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Non-genetic factors influencing drug persistence and survival in cancer cells 

Leanna Morinishi 

Abstract 

Despite the development of new, promising therapies for treating cancer, the emergence of cancer 

cells that do not respond to treatment remains a major barrier to cure.  These emerging populations of cancer 

cells can result from secondary mutations that give rise to inherited drug tolerance or resistance, but in 

many cases there is no clear genetic basis for improved drug survival. In fact, prior work has shown that 

non-genetic mechanisms (e.g. chromatin remodeling) can enable longer-term persistence of cells in drug 

(Sharma et al., 2010, Hinohara et al., 2018), and we and others have demonstrated that these “persister” 

cells are an important reservoir for the emergence of drug-resistant mutants (Ramirez et al., 2016, Hata et 

al., 2016). Here through a combination of data analysis, mathematical modeling, and borrowed insight from 

microbiology, we further our understanding of non-genetic factors that alter cancer cell response to drug 

treatment.  

In the first chapter, I summarize literature describing the persister state in both antibiotic-treated 

bacteria and drug-treated cancer cells, and I highlight shared features of these persisters (such as slow 

growth and distinct metabolic activity). Of particular relevance to this dissertation, I discuss epigenetic and 

metabolic changes that influence cancer progression and drug survival. In the second chapter, I pair a close 

study of cancer cells differing only by expression of the epigenetic modifier TET2 with mathematical 

modeling to demonstrate how TET2 loss can confer a fitness advantage in drug by altering the dynamics of 

cell-state switching. Finally, in the third chapter, I present unpublished work focused on metabolic changes 

and vulnerabilities associated with TET2 loss. Through these studies, I describe several non-genetic 

mechanisms that affect persistence and tolerance of cancer cells in drug and highlight the challenges in 

pharmacologically targeting these complex and ill-defined modes of drug survival. 
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Abstract 

Drug-insensitive tumor subpopulations remain a significant barrier to effective cancer treatment. 

Recent works suggest that within isogenic drug-sensitive cancer populations, subsets of cells can enter a 

‘persister’ state allowing them to survive prolonged drug treatment. Such persisters are well-described in 

antibiotic-treated bacterial populations. In this review, we compare mechanisms of drug persistence in 

bacteria and cancer. Both bacterial and cancer persisters are associated with slow-growing phenotypes, are 

metabolically distinct from non-persisters, and depend on the activation of specific regulatory programs. 

Moreover, evidence suggests that bacterial and cancer persisters are an important reservoir for the 

emergence of drug-resistant mutants. The emerging parallels between persistence in bacteria and cancer 

can guide efforts to untangle mechanistic links between growth, metabolism, and cellular regulation, and 

reveal exploitable therapeutic vulnerabilities. 

 
  



 3 

Introduction 

The last decades have brought the arrival of an impressive arsenal of therapies for treating cancer. 

At the same time, countless drug resistance mechanisms have been discovered by which cancer cells avoid 

and subvert drug treatment. Tumor subpopulations that do not respond to therapeutics are a significant 

barrier in the treatment of cancer, and cancer remains a major global killer (Torre et al., 2012). 

Recently, it has become clear that even within otherwise drug-susceptible isogenic cancer 

populations, a subset of cells can enter a persister state, in which they survive prolonged drug exposure 

(Sharma et al., 2010; see Table 1.1 for a list of cancer persister models). While this persister state has only 

recently started to draw attention in mammalian cells, bacterial persisters were described in literature as 

early as 70 years ago (Bigger, 1944). The past decade has seen a surge in studies elucidating the mechanisms 

underlying bacterial antibiotic persistence – as recently summarized in a string of excellent reviews (Fisher 

et al., 2017; Brauner et al., 2016; Radzikowski et al., 2017; van den Bergh et al., 2017). In this review, we 

compare and contrast persistence in bacteria and cancer cells and highlight surprising parallels in the 

underlying persistence mechanisms. 

 

Discussion 

Defining persistence – a persistent challenge 

Before delving into persistence mechanisms, we must first define what drug persistence is, and how 

it differs from other mechanisms of drug insensitivity (Figure 1.1). Bacterial insensitivity to antibiotics is 

classified phenomenologically into three broad categories that can be distinguished experimentally 

(compared to a reference sensitive population; Figure 1.1), as summarized in Fisher et al., 2017 and Brauner 

et al., 2016. The first category, drug tolerance, is the ability of cell populations to withstand transient lethal 

antibiotic concentrations, while remaining genetically susceptible. Experimentally, tolerance manifests as 

a decreased rate of killing during drug exposure compared to a sensitive reference population (Figure 1.1). 

The second category, drug resistance, is the genetically inherited ability of cells to grow at normally lethal 
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antibiotic concentrations (Fisher et al., 2017 and Brauner et al., 2016). Drug-resistant populations show a 

characteristic increase in minimal inhibitory concentration (the lowest drug concentration needed to prevent 

bacterial growth); this increase is absent in drug-tolerant populations. In contrast to these two categories, 

which are defined at the population level, drug persistence describes scenarios in which only a 

subpopulation of cells within a clonal cell population survives prolonged antibiotic treatment, while 

remaining genetically susceptible to reapplication of the drug (Balaban et al., 2013). An important feature 

of bacterial drug persistence is its phenotypic reversibility.  After drug treatment is stopped, the remaining 

persister cells will eventually re-establish a population showing the same heterogeneous response when re-

treated with the same drug (Figure 1.1). Experimentally, drug persistence is characterized by a survival 

curve with two phases - an initial steep decline in cell number followed by a cell number plateau -, which 

is absent in drug-tolerant populations (Brauner et al., 2016; van den Bergh et al., 2017; Figure 1.1). 

Compared with the converging literature view of how to define and distinguish bacterial persisters, 

terminology is somewhat more diverse in cancer literature. Persistence is sometimes used interchangeably 

with drug tolerance to describe subpopulations that have an enhanced (and non-genetic) ability to survive 

drug treatment (Sharma et al., 2010; Hata et al., 2016; Hangauer et al. 2017). Various other terms have also 

been used to describe scenarios in which a phenotypically distinct subpopulation survives prolonged drug 

treatment, including quiescence (Chen et al., 2012), dormancy (Viale et al., 2014) or cancer stem cells 

(Gupta et al., 2011; Figure 1.2). Throughout this review, we will use the term ‘persistence’ for cases in 

which a subpopulation survives drug treatment but regains sensitivity after drug removal, and we reserve 

the term ‘tolerance’ for cases in which the whole population is more resilient to drug exposure. 

 

Paths to persistence 

How do cells become persisters? We will first briefly discuss mechanisms of bacterial antibiotic 

persister formation, and then relate these to our current understanding of how cancer drug persisters emerge. 

In particular, we will focus on the impact of three factors on persistence: cell growth, metabolic activity, 

and regulatory program. 



 5 

Arguably the best studied bacterial persistence mechanism are Toxin-Antitoxin (TA) systems (Page 

et al., 2016). These consist of a stable toxin, which arrests growth by inhibiting vital cellular processes such 

as transcription or translation thereby inducing the persister state, and a labile antitoxin acting as the antidote 

(van den Bergh et al., 2017). An example is the HipBA module in E. coli, which inhibits the glutamyl-

tRNA synthetase GltX and thus halts translation (Germain et al., 2013; Kaspy et al., 2013). Originally 

identified as a mechanism to prevent plasmid loss, TA systems were shown to induce the stochastic 

formation of non-growing persisters in exponentially growing cultures (Balaban et al., 2004; Maisonneuve 

et al., 2013).  

Recent works have identified additional factors that modulate antibiotic persistence. For example, 

various studies found that the fraction of persisters in different environmental conditions is inversely 

correlated with the population growth rate, as shown e.g. in (Maisonneuve et al., 2013; Fung et al., 2010) 

and summarized in Brauner et al, 2016. Additionally, stresses, such as salt-stress, can increase the rate of 

persister formation (Shan et al., 2017). Particularly interesting types of environmental stress are shifts in 

nutrient availability: bacteria undergoing nutrient shifts, which are typically accompanied by a transient 

reduction in growth rate, show dramatically elevated persister fractions (Amato et al., 2013; Kotte et al., 

2010; Radzikowski et al., 2016). The examples above evoke a ‘tolerance by slow growth’ (Brauner et al., 

2016) scheme, in which slow-growing bacteria tend to become more resilient against antibiotic treatment, 

regardless of how exactly the reduction in growth rate came about.  

This increase in antibiotic persistence at slow growth could of course simply be the consequence 

of a reduction in the activity of the antibiotic targets, i.e. the cellular transcription/translation machinery. 

However, mounting evidence suggests that antibiotic persistence in fact relies on an active cellular program. 

Various studies have demonstrated that the (p)ppGpp-mediated bacterial starvation program (also termed 

“stringent response”) modulates the rate of persister formation (Maisonneuve et al., 2013; Amato et al., 

2015; Nguyen et al., 2011; Verstraeten et al., 2015), for example by directly inducing the expression of TA 

systems (Maisonneuve et al., 2013). Importantly, mutant strains lacking the stringent response program are 
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readily killed by antibiotic treatment even in starvation conditions (Nguyen et al., 2011), suggesting that 

absence of growth alone is not sufficient to induce persistence.  

Finally, recent studies have shown that persisters can be selectively killed off by modulating their 

metabolic activity (Shan et al., 2017; Nguyen et al., 2011; Allison et al., 2011; Meylan et al., 2017). For 

example, addition of metabolic stimuli that promote an increase in proton-motive force by the oxidative 

electron transport chain triggers the uptake of aminoglycoside antibiotics in persister cells, thereby 

enhancing persister killing (Allison et al., 2011). These observations indicate that persisters retain a distinct 

- and active - metabolic state, and highlight the importance of metabolism for persistence (Radzikowski et 

al., 2017; Amato et al., 2014). 

Collectively, these studies paint a picture of bacterial antibiotic persistence with three main themes. 

The first theme is the recurrent observation that slow bacterial growth tends to favor persister formation. 

The second theme is a distinct metabolic state in persisters, which leaves them vulnerable to metabolic 

perturbations. The third theme is the reliance on a specific regulatory program involving the stringent 

response, which can be directly targeted to reduce persister formation.  

Do these themes have parallels in cancer drug persisters? Recent literature suggests that this is 

indeed the case. The first hint stems from the observation that slow-growing cancer cells also tend to be 

more drug-tolerant in a wide range of cell types and model systems (Chen et al., 2012; Fallahi-Sichani et 

al., 2017; Su et al., 2017; Liau et al., 2017; Roesch et al., 2010; Jordan et al., 2016; Roesch et al., 2013). 

Such drug-tolerance has been reported during exposure to chemo- (Roesch et al., 2013) and targeted 

(Fallahi-Sichani et al., 2017) therapy, for adherent (Liau et al., 2017) and suspension (Su et al., 2017) cells 

in vitro, as well as in vivo in mouse models (Chen et al., 2012), suggesting a general phenomenon.  

Surprisingly, there is also evidence that metabolism might be an important determinant of drug 

persistence in cancer cells (Hangauer et al., 2017; Viale et al., 2014; Roesch et al., 2013; Raha et al., 2014; 

Viswanathan et al., 2017; Viale et al., 2016). Recent works by Hangauer et al. and Viswanathan et al. 

demonstrated that various persister models are vulnerable to inhibition of the lipid hydroperoxidase GPX4 

(Hangauer et al., 2017; Viswanathan et al., 2017). GPX4 catalyzes the glutathione-dependent reduction of 
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lipid peroxides, which cause oxidative stress, and thereby prevents the induction of ferroptosis, a non-

apoptotic form of cell death (Dixon et al., 2012). This result supports earlier work showing that the enzyme 

aldehyde dehydrogenase 1 A1 (ALDH1A1)—which is also involved in lipid peroxidation and expressed in 

many cancer stem cells—is required to maintain drug persistence (Raha et al., 2014). Moreover, recent 

reports indicate that persisters rely more heavily on oxidative phosphorylation (OXPHOS), and are more 

sensitive to OXPHOS inhibitors (Viale et al., 2014; Roesch et al., 2013; Wolf, 2014). In particular, these 

subpopulations were reported to have a diminished ‘glycolytic reserve’, which is the ability to increase 

glucose uptake for ATP generation if OXPHOS is inhibited, suggesting impaired metabolic plasticity (Viale 

et al., 2014). Whether these changes in metabolic activity are an adaptation to redox stress (Sabharwal et 

al., 2014; Gorrini et al., 2013), or rather reflect an increased demand for ATP (Viale et al., 2016), is 

currently unclear. 

Finally, several lines of evidence suggest that drug persistence in cancer cells also relies on a 

distinct regulatory program (Inde et al., 2017), and particularly pinpoint two regulatory processes. The first 

process is epithelial-to-mesenchymal transition (EMT), which causes cells to gradually lose their 

differentiation status and become more stem-cell like (Kreso et al., 2014). Expression of EMT/stem-cell 

markers is a frequent hallmark of persister subpopulations, which can be exploited to isolate persister cells 

within isogenic populations (Fallahi-Sichani et al., 2017; Su et al., 2017; Roesch et al., 2013; Raha et al., 

2014; Pisco et al., 2013). Second, several lines of evidence point towards chromatin remodeling as a key 

step in persister formation (Sharma et al., 2010; Liau et al., 2017; Vinogradova et al., 2016; Guler et al., 

2017). For example, inhibition of the histone demethylases KDM5 and KDM6 were found to suppress the 

emergence of persisters (Roesch et al., 2013; Vinogradova et al., 2016). These findings are particularly 

intriguing given that epigenetic and metabolic changes seem to be closely linked in many cancers. A prime 

example are mutations in metabolic enzymes, such as isocitrate dehydrogenase 1 and 2, which can modulate 

the epigenetic state of cells through the accumulation of ‘oncometabolites’ such as 2-hydroxyglutarate, and 

thereby influence cancer progression and drug survival (Mingay et al., 2017; Flavahan et al., 2016). The 

involvement of EMT and chromatin remodeling suggests the requirement for a distinct regulatory program 
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to ensure the formation and/or maintenance of a persister state, analogous to the aforementioned stringent 

response dependent regulation in bacterial persisters. As we will discuss in more detail in the final section 

of the review, a major open question is how these processes are linked mechanistically in cancer persisters. 

Despite these striking parallels, there are also bacterial persistence mechanisms that do not have a 

direct analog in cancer. For example, a study found that E. coli treated intermittently with Ampicillin for 

different durations quickly evolved population lag times (the time it takes to transition from stationary to 

exponential growth phase) to match the duration of the antibiotic exposure, while the maximal growth rate 

did not change (Fridman et al., 2014). To our knowledge, there is only one example of such ‘tolerance by 

lag’ (Brauner et al., 2016) in the cancer literature (Pearl et al., 2016). Nevertheless, since cancer therapies 

often involve drug administration at regular time intervals, it is at least conceivable that similar selective 

pressures might also affect cancer cell populations.  

Conversely, there are also cancer persistence mechanisms with no direct bacterial equivalent. A 

compelling example was recently presented by Shaffer et al., 2017. In an elegant set of experiments in 

patient-derived melanoma cell lines, the authors demonstrated the existence of transiently pre-resistant 

subpopulations characterized by sporadic expression of resistance markers, for example alternative 

oncogenes such as EGFR, which can become more tolerant of a given targeted therapy. Conceptually, such 

‘tolerance by sporadic bypassing’ is similar to the sporadic high expression of multidrug efflux pumps in 

bacterial populations (Pu et al., 2016). Another similar phenomenon is the aforementioned stochastic 

activation of TA systems – and subsequent switch to a slow/non-growing cell state – in exponentially 

growing bacterial cultures. However, it is currently not clear whether these pre-resistant cancer 

subpopulations also adopt a non-growing state. Another open question is whether this mechanism 

constitutes a ‘bug or feature’ of mammalian regulatory networks: is the sporadic activation of signaling 

kinases merely the inevitable consequence of stochastic fluctuations within highly nonlinear signaling 

networks, or an evolved bet-hedging strategy? As we will discuss in the next section, recent evidence 

suggests that at least bacterial persistence may indeed be an evolvable trait. 
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Persistence and evolution 

Given the ubiquitous cell-to-cell variability in gene expression, it is tempting to assume that 

persistence is an inevitable byproduct of life (‘persistence as stuff happens’) (Levin et al., 2014). However, 

there is some evidence that bacterial persistence is actually an evolvable trait (van den Bergh et al., 2016; 

Mechler et al., 2015). E. coli cultures exposed to different frequencies of antibiotic treatment quickly evolve 

an inverse relationship between persister fractions and treatment interval, without altering their antibiotic 

resistance (van den Bergh et al., 2016). This observation is of particular importance given evidence that 

antibiotic tolerance acts as a stepping-stone on the path to resistance. A study by Levin-Reisman et al. 

demonstrated in a series of in vitro evolution experiments that Ampicillin-resistant E. coli mutants emerge 

from the pool of initially only Amp-tolerant mutants (Levin-Reisman et al., 2017). A potential explanation 

for this result is that the space of mutations conferring tolerance – and therefore the probability to establish 

a tolerance-inducing mutation – is substantially larger than the space of mutations conferring resistance 

(Brauner et al., 2016).  

Interestingly, recent work suggests that cancer persister cells are also an important reservoir for the 

emergence of resistant cell lines in vitro (Hata et al., 2016; Ramirez et al., 2016). Hata et al. focused on the 

clinically relevant EGFR-T790M gatekeeper mutation, which makes EGFR-mutant non-small-cell lung 

cancer (NSCLC) cells resistant to EGFR inhibitors. The authors found that EGFR-T790M positive 

populations not only originate from the selection of pre-existing mutants, but they can also emerge from 

the pool of persister cells. Moreover, work by Ramirez et al. suggests that even within an initially isogenic 

EGFR-mutant NSCLC cell population exposed to an EGFR-inhibitor, the persister subpopulation 

ultimately gives rise to different mutant populations with diverse resistance mechanisms (Ramirez et al., 

2016). These results indicate that the evolution of drug resistance is not necessarily restricted towards few 

attainable bypass mechanisms when cell populations first pass through a persister state. 

If resistant mutants indeed evolve from the pool of persister cells in a population, a rational strategy 

to minimize their emergence is the elimination of persisters before drug exposure. However, as we 

discussed above, persisters not only emerge spontaneously in untreated populations, but can also be induced 
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by various environmental stresses. Recent in vitro studies have begun to elucidate the importance of induced 

persistence, also termed ‘type I persistence’ (Balaban et al., 2013), in cancer cell populations (Su et al., 

2017; Pisco et al., 2013). Pisco et al. showed in clonally derived leukemia cells that the rapid emergence 

of multidrug resistance 1 (MDR1) mediated persisters upon chemotherapeutic treatment is largely driven 

by induced persistence (Pisco et al., 2013). Whether such ‘Larmarckian induction’ is the exception or the 

norm in the emergence of cancer drug persisters remains an open question. Nevertheless, these works 

suggest that inhibition of the mechanisms that mediate the transition to a persister state during drug 

treatment may help to prevent the emergence of drug resistance in cancer (Su et al., 2017; Pisco et al., 2013; 

Ramirez et al., 2016; Pisco et al., 2015; Goldman et al., 2015).  

 

Conclusions and open questions 

In this review, we explored the surprising parallels between bacterial and cancer persisters that are 

emerging in recent literature. In particular, both persister types are frequently associated with a slow-

growing phenotype, show metabolic alterations that leave them vulnerable to metabolic perturbations, and 

rely on a distinct regulatory program that can be targeted to prevent persister formation.  

Currently, the mechanistic links between the emerging regulatory processes in cancer persisters, 

namely EMT and chromatin remodeling, their slow-growth phenotype, and their vulnerability to inhibitors 

of lipid peroxidation and oxidative phosphorylation (Hangauer et al., 2017; Viale et al., 2014; Roesch et 

al., 2013; Raha et al., 2014; Viswanathan et al., 2017), are unclear. Lessons from bacterial research may 

provide some inspiration. For example, recent works have shown that the global coordination of protein 

expression in bacteria heavily depends on the growth rate (Scott et al., 2010; Hui et al., 2015; Schmidt et 

al., 2016; Borkowski et al., 2016; Kochanowski et al., 2017) and can be described by few so-called ‘growth 

laws’ (Scott et al., 2011). It is tempting to speculate that in cancer cells similar mechanisms could 

potentially induce an EMT-type transcriptional program if growth is impaired. Such a mechanism might 

explain the rapid increase in persister fraction that has been observed in drug exposed populations (Su et 

al., 2017; Pisco et al., 2013). Another intriguing question is whether metabolism can directly induce 
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persistence in cancer cells, similar to the nutrient-shift induced persisters in bacteria (Amato et al., 2013; 

Kotte et al., 2010; Radzikowski et al., 2016; Amato et al., 2015). Interestingly, recent reports suggest that 

loss of fumarate hydratase may induce EMT through fumarate-mediated changes in epigenetic state 

(Sciacovelli et al., 2016), thus providing a potential link from metabolism to EMT-induced drug tolerance. 

Future efforts might identify scenarios in which metabolism drives cancer persister formation.  

A major aspect not discussed in this review is the influence of the microenvironment on persister 

formation. Bacteria living in communities—termed biofilms—tend to have higher persister fractions than 

planktonic cultures (Harms et al., 2016). Do nearby cells also affect the formation of cancer persisters, for 

example through direct cell contact or indirectly via signaling molecules? in vitro observations have shown 

that growth factors can attenuate the efficacy of oncogene-targeting drug therapy by activating alternative 

signaling pathways (Wilson et al., 2012). Future studies might focus on identifying additional tumor 

microenvironment signals that play a role in the formation and maintenance of cancer persisters. 

Finally, the relevance of persisters in clinical settings remains an open question. There is indeed 

evidence that antibiotic persisters play a role in bacterial infections (Fisher et al., 2017). For example, 

Pseudomonas aeruginosa strains infecting patients with cystic fibrosis show dramatically increased 

persister levels over time, which seems to be the main mechanism to cope with antibiotic treatment 

(Mulcahy et al., 2010). There is also evidence in murine Salmonella typhimurium infections that slow-

growing persisters survive antibiotic treatment and drive disease progression (Claudi et al., 2014). In 

contrast, the role of persisters in tumor progression is more enigmatic. So far, evidence is mostly restricted 

to mouse models (Chen et al., 2012; Kreso et al., 2013). For example, slow-growing glioblastoma 

subpopulations were reported to survive initial drug exposure and repopulate the tumor after cessation of 

drug treatment (Chen et al., 2012). It is currently unclear which of the aforementioned persister-targeting 

strategies – exploiting the distinct metabolic vulnerabilities of cancer persisters or preventing the transition 

into a persister state in the first place – will be successful in clinics. An important step in the development 

of such therapies will be the identification of molecular signatures that are unique for persisters, enabling 

the detection of cancer persisters in clinical samples throughout treatment.  
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Figure 1.1: Schematic of different forms of drug sensitivity 

(A) Blue area: Size of cell population.  Grey shaded area: duration of drug treatment. Sensitivity: cells in a 
drug-sensitive population are readily killed by the drug. Tolerance: a drug-tolerant population is killed at a 
slower rate than a sensitive population. Pre-existing resistance: drug-treatment selects pre-existing resistant 
mutants (red), which continue growing while sensitive cells are being killed. Persistence: persister 
subpopulations (yellow) form either before drug treatment (type I I persistence) or are induced by treatment 
(type I persistence), as indicated by yellow question marks, and survive the duration of drug treatment.  
Once treatment is stopped, persisters re-establish a mixed population of sensitive and drug-tolerant cells, 
which remains susceptible to repeated drug exposure. (B) Shown are survival curves corresponding to 
populations in (A), plotted as the log number of cells over time during drug exposure. 
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Figure 1.2: Diverse terminology and publication clusters in a literature citation network 

(top) The number of publications per year is shown for six common terms used to describe similar 
phenomena related to drug tolerance (persistence, quiescence, dormancy, cancer stem cells (CSCs), 
senescence, and minimal residual disease (MRD)). (bottom) A cancer literature citation network is shown 
as a directed graph, where each node is a publication, the node’s size represents its number of citations, the 
node’s color represents its relevant term (colors same as top; black represents publications that contain >1 
term), and edges are directed arcs (gray: within term, pink: across terms). Publications using the same term 
cluster together as shown in this force-directed layout (ForceAtlas 2). 
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Table 1.1: in vitro persister model systems in cancer 

Published persister models in the literature, sorted by cancer origin and cell line name.  

 

 

  

Cancer Cell line Target Drug Susceptibility Reference 

Breast BT474 HER2 Lapatanib, 
Trastuzumab 

BAD/BCL-XL Moody et al. 

Breast BT474 HER2 Lapatanib, 
Carboplatin+Paclitaxel 

GPX4 Hangauer et al. 

Breast EVSA-T PI3K PI3 kinase inhibitor KDM5 Vinogradova et al. 
Breast SKBR3 HER2 Lapatanib KDM5 Vinogradova et al. 
Colon Colo205 BRAF Vemurafenib KDM5 Vinogradova et al. 
Gastric GTL-16 MET Crizotinib, Etoposide ALDH1A1 Raha et al. 
Gastric MKN-4 MET Crizotinib ALDH1A1 Raha et al. 
Lung HCC827 EGFR Erlotinib BCL-2/BCL-XL, 

pSTAT3, SOX2 
Fan et al., 
Rothenberg et al. 

Lung HCC827 EGFR Gefitinib OCT4, HIF1a, 
IGF1R 

Kobayashi et al., 
Murakami et al. 

Lung PC9 EGFR Erlotinib BCL-2/BCL-XL, 
pSTAT3, KDM5, 
GPX4 

Fan et al., 
Vinogradova et al., 
Hangauer et al. 

Lung PC9 EGFR Gefitinib IGF1R, KDM5, 
OCT4, HIF1a, 
IGF1R 

Sharma et al., 
Kobayashi et al., 
Murakami et al. 

Ovarian JCRB  Carboplatin+Paclitaxel GPX4 Hangauer et al. 
Skin A375 BRAF Vemurafenib GPX4 Hangauer et al. 
Skin Hs888 BRAF AZ628 KDM5 Vinogradova et al. 
Skin M14 BRAF AZ628 KDM5 Vinogradova et al. 
T-ALL DND-41 

 
GSI (Compound E) BRD4 Knoechel et al. 

T-ALL KOPT-K1 
 

GSI (Compound E) BRD4 Knoechel et al. 
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Methods 

Citation network clustering and visualization 

Publications for search terms (ex: "cancer AND persisters", "cancer AND quiescence") were saved 

from PubMed.gov as a list of PMIDs. To generate the list of publications which cited these works, each 

unique PMID was queried with rentrez (package version 1.2.2, feature: pubmed_pubmed_citedin) in R 

(version 3.6.0; R Core Team, 2019), and each citation was saved as an edge. For visualization purposes, 

publications with 2 or fewer citations and leaf vertices were dropped from further analysis. The graph was 

visualized using Gephi (version 0.9.2) with ForceAtlas 2 and Approximate Repulsion (Tolerance 1.0, 

Approximation 1.2, Scaling 2.0, Gravity 1.0). 

  



 16 

References 

Allison KR, Brynildsen M., Collins JJ (2011). Metabolite-enabled eradication of bacterial persisters by 

aminoglycosides. Nature, 473:216–220. 

Amato SM, Brynildsen MP. (2015). Persister heterogeneity arising from a single metabolic stress. Current 

Biology, 25:2090–2098. 

Amato SM, Fazen CH, Henry TC, Mok WWK, Orman MA, Sandvik EL, Volzing KG, Brynildsen MP. 

(2014). The role of metabolism in bacterial persistence. Frontiers in Microbiology, 5:1–9. 

Amato SM, Orman MA, Brynildsen MP (2013). Metabolic Control of Persister Formation in Escherichia 

coli. Molecular Cell, 50:475–487. 

Balaban NQ, Gerdes K, Lewis K, McKinney JD. (2013). A problem of persistence: Still more questions 

than answers? Nature Reviews Microbiology, 11:587–591. 

Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. (2004). Bacterial persistence as a phenotypic 

switch. Science, 305:1622. 

Bigger JW. (1944). TREATMENT OF STAPHYLOCOCCAL INFECTIONS WITH PENICILLIN BY 

INTERMITTENT STERILISATION. Lancet, 244:497–500. 

Borkowski O, Goelzer A, Schaffer M, Calabre M, Mäder U, Aymerich S, Jules M, Fromion V. (2016). 

Translation elicits a growth rate-dependent, genome-wide, differential protein production in 

Bacillus subtilis. Molecular Systems Biology, 12:870. 

Brauner A, Fridman O, Gefen O, Balaban NQ. (2016). Distinguishing between resistance, tolerance and 

persistence to antibiotic treatment. Nature Reviews Microbiology, 14:320–330. 

Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, Parada LF. (2012). A restricted cell population 

propagates glioblastoma growth after chemotherapy. Nature, 488:522–526. 

Claudi B, Spröte P, Chirkova A, Personnic N, Zankl J, Schürmann N, Schmidt A, Bumann D. (2014). 

Phenotypic variation of salmonella in host tissues delays eradication by antimicrobial 

chemotherapy. Cell, 158:722–733. 



 17 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, 

Cantley AM, Yang WS, et al. (2012). Ferroptosis: An iron-dependent form of nonapoptotic cell 

death. Cell, 149:1060–1072. 

Fallahi-Sichani M, Becker V, Izar B, Baker GJ, Lin J, Boswell SA, Shah P, Rotem A, Garraway LA, 

Sorger PK. (2017). Adaptive resistance of melanoma cells to RAF inhibition via reversible 

induction of a slowly dividing de-differentiated state. Molecular Systems Biology, 13:905. 

Fan W, Tang Z, Yin L, Morrison B, Hafez-Khayyata S, Fu P, Huang H, Bagai R, Jiang S, Kresak A, et al. 

(2011). MET-independent lung cancer cells evading EGFR kinase inhibitors are therapeutically 

susceptible to BH3 mimetic agents. Cancer Research, 71:4494–4505. 

Fisher RA, Gollan B, Helaine S. (2017). Persistent bacterial infections and persister cells. Nature Reviews 

Microbiology, 15:453–464. 

Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS, Stemmer-Rachamimov AO, Bradley E, 

Hospital MG, Chase C, Hospital MG. (2016). Insulator dysfunction and oncogene activation in 

IDH mutant gliomas. Nature, 529:110–114. 

Fridman O, Goldberg A, Ronin I, Shoresh N, Balaban NQ. (2014). Optimization of lag time underlies 

antibiotic tolerance in evolved bacterial populations. Nature, 513:418–421. 

Fung DKC, Chan EWC, Chin ML, Chan RCY. (2010). Delineation of a bacterial starvation stress 

response network which can mediate antibiotic tolerance development. Antimicrobial Agents and 

Chemotherapy, 54:1082–93. 

Germain E, Castro-Roa D, Zenkin N, Gerdes K. (2013). Molecular Mechanism of Bacterial Persistence 

by HipA. Molecular Cell, 52:248–254. 

Goldman A, Majumder B, Dhawan A, Ravi S, Goldman D, Kohandel M, Majumder PK, Sengupta S. 

(2015). Temporally sequenced anticancer drugs overcome adaptive resistance by targeting a 

vulnerable chemotherapy-induced phenotypic transition. Nature Communications, 6:1–13. 

Gorrini C, Harris IS, Mak TW. (2013). Modulation of oxidative stress as an anticancer strategy. Nature 

Reviews Drug Discovery, 12:931–47. 



 18 

Guler GD, Tindell CA, Pitti R, Wilson C, Nichols K, KaiWai Cheung T, Kim HJ, Wongchenko M, Yan 

Y, Haley B, et al. (2017). Repression of Stress-Induced LINE-1 Expression Protects Cancer Cell 

Subpopulations from Lethal Drug Exposure. Cancer Cell, 32:221–237.e13. 

Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, et al. (2011). Stochastic state transitions give rise 

to phenotypic equilibrium in populations of cancer cells. Cell, 146:633–644. 

Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, Galeas J, Dhruv HD, Berens ME, 

Schreiber SL, et al. (2017). Drug-tolerant persister cancer cells are vulnerable to GPX4 

inhibition. Nature, 551:247-250. 

Harms A, Maisonneuve E, Gerdes K. (2016). Mechanisms of bacterial persistence during stress and 

antibiotic exposure. Science, 354:aaf4268. 

Hata AN, Niederst MJ, Archibald HL, Gomez-Caraballo M, Siddiqui FM, Mulvey HE, Maruvka YE, Ji F, 

Bhang HE, Krishnamurthy Radhakrishna V, et al. (2016). Tumor cells can follow distinct 

evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nature 

Medicine, 2016, 22:262–269. 

Hui S, Silverman JM, Chen SS, Erickson DW, Basan M, Wang J, Hwa T, Williamson JR (2015). 

Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. 

Molecular Systems Biology, 11:e784–e784. 

Inde Z, Dixon SJ. (2017). The impact of non-genetic heterogeneity on cancer cell death. Critical Reviews 

in Biochemistry and Molecular Biology, 0:1–16. 

Jordan NV, Bardia A, Wittner BS, Benes C, Ligorio M, Zheng Y, Yu M, Sundaresan TK, Licausi JA, 

Desai R, et al. (2016). HER2 expression identifies dynamic functional states within circulating 

breast cancer cells. Nature, 537:102–106. 

Kaspy I, Rotem E, Weiss N, Ronin I, Balaban NQ, Glaser G. (2013). HipA-mediated antibiotic 

persistence via phosphorylation of glutamyl-tRNA-synthetase. Nature Communications, 4:1-7. 



 19 

Knoechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG, Cotton MJ, Gillespie SM, Fernandez D, Ku 

M, Wang H, et al. (2014). An epigenetic mechanism of resistance to targeted therapy in T cell 

acute lymphoblastic leukemia. Nature Genetics, 46:364–370. 

Kobayashi I, Takahashi F, Nurwidya F, Nara T, Hashimoto M, Murakami A, Yagishita S, Tajima K, 

Hidayat M, Shimada N, et al. (2016). Oct4 plays a crucial role in the maintenance of gefitinib-

resistant lung cancer stem cells. Biochem Biophys Res Commun, 473:125–132. 

Kochanowski K, Gerosa L, Brunner SF, Christodoulou D, Nikolaev Y V, Sauer U. (2017). Few 

regulatory metabolites coordinate expression of central metabolic genes in Escherichia coli. 

Molecular Systems Biology, 13:903. 

Kotte O, Zaugg JB, Heinemann M. (2010). Bacterial adaptation through distributed sensing of metabolic 

fluxes. Molecular Systems Biology, 6:355. 

Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell 2014, 14:275–291. 

Kreso A, O’Brien CA, van Galen P, Gan OI, Notta F, Brown AMK, Ng K, Ma J, Wienholds E, Dunant C, 

et al. (2013). Variable clonal repopulation dynamics influence chemotherapy response in 

colorectal cancer. Science, 339:543–8. 

Levin BR, Concepción-Acevedo J, Udekwu KI. (2014). Persistence: A copacetic and parsimonious 

hypothesis for the existence of non-inherited resistance to antibiotics. Current Opinion in 

Microbiology, 21:18–21. 

Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, Balaban NQ (2017). Antibiotic tolerance 

facilitates the evolution of resistance. Science, 355:826–830. 

Liau BB, Sievers C, Donohue LK, Gillespie SM, Flavahan WA, Miller TE, Venteicher AS, Hebert CH, 

Carey CD, Rodig SJ, et al. (2017). Adaptive Chromatin Remodeling Drives Glioblastoma Stem 

Cell Plasticity and Drug Tolerance. Cell Stem Cell, 20:233–246.e7. 

Maisonneuve E, Castro-Camargo M, Gerdes K. (2013). (p)ppGpp controls bacterial persistence by 

stochastic induction of toxin-antitoxin activity. Cell, 154:1140–1150. 



 20 

Mechler L, Herbig A, Paprotka K, Fraunholz M, Nieselt K, Bertram R. (2015). A novel point mutation 

promotes growth phase-dependent daptomycin tolerance in Staphylococcus aureus. Antimicrob 

Agents Chemother, 59:5366–5376. 

Meylan S, Porter CBM, Yang JH, Belenky P, Gutierrez A, Lobritz MA, Park J, Kim SH, Moskowitz SM, 

Collins JJ. (2017). Carbon Sources Tune Antibiotic Susceptibility in Pseudomonas aeruginosa via 

Tricarboxylic Acid Cycle Control. Cell Chem Biol, 24:195–206. 

Rothenberg SM, Concannon K, Cullen S, Boulay G, Turke AB, Faber AC, Lockerman EL, Rivera MN, 

Engelman JA, Maheswaran S, et al. (2015). Inhibition of mutant EGFR in lung cancer cells 

triggers SOX2-FOXO6 dependent survival pathways. eLife, 2015:1–25. 

Mingay M, Chaturvedi A, Bilenky M, Cao Q, Jackson L, Hui T, Moksa M, Heravi-Moussavi A, 

Humphries RK, Heuser M, et al. (2017). Vitamin C-induced epigenomic remodelling in IDH1 

mutant acute myeloid leukaemia. Leukemia, 32:11-20. 

Moody SE, Schinzel AC, Singh S, Izzo F, Strickland MR, Luo L, Thomas SR, Boehm JS, Kim SY, Wang 

ZC, et al. (2014). PRKACA mediates resistance to HER2-targeted therapy in breast cancer cells 

and restores anti-apoptotic signaling. Oncogene, 34:2061–2071. 

Mulcahy LR, Burns JL, Lory S, Lewis K. (2010). Emergence of P. aeruginosa strains producing high 

levels of persister cells in patients with cystic fibrosis. J Bacteriol, 192:6191–6199. 

Murakami A, Takahashi F, Nurwidya F, Kobayashi I, Minakata K, Hashimoto M, Nara T, Kato M, 

Tajima K, Shimada N, et al. (2014). Hypoxia increases gefitinib-resistant lung cancer stem cells 

through the activation of insulin-like growth factor 1 receptor. PLoS One, 9:1–12. 

Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, McKay G, Siehnel R, Schafhauser 

J, Wang Y, et al. (2011). Active starvation responses mediate antibiotic tolerance in biofilms and 

nutrient-limited bacteria. Science, 334:982–6. 

Page R, Peti W. (2016). Toxin-antitoxin systems in bacterial growth arrest and persistence. Nature 

Chemical Biology, 12:208–214. 



 21 

Pearl Mizrahi S, Gefen O, Simon I, Balaban NQ. (2016). Persistence to anti-cancer treatments in the 

stationary to proliferating transition. Cell Cycle, 15:3442–3453. 

Pisco AO, Brock A, Zhou J, Moor A, Mojtahedi M, Jackson D, Huang S. (2013). Non-Darwinian 

dynamics in therapy-induced cancer drug resistance. Nature Communcications, 4:1–11. 

Pisco AO, Huang S. (2015). Non-genetic cancer cell plasticity and therapy-induced stemness in tumour 

relapse: “What does not kill me strengthens me.” British Journal of Cancer, 112:1725–1732. 

Pu Y, Zhao Z, Li Y, Zou J, Ma Q, Zhao Y, Ke Y, Zhu Y, Chen H, Baker MAB, et al. (2016). Enhanced 

Efflux Activity Facilitates Drug Tolerance in Dormant Bacterial Cells. Mol Cell, 62:284–294. 

Radzikowski JL, Schramke H, Heinemann M. (2017). Bacterial persistence from a system-level 

perspective. Curr Opin Biotechnol, 46:98–105. 

Radzikowski JL, Vedelaar S, Siegel D, Ortega ÁD, Schmidt A, Heinemann M. (2016). Bacterial 

persistence is an active σS stress response to metabolic flux limitation. Mol Syst Biol, 12:882. 

Raha D, Wilson TR, Peng J, Peterson D, Yue P, Evangelista M, Wilson C, Merchant M, Settleman J. 

(2014). The Cancer Stem Cell Marker Aldehyde Dehydrogenase Is Required to Maintain a Drug-

Tolerant Tumor Cell Subpopulation. Cancer Res, 74:3579–3590. 

Ramirez M, Rajaram S, Steininger RJ, Osipchuk D, Roth MA, Morinishi LS, Evans L, Ji W, Hsu C-H, 

Thurley K, et al. (2016). Diverse drug-resistance mechanisms can emerge from drug-tolerant 

cancer persister cells. Nature Communications, 7:10690. 

Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, Basu D, Gimotty 

P, Vogt T, Herlyn M. (2010). A Temporarily Distinct Subpopulation of Slow-Cycling Melanoma 

Cells Is Required for Continuous Tumor Growth. Cell, 141:583–594. 

Roesch A, Vultur A, Bogeski I, Wang H, Zimmermann KM, et al. (2013). Overcoming intrinsic 

multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-

cycling JARID1B(high) cells. Cancer Cell, 23:811–25. 

Sabharwal SS, Schumacker PT. (2014). Mitochondrial ROS in cancer: initiators, amplifiers or an 

Achilles’ heel? Nat Rev Cancer, 14:709–721. 



 22 

Schmidt A, Kochanowski K, Vedelaar S, Ahrné E, Volkmer B, Callipo L, Knoops K, Bauer M, 

Aebersold R, Heinemann M. (2016). The quantitative and condition-dependent Escherichia coli 

proteome. Nat Biotechnol, 34:104–10. 

Sciacovelli M, Gonçalves E, Johnson TI, Zecchini VR, da Costa ASH, Gaude E, Drubbel AV, Theobald 

SJ, Abbo SR, Tran MGB, et al. (2016). Fumarate is an epigenetic modifier that elicits epithelial-

to-mesenchymal transition. Nature, 537:544–547. 

Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T. (2010). Interdependence of Cell Growth and 

Gene Expression: Origins and Consequences. Science, 330:1099–1102. 

Scott M, Hwa T. (2011). Bacterial growth laws and their applications. Curr Op Biotech, 22(4):559-65. 

Shaffer SM, Dunagin MC, Torborg SR, Torre EA, Emert B, Krepler C, Beqiri M, Sproesser K, Brafford 

PA, Xiao M, et al. (2017). Rare cell variability and drug-induced reprogramming as a mode of 

cancer drug resistance. Nature, 546:431–435. 

Shan Y, Gandt AB, Rowe SE, Deisinger JP, Conlon BP, Lewis KIM, Brown Gandt A, Rowe SE, 

Deisinger JP, Conlon BP, et al. (2017). ATP-Dependent Persister Formation in Escherichia coli. 

mBio, 8:e02267-16. 

Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, McDermott U, Azizian N, Zou L, 

Fischbach MA, et al. (2010). A Chromatin-Mediated Reversible Drug-Tolerant State in Cancer 

Cell Subpopulations. Cell, 141:69–80. 

Su Y, Wei W, Robert L, Xue M, Tsoi J, Garcia-Diaz A, Homet Moreno B, Kim J, Ng RH, Lee JW, et al. 

(2017). Single-cell analysis resolves the cell state transition and signaling dynamics associated 

with melanoma drug-induced resistance. Proc Natl Acad Sci, 114(52):13679-13684. 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. (2015). Global cancer statistics,  2012. 

CA Cancer J Clin, 65:87–108. 

van den Bergh B, Fauvart M, Michiels J. (2017). Formation, physiology, ecology, evolution and clinical 

importance of bacterial persisters. FEMS Microbiol Rev, 41:219–251. 



 23 

Van Den Bergh B, Michiels JE, Wenseleers T, Windels EM, Boer P Vanden, Kestemont D, De Meester 

L, Verstrepen KJ, Verstraeten N, Fauvart M, et al. (2016). Frequency of antibiotic application 

drives rapid evolutionary adaptation of Escherichia coli persistence. Nat Microbiol, 1:1–7. 

Verstraeten N, Knapen WJ, Kint CI, Liebens V, Van den Bergh B, Dewachter L, Michiels JE, Fu Q, 

David CC, Fierro AC, et al. (2015). Obg and Membrane Depolarization Are Part of a Microbial 

Bet-Hedging Strategy that Leads to Antibiotic Tolerance. Mol Cell, 59:9–21. 

Viale A, Draetta GF. (2016). Metabolic features of cancer treatment resistance. Recent Results in Cancer 

Research, 207:135–156. 

Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sánchez N, Marchesini M, Carugo A, Green T, Seth S, 

Giuliani V, et al.: Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial 

function. Nature 2014, 514:628–632. 

Vinogradova M, Gehling VS, Gustafson A, Arora S, Tindell CA, Wilson C, Williamson KE, Guler GD, 

Gangurde P, Manieri W, et al. (2016). An inhibitor of KDM5 demethylases reduces survival of 

drug-tolerant cancer cells. Nat Chem Biol, 12:531–8. 

Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger SD, 

Eaton JK, Shimada K, Aguirre AJ, et al. (2017). Dependency of a therapy-resistant state of cancer 

cells on a lipid peroxidase pathway. Nature, 547:453–457. 

Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J, et al. 

(2012). Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. 

Nature, 487:505–509. 

Wolf DA. (2014). Is Reliance on Mitochondrial Respiration a “Chink in the Armor” of Therapy-Resistant 

Cancer? Cancer Cell, 26:788–795. 

  



 24 

Chapter 2 

Loss of TET2 affects proliferation and drug sensitivity through altered  
dynamics of cell-state transitions 

 
Main contributing authors 

Leanna Morinishi1, Karl Kochanowski2, Ross L. Levine3,4,5, Lani F. Wu2 & Steven J. Altschuler2 

 
Affiliations 

1 Bioinformatics Graduate Group, University of California, San Francisco 

2 Department of Pharmaceutical Chemistry, University of California, San Francisco 

3 Human Oncology and Pathogenesis Program and Center for Hematologic Malignancies, Memorial Sloan 

Kettering Cancer Center 

4 Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center 

5 Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center 

  



 25 

Abstract 

A persistent puzzle in cancer biology is how mutations, which neither alter canonical growth 

signaling pathways nor directly interfere with drug mechanism, can still recur and persist in tumors. One 

notable example is the loss-of-function mutation of the DNA demethylase TET2 in acute myeloid 

leukemias (AMLs) that frequently persists from diagnosis through remission and relapse (Rothenberg-

Thurley et al., 2018; Corces-Zimmerman et al., 2014; Nibourel et al., 2010), but whose fitness advantage 

in the setting of anti-leukemic chemotherapy is unclear. Here we use paired isogenic human AML cell lines 

to show that TET2 loss-of-function alters the dynamics of transitions between differentiated and stem-like 

states. A conceptual mathematical model and experimental validation suggest these altered cell-state 

dynamics can benefit the cell population by slowing population decay during drug treatment and lowering 

the number of survivor cells needed to re-establish the initial population. These studies shed light on the 

functional and phenotypic effects of a TET2 loss-of-function in AML, illustrate how a single gene mutation 

can alter a cells’ phenotypic plasticity, and open up new avenues in the development of strategies to combat 

AML relapse. 
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Introduction 

A major challenge in cancer biology is to understand the function of recurrent mutations in the 

emergence of tumors or response to drug therapy. Some mutations clearly benefit cancer populations either 

by: altering regulation of growth signaling or programmed cell death (e.g. mutations in p53 or TGFβ 

signaling, Sanchez-Vega et al., 2018), or by directly interfering with drug effect (e.g. acquired EGFR 

T790M resistance mutations in response to EGFR tyrosine kinase inhibitor therapy, Ma, Wei and Song, 

2011). However, for many observed mutations it is unclear how they affect either proliferation or drug 

resistance.  

One example are mutations in the DNA demethylase TET2, found in ~15-20% of de novo AMLs 

(i.e., AMLs in patients with no clinical history of myelodysplastic syndrome (MDS) and no prior exposure 

to potentially leukemogenic therapies; Cheson et al., 2003; Nibourel et al., 2010; Metzeler et al., 2011; 

Cancer Genome Atlas Research Network, 2013; Moran-Crusio et al., 2011). Mutated TET2 is associated 

with both pre-leukemic states, such as clonal hematopoiesis (a condition where a clone becomes 

overrepresented in the blood; Busque et al., 2012, Corces-Zimmerman et al., 2014, Potter et al., 2019), and 

mutational persistence and adverse outcome in human AML (Rothenberg-Thurley et al., 2018; Ding et al., 

2011). However, due to its ability to alter DNA methylation genome-wide, the mechanisms by which TET2 

mutation confers a benefit to AML cancer cell populations remain unclear. One possibility is that epigenetic 

variation in cancer cells increases phenotypic flexibility, enabling tumor evolution and progression 

(Feinberg et al., 2016; Flavahan et al., 2017). Indeed, recent studies have shown that loss of epigenetic 

effectors such as KDM5A in breast cancer (Hinohara et al., 2018) can affect drug sensitivity by enabling 

greater cell heterogeneity. Here we investigate whether TET2 loss similarly affects cell fitness in AML 

using an integrated approach of mathematical modeling and experimentation in paired WT and TET2-

mutant isogenic human AML cell lines. We discover that TET2 mutation alters the dynamics of transitions 

between distinct stem-like and differentiated cell states, which enhances population fitness in chemotherapy 

and lowers the number of cells needed to establish a cell population.  
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Results 

TET2 loss-of-function mutation renders AML cell populations more stem-cell like 

To investigate the consequences of TET2 mutation, we chose to compare two pairs of isogenic 

human myeloblast cell lines, each expressing wildtype or mutant TET2 (Figure 2.1). The AML cell lines 

KG1 and Thp1 (Kunimoto et al., 2018) were selected as they express wildtype TET2 (TET2WT) but do not 

express mutant FLT3, which is known to have synergistic epigenetic effects (Shish et al., 2015). In human 

AMLs, TET2 is often mutated in AML with truncating mutations or missense mutations in its catalytic 

domain (Hirsch et al., 2018), resulting in TET2 loss-of-function (Smith et al., 2010). Therefore, isogenic 

cell lines were created by knocking out TET2 in the chosen cell lines (TET2KO, Methods). Loss of wildtype 

TET2 expression was confirmed via RT-qPCR of the TET2 transcript and immunoblotting of the N-

terminus of the protein (Figure A.1). To confirm that loss of TET2 has the expected effect on DNA 

methylation (Yamazaki et al., 2015; Asmar et al., 2013; Rasmussen et al., 2015), we performed DNA 

methylation profiling. As expected, TET2KO cell lines display a significantly higher degree of overall 

hypermethylation (t-test, p-values: KG1 <2.2e-16 and Thp1 2.9e-4) compared to their WT counterparts, 

with high reproducibility across replicates (Figure 2.1, Figure A.2, Figure A.3). 

To gain an unbiased overview of the molecular changes induced by TET2KO, we examined the 

transcriptomic and epigenomic profiles of TET2 WT and KO cell populations (see Appendix A). RNAseq 

analysis identified ~300 gene transcripts that are similarly differentially expressed in both TET2KO cell lines 

(fold-change>2, Figure A.2). Notably, reduced expression of myeloid differentiation markers (ITGAM, 

CORO1A, Wald test, BH adjusted p-values 9.99e-9 and 7.73e-2, Figure 2.1, Figure A.2) and increased 

expression of markers associated with leukemic progenitor cells (CD38-, HLA-DRA-, TAL1, Wald test, 

BH adjusted p-values 3.83e-26, 1.74e-16, and 3.90e-7, Figure 2.1, Figure A.2; Chan et al., 2012; Kanehisa 

2000; Kanehisa et al., 2019; Nishioka et al., 2013; Vagapova et al., 2018) were observed. These data are 

consistent with analysis of TCGA LAML (phs000178.v1.p1) and OHSU (Tyner et al., 2018) datasets, 

which showed that TET2 expression is strongly correlated with genes expressed in the granulocytic lineage 

(Fisher’s exact test, adjusted p-values 8e-25 and 3.7e-19, Tables A.1-A.2, Methods).  
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Differentially expressed genes in TET2KO cells were found to be highly enriched for targets of 

Runx1, a hematopoietic regulator known to promote stemness and myeloid fate decisions (Fisher’s exact 

test, p-value 7.76e-6, Figure A.2, Tables A.3-A.4) (Kuleshov et al., 2016; Ran et al., 2013). Consistently, 

analysis of differentially methylated regions showed the proximal promoter of Runx1 to be significantly 

affected in TET2KO (Wald test, minimum adjusted p-value 1.22e-27, Figure A.2), with a concomitant 

increase in the expression the Runx1a isoform (Figure A.2). Methylcellulose colony forming unit assays of 

TET2KO cells also show increased numbers of colonies associated with oligopotent progenitor cells 

compared to TET2WT controls (CFUGEMMs, Figure 2.1, Figure A.4). Overall, these data suggested that 

TET2KO populations acquire more stem-like signatures, which was further validated by comparing their 

DNA methylation profiles to those of normal hematopoietic progenitors and leukemic stem cells (LSCs, 

Figure A.4; Horvath, 2013; Jung et al., 2015).  

The TET2KO-mediated acquisition of stem-like signatures was much more pronounced in KG1 than 

Thp1 in terms of expression profile and potential to form diverse myeloid lineages in colony-forming assays 

(Figure A.4). This is presumably because the monocyte-like cells, Thp1, are already more differentiated 

than the myeloblast-like cells, KG1, regardless of TET2 mutational status. We therefore chose to focus on 

KG1 cells for the remainder of this work. 

 

TET2 mutation changes dynamics of cell-state switching 

To test whether this change in stem-like molecular signatures is caused by an increase in the fraction 

of cells with CD34hiCD38lo surface marker expression (a classic LSC-like profile; Costello et al, 2000; 

Gerber et al., 2012; Nishioka et al., 2013; Zeijlemaker et al., 2018) in TET2KO compared to TET2WT cells, 

we measured CD34 and CD38 surface marker expression in the population using flow cytometry. 

Quantification of KG1 CD34/CD38 expression revealed that the fraction of CD34hiCD38lo cells was indeed 

increased in TET2KO cell populations (Figure 2.2, Figure A.5).  

To confirm that KG1 CD34hiCD38lo cells are more stem-like than CD34hiCD38hi, we measured the 

expression of genes associated with hematopoietic differentiation. As observed from bulk RNAseq (Fig 
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1C), TET2WT cells compared to TET2KO show a general shift towards higher levels of expression for pro-

differentiation markers. Consistently, after fractionating cells by CD38 expression we noted that 

differentiation markers again increased with increasing levels of CD38 expression across both cell lines 

(trend seen for ITGAM, CORO1A, and TAL1, though not for HOXA5; Figure A.6). Further, growth rate 

decreased with increasing levels of CD38 expression (Figure A.7) across KG1 TET2KO and TET2WT cells. 

Together, these data further support that CD34hiCD38lo cells are more stem-like and self-renewing, whereas 

CD34hiCD38hi cells are more differentiated and non-dividing. 

How does TET2KO alter the ratio between stem-like and differentiated cells? One possibility is that 

TET2KO simply reduces the rate of differentiation. To test this, subpopulations of stem-like ( # , 

CD34hiCD38lo) and differentiated ($ , CD34hiCD38hi) cells were sorted in both TET2WT and TET2KO 

populations, and the ratio of # and $ cells was monitored over time (Figure 2.2, Figure A.8) and to steady-

state (Figure A.9). Indeed, sorted stem-like cell populations repopulated the differentiated state more slowly 

in TET2KO (Figure 2.2, Figure A.8). Surprisingly, in TET2KO, the sorted differentiated cell populations 

repopulated the stem-cell like state more rapidly than TET2WT populations (Figure 2.2, Figure A.8). These 

data suggest that TET2KO facilitates the reversible switching from differentiated to stem-like states in AML 

cells and provides intuition for why TET2KO has a larger fraction of stem-like cells in the population. 

 

Mathematical modeling illustrates consequences of altered cell-state dynamics for survival of cell 

population 

What are the functional consequences of having such altered cell-state dynamics, and in particular 

a higher fraction of stem-like cells? To address this question, we developed a simple, conceptual 

mathematical model with two cell states (Figure 2.3, second panel): a stem-cell-like state #, and a more 

differentiated state $. This model is fully characterized by a linear, homogeneous system of ordinary 

differential equations (ODEs) with 6 parameters with values ≥ 0 (Methods). Parameters are denoted by: 
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'! and '" the death rates of the # and $ states, respectively; (! and (", the rates at which the # and $ 

states proliferate; and )!" and )"! the transition rates from # to $ and $ to #, respectively. 

Using this model, we asked under which circumstances the observed altered cell-state dynamics – 

specifically an increased switch rate towards a stem-like state – would benefit a cell population. First, we 

focused on the impact of such altered cell-state dynamics during drug treatment (i.e. high death rates). In 

this case, the time to population collapse is dominated by the largest negative eigenvalue; the less negative 

the eigenvalue, the slower the population collapse. By computing the eigenvalues for the ODE, it can be 

seen that either increasing )"! and/or decreasing )!" slows population decay and “benefits” a drug-treated 

cancer population as long as (Figure 2.3, first panel; Methods): 

((! − '!) > ((" − '")   (Inequality 1) 

This inequality simply compares net production rates (proliferation rate minus death rate) and 

requires it to be higher at # than $. In fact, while Inequality 1 is true, increasing )"!, or decreasing )!" will 

eventually slow population decay (arrows in phase plane diagram below; see Methods for details). Thus, as 

long as the net production rate of the stem-like state L exceeds that of the differentiated state H, altered cell 

state dynamics (i.e. towards a higher fraction of stem-like cells) will always benefit the cell population. 

This finding is in line with recent studies suggesting the possibility that cancer cells can reversibly transit 

between stem and differentiated states with different drug sensitivities (Jordan et al., 2016; Su et al., 2017; 

Gupta et al., 2011). 

Importantly, the same inequality also captures other cases in which switching to a stem-cell-like 

state is either beneficial or detrimental (Figure 2.3, third and fourth panels). If cells rarely die, such as in a 

non-drug-treated condition ('! ≈ 0, '" ≈ 0) (Case 1), inequality 1 simplifies to 

(! > (" 

Here, switching to the #  state (increasing )"! ) is beneficial for the cell population when the 

proliferation rate (!  of # is higher than the proliferation rate ("  of $, which is likely given the lower 

propensity of differentiated cells to divide. In this case, we expect cells carrying mutations that increase )"! 
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to take over the population. Conversely, if the differentiated cell state $ were protected from the adverse 

effects of drug treatment ('" ≈ 0) (Case 2), inequality 1 simplifies to 

(! 	− 	'! > (" 

Here, increasing )"! is only beneficial for the cell population if the net production rate of # is larger 

than the proliferation rate (" of the differentiated state $, which is unlikely for high doses of drug ('! ≫

0). In this case, we expect cells carrying mutations that increase )"! to be depleted from the population 

over time. 

Overall, this conceptual mathematical model suggests that altered cell-state dynamics – specifically 

an increased switch rate towards a stem-like state – can indeed benefit the cell population (both in presence 

or absence of drug treatment), as long as it falls within a parameter regime outlined by inequality 1 (i.e. net 

production rate of stem-like state exceeds that of the differentiated state).  

 

Experimental validation of modeling predictions 

Does the TET2 mutation put the AML cancer population in this predicted advantageous parameter 

regime? Since the proliferation, death and switching rates cannot be disentangled directly from 

measurements, we estimated these rates by fitting our model to time course data of sorted TET2KO and WT 

populations in the presence of cytosine arabinoside (AraC or Cytarabine, a common first-line chemotherapy 

drug for AML; Figure 2.4, Figure A.8, see Methods). These parameter estimates confirmed that the 

proliferation rate during drug treatment of stem-like cells far exceeds that of differentiated cells, both for 

TET2KO and WT populations (Figure 2.4). Thus, both populations are in a regime where the net production 

of stem-like cells outstrips the net production of differentiated cells in drug treatment (as required by 

Inequality 1), and therefore switching to the stem-like state is more advantageous. The TET2KO populations 

have a higher $ → # switching rate and a lower # → $ switching rate; hence, the model predicts that the 

TET2KO population, as a whole, is more drug resistant. Indeed, drug treatment experiments confirmed that 

TET2KO populations are less sensitive to AraC and doxorubicin than TET2WT populations (Figure 2.4, 
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Figure A.8). We also used the same experimental setup to determine model parameters for different drug 

conditions and different CD38 subpopulations (Figure A.8, Figure A.9). Our key results – Inequality 1 

holds, TET2KO cells have a higher transit rate )"! from H to L, and TET2WT cells have a higher transit rate 

)!" from L to H – held true across experiments (Figure A.11).  

Further analysis of the model suggested two additional predictions. First, the model suggested that 

a population with a higher fraction of differentiated cell states will show reduced population survival in 

drug treatment (Figure 2.4). To test this conjecture, two effectors known to enrich AML cell populations 

for the differentiated state (without altering cell death, Figure A.12) were used, namely the inflammatory 

stimulus interferon gamma (IFNg) and the aldehyde dehydrogenase inhibitor disulfiram (DS) (Amici et al., 

2018; Xu et al., 2017). We confirmed that treatment with IFNg or DS enriched both TET2KO and WT 

populations for the differentiated cell state after 72 hours of exposure (Methods, Figure 2.4, Figure A.12). 

Moreover, both effectors increased the efficacy of AraC treatment in both TET2KO and WT populations, 

while several effectors not known to affect cell-state transitions did not alter AraC sensitivity (Figure 2.4, 

Figure A.12, Table A.5). 

Second, the model predicted that the increased ability of TET2KO to revert to a stem-like cell state 

(with its higher proliferation potential), will allow a TET2KO population to better regrow out of drug than a 

TET2WT population (Figure 2.4). To test this prediction, we compared the number of colonies formed by 

TET2KO and TET2WT populations in methylcellulose assays, which assesses the ability of isolated cells to 

reform a colony (Figure 2.4). As predicted, sorted stem-like cell populations showed increased cell colony 

numbers in both TET2KO and TET2WT populations. Moreover, unsorted TET2KO populations formed 

approximately 2x more colonies than their TET2 WT counterparts (Figure 2.4), highlighting their increased 

potential for population renewal. Thus, our results suggest that TET2KO populations have a higher likelihood 

to regrow an AML population from few surviving cells in the setting of therapeutic perturbations. 
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Discussion 

Taken together, our results reveal that mutation of the epigenetic modifier TET2 in AML cell 

populations alters the transition dynamics between stem-like and differentiated cell states. These altered 

cell-state dynamics confer several benefits to the population. First, TET2 mutation enables differentiated 

cells to switch to a stem-like state, which has a higher net production rate either in or out of drug, thus 

increasing population survival. Second, TET2 mutation increases the propensity to regrow an AML 

population after drug treatment from few surviving cells, due to the increased ability of TET2KO cells to 

revert back to a proliferative stem-like cell state (Figure 2.4). These findings provide a rationale for why 

the detection of TET2 mutants in patients in remission is strongly associated with a higher chance of relapse 

(Rothenberg-Thurley et al., 2018; Ding et al., 2012).  

The key results from this study of a human CD34+CD38+ myeloid cell line (KG1) are consistent 

with past murine studies showing that TET2 mutation alters hematopoietic stem cell self-renewal and 

differentiation in bulk (Moran-Crusio et al., 2011). Future studies will be necessary to determine the 

generalizability of the cell state-switching phenomenon in other hematopoietic cell types and in vivo. 

Additionally, our study was limited to cell states defined by well-known cell surface markers. Incorporating 

powerful, unbiased approaches such as scRNAseq and analyses measuring RNA velocity (La Manno et al., 

2018) could potentially uncover novel cell states and state switching dynamics that are relevant for drug 

survival. 

An interesting question raised by this study is the degree to which the state switching rates are cell 

intrinsic or extrinsically determined. In the process of confirming our model, we indeed found that the 

transition of TET2KO cells from CD38hi to CD38lo could be altered by effectors like DS and IFNg (Figure 

2.4). To characterize the extent to which cell-state switching rates are affected by signaling between the 

cells themselves, we grew KG1 TET2WT cells in media conditioned by TET2KO cells and vice versa. The 

distribution of CD38 expression in TET2WT cells was not affected by TET2KO conditioned media, but 

interestingly CD38 expression clearly increased for TET2KO cells grown in TET2WT conditioned media 

(Figure A.13) with decreased switching rates from CD38hi to CD38lo states (Figure A.13). Together, these 
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results suggest that the switching rates of TET2KO cells can be influenced by external perturbations, while 

switching rates of TET2WT are more stable. Future studies will be needed to identify key soluble factors 

that distinguish TET2KO conditioned media from TET2WT and, more generally, to fully test the extent to 

which cell state switching rates are intrinsically determined. 

This work provides further evidence that mutations which modulate switching rates between more 

and less drug-resistant states may provide an “evolutionary shortcut” to counteract the adverse effect of 

drug treatment (Jordan et al., 2016; Su et al., 2017; Gupta et al., 2011). The mechanisms driving this 

dynamic tumor heterogeneity will require deeper study, however, therapeutic strategies incorporating this 

knowledge may better counteract tumor evolution in response to treatment. For example, a natural extension 

of the work presented here would be to use the model and understanding of cancer cell state switching 

dynamics to determine ideal dosing strategies (dosage, time course, pulsed administration, and so on) to 

help therapeutically manage patient outcomes. A recently published review made similar suggestions for 

future therapeutic development in melanoma (Bai et al., 2019). 

Our results have implications for AML mutations beyond TET2: the conceptual mathematical 

model shows that as long as stem-like and differentiated cell states differ in their net cell production during 

drug treatment (i.e., Inequality 1 is fulfilled), any other mutation increasing the transition rate towards the 

stem-like state will be beneficial as well. Thus, we conjecture that mutations in other epigenetic modifiers 

might confer a fitness advantage to drug-treated AML populations through similar mechanisms. In cancer, 

the target space for mutations that directly interfere with drug function is likely smaller than the target space 

for dysregulation of cell states; this is known to be the case in bacteria, where the number of genes 

conferring increased antibiotic tolerance far exceeds the number of genes conferring drug resistance by 

interfering directly with drug mechanism (Girgis, Harris, and Tavazoie, 2012; Brauner et al., 2016). Future 

studies into characterizing cell states and transition dynamics will provide new insight into why certain 

mutations are selected for, and persist in, cancer, and led to new therapeutic approaches which increase the 

efficacy of current cancer therapies.  
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Figure 2.1: TET2
KO

 cells are more stem-like than TET2
WT

 isogenic counterparts 

(A) Overview of molecular profiling performed on isogenic TET2 mutant AML cell lines. (B) TET2KO cell 
lines are more hypermethylated than their wildtype counterparts. Shown is a histogram of log2fold-change 
(CpG beta values) in TET2KO cell lines for differences (relative to parental cell lines) greater than 2-fold 
from a paired analysis. (C) Genes that modulate differentiation and stemness as measured by RNAseq are 
differentially expressed after TET2KO in both KG1 and Thp1 (Figure A.2, mean ± s.e., n=6). TET2KO cell 
lines show decreased expression of myeloid commitment markers (ITGAM, CORO1A) and increased 
expression of markers associated with stemness (CD38-, HLA-DRA-, TAL1) compared to TET2WT. (D) 
KG1 and Thp1 (Figure A.4) TET2KO cell lines produce a higher percentage of colonies associated with 
oligopotent progenitor cells (CFUGEMM) compared to TET2WT cells (mean ±  s.e., n=3) in 
methylcellulose colony forming assays. 
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Figure 2.2: TET2
KO

 increases the propensity of differentiated (CD34
hi

CD38
hi

) cells to switch to a more 

stem-like (CD34
hi

CD38
lo
) cell state 

(A) KG1 TET2KO cell lines show a shift in CD38 surface marker expression. The threshold for calling cells 
as CD38lo or CD38hi (vertical dashed line) is defined by negative controls, such that 99.5% of unstained 
cells are classified as CD38lo (Figure A.5). (B) Schematic illustration of phenotypic segregation and flow 
cytometry experiment to quantify CD38 expression over time. Cells from either KG1 TET2WT or TET2KO 
cell lines are sorted by CD38 expression via FACS (fluorescence-activated cell sorting) into CD38lo or 
CD38hi based on the threshold in (A), and changes in CD38 expression are assessed every 3 days by flow 
cytometry (Figure A.8). (C-D) The percent CD38hi cells in originally pure populations of sorted CD38lo 
cells (C) or the percent CD38lo cells in originally pure populations of sorted CD38hi cells (D) for both KG1 
TET2WT or TET2KO cells after 0, 3, 6, 9, and 12 days of growth in drug-free media (see Figure A.8; mean 
± s.e., n=2).  
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Figure 2.3: Mathematical model reveals advantageous and disadvantageous parameter regimes for 

cell-state switching 

(left) If model parameters satisfy Inequality 1, both increasing )"! and/or decreasing )!" (black arrows) 
slows population decay and benefits a drug-treated cancer population. (General model) Schematic 
representation of mathematical model with three cell states: a stem-cell-like state #, a differentiated state 
$, and an irreversible cell death state. Parameters '! and '" represent  the death rates of the # and $ states; 
(! and (" the proliferation rates; and )!" and )"! the transition rates from # to $ and $ to #. (Case 1) If 
cells rarely die ('! ≈ 0, '" ≈ 0) and the proliferation rate (! is higher than (", increasing )"! is always 
beneficial. (Case 2) Conversely, if one state were protected from drug effect ('" ≈ 0), increasing )"! is 
only beneficial in the unlikely scenario when net production rate of the other state # is larger than its 
proliferation rate (". 
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Figure 2.4: Altered cell-state dynamics enable longer-term drug survival in chemotherapy 

(A) Schematic illustration of model of cell-state transition, cell proliferation, and cell death in 1µM AraC 
treatment. Numbers are representative estimated rates of transition, proliferation, and death (see Figure 
A.10). (B) The percent of CD38lo cells in an originally pure population of sorted CD38hi cells in 1µM AraC 
after 0, 3, and 6 days (mean ± s.e., n=3). Dashed lines represent predictions from the model. (C) The 
viability of cells treated with 72h of varying concentrations of AraC were assessed by CellTiter-Glo. Shown 
is fold-change viability relative to TET2WT cells as a function of chemotherapy concentration (mean ± s.e., 
n=5). (D) Model predictions for cell drug survival given increasing values of the transition parameter )"! 
for a toy model that fulfills Inequality 1. Plotting survival as a function of the ratio of )"!/)!" (inset). (E) 
CD38hi cells were isolated by FACS, then incubated with or without effector for 3 days in the presence of 
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1µM AraC. Shown are distributions of sorted TET2KO CD38hi cells after 3 days in DMSO, DS, or IFNg 
treatment (n=3, TET2WT in Figure A.12). (F) Sorted CD38hi cells were subjected to 1µM AraC treatment 
with or without effector. The percent of living cells in the population relative to control after 3 days is 
shown on the y-axis (mean ±  s.e., n=3). (G) Model predictions for colony outgrowth from a small 
population given sorted CD38lo and CD38hi (left) or unsorted cells (right; see Methods, mean of 10 runs). 
(H) Number of colonies in a methylcellulose colony forming unit assay for TET2WT and TET2KO cells after 
seeding equal numbers and 14d incubation (mean ± s.e., n=3). (I) Number of colonies in methylcellulose 
assay TET2WT and TET2KO cells sorted for CD38 expression (mean ± s.e., n=3). 
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Methods 

Cell-state transition model 

We modeled a cell system with 3 states as a linear, homogenous system of ODEs. In matrix form 

this is written as 

'4
'5

= 74 

where 4 is cell-state vector of length 3, and 7 is a 3	8	3 matrix representing cell-state transitions. 

We do not assume the matrix 7 is stochastic, which allows expansion or contraction of the total number of 

cells in the system—reflecting cell division or drug sensitivity—to occur. In our study, we considered two 

states: # (CD38lo) or $ (CD38hi): 

'
'5
9#
$
: = ;

((! − )!" − '!) )"!
)!" ((" − )"! − '")

< 9#
$
: 

Where (!  and ("  are the growth rates and '!  and '"  the death rates of cell-states #  and $ , 

respectively. Here, )!"  is the transition rate from # to $, and )"!  is the transition rate from $ to #. All 

matrix parameters are considered to be real, non-negative numbers. If we define  

α = −(! + )!" + )"! − (" + '! + '" 

β = ?α# + 4)!"((" − '") + 4)"!((! − '!) + 4(("'! + (!'") − 4((!(" + '!'") 

then the eigenvalues of 7 are 

λ$ =
1
2
(−α − β) 

λ# =
1
2
(−α + β) 

with eigenvectors 

4$DDDD⃑ = F−
−(! + )!" − )"! + (" + '! − '" + G

2)"!
1

H 

4#DDDD⃑ = F−
−(! + )!" − )"! + (" + '! − '" − G

2)"!
1

H 
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For convenience, we define the difference in production between the two states 

I ≡ ((! − '!) − ((" − '") 

To find the regime where changing )"! (asymptotically) increases survival rate, we focus on the 

larger of the other two eigenvalues, namely λ# . Taking the derivative of λ#  with respect to the state-

switching parameters gives: 

'λ#
')"!

=
1
2
K
)!" + )"! + I

G
− 1L 

'λ#
')!"

=
1
2
K
)!" + )"! − I

β
− 1L 

Using Wolfram|Alpha, we find: a) %&!%'"#
> 0 holds if		I > 0 and  )"! > −M√)!" − √IO

#
; and b) 

%&!
%'#"

≤ 0 holds if either (i) I > 0 ,		0 ≤ )!" < I , and )"! > −M√)!" − √IO
#
, or if (ii) I > 0 and )!" ≥

I . In our model, we only consider non-negative, real-valued parameter values. Thus, as long as the 

inequality I > 0 holds, %&!%'"#
> 0  and %&!%'#"

≤ 0.  

A two-state system with constant switching rates can equilibrate to a constant fraction of states (a 

steady state) provided the cell population does not rapidly crash. This is possible because flux into and out 

of each state can be balanced and is why observations such as Figure 2.2 (where TET2KO cells appear to 

not switch and instead retain a stem-like state) can still be an accurate reflection of cells in constant flux. 

However, cell proliferation, death, and switching rates cannot be disentangled directly from bulk 

measurements. Therefore, we estimated these rates by fitting our model to time course data of sorted 

TET2KO and WT populations. To find best fit parameters for this system, cell-state compositions from the 

flow cytometry experiments shown in Figure A.8 or Figure A.9 (using data from both CD38hi- and CD38lo-

sorted subpopulations, described below) were used as input into the model. Prediction error (the sum of the 

differences between the predicted and measured number of cells in each cell-state at each timepoint) was 

minimized with fminsearch in MATLAB (version R2019a) with MaxIter of 5000. To eliminate “solutions” 

that did not converge or had poor fit, prediction error for 1000 sets of random parameter values was 
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calculated to form a null distribution for each condition, and the 0.005-quantile for this null distribution 

was used as an upper limit for reasonable error values (Figure A.10). To establish the probable range of 

transition parameters, best-fit parameters for 1000 random initializations (x0 in the fminsearch function) 

were found and plotted (Figure A.10). Representative values for fit parameters for KG1 TET2WT and 

TET2KO cells are shown in Figure 2.4. Median values for fit parameters or fit parameter ratios from 

converged solutions are shown in Figure A.11 and Figure A.13. Code is available online at 

https://github.com/AltschulerWu-Lab/TET2-dynamics.  

Solving the matrix ODE gave 

9#
$
: = R

4⃑$
$ 4⃑$

#

4⃑#
$ 4⃑#

#S ;
TU&$(

VU&!(
< 

After solving for the constants T and V, model predictions were made using representative best fit 

parameters and initial conditions observed in the experiment (e.g. number of CD38hi and CD38lo cells in 

day 0 sorted cell populations; method for calling CD38lo/hi described below).  

For colony forming simulations, 100 colonies were “seeded” with 10 individual cells as colony 

founders with 50% in the # state and 50% in $ unless otherwise noted. To simulate growth without drug 

treatment, rates were estimated by fitting the model to flow cytometry experimental data (described below) 

without AraC treatment. The Gillespie algorithm was implemented to find the number of cells in the # or 

$ states at time 5. Cells “grew” for 10 time-steps before the number of cells in each colony was counted. 

Colonies with more than 100 cells were considered “grown out”.  

Cell lines, reagents, and cell culture 

KG1 cells and Thp1/Thp1 TET2KD cells were generous gifts from the Shannon lab at UCSF and 

Levine lab at MSKCC, respectively. Cells were cultured in ATCC-recommended media and incubated at 

37°C with 5% CO2. All cell lines were maintained in 75ml or 250ml Suspension Culture flasks (CellTreat, 

Pepperell, MA) between 0.5e6 and 1e6 cells/ml.  

To make TET2KO cells in the KG1 cell line, guides targeting exon 3 of TET2 (an exon with frequent 

indel mutations in patients with MDS; Smith et al., 2010) were designed in Benchling (5’-
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CACCGAGGCCAATTAAGGTGGAACC-3’). pSpCas9(BB)-2A-Puro (PX459) V2.0 was a gift from 

Feng Zhang (Addgene plasmid #62988). Guides were cloned into PX459 using BbsI sites, and vectors 

transfected into KG1 cells with the Cell Line Nucleofector Kit R (Lonza Group, Basel, Switzerland) with 

protocol V-001 and according to the manufacturer’s protocol. After 48h, FITC-positive cells were isolated 

via FACS and expanded for 10 days. The TET2 mutation created a frameshift mutation causing truncation 

(Figure A.1) upstream of the conserved catalytic domain of TET2, consistent with tumors observed in 

patients (Weissman et al., 2012). 

Prior to addition to cell culture media, Cytosine Beta-D-Arabinofuranoside (Sigma-Aldrich, St. 

Louis, MO) and 2-Deoxy-D-glucose (Sigma-Aldrich) were dissolved in H2O, CCCP (Sigma-Aldrich), 

Disulfiram (Sigma-Aldrich), Etacrynic acid (Sigma-Aldrich), and Torin1 (Cell Signaling Technology, 

Danvers, Massachusetts) were dissolved in DMSO, and IFNg (Peprotech, Rocky Hill, NJ) was dissolved 

in culture media to 1000x the desired final concentration. Final DMSO (or other diluent) concentration was 

always 0.1%. 

To generate conditioned media, 5e6 KG1 TET2 WT or KO cells were seeded in fresh growth media 

and grown for 24h. Samples were centrifuged at 300g for 3 minutes, and fresh growth media was added 1:1 

to the supernatant prior to filtering with 0.4um Steriflip units (Millipore, Burlington, MA). Cells were 

treated for 6 days with conditioned media (unless cut short due to Covid-19 shelter-in-place). Conditioned 

media was made fresh for each timepoint.  

DNA methylation profiling 

DNA methylation was profiled using Illumina’s Infinium MethylationEPIC BeadChip (Illumina, 

San Diego, CA). DNA of technical replicates for each condition was extracted using the Zymo Quick-DNA 

kit (Zymo Research, Irvine, CA, KG1 n=6 per condition, Thp1 n=2 per condition). Bisulfite conversion, 

nanodrop quantitation, array scanning, and normalization was performed by the Vincent J. Coates 

Genomics Sequencing Laboratory at UC Berkeley. Differential methylation analysis was performed with 

ChAMP (package version 2.14.0, Tian et al., 2017) in R (version 3.6.0; R Core Team, 2019). Differential 
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methylated region analysis was performed with DMRcate (version 1.20, Peters et al., 2015), and 

visualization done with Gviz (version 1.28, Hahne et al., 2016). 

mRNA-seq 

RNA extraction of technical replicates was performed using the Lexogen SPLIT RNA extraction 

kit (Lexogen, Vienna, Austria, n=6 per condition), and libraries were prepared using the QuantSeq 3’ 

mRNA-Seq Library Prep Kit FWD for Illumina. Samples were quantified with Invitrogen Qubit (Invitrogen, 

Carlsbad, CA) prior to pooling, and library size and integrity was confirmed using the Agilent Bioanalyzer 

with the high-sensitivity DNA kit (Agilent, Santa Clara, CA). RNA sequencing was performed using 50bp 

single-end sequencing on the Illumina HiSeq 4000 in the Center for Advanced Technology at UC San 

Francisco. A PhiX control library was used as an in-run control, spiked in at 5%. Reads were mapped and 

counted using the Integrated QuantSeq data analysis pipeline on Bluebee Platform (Bluebee, Rijswijk, 

Netherlands). Briefly, reads were trimmed with BBDuk, aligned to human GRCh38 with STAR, and 

counted with HTSeq-count. 

Gene filtering and differential expression analysis was performed in R. Genes were filtered by 

count such that all genes had 3 or more samples with 10 or more counts. Differential expression analysis 

was then performed using DESeq2 (version 1.24, Love et al., 2014) on gene counts. Genes that were found 

to be significantly differentially expressed with an absolute Log2fold-change in expression > 1.5X in a 

paired analysis of untreated cell lines were submitted to Enrichr (Kuleshov et al., 2016) for enrichment 

analysis.  

TET2 expression analysis 

Expression profiles for the following datasets were queried from the Cancer Genomics Data Server 

(CGDS) using cdgsr (version 1.3.0, Cerami et al., 2012). Our results are, in part, based upon data generated 

by The Cancer Genome Atlas managed by the NCI and NHGRI. Information about TCGA can be found at 

http://cancergenome.nih.gov. For the datasets TCGA-LAML (dbGaP accession phs000178.v1.p1] and 

AML-OHSU (Tyner et al., 2018), genes with coefficient of variation < 0.1 across samples were dropped 

from subsequent analysis. Pearson correlation calculations were performed in R (version 3.6.0). Genes with 
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expression that strongly correlated (cor > 0.45) or anti-correlated (cor < -0.45) with TET2 expression were 

submitted to Enrichr (Kuleshov et al., 2016) for enrichment analysis. 

Methylation age and stemness profiles 

Quantile normalized values from the aforementioned ChAMP analysis were used as input to the 

DNA methylation age calculator in R as described in the tutorial (horvath.genetics.ucla.edu) (Horvath, 

2013). For visualization purposes, results for TET2WT and TET2KO cells were normalized to TET2WT. 

For the “stem-like” epigenetic signatures, we used a publicly available dataset of DNA methylation 

profiles from normal hematopoietic progenitors and leukemic cells sorted by CD34/CD38 expression (Jung 

et al., 2015). Linear discriminant analysis (LDA) was applied using the MASS package (version 7.3-51.4, 

Venables et al., 2002) in R to identify an optimal transform that increased separation of DNA methylation 

profiles across three key reference populations: normal HSCs, CD34+CD38- putative LSCs, and CD34- 

leukemia cells. The rest of the public dataset, as well as methylation data from the paired TET2WT/TET2KO 

cell lines, was projected into the lower-dimensional LDA space.  

Immunofluorescence staining for flow cytometry 

Cells were pelleted and washed with wash buffer (HBSS + 1% BSA, filtered with a 50ml Steriflip 

unit (Millipore)) prior to 30m incubation in Fc Receptor Blocker (Innovex Biosciences, Richmond, CA) on 

ice in the dark. Cells were washed twice before resuspension in wash buffer containing conjugated 

antibodies for flow cytometry at their recommended concentrations (CD34-PE 555822, CD38-PE-Cy5 

555461, Becton Dickinson, Franklin Lakes, NJ), and incubation for 30m on ice in the dark. Cells were 

washed three times and resuspended in 350µL wash buffer before measurement with flow cytometry at a 

flow rate of 9.0. Doublets were called based on gates drawn for FSC-A and FSC-W, and dead cells were 

counted based on gates drawn in FSC-A and SSC-A. All flow cytometry or FACS was performed on the 

Aria IIu in the Center for Advanced Technologies at UC San Francisco. 

External marker tracking by flow cytometry 

For Figure 2.2, Figure A.8 and Figure A.9, equal numbers of CD38hi and CD38lo subpopulations 

of TET2WT and TET2KO cells were isolated by FACS (gate in Figure 2.2, set such that <0.5% of unstained 
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cells would be counted as CD38hi; see Figure A.5) and seeded separately in a round-bottom 96-well plate 

(CELLSTAR) at 1e5 cells/ml. For Figure A.8, equal numbers of cells from the “tails” (bottom/top 5%) of 

the CD38 distributions of stained, unsorted TET2WT and TET2KO cells (see Figure A.8) were isolated by 

FACS and seeded separately in a round-bottom 96-well plate (CELLSTAR) at 1e5 cells/ml. For day 0 

timepoints, aliquots of freshly sorted cells were reflowed and recorded. For Figure 2.2 and Figure A.8, cells 

were treated with 0, 1, or 4µM AraC in technical triplicates. No drug was applied to the technical replicates 

shown in Figure A.8 and Figure A.9. Plates were covered with Breathe-Easy sealing membranes (Sigma-

Aldrich) before incubation. For longer timepoints, media (with or without drug, as relevant) was exchanged 

every 3 days. At each timepoint, all cells in each replicate well were washed and stained for CD34 and 

CD38 (described above) and re-profiled by flow cytometry. To account for day-to-day variations in Aria 

IIu laser power or other settings, raw fluorescence intensity for each channel was normalized by the median 

intensity of unsorted, unstained controls of the appropriate cell line (Figure A.5) for each timepoint prior to 

analysis. For all experiments, CD38hi and CD38lo cell counts for analysis and model-fitting were called 

based on the same sorting threshold shown in Figure 2.2 (set such that <0.5% of unstained cells would be 

counted as CD38hi; see Figure A.5). The number of living cells in each cell state served as input to the 

model to fit parameters for the cell-state transition matrix in both cell lines for both treated and untreated 

conditions (described above). 

MethoCult methylcellulose colony forming assay 

Cells were counted with the TC20 automatic cell counter (Bio-Rad) with Trypan blue prior to 

plating in triplicate as technical replicates in MethoCult H4034 Optimum (Stemcell Technologies, 

Vancouver, CAN) in 35mm cell culture dishes (Eppendorf, Hamburg, DE) according to the manufacturer’s 

instructions. Cells were incubated for 2 weeks at 37°C with 5% CO2. To maintain humidity, 4 MethoCult 

dishes were incubated amongst three lidless 35mm dishes each filled with 3ml sterile ddH2O inside a 

150mm glass petri dish with a lid (Corning, Corning, NY). Water was replenished every 3 days. Colonies 

were enumerated according to the manufacturer’s instructions. Results shown are representative results 

from two independent experiments. 
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Cell viability assays 

For sorted population growth or effector viability assays (Figure A.7 and Figure A.10), TET2WT 

and TET2KO cells were stained for CD34 and CD38 (described above) and segregated by CD38 expression 

with FACS as shown (Figure A.7 and Figure 2.2, respectively). For day 0 timepoints, aliquots of freshly 

sorted cells were reflowed and recorded. Sorted cells were plated in round-bottom 96-well plates 

(CELLSTAR, Dallas, TX) at 1e5 cells/ml with replicates for each timepoint. For treated conditions, AraC 

and effectors were diluted and added as described above. Plates were covered with Breathe-Easy sealing 

membranes (Sigma-Aldrich) before incubation at 37°C with 5% CO2. For longer timepoints, media (with 

or without drug, as relevant) was exchanged every 3 days. At each timepoint, all cells in each replicate well 

were washed, stained, and measured with the Aria IIu for the first 2000 events. The density of living cells 

(# of cells per ml, Figure A.7) was calculated as the number of living cells observed per sample divided by 

the total length of time the sample took to reach 2000 events, and divided by the flow rate (~90 uL/minute 

for flow rate 9.0 on the Aria IIu). 

For drug viability assays (Figure 2.4, Figure A.8), cells were plated as technical replicates at 1e5 

cells/ml and treated with drug for 72h. For readout, plates were allowed to cool to room temperature before 

combining well-mixed cells and cell media 1:1 with room temperature CellTiter-Glo 2.0 (Promega, 

Madison, WI) in opaque white tissue culture plates (Corning). Reactions were allowed to proceed according 

to the manufacturer’s protocol, and luminescence was read out with the Biotek H4 plate reader (BioTek, 

Winooski, VT) in the Center for Advanced Technology at UC San Francisco. Results shown are 

representative results from three independent experiments. 

RT-qPCR and PCR 

For measuring TET2 expression, RNA was extracted from three technical replicates with the 

Direct-zol RNA Miniprep kit (Zymo Research) according to manufacturer’s instructions with TRI Reagent 

(Thermo Fisher Scientific, Waltham, MA). For measuring CD38, ITGAM, CORO1A, TAL1, and HOXA5 

expression, cells were stained for CD34 and CD38 (described above) and fractionated by CD38 expression 

via FACS (gates shown in Figure A.6). RNA was extracted from sorted cells (2 replicates of 300k cells) 
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with the RNeasy Plus Mini Kit (QIAGEN, Hilden, DE) according to manufacturer’s instructions. Reverse 

transcription with iScript Reverse Transcription Supermix (Bio-Rad, Hercules, CA) was followed by qPCR 

with DyNAmo Flash SYBR Green qPCR kit (Thermo Fisher Scientific) according to the recommended 

protocol on the BioRad CFX Connect in the Center for Advanced Technologies at UC San Francisco. The 

set of genes measured was composed of genes of interest from the bulk RNAseq experiment (Figure A.2) 

and relevant gene sets in the literature (GSEA: gal_leukemic_stem_cell (Gal et al., 2006), 

gentles_leukemic_stem_cell (Gentles et al., 2010), eppert_ce_hsc_lsc (Eppert et al., 2011)). Primers were 

obtained from IDT (San Jose, CA). Primer sequences for human RUNX1, TET2, HOXA5, and GAPDH 

were as previously described (Fujita et al., 2001; Cimmino et al., 2017; McLaughlin-Drubin et al., 2011). 

Primer sequences for CD38, CORO1A, ITGAM, and TAL1 were generated with the Primer Design Tool 

in Benchling. 

Data availability 

RNA sequencing, DNA methylation, flow cytometry, and other data that support the findings of 

this study is publicly available in Mendeley Data along with code to generate all figures (doi: 

10.17632/xmvz47rpg6.1). Code to generate parameter fits or run the Gillespie algorithm is available on 

GitHub at https://github.com/AltschulerWu-Lab/TET2-dynamics. 
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Introduction 

Within a tumor, extensive genetic variation between cells can lead to phenotypic heterogeneity, 

complicating clinical decision-making in cancer medicine (Burrell et al., 2013) and enabling tumors to 

become resistant to drug treatment via selection of pre-existing clones (Hata et al., 2016). Beyond genetic 

diversity, recent works have suggested that phenotypic heterogeneity can arise from non-genetic 

mechanisms (Brock et al., 2009) such as epigenetic markers (Feinberg et al., 2016; Flavahan et al., 2017; 

Hinohara et al., 2018) or metabolism (Hangauer et al., 2017; Roesch et al., 2013; Viswanathan et al., 2017). 

For acute myeloid leukemias (AML) which have relatively low genetic diversity (Tian et al., 2015), several 

of the most recurrently mutated genes encode epigenetic modifiers (Cancer Genome Atlas Research 

Network, 2013), suggesting that AML fitness grows with “epigenetic diversity” (Li et al., 2016). 

Consistently, mutations in epigenetic modifiers are frequently found to persist through remission to relapse 

in AMLs (Ding et al., 2012; Corces-Zimmerman et al., 2014; Rothenberg-Thurley et al., 2018). 

We have previously shown that cells with a loss of the epigenetic modifier TET2 have increased 

survival in the presence of chemotherapy due in part to altered cell state switching dynamics (Morinishi et 

al., 2020; Chapter 2). In the course of our study, we also observed a change in growth rate and metabolic 

activity in isogenic TET2 mutants compared to the WT cell line. These observations suggest a link between 

epigenetics and metabolism and present an interesting possibility: if TET2 mutants have a distinct metabolic 

state, they may also have distinct metabolic vulnerabilities. Indeed, recent works by Hangauer et al. and 

Viswanathan et al. have shown that drug-tolerant cancer cells can be particularly vulnerable to inhibition 

of the lipid hydroperoxidase GPX4 (Hangauer et al., 2017; Viswanathan et al., 2017). Here we describe the 

metabolic effects of TET2 loss in AML cells, and study the effects of metabolic perturbation on AML cell 

chemosurvival in vitro. 
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Results and Discussion 

To better understand how TET2 mutation changes cellular metabolism, we measured mitochondrial 

function in the isogenic KG1 cell lines with the Seahorse XFe96 Analyzer (Agilent). Respiration in TET2KO 

cells was significantly higher than WT cells as measured by the oxygen consumption rate (OCR) for 

maximal respiration and spare respiratory capacity (Figure 3.1). KG1 TET2KO cells showing increased 

respiration is consistent with the cell line’s increased cell proliferation (Figure B.2). 

We also profiled the metabolomics of our isogenic KG1 and Thp1 cell lines with flow-injection 

time-of-flight mass spectrometry (FIA TOF-MS). For 1199 putatively annotated ions, normalized 

abundances measured from 8 replicate measurements showed high reproducibility between samples 

(median CV is 11% for non-washed samples and 16% for washed samples). Cells washed with wash buffer 

prior to quenching (see Methods) had slightly different fold-change values compared to unwashed cells 

(Figure 3.2 and Figure 3.3), but the overall trends were not affected (Figure 3.4). TET2 mutation appeared 

to have a stronger effect on the metabolome in KG1 cells than in Thp1 (Figure 3.2 and Figure 3.3, with 

~100/1199 metabolites significantly affected), with few metabolites showing a fold-change in the same 

direction across cell lines (Figure 3.4). This is consistent with our RNAseq and DNA methylation profiling, 

which showed a stronger effect in KG1 TET2 mutants compared to Thp1 (Figure A.3). These differences 

may be due to the disparate methods of knocking out/down TET2 (Cas9 editing in KG1, shRNA in Thp1) 

or differences in cell type (KG1: CD34+CD38+ myeloblast; Thp1: CD34- macrophage myeloblast).  

To better understand which metabolic pathways were affected by TET2 mutation, we performed 

pathway analysis for significantly altered metabolites with the MetaboAnalyst tool (Chong et al., 2019) 

using “KEGG (Previous)” pathways. KG1 TET2 mutant cells were significantly enriched for TCA cycle 

metabolites (L-Malic acid, cis-Aconitic acid, Citric acid, and Fumaric acid; Tables 3.1 and 3.2) and 

glutathione metabolism compared to TET2WT, regardless of washing protocol. Moreover, ATP and several 

co-factors (e.g. Acetyl-CoA) were elevated in KG1 TET2 mutants, consistent with the observed increase in 

respiration in the KG1 TET2KO cell line (Figure 3.1). 
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Given the differences in metabolic activity in KG1 TET2KO cells, we wondered whether modulation 

of metabolic activity could affect drug survival. In Chapter 2, we showed that TET2KO AML cells (which 

are often found to persist through remission to relapse in patients) have increased survival in the presence 

of chemotherapy (1µM AraC) due in part to altered cell state switching dynamics. Further, we showed that 

slowing switching dynamics with extracellular effectors altered drug survival (Figure 2.4 and Figure A.12). 

Effectors or signaling molecules that preferentially suppress the survival of TET2KO cells in drug may help 

us identify key metabolic vulnerabilities in the more drug-resistant TET2KO cells, which could then be 

leveraged to reduce the rate of relapse in patients with TET2-mutant AMLs. To identify effectors, we 

expanded our panel to 35 drugs or biologics spanning glycolysis, autophagy, and oxidative phosphorylation 

(Table C.1), and generated 72h dose-response curves for a 2X dilution series of each effector in both KG1 

TET2WT and TET2KO cell lines treated with 0 or 1µM AraC (Figure C.1).  

Interestingly, our tested effectors appeared to have one of four types of dose-response curves 

(Figure 3.5): Effectors that at the given concentrations had no discernable effect on survival either in or out 

of drug (Group 1: 2HG, DCA, DNP, Fructose, IU1, Kynurenine, Mannose, Metyrapone, MRT68921, MS, 

NAC, Na-Lactate, Na-Pyruvate, Oxamate, PTIO, Sulfasalazine); Effectors with strong effects that were 

largely the same in and out of drug (Group 2: TSA, BrPyr, DHA); Effectors that enabled better Tet2KO 

growth out of drug, but did not notably alter drug survival (Group 3: ATRA, Bafilomycin, BSO, CB-839, 

Chloroquine, Lopermaide, Metformin, Rotenone, Valproic acid); and Effectors that showed higher Tet2WT 

survival compared to Tet2KO in drug (Group 4: 2DG, CCCP, DS, EA, IFNg, Torin). 

The observed effect of disulfiram and IFNg on TET2KO cell survival in 1µM AraC is consistent 

with previous measurements from Chapter 2 (Figure 2.4 and Figure A.12). Unfortunately, no single 

mechanism uniformly explains the change in drug survival observed for all Group 4 effectors. Looking at 

each effector individually, however, offers some insight. For example, disulfiram inhibits the enzyme 

acetaldehyde dehydrogenase and thus may slow production of acetyl-CoA, a significantly enriched 

metabolite in KG1 TET2KO cells (Figure 3.2). Further work will be required to understand the mechanisms 

that cause effectors in Group 4 to differentially affect TET2 mutants. 
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Together, these data provide strong evidence that KG1 TET2KO cell lines have significantly altered 

metabolic activity compared to TET2WT. However, future work will be required to more precisely describe 

the metabolic differences and, potentially, identify compounds or treatment strategies that preferentially 

target the more drug-tolerant TET2-mutant AML cells. 
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Figure 3.1: KG1 TET2
KO

 cells have higher levels of respiration than TET2
WT

 

Oxygen consumption rate (OCR) was measured for four technical replicate wells of two replicates per cell 
line (KG1 TET2WT or TET2KO) on the Seahorse XFe96 (Agilent). Shown are values for maximal respiration 
and spare respiratory capacity. Low OCR values here may be a result of few suspension cells remaining in 
the plate after preparatory wash steps. 
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Figure 3.2: Volcano plot of KG1 and Thp1 cell metabolomics 

Each circle represents an ion, data shown is the mean of 8 replicate measurements. Filled circles: 
metabolites with absolute Log2FC > 0.5 and adjusted p-value < 0.001.  
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Figure 3.3: Sorted significantly altered features in TET2 mutants 

Shown are features with absolute Log2FC > 0.5 and adjusted p-value < 0.001 for KG1 (black) and Thp1 
(gray). Labels correspond to mass-to-charge ratios (m/z). 
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Figure 3.4: Fold-change per features for KG1 and Thp1 cells with or without washing 

(A) For each cell line, a comparison of feature fold-change in TET2 mutants for washed and unwashed 
samples is shown.  (B) For either washed or unwashed samples, a comparison of feature fold-change in 
TET2 mutants for the KG1 and Thp1 cell lines is shown.  Filled circles: metabolites with absolute Log2FC 
> 0.5 and adjusted p-value < 0.001.  
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Figure 3.5: Effector panel identifies modulators of KG1 chemosensitivity 

KG1 TET2WT and TET2KO cells were treated with a 2X dilution series of a panel of effectors (Table C.1, 
where Effector Level 7 is the highest dose) and either DMSO or 1µM AraC for 72h prior to cell viability 
measurement with CellTiter-Glo. Effectors appeared to have one of four types of dose-response curves: (1) 
no discernable effect on survival at the given concentrations, (2) strong effect that is very similar in and out 
of drug, (3) some effect on TET2KO growth out of drug, but no notable change in drug survival, and (4) 
higher TET2WT cell survival compared to TET2KO in drug. Shown are dose-response curves for 3 
representative effectors from each group (mean ± s.e., n=3). 
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Table 3.1: Pathway analysis of unwashed KG1 samples 

KEGG pathways enriched in significantly altered putatively annotated ions in unwashed KG1 TET2KO cells. 

 

 

Table 3.2: Pathway analysis of washed KG1 samples 

KEGG pathways enriched in significantly altered putatively annotated ions in washed KG1 TET2KO cells. 

 
 

 

  

Pathway Total Expected Hits p-value -log(p) Holm adj FDR Impact 

Citrate cycle 20 0.35729 4 3.48e-4 7.9638 0.02783 0.02782 0.17883 
Pantothenate and 
CoA biosynthesis 

27 0.48234 4 1.15e-3 6.7678 0.09087 0.04601 0.32719 

Pyrimidine 
metabolism 

60 1.0719 5 3.783e-3 5.5773 0.29507 0.10088 0.05288 

Purine metabolism 92 1.6435 6 5.148e-3 5.2692 0.39636 0.10295 0.11185 

Pathway Total Expected Hits p-value -log(p) Holm adj FDR Impact 

beta-Alanine 
metabolism 

28 0.46531 5 7.28e-5 9.5275 0.00583 0.00583 0.31334 

Citrate cycle 20 0.33236 4 2.62e-4 8.2481 0.02068 0.01047 0.23915 
Glutathione 
metabolism 

38 0.63149 4 3.21e-3 5.7405 0.25062 0.08568 0.3244 

Glyoxylate and 
dicarboxylate metab. 

50 0.83091 4 8.68e-3 4.7462 0.6687 0.15098 0.00881 

Pantothenate and 
CoA biosynthesis 

27 0.44869 3 9.44e-3 4.6632 0.71714 0.15098 0.29143 
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Methods 

Cell lines, reagents, and cell culture 

KG1 cells and Thp1/Thp1 TET2KD cells were generous gifts from the Shannon lab at UCSF and 

Levine lab at MSKCC, respectively. Cells were cultured in ATCC-recommended media and incubated at 

37°C with 5% CO2. All cell lines were maintained in 75ml or 250ml Suspension Culture flasks (CellTreat) 

between 0.5e6 and 1e6 cells/ml.  

To make TET2KO cells in the KG1 cell line, guides targeting exon 3 of TET2 (an exon with frequent 

indel mutations in patients with MDS; Smith et al., 2010) were designed in Benchling (5’-

CACCGAGGCCAATTAAGGTGGAACC-3’). pSpCas9(BB)-2A-Puro (PX459) V2.0 was a gift from 

Feng Zhang (Addgene plasmid #62988). Guides were cloned into PX459 using BbsI sites, and vectors 

transfected into KG1 cells with the Cell Line Nucleofector Kit R (Lonza Group, Basel, Switzerland) with 

protocol V-001 and according to the manufacturer’s protocol. After 48h, FITC-positive cells were isolated 

via FACS and expanded for 10 days. The TET2 mutation created a frameshift mutation causing truncation 

(Figure A.1) upstream of the conserved catalytic domain of TET2, consistent with tumors observed in 

patients (Weissman et al., 2012). 

Seahorse 

Cell-Tak solution (Agilent) was adsorbed to an XF96 Cell Culture Microplate per manufacturer 

instructions. Four wells of two technical replicates each for KG1 TET2WT and TET2KO cells were loaded 

into the appropriate wells and centrifuged prior to assay administration and measurement on the XFe96 (per 

manufacturer’s instructions, Agilent).   

Metabolomics  

Two technical replicates of 5e5 cells for each cell line were pelleted at 300g for 3 minutes. Half of 

the samples were washed once with wash buffer (75mM Ammonium bicarbonate, pH 7.4, 37°C). All 

samples were then resuspended in 500µL quenching solution (40:40:20 CAN:MeOH:H2O, -20°C) and 

vortexed prior to incubation at -20°C for 1 hour. Samples were centrifuged at 300g for 3 minutes, and 

4x50µL of each supernatant was transferred into conical storage plates as technical replicates. Plates were 
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heat-sealed and stored at -80°C. Samples were analyzed by double injection on an iFunnel 6650 Q-TOF 

(Agilent). A custom script in MATLAB was used to calculate the mean and standard deviation of fold-

change intensity for each WT/KO cell line pair (for washed or unwashed samples), the false discovery rate, 

and the adjusted p-value (t-test; Storey, 2002).  

Cell viability assays 

For cell viability assays, cells were plated in 384-well plates at 1e5 cells/ml either with a Matrix 

WellMate (three replicate plates; Thermo Scientific) or by hand (one replicate plate) and treated with drug 

and/or effector for 72h at 37°C with 5% CO2. Effectors and drug were either added with the Echo (Labcyte, 

San Jose, CA) or by hand. Plates were allowed to cool to room temperature before combining well-mixed 

cells 1:1 with room temperature CellTiter-Glo 2.0 (Promega) in opaque, white tissue culture plates 

(Corning). Reactions were allowed to proceed according to the manufacturer’s protocol, and luminescence 

was read out with the Biotek H4 plate reader (BioTek) in the Center for Advanced Technology at UC San 

Francisco. Luminescence in each plate was normalized to the median signal from all “no effector” wells 

(either only DMSO or only AraC, as relevant) prior to visualization. Results shown are representative of 

two independent experiments.  
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Figure A.1: Confirming loss of Tet2 expression 

(A) An outline of the gene TET2 showing sequence the final gRNA targeted, and a bulk Sanger sequencing 
trace of the locus before and after plasmid nucleofection. (B) Upon editing, a NlaIV cut site is removed. 
PCR amplicons of a 400bp region around the target locus were run on an agarose gel with or without NlaIV. 
(C) TET2 expression fold-change, as measured by RT-qPCR in TET2KO pool relative to the parental cell 
line, shows decrease in expression relative to GAPDH fold-change. (D) Western blot of both cell lines 
before and after TET2 knockout with TET2 N-terminus targeting antibody. 293T is a positive control. TET2 
band is lost at 260kDa. 
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Figure A.2: Changes in DNA methylation and RNA expression in TET2
KO

 cells 

(A) Representative volcano plot of log2fold-change in DNA methylation beta values after TET2 loss (shown 
for KG1). Each point is one CpG. As expected, TET2KO cells are more hypermethylated at CpGs across the 
genome. (B) Log2fold-change of RNA expression counts from RNAseq after TET2 loss for KG1 (x-axis) 
and Thp1 (y-axis). Each point represents a gene, and some similarly differentially expressed genes are 
labeled. Dotted lines denote a threshold of 1.5X change. (C) Genes that modulate differentiation and 
stemness are differentially expressed as measured by RNAseq after TET2KO in both KG1 and Thp1 (Figure 
A.2, mean ± s.e., n=6). TET2KO cell lines show decreased expression of myeloid commitment markers 
(ITGAM, CORO1A) and increased expression of markers associated with stemness (CD38-, HLA-DRA-, 
TAL1) compared to TET2WT. (D) Genes that are differentially expressed after TET2 loss are enriched for 
targets of Runx1. Results from the “ChEA 2016” enrichment analysis of significantly differentially 
expressed genes after TET2KO, showing transcription factors in order of “Combined Enrichment Score”. 
(E) Analysis of DNA methylation data found that the most significant DMR in TET2KO cells was the 
proximal promoter of Runx1. An ideogram representing the chromosomal location of Runx1 (top), the 
significance of differential methylation in the region (middle), and relevant transcripts (bottom) are shown. 
(F) Runx1a isoforms are differentially expressed in TET2KO cells. Fold-change of Runx1 isoforms in KG1 
TET2KO cells is shown, normalized to GAPDH fold-change measured by RTqPCR (mean ± s.e., n=8). 
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Figure A.3: Correlation of DNA methylation and RNA expression across replicates, treatment 

conditions, and cell lines 

Representative DNA methylation (A-C) and RNA expression (D-F) correlation between (A,D) technical 
replicates, (B,E) TET2WT and TET2KO, and (C,F) different untreated cell lines.  
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Figure A.4: TET2

KO
 myeloblasts are more stem-like than their TET2

WT
 counterparts 

(A) Thp1 TET2KO cell lines produce a lower percentage of colonies associated with specialized granulocytic 
cells (CFUG) compared to TET2WT cells (mean ± s.e., n=3) in methylcellulose colony forming assays.  (B) 
DNA methylation age as measured by the Horvath calculator for KG1 and Thp1 cells for TET2WT (gray) 
and TET2KO (red) (mean ± s.e., n=3). (C) Low-dimensional representation of DNA methylation profiles 
after using LDA to find the space that best separates HSCs, CD34+38-, and CD34- cells in a reference dataset 
(Jung et al., 2015). Each point is one sample, and the color corresponds to the cell type of the sample. The 
two LD axes are readily interpretable: LD1 separates normal hematopoietic cells from leukemic and 
increasing LD2 moves up the known hematopoietic hierarchies. KG1 and Thp1 TET2KO cells have greater 
LD2 values than their corresponding TET2WT counterparts. 
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Figure A.5: Unstained cell populations used to define CD38

lo
 and CD38

hi
 cell states 

Shown are representative distributions of raw CD34 (left panel) and CD38 (right panel) fluorescence for 
both stained and unstained KG1 cells. To define “lo” and “hi” states, the fluorescence of unstained WT 
cells were measured; “lo” or “hi”: cell with intensities below or above (resp.) 99.5% (vertical line) of the 
distribution.  
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Figure A.6: Expression of stem-like or differentiated genes correlate with CD38 expression 

(A) KG1 TET2WT and TET2KO cells were fractionated by CD38 expression by FACS (<15th percentile, 15th-
85th percentile, >85th percentile) prior to RNA extraction and quantification by RTqPCR. Log2fold-change 
expression compared to GAPDH was calculated for each gene and plotted as a function of the mean CD38 
expression (fluorescence) of each sorted population (as measured by flow cytometry). (B) Shown are the 
Log2fold-change RNA expression of GAPDH (reference gene control) and CD38 as a function of mean 
CD38 fluorescence. CD38 RNA expression increases with increased CD38 surface marker expression, 
while GAPDH levels remain constant. (C) Shown are the Log2fold-change RNA expression of myeloid 
differentiation markers ITGAM and CORO1A, and progenitor markers TAL1 and HOXA5 compared to 
GAPDH. 
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Figure A.7: Cells with high CD38 expression have a lower growth rate 

(A) KG1 TET2WT and TET2KO cells were partitioned by CD38 expression (<5th percentile, <25th percentile, 
>75th percentile, >95th percentile), and monitored for 9 days. (B) At each timepoint, cells were resuspended 
in the same volume of buffer and assessed by flow cytometry at a constant flow rate. Thus, the number of 
living cells per unit volume observed during flow can be used as a proxy for living cell density. The lowest 
CD38-expressing populations (far left) appear to have the highest growth rate. The highest CD38-
expressing subpopulations (far right) have the lowest growth rate, resulting in a flat trend. 
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Figure A.8: TET2 status and drug treatment alter the dynamics of transitions between CD38-defined 

cell states 

(A-C) Results of sorting CD38 based on single threshold. (A) Schematic showing how KG1 and KG1 
TET2KO cells (gray) were sorted based on CD38 expression (light blue: CD38 “low”, dark blue: CD38 
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“high”; solid vertical line: flow cytometry sort gates; dotted vertical line: the threshold was used to call 
cells as CD38 “lo” or “hi”; see Figure A.5). (B) Shown are the distributions of CD38 expression measured 
by flow cytometry over the course of 6 days in 0µM or 1µM AraC, colored by the original sorted population 
(n=3). (C) The percent of cells above the quantification threshold (vertical dashed line in A) are shown for 
all sorted populations over time (mean ±  s.e.). (D-F) Results of sorting CD38 from extremes of 
distributions. (D) the “tails” (bottom/top 5%) of the CD38 distributions of KG1 TET2WT and TET2KO cells 
were isolated by FACS, and their CD38 expression was monitored for 9 days (light blue: low, dark blue: 
high; solid vertical line: flow cytometry sort gates; dotted vertical line: the same threshold from (A) used 
to call cells as CD38 “lo” or “hi”). (E) Shown are the CD38 densities of the sorted populations from (D) 
over the course of 9 days, colored by the original sorted population (n=2). (F) The percent of living cells 
above the quantification threshold (vertical dashed line in D) relaxes to a steady-state over time. The highest 
5% of CD38-expressing KG1 TET2WT cells (theoretically the most differentiated cells) still appear to return 
to steady state over time, but the number of living cells in these samples is dramatically lower than the rest 
(see Figure A.7). (G) Fold-change survival of KG-1 TET2KO cells (red) relative to WT (gray) in varying 
concentrations of Doxorubicin at 72 hrs.  
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Figure A.9: Sorted KG1 TET2

WT
 and TET2

KO
 cells return to steady-state 

(A) KG1 TET2WT (gray) and TET2KO (red) cell populations (top row) were sorted based on CD38 
expression (light blue: CD38 “lo”, dark blue: CD38 “hi”; solid vertical line: flow cytometry sort gates; 
dotted vertical line: the threshold used to call cells as CD38 “lo” or “hi”; see Figure A.5), and their CD38 
surface marker expression was monitored for 12 days (n=2). Shown are the distributions of CD38 
expression before and after cell sorting. (B) The percent of living cells above the threshold in (A) is shown. 
The expected steady-state (horizontal dashed line) for each cell line is the percent of living cells above the 
threshold in (A) in unsorted populations on day 0. 
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Figure A.10: Models converged to a small range of parameter values 

(A) Model parameters were fit 1000 times for each condition with random initialization values. The 
distribution of prediction errors for fit model parameter values (black curve) are show as well as for random 
unfit parameter values (gray curve) for comparison. Solutions that had not converged were largely to the 
right of the threshold shown (vertical dotted line: 0.005-quantile for each random “null” distribution). (B) 
The distribution of parameter values for )!" , )"! , WU5! = (! − '!  and WU5" = (" − '"  are shown for 
solutions with error below the thresholds from (A). Most fit parameters have a single main value. Red 
triangles: error and parameter values shown in Figure 4.  
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Figure A.11: Parameter values across experiments and drug conditions 

(A) Shown are the median fit parameter values (see Methods) for the switching rates )"! and )!" out of 
drug for the 3 experiments shown in Figure A.8 (left), Figure A.8 (right), and Figure A.9. Even when sorting 
the “tails” (bottom/top 5%) of the CD38 distributions (as in Figure A.8), TET2KO populations have a higher 
switching rate )"! from $ to # than their WT counterparts. (B) Shown are the median Log2flux (where flux 
is defined as the ratio )"! )!"X ) and median (! − '! and (" − '" values for cells treated with 0, 1, or 4µM 
AraC. While different conditions have different parameter values, Inequality 1 holds true ((! − '! > (" −
'") and TET2KO populations have a higher $ to # switching rate than TET2WT (YU52)* '"#

'#"
> YU52+, '"#

'#"
). 
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Figure A.12: Modulating state transitions and chemosensitivity with a panel of effectors 

(A) KG1 and KG1 TET2KO CD38hi cells were isolated and plated in triplicate. The dark gray density shows 
the CD38hi population reprofiled just after sorting. For 3 days, CD38hi samples were treated with effectors, 
in the presence or absence of 1µM AraC treatment (untreated condition not shown). Samples were then 
reprofiled with flow cytometry to assess how CD38 surface marker expression had changed relative to 
DMSO control (light gray density, n=3). (B) The signed Kolmogorov-Smirnov statistic was calculated to 
quantify differences in CD38 surface marker expression in effector treatment relative to DMSO control 
(pairwise comparisons for n=3 technical replicates per condition). (C) KG1 and KG1 TET2KO cells were 
treated with effectors, in the presence or absence of 1µM AraC treatment. After 3 days, viability was 
measured. Data shown is viability normalized to DMSO control in the untreated condition for each cell line 
(n=3 technical replicates per condition).  
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Figure A.13: Conditioned media from KG1 TET2

WT
 cells alters KG1 TET2

KO
 CD38 expression 

(A) Unsorted TET2WT and TET2KO cells grown in either TET2WT conditioned media or TET2KO conditioned 
media were assessed for CD38 surface marker expression over the course of 6 days (n=3 per timepoint). 
While TET2WT cells (left column) are not clearly affected by treatment with conditioned media from either 
cell line, TET2KO cells (right column) have higher overall CD38 expression when grown in TET2WT 
conditioned media. (B) TET2WT and TET2KO cells sorted into CD38lo or CD38hi (vertical dotted lines; see 
Figure A.5) were grown in either TET2WT conditioned media or TET2KO conditioned media and their CD38 
surface marker expression was monitored for 3 days (n=3 per timepoint). (C) Shown are the median 
Log2flux between the states L and H (where flux is defined as the ratio )"! )!"X ) for TET2WT and TET2KO 
cells grown in either TET2WT conditioned media or TET2KO conditioned media (data from (B)). TET2WT 
transition rates are not clearly affected by TET2KO conditioned media, but TET2KO transition rates show an 
increase in transition rate )!" from L to H (lower )"! )!"X ) in the presence of TET2WT conditioned media. 
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Table A.1: Tissue expression profiles strongly correlated with TET2 expression in LAML study 

Top Enrichr results from “ARCHS4 Tissues” for genes strongly correlated with TET2 expression (Pearson 
correlation > 0.45) in the LAML study. 
 

 
 
 
Table A.2: Tissue expression profiles strongly correlated with TET2 expression in OHSU study 

Top Enrichr results from “ARCHS4 Tissues” for genes strongly correlated with TET2 expression (Pearson 
correlation > 0.45) in the OHSU study. 
  

Term p-value Adj p-value Combined Score 
GRANULOCYTE 5.80E-35 6.27E-33 351.221812 
NEUTROPHIL 2.87E-26 1.55E-24 229.673308 
DENDRITIC CELL 4.19E-23 1.51E-21 189.887693 
PERIPHERAL BLOOD 1.37E-21 3.69E-20 171.757628 
ALVEOLAR MACROPHAGE 2.09E-19 4.52E-18 146.67615 
BLOOD DENDRITIC CELLS 6.88E-13 1.24E-11 80.1008484 
MACROPHAGE 3.58E-11 5.53E-10 64.8236466 
CORD BLOOD 1.28E-07 1.73E-06 36.6594651 
SPLEEN (BULK TISSUE) 6.91E-06 8.29E-05 24.8371736 
CD19+ B CELLS 9.91E-04 0.01070011 12.1748187 
PLASMACYTOID DENDRITIC CELL 0.00389624 0.03825395 9.15439163 

Term p-value Adj p-value Combined Score 
NEUTROPHIL 8.78E-22 9.49E-20 269.662309 
GRANULOCYTE 1.18E-20 6.39E-19 248.485518 
PERIPHERAL BLOOD 1.36E-13 4.90E-12 130.08582 
DENDRITIC CELL 5.28E-11 1.42E-09 93.5226046 
MACROPHAGE 5.84E-08 1.26E-06 56.0686849 
ALVEOLAR MACROPHAGE 2.84E-07 5.12E-06 48.5367869 
BLOOD DENDRITIC CELLS 1.29E-06 1.99E-05 41.6825623 
CORD BLOOD 1.29E-06 1.74E-05 41.6825623 
SPLEEN (BULK TISSUE) 0.00241362 0.02896349 13.2313735 



 87 

Table A.3: Differentially regulated transcription factors from ChEA after TET2
KO

 

Top 15 Enrichr results from “ChEA 2016” for significantly differentially expressed genes in TET2KO AML 
cells compared to TET2WT. 

 

 
Table A.4: Differentially regulated transcription factors from ENCODE after TET2

KO
 

Top 15 Enrichr results from “ENCODE and ChEA Consensus TFs from ChIP-X” for significantly 
differentially expressed genes in TET2KO AML cells compared to TET2WT. 
  

Term p-value Adj p-value Z-score Combined Score 
RUNX1 2.33E-07 7.76E-06 -2.8484862 15.0816396 
RARG 7.53E-05 0.00048047 -2.8505104 11.9960627 
CEBPD 1.40E-09 3.82E-07 -1.5878123 9.32880721 
RELA 1.81E-07 7.24E-06 -1.7199597 8.52545964 
EBF1 1.91E-09 3.82E-07 -1.4942173 7.74789534 
IRF8 0.00262177 0.00740246 -3.0702163 7.73525825 
PPAR 1.31E-06 2.54E-05 -1.905316 7.71544316 
PCGF2 0.00032077 0.00142563 -2.4373959 7.44619838 
NFE2 9.37E-06 0.00010583 -2.0042818 7.2755795 
JARID2 4.89E-06 6.24E-05 -1.9530783 7.05606928 
SUZ12 2.82E-05 0.00023897 -2.1004067 6.99782768 
CMYC 1.25E-08 8.31E-07 -1.5155208 6.70147917 
FOXM1 1.25E-08 8.31E-07 -1.5138172 6.69394594 
JUN 1.25E-08 8.31E-07 -1.5119283 6.68559372 

Term p-value Adj p-value Z-score Combined Score 
RUNX1_CHEA 0.00159847 0.14546062 -1.6685561 10.1333255 
GATA2_CHEA 0.01427494 0.43300653 -1.6725741 6.80445586 
NFE2L2_CHEA 0.01198961 0.43300653 -1.6026109 6.72621148 
IRF8_CHEA 0.02326501 0.47204626 -1.6126027 6.01136743 
RELA_ENCODE 0.03356363 0.47204626 -1.6166295 5.30642849 
TCF3_CHEA 0.02684883 0.47204626 -1.5232717 5.21913797 
ESR1_CHEA 0.04234801 0.48170864 -1.5304939 4.77195633 
FOXP2_ENCODE 0.05990861 0.54516831 -1.5211788 4.20867812 
SUZ12_CHEA 0.03631125 0.47204626 -1.2969375 3.9741095 
VDR_CHEA 0.05651921 0.54516831 -1.2799391 3.65467032 
SMAD4_CHEA 0.07034123 0.57194911 -1.3844585 3.52724206 
NANOG_CHEA 0.07542186 0.57194911 -1.3055066 3.2360662 
TRIM28_CHEA 0.08775681 0.61429767 -1.2749751 3.03687525 
NELFE_ENCODE 0.11161095 0.7254712 -1.3245068 2.83504397 
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Table A.5: Effectors used to halt the CD38
hi

 to CD38
lo
 transition 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

Name Category Max concentration 
DMSO vehicle -- 
2-deoxy-D-glucose glycolysis 2 µM 
CCCP oxphos 50 nM 
Disulfiram redox 1 nM 
Etacrynic Acid redox 100 nM 
IFNg signaling 50 ng/ml 
Torin AA 1 nM 
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Appendix B 

Appendix B: Molecular effects of TET2 loss in AML cells 
 
  



 90 

Results and Discussion 

Growth advantage of TET2KO in KG1 cells 

To understand the consequences of a TET2 mutation, we chose to compare isogenic human 

myeloblast cell lines expressing or not expressing a wildtype TET2. Isogenic KG1 cell lines were created 

by knocking out TET2 with Cas9-directed editing (see Chapter 2 Methods).  

One week after nucleofection of the plasmid expressing Cas9 and our TET2-targeting guide (see 

Chapter 2 Methods), the region around the putative cut site was amplified via PCR and measured by Sanger 

sequencing. The Sanger traces were noisy beginning near the cut site (Figure A.1), implying a mixed 

population of edited mutants. The webtool TIDE was used to deconvolute the Sanger traces and confirmed 

a high likelihood of a mixed population including mutants and potentially unedited cells (denoted by bar at 

0; Brinkman et al., 2014; Figure B.1, top). After three weeks of continuous passaging, the region near the 

cut site was again amplified and Sanger sequenced. TIDE deconvolution revealed that frameshift mutants 

(1bp deletion, 1bp insertion, or 2bp insertion; Figure B.1, bottom) that resulted in truncation upstream of 

catalytic domain (Figure A.1) comprised the remaining cell population, implying they outcompeted the rest 

of the cells seen on day 7. We did, in fact, notice an increased overall growth rate of KG1 TET2KO cells 

compared to TET2WT, combined with an increased ability to continue growing at higher densities (Figure 

B.2). However, neither KG1 nor Thp1 showed a notable change in cell cycle latency (Figure B.3). While it 

is likely the growth rate measurement with CellTiter-Glo was capturing faster growth in addition to higher 

respiration in KG1 TET2KO cells (see Chapter 3), supplemental experiments counting cells with the TC20 

automatic cell counter (Bio-Rad) and counting nuclei of Hoechst-stained cells confirmed a higher growth 

rate of KG1 TET2KO cells (data not shown). 

Differential methylation patterns associated with TET2 loss 

Previous work has shown that TET2 mutation leads to deficiencies in DNA demethylation 

(Yamazaki et al., 2015; Asmar et al., 2013). Targeted DNA methylation profiling was used to confirm that 

this held true in our isogenic cell lines. As mentioned in Chapter 2, TET2KO cell lines display a significantly 

higher degree of overall hypermethylation compared to their WT counterparts. Mean methylation across all 
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measured CpGs was not significantly altered in CpG islands in TET2KO cells, consistent with literature 

(Rasmussen et al., 2015; Figure B.4, left). However, of the differentially methylated positions in KG1 

TET2KO cells, CpG islands were significantly hypermethylated compared to WT, and “shelf” and “open 

sea” CpGs were modestly, but significantly, hypomethylated (p-values 1e-7, 0.02, and 0.008 respectively; 

Figure B.4, right). 

As mentioned in Chapter 2 and Appendix A (Figure A.4), we developed a score to assess epigenetic 

similarity to hematopoietic stem cells (HSCs) and LSCs (see Chapter 2 Methods) using a publicly available 

dataset of DNA methylation profiles from normal hematopoietic progenitors and leukemic cells (GEO 

GSE63409; Jung et al., 2015). I also wrote a similar method to assess transcriptomic similarity to HSCs 

using publicly available RNAseq data from sorted hematopoietic subpopulations (GEO GSE74246, 

Buenrostro et al., 2018). After normalizing the public dataset and our RNAseq data with ComBat in sva 

(version 3.10), I used the relative expression of genes and the distances between samples in transcriptome 

space as a proxy for sample similarity. Here, I show the expression of CD38 and ARHGEF17 by cell 

subpopulation and note that the TET2 mutants for both KG1 and Thp1 have more similar expression 

profiles to HSCs compared to their WT counterparts (Figure B.5, left). I also show the pairwise chord 

distance '-. = Z∑ M?8/- − ?8/.O
#

/  of all samples to HSC samples, where the KG1 TET2KO cells appear 

to be more similar to HSCs than TET2WT (Figure B.5, right). Overall, these data further support the idea 

that TET2KO populations acquire more stem-like signatures in KG1 and Thp1 cells. 

TET2
KO

 may affect changes via transcription factor activity 

In Chapter 2, we briefly discuss how analyses of both differentially methylated regions and gene 

set enrichment of the isogenic cell lines pointed to alteration of Runx1 (Methods), a master hematopoietic 

regulator known to affect fate decisions in the myeloid hierarchy. Specifically, the most significant 

differentially methylated region in Tet2KO cells was the proximal promoter of Runx1 (minimum adjusted 

p-value 1.22e-27, Figure A.2), and Runx1 targets were highly enriched for differentially expressed genes 

in Tet2KO cells (p-value 7.76e-6, Figure A.2, Tables A.3-A.4). Despite the Runx1 promoter being 
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significantly differentially methylated and expression of its target genes significantly changed, the RNA 

expression of Runx1 itself was not apparently different in either cell line (t-test, BH adjusted p-values 0.31 

and 0.46). We therefore looked to Runx1 isoforms and whether their expression was altered in Tet2KO cell 

lines. Runx1 has proximal and distal promoter regions which initiate the expression of the isoforms Runx1a 

and Runx1c, respectively. Based on RT-qPCR, expression of Runx1a—but not Runx1c—in Tet2KO cells is 

strongly increased relative to the parental cell lines (fold-change 2.33, Figure A.2). Prior work has 

demonstrated that Runx1a is overexpressed in AML and other myeloid disorders (Liu et al., 2009; Sakurai 

et al., 2017), and that Runx1a expression expands hematopoietic stem cells (Tsuzuki et al., 2012; Ran et 

al., 2013). Thus, these data suggest that the increase in stem-like gene expression and colony-forming unit 

phenotypes in TET2KO cells is, in part, a result of differential methylation of a Runx1 promoter and 

differential expression of its isoform Runx1a. Future work studying the effect of Runx1 isoform 

overexpression on gene expression, drug survival, and self-renewal is necessary to test this claim. 
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Figure B.1: Frameshift mutants dominate KG1 cells after TET2 editing 

Deconvolution of Sanger sequencing traces with the webtool TIDE enabled estimation of mutant 
subpopulation prevalence within a bulk Cas9-edited KG1 population. Here, the x-axis represents 
subpopulations with deletions (-1bp, -2bp, etc), insertions (+1bp, +2bp, etc), or no change (0) detected in 
the Sanger sequencing trace.  KG1 cells after Cas9-directed editing were grown for 1 week (top) and 4 
weeks (bottom) prior to PCR amplification of the region near the edited locus and Sanger sequencing.  
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Figure B.2: KG1 TET2

KO
 cells grow faster than KG1 TET2

WT
 

KG1 cells were seeded at 500, 2000, or 8000 cells per well in 384-well plates, and cell viability was 
measured using RealTime-Glo over time. All luminescence values were normalized to the 500-cell wells 
at t=0. The x-axis represents time (hours) after seeding, the y-axis represents the normalized luminescence 
(AU; mean ± s.e., n=3). 
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Figure B.3: Cell cycle latency is similar in TET2 mutants compared to WT 

KG1 and Thp1 cells (both TET2 WT and mutant) were fixed and permeabilized, stained with Ki-67 
antibody and propidium iodide, and assessed by flow cytometry for FITC and PI fluorescence (see 
Methods). Each point is a fixed cell, black boxes show the gates used for calling cells as G0, G1, S, or 
G2/M (orange labels), black text represents the percent of cells within the corresponding box. 
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Figure B.4: Methylation changes of annotated CpGs in KG1 TET2

KO
 cells 

(left) The beta value (methylation) of CpGs was plotted as a function of distance to its closest annotated 
CpG island (CpGi) start. Shown are loess smoothed means for KG1 TET2WT (gray) and TET2KO (red) cells 
for CpGs within 5000bp of a CpG island. (right) The mean beta value of differentially methylated CpGs by 
annotation shows that TET2KO (red) samples have significantly higher methylation in CpGi compared to 
TET2WT (gray). 
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Figure B.5: TET2 mutants have more similar transcriptome profiles to HSCs than TET2

WT
 

(A) KG1 and Thp1 TET2 mutant expression of CD38 and ARHGEF17 is more similar to HSCs than their 
WT counterparts. Here RNA expression is shown for each sample compared to a publicly available dataset 
from sorted hematopoietic subpopulations (GEO GSE74246, Buenrostro et al., 2018). (B) The overall 
transcriptomic profiles of KG1 TET2KO cells are closer to HSCs than KG1 TET2WT (y-axis: pairwise chord 
distance to HSC samples). 
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Methods 

Sanger sequencing and deconvolution 

Isogenic KG1 cell lines were created by knocking out TET2 with Cas9-directed editing (see 

Chapter 2 Methods). The region surrounding the cut site was amplified via PCR (TET2 exon 3 F: 5’- 

TGTTTTTCCTGTGCCTGACCAG-3’; TET2 exon 3 R: 5’- GCTTCTGTGATTTGAGAGTAAGAGCC-

3’) with Jumpstart Taq ReadyMix (Sigma-Aldrich) according to manufacturer’s protocol. Amplicons were 

purified using the DNA Clean & Concentrator-25 kit (Zymo Research) and sent for Sanger sequencing 

using the same forward primer. 

Sanger traces were deconvoluted using the TIDE: Tracking of Indels by DEcomposition webtool 

(Brinkman et al., 2014; https://tide.deskgen.com) using default parameters. 

Real-time cell viability assay 

Cell viability was read out with RealTime-Glo MT Cell Viability Assay (Promega). Plates were 

prepared with MT Cell Viability Substrate and NanoLuc Enzyme as described in the manufacturer’s 

protocol for “Continuous-Read Format: Reagent Addition at Cell Plating” in 384-well opaque white tissue 

culture plates (Corning). KG1 cells were then added at 500, 2000, or 8000 cells per well, and luminescence 

was read out with the Biotek H4 plate reader (BioTek, Winooski, VT) in the Center for Advanced 

Technology at UC San Francisco. Prior to each timepoint, plates were allowed to cool at RT for 

approximately 10 minutes. Luminescence values were normalized to the 500-cell wells at t=0 prior to 

visualization. 

Assaying cell cycle status 

KG1 and Thp1 cells were fixed and permeabilized according to a previously published protocol 

(Basic Protocol 1, Kim et al., 2015). Cells were stained with propidium iodide (Sigma-Alrich, #81845), Ki-

67 (8D5) (Cell Signaling Technology, #9449), and Goat anti-Mouse Alexa Fluor 488 (Thermo Fisher 

Scientific, #A21131). Doublets were called based on gates drawn for FSC-A and FSC-W. All flow 

cytometry was performed on the Aria IIu in the Center for Advanced Technologies at UC San Francisco. 
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Appendix C 

Appendix C: Supplemental Material for Chapter 3 
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Figure C.1: Panel of effectors for modulating chemosensitivity 

KG1 TET2WT and TET2KO cells were treated with a 2X dilution series of a panel of effectors (Table C.1) 
and either DMSO or 1µM AraC for 72h prior to cell viability measurement with CellTiter-Glo. Shown are 
dose-response curves (DCA, DNP, Fructose, MRT68921, and sulfasalazine not shown; mean ± s.e., n=3).  
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Table C.1: Panel of effectors used to modulate chemosensitivity 

 
Name Shorthand Category Max conc.  
Dimethyl sulfoxide DMSO vehicle -- 
2-deoxy-D-glucose 2DG glycolysis 2 µM 
2-hydroxyglutarate 2HG oncometabolite 38.41 nM 
All-trans retinoic acid ATRA retinoid 10 nM 
Bafilomycin -- autophagy 0.05 nM 
Bromopyruvate -- glycolysis 100 nM 
Buthionine sulfoximine BSO redox 100 nM 
CB-839  AA 10 nM 
Carbonyl cyanide m-chlorophenyl hydrazone CCCP oxphos 50 nM 
Chloroquine  autophagy 100 nM 
Dehydroascorbate DHA redox 2 µM 
Dichloroacetate DCA glycolysis 2 µM 
Disulfiram DS redox 1 nM 
Dinitrophenol DNP oxphos 200 nM 
Etacrynic Acid EA redox 100 nM 
Fructose  glycolysis 5.55 µM 
IU1  autophagy 15 nM 
Interferon gamma IFNg signaling 50 ng/mL 
Kynurenine  AA 100 nM 
Lopermaide  autophagy 10 nM 
Mannose  glycolysis 5.55 uM 
Mercaptosuccinate MS redox 100 nM 
Metformin  oxphos 1 µM 
Metyrapone  autophagy 100 nM 
MRT68921  autophagy 1 nM 
N-acetylcysteine NAC redox 5 µM 
Na-Lactate  glycolysis 2 µM 
Na-Pyruvate Na-Pyr glycolysis 2 µM 
Oxamate  glycolysis 1 µM 
PTIO  NO 100 nM 
Rotenone  oxphos 1 nM 
Sulfasalazine  redox/AA 100 nM 
Torin  AA 1 nM 
Trichostatin A TSA epigenetic 5 nM 
Valproic Acid  epigenetic 200 nM 
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