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Abstract Improving muscle function has great potential to improve the quality of life. To identify 
novel regulators of skeletal muscle metabolism and function, we performed a proteomic analysis 
of gastrocnemius muscle from 73 genetically distinct inbred mouse strains, and integrated the data 
with previously acquired genomics and >300 molecular/phenotypic traits via quantitative trait loci 
mapping and correlation network analysis. These data identified thousands of associations between 
protein abundance and phenotypes and can be accessed online (https://muscle.coffeeprot.com/) 
to identify regulators of muscle function. We used this resource to prioritize targets for a functional 
genomic screen in human bioengineered skeletal muscle. This identified several negative regula-
tors of muscle function including UFC1, an E2 ligase for protein UFMylation. We show UFMylation 
is up-regulated in a mouse model of amyotrophic lateral sclerosis, a disease that involves muscle 
atrophy. Furthermore, in vivo knockdown of UFMylation increased contraction force, implicating its 
role as a negative regulator of skeletal muscle function.
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Introduction
Building and maintaining healthy skeletal muscles is crucial for all stages of life. Skeletal muscle makes 
up 30–40% of an adult human’s body mass and is vital not just for breathing and movement, but also 
for metabolism and longevity. The maintenance of muscle function is one of the best predictors for 
overall health, with sarcopenia being the major contributor of age-associated frailty (McGregor et al., 
2014). Identifying factors that regulate skeletal muscle function has great potential to improve the 
quality of life for humans and animals.

Systems genetics is a population-based approach that links genetic variation to complex traits 
(Baliga et al., 2017). These forward genetics approaches integrate genomics and other multi-omic 
data to phenotypic traits using various modelling approaches including genetic mapping and correla-
tion analysis. Advances in high-throughput proteomic techniques have enabled the analysis of genet-
ically diverse populations, and integration of these data with systems genetics has emerged as a 
powerful approach to identify novel associations between protein abundance and complex pheno-
types (for a review, see Molendijk and Parker, 2021a). Recent large-scale plasma proteomic studies 
in human populations have begun to unravel complex genetic variations and their contribution to 
proteome diversity and disease-relevant phenotypes (Suhre et al., 2017; Benson et al., 2018; Sun 
et al., 2018; Emilsson et al., 2018). However, unlike studies in humans, the use of genetic reference 
panels (GRPs) enables accurate control of the environment, breeding patterns, and access to a range 
of tissues for molecular analysis. Systems genetic analyses incorporating transcriptomics, lipidomics, 
and/or metabolomics in GRPs have led to the discovery of a range of novel regulators of complex 
phenotypes ranging from insulin resistance (Parks et al., 2015), insulin secretion (Keller et al., 2019), 
atherosclerosis (Bennett et al., 2015), lipid metabolism (Jha et al., 2018a; Jha et al., 2018b; Linke 
et al., 2020), cardiac hypertrophy (Rau et al., 2015), cardiac diastolic dysfunction (Cao et al., 2022), 
and many more. The inclusion of proteomics into systems genetic analysis provides information 
on an important biological layer and has been performed in a range of GRPs including yeast (Foss 
et al., 2007; Picotti et al., 2013; Parts et al., 2014), worms (Singh et al., 2016), fruit fly (Okada 
et al., 2016), plants such as maize (Hu et al., 2017; Jiang et al., 2019), and several livestock such as 
cattle (Boudon et al., 2020) and pig (Bovo et al., 2018). The use of proteomics to analyse the liver 
proteome of mouse GRPs has also gained popularity and been used to analyse the BxD panel (Wu 
et al., 2014; Williams et al., 2016), the Hybrid Mouse Diversity Panel (HMDP) (Ghazalpour et al., 
2011; Parker et al., 2019), and cohorts of the Collaborative Cross/Diversity Outbred (CC/DO) (Chick 
et al., 2016). More recently, several studies have performed proteomic analysis of additional tissues 
from cohorts of the BXD (Williams et al., 2018) and CC/DO (Xiao et al., 2022) and include further 
phenotypic associations.

Functional screening of genetic perturbations with high-throughput phenotypic measurements 
have identified novel regulators of muscle biology and disease. These include forward genetic muta-
genesis screens to identify regulators of skeletal muscle development and locomotion in zebrafish 
(Birely et al., 2005; Horstick et al., 2013; Johnson et al., 2013; Bennett et al., 2018) and worms 
(Beron et al., 2015), RNAi screening of muscle size and function in fruit fly (Kao et al., 2021; Graca 
et al., 2021), and CRISPR/Cas9 screening of muscle cells to identify regulators of myogenesis and 
cell survival in dystrophy models (Bi et al., 2017; Lek et al., 2020; Ashoti et al., 2022). Here, we 
combined forward genetics via proteomic analysis of a diverse mouse panel with a targeted reverse 
genetics screen via AAV6 vector-mediated expression of shRNAs to knock down specific genes in 
bioengineered skeletal muscle to identify candidate regulators of skeletal muscle function. Our 
approach identified UFMylation as a regulator of skeletal muscle function that was validated in vivo.

Results
Genetic regulation of the mouse skeletal muscle proteome
To begin to understand how variations in the genome drive changes in the skeletal muscle proteome, 
we performed a proteomic analysis of gastrocnemius muscle from 73 inbred mouse strains of the HMDP 
that were fed a chow diet and housed under identical environmental conditions (n=2–4; 161 mice). 
The proteomic data were integrated with previously acquired genomic and various molecular/pheno-
typic data via systems genetics analysis (Figure 1A). Proteomics was performed with eighteen 10-plex 
tandem mass tag (TMT) experiments each consisting of nine strains plus a pooled common internal 

https://doi.org/10.7554/eLife.82951
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reference. Peptides were analysed by 2D-liquid chromatography coupled to tandem mass spectrom-
etry (2D-LC-MS/MS) resulting in the quantification of 5350 proteins with 4027 quantified in >50 mice 
and 2069 proteins quantified in all 161 animals (Figure 1B and Supplementary file 1). Biological 
replicates showed similar proteomes, as evidenced by the hierarchical clustering dendrogram, where 
mice of the same strains are typically neighbouring or located closely (Figure 1—figure supplement 
1). Median intra-strain coefficient of variation was 9.2% while inter-strain coefficient was significantly 
larger, suggesting reproducible quantification and genetically driven variation in the proteome was 
captured in the data (Figure 1C).

To identify possible genetic factors regulating protein abundance, we next associated single nucle-
otide polymorphisms (SNPs) to the abundance of 4027 skeletal muscle proteins quantified in >50 mice 
via a protein-quantitative trait loci (pQTL) mapping. We identified significant cis-regulation of the 
proteome with local SNPs associated to the abundance of 527 unique proteins (±10 Mb of gene; 
local adjusted p<1 × 10−4) and trans-regulation with distant SNPs (>10  Mb of the gene or on a 
different chromosome) associated to the abundance of 170 unique proteins (global adjusted p<5 × 

Figure 1. Proteome-wide systems genetics analysis of the mouse skeletal muscle proteome. (A) Overview of the experimental design. (B) Number of 
proteins identified. (C) Intra- and inter-strain coefficient of variation. (D) Protein-quantitative trait loci (pQTL) Manhattan plot. (E) pQTL variant and gene 
location density. (F) Ribosomal proteins correlation and variant network (upper), and scatterplots expressed as Log2(ratio to control) showing correlation 
coefficient calculated using biweight midcorrelation (n=161) (lower). (G) Genetic associations of variant hotspot on chromosome 13 associated with 
mitochondrial complex V subunits in trans. (H) Intragenic variants associated to ACADL abundance. (I) Boxplot showing variant allele associated to 
EPHX1 abundance (Student’s t-test). (J) EPHX1 Arg338Cys mutation DynaMut protein flexibility analysis.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Hybrid Mouse Diversity Panel (HMDP) mouse sample dendrogram.

Figure supplement 2. EPHX1 Arg338Cys mutation analysis.

https://doi.org/10.7554/eLife.82951
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10−8) (Figure 1D and Supplementary file 2). Visualizing SNP densities identified regions with a high 
number of variants (Figure 1E). Of particular interest are the genetic ‘hotspots’ (observed as vertical 
‘streaks’ on chromosomes 7, 10, 12, and 14) abundant in trans-associations affecting genes in various 
locations. These regions agree with those observed in eQTLs of the HMDP (Lusis et al., 2016). We 
further performed variant effect predictions and annotated the position of variants relative to gene 
location (within a gene, i.e., intragenic or between genes, i.e., intergenic SNPs) to investigate possible 
mechanisms regulating protein abundance (McLaren et  al., 2016). We observed a complex array 
of pQTLs on chromosome 1 with 46 and 21 proteins regulated in -cis and -trans, respectively. The 
majority of these pQTLs are in the distal region of the chromosome previously described as the QTL-
rich region on chromosome 1 (Qrr1) with separate linkage disequilibrium (LD) blocks within 1qH2.1, 
1qH5, and 1qH3 (Mozhui et al., 2008). The various loci in Qrr1 containing these pQTLs have been 
associated with a range of neural, behavioural, and cardiometabolic phenotypes, and form complex 
co-regulatory networks modulating a range of pathways such as RNA metabolism and translation. 
Here, we show a cis-pQTL on chromosome 1 (lead SNP rs31934459) is associated to the abundance 
of RPL7 and is also a trans-pQTL for RPL19 and RPL23. These proteins are correlated in abundance 
and form a co-regulated network with other 60S ribosomal proteins suggesting genetic variants regu-
lating RPL7 abundance subsequently regulate protein complex stability/assembly (Figure  1F and 
Supplementary file 3). The distal region of chromosome 13 also contains a complex series of cis- and 
trans-pQTLs giving rise to ‘hotspot’ co-regulation. A cis-pQTL associated with MOCS2 is also a trans-
pQTL for eight proteins all members of mitochondrial complex V (Figure 1G). MOCS2 is involved in 
molybdopterin biosynthesis and it is unclear how MOCS2 might regulate mitochondrial complex V 
abundance. Patients with mutations in MOCS1 that result in mild molybdenum cofactor deficiency 
also display reduced mitochondrial respiration suggesting a link between molybdopterin biosynthesis 
and ATP production (Grings et al., 2019). Among the 527 proteins with a cis-pQTL association, 212 
had an intragenic association. For example, non-coding SNPs in the fifth and sixth intron of Acadl 
were cis-pQTLs for ACADL (Figure 1H). We also identified 14 missense variants as pQTLs such as 
the rs32746574 variant (GG >AA; R338C), which was associated with significantly lower abundance 
of EPHX1 (Figure 1I). The R338C mutation was found to be deleterious (PROVEAN score: –5.6) (Choi 
and Chan, 2015), destabilizing (FoldX:+1.1 ΔG) (Delgado et al., 2019) and possibly damaging (Poly-
Phen2 HumDiv: 0.62) (Adzhubei et  al., 2013; Figure  1—figure supplement 2). R338C increases 
the flexibility of EPHX1 due to the missing interaction (hydrogen bond) between R338 and Y291 
(Figure 1J). Aligning human and mouse EPHX1 protein structures revealed that the missense muta-
tion causing R338C (yellow) is in close proximity to the catalytic (blue) and disease-related sites (red) 
identified by Gautheron et al., 2021; Figure 1—figure supplement 2. Taken together, our proteomic 
analysis of the HMDP has helped define the genetic factors potentially regulating the abundance of 
hundreds of skeletal muscle proteins.

Systems genetics integration of the skeletal muscle proteome with 
molecular and phenotypic traits
The renewable nature of extensively characterized inbred mouse strains from genetic references 
panels such as the HMDP and the BxD allow for the integration of data across multiple cohorts (Lusis 
et al., 2016; Ashbrook et al., 2021). We focused our analysis on a subset of 300 molecular or pheno-
typic traits incorporating various plasma metabolites, lipids, and cytokines; whole body measurements 
such as glucose/insulin sensitivity and body composition/organ weights; and muscle phenotypes such 
as cardiac and skeletal muscle function previously quantified in the same strains of mice in the HMDP 
(Lusis et al., 2016). Note that data integration is performed at the strain level, since the proteomic 
data was not generated from the same mice, as those used in previous studies. Supplementary file 4 
summarizes all the phenotypic data integrated in the current study and includes data sources. Cumula-
tively, these previous systems-level mouse studies identified hundreds of loci associated to molecular 
or phenotypic traits (mol/pheQTLs) (Figure 2A and Supplementary file 5). We next devised a three-
step systems genetic analyses to associate these molecular or phenotypic traits to the skeletal muscle 
proteome that included: (1) identification of SNPs shared between skeletal muscle cis-pQTLs and mol/
pheQTLs, (2) correlation and supervised multivariate associations between the abundance of skeletal 
muscle proteins and each molecular or phenotypic trait, and (3) comparison of protein abundance and 
molecular or phenotypic differences between allelic variations (Figure 2B). All data can be browsed at ​

https://doi.org/10.7554/eLife.82951
https://muscle.coffeeprot.com/
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muscle.coffeeprot.com and includes querying at the protein- or phenotype-level followed by several 
interactive visualizations. Analysis of this new resource identified hundreds of associations allowing for 
the prioritization of potential causal proteins regulating molecular or phenotypic traits. We present 
a few examples of phenotype-protein associations below. For example, a locus on chromosome 7 
contained cis-pQTLs associated to MCEE that were shared with fasting glucose in mice subject to 
high-fat/high-sugar feeding (Figure 2C). Homozygous allelic variation of SNPs were associated to 
MCEE protein abundance and also a trend for greater visceral adiposity and fasting glucose on a chow 
diet (Figure 2D–E). MCEE functions as a methylmalonyl-CoA epimerase important for propionyl-CoA 

Figure 2. Protein and phenotype quantitative trait locus (QTL) analysis. (A) Manhattan plot and genomic location distribution of mol/pheQTLs. 
(B) Overview of the three-step integrative analysis approach. (C) Mirrored Manhattan plots of MCEE and glucose QTLs. (D) Allelic variant boxplots 
of rs31160203 for MCEE and visceral fat. (E) Allelic variant boxplots of rs50173258 for MCEE and glucose. (F) Correlation scatterplot of OCIAD2 
abundance expressed as Log2(ratio to control) and plasma cholesterol concentrations. (G) Allelic variant boxplots of rs33256997 for OCIAD2 and plasma 
cholesterol. (H) Mirrored Manhattan plots of SLC37A4 and glucose QTLs. (I) Mirrored Manhattan plots of SLC37A4 and fat pas mass QTLs. (J) Average 
distribution of lean mass per mouse strain. (K) Orthogonal partial least-squares (OPLS) loading plot of proteins explaining the variance related to 
strain lean mass. Separation on the x-axis shows variation related to the predictive component (p1), whilst the y-axis shows the orthogonal component 
(o1). Highlighted points reflect Student’s correlation p-values for multiple biweight midcorrelations of proteins correlated with lean mass (–0.3< r > 
0.6, p<0.05). Correlation of lean mass and the protein abundance expressed as Log2(ratio to control) of INMT (L), MOCS2, (M) and TACC2 (N). Allelic 
variant boxplots of selected single nucleotide polymorphisms (SNPs) with lean mass and INMT (rs49460035) (O), MOCS2 (rs28163611) (P), and TACC2 
(rs32292483) (Q). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 by Student’s t-test.

https://doi.org/10.7554/eLife.82951
https://muscle.coffeeprot.com/
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metabolism. Rare autosomal recessive missense mutations in MCEE have been identified in patients 
with methylmalonic aciduria (Bikker et al., 2006). We also identified cis-pQTLs associated to the abun-
dance of both OCIAD1 and OCIAD2; two neighbouring genes located on chromosome 5. Intragenic 
SNPs in both genes were associated with several cardiometabolic parameters of adiposity including 
percentage body fat assessed by nuclear magnetic resonance, retroperitoneal fat mass, circulating 
free fatty acids, HDL, and cholesterol. Furthermore, the abundance of OCIAD1 and OCIAD2 were 
positively correlated to several of these traits, and homozygous allelic variation of SNPs in both the 
Ociad1 and Ociad2 loci were associated to protein abundance and cholesterol (Figure 2F–G). Very 
little is known about the functions of OCIAD1/2 but recent data have revealed a role in mitochondrial 
complex III assembly (Le Vasseur et al., 2021) and human GWAS analysis has identified variants in 
both the OCIAD1 and OCIAD2 loci are associated with susceptibility to type 2 diabetes (Vujkovic 
et  al., 2020). We also identified genetic variants associated to the abundance of the ER resident 
glucose-6-phosphate transporter SLC37A4 that co-localize to fasting glucose and fat pad mass in 
mice fed a chow diet (Figure 2H–I). SLC37A4 has enhanced expression in the liver, gut, and kidney, 
and plays a role in the regulation of glycogenolysis and gluconeogenesis, however, its role in skeletal 
muscle metabolism has been comparatively less studied. Patients with mutations in SLC37A4 present 
with several metabolic complications, particularly hepatomegaly and enlarged kidneys due to the 
accumulation of glycogen but also often have signs of dyslipidaemia and hypoglycemia.

We next analysed associations of the skeletal muscle proteome to lean mass which showed a range 
of genetic variation in female mice fed a chow diet (Figure 2J). Using supervised multivariate and 
pairwise correlation analysis, we identified 300 proteins positively or negatively associated to lean 

Figure 3. Proteome-phenotype associations of Qrr1 region on chromosome 1. (A) Manhattan plot of selected 
genes located near the Qrr1 region, with corresponding traits. (B) Protein-trait correlation network. (C) Top 10 
GeneBass associations from the ‘UK BioBank Assessment Centre’ and ‘Biological samples’ categories, excluding 
‘Touchscreen’, ‘Medications’, and ‘Operations’ categories.

https://doi.org/10.7554/eLife.82951
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mass (–0.3 < r > 0.6, p<0.05) (Figure 2K). Proteins involved in translation including ribosomal subunits 
and elongation initiation factors were positively correlated while we observed several extracellular 
matrix proteins including collagens and cathepsins to be negatively correlated with lean mass. Allelic 
variations were integrated to highlight several trends such as negative correlations between INMT, 
MOCS2, and TACC2 versus lean mass (Figure 2L–N), where alleles which reduced protein abundance 
(rs49460035, rs28162611, and rs32292483) generally displayed lower lean mass (Figure 2O–Q). We 
also investigated the relationships between mol/pheQTL’s and skeletal muscle cis-pQTLs in or around 
the Qrr1 region, located distal on chromosome 1. Figure 3A displays regional association plots of 
pQTLs (arrows indicating gene location) shared with mol/pheQTLs including HOMA-IR, lean mass, 
plasma concentrations of keratinocyte-derived growth factor (KC; CXCL1), and plasma cholesterol. 
Two genomic regions are associated with HOMA-IR which contains cis-pQTLs for MPZ, NIT1, PCP4L1, 
and UFC1 in the first region while EPHX1 is located in the second more distal region. It is important to 
note that these regions were also associated with plasma insulin concentrations and as such, variations 
in the expression of these proteins may play greater roles in other tissues such as the pancreas. The 
QTL for plasma cholesterol and KC concentrations were only shared to the first region of the HOMA-IR 
blocks while the QTL for lean mass was distributed across both regions. To further investigate these 
associations, we correlated the abundance of the proteins in skeletal muscle to the molecular or 
phenotypic traits (Figure 3B). Our data identified a negative correlation between UFC1, lean mass, 
and plasma cholesterol. UFC1 is the E2 ligase for the post-translational modification of ubiquitin-fold 
modifier 1 (UFM1) to target proteins through UFMylation. We also identified negative correlations 
between MPZ and plasma cholesterol/triacylglycerols (TAGs). It is unclear if MPZ plays a causative 
role in the regulation of lipid metabolism, however diabetic peripheral neuropathy is associated with 
reduced expression of Mpz, myelin abnormalities, and several defects in lipid metabolism (Cermenati 
et al., 2012). Positive correlations were found between BPNT1 and plasma insulin, HOMA-IR, and 
visceral fat while also negatively correlated with plasma cholesterol, TAGs, and lean mass. BPNT1 
is involved in phosphatidylinositol phosphate and adenosine phosphate metabolism. Mice lacking 
Bpnt1 display severe liver defects but the role of this enzyme in whole body energy metabolism and 
insulin sensitivity is currently unknown (Hudson et al., 2013). Finally, we observed an overall negative 
correlation between the abundance of EPHX1 and HOMA-IR, visceral fat, plasma insulin, and choles-
terol. Our correlation results are further corroborated by publicly available UK Biobank gene-trait 
associations accessed through the Genebass webserver (Karczewski et  al., 2022; Figure 3C). Of 
particular interest are the associations between EPHX1/type 2 diabetes, UFC1/hand grip strength, 
and UFC1/IGF-1. The associations of UFC1 with grip strength (UK BioBank, human) and lean mass 
(HMDP, mouse) indicate a potential role of this protein in skeletal muscle compositions and/or func-
tional capacity.

Targeted functional genomic screen in bioengineered skeletal micro-
muscles
To validate potential causal regulators of muscle function, we targeted genes encoding novel skeletal 
muscle pQTLs and molecular/phenotypic associations and performed a targeted functional genomic 
screen in human skeletal micro-muscles (hµMs) (Mills et  al., 2019). We focused on proteins with 
negative associations to lean mass, grip strength, or other metabolic traits, and generated a total of 
27 individual recombinant AAV serotype 6 viral vectors expressing shRNA (rAAV6:shRNAs) to knock 
down the expression of these proteins in an arrayed fashion. hµMs were grown around flexible pillars 
to assess contractile force during electrical stimulation, and transduced following differentiation and 
maturation to limit effects on the myogenic program (Figure 4A). Electrical stimulation was applied 
to induce either a high-frequency tetanic contraction for assessment of maximum force producing 
capacity or stimulated with sustained lower frequency for assessment of endurance/fatigue. Following 
this protocol, hµMs were analysed by proteomics which quantified 17/27 targets with 13 targets signifi-
cantly reduced in abundance by rAAV6:shRNA (Figure 4B). Knockdown of UFC1, MCEE, TOM1L2, 
and SH3BGR was confirmed at the protein level and resulted in significant increases in maximum force 
production during the tetanic contractions (Figure 4C). These effects of knockdown were consistent 
with the observed negative correlation between lean mass and the abundance of UFC1, MCEE, and 
SH3BGR in skeletal muscle of the HMDP providing evidence for a causal regulation of muscle func-
tion. The fatigue protocol resulted in 20% decline in muscle function in control scramble-treated 

https://doi.org/10.7554/eLife.82951
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hµMs (Figure 4D). Remarkably, knockdown of UFC1 increased force production during the fatigue 
protocol. Knockdown of CNST also protected against fatigue, but we were unable to identify CNST 
in the proteomics analyses to confirm knockdown. Taken together, these data identify potential causal 
negative regulators of muscle function.

UFMylation regulates skeletal muscle function
Our data suggest that the regulation of UFC1 and subsequent changes in UFMylation may play a 
key role in muscle function. We first investigated the regulation of UFMylation in a mouse model of 
amyotrophic lateral sclerosis (ALS), a rapidly progressive adult-onset disease that involves substan-
tial muscle atrophy (Pansarasa et al., 2014). The model involves progressive muscle atrophy from 
11 weeks of age due to transgenic expression of an ALS-causing mutation in superoxide dismutase 
1 (SOD1(G37R)) (Wong et  al., 1995). At 25  weeks of age, we observed a significant increase in 
conjugated and free UFM1, UFC1, and UFSP2 (a deUFMylase) in gastrocnemius skeletal muscles of 
SOD1(G37R) mice, which was independent of any changes in the abundance of BiP chaperone as a 
marker of ER stress (Figure 5A–B). These data suggest the overall pool of UFM1 increases and there 
is an increase in UFMylation flux. We provide the first evidence of changes in UFMylation following 
muscle atrophy in vivo. We next manipulated in vivo UFMylation levels by injecting rAAV6:shRNA into 
tibialis anterior (TA) and extensor digitorum longus (EDL) skeletal muscles of 8-week-old C57BL/6J 

Figure 4. Functional screening of skeletal muscle function. (A) Overview of experimental design. (B) Knockdown 
efficiency of target proteins (n=4–10). (C) Maximum tetanic force, and (D) % fatigue of rAAV6:shScramble and 
target proteins. Red: q<0.05; yellow: q>0.05 (Student’s t-test relative to scramble with Benjamini-Hochberg FDR).

https://doi.org/10.7554/eLife.82951
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mice in a paired experimental design, where muscles of the left leg received rAAV6:shScramble and 
muscles of the right contralateral leg received rAAV6:shUFC1 (Figure 5C). Following 12 weeks of 
transduction, we observed significant reductions in the abundance of UFC1 and conjugated UFM1 
(Figure 5D–E). There was a subtle but significant increase in whole muscle cross-sectional area (CSA) 
but no change in muscle mass (Figure 5G–H). EDL muscles were subjected to ex vivo assessments of 
muscle function using electrically induced contractions. Knockdown of UFC1 increased specific force 
production in response to a single twitch contraction (sPt) and generated almost a doubling of peak 
force (sPo), normalized to CSA (Figure 5I–J). Furthermore, both the absolute and specific tetanic force 
increased across all stimulation frequencies tested following knockdown of UFC1 (Figure 5K–L).

We next performed a more detailed cellular and molecular analysis. First, we analysed fiber-type 
composition of TA muscles by immunofluorescence microscopy of which revealed no differences 
in the abundance of myosin isoforms but there was a trend for a decrease in the total number of 
muscle fibers following knockdown of UFC1 (Figure 6A–C). Next, we performed a proteomic anal-
ysis of EDL muscles which quantified 5909 proteins of which 573 were regulated in abundance 
following knockdown of UFC1 (Figure 6D and Supplementary file 6). The top up-regulated path-
ways included proteins associated with translation, muscle contraction, and signal recognition particle 

Figure 5. UFMylation is regulated in atrophy and influences skeletal muscle function. (A) Western blot and 
(B) densitometry of UFMylation and BiP chaperone in a gastrocnemius muscle of a mouse model of amyotrophic 
lateral sclerosis (ALS). (C) Overview of the experimental design. (D) Western blot of extensor digitorum long (EDL) 
muscles treated with rAAV6:shScramble (red, left leg (L)) and rAAV:shUFC1 (green, right leg (R)). (E) Densitometry 
of western blot (n=6). (F) Muscle cross-sectional area (CSA) (n=6). (G) EDL mass and (H) tibialis anterior (TA) mass 
(n=6). Ex vivo analysis of contraction force in EDL muscles showing (I) single twitch contraction force normalized to 
CSA (sPt), (J) tetanic contraction force normalized to CSA (sPt), and (K) absolute, and (L) specific force normalized 
to CSA following shUFC1 or scrambled control. *p/q-value<0.05; **p/q-value<0.01; ***p/q-value<0.005; (B–C) 
paired Student’s t-test; (E–J) paired Student’s t-test; (K–L) two-way ANOVA.

The online version of this article includes the following source data for figure 5:

Source data 1. Zip file containing uncropped western blot image files as Image Lab Documents, tiff files, and 
a summarized.pdf highlighting the lane identifications, highlighted bands used to create Figure 5A, antibody 
information, and all densitometry results for each individual sample.

Source data 2. Zip file containing uncropped western blot image files as Image Lab Documents, tiff files, and 
a summarized.pdf highlighting the lane identifications, highlighted bands used to create Figure 5D, antibody 
information, and all densitometry results for each individual sample.

https://doi.org/10.7554/eLife.82951
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(SRP)-mediated translocation to the ER, while down-regulation was observed in immune-related path-
ways and cell surface interactions (Figure  6E). The up-regulation of contractile proteins following 
knockdown of UFC1 includes fast-type Troponin T (TNNT3), which binds tropomyosin, and the protein 
with the largest fold change (>2.5-fold) (Figure 6F). The most up-regulated proteins in the transla-
tional machinery were SRPA/B of the SRP complex, SSR1/2/3/4 of the TRAP complex, and SEC61A/B 
(Figure 6G). We also observed a trend for increased RPL31 which mediates binding of SRP to the 
ribosome (Pech et al., 2010). The core subunits of the proteasome, and atrogenes including TRIM63 
and ASB2 were not regulated following knockdown of UFC1 (Supplementary file 6). However, the 
proteasome activating complex PSME1/2 was down-regulated with UFC1 knockdown and western 
blotting revealed a decrease in K48-linked ubiquitination (Figure 6H–I). We also observed a complex 
regulation of autophagy-associated proteins such as up-regulation of GABARAP and ATG3, and 
down-regulation of ATG4A, WIPI1, and SQSTM1, the latter which trended to decrease by >1.8-fold 
with both western blotting and proteomics (Figure 6H–I and Supplementary file 6). Taken together, 
our data reveal that UFMylation is regulated during atrophy and plays a role in skeletal muscle func-
tion via modulating proteostasis mechanisms and contractile proteins.

Figure 6. Characterization of skeletal muscles following UFC1 knockdown. (A) Representative immunofluorescence microscopy of fiber-type 
composition in tibialis anterior (TA). Myosin heavy chain isoforms (MYH2, green, type IIa; MYH4, purple, type IIb; MYH1, unstained, type IIx) while 
laminin is white. Scale bar = 200 µm. (B) TA fiber-type distribution, and (C) TA total fiber number (n=5). (D) Volcano plot and (E) gene set enrichment 
analysis of proteins affected by UFC1 knockdown. (F) Enrichment plot of the muscle contraction gene set (REACTOME_MUSCLE_CONTRACTION, 
MSigDB C2 collection) and paired analysis of TNNT3. (G) Knockdown of UFC1 up-regulates the ribosome-SEC61 complex, signal recognition particle, 
and translocon-associated protein. Protein constituents of each structure were coloured based on the relative increased abundance following shUFC1, 
where the colours are scaled based on the relative fold change per complex (signal recognition particle [SRP] – red; translocon-associated protein 
(TRAP) – blue; SEC61 – green; ribosome – yellow/orange, grey – not measured). (H) Western blot of extensor digitorum longus (EDL) muscles treated 
with rAAV6:shScramble (red, left leg (L)) and rAAV:shUFC1 (green, right leg (R)). (I) Densitometry of western-blot (n=6). *p/q-value<0.05; (B, C, I): paired 
Student’s t-test; (F–G): paired Student’s t-test with Benjamini-Hochberg FDR.

The online version of this article includes the following source data for figure 6:

Source data 1. Zip file containing uncropped western blot image files as Image Lab Documents, tiff files, and a summarized.pdf highlighting the lane 
identifications, highlighted bands used to create Figure 6H, antibody information and all densitometry results for each individual sample.

https://doi.org/10.7554/eLife.82951
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Discussion
Genetic determinants of diversity in skeletal muscle attributes remain incompletely defined, and thus 
an opportunity to transform our understanding of muscle biology. We performed a proteomic anal-
ysis of skeletal muscle in a genetically diverse mouse panel and integrated the data with a variety 
of molecular and phenotypic traits that can be browsed at https://muscle.coffeeprot.com to poten-
tially uncover new biology relevant for human disease. We demonstrate the utility of this resource 
by performing a targeted functional screen in human bioengineered skeletal muscle which revealed 
UFMylation as a negative regulator of muscle function that was further validated in vivo. Targets of 
UFMylation include nuclear proteins Histone H4 (Qin et al., 2019), MRE11 (Lee et al., 2021), and 
ACS1 (Yoo et al., 2014) with the latter particularly relevant to the current study given mutations in 
ACS1 are associated with muscular atrophy (Davignon et al., 2016). However, the most abundant 
target of UFMylation in mammalian cell culture and validated by two independent studies is RPL26, 
a ribosomal-associated protein in close proximity to the interaction sites of RPL31 and the SEC61 
complex (Walczak et al., 2019; Wang et al., 2020). Indeed, the UFM1 E3 ligase, UFL1, is targeted 
to the ER via UFBP1 (DDRGK1) (Wang et al., 2020), and UFMylation is required for ER-phagy (Liang 
et al., 2020) and ER-associated protein degradation (ERAD) (Walczak et al., 2019). Mechanistically, 
RPL26 UFMylation promotes the degradation of a translocation-arrested ER protein and up-regulation 
may play a role in enhanced secretory flux (Wang et al., 2020). Hence, UFMylation plays a positive 
role in ER stress and cellular protection, and it is potentially paradoxical that reducing UFMylation can 
improve muscle contractile function. One potential explanation is an acute reduction in UFMylation 
leads to proteome compensatory remodelling and up-regulation of translational machinery which 
provide later benefits to muscle function. A limitation of our approach is that the abundance of UFMy-
lation enzymes was measured, but not the degree of UFMylation among proteins. While RPL26 was 
not significantly regulated following UFC1 knockdown, it is possible that the UFMylation status of 
RPL26 was altered. The positive enrichment of ribosomal subunits including RPL31, and SRP co-trans-
lational factors (SSR1/3, SEC61α, SRPRB) located in close proximity to RPL26 suggests an involvement 
of UFMylation in this process. In further support of a negative association of UFMylation and muscle 
function, mutations in UFSP2 have been identified which increase UFMylation and result in musculo-
skeletal dysplasia (Watson et al., 2015; Zhang et al., 2020). Furthermore, the expression of UFC1 is 
also up-regulated in skeletal myocytes differentiated from induced pluripotent stem cells derived from 
familial ALS (C9ORF72 mutations) (Lynch et al., 2021), and the expression of UBA5, the E1 ligase for 
UFMylation has recently been associated with Becker muscular dystrophy (Xu et al., 2021). Interest-
ingly, genetic ablation of UFMylation in cell culture reduces viral-mediated interferon production and 
correlates with our observed down-regulation of proteins involved in the innate immune response 
following UFC1 knockdown suggesting an overall reduction in inflammation (Snider et al., 2022).

Ideas and speculation
A major question arising from our data is how does a reduction in UFMylation lead to the up-regu-
lation of contractile proteins? Is it driven by a reduction in K48-linked ubiquitination and potential 
down-regulation of protein degradation or an increase in protein synthesis despite the major transla-
tional machinery up-regulated being associated with ER targeting and SRP/SEC61, or a combination 
of both? Furthermore, how does the regulation of UFMylation change components of the autophagy 
system? It is likely that the identification of additional UFMylation substrates may further unravel 
these mechanisms. Collectively, our systems genetics and functional screening strategy provides a 
rich resource to further explore mechanisms governing skeletal muscle metabolic function, and we 
demonstrate its use by identifying UFMylation as an important modification for muscle biology.

Limitations of study
We only performed proteomics on female mice from the HMDP, whereas phenotypic analyses were 
performed on several separate cohorts using both sexes. Clearly, sex interacts with common genetic 
variation to influence many outcomes. In this light, an advantage of renewable resources such as the 
HMDP is to allow the same genetic background to be assayed across multiple studies. Thus, as more 
data becomes available, which aspects of this study are either female-specific or penetrant across 
both sexes will be easily addressed. Another potential limitation of our study is that the associations 
between genetic variants and proteins/phenotypes may be either causal or reactive in nature. That 

https://doi.org/10.7554/eLife.82951
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is, a genetic variant may drive a change in protein abundance which then regulates a phenotype, 
or the genetic variant changes the phenotype which subsequently changes the abundance of the 
protein. Furthermore, associations may have pleiotropic affects where a genetic variant may regulate 
the abundance of multiple proteins which modulate a phenotype either via horizontal or vertical plei-
otropy. When interpreting genetic associations, it is also relevant to consider the overall heritability 
of a given trait. Specifically, broad sense heritability measures can inform the overall confidence in 
linking genotype to phenotype and inferring genetic interactions with environment and sex (Andreux 
et al., 2012; Seldin et al., 2019; Ashbrook et al., 2021). The genetic repeatability (R) for each trait, 
as determined using the rptR workflow, is reported in Supplementary file 4 (Stoffel et al., 2017). 
For traits which exhibit a high degree of technical variability such as cardiac function or grip strength, 
these estimates provide a quantitative metric with which to guide genetic contributions. To further 
prioritize causal associations focusing on muscle function, we targeted genes containing skeletal 
muscle cis-pQTLs that were also associated to molecular or phenotypic traits and performed a knock-
down screen in hµM. Here, our goal was to identify negative regulators of adult muscle function and 
we utilized rAAV6:shRNA vectors applied to the micro-muscles post-differentiation to model mature 
skeletal muscle. Hence, the results of our screen may not be relevant for the study of myogenesis and 
muscle regeneration. For the first time, we show that UFMylation is regulated in an atrophy model of 
ALS motor neuron disease and further studies are required to investigate the regulation of UFMyla-
tion in other diseases of muscle wasting such as dystrophy, cachexia, and sarcopenia. Furthermore, 
additional studies are warranted to investigate if the regulation of UFMylation can provide functional 
benefits during atrophy. It is also important to note that we used rAAV6 vectors which provides high 
tropism to terminally differentiated myofibers (Blankinship et al., 2004) and hence, additional meth-
odologies are required to investigate the role of UFMylation in other cell types including defective 
neuronal cell populations.

Materials and methods
HMDP animals
All mice were from The Jackson Laboratory and were subsequently bred and housed at University of 
California, Los Angeles, to generate offspring used in this study as previously described (Parks et al., 
2015; Parks et al., 2013). Only female mice were used and housed at 22°C (±1°C) on a 12 hr light/
dark cycle and ad libitum access to food and water with a chow diet (Ralston Purina Company – 5001) 
until 8–10 weeks of age before being fasted for 14 hr in a fresh cage. Animals were anaesthetized, 
exsanguinated, and gastrocnemius muscles immediately removed and snap-frozen. All protocols for 
these studies were approved by the Institutional Care and Use Committee (IACUC) at University of 
California, Los Angeles. A list of mice used in this study is shown in the ’Key resources table’.

Proteomics sample preparation
Muscle tissue from the HMDP were lysed in 6 M guanidine HCL (Sigma; #G4505), 100 mM Tris pH 
8.5 containing 10 mM tris(2-carboxyethyl)phosphine (Sigma; #75259) and 40 mM 2-chloroacetamide 
(Sigma; #22790) by tip-probe sonication. The lysate was heated at 95°C for 5 min and centrifuged 
at 20,000 × g for 10 min at 4°C. The supernatant was diluted 1:1 with water and precipitated over-
night with five volumes of acetone at –20°C. The lysate was centrifuged at 4000 × g for 5 min at 4°C 
and the protein pellet was washed with 80% acetone. The lysate was centrifuged at 4000 × g for 
5 min at 4°C and the protein pellet was resuspended in Digestion Buffer (10% 2,2,2-trifluoroethanol 
[Sigma; #96924]) in 100 mM HEPES pH 7.5. Protein was quantified with BCA (Thermo Fisher Scien-
tific) and normalized in Digestion Buffer to a final concentration of 2  µg/µl. Protein was digested 
with sequencing grade trypsin (Sigma; #T6567) and sequencing grade LysC (Wako; #129-02541) at a 
1:50 enzyme:substrate ratio overnight at 37°C with shaking at 2000× rpm. Eight µg of peptide was 
directly labelled with 32 µg of 10-plex TMT (lot #QB211242) in 20 µl at a final concentration of 50% 
acetonitrile for 1.5 hr at room temperature. The reaction was de-acylated with a final concentration 
of 0.3% (w/v) hydroxylamine and quenched with a final concentration of 1% trifluoroacetic acid (TFA). 
Each 10-plex experiment contained nine different strains with a tenth reference label (131 isobaric 
label) made up of the same peptide digest from pooled mix of C57BL/6J muscles. The sample iden-
tity and labelling channels have been uploaded as a table with ​the.​raw proteomic data to the PRIDE 

https://doi.org/10.7554/eLife.82951
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ProteomeXchange (see Data availability section). Following labelling, the peptides from each of the 
18 TMT 10-plex batches were pooled and purified directly by styrene divinylbenzene reversed-phase 
sulfonate (SDB-RPS) microcolumns, washed with 99% isopropanol containing 1% TFA and eluted with 
80% acetonitrile containing 2% ammonium hydroxide followed by vacuum concentration. Peptides 
were resuspended in 2% acetonitrile containing 0.1% TFA and 30 µg of peptide was fractionated 
on an in-house fabricated 25 cm × 320 µm column packed with C18BEH particles (3 µm, Waters). 
Peptides were separated on a gradient of 0–30% acetonitrile containing 10 mM ammonium formate 
(pH 7.9) over 60 min at 6 µl/min using an Agilent 1260 HPLC and detection at 210 nm with a total of 48 
fractions collected and concatenated down to 12 fractions. Skeletal muscle micro-muscles were lysed 
in 4% sodium deoxycholate in 100 mM Tris pH 8.5 containing 10 mM tris(2-carboxyethyl)phosphine 
and 40 mM 2-chloroacetamide by tip-probe sonication. The lysate was heated at 95°C for 5 min and 
centrifuged at 18,000 × g for 10 min at 4°C. Protein was digested with 0.2 µg of sequencing grade 
trypsin and 0.2 µg of sequencing grade LysC overnight at 37°C. Peptides were first diluted with 100% 
isopropanol, mixed and then acidified with TFA to a final concentration of 50% isopropanol, 0.1% 
TFA. Peptides were desalted with SDB-RPS microcolumns, washed with 99% isopropanol containing 
1% TFA and eluted with 80% acetonitrile containing 2% ammonium hydroxide followed by vacuum 
concentration. Peptides were resuspended in 2% acetonitrile containing 0.1% TFA and a 5% aliquot 
of each sample pooled and fractionated into 12 fractions as described above to generate a spectral 
library. The sample and MS file identifies have been uploaded as a table with the .raw proteomic 
data to the PRIDE ProteomeXchange (see Data availability section). Muscle tissue from rAAV6-treated 
mice were processed using the identical procedure described above with only minor modifications 
including the 10-plex TMT lot #WC306775 was used. The sample identity and labelling channels have 
been uploaded as a table with the .raw proteomic data to the PRIDE ProteomeXchange (see Data 
availability section). Peptides were fractionated using a separate in-house fabricated column with 
identical dimensions and particles, but a Dionex 3500 HPLC was used with the same detection at 
210 nm and a total of 48 fractions collected and concatenated down to 12 fractions.

Mass spectrometry and data processing
Peptide fractions from skeletal muscle of the HMDP were resuspended in 2% acetonitrile containing 
0.1% TFA and analyzed on a Dionex ultra-high pressure liquid chromatography system coupled to 
an Orbitrap Lumos mass spectrometer. Briefly, peptides were separated on 40 cm × 75 µm column 
containing 1.9  um C18AQ Reprosil particles on a linear gradient of 2–30%  acetonitrile over 2  hr. 
Electrospray ionization was performed at 2.3 kV with 40% RF lens and positively charged peptides 
detected via a full-scan MS (350–1550 m/z, 1e6 AGC, 60 K resolution, 50 ms injection time) followed 
by data-dependent MS/MS analysis performed with CID of 35% normalized collision energy (NCE) 
(rapid scan rate, 2e4 AGC, 50 ms injection time, 10 ms activation time, 0.7 m/z isolation) of the top 10 
most abundant peptides. Synchronous-precursor selection with MS3 (SPS-MS3) analysis was enabled 
with HCD of 60 NCE (100–500 m/z, 50 K resolution, 1e5 AGC, 105 ms injection time) (McAlister et al., 
2014). Dynamic exclusion was enabled for 60 s. Data were processed with Proteome Discoverer v2.3 
and searched against the Mouse UniProt database (November 2018) using SEQUEST (Eng et  al., 
1994). The precursor MS tolerance was set to 20 ppm and the MS/MS tolerance was set to 0.8 Da with 
a maximum of two miss-cleavage. The peptides were searched with oxidation of methionine set as 
variable modification, and TMT on peptide N-terminus/lysine and carbamidomethylation of cysteine 
set as a fixed modification. All data was searched as a single batch and the peptide spectral matches 
(PSMs) of each database search filtered to 1% FDR using a target/decoy approach with Percolator 
(Käll et al., 2007). The filtered PSMs from each database search were grouped and q-values gener-
ated at the peptide level with the Qvality algorithm (Käll et al., 2009). Finally, the grouped peptide 
data was further filtered to 1% protein FDR using Protein Validator. Quantification was performed with 
the reporter ion quantification node for TMT quantification based on MS3 scans in Proteome Discov-
erer. TMT precision was set to 20 ppm and corrected for isotopic impurities. Only spectra with <50% 
co-isolation interference were used for quantification with an average signal-to-noise filter of >10. The 
data was filtered to retain Master proteins that were measured in at least 50 mice. Peptides from skel-
etal muscle micro-muscles were resuspended in 2% acetonitrile containing 0.1% TFA and analyzed on 
a Dionex ultra-high pressure liquid chromatography system coupled to an Orbitrap Exploris 480 mass 
spectrometer. Briefly, peptides were separated on 40 cm × 75 µm column containing 1.9 µm C18AQ 
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Reprosil particles on a linear gradient of 2–30% acetonitrile over 70 min. Electrospray ionization was 
performed at 1.9 kV with 40% RF lens and positively charged peptides detected via a full-scan MS 
(350–950 m/z, 2.5e6 AGC, 60 K resolution, 50 ms injection time) followed by data-independent MS/MS 
analysis performed with HCD of 28% NCE (16 m/z isolation, 38 windows with 1 m/z overlap, 2e6 AGC, 
30 K resolution, auto injection time). The pooled and fractionated samples were used to generate a 
spectral library using data-dependent acquisition acquired in the same batch using the identical liquid 
chromatography and column. Each of the 12 fractions were injected twice using two-step gas-phase 
fraction to generate a spectral library. A full-scan MS from 350 to 651 m/z or 650 to 950 m/z was 
performed for each of the two injections (2.5e6 AGC, 60 K resolution, 50 ms injection time) followed by 
data-dependent MS/MS analysis performed with HCD of 28% NCE (1.2 m/z isolation, 5e4 AGC, 15 K 
resolution, auto injection time). Data were processed with Spectronaut v15.0.210615.50606 and the 
DDA data were searched against the Human UniProt database (June 2021) using Pulsar. The minimum 
peptide length set to seven amino acids with specific trypsin cleavage and search criteria included 
oxidation of methionine and protein N-terminal acetylation set as variable modifications, and carba-
midomethylation set as a fixed modification. Data were filtered to 1% FDR at the peptide and protein 
level (q-value cut-off <0.01). The DIA data were searched within Spectronaut using the project-specific 
library and peptide quantification was performed at MS2 level using three to six fragment ions which 
included automated interference fragment ion removal as previously described (Bruderer et  al., 
2015). Dynamic mass MS1 and MS2 mass tolerance was enabled, and local (non-linear) regression 
was performed for retention time calibration. A dynamic extracted ion chromatogram window size 
was performed, and protein quantification performed with weighted peptide average values. Peptide 
fractions from skeletal muscle treated with rAAV6 were analyzed as described above for muscle of the 
HMDP with minor modifications. Briefly, peptides were separated using a Dionex ultra-high pressure 
liquid chromatography system using the identical chromatography configuration, but detection was 
achieved with an Orbitrap Eclipse mass spectrometer. Electrospray ionization was performed at 1.9 
kV with 30% RF lens and positively charged peptides detected via a full-scan MS (350–1550 m/z, 2e6 
AGC, 60 K resolution, 50 ms injection time) followed by data-dependent MS/MS analysis performed 
with HCD of 36% NCE (1e5 AGC, 86 ms injection time, 0.7 m/z isolation) with a 2.5 s cycle time and 
dynamic exclusion was enabled for 60 s. Data were processed with Proteome Discoverer v2.3 and 
searched against the Mouse UniProt database (February 2022) using SEQUEST (Eng et al., 1994). 
The precursor MS tolerance was set to 20 ppm and the MS/MS tolerance was set to 0.02 Da with a 
maximum of two miss-cleavage. The peptides were searched with oxidation of methionine set as vari-
able modification, and TMT on peptide N-terminus/lysine and carbamidomethylation of cysteine set 
as a fixed modification. All data was searched as a single batch and the PSMs of each database search 
filtered to 1% FDR using a target/decoy approach with Percolator (Käll et al., 2007). The filtered 
PSMs from each database search were grouped and q-values generated at the peptide level with 
the Qvality algorithm (Käll et al., 2009). Finally, the grouped peptide data was further filtered to 1% 
protein FDR using Protein Validator. Quantification was performed with the reporter ion quantification 
node for TMT quantification based on MS2 scans in Proteome Discoverer. TMT precision was set to 
20 ppm and corrected for isotopic impurities. Only spectra with <50% co-isolation interference were 
used for quantification with an average signal-to-noise filter of >10. The data was filtered to retain 
Master proteins that were measured in at least 50 mice.

Protein-protein and protein-trait correlations
Data analyses were performed using R (version 4.1.1). Circos plots and circular dendrograms were 
created using the circlize R package (Gu et al., 2014). CoffeeProt was used to assess protein-protein 
correlations and to produce network plots (Molendijk et al., 2021b). TeaProt was used to perform 
functional enrichment analyses (Molendijk et al., 2022). The packages Gviz and TxDb.Mmusculus.
UCSC.mm10.knownGene were used to produce genomic tracks (Hahne and Ivanek, 2016). Biweight 
midcorrelation (bicor) was performed using the WGCNA package (Langfelder and Horvath, 2008). 
Both the proteomics and trait datasets were summarized (mean) at the strain level prior to performing 
protein-trait correlations. The correlation coefficient and p-value were reported for each protein-trait 
pair, followed by the calculation of adjusted p-values (q-value) using the Benjamini-Hochberg proce-
dure. Orthogonal partial least-squares (OPLS) modelling was performed using the ropls package 
(Thévenot et al., 2015) where the summarized proteomics data represents the input numerical matrix 
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(x), and the measurement of a trait of interest represents the response to be modelled (y). Models 
were created with a single predictive component (predI) and a single orthogonal component (orthoI). 
For OPLS and protein-trait correlations, proteomic data was quantile normalized and the biological 
replicates within each strain averaged. MuscleProt can be used to export the metrics, loadings, and 
scores tables from each model.

Protein and molecular/phenotypic quantitative trait locus (QTL) mapping The identification of 
SNPs associated to protein abundance was performed using an efficient mixed-model association 
(fast-lmm) (Kang et  al., 2008) as described below where the model was adjusted for population 
structure (Flint and Eskin, 2012):

	﻿‍ y = 1nµ + xβ + u + e‍� (1)

in which n is the number of individuals; µ is the mean; β is the allele effect of the SNP; x is the (n×1) 
vector of observed genotypes of the SNP. This model takes population structure into account, as u 
is the random effects due to genetic relatedness with var.(u)=σ2uK, and e denotes the random noise 
with var.(e)=σ2eI. Here, K indicates the identity-by-state kinship matrix estimated using all SNPs; I 
represents the (n×n) identity matrix; and 1n is the (n×1) vector of ones. σ2u and σ2e were estimated 
using restricted maximum likelihood and computed p-values using the standard F-test to test the 
null hypothesis in which β = 0. Genome-wide significance threshold and genome-wide association 
mapping were determined as the family-wise error rate as the probability of observing one or more 
false positives across all SNPs for a given phenotype. To correct for false discovery, q-values were 
estimated from the distribution of p-values using the linear mixed model from the R package ‘q value’. 
Significance was calculated at q-value <0.1 (cis-pQTL = ±10 Mb of the gene, approximated local 
adjusted p<1 × 10–4, and trans-pQTL=approximated global adjusted p<5 × 10–8) as described previ-
ously (Chick et al., 2016; Parker et al., 2019). SNP locations and variant effects were retrieved from 
the Ensembl Variant database (release 102, GRCm38). Molecular/phenotypicQTL data were obtained 
from previously published studies and processed using fast-lmm as described above (Ghazalpour 
et al., 2012; Ghazalpour et al., 2014; Parks et al., 2015; Norheim et al., 2017; Rau et al., 2017; 
Norheim et al., 2019; Parker et al., 2019; Tuominen et al., 2021; Norheim et al., 2021). A summary 
of phenotypic data and sources is described in Supplementary file 4.

Structural biology
The PROVEAN (Protein Variant Effect Analyzer) tool was used to predict the functional effects of 
missense mutations in our dataset (Choi and Chan, 2015). The Colabfold platform utilizing Alphafold 
to predict the protein structures was used generate the EPHX1 structure (Jumper et al., 2021; Mirdita 
et al., 2022). The mmseq2 method was used for the multiple sequence alignment step. Alphafold 
models were ranked by pLDDT and further assessed using the sequence coverage, sequence iden-
tity, and predicted alignment error metrics generated in Colabfold (Mirdita et al., 2022). Generated 
models were visualized using PyMol. The PROVEAN (Choi et al., 2012) and PolyPhen-2 (Adzhubei 
et al., 2013) servers were used to predict the functional effect of mutations. FoldX was used to deter-
mine the effects of mutations on protein stability (Delgado et al., 2019). DynaMut was used to deter-
mine the protein flexibility as a result of mutation and predict the interactomic interactions (Rodrigues 
et al., 2018). Mol* (Molstar) was used to display PDB format structures and colour protein complex 
constituents according to relative fold change values (Sehnal et al., 2021). Structural models for the 
SRP (7OBQ) and ribosome-SEC61 complex (3J7R) were retrieved from the RCSB Protein Data Bank 
(PDB). Models were edited to remove RNA and small molecule entities. The diagram of the TRAP 
complex was based on the electron microscopy density model EMD-3068. The R functions color-
RampPalette and col2rgb were used to generate gradients of hex colour codes and corresponding 
RGB colour values used in Mol*.

Database
SNP locations and variant effects were retrieved from the ​mus_​musculus_​incl_​consequences.​vcf.​gz (03 
August, 2020) file in the Ensembl Variant database (release 102) (McLaren et al., 2016). Gene infor-
mation and UniProt accession mappings were retrieved from the Ensembl project, release 102 (Howe 
et al., 2021) ​Mus_​musculus.​GRCm38.​102.​gtf.​gz (27 October 2020) and ​Mus_​musculus.​GRCm38.​102.​

https://doi.org/10.7554/eLife.82951
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uniprot.​tsv.​gz (26 October 2020). UK Biobank exome sequencing data was accessed through the 
Genebass webserver (Karczewski et al., 2022).

shRNA:rAAV6 production
All shRNA sequences are shown in Supplementary file 7 and were designed using SplashRNA 
including optimized stem-loop design (5’TAGT​GAAG​CCAC​AGAT​GTA) as previously described 
(Pelossof et  al., 2017). The scramble shRNA sequence was 5’GATC​GAAT​GTGT​ACTT​CGA ​and 
selected based on a previously described screen for low toxicity (Grimm et al., 2006). All AAV vectors 
were produced by the Vector and Genome Engineering Facility (VGEF) at Children’s Medical Research 
Institute (CMRI). Vectors were produced by standard transient transfection of 5×15  cm plates of 
HEK293 (ATCC# CRL-1573) cells using PEI (polyethylenimine, PolyPlus, Cat# 115-100) with a 1:1:2 
molar ratio of pTransgene:pRep2CapXHelper:pAd5Helper. Vectors were purified using iodixanol 
gradient ultracentrifugation as previously described (Khan et al., 2011). Amicon Ultra-4 Centrifuge 
Filter Units (Ultracel-100 kDa membrane, EMD Millipore, Cat# UFC810024) were used to perform 
buffer exchange (phosphate-buffered saline [PBS, Gibco, Cat# 14190], 50 mM NaCl [Sigma-Aldrich, 
Cat# S5150-1L], 0.001%, Pluronic F68 [v/v] [Gibco, Cat# 24040]) and the final concentration step. 
Iodixanol-purified AAVs were quantified using droplet digital PCR (ddPCR [Bio-Rad, Berkeley]) using 
QX200 ddPCR EvaGreen Supermix (Cat# 1864034; Bio-Rad) with eGFP primers (5’ ​TCAA​​GATC​​CGCC​​
ACAA​​CATC​ and 5’ ​TTCT​​CGTT​​GGGG​​TCTT​​TGCT​). All cell stocks were regularly checked for absence 
of mycoplasma with the Mycoplasma Detection Kit (Jena Bioscience; # PP-401).

hµM production and functional assessment
hµMs were generated as described previously (Mills et  al., 2019). Briefly, primary human skeletal 
muscle myoblasts from a male, 20 years of age (Lonza, lot #18TL269121) were mixed with collagen I 
gel to make a 3.5 µl final solution containing 3.3 mg/mL collagen I and 22% (v/v) Matrigel (52,500 cells 
per hµM). The bovine acid-solubilized collagen I (Devro) was first salt balanced and pH neutralized 
using 10× DMEM and 0.1 M NaOH, respectively, prior to mixing with Matrigel and then combined 
with the cells. The mixture was prepared on ice and pipetted into the cell-culture inserts (Mills 
et al., 2017). The mixture was then gelled at 37°C for 30 min. After 1 day of formation, media was 
switched to containing MEM α (Thermo Fisher Scientific) with 1% P/S (Thermo Fisher Scientific), and 
1% B-27 supplement (Thermo Fisher Scientific), with 10 µM DAPT (Stem Cell Technologies) and 1 µM 
Dabrafenib (Stem Cell Technologies) to induce differentiation. On day 8, media was switched to main-
tenance media containing MEM α (Thermo Fisher Scientific) with 1% P/S (Thermo Fisher Scientific), 
and 1% B-27 supplement (Thermo Fisher Scientific). Media was changed every 2–3 days. On day 12, 
hµMs were treated with AAV6 encoding shRNA for genes of interest or a scrambled control at 6e7 
vg/hµM. After 72 hr of treatment, hµM were analysed for their function via electrically stimulation at 
10 or 20 Hz; 5 ms square pulses with 20 mA current using a Panlab/Harvard Apparatus Digital Stimu-
lator. During stimulation, a Leica DMi8 inverted high content Imager was used to capture a 5 or 15 s 
time-lapse of each hµM contracting in real time at 37°C. Pole deflection was used to approximate the 
force of contraction as per Mills et al., 2017. Custom batch processing files were written in Matlab 
R2013a (Mathworks) to convert the stacked TIFF files to AVI, track the pole movement (using vision.
PointTracker), produce a force-time figure, and export the batch data to an Excel (Microsoft) spread-
sheet. hµM max force was assessed as the peak force of contraction during a 20 Hz stimulation for 1 s. 
Whilst, hµM endurance/fatigue was assessed as the change in contraction force in response to a 10 Hz 
stimulation for 10 s (force at the end of stimulation [10 s] compared to peak force).

Mouse housing and rAAV6 intramuscular injection
All mouse experiments were approved by The University of Melbourne Animal Ethics Committee 
(AEC ID1914940) and conformed to the National Health and Medical Research Council of Australia 
guidelines regarding the care and use of experimental animals. C57BL/6J mice (JAX 000664) were 
obtained from Animal Resource Centre (WA, Australia). Mice were housed at 22°C (±1°C) in groups of 
five/cage and maintained on a Standard Chow diet (Specialty Feeds, Australia) with a 12 hr light/dark 
cycle and ad libitum access to food and water. For intramuscular injections of rAAV6, mice were anaes-
thetized with isoflurane (4% in oxygen at 1  l/min) and then transferred to a dissecting microscope 
stage with heat pad and isoflurane inhalation nose piece (2% in oxygen at 1 l/min). Unconsciousness 

https://doi.org/10.7554/eLife.82951
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was assessed via the lack of leg and optical reflexes for at least 1 min to ensure head position does 
not affect normal breathing. Mice received subcutaneous analgesic injection of meloxicam between 
the shoulder blades (5 mg/kg) and the surface of the hindlimbs were sterilized with 80% ethanol. The 
TA/EDL muscles were injected with 2×1010 vector genomes/30 µl of rAAV6 using a 32 G needle. Mice 
were returned to cages and body weights monitored daily for the first 3 days and then weekly.

Ex vivo muscle function testing
Mice were anaesthetized in the non-fasted state with isoflurane (4% in oxygen at 1  l/min; muscle 
contraction experiments) and transferred to a dissecting microscope stage with isoflurane inhalation 
nose piece (2% in oxygen at 1 l/min). Depth of anaesthesia was assessed via the lack of leg and optical 
reflexes for at least 1 min to ensure head position did not affect normal breathing. After confirming 
anaesthesia, skin from the hind legs was removed, and EDL muscles were sutured using 5.0 braided 
suture at both proximal and distal ends at the tendomuscular junction. Muscles were excised and 
incubated in Modified Krebs Buffer (116 mM NaCl, 4.6 mM KCl, 1.16 mM KH2PO4, 25.3 mM NaHCO3, 
2.5 mM CaCl2, 1.16 mM MgSO4) in a myograph (DMT, Denmark; #820 MS) at 30°C with constant 
gentle bubbling of 5% medical carbon dioxide in oxygen. For contractile function experiments, a DMT 
CS4 stimulator was used to deliver 0.2 ms supramaximal (26 V) pulses via stimulation electrodes (DMT 
300145) placed over the mid-belly of the muscle. Successive twitch stimulations, with at least 30 s rest, 
were used to determine muscle optimal length by very carefully stretching the muscle to optimum 
length when maximal twitch force was obtained. The frequency-force relationship was determined 
by stimulating muscles at different frequencies (10–200 Hz, 350 ms duration) with muscles rested for 
2 min between stimuli to avoid fatigue. Where appropriate, force values were normalized to muscle 
CSA (i.e. to calculate specific force) by diving muscle mass by the product of muscle length and muscle 
density (1.06 mg/mm3). A PowerLab 8/35 unit (ADInstruments) was used to digitize all force record-
ings and the Peak Parameters module in LabChart Pro (v8.1.16, ADInstruments) used for analysis of 
force responses.

ALS model mice
SOD1G37R mice were sourced from The Jackson Laboratory and were subsequently bred and housed 
at the University of Melbourne, Melbourne, as previously described (Roberts et al., 2014) to generate 
transgenic mice and non-transgenic littermates used in this study. Animals were sacrificed at 25 weeks 
of age and tissues collected using previously described protocols in the non-fasted state (Hilton et al., 
2017). All studies involving the use of SOD1G37R mice and non-transgenic littermates were approved 
by a University of Melbourne Animal Experimentation Ethics Committee (approval #2015124) and 
conformed with guidelines of the Australian National Health and Medical Research Council.

Western blotting
Proteins were separated on NuPAGE 4–12% Bis-Tris protein gels (Thermo Fisher Scientific) in MOPS 
SDS Running Buffer at 160 V for 1 hr at room temperature. The protein was transferred to PVDF 
membranes (Millipore; #IPFL00010) in NuPAGE Transfer Buffer at 20 V for 1 hr at room tempera-
ture and blocked with 5% skim milk in Tris-buffered saline containing 0.1% Tween-20 (TBST) for at 
least 30 min at room temperature with gentle shaking. The membranes were incubated overnight in 
primary antibody with 5% BSA in TBST with gentle shaking at 4°C and washed three times in TBST 
at room temperature. Anti-UFC1 (EPR15014-102, ab189252), anti-UFSP2 (EP13424-49, ab192597), 
and anti-UFM1 (EPR4264(2), ab109305) were ordered from Abcam. The membranes were incubated 
with HRP-secondary antibody in 5% skim milk in TBST for 45 min at room temperature and washed 
three times with TBST. HRP-Donkey Anti-Rabbit (711-035-152, RRID:AB_10015282) was ordered 
from Jackson ImmunoResearch. Protein was visualized with Immobilon Western Chemiluminescent 
HRP Substrate (Millipore; #WBKLS0500) and imaged on a ChemiDoc (Bio-Rad). Densitometry was 
performed in ImageJ (Schneider et al., 2012).

Immunostaining and microscopy
TA muscles were embedded in optimal cutting temperature compound (Tissue-Tek) and frozen in 
2-methylbutane (Sigma-Aldrich; #320404) cooled in liquid nitrogen. Eight µm serial transverse sections 
were cut from the middle of the TA in a cryostat then mounted on uncoated, pre-cleaned glass slides. 

https://doi.org/10.7554/eLife.82951
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Sections were fixed in 4% PFA for 10 min then blocked for 1 hr at room temperature in goat serum 
solution (5% goat serum, 2% BSA, 0.1% Triton in PBS). Sections were then air-dried and incubated in 
a humidity chamber overnight at room temperature in a primary antibody cocktail solution comprised 
of 1:25 SC-71 (DSHB; mouse IgG1), 1:10 BF-F3 (DSHB; mouse IgM), and 1:250 Laminin (Sigma; L9393; 
rabbit IgG) in 0.05% PBSTween-20 to differentiate MHC type I, MHC type IIA, MHC type IIB fibers, 
and laminin regions, respectively. All non-reactive fibers were assumed to be MHC type IIX fibers. 
After primary incubation, sections were washed three times with PBS then incubated in a humidity 
chamber for 1.5 hr at room temperature in a secondary antibody cocktail solution comprised of 1:250 
Alexa Fluor 555 (Goat anti-mouse IgG1), 1:250 Alexa Fluor 350 (Goat anti-mouse IgM), and 1:250 
Alexa Fluor 647 (Goat anti-rabbit IgG) in 0.05% PBSTween-20. After secondary incubation, sections 
were washed three times with PBS, air-dried and mounted with Fluoro-Gel (ProSciTech IM030) under 
a coverslip. Fluorescence imaging of the whole section was captured with an upright microscope with 
a camera (Axio Imager M2, Carl Zeiss, Wrek, Göttingen, Germany). Pseudo colouring of each fluo-
rescence channel was performed with ZEN 3.3 (Blue edition, Carl Zeiss, Wrek, Göttingen, Germany). 
Quantification was performed with Fiji (ImageJ; NIH).

MuscleProt web server implementation
MuscleProt was developed using the R programming language for the backend and relies on the 
shiny package for the web server front-end in addition to HTML, CSS, and JavaScript. The WGCNA 
package is used to perform biweight midcorrelation (bicor) analyses (Langfelder and Horvath, 2008) 
and interactive network plots are created using networkD3. Multivariate analyses are performed using 
the ropls package (Thévenot et al., 2015). Tables are created using the DT package and all other 
visualizations use a combination of ggplot2 and plotly. MuscleProt is deployed on the Melbourne 
Research Cloud, running Ubuntu 18.04 and utilizing hypervisors built on AMD EPYC 2 (base CPU 
clock speed 2.0 GHz, burst clock speed 3.35 GHz). The Melbourne Research Cloud is based on the 
OpenStack open-source cloud platform.

Statistical analysis
Statistics on densitometry, muscle function, and histology were performed in GraphPad Prism (Version 
9.0.0). T-tests (unpaired for ALS analysis or paired for rAAV6 analysis) or two-way ANOVA (rAAV6 anal-
ysis) were used with a significance level of p<0.05. All mentions of sample size (n) refer to biological 
replicates.
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Supplementary files
•  Supplementary file 1. Hybrid Mouse Diversity Panel (HMDP) skeletal muscle proteomics. 
Proteomics data of gastrocnemius muscle displaying quantification ratios of each sample compared 
to its corresponding pooled tandem mass tag (TMT) control. PEP: posterior error probability. 
Related to Figures 1–3, Figure 1—figure supplement 1.

•  Supplementary file 2. Hybrid Mouse Diversity Panel (HMDP) skeletal muscle protein-quantitative 
trait loci (pQTLs). Protein quantitative trait loci from 161 HMDP cohort mice. Table contains cis-
pQTLs (p < 1×10−4) and trans-pQTLs (p < 5 × 10−8), including genomic locations of the single 
nucleotide polymorphism (SNP) and associated gene. pQTLs are annotated with proxy (cis/trans), 
intragenic variants, known LD blocks, variant effect, variant impact, and target screen prioritization 
columns. Related to Figures 1–3, and Figure 1—figure supplement 2.

•  Supplementary file 3. Hybrid Mouse Diversity Panel (HMDP) skeletal muscle pairwise protein-
protein correlations. Protein-protein correlation as determined using biweight midcorrelation. p-
Values and q-values derived using the Benjamini-Hochberg procedure, and only positive correlations 
are shown (cor > 0.3 and q < 0.05). Correlated protein pairs are annotated with protein:protein 
interactions from the CORUM and BioPlex databases, and subcellar. Related to Figures 1 and 2.

•  Supplementary file 4. Hybrid Mouse Diversity Panel (HMDP) molecular or phenotypic traits. 
Summary of traits integrated into the current study including Pubmed ID sources. Related to 
Figures 2 and 3.

•  Supplementary file 5. Hybrid Mouse Diversity Panel (HMDP) molecular or phenotypic quantitative 
trait loci (QTLs). Table contains QTLs (p < 1×10−4) including chromosome, genomic location, 
including Pubmed ID sources. Related to Figures 2 and 3.

•  Supplementary file 6. Proteomics of skeletal muscle treated with either rAAV6:shScramble or 
AAV6:shUFC1. Proteomics of extensor digitorum long (EDL) muscles displaying tandem mass tag 
(TMT) quantification expressed as Log2(area under the curve). Significance was calculated using 
paired Student’s t-test with Benjamini-Hochberg FDR. PEP: posterior error probability. Related to 
Figure 4.

•  Supplementary file 7. shRNA sequences used in the human micro-muscle screen and mouse 
shUFC1 experiments. Related to Figure 4.

•  MDAR checklist 

•  Source data 1. Genebass datasets for UFC1, EPHX1, DUSP23, NIT1, MPZ, BPNT1 and PCP4L1.

Data availability
The proteomics data generated in this study are deposited to the ProteomeXchange Consor-
tium via the PRIDE (Perez-Riverol et  al., 2019) under the identifiers PXD032729, PXD034913 
and PXD035170. The code used for downstream analysis of proteomic data can be found at: 
https://github.com/JeffreyMolendijk/skeletal_muscle, (copy archived at swh:1:rev:9311d7b-
fb59979d80e18612879631dc78f2f0902; Molendijk, 2022). The following entries 
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from Genebass (Karczewski et al., 2022) were used: UFC1, EPHX1, DUSP23, NIT1, MPZ, BPNT1 
and PCP4L1.

The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Parker BL 2023 Proteomic analysis of 
a targeted functional 
genomic screen in human 
skeletal muscle organoids

https://www.​ebi.​ac.​
uk/​pride/​archive/​
projects/​PXD034913

PRIDE, PXD034913

Parker BL 2023 Proteomic analysis of UFC1 
knockdown in mouse 
skeletal muscle

https://www.​ebi.​ac.​
uk/​pride/​archive/​
projects/​PXD035170

PRIDE, PXD035170

Parker BL 2023 Proteomic analysis of 
skeletal muscle from the 
Hybrid Mouse Diversity 
Panel

https://www.​ebi.​ac.​
uk/​pride/​archive/​
projects/​PXD032729

PRIDE, PXD032729
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Appendix 1

Appendix 1—key resources table 
Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers

Additional 
information

Antibody Rabbit monoclonal anti-UFC1 Abcam EPR15014-102 (ab189252) (1:1000)

Antibody Rabbit monoclonal anti-UFSP2 Abcam EP13424-49 (ab192597) (1:1000)

Antibody Rabbit monoclonal anti-UFM1 Abcam EPR4264(2) (ab109305) (1:1000)

Antibody Rabbit monoclonal antiBiP
Cell Signaling 
Technologies 3177 (1:1000)

Antibody
Rabbit monoclonal SQSTM1/p62 
(D1Q5S)

Cell Signaling 
Technologies 39749 (1:1000)

Antibody
Rabbit monoclonal K48-linkage 
Specific Polyubiquitin (D9D5)

Cell Signaling 
Technologies 8081 (1:1000)

Antibody
Donkey polyclonal Anti-Rabbit-
HRP

Jackson 
ImmunoResearch 711-035-152 (RRID:AB_10015282) (1:10000)

Genetic reagent 
(Homo sapiens) Human Skeletal Myoblasts Lonza CC-2580 (lot #18TL269121)

Genetic reagent 
(Homo sapiens)

Human embryonic kidney 
293 cells expressing SV40 large 
T antigen ATCC CRL-1573

Strain, strain 
background (Mus 
musculus) A/J JAX RRID:IMSR_JAX:000646

Strain, strain 
background (Mus 
musculus) AXB10/PgnJ JAX RRID:IMSR_JAX:001681

Strain, strain 
background (Mus 
musculus) AXB13/PgnJ JAX RRID:IMSR_JAX:001684

Strain, strain 
background (Mus 
musculus) AXB15/PgnJ JAX RRID:IMSR_JAX:001685

Strain, strain 
background (Mus 
musculus) AXB19a/PgnJ JAX RRID:IMSR_JAX:001686

Strain, strain 
background (Mus 
musculus) AXB4/PgnJ JAX RRID:IMSR_JAX:001676

Strain, strain 
background (Mus 
musculus) AXB8/PgnJ JAX RRID:IMSR_JAX:001679

Strain, strain 
background (Mus 
musculus) B6.Cg-Tg(SOD1*G37R)42Dpr/J JAX RRID:IMSR_JAX:008342

Strain, strain 
background (Mus 
musculus) BALB/cByJ JAX RRID:IMSR_JAX:001026

Strain, strain 
background (Mus 
musculus) BTBR T+tf/J NA NA

Strain, strain 
background (Mus 
musculus) BUB/BnJ JAX RRID:IMSR_JAX:000653
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers

Additional 
information

Strain, strain 
background (Mus 
musculus) BXA12/PgnJ JAX RRID:IMSR_JAX:001700

Strain, strain 
background (Mus 
musculus) BXA13/PgnJ JAX RRID:IMSR_JAX:001826

Strain, strain 
background (Mus 
musculus) BXA14/PgnJ JAX RRID:IMSR_JAX:001702

Strain, strain 
background (Mus 
musculus) BXA16/PgnJ JAX RRID:IMSR_JAX:001703

Strain, strain 
background (Mus 
musculus) BXA2/PgnJ JAX RRID:IMSR_JAX:001693

Strain, strain 
background (Mus 
musculus) BXA4/PgnJ JAX RRID:IMSR_JAX:001694

Strain, strain 
background (Mus 
musculus) BXD100 NA NA

Strain, strain 
background (Mus 
musculus) BXD100/RwwJ JAX RRID:IMSR_JAX:007143

Strain, strain 
background (Mus 
musculus) BXD12/TyJ JAX RRID:IMSR_JAX:000045

Strain, strain 
background (Mus 
musculus) BXD14/TyJ JAX RRID:IMSR_JAX:000329

Strain, strain 
background (Mus 
musculus) BXD19/TyJ JAX RRID:IMSR_JAX:000010

Strain, strain 
background (Mus 
musculus) BXD21/TyJ JAX RRID:IMSR_JAX:000077

Strain, strain 
background (Mus 
musculus) BXD22/TyJ JAX RRID:IMSR_JAX:000043

Strain, strain 
background (Mus 
musculus) BXD27/TyJ JAX RRID:IMSR_JAX:000041

Strain, strain 
background (Mus 
musculus) BXD28/TyJ JAX RRID:IMSR_JAX:000047

Strain, strain 
background (Mus 
musculus) BXD29/TyJ NA NA

Strain, strain 
background (Mus 
musculus) BXD31/TyJ JAX RRID:IMSR_JAX:000083

Strain, strain 
background (Mus 
musculus) BXD32/TyJ JAX RRID:IMSR_JAX:000078
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers

Additional 
information

Strain, strain 
background (Mus 
musculus) BXD33/TyJ JAX RRID:IMSR_JAX:003222

Strain, strain 
background (Mus 
musculus) BXD34/TyJ JAX RRID:IMSR_JAX:003223

Strain, strain 
background (Mus 
musculus) BXD39/TyJ JAX RRID:IMSR_JAX:003228

Strain, strain 
background (Mus 
musculus) BXD40/TyJ JAX RRID:IMSR_JAX:003229

Strain, strain 
background (Mus 
musculus) BXD44/RwwJ JAX RRID:IMSR_JAX:007094

Strain, strain 
background (Mus 
musculus) BXD45/RwwJ JAX RRID:IMSR_JAX:007096

Strain, strain 
background (Mus 
musculus) BXD48/RwwJ JAX RRID:IMSR_JAX:007097

Strain, strain 
background (Mus 
musculus) BXD48A NA NA

Strain, strain 
background (Mus 
musculus) BXD5/TyJ JAX RRID:IMSR_JAX:000037

Strain, strain 
background (Mus 
musculus) BXD50/RwwJ JAX RRID:IMSR_JAX:007099

Strain, strain 
background (Mus 
musculus) BXD51/RwwJ JAX RRID:IMSR_JAX:007100

Strain, strain 
background (Mus 
musculus) BXD55/RwwJ JAX RRID:IMSR_JAX:007103

Strain, strain 
background (Mus 
musculus) BXD60/RwwJ JAX RRID:IMSR_JAX:007105

Strain, strain 
background (Mus 
musculus) BXD61/RwwJ JAX RRID:IMSR_JAX:007106

Strain, strain 
background (Mus 
musculus) BXD62/RwwJ JAX RRID:IMSR_JAX:007107

Strain, strain 
background (Mus 
musculus) BXD63 NA NA

Strain, strain 
background (Mus 
musculus) BXD65 NA NA

Strain, strain 
background (Mus 
musculus) BXD66/RwwJ JAX RRID:IMSR_JAX:007111
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers

Additional 
information

Strain, strain 
background (Mus 
musculus) BXD67/RwwJ JAX RRID:IMSR_JAX:007112

Strain, strain 
background (Mus 
musculus) BXD68/RwwJ JAX RRID:IMSR_JAX:007113

Strain, strain 
background (Mus 
musculus) BXD69/RwwJ JAX RRID:IMSR_JAX:007114

Strain, strain 
background (Mus 
musculus) BXD73/RwwJ JAX RRID:IMSR_JAX:007117

Strain, strain 
background (Mus 
musculus) BXD75/RwwJ JAX RRID:IMSR_JAX:007119

Strain, strain 
background (Mus 
musculus) BXD86/RwwJ JAX RRID:IMSR_JAX:007129

Strain, strain 
background (Mus 
musculus) BXD87/RwwJ JAX RRID:IMSR_JAX:007130

Strain, strain 
background (Mus 
musculus) BXH10/TyJ JAX RRID:IMSR_JAX:000032

Strain, strain 
background (Mus 
musculus) BXH14/TyJ JAX RRID:IMSR_JAX:000009

Strain, strain 
background (Mus 
musculus) BXH8/TyJ JAX RRID:IMSR_JAX:000076

Strain, strain 
background (Mus 
musculus) C3H/HeJ JAX RRID:IMSR_JAX:000659

Strain, strain 
background (Mus 
musculus) C57BL/6J JAX RRID:IMSR_JAX:000664

Strain, strain 
background (Mus 
musculus) C58/J JAX RRID:IMSR_JAX:000669

Strain, strain 
background (Mus 
musculus) CBA/J JAX RRID:IMSR_JAX:000656

Strain, strain 
background (Mus 
musculus) CE/J JAX RRID:IMSR_JAX:000657

Strain, strain 
background (Mus 
musculus) CXB12/HiAJ JAX RRID:IMSR_JAX:001633

Strain, strain 
background (Mus 
musculus) CXB2/ByJ JAX RRID:IMSR_JAX:000352

Strain, strain 
background (Mus 
musculus) DBA/2J JAX RRID:IMSR_JAX:000671
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers

Additional 
information

Strain, strain 
background (Mus 
musculus) FVB/NJ JAX RRID:IMSR_JAX:001800

Strain, strain 
background (Mus 
musculus) LG/J JAX RRID:IMSR_JAX:000675

Strain, strain 
background (Mus 
musculus) LP/J JAX RRID:IMSR_JAX:000676

Strain, strain 
background (Mus 
musculus) MRL/MpJ JAX RRID:IMSR_JAX:000486

Strain, strain 
background (Mus 
musculus) NON/ShiLtJ JAX RRID:IMSR_JAX:002423

Strain, strain 
background (Mus 
musculus) NOR/LtJ JAX RRID:IMSR_JAX:002050

Strain, strain 
background (Mus 
musculus) NZB/BINJ JAX RRID:IMSR_JAX:000684

Strain, strain 
background (Mus 
musculus) PL/J JAX RRID:IMSR_JAX:000680

Strain, strain 
background (Mus 
musculus) SJL/J JAX RRID:IMSR_JAX:000686

Software, algorithm R version 4.1.1
R Development 
Core Team, 2016 https://www.R-project.org/

Software, algorithm Limma 3.32.2
Ritchie et al., 
2015

https://bioconductor.org/ 
packages/release/bioc/html/limma.html

Software, algorithm CoffeeProt
Molendijk and 
Parker, 2021a https://www.coffeeprot.com

Software, algorithm TeaProt
Molendijk et al., 
2022 https://tea.coffeeprot.com

Software, algorithm Mol* (Molstar)
Sehnal et al., 
2021 https://molstar.org/

Software, algorithm WGCNA
Langfelder and 
Horvath, 2008

https://cran.r-project.org/web/ 
packages/WGCNA/

Software, algorithm ColabFold (Alphafold2)
Mirdita et al., 
2022

https://colab.research.google.com/ 
github/sokrypton/ColabFold/ 
blob/main/AlphaFold2.ipynb

Software, algorithm Genebass
Karczewski et al., 
2022 https://app.genebass.org/

Software, algorithm FoldX
Delgado et al., 
2019 http://foldxsuite.crg.eu/

Software, algorithm PROVEAN
Choi and Chan, 
2015 http://provean.jcvi.org/index.php

Software, algorithm DynaMut
Rodrigues et al., 
2018

http://biosig.unimelb. 
edu.au/dynamut/
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