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Structured Representations and Connectionist Models

Jeffrey L. Elman
Department of Cognitive Science
University of California, San Diego

ABSTRACT

Recent descriptions of connectionist models
have argued that connectionist representa-
tions are unstructured, atomic, and bounded
(e.g., Fodor & Pylyshyn, 1988). This paper
describes results with recurrent networks and
distributed representations which contest
these claims. Simulation results are described
which demonstrate that connectionist net-
works are able to learn representations which
are richly structured and open-ended. These
representations make use both of the high
dimensional space described by hidden unit
patterns, as well as trajectories through this
space in time, and posses a rich structure
which reflects regularities in the input.
Specific proposals are advanced which address
the type/token distinction, the representation
of hierarchical categories in language, and the
representation of grammalical structure.

INTRODUCTION

It seems clear that to be viable, a model
of cognition should be able to represent infor-
mation in a way which captures the structure
of that information. Given the recent
interest in connectionist models, it is natural
to wonder whether such models can support
structured representations of the sort that
might be needed (for example) in the service
of language processing.

Fodor and Pylyshyn (1988) have in fact
recently argued that Classical theories, but
not connectionist theories, (1) are " committed
to ‘complex’ mental representations", and (2)
have representations that reflect combina-
torial structure, such that they enable
structure-sensitive mental processes (p. 13).
These are the principle differences. In addi-
tion, Fodor and Pylyshyn describe connection-
ist representations as (3) atomic, and there-
fore (given the limited resources available to
support them) (4) finite in number (pp. 22-24).
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These are strong claims. [Fodor and
Pylyshyn are quite right that any cognitive
theory worth its salt will support complex
mental representations, will reflect both the
combinatorics and componentiality of
thought, and will enable an open-ended
number of representations. What is not sclf-
evident is that these desiderata can only be
achieved by the so-called Classical theories,
or by connectionist models which are simply
implementational variants. In this paper, I
present results which suggest that connection-
ist representations can exhibit rich structure;
that the representations may be complex (i.e.,
not atomic) and capable of reflecting both
general patterns and ideosyncratic diflerences.
Furthermore, these representations may in
principle open-ended.

I begin with a brief description of the
network architecture employed. 1 will then
report results of two sets of simulations. The
first explores the development of lexical
categories; the second demonstrates the abil-
ity to encode syntactic information, including
agreement and embedding.

ARCHITECTURE

The work which follows utilizes an
architecture inspired by a model studied by
Jordan (1986). Jordan demonstrated the util-
ity of allowing recurrent connections from
output units. In the form of the network I
have been studying, shown in Figure 1, in
addition to the usual input units, output
units, and hidden units, there are a set of
context units which hold a copy of the hidden
unit activations (on a one-to-one basis) from
the prior cycle. These context units then feed
back into the hidden units (on a [ully distri-
buted basis) on the next cycle. The hidden
units have the task of mapping the input to
the output, and because the input now
includes their own prior states, they must
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Figure 1.
Network with recurrent connections from hidden
units to context units.

develop representations which serve as
memory as well. Note that this approach to
memory relies on distributed rather than
localist representations. Memory is not asso-
ciated with individual nodes but rather with
the state vector on the context units. Furth-
ermore, this notion of memory is highly task
specific.

This architecture, which I will call a
Simple Recurrent Network (SRN) has been stu-
died in Elman (1988, 1989); Hare, Corina, &
Cottrell (1988); and Servan-Schreiber, Cleere-
mans, & McClelland (1988), and will be used
for the two simulations I report here. It is
particularly relevent in the domain of
language, since it allows for the processing of
serial inputs. Thus, language can be pro-
cessed naturally on an element-by-element
basis.

DISCOVERING LEXICAL CATEGORIES

One area of language which exhibits
rich structure is lexical categorization. Lexi-
cal categorization is manifested in a number
of ways; in English, one of these manifesta-
tions is word order. Not all classes of words
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may appear in any position. Furthermore,
certain classes of words, e.g, transitive verbs,
tend to co-occur with other words, e.g.,
nouns as direct objects (although as will be
relevant in the next simulation, the co-
occurrence facts may be complex).

The goal of the first simulation was to
see if a network could learn the lexical
category structure which is implicit in a
language corpus. The overt form of the lexi-

cal items was arbitrary; however, the
behavior of the lexical items — defined as
their co-occurrence restrictions — reflected

their membership in implicit classes and sub-
classes. The question was whether the net-
work could induce these classes.

Stimull, Task, and Network

A lexicon of 29 nouns and verbs was
chosen. Words were represented as 31-bit
binary vectors (two extra bits were reserved
for another purpose); each word was ran-
domly assigned a unique vector in which only
one bit was turned on. A sentence-generating
program was then used to create a corpus of
10,000 2- and 3-word sentences. The sen-
tences reflected certain properties of the
words; for example, only animate nouns
occurred as the subject of the verb eat.
Finally, the words in successive sentences
were concatenated, so that a stream of 27,354
vectors was created. This was the input set.

The task was simply for the network to
take successive words from the input stream
and to predict the subsequent word (by pro-
ducing it on the output layer). After each
word was input, the output was compared
with the actual next word, and the backpro-
pagation of error algorithm (Rumelhart, Hin-
ton, & Williams, 1986) was used to adjust
weights. Words were presented in order, with
no breaks between sentences. The network
was trained on 6 passes through the corpus.

Results

Because  the sequence is  non-
deterministic, short of memorizing the
sequence, the network cannot succeed in

exact predictions. Nonetheless, the network
does learn to approximate the expected fre-
quency of occurrence of successor words. The
rms error, using the empirically derived
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probability of occurrence of successors, was
0.053; the cosine of the angle between output
vector and likelihood vectors (which normal-
izes for length diflerences) was 0.916, indicat-
ing a close match.

Discusslon

I would like to focus on how the net-
work accomplishes the task. One way to do
this is to see what sorts of internal represen-
tations the network develops in the process of
trying to carry out the prediction task.
These representations are captured by the
pattern of hidden unit activations which are
evoked in response to each word in its con-
text. These patterns were saved during a
testing phase, and then subjected to hierarch-
ical clustering analysis. Figure 2 shows the
tree constructed from the hidden unit pat-
terns for the 30 lexical items, where each item
is the average of for a word across all the
contexts in which it occurrs in the testing
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Figure 2.
Hlerarchical cluster analysls of the average hidden
unit activation patterns for each of the 29 unique
words In the word-prediction simulation.
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data.

The network has discovered that there
are several major categories of words. One
large category corresponds to verbs; another
category corresponds to nouns. The verb
category is broken down into groups which
take animate subjects; which are intransitive
or take optional objects, and which require
direct objects. The noun category breaks
down into major groups for tnantmates and
antmates; the animates are divided into large
animals and small animals, and humans.
Inanimates are divided into breakables, ed:-
bles, and miscellaneous.

This category structure reflects facts
about the possible sequential ordering of the
inputs. The network is not able to predict
the precise order of words, but it recognizes
that (in this corpus) there is a class of inputs
(viz., verbs) which typically follow other
inputs (viz., nouns). This knowledge of class
behavior is quite detailed; from the fact that
there is a class of items which always pre-
cedes chase, break, smash, it infers a
category we might call aggressors.

Several points should be emphasized.
First, the category structure is hierarchical.
The hierarchicality is achieved through the
organization of the representational space
described by hidden unit patterns, with
higher-level categories corresponding to larger
and more general regions of space. Second,
the categories are not discrete. Category
boundaries are smooth, and category
membership may be marginal or ambiguous
(although it may also be clear and unambigu-
ous). Finally, the content of the categories is
not known to the network. The nectwork has
no information available which would
"ground” the structural information in the
real world. In this respect, the simulation has
much less information to work with than is
available to real language learners.

Types and tokens. The tree shown in
Figure 2 was constructed of activation pat-
terns averaged across context. When the
context-sensitive hidden unit patterns are
clustered, it is found that the large-scale
structure of the tree is identical to that
shown in Figure 2. However, each terminal
branch now continues with further arboriza-
tion for all occurrences of the word (no
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instance of any lexical item appears in the
branch of another.

This is an important finding. It verifies
that the representation of each lexical item,
wherever 1t occurs, reflects the constraints to
which the item is subject as a lexical type.
The representations clearly mark typehood.

But the patterns also individuate the
different tokens of types. No two tokens are
precisely identical. They are different

because they have occurred in different con-
texts, and the representations are highly
contezt-sensitive.

Even more interesting is that there is a
fine sub-structure to the various tokens of a
type. For instance, tokens of boy which
occur in subject position tend to cluster
together, and apart from tokens of boy in
object position. The same pattern occurs
among the representations of tokens of other
nouns. This detailed sub-grouping makes it
possible for the network to distinguish tokens
of a lype, as well as different types. Usefully,
the tokens are themselves organized in a
manner which reflects systematic facts about
the context in which they occur.

REPRESENTATION OF SYNTACTIC STRUCTURE

In the previous simulation there was lit-
tle interesting grammatical structure. Sen-
tences were short and simple and most of the
patterning was explained at the level of pro-
perties of individual lexical items. In the next
simulation we develop representations which
reflect more complex syntactic structure. A
phrase structure grammar, shown in Table 1,
was used to generate training corpora. Each
word was represented by a localist 26-bit vec-
tor in which each bit stood for a different
word. Training proceded incrementally. A
network similar to that shown in Figure 1
was trained on the prediction task. The train-
ing data consisted of an initial set of 10,000
sentence corpus of simple sentences; the per-
centage of complex sentences was gradually
altered over the course of training from 0%
to 75%. Mean sentence length of the final
training set was 5.3 words (range: 3 to 13
words). This simulation superficially resem-
bles the previous one, except that the sen-
tences were more complex and reflected a
variety of syntactic constraints. Specifically,
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S ->NP VP "."
NP -> PropN |
VP >V (NP)
RC -> who NP VP ! who VP (NP)
N -> boy| girl cat| dog)|

boys| girls cats) dogs
V -> hit| feed) |\ hear| walk| live)

see |
hits| feeds| sees| hears| walks| lives

N! NRC

Additional restrictions:
e« number agreement between N and V within
clause, and (where appropriate) between
head N and subordinate V
e verb arguments:
hit, feed —> require a DO
see, hear —> optionally take DO
walk, live —> preclude a DO
(observed also for head/verb relations
In relative clauses)

Table 1

it was necessary that the network to learn
the following:

e Agreement. Subject nouns agree in number
with their verbs.

e Verb arguments. One class of verbs
requires a direct object; a second class option-
ally permits a direct object; and a third class
never occurs with a direct object.

e Relative clauses. The presence of relative
clauses requires that the network maintain
agreement and verb argument relations
within the appropriate clause, and despite the
presence of intervening clausal material. In
dogs who boy feeds see cat, agreement
occurs between N1 and V2, and between N2
and V1. Similarly, because this sentence
involves an object-headed relative clause, the
network is required to learn that although
the verb feeds normally is followed by a
direct object, that position has already been
filled by the prior word dogs.

e Sentence completion. The network is
required to develop a sense of what are candi-
dates for complete grammatical sentenccs, by
predicting when a sentence ending (".") may
occur.

At the conclusion of training, network
performance was measured by comparing the
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outputs with the empirically derived condi-
tional probability of occurance for each possi-
ble word; the mean cosine of the angle
between the vectors was 0.92 (SD: 0.19).
Network predictions in various contexts are
illustrated in Figure 3. As can be seen, the
network succeeds in predicting the class of
words which appropriately follows in each
context. This is true even in complex sen-
tences where relative clauses render useless
any generalization based on the linear order
of words in simple sentences.

Again, we may ask how the network has
achieved this performance. For these pur-
poses, it is important to be able to look at
the time-varying states of the network as it
processes various sentence types. This infor-
mation is not easily revealed in hierarchical
clustering, so the following procedure involv-

ing principal component analysis was
developed.
The final training set was passed

through the network a final time, and hidden
unit patterns were saved. The covariance
matrix of these vectors was calculated; the
eigenvectors of this matrix were then used as
the basis for describing hidden unit vectors.
This basis tends to provide a somewhat more
interpretable (and localist) view of the hidden
units’ distributed representations. Further-
more, the dimension are ordered (using the
eigenvalues) by decreasing importance in
accounting for variability. Thus, we can
chose to look at only a few of the dimensions
(the principal components, or PC’s) and plot
the movement through this reduced space as
the network processes sentences of interest.

Figure 4 displays state trajectories
which illustrate the representation of verb-
argument structure. Trajectectories through
PC 1x3 space are shown for the three sen-
tence fragments boy hits .... (hits requires a
direct object), boy sees ..., (sees optionally
takes a direct object) and boy walks ...
(walks never occurs with a direct object).
The initial state after processing the first
word is the same for all three sentences.
However, there is a systematic displacement
in PC 1x3 space which corresponds to the
expectation of a direct object. This pattern
holds true over a wide variety of contexts and
more complex syntactic structures. Figure 5

21

shows the manner in which embedding is
represented. There is a basic trajectory in
PC 1x11 space which is associated with sim-
ple sentences; this trajectory is replicated and
shifted in space to indicate subordinate
clauses.

CONCLUSIONS

Several things may be said about the
results of these simulations.

First, it is quite apparent that connec-
tionist representations may be quite rich.
They need not be atomic, but may instead
possess structure which reflects the systematic
patterns which are immanent in the primary
data. The representational structure is
embodied in the state of the network;
different states are associated with different
syntactic structures.

Second, the representations in these
simulations are highly context-sensitive. This
sensitivity co-exists comflortably with the
ability to capture systematic patterns which
are more generally true. Indeed, the same
mechanism is responsible for both aspects of
representation. As a consequence, connec-
tionist representations bind the semantics of
reference with the syntax of representation.
Classical theories have long grappled -- with
less than satisfactory results, in the view of
many -- with the tension that is produced
when one insists that syntactic and semantic
representations be kept distinct and that
there be no direct interaction between them.
It is a natural consequence of connectionist
representations that there be a common
language which simultaneously supports syn-
tax and semantics. This suggests the distine-
tions between the syntax and semantics may
be quantitative in nature and do not stem
from any deep distinctions.

Third, we have seen how the distributed
representations which are developed at the
hidden unit level make use of state space and
state dynamics. The representational space
is organized to reflect the structure that is
implicit in the primary data. The [urther
dimension of time, captured in the notion of
recurring trajectories through space, adds to
the representational power and permits state-
ments to be made about syntagmatic rela-
tions. Furthermore, we have found that
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although the representations are highly distri-
buted, this does not mean that they are
unanalyzable. It is possibly to insightfully
characterize the organization of the represen-
tational space, and to discover regularities in
patterns of temporal movement through that
space.

Fourth, the representational system has
itsell been inferred from the data. The archi-
tecture ultimately limits the representational
power of a network, of course, but it does not
spectfy the representational form. We do not
begin with notions of lexical categories or
grammatical patterns. These concepts are
present in the data and are learned by the
network. These results of course do not deny
the importance of evolutionary mechanisms in
constraining the mechanisms which support
language processing. The findings here simply
suggest that a simple but powerful learning
algorithm such as backpropagation is capable
of extracting rather more information from
raw input than one might have supposed.

Fifth, the representational system is
relatively open-ended. Just as it was not
necessary to stipulate categories or structures
prior to learning, it was not necessary to
place an upper limits on the number of
categories or depth of structure.

We have seen how these characteristics
can lead to solutions of the (ype/token dis-
tinction, to the discovery and representation
of lerical categories, and to the representation
of certain aspects of syntactic structure.
These are important problems in language
theory, and the approach suggested here is
highly encouraging. However, language
presents many problems of a highly complex
nature, and the simple successes obtained
here should not cause us to forget just how
difficult those problems can be.

There are also serious limitations to the
work here which must be pointed out. The
most basic has to do with the nature of the
task. The prediction task has been useful in
these simulations. The appeal of this task is
that it makes minimal assumptions about
prior knowledge on the part of the learner (or
network). But while prediction or anticipa-
tion may be a plausible activity during
language comprehension, it can hardly be the
primary basis for learning language.
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It is not clear what an appropriate task
i1s, but there have been recent suggestions
which go in the right direction. St. John and
McClelland (1988) have described a system in
which sentence inputs are used to construct
an interpretation of events in the world. This
is a far more plausible view of what is
involved in processing language than sug-
gested by the prediction task. One question
that remains unanswered in the St. John and
McClelland model is where the primitive
notions such as patient and agent come from
(these figure importantly as built-in con-
structs in their network), and how to extend
the task to complex sentences. Strikingly,
these are just the sorts of questions which are
addressed by the present approach. It is
appealing to think that the two approaches
might be combined.

In conclusion, the simulations described
here explore a new approach to the represen-
tation of language. While there are many
deep and important questions to be answered,
this approach provides a glimpse of the sort
of representational power which a connection-
ist theory of language could have.
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