying changes in molecular pathways. Alterations of tissue structures may be observed as

suspicious lesions on medical imaging, which could produce an overall view of tumor ap-

pearances. Pathology, radiology and genomics provide unique pieces of information about

tumor characteristics from different scales. In this dissertation, a deep survival model, which

leverages deep representations from whole slide images and clinical information, has been

developed. Yet, multi-modal hierarchical models, which can integrate the spectrum of a pa-

tient’s diagnostic data including clinical information, imaging data, histopathological slides

and molecular data to predict important prostate cancer endpoints, should be investigated
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to better guide clinical decision making in the future work.

Whole slide images are cross sections of complex 3D tissue structures. Artifacts may

occur during the 2D projection such as tangential cut. 3D reconstruction with serially

cuts tissue slides can provide better visualization of tumor micro-environment and facilitate

understanding of diverse growth patterns [KBG20, STB13]. Registration algorithms for 3D

reconstruction of whole slide images and representations learning with volumetric slides can

be another interesting direction to pursue in the future.

In addition, this dissertation mainly focuses on development and validation of deep learn-

ing models for prostate cancer diagnosis. Algorithms and pipelines developed in this disser-

tation could be transferred to other disease domain in next steps. Pan-cancer models, which

uncovers deep representations that are informative across different disease types, could also

be investigated in the future work.
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multiple instance problem with axis-parallel rectangles.” Artificial intelligence,
89(1-2):31–71, 1997.

[DTC16] Thibaut Durand, Nicolas Thome, and Matthieu Cord. “Weldon: Weakly super-
vised learning of deep convolutional neural networks.” In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4743–4752, 2016.

[DZY20] Shujian Deng, Xin Zhang, Wen Yan, I Eric, Chao Chang, Yubo Fan, Maode
Lai, and Yan Xu. “Deep learning in digital pathology image analysis: a survey.”
Frontiers of Medicine, pp. 1–18, 2020.

[EEV15] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI Williams, John
Winn, and Andrew Zisserman. “The pascal visual object classes challenge: A
retrospective.” International journal of computer vision, 111(1):98–136, 2015.
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Daniel L Rubin, and Michael Snyder. “Predicting non-small cell lung cancer
prognosis by fully automated microscopic pathology image features.” Nature
communications, 7(1):1–10, 2016.

[YZP16] Zhennan Yan, Yiqiang Zhan, Zhigang Peng, Shu Liao, Yoshihisa Shinagawa,
Shaoting Zhang, Dimitris N Metaxas, and Xiang Sean Zhou. “Multi-instance
deep learning: Discover discriminative local anatomies for bodypart recognition.”
IEEE transactions on medical imaging, 35(5):1332–1343, 2016.

136



[ZCH19] Niyun Zhou, De Cai, Xiao Han, and Jianhua Yao. “Enhanced Cycle-Consistent
Generative Adversarial Network for Color Normalization of H&E Stained Im-
ages.” In International Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 694–702. Springer, 2019.

[ZG02] Qi Zhang and Sally A Goldman. “EM-DD: An improved multiple-instance learn-
ing technique.” In Advances in neural information processing systems, pp. 1073–
1080, 2002.

[ZLV17] Wentao Zhu, Qi Lou, Yeeleng Scott Vang, and Xiaohui Xie. “Deep multi-instance
networks with sparse label assignment for whole mammogram classification.” In
International Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 603–611. Springer, 2017.

[ZML07] Jianguo Zhang, Marcin Marsza lek, Svetlana Lazebnik, and Cordelia Schmid. “Lo-
cal features and kernels for classification of texture and object categories: A
comprehensive study.” International journal of computer vision, 73(2):213–238,
2007.

[ZPV06] Cha Zhang, John C Platt, and Paul A Viola. “Multiple instance boosting for
object detection.” In Advances in neural information processing systems, pp.
1417–1424, 2006.

[ZSL09] Zhi-Hua Zhou, Yu-Yin Sun, and Yu-Feng Li. “Multi-instance learning by treating
instances as non-iid samples.” In Proceedings of the 26th annual international
conference on machine learning, pp. 1249–1256, 2009.

[ZWF18] Xiaolin Zhang, Yunchao Wei, Jiashi Feng, Yi Yang, and Thomas S Huang. “Ad-
versarial complementary learning for weakly supervised object localization.” In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 1325–1334, 2018.

[ZYZ17] Xinliang Zhu, Jiawen Yao, Feiyun Zhu, and Junzhou Huang. “Wsisa: Making
survival prediction from whole slide histopathological images.” In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7234–
7242, 2017.

[ZZ04] Min-Ling Zhang and Zhi-Hua Zhou. “Improve multi-instance neural networks
through feature selection.” Neural processing letters, 19(1):1–10, 2004.

[ZZ07] Zhi-Li Zhang and Min-Ling Zhang. “Multi-instance multi-label learning with
application to scene classification.” In Advances in neural information processing
systems, pp. 1609–1616, 2007.

137


	Introduction
	Motivation
	Semantic image segmentation for histopathological images
	Classification and region of interest localization for whole slide images
	Progression-free survival analysis with self-supervised learning

	Contributions
	Outline of the dissertation

	Background
	Prostate cancer
	Gleason grading system
	Whole slide images

	Computer aided diagnosis tools for whole slide images
	Semantic image segmentation models for whole slide images
	Semi-supervised semantic image segmentation for whole slide images
	Classification and region of interest detection for whole slide images

	Computer aided progression model
	Survival analysis
	Progression-free survival analysis with pathomics features


	Semantic Image Segmentation with Multi-scale Information: A Multi-scale U-Net Model
	Overview
	Dataset
	Method
	Multi-scale U-Net

	Experiment and results
	Evaluation metrics
	Results and discussion

	Summary
	Appendix
	Additional experiments results
	Color normalization for whole slide images


	Semantic Image Segmentation with Weak Labels: An EM-based Semi-supervised segmentation model
	Overview
	Method
	Experiment
	Dataset and image preprocessing
	Evaluation metric
	Details on model implementation and training

	Results
	Discussion
	Summary

	Whole Slide Image Classification: A Multi-resolution Multiple Instance Learning Model
	Overview
	Method
	Problem definition
	Attention-based MIL with instance dropout
	Attention-based tile selection
	Multi-resolution WSI classification

	Experiment
	Dataset and data preprocessing
	Implementation details
	Evaluation metrics
	Model visualization
	Model comparison

	Results
	Discussion
	Summary
	Appendix
	Detailed model architecture
	Blue ratio conversion
	K means clustering
	Different CNN architectures for the feature extractor
	Tissue region detection


	Progression-free Analysis with Pathomic Features
	Methods
	Tumor region detection
	Histopathological feature extraction
	Aggregate tile-level features for progression free survival analysis

	Dataset
	Data preprocessing

	Experiment
	Model training
	Evaluation metrics
	Comparison models

	Results
	Discussion
	Summary
	Appendix
	Tumor detection stage model performance


	Conclusion and Future Work
	Summary of contributions
	Future work

	References



