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CACTI: an in silico chemical analysis tool 
through the integration of chemogenomic data 
and clustering analysis
Karla P. Godinez‑Macias1 and Elizabeth A. Winzeler1* 

Abstract 

It is well‑accepted that knowledge of a small molecule’s target can accelerate optimization. Although chemogenomic 
databases are helpful resources for predicting or finding compound interaction partners, they tend to be limited 
and poorly annotated. Furthermore, unlike genes, compound identifiers are often not standardized, and many syno‑
nyms may exist, especially in the biological literature, making batch analysis of compounds difficult. Here, we con‑
structed an open‑source annotation and target hypothesis prediction tool that explores some of the largest chemical 
and biological databases, mining these for both common name, synonyms, and structurally similar molecules. We 
used this Chemical Analysis and Clustering for Target Identification (CACTI) tool to analyze the Pathogen Box collec‑
tion, an open‑source set of 400 drug‑like compounds active against a variety of microbial pathogens. Our analysis 
resulted in 4,315 new synonyms, 35,963 pieces of new information and target prediction hints for 58 members.

Scientific contributions
With the employment of this tool, a comprehensive report with known evidence, close analogs and drug‑target pre‑
diction can be obtained for large‑scale chemical libraries that will facilitate their evaluation and future target valida‑
tion and optimization efforts.

Keywords Target prediction, Scaffold clustering, Machine learning, Neglected disease

Introduction
Understanding how a drug interacts with its biological 
target and whether its inhibition results in the desired 
phenotypic response is a critical step in drug discovery 
[1–3]. One area where this is particularly true is for infec-
tious diseases where many of the hits that are advanced 
for drug discovery come from phenotypic, organismal 
screens as described in a recent review [4]. For malaria 
parasites, tens of thousands of compounds with parasite 

killing activity have been placed in the public domain. 
This has led to medicinal chemistry programs and mol-
ecules entering clinical trials [4, 5]. While understand-
ing the mechanism of action or knowing the target is 
not strictly essential for a compound series to advance, 
knowing the target and ideally having a crystal structure 
for the target can make subsequent medicinal chemis-
try optimization much more efficient: fewer compounds 
need to be made and evaluated, and biochemical assays 
are typically more robust and lower cost. Furthermore, 
screening and assay costs can be many orders of mag-
nitude lower for a biochemical target relative to whole 
organism work.

Because of the huge-cost savings that can come from 
knowing a target, substantial effort is often invested into 
target discovery. Biochemical and genetic approaches 
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(e.g. in  vitro evolution) are two examples of methods 
used for target identification. However, these tend to be 
lengthy and are resource-consuming [4, 5]. For malaria 
parasites, in vitro evolution has been a successful method 
but can often take six months or more [4]. It thus makes 
sense to accomplish as much computationally as possi-
ble. For example, molecular docking is commonly pur-
sued to predict small molecule ligand binding to key 
therapeutic proteins prior to biochemical or phenotypic 
assays, and though it tends to have a high false positive 
rate [6], drug targets for some antimalarial inhibitors 
have been identified through this approach [7–9]. Simi-
larly, virtual screening is a commonly applied. Singh et al. 
[10] describes how this approach can drastically reduce 
the chemical space to provide a focused library for sub-
sequent biochemical high-throughput screening (HTS), 
although it is most reliable when knowledge of com-
pound activity is available and libraries against a target 
of interest are accessible. Antimalarial compounds have 
also been elucidated through virtual screening [11–13]. 
Comparable in silico approaches also exist for target 
identification. For example, the tool TargetHunter by 
Wang et al. [14], is a web-based prediction approach that 
incorporates analog bioactivity data from ChEMBL [15]. 
Likewise, Chemmine, is an online resource by Backman 
et al. [16] that predicts targets based on similar records 
in PubChem database [17]. More recently, Jimenes-Var-
gas et al. [18] showed the power of artificial intelligence 
in drug discovery. Here, authors predict compound-tar-
get interactions based on different molecular descrip-
tion calculations and machine learning algorithms using 
ChEMBL records.

A constraint for these resources is the limit of one 
molecule per search and one chemogenomic database. 
Modern high-throughput screens may involve millions of 
compounds and thousands of primary hits. Having high-
throughput methods to rapidly assess many hits can allow 
prioritization of compounds for resupply and resynthesis, 
which is particularly important for academic research-
ers that may have limited access to compound manage-
ment groups or limited medicinal chemistry capacity. For 
example, in malaria parasites, many dihydrofolate reduc-
tase (DHFR) inhibitors have been compromised by wide-
spread resistance [19]. It thus makes sense to identify 
phenotypic hits acting against DHFR prior to compound 
resupply. In fact, in silico approaches have proven to be a 
valuable in the analysis of large libraries, especially when 
various resources are utilized together to reduce the 
number of compound resupply and experimental testing 
needed [20, 21].

To address the need of an automated multi-compound 
analysis tool, particularly for neglected diseases, we con-
structed a pipeline named CACTI (Chemical Analysis 

and Target Identification), to provide comprehensive 
searches in chemogenomic databases and provide bio-
logical targets clues with single or bulk queries, integrat-
ing data not only from major databases such as ChEMBL 
and PubChem, but also from ligand-based databases (e.g. 
BindingDB [22]), as well as scientific and patent evidence 
(e.g. PubMed [23] and SureChEMBL [24]). Further-
more, to account for the difference in molecule identifi-
ers across databases, we implemented a cross-reference 
method to map a given identifier based on chemical simi-
larity scores and other known identifiers, or synonyms, 
in the expanded search. With this process, we provide a 
comprehensive large-scale study report incorporating all 
available identifiers for each small molecule, its close ana-
logs, and available bioactivity data and/or mechanism of 
action (MoA) if known.

Materials and methods
Chemogenomic database selection and accessing
A common first step to evaluate a small molecule as a 
potential therapeutic, includes the exploration of chemi-
cal and biological space to identify known information 
and potential target. In contrast to most available tools 
that focus on one database for target-predictions [14, 
25–27] we explored multiple chemogenomic databases 
as knowledge source. The solely criterion for database 
selection was the availability of REST API, a data request 
protocol for query and transfer. For chemical- and 
experimental-based information sources, we selected 
the well-established ChEMBL and PubChem databases. 
BindingDB was selected for protein–ligand evidence 
and, EMBL-EBI and PubMed as sources for comprehen-
sive searches (Table 1). Although each bears unique data, 
we observed some overlap in data content, especially for 
literature evidence. However, it is important to note the 
indexing type and database specification prior to inte-
gration, as not every record is curated, and query fields 
could have different meaning. For example, experimental 
data in PubChem could be from biological assays (dose–
response, phenotypic, or target-based) or biochemical 
assay (profiling or binding), while BindingDB refers to 
binding affinities assays solely.

After database selection, we created a custom func-
tion to access and retrieve data from each source. Fol-
lowing the corresponding REST API web services, 
we constructed an html query link with the database 
domain + web service architecture + data of inter-
est + parameters. Specifically, we used chembl_id_lookup, 
mechanism, document, compound_record, molecule/
synonym and similarity data functions from ChEMBL. 
For PubChem we used compound’s data SMILES, name, 
CID, PubMedID, PatentID, fastsimilarity_2d, synonyms 
and MolecularWeight functions. PubMed records were 
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found using the PMID and PMC xref from PubChem, 
and europepmc/search function from EMBL-EBI server. 
The command, GetTargetByCompound, was used to 
access BindingDB database. For exact URL query con-
struction please refer to the database web-services [22–
24, 28, 29].

Querying and standardization of chemogenomic 
databases using SMILES
We reasoned that, to investigate a set of query com-
pounds, the first step was to explore hidden patterns 
among the various chemogenomic databases contain-
ing large datasets of small molecules and their bioactiv-
ity. However, these patterns are difficult to reveal when 
searching across databases, mainly due to the lack of 
indexing standardization and the existence of multi-
ple equivalent representations of a chemical structure 
(SMILES [30]). For example, ethanol can be encoded 
with SMILES OCC, CCO and C(O)C. Furthermore, in 
ChEMBL the SMILES CCO corresponds to CHEMBL545 
but C(O)C is not a valid query, and vice versa the nota-
tion C(O)C corresponds to CID702 in PubChem while 
CCO is not valid. Nevertheless, to test the hypothesis 
that using SMILES as identifier is sufficient for mapping 
the chemical space, we used the provided query SMILES 
as first input (Fig. S1A). To reveal the index identity of 
each query, we used the custom functions to cross-ref-
erence across databases using 100% similarity match, 
and further confirmed their exact identity by comparing 
Morgan fingerprints as described in our Methods.

Due to submission discrepancies across reposito-
ries, query identifiers were combined in a “synonym” 
(common names) column and filtered if they were (1) 
numerical with no indication of external source origin, 
(2) IUPAC name from an unreliable source, or (3) dupli-
cated when converted to upper case and removal of spe-
cial characters such as “:” or “–”. The remaining synonyms 
were used to retrieve scientific evidence, patent evidence 
and additional useful information associated with the 
compound of interest. We reasoned that expanding the 
search to include these identifiers would provide more 

exhaustive research on the query compounds, improv-
ing the target-prediction steps when using the addi-
tional pieces of evidence. With this filtering, invalid or 
duplicated query records were removed and bioactivity 
data, naming synonyms, scholarly evidence, and chemi-
cal information across selected chemogenomic databases 
was integrated.

Chemical comparison through similarity calculations
In addition to mining with SMILES and common names, 
we expanded the search to include closely related ana-
logs (Fig. S1B). We first used RDKIT v.2024.03.1 [31] to 
convert the query SMILES to a canonical form, generat-
ing a unique notation to be queried and compared with 
equal features. The standardized format (canonical) was 
used to identify analogs by transforming them to a binary 
representation called fingerprints (Morgan fingerprints), 
which allows chemical similarity calculations. These sim-
ilarities were computed using the Tanimoto coefficient 
[32], T, which measures the degree of similarity between 
a query and target structure as follows:

where A represents the query fingerprint and B the target 
fingerprint, NA and NB represent the number of “1-bit” 
in A and B respectively and NAB represents the “1-bit” 
shared in both. To ensure consistency, analogs were 
transformed to the same canonical form as the query 
and filtered if the T score was below 80% threshold (score 
ranging from 0 to 1 transformed to percentage). This 
conversion allowed us to further reduce discrepancies 
between SMILES conversion while identifying chemi-
cal analogs. We reasoned that by selecting close analogs 
with an 80% similarity, as opposed to the suggested 85% 
threshold by Patterson et al. study [33], we may be able 
to retain useful moieties related to antimalarial activ-
ity (such as functional groups), while maintaining a high 
degree of chemical similarity between the query and 
analog compound.

T =
NAB

NA + NB − NAB

Table 1 Approximate number of records by entity type for selected chemogenomic and literature databases

Database Chemical Data Experimental Data Literature Patent Compound- Pathway/Gene

ChEMBL 22,399,743 20,334,684 88,630 15,398

SureChEMBL > 17 M

PubChem 115,036,406 304,160,942 38,884,316 43,059,414 Pathway: 240,631

BindingDB 1,164,246 2,707,699 39,818 9023

EMBL‑EBI 34,135,964

PubMed ~ 34 M
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Although a target may have been reported for a given 
compound, the query compound might be similar but 
not identical and our goal was to capture these associa-
tions. To identify scaffold families, we constructed a simi-
larity network (including the query dataset and searched 
analogs) by assigning nodes to chemical entities and 
edges between entities with a Tanimoto coefficient above 
80%. With this network we were able to identify query 
drug-targets from analogs with known mechanisms of 
action or gene target, elucidating relationships that could 
be obscured otherwise.

Drug target identification
In order to provide drug-targets clues, we acquired and 
incorporated several large datasets with annotated com-
pound-target pairs and created a module to search these 
sets for compounds closely related to query molecules 
(Fig. S1C). We used the Novartis Chemogenetic Library 
[34] assembly consisting of 4185 compounds annotated 
with their primary mammalian gene target, an in-house, 
consolidated file of 163 validated antimalarials originat-
ing from phenotypic screens with their drug target, a 
collection of 218 licensed well-validated therapeutic 
drugs extracted from well-established databases such as 
IUPHAR/BPS pharmacology database [35] or the FDA 
approved drugs list [36], and a set of 157 known antibac-
terial inhibitors [37] from which seven (azithromycin, 
mupirocin, dapsone, sulfalene, sulfadiazine, triclosan, 
sulfamethoxazole) overlap with the antimalarial set. The 
assembled list can be accessed at https:// github. com/ 
winze ler- lab/ CACTI metadata folder.

To reduce biases when comparing large datasets with 
molecules of wide mass range, we implemented a method 
to partition the query and target dataset by molecular 
weight (default cutoff of 500  Da) and convert each into 
fingerprints for subsequent similarity calculations. We 
then implemented a function to allow selection of fin-
gerprint conversion algorithm (RDKFingerprint or Get-
MorganFingerprintAsBitVect) and selection of binary 
vector size, to prevent biased structure pattern identifi-
cations. Once fingerprints were calculated, we created 
a NxM matrix, where N and M is the number of finger-
prints in the dataset and calculated Tanimoto coefficients 
for every pair, followed by clustering molecules based on 
their score (default 0.8).

CACTI, a large-scale chemical compound analysis tool
As a final step we aimed to integrate the chemical que-
rying and chemical comparison approaches to construct 
a compound analysis pipeline that will systematically (1) 
identify index identifiers for a set of given compounds, 
(2) consolidate relevant information known for index 
identifiers and identify close chemical analogs, and (3) 
identify scaffold families to provide target hypothesis 
with collected index annotations, analogs and known 
drug-target information. (Fig.  1). The pipeline, CACTI, 
is accessible at https:// github. com/ winze ler- lab/ CACTI. 
Shortly, we built the customizable pipeline with python 
version 3.12 currently executable with UNIX, allowing 
for single or bulk queries and the selection of analyses 
and parameters to be performed. After submission vali-
dation of the query SMILES set (Fig.  1A), the first step 

Query submission

User query SMILE(S) as txt/csv

CACTI query search

Module 1CACTI submission
Synonyms, citations, patents and 

datasets identification

Web service accessing and 
retrieval using SMILES as input

Database similarity search

Fingerprint generation

Target prediction with 
similar known inhibitors

Clustering scaffold families

Closely related analog search Target discovery

3eludoM2eludoM

HO
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O=Cc1ccc(O)c(OC)c1
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Fig. 1 CACTI drug target prediction workflow. Pipeline workflow steps are illustrated by modules where A represents the user SMILES set 
as input in a tabular or comma delimited, B refers to the database querying and retrieving steps using SMILES to identify synonyms, citation 
evidence, patents, membership in datasets and additional information for target prediction. Module 2 refers to C the identification of close 
analogs in chemogenomic databases to the query set, and D transformation from SMILES to binary fingerprint for scaffold comparison. In module 
3, E clustering chemical entities based on similarity measures is performed and F target predictions are completed combining information 
from previous modules and validated known‑target datasets

https://github.com/winzeler-lab/CACTI
https://github.com/winzeler-lab/CACTI
https://github.com/winzeler-lab/CACTI
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in the pipeline was to use the chemical and biological 
space exploration method to obtain the multiple identi-
fiers from which a single compound is known, including 
IUPAC and common name(s), as well as peer-reviewed 
publications, deposited datasets, and patents associated 
to each common name (Fig.  1B). To identify analogs in 
the public domain that might have a known target, we 
then retrieved the list of similar scaffolds to the ones of 
interest (Fig.  1C) with at least 80% similarity. This step 
allowed us to increase the likelihood of accurately uncov-
ering drug-target pairs or providing prediction starting 
points.

To better understand the query molecules and rela-
tionships within the dataset and public domain using 
the acquired genomic and bioactivity annotations, the 
next step in the pipeline includes the chemical compari-
son methods. SMILES for the query set and analogs are 
transformed to binary fingerprints (Fig.  1D) to allow 
comparisons between them, and clustered together to 
find core scaffolds that are similar to at least 80% to each 
other (Fig. 1E). Although this step seems redundant after 
querying for similar structures in Fig. 1C, performing this 
extra validation was valuable to discover if core scaffolds 
from the analog subset is shared by two or more query 
compounds. Lastly, to predict a drug-target under the 
molecular similarity principal (Fig.  1F), scholar refer-
ences, known mechanisms of action or gene targets, and 
bioactivity data associated to compound members within 
each cluster are compared. It is important to mention 
that in case of compound analog reacting noncovalently 
against a biological target yet considered active, typically 
referred as pan-assay interference compounds (PAINS), 
target hypotheses may be misguided for a query com-
pound based solely on the bioactivity annotations. Thus, 
careful inspection may be needed when evaluating mem-
bers from the cluster and additional annotations may 
need to be considered.

Results
To facilitate the exploration of the chemical and bio-
logical space for large datasets, and to provide a better 
understanding of chemical structures and their impact 
on a biological system, we constructed a drug-target 
prediction tool using data mining and chemoinformatic 
techniques. Our overall objective was to automate the 
tedious molecule-by-molecule searching that occurs 
when hits from a high throughput phenotypic screen are 
initially evaluated, and to perform this search in a com-
prehensive, unbiased fashion, looking for information not 
only on the query molecules but also on closely-related 
analogs. Because we noted that molecules might have dif-
ferent common names in the literature, we also sought to 
systematically uncover synonyms. For example, the new 

imidazolopiperazine antimalarial named ganaplacide that 
is in phase III clinical trials has been known as KAF156, 
and GNF156 and substantial work has been published 
on the closely related scaffold named GNF179 which dif-
fers from KAF156 by a single halogen substitution. Our 
motivation was thus to provide a tool that would allow 
the user to focus energy on phenotypic screening hits 
that might have novel mechanisms of action and thus 
avoid compounds with a well-established mechanism or 
known drug resistance liabilities. In addition, we wished 
to create a tool that could alert the user to relevant infor-
mation from work on other species. If a compound is a 
dihydrofolate reductase inhibitor in humans, it is likely 
also a dihydrofolate reductase inhibitor in malaria para-
sites [38].

As described in the methods, this tool, which we have 
named CACTI consists of 3 modules, was coded into 
python and accepts queries in the forms of tabular or 
comma-delimited files containing the SMILES of query 
molecule(s), as well as additional field columns such 
as the standard name, if desired. The output consists of 
Excel files from each selected analysis (module) with a 
comprehensive report for all query molecules with syn-
onyms and scholar evidence mined from the selected 
knowledge databases including ChEMBL, PubChem, 
BindingDB and PubMed. The output also includes a com-
plete list of close analogs to query compounds and their 
similarity scores from the network construction mod-
ule. Lastly, it includes a report from a clustering mod-
ule in which query compounds are matched to similar 
molecules from the annotated target set. These last two 
reports can be exported to external tools for network 
visualizations, such as Cytoscape [39]. CACTI can be 
accessed from the public GitHub repository and executed 
by creating a local copy and following instructions indi-
cated in the repository.

Case study: assessment of drug-target querying using 
the Pathogen Box dataset
In order to assess the performance of the tool, we applied 
it to the Pathogen Box dataset [40] from the Medicines 
for Malaria Venture (Fig. 2A). This set is a collection of 
400 diverse drug-like molecules, with an average molecu-
lar weight of 374.13 Da, active against several neglected 
tropical diseases. This set was physically assembled by 
the Medicines for Malaria Venture and shared with users 
working in the neglected disease space to provide drug-
like starting points for oral drug discovery. Accordingly, 
only 32 compounds failed to comply the standard Lipin-
ski Rule of Five [41]. The set includes 26 positive controls 
from various scaffold families, 24 of which are part of 
known drug-target pairs. Controls include well known 
drugs like the antimalarials doxycycline, primaquine 
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and mefloquine [42], the antibacterial rifampicin [43], 
the antimicrobials pentamidine, nifurtimox and fluox-
etine, the anti-schistosomiasis medicines, praziquantel 
and mebendazole. For these controls, we often found 
too much information, and these were thus excluded 
from further consideration. The remaining 374 com-
pounds (Table  S1) are ones that have reported activity 

in published phenotypic screens for neglected tropical 
disease, with the majority being antimalarial or antimy-
cobacterial compounds [44–46] (Fig. 2B). Chemical prop-
erties for the 400 compounds and biological activity in 
multiple parasites and pharmacokinetic measurements, 
including cellular toxicity and pharmacokinetic measure-
ments in HepG2 cells, can be found in ChEMBL-NTD 
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repository (https:// chembl. gitbo ok. io/ chembl- ntd) set 
21.

Module 1 identifies 4,315 synonyms for the Pathogen Box 
compounds
A good literature search can prevent months of wasted 
effort, but searching biological databases such as Pub-
Med is hampered by the fact that compounds frequently 
change names in biological publications. We assessed if 
we could find synonyms for the compounds in an auto-
mated way. Searching using CACTI identified 4315 syn-
onyms for compounds in the Pathogen Box, that were 
not included in the initial Pathogen Box description, 
with an average of 11 names per compound (Table  S1, 
Fig.  2C,  D). For example, we found 10 synonyms for 
compound MMV006741, including GNF-Pf-4484, May-
bridge3_001644, and BRD-K92165166-001-01-3, among 
others. Likewise, the automated synonym search revealed 
that one trivial name for MMV676600 is danusertib, 
a known pan-aurora kinase inhibitor [47]. Overall, we 
found 69 different names for MMV676600. These data 
also provided clues about the provenance of the com-
pounds. The search revealed substantial overlap between 
the GSK TCAMS (Tres Cantos Anti-Malarial Set) library 
[48] (ChEMBL-NTD (https:// chembl. gitbo ok. io/ chembl- 
ntd), set 1) with 164 compounds present in both sets, 
74 compounds overlapping with the St. Jude Biomedical 
library [49] (https:// chembl. gitbo ok. io/ chembl- ntd, set 3) 
and eight that were members of the Novartis GNF library 
[50] (https:// chembl. gitbo ok. io/ chembl- ntd, set 2). 
The automated search also revealed members from the 
Pathogen Box that are readily accessible to the scientific 
community. We found 206 compounds with suppliers’ 
identification numbers for various commercial sources 
including AKOS, Zinc and MCULE. In general, module 
1 was able to capture and identify diverse names from 
published studies and public libraries, as well as pro-
vide the unique identifiers for selected databases includ-
ing PubChem (CID identifier) and ChEMBL (CHEMBL 
identifier).

Module 1 identifies new citations, datasets and patents 
for Pathogen Box molecules
No literature citations were provided with the initial 
Pathogen Box dataset. Therefore, we next used CACTI 
to comprehensively identify patent and literature cita-
tions using not just the MMV names but all synonyms 
(Fig.  1E). Unsurprisingly, searching with the MMV 
names often produced literature that described the Path-
ogen Box. However, searching with synonyms provided 
many more citations on the compounds. For example, 
MMV675997, is associated with 4 pieces of evidence that 
were deposited separately under several chemogenomic 

databases with different synonyms (MMV675997, 
CHEMBL1094051, BDBM50313769) (Table S1). Search-
ing with these synonyms showed that this compound, 
which has a peptoid backbone and a nitrile P1′ war-
head came from a library predicted to contain T. brucei 
Metacaspase enzyme inhibitor [51]. Likewise, the kinase 
inhibitor, danusertib (MMV676600) is associated with a 
total of 1195 pieces of evidence with citations indicating a 
possible role in inhibition of Toxoplasma gondii calcium-
dependent protein kinase 1 CDPK1 (calcium-dependent 
protein kinase 1), as well as 100 pieces of patented evi-
dence. From these, a CACTI PubMed search using 
PHA-739358, the additional synonym of MMV676600, 
yields three more literature references compared to 
MMV676600 (Table S1).

The literature search also showed that some of the 
compounds have activity in multiple species. For 
example, Murphy and colleagues [52] discovered that 
MMV676050 and MMV676182, both tested against 
cryptosporidiosis in the Pathogen Box activity profil-
ing, are potent inhibitors targeting CDPK1 T. gondii with 
known crystal structure (PDB ID 3N51 [52]). Similarly, 
the literature search revealed that 162 members of the 
Pathogen Box showed evidence of a target validation in 
other models, such as cancer cell lines. For example, the 
chemotherapeutic milciclib (PHA-848125), currently in 
clinical trials, is a known dual cyclin-dependent and tro-
pomyosin receptor kinase inhibitor [53, 54]. Overall, we 
found 30,425 new pieces of literature, 3356 patents and 
2182 datasets associated with the Pathogen Box com-
pounds. Though exploring the literature for different 
names may be straightforward for a small-scale study, as 
the study size increases, it becomes more difficult to cap-
ture these nuances. Therefore, the implemented method 
of acquiring and cross-referencing all known identifiers 
to retrieve data from the several chemogenomic data-
bases provides a more detailed and complete report.

Module 2 identifies 12,383 new closely related compounds 
in the public domain that can be used for SAR by inventory
An important step for compound evaluation and testing 
is determining if there are closely related analogs avail-
able in the public domain that can be sourced for test-
ing. Performing a Tanimoto similarity search for the 
374 uncharacterized Pathogen Box members resulted in 
12,383 close analogs (T = 90%) from the selected chemi-
cal knowledge databases (Table S2, Fig. 2D). In contrast, 
only eleven compounds (MMV393995, MMV676269, 
MMV676442, MMV021057, MMV202553, MMV688754, 
MMV099637, MMV676050, MMV676064, MMV676204 
and MMV676398) out of the 374 had no obvious ana-
logs in the public domain under this criterion. Most 
analogs identified belonged to PubChem (12,246 

https://chembl.gitbook.io/chembl-ntd
https://chembl.gitbook.io/chembl-ntd
https://chembl.gitbook.io/chembl-ntd
https://chembl.gitbook.io/chembl-ntd
https://chembl.gitbook.io/chembl-ntd
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analogs), BindingDB (112), or ChEMBL (25) databases. 
On average, 34 closely related analogs were identified 
for each member of the query set with an average simi-
larity of 94.44%. For example, we found 55 analogs of 
MMV019721, a recently discovered acetyl-coenzyme 
A synthetase Plasmodium inhibitor [55]. Many of these 
analogs are commercially available.

Interestingly, we observed eight closely-related ana-
logs that were identified twice when querying for the 
374 Pathogen Box compounds (Table S2, Fig. S2). Find-
ing a close analog for two different query compounds 
suggest the presence of similar core scaffolds and likely 
similar biological targets. For example, the compounds 
MMV595321 and MMV676477, share five differ-
ent analogs (CID’s 136636721, 136636828, 156278160, 
156278182 and 156285860), most of which are part of 
an antiparasitic inhibitor optimization effort (patent 
WO-2021077102-A1). Another analog (CID 44526919), 
related to MMV023969 (TCMDC-134161) and 
MMV024035 (TCMDC-134227), inhibits P. falciparum 
growth by up to 97%  (IC50 < 2 µM) [56]. Thus the related 
Pathogen Box compounds could be attractive drug start-
ing points.

Module 3 for new target discovery hypotheses—guilt 
by association approaches
One of the most resource-consuming steps in drug dis-
covery is target deconvolution. To create target pre-
dictions, we utilized the information collected from 
previous modules and clustered the 374 Pathogen Box 
compounds and 156 close analogs, with sets of 4,716 
molecules with known mechanisms of action to create 
hypotheses about the function of Pathogen Box com-
pounds. The “known target” set was derived from mul-
tiple sources, including 4,185 compound-target pairs 
assembled by Canham et al. [34], 150 known antibacterial 
drug-target pairs [37], and a collection set of 381 antima-
larial compound-target pairs extracted from established 
databases such as IUPHAR [35] and PDB Ligands [57], in 
addition to validated target-ligand pairs originating from 
the TCAMS and GNF Novartis Malaria Box phenotypic 
screening libraries. Although the assembled library of 
known target pairs was enriched for antimalarial inhibi-
tors, many have activity across the parasitic and bacterial 
diseases included in the study, such as atovaquone and 
doxycycline. It is worth noting that targets for 152 Patho-
gen Box compounds (Table S1) were already known and 
were already included in the known target set. Cluster-
ing the 374 and their 156 close analogs with 4,716 known 
targets resulted in 77 clusters using a similarity threshold 
of T = 80% (Table  S3), with an average of 4 compounds 
per cluster, and 264 singletons (Fig.  3A). Out of the 77 
clusters, twenty-five had two or more Pathogen Box 

molecules and 71 clusters contained one or more MOA/
target or putative target annotations. From the 71, 20 
have at least one Pathogen Box compound with unknown 
or unclear mechanism. We did not find a MOA/target 
prediction for six clusters (Fig. 3B).

To assign targets for the Pathogen Box compounds, 
we inspected members from each cluster and assigned 
a potential target/function for the “unknown” Pathogen 
Box compound based on their counterpart target evi-
dence. From this, we found targets appear repeatedly at 
rates higher than expected (hypergeometric mean func-
tion = 4.4 ×  10–3 − 2.6 ×  10–48) (Fig.  3C). For example, 
three clusters [55, 56] contain predicted dihydroorotate 
dehydrogenase (DHODH) inhibitors and six contain 
predicted cytochrome b inhibitors, of which cluster 62 
have one Pathogen Box compound (MMV687807) with 
no known reported target in Plasmodium or Mycobac-
terium. We also found 9 clusters whose members con-
tain an analog or known target set compound from two 
or more different annotations. This includes cluster 338 
where close analogs to MMV687700 are known salicyl-
AMP inhibitor and other members from the known drug 
target set are known human adenosine receptor ago-
nists. Despite this apparent incongruity, all compounds 
in cluster 338 contain the basic adenosine scaffold and 
are adenosine analogs. Another example includes cluster 
177 where MMV688283 and MMV687246 (a PfCDPK5 
inhibitor [58]) are clustered with TCMDC-138293, a 
known Plasmodium DHODH inhibitor. This may suggest 
some polypharmacology or potential weaknesses in the 
automated annotations.

We also found cases where the predicted target was 
assigned based on evidence from a different para-
site genus to the one initially tested. The diazine scaf-
fold family (cluster 30) has two compounds that have 
demonstrated activity against parasite and mammalian 
methionine aminopeptidase-1b, an enzyme predicted to 
catalyze the removal of the N-terminal initiator methio-
nine during protein synthesis in parasites and mammals 
(MMV084997/GNF-Pf-359). The group also contains 
the uncharacterized, anti-kinetoplastid Pathogen Box 
compounds MMV658993 and MMV658988. This asso-
ciation creates a hypothesis that MMV658993 and 
MMV658988 may target methionine aminopeptidase-1b 
in kinetoplasts.

Discussion
Neglected diseases (parasitic diseases, and to some 
extent, rare diseases), attract less commercial interest 
and significantly less overall funding than other diseases, 
such as cancer or diabetes. On the other hand, much of 
the small molecule data for well-funded diseases such 
as cancer lies in the private, well-curated databases that 
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are maintained by pharmaceutical companies. These 
databases are often one of a company’s biggest intellec-
tual property assets. In contrast, for neglected disease, a 
larger proportion of the drug discovery data will be gen-
erated by academic researchers or public–private part-
nerships where much of it will ultimately be placed in 
the public domain. The availability of well curated public 
screening datasets (e.g. such as the Pathogen Box data-
set) creates both opportunities to make new discoveries 
(e.g. for drug repurposing and target discovery) as well as 
challenges that relate to the dispersed and disorganized 
nature of the data. To make the task of assessing diverse 
data more accessible to neglected disease drug discovery 

researchers, we constructed a tool to pragmatically 
assess the major chemical databases and identify all data 
available for a query compound, as well as similarities 
between small molecule inhibitors in any system. With 
this approach a comprehensive report is generated and 
may be used to redirect laboratory resources in a more 
focused way, in addition to reducing the amount of work 
needed for drug-target or chemical optimization efforts.

Our approach has its limitations. First, our algorithm 
makes no assessment of literature quality. A manu-
script reporting that a given compound binds a target 
may not rigorously assess the quality or strength of the 
binding. This may happen when a researcher develops 
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a biochemical assay for a target and then tests a library, 
such as the Pathogen Box library, against this target: In 
this case the best compounds from this exercise may be 
reported as potential inhibitors of the target in a publi-
cation. Our computational algorithms cannot catch these 
nuances and are out of scope; although a thorough report 
on a particular query set will be obtained, a human 
review is needed to revise and confirm the veracity/
strength of acquired evidence. Perhaps not surprisingly, 
the data-querying strategy across multiple chemog-
enomic repositories is especially helpful when querying 
for small molecules that have been evaluated for activity 
against multiple disease indications. For example, com-
pounds advancing to clinical-trials or those having a vali-
dated drug-target, are query entries that when searched 
provide the most complete information.

Another limitation is that our approach somewhat 
relies on the assumption that a compound will have the 
same target in Trypanosoma cruzi as in Toxoplasma 
gondii, despite the two species belonging to different 
eukaryotic phyla. Nevertheless, previous studies have 
highlighted that drug-target pairs tend to be conserved 
across species. A compound like methotrexate likely acts 
against dihydrofolate reductase in human and in malaria 
parasites. Cladosporin targets lysyl-tRNA synthetase in 
both yeast and malaria parasites [59]. There are hundreds 
of other examples of target conservation across species. 
Species selectivity thus comes from natural or engineered 
specificity, as well as innate ability of different species to 
detoxify compounds. On the other hand, just because a 
compound targets the electron transport chain in malaria 
parasites doesn’t mean that it targets the electron trans-
port chain in M. tuberculosis (e.g. such as in ELQ-300, 
with unreported target in tuberculosis) and predictions 
and caution is needed. As a future improvement to the 
pipeline, similar to gene ontology strategies (GO terms), 
querying and comparison of medical subject headings 
(MeSH terms) associated to compounds of interest (and 
analogs) can be implemented to mitigate the need to rely 
on similar structure function assumptions. This could 
increase the confidence of CACTI target identification 
hypotheses.

Another concern is that we relied on chemical scaf-
fold clustering: This chemical comparison depends 
on the chemical fragment partition that is initially 
selected, resulting in potential arbitrary cluster assign-
ment. In addition, clustering is less suitable for natural 
products, which tend to have more complex structures 
than smaller molecules. Increased size means partition 
methods favor fragment partitions that break down 
molecules and ignore the R groups that may be vital for 
the pharmacological effect of the natural product. Thus, 

although the provided scholarly report will be helpful, 
the clustering approach as scripted is less suitable for 
their evaluation. Nevertheless, we found that close ana-
logs with similar drug-target matches did tend to group 
together even if the larger group often split into more 
than one cluster. We are confident that the established 
prediction method provides an initial hint for further 
target validation efforts.

A limitation with this approach includes the predic-
tive component of the analysis. Though it is accepted 
that similar molecules tend to have similar mechanisms 
of action or drug-targets, experimental validation is 
needed to confirm binding to the desired target. The 
assumption that one small molecule will have just one 
target is more fraught as compounds get larger and 
where two different pharmacophores (e.g. an ATP-like 
molecule and a naphthalene) may be incorporated into 
one small molecule. In addition, for promiscuous inhib-
itors, like kinase inhibitors, our approach may provide 
limited resolution.

Another concern is that one component of this tool 
relies completely on network connectivity and database 
server availability (e.g. open query-request for selected 
databases) to query and retrieve literature and analogs 
from the public domain. To partially address this need, 
a future avenue includes the use of a periodic “database 
dump” that can be locally accessed and queried in lieu 
of internet access, when connectivity is unreliable or 
inaccessible.

Overall, we believe the identification of literature evi-
dence as well as close analogs obtained through CACTI 
will aid researchers in early stages of drug discovery 
pipeline, and consequently allow more work on struc-
ture–activity relationship analysis. Similarly, the target 
prediction module implemented in this tool will serve 
as starting points for subsequent drug-target valida-
tion efforts and support the translation of genomic data 
into effective new drugs through the comparison of 
scaffold families. This automated tool shows a promis-
ing approach to quickly investigate multiple chemical 
entities in a single query, and prioritize hits for further 
exploration, especially in academic settings where com-
pound management and resupply is limited.
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