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Abstract
We introduce a new method for rapid computation of 3D molecular similarity that combines electrostatic field compari-
son with comparison of molecular surface-shape and directional hydrogen-bonding preferences (called “eSim”). Rather 
than employing heuristic “colors” or user-defined molecular feature types to represent conformation-dependent molecular 
electrostatics, eSim calculates the similarity of the electrostatic fields of two molecules (in addition to shape and hydrogen-
bonding). We present detailed virtual screening performance data on the standard 102 target DUD-E set. In its moderately 
fast screening mode, eSim running on a single computing core is capable of processing over 60 molecules per second. In this 
mode, eSim performed significantly better than all alternate methods for which full DUD-E data were available (mean ROC 
area of 0.74, p < 10

−9 , by paired t-test, compared with the best performing alternate method). In addition, for 92 targets of 
the DUD-E set where multiple ligand-bound crystal structures were available, screening performance was assessed using 
alternate ligands or sets thereof (in their bound poses) as similarity targets. Using the joint alignment of five ligands for each 
protein target, mean ROC area exceeded 0.82 for the 92 targets. Design-focused application of ligand similarity methods 
depends on accurate predictions of geometric molecular relationships. We comprehensively assessed pose prediction accu-
racy by curating nearly 400,000 bound ligand pose pairs across the DUD-E targets. Overall, beginning from agnostic initial 
poses, we observed an 80% success rate for RMSD ≤ 2.0 Å  among the top 20 predicted eSim poses. These examples were 
split roughly 50/50 into cases with high direct atomic overlap (where a shared scaffold exists between a pair) and low direct 
atomic overlap (where where a ligand pair has dissimilar scaffolds but largely occupies the same space). Within the high 
direct atomic overlap subset, the pose prediction success rate was 93%. For the more challenging subset (where dissimilar 
scaffolds are to be aligned), the success rate was 70%. The eSim approach enables both large-scale screening and rational 
design of ligands and is rooted in physically meaningful, non-heuristic, molecular comparisons.

Keywords Molecular similarity · Virtual-screening · Pose prediction · Surflex · ForceGen · ROCS · Ligand-based 
modeling · Ligand alignment

Introduction

Calculation of 3D ligand similarity has become a widely 
used approach within computer-aided drug design, espe-
cially for virtual screening but also for pose prediction and 

multiple ligand alignment. Many different methods have 
been developed, based on aspects of volumetric overlap, 
surface concordance, or matching of electrostatic or other 
ligand features such as aromatic rings. The field has been 
the subject of extensive review, and best practices for the 
benchmarking of such methods has been the subject of a 
special issue published in this journal. We refer interested 
readers to the perspective from Nicholls et al. for a review 
[1] and the collection of papers published here in 2008 [2], 
which address numerous aspects of virtual screening assess-
ment, pose prediction, statistical evaluation approaches, and 
benchmark construction [3–13].

Here, we introduce a new 3D similarity method that 
combines the surface-based approach of Surflex-Sim and 
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related methods [14–16] with an electrostatic field com-
parison method that derives from the recently introduced 
QuanSA 3D-QSAR approach [17]. The method is called 
“eSim” for electrostatic-field and surface-shape similarity 
(with the three “s” characters giving rise to the capital “S”). 
Figure 1 depicts the central calculation within eSim, which 
is the computation of feature values at observer points, with 
the latter having been placed outside of a query molecule 
(also referred to as a “target molecule” in what follows). At 
each observer point, six values are computed:

1. stericdist : The distance in Angstroms from the point to 
the atom surface, which corresponds to the minimum 
over the distances to each atom less that atom’s VdW 
radius.

2. coulen : The molecular electric field is characterized in 
terms of the Coulombic energy of moving a point charge 
of + 0.2e to the observer point from an infinite distance 
(as in the QuanSA approach [17], with additional details 
provided in the Methods Section).

3. dondist : The minimum distance from the observer to any 
donor proton’s surface.

4. dontheta : The angle formed by the observer point, the 
donor proton, and the atom attached to the donor proton.

5. accdist : The minimum distance from the observer to any 
acceptor atom’s surface.

6. acctheta : The angle formed by the observer point, the 
acceptor atom, and the centroid of the atoms attached to 
the acceptor atom (180°, for example, when a pyridine 
nitrogen is oriented perfectly toward an observer).

Given the pose of a subject molecule, aligned within the 
query molecule’s observer points, the similarity of the two 
is computed using a sum of Gaussian functions of the dif-
ferences between the respective feature values. If, for each 
observer point, the subject molecule is able to mimic the 
query molecule perfectly, the differences will all be 0, the 
corresponding Gaussian function values will all be 1, and 
the normalized eSim score of the comparison will be 10.0 
(minus the estimate of ligand strain on the subject molecule). 
The precise details of the similarity function will be given in 
the Methods Section, but the key features are that it is: (1) 
responsive to differences in molecular surface shape with-
out being directly dependent on atomic center correspond-
ence in measuring shape; (2) responsive to both the distance 
and direction of hydrogen bond participants; (3) capable of 
detecting differences in the local electrostatic fields of mol-
ecules that may otherwise be close to isosteric and contain 
identical hydrogen bonding features; and (4) continuous and 
piecewise differentiable with respect to molecular pose.

Figure  2 shows the 2-pyrrolidone example in 3D 
(magenta) along with the optimal alignments and eSim 
scores of five small molecules (cyan), each with differences 
in the disposition of surface shape, charge, and hydrogen 
bonding. In terms of the relative ranking, cyclopentanone 
is the most closely isosteric, and it mimics the acceptor 
functionality of the target. Pyrrole also mimics a single 
hydrogen-bonding atom of the target, but it is less perfectly 
isosteric and, owing to its aromaticity, is also less ideal a 
match in terms of the electrostatic field comparison. Both 
acetic acid and acetamidine have formal charges, which the 

Fig. 1  A 2D depiction of the 
eSim feature calculation shows 
2-pyrrolidone surrounded by 14 
observer points at which each 
of six values are computed, all 
of which depend on the exact 
conformation and alignment of 
the subject molecule
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target lacks, but they mimic the target better in some respects 
than benzene, which does not match the hydrogen bonding 
or electrostatics of the target and only partially mimics the 
surface shape.

The DUD-E docking benchmark [18] has become a de 
facto standard for measuring virtual screening effectiveness 
for both docking methods and ligand similarity methods. 
The benchmark covers a wide variety of pharmaceutically 
relevant targets (102 total), each with a curated protein struc-
ture and cognate bound ligand, along with a set of active 
ligands and computationally generated decoys. Two recent 
reports [19, 20] make use of the full set, as given, taking 
the DUD-E crystallographic ligand as the “query” in vir-
tual screens, to benchmark molecular similarity methods in 
terms of both accuracy and speed. The similarity methods 
included cover widely-used methods such as ROCS [21, 22], 
other volumetric approaches (VAMS [19], WEGA [23], and 
OptiPharm [20]), and approaches that utilize conformer-spe-
cific features to characterize shape (USR [24]).

The performance of the eSim method for virtual screen-
ing will be demonstrated using the full DUD-E benchmark 
to facilitate comparisons of virtual screening efficiency and 
calculation speed with OptiPharm, ROCS, ROCS-shape, 
USR, USR-shape, VAMS, and WEGA. A number of reports 
involving new methods have either made use of various 
subsets of the DUD-E targets, actives, or decoys, employed 
machine-learning to produce target-specific tuned perfor-
mance, or have made use of crystallographic information 
to augment ligand similarity computations; these methods 
will not be discussed here, owing to the difficulty in making 
meaningful comparisons.

We have also curated an augmentation to DUD-E that 
consists of, on average, over 50 aligned protein structures 
and corresponding bound ligands per target. This is the 
largest set of structure-based multiple alignments for test-
ing ligand similarity of which we are aware. It will be 
used to characterize the effect of varying query molecules 
on similarity-based screening as well as for extensively 

Fig. 2  Five small molecules 
(cyan) are shown in their opti-
mal poses relative to the query/
target 2-pyrrolidone (magenta, 
shown with yellow observer 
points, upper left), with their 
corresponding eSim scores



868 Journal of Computer-Aided Molecular Design (2019) 33:865–886

1 3

characterizing pose-prediction. We call this augmented data 
set the “DUD-E+ ” benchmark.

In characterizing pose prediction for ligand-based 
approaches, we consider pairs of molecules in their aligned 
crystallographic poses. One is designated as the target, and 
the other the subject, for which a memory-free configuration 
is generated and then is prepared using thorough conforma-
tional search (see [25, 26] for details). Just as with docking, 
there is an easy form of this task and a hard form. The easy 
form (analogous to cognate ligand re-docking) is character-
ized by a high degree of substructural similarity between the 
subject and target molecules, where a high degree of direct 
atomic overlap between the two is observed in the crystal-
lographic poses. The hard form (analogous to cross-docking) 
occurs when relatively little such atom-centric correspond-
ence exists. However, for ligand similarity to be expected to 
work at all, the subject molecule must share some significant 
level of physical overlap with the target.

We define two measures of overlap, direct atomic overlap 
(DAO) and molecular overlap (MO), which distinguish trac-
table cases from intractable ones and distinguish between 
the easier and harder of the alignment challenges. Figure 3 
illustrates the distinction between the two. For each measure, 

the percentage of atoms on the subject molecule that meet 
the measure’s criterion is calculated. For MO, a subject atom 
passes if its atomic center falls anywhere within the Van 
der Waals volume of the target molecule. In Fig. 3, the two 
estrogen receptor ligands are shown in the bound poses, and 
the MO is 91%, with just three atoms of the subject molecule 
protruding from within the target (including the hydroxyl 
proton marked with an asterisk). For DAO, at least three-
quarters of a subject atom’s Van der Waals volume must 
intersect with a single atom of the target molecule. In the 
case shown, just 9% of the subject molecule’s atoms meet 
this criterion (three atoms, including the hydroxyl oxygen 
that is noted in the Figure). Note that the definition of DAO 
is somewhat sensitive to minor alignment changes, but the 
degree of ligand alignment uncertainty derived from protein-
structure pocket alignments does not interfere with reliable 
identification of cases with high or low DAO.

In order to thoroughly analyze the effects of query ligand 
choice and to comprehensively assess pose prediction, we 
identified all PDB structures for each DUD-E target that 
had a matching UniProt identifier. After an automated pro-
cedure for bond-order assignment, protonation, and mutual 
alignment (see Methods for details), we obtained between 5 

Fig. 3  Two estrogen receptor ligands in the bound poses (subject 
molecule shown in cyan and target shown in magenta, upper left), 
exhibit nearly total molecular overlap in terms of the coverage of the 

5KRL ligand by the 5TN4 ligand, but there is almost no direct atomic 
overlap between the two
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and 359 variants for each of 92 DUD-E targets (an average 
of 56 bound ligands per target). We have defined the set of 
interesting “tractable” alignment pairs as those where: (1) 
the subject and target molecule are non-identical; and (2) the 
subject has at least 80% molecular overlap with the target or 
it has at least 50% direct atomic overlap with the target. Fig-
ure 4 shows the breakdown of the 381,467 alignment pairs 
that fall within this set. Overall, 93% of the cases have high 
molecular overlap and 52% have high direct atomic overlap. 
The high-MO but low-DAO subset (as in the example from 
Fig. 3) is nearly 50% of the total.

In what follows, we will describe the eSim method in 
detail as well as the curation process for the DUD-E+ bench-
mark. Comparative results for screening enrichment will be 
presented for eSim, the seven alternate methods listed above, 
and for the related Surflex-Sim method. Using DUD-E+ , the 
effects of making use of alternate query ligands will be ana-
lyzed as well as the effect of using a joint query comprised 
of five crystallographically aligned ligands for each protein 
target.

The eSim method is intuitive and based on physical aspects 
of protein-ligand interactions, and it avoids purely heuristic 
molecular descriptors. Its performance, in terms of virtual 
screening, represents a significant advance over alternate 
methods, both in terms of accuracy and speed, certainly to 
the extent that computational benchmarks such as DUD-E 
can measure. Using a single computing core, eSim is capa-
ble of screening nearly 25,000,000 molecules per day, and 
the flexibility of the multi-core implementation allows for 

rapid computations involving deeper search when predicting 
molecular poses. The eSim method is implemented within the 
Similarity module of the Surflex Platform.

Methods

Where possible, data were collected to support fair and 
direct comparisons between the methods reported here and 
widely used alternatives. Every effort has been made to 
ensure that the curated data fairly represents the benchmark 
data underpinning other published reports, and care has been 
taken to make use of unbiased, fully automatic, computa-
tional procedures in order to eliminate human bias. In cases 
where pose prediction accuracy was assessed, care was taken 
to remove all memory of 3D coordinates prior to generating 
initial 3D structural models and proceeding with confor-
mational elaboration and similarity-based pose prediction. 
Note that all non-eSim virtual screening performance data 
were taken from the cited literature, where experts applied 
the respective methods to data sets specifically prepared for 
utilization by those methods.

Similarity definition

The eSim approach is related to the morphological similar-
ity method that was introduced in 2000 [16]. The change in 
eSim is the inclusion of Coulombic field comparison, but 
there are also some differences in the way that hydrogen 
bond directionality is represented, in the details of the treat-
ment of observer points, and with the inclusion of explicit 
ligand strain. The overall similarity score, as a function of 
the subject ligand pose Ls

P
 , is given as follows:

The sum is done over n observer points (see Fig. 1), with Ct 
being a normalizing constant such that the comparison of 
the target ligand with itself yields a value of 10.0. The value 
e(Ls

p
) is a negative value based on an estimate of ligand strain 

(detailed below). The component functions in Eq. 1 will be 
defined in terms of the feature values at the observer points.

The component functions and some aspects of feature 
value definitions depend on Gaussian and sigmoidal func-
tions, as follows:

When an observer point set is constructed, it is done with 
respect to an ideal distance from the target ligand, denoted 
� (the default value is 4.0 Å, and the procedure for placing 

(1)S(Ls
p
) =

∑n

i=1
Wi(S

stc
i

+ Scoul
i

+ Sdon
i

+ Sacc
i

)

Ct
+ e(Ls

p
)

(2)g(x, �) = e−x
2
∕�

(3)s(x, �) =
1

1 + e−x∕�

Fig. 4  Nearly 400,000 alignment pairs exist where there is some 
degree of reasonable overlap from one ligand onto the other, split 
fairly evenly between cases with low direct atomic overlap and high
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observer points is detailed below). As outlined above, at 
each observer point, six values are calculated, as follows:

1. stericdist : The distance in Angstroms from the point to 
the atom surface, which corresponds to the minimum 
over the distances to each atom less that atom’s VdW 
radius. This will be denoted stcs

i
 for the subject ligand at 

observer point i and stct
i
 for the target ligand.

2. coulen : The molecular electric field is characterized in 
terms of potential Coulombic energy, denoted couls

i
 and 

coult
i
 . At each observer point, the potential energy of a 

point charge of 0.2e (moved from an infinite distance to 
the observer’s location) is calculated, with rij denoting 
the distance from observer i to atom j and the partial 
charge of atom j being qj , as follows: 

 Equation 4 re-scales the distances from the atoms being 
observed, such that the observer points feel the effects 
of partial atomic charges as if the observers were closer 
to the atomic surface, which is important in order to dif-
ferentiate between spatially close differences in charge. 
Note that if dij is less than zero, the value is clipped 
to zero. Equation 5 produces a value of 1 at close dis-
tances, and it begins to increase at a distance of approxi-
mately one water shell beyond � , and then it increases 
without bound, becoming effectively infinite at large 
distances. The units of couls

i
 and coult

i
 are in kcal/mol 

(Eq. 6). By defining the Coulombic feature values in this 
manner, they measure local electrostatic effects primar-
ily, and they have a computationally convenient cutoff 
that allows skipping of ligand atoms above a threshold 
distance.

3. dondist : The minimum distance from the observer i to any 
donor proton’s surface is denoted dons

i
 and dont

i
.

4. dontheta : The angle formed by the observer point, the 
minimum-distance donor proton, and the atom attached 
to that donor proton is denoted don�s

i
 and don�t

i
.

5. accdist : The minimum distance from the observer to any 
acceptor atom’s surface is denoted accs

i
 and acct

i
.

6. acctheta : The angle formed by the observer point, the 
minimum-distance acceptor atom, and the centroid of 
the atoms attached to that acceptor atom is acc�s

i
 and 

acc�t
i
.

(4)dij = rij − (� − 2.0)

(5)�(x) =
1

1 − s(x − (� + 2.0)), 0.5)

(6)couli =
∑n

j=1

0.2 ⋅ 332.0716 ⋅ qj

�(rij)(dij + 0.05)

For a subject ligand in a given pose to be compared to some 
target ligand, at each observer point i, Gaussian functions 
of the difference in observation values are computed, as 
follows:

In the case of the donor and acceptor comparisons, both the 
distance and directionality of the respective feature values 
on the subject and target ligands must match in order to yield 
a local similarity score of unity. Each of the � values is a 
constant that determines how sharply the Gaussians fall off 
with differences in the respective feature value types.

The wi values for the donor and acceptor comparisons are 
defined as follows:

The �da constant controls the steepness of the sigmoidal fal-
loff in the wi values. This concentrates the attention of the 
observer points on similarity values associated with donor 
and acceptor atoms that are close to each observer. If, for 
example, a ligand has just a single donor, comparisons at 
only those observer points close to the donor will be respon-
sive in terms of influence on similarity. These weights scale 
the comparisons in a similar fashion to the treatment of the 
dielectric, with the effects of donors and acceptors falling 
off through a sigmoidal step function as they become distant 
from the observer point.

Thus far, all aspects of the similarity calculation have 
been symmetric, with both the subject and target molecules 
being treated identically. One aspect of the calculation is 
not symmetric, and this has to do with both the placement 
of and weighting of observer points. The observer points are 
placed in such a fashion to be ideal with respect to the target 
ligand pose (the procedure is described in detail below). 
With a single target ligand, all observer points are places 
such that their minimum distance to the target ligand’s sur-
face is � . Making meaningful comparisons where one wants 

(7)Sstc
i

= g((stcs
i
− stct

i
), �stc)

(8)Scoul
i

= g((couls
i
− coult

i
), �coul)

(9)
Sdon
i

= g((dons
i
− dont

i
), �da)⋅

g((don�s
i
− don�t

i
), �da�) ⋅ w

don
i

(10)
Sacc
i

= g((accs
i
− acct

i
), �da)⋅

g((acc�s
i
− acc�t

i
), �da�) ⋅ w

acc
i

(11)
wdon
i

= s((� + 2.0) − dons
i
, �da)+

s((� + 2.0) − dont
i
, �da)

(12)
wacc
i

= s((� + 2.0) − accs
i
, �da)+

s((� + 2.0) − acct
i
, �da)
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to sensibly match a small ligand to a larger one will produce 
situations where an observer point will be quite far from the 
subject molecule but exactly � from the target.

In such a case, for the Coulombic comparisons in particu-
lar, a degenerate “similarity” may occur where a part of the 
target ligand that lacks charge will have close-by observers 
that are far from the subject molecule. In this situation, the 
nominal Coulombic feature values will both be close to zero, 
whether or not the subject molecule is charged proximal to 
the observer. This would result in some positive similarity 
where none exists in any real sense. Consequently, an overall 
weighting for each observer point is defined, which depends 
only on the subject ligand:

In order for a subject ligand to have a maximal score against 
a target ligand, it must match its surface shape, effective 
Coulombic field, and the positions and directions of its 
donor and acceptor atoms. Though not specified in Eq. 1, 
each of the individual similarity types (steric, Coulombic, 
and donor/acceptor) can be weighted by a constant (by 
default, all receive an equal weight of 1.0).

Ligand strain is measured by the nominal energy of 
the subject molecule above its global minimum (esti-
mated during ligand preparation), multiplied by a nega-
tive constant (the default value is 0.05). The constants 
� , �stc, �coul, �da, �da� , and �da are, respectively: 4.0, 2.0, 8.0, 
1.0, 0.5, and 0.25. These have not been optimized heavily; 
rather, values have been chosen such that the relative simi-
larity of examples such as the one in Fig. 1 show intuitive 
values and relative ranks.

Observer point placement

An alignment target may be a single molecule or it may be a 
set of mutually aligned molecules. An initial set of observer 
points is placed by first considering the union of all constitu-
ent atoms of the set. A sphere is placed with its center at 
the centroid, with its radius being 8.0 Å beyond the furthest 
atomic surface point. This sphere is tessellated such that 
the inter-point distance close to 1.0 Å. Each point is then 
moved as follows: (1) the minimum distance to the atoms is 
calculated; (2) the point is moved toward from the centroid 
in order to make the minimum surface distance � (4.0 Å). 
So, if the initial minimum distance is 10.0 Å, the point will 
be moved 6.0 Å toward the centroid); and (3) the process is 
repeated a total of ten times.

This procedure very rapidly converges on a set of points, 
each of which is nearly exactly 4.0 Å  from the nearest 
atomic surface of the union of the alignment target mol-
ecules. Then, this dense set of points is pruned such that 
no pair of observer points is closer than 2.0 Å from one 
another (for geometric accuracy) or 4.0 Å from one another 

(13)Wi = g(stcs
i
− � , 2.0)

(for screening). The pruning procedure is iterative, building 
a final set of feature points from an initial arbitrarily chosen 
singlet. The procedure repeatedly identifies the unselected 
feature point whose minimal distance to its nearest neighbor 
within the selected set is maximal. If that distance is greater 
than the desired inter-point distance, the point is added; oth-
erwise the procedure stops without adding the last identified 
feature point.

Note, however, that given a mixture of small and large 
molecules, it may be that some of the smaller ones are “hid-
den” by the larger ones and therefore do not have an observa-
tion point nearby. So, the process is repeated, but rather than 
using the merged set of all training ligands, each training 
ligand is processed individually. If any of the ligand-specific 
observer points is greater than 2.0 Å away from the evolving 
set, it is added to the set.

This process guarantees adequate sampling of the sur-
faces of all ligands that comprise an alignment target.

Pose optimization

Subject ligands to be aligned to a particular target are pre-
pared using ForceGen [25, 26], which provides an estimate 
of a ligand’s global energy minimum and also produces 
a diversity-optimized set of conformations within a fixed 
energy window (10.0 kcal/mol for non-macrocycles and 20.0 
kcal/mol for macrocycles). The ForceGen sampling modes 
most relevant to this work are: -pfast with up to 50 conform-
ers per molecule with limited ring search; -pscreen with up 
to 50 or 120 conformers per molecule depending on ligand 
flexibility (slightly deeper ring search); and -pgeom with up 
to 250 conformers per ensemble and thorough ring search.

The eSim method is controlled by similar options, corre-
sponding to those that are used for conformational sampling: 
-pfast, -pscreen, and -pgeom. The -pfast mode downsamples 
ensembles to a maximum of 25 conformers each and treats 
conformers as being rigid, with limited fine-grained align-
ment optimization. The -pscreen mode downsamples ensem-
bles to a maximum of 120 conformers each and also treats 
conformers as being rigid. It makes use of more extensive 
fine-grained alignment optimization for each subject ligand. 
The -pgeom mode downsamples ensembles to a maximum of 
250 conformers each, and it treats conformers as being flex-
ible during fine-grained pose optimization. Both the align-
ment parameters and rotatable ligand bonds are optimized 
for each subject ligand (using internal coordinates without 
varying bond lengths or angles).

In the first two modes, the conformational energy of 
the subject molecule’s conformers does not change, but in 
the geometric mode, the MMFF94sf force field is evalu-
ated in order to produce accurate estimates of ligand strain 
during ligand configurational changes. Though results will 
not be discussed here, the eSim method also implemented 
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a -pquant mode, which does no conformational downsam-
pling and varies ligand pose using full Cartesian movement, 
allowing for more subtle conformational changes than are 
available using internal coordinates alone.

For each conformer of a subject ligand, a “shrink-
wrapped” observer point set is created. This employs the 
same � value as in the construction of the target feature set, 
but no pruning of the observer points is done (the process 
can be time-consuming). As with the antedecent morpho-
logical similarity method [16], matching triangles are iden-
tified between the subject ligand’s conformers and a target 
ligand. Alignment transforms are calculated and applied to 
the conformers. The best scoring of the aligned conformers 
(according to the target ligand’s feature set) are retained. 
Those poses are then locally optimized, either using only the 
alignment parameters, alignment parameters and conforma-
tional internal coordinates, or using full all-atom Cartesian 
optimization.

Optimization is carried out using a quasi-Newton pro-
cedure, the Broyden–Fletcher–Goldfarb–Shanno algorithm 
(BFGS), which takes advantage of the analytical first deriva-
tive that is available because of the eSim function definition. 
Termination criteria for optimization are specific to each 
mode, trading off speed against more thorough optimization 
of the pose-dependent eSim value.

Molecular data sets

Results will be presented for eSim virtual screening perfor-
mance on the DUD-E set. While it has not been designed as 
a benchmark for ligand-based methods, it has become a de 
facto standard. Here, in addition to making use of the data 
as curated for comparison purposes, we augmented the set 
using additional data from the RCSB PDB.

Standard DUD‑E benchmark

The set consists of 102 protein targets, provided as a sin-
gle standard download. For each target, there is a receptor 
structure (PDB format), a bound ligand structure (SYBYL 
format), a set of known actives (SMILES format), and a set 
of computationally generated decoys (roughly 50 decoys per 
active compound, also in SMILES format). Data set prepara-
tion, for each target, was as follows:

1. Cognate ligand The cognate ligand, the target of simi-
larity calculations, was used unmodified, with partial 
charges calculated using the ForceGen internal method 
[25]:
sf-tools charge crystal_ligand.mol2 
xtal
–> xtal-orig-charged.mol2

2. Initial Structure 3D Generation The sets of curated 
active ligands and computationally generated decoys 
(actives_final.ism, decoys_final.ism) 
were re-formatted so that the first column contained 
SMILES and the second contained molecule identifi-
ers. Structure generation, with automatic protonation for 
physiological pH (and partial charge calculation), was 
done as follows:
sf-tools +reprot fgen3d actives.smi 
actives
–> actives.mol2

 The analogous procedure was carried out for the DUD-E 
decoys (decoys.ism).

3. Conformer generation Conformer ensembles were gen-
erated using two levels of search depth: -pfast and 
-pscreen. Actives and decoys were combined into a 
single archive, and the procedure was as follows:
sf-tools -pfast forcegen all.mol2 
mols_fast
–> mols_fast.sfdb

 The .sfdb file format is a binary compressed format to 
enable rapid reading of molecular ensembles, including 
different conformers with their corresponding energies. 
The procedure was repeated for the -pscreen option.

On average, the success rate for 3D conversion and con-
former generation for the actives was 99.5%, and for the 
inactives, it was 98.4%. The small fraction of failures 
occurred in the generation of 3D structures due to a lack of 
valid MMFF94sf parameters or due to uninterpretable aro-
matic bond groups. All molecules for which 3D structures 
were produced had their respective conformer ensembles 
generated successfully.

Augmented DUD‑E data set: DUD‑E+

In order to test the effect of target ligand choice and to com-
prehensively assess pose prediction, an augmented DUD-E 
set was constructed using fully automated procedures. Fur-
ther details about the PSIM protein pocket similarity method 
and the automated curation protocol can be found in reports 
focused on binding site similarity and non-cognate ligand 
docking [27–29]. For each target, the following procedure 
was carried out:

1. Alternate PDB Code Identification The UniProt identi-
fier associated with the DUD-E cognate protein struc-
ture was used to obtain a list of associated PDB codes. 
For human pathogens like HIV-1, HCV, Helicobacter 
pylori, Influenza virus, and Mycobacterium, the iden-
tical protein may have multiple UniProt IDs. In these 
cases, a representative UniProt accession code was used 
to obtain the largest set of variant structures. For exam-
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ple, P03742 was used for the nram target (influenza virus 
neuraminidase).

2. Automated processing of PDB structures For each target, 
the set of PDB codes was processed, as follows:
sf-dock getpdb PDBList grind
source grind-script

The scripts run a procedure for each PDB code, as follows:

1. The PDB biological assembly is downloaded using wget.
2. The sf-dock grindpdb command is used to heuris-

tically infer components (protein, water, cofactors, and 
ligands), bond orders, and protonation/tautomer states. 
SYBYL mol2 files are produced for all components.

3. Quality measurements are calculated:

(a) Ligand strain by movement A ligand is mini-
mized under a quadratic positional constraint on 
its heavy atoms. It is retained if RMSD from the 
original coordinates does not exceed 0.55 Å. The 
ligand is then freed from positional restraint.

(b) Ligand strain by energy The ligand’s pose is opti-
mized in Cartesian space with both the internal 
MMFF94sf force field and the Surflex-Dock scor-
ing function. Its MMFF94sf energy is calculated 
in this protein-bound locally optimal state. The 
ligand is then minimized outside of the protein. 
The gap in MMFF94sf energy values for these 
two conformations is considered in the context of 
the number of non-hydrogen atoms of the ligand. 
If the difference between the two energy values 
does not exceed 0.50 kcal/mol/atom, the ligand is 
retained.

(c) Structure quality by movement If the RMSD 
between the experimental coordinates and the 
optimal scoring pose from local optimization is 
less than 1.25 Å, the ligand is retained.

(d) Structure quality by ligand efficiency The optimal 
docking score (Surflex-Dock scoring function, 
nominally in units of pKd ) divided by the number 
heavy atoms is at least 0.10 pKd∕atom , the ligand 
is retained.

(e) Structure match to alternate curation Graph 
matching is done between the final ligand and the 
corresponding SMILES-based molecular structure 
(and tautomeric variants) from the RCSB Ligand 
Expo. If there is a match, the ligand is retained.

The overall procedure made use of 9018 PDB struc-
tures across the 102 DUD-E targets. From this automatic 
procedure with relatively stringent quality assessment, 
5459 PDB codes resulted in at least one small-molecule 

(non-cofactor) ligand whose structure passed the series of 
quality tests just described.

For each target, these liganded protein binding sites 
were mutually aligned and five representative variants were 
selected based purely on the basis of local protein binding 
site similarity. In general, the pocket alignment procedure 
will produce multiple independent alignment trees, each 
with variants of a different binding site. These are ordered 
from the most populated to the least. Here, we considered 
the three most populated alignment trees, choosing binding 
site exemplars from within each, as follows: 

sf-dock psim_align_all grind-plist align
sf-dock psim_choose_k align-c0 5 choose0
sf-dock psim_choose_k align-c1 5 choose1
sf-dock psim_choose_k align-c2 5 choose2

In nearly all cases, the largest cluster of binding sites 
(labeled “c0”) was the site that matched the DUD-E bind-
ing site. In just 14 cases, the second-largest cluster matched 
(“c1”), and in a single case the third cluster matched (“c2”). 
Cluster identification was done manually in cases where the 
exact PDB ligand from the DUD-E set did not appear in the 
automatically generated aligned binding site clusters. For 92 
targets, at least five variants were identified in this manner, 
with a total of 5651 ligand-containing binding sites.

Note that for proteins whose biological assembly is mul-
timeric, the same ligand (possibly in slightly different con-
formations) may be present more than once from within the 
same structure. The ten DUD-E targets with less than five 
variants were: ampc, cp2c9, cp3a4, cxcr4, drd3, igf1r, ital, 
kit, kith, and kpcb. Those targets were not used in analyses 
of target ligand variation or pose prediction.

For the 92 targets with at least five variants, the mutu-
ally aligned ligands corresponding to the selected repre-
sentative protein variants were collected into a single file 
(xtal-alt.mol2). Also, the set of ligands for the mutu-
ally aligned full set of variants was collected into a single 
file (xtal-all-ligs.mol2). Using the definitions 
discussed in the Introduction, the total number of tractable 
non-self alignments (with molecular overlap ≥ 0.8 or direct 
atomic overlap ≥ 0.5 ) was 381,467. The most challeng-
ing subset (MO ≥ 0.8 and DAO < 0.5 ) contained 185,308 
examples (48.6%). The least challenging subset (MO ≥ 0.8 
and DAO ≥ 0.5 ) contained 170,550 examples (44.7%). The 
remainder (MO < 0.8 and DAO ≥ 0.5 ) contained just 25,609 
examples (6.7%).

Computational procedures and statistical analysis

The results reported here were generated using Surflex 
Platform version 4.440. Ligand preparation for the vari-
ous analyses has been discussed above. For the screening 
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assessments compared with alternate methods, the follow-
ing procedure was used: 

sf-sim -pfast esim_align_list mols_fast.sfdb
xtal-orig-charged.mol2 esimfast

--> esimfast-log esimfast-results.mol2

# More accurate: -pscreen
sf-sim -pscreen esim_align_list mols_screen.sfdb

xtal-orig-charged.mol2 esimscreen
--> esimscreen-log essimscreen-results.mol2

ROC areas were computed in the standard fashion [2, 
3, 9]. For the assessment of pose prediction, the follow-
ing commands were wrapped in a procedure that also cal-
culated topological similarity, molecular overlap, direct 
atomic overlap, and RMSD results for the subject and tar-
get molecules: 

sf-tools ran_archive subj.mol2 subj
sf-tools -pgeom forcegen subj-random.mol2 geom
sf-sim -pgeom esim_align_list geom.sfdb targ.mol2 pr

RMSD was calculated using all heavy atoms, with con-
sideration of equivalent subgraph isomorphisms for the 
subject molecule in its bound pose and predicted poses.

For ROCS-color, pose prediction performance was 
assessed on the DUD-E+ benchmark. Initial conformations 
were the same randomized versions as used for eSim. Con-
formational search was carried out using OMEGA, with 
default parameters, except that the -maxconfs parameter 
was increased from 200 to 250 to provide for equivalent 
depth in sampling. ROCS was run using its default behav-
ior, which ranks final predicted poses using ROCS-color 
approach. The top-ranked 20 poses were retained for cal-
culation of symmetry-corrected RMSD against the bound 
pose of each subject ligand, exactly as with eSim. The 
following commands were employed (the OMEGA mac-
rocycle variant was run only on those molecules identified 
as macrocycles by omega2): 

omega2 -in ran.mol2 -out confs.mol2 -maxconfs 250
omega_macrocycle -in ran.mol2

-out confs.mol2 -maxconfs 250
rocs -dbase confs.mol2 -query xray.mol2 -maxconfs 20

For this work, OMEGA Version 3.1.0.3 [30] and ROCS 
Version 3.3.0.3 [22] were used (OpenEye Scientific Soft-
ware, Santa Fe, NM, USA).

For the statistical comparisons to other methods, 
because performance data were available on a per-target 
basis for the full 102-target DUD-E set [19, 20], paired 
t-tests were used in order to provide statistical power. 

Normality of the distributions of differences between ROC 
areas was checked in order to ensure applicability of the 
paired sample t-test (using the Kolmogorov-Smirnov test 
of normality).

Calculations for eSim were done on a workstation 
equipped with dual Intel Xeon Gold 6154 CPUs, operating at 
3.00 GHz, with a total of 36 physical computing cores, each 
capable of running 2 threads. All timings were the result 
of single-core, single-thread computations except for the 
single example of the macrocycle discussed in reference to 
Fig. 9, which was run using 25 threads. Calculations for pose 
prediction assessment of ROCS were done on a computing 
server with 4 Intel Xeon Gold 6140 CPUs, operating at 2.3 
GHz, with a total of 72 computing cores. ROCS was run as 
single-core, single-threaded computations.

Additional details about the data sets, computational 
procedures, and about software availability are available at 
www.jainl ab.org.

Results and discussion

Three different performance analyses were done to char-
acterize eSim with respect to virtual screening utility and 
pose prediction. The first was a direct, apples-to-apples com-
parison with seven other similarity approaches on the full 
DUD-E set of 102 targets, using the given crystallographic 
ligand as the query in each case. The second explored the 
use of alternate ligands (singly and as aligned sets) as que-
ries. The third analysis was a comprehensive characteriza-
tion of pose prediction.

DUD‑E: full target set comparison

Table 1 summarizes the virtual screening performance for 
three eSim modes and five alternate methods (two of which 
were run with shape-only and shape plus “color” variations 
[19]). A 3D molecular indexing approach is also included 
as a baseline. The first column shows mean ROC area 
(AUC), where 0.5 indicates random performance and 1.0 
indicates perfect separation of curated active ligands from 
the DUD-E computationally generated decoys. The sec-
ond column shows the percentage of targets for which each 
method performed nominally worse than random. The next 
five columns show the percentage of cases with AUC of at 
least 0.60–0.95, respectively. The final column character-
izes computational speed in molecules per second, with all 
methods run using single-core, single-thread procedures. In 
all columns, the best two performance values are shown in 
bold face.

The eSim -pscreen method performed statistically signifi-
cantly better than all other methods and variations. P-values 
(paired t-test of AUC values, two-tailed) were extremely 

http://www.jainlab.org
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low (p less than 5 ×10−20 ) compared with ROCS (shape), 
WEGA, OptiPharm, VAMS, USR, and USR (shape). Com-
pared with ROCS (color), eSim -pscreen had a p value of 
8 ×10−13 . Both of the faster eSim modes (-pfast and -pfastf) 
behaved similarly, with extreme p-values compared with 
all non-ROCS-color approaches (less than 10−13 for both 
variants in all cases). Compared with ROCS-color, we also 
observed highly significant p-values for the faster screening 
modes (less than 10−9 and 10−3 , respectively).

As discussed earlier, paired t-tests are appropriate due 
to the near normality of the distributions of differences in 
paired AUC values between methods, and they provide 
much better statistical power than distribution-level tests of 
performance differences. Note that prior reports on virtual 
screening performance using the DUD-E set made use of 
relatively low power tests, which fail to distinguish mean 
AUC performance differences even as large as 0.04 across 
the 102 targets [19]. The performance gains in terms of AUC 
for eSim were large enough that even unpaired t-tests yielded 
statistical significance in all comparisons of eSim variations 
with alternate method variations.

Except for eSim (all variants) and ROCS (both variants), 
the remaining similarity methods did not substantially 
exceed random performance (AUC of at least 0.60) in more 
than half of the cases. Further, in no cases did those meth-
ods produce exceptional performance (AUC at least 0.95) 
and only in a single instance did they collectively produce 
very good performance (AUC at least 0.90). While the USR 
and VAMS methods were nominally fast (thousands of mol-
ecules per second, ignoring molecular I/O time [19]), the 
WEGA and OptiPharm methods performed only slightly 
better, yet they are two orders of magnitude slower.

It is important to note that the mature and extremely fast 
molecular indexing approach implemented within Surflex-
Sim [15, 31, 32] performed marginally better than than all of 
the non-ROCS alternative methods, and it was many times 
faster than even the VAMS and USR methods. The approach 
constructs a 20-dimensional vector for each molecule (called 
an “imprint”), where each vector value is the maximal simi-
larity of the ligand to a particular basis molecule. These 
vectors are used to infer relative similarities using Euclid-
ean distance. The calculation is disk I/O bound, process-
ing over 200,000 molecules per second, and could be made 
significantly faster by employing a binary file format for the 
imprints. The focus of this paper is on fast and high-quality 
similarity calculations, though, not on ultra-fast calculations 
with more moderate expected enrichment performance. 
None of the methods with mean AUC from Table 1 that 
were less than that obtained by the simple molecular index-
ing approach will be discussed further.

Note that, as standard practice, we have traditionally 
employed 2D similarity methods as essential controls in 
assessing the performance of 3D molecular similarity [4, 
33]. However, in the case of the DUD-E set, because the 
decoys were generated specifically to have low 2D similarity 
to the curated actives, the set is therefore inappropriate for 
use in assessing 2D methods, as pointed out by its develop-
ers, Mysinger et al. [18].

Figure 5 shows the ESR1 (estrogen receptor alpha) exam-
ple from the DUD-E set, which consists of 383 curated 
actives, 20,685 decoys, and makes use of the ligand of PDB 
structure 1SJ0 as a similarity target. This particular DUD-E 
case illustrates some of the critical challenges for similarity 
methods. First, the target ligand may or may not be repre-
sentative of the majority of actives, here showing significant 

Table 1  Summary of 
performance of ten ligand 
similarity methods on the full 
DUD-E set of 102 targets along 
with a molecular indexing 
control (SF-imprint)

Standard deviation of the mean ROC areas was 0.13–0.16. The top two performance values in each column 
are bolded. Performance improvements of all three eSim modes over all other methods was highly statisti-
cally significant (see text for details). Performance data for ROCS, USR, and VAMS were taken from [19] 
(times are approximate, based on 25 conformers per molecule), and data for OptiPharm and WEGA were 
taken from [20]

Method Mean % AUC % AUC % AUC % AUC % AUC % AUC Time
ROC area < 0.50 ≥ 0.60 ≥ 0.70 ≥ 0.80 ≥ 0.90 ≥ 0.95 Mols/s

eSim -pscreen 0.755 5 81 69 43 17 8 12.3
eSim -pfast 0.736 9 82 62 34 14 5 61.2
eSim -pfastf 0.706 5 79 53 26 6 3 274.9
ROCS 0.663 18 66 44 21 9 3 50
ROCS (shape) 0.596 31 54 25 12 1 0 50
SF-Imprint 0.570 36 37 19 7 1 0 > 200,000
WEGA 0.564 31 44 19 6 0 0 26.7
OptiPharm (robust) 0.560 32 41 15 5 0 0 12.0
VAMS 0.560 36 40 14 3 0 0 5000
USR 0.554 35 43 20 5 1 0 6000
USR (shape) 0.520 43 28 13 2 0 0 6000
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differences in size and formal charge from the two typical 
active ligands depicted. Recall that the DUD-E active site 
exemplar was chosen specifically for suitability within a 
docking benchmark, and the particular cognate ligand is 
quite arbitrary from a ligand similarity perspective. Second, 
there may or may not be significant atomic center overlap 
between the subject molecule and target molecule (in their 
bound poses), which may pose problems for both align-
ment optimization and scoring, depending on the particular 
method involved.

ESim performed very well on ESR1 (ROC areas of 0.90, 
0.94, and 0.96 for the -pfastf, -pfast, and -pscreen modes). 
The average for the alternate methods was 0.63 with a maxi-
mum of 0.73 (ROCS color). The eSim score of 3.8 for estra-
diol placed it above 99.8% of the scores for the decoys, and 
4-hydroxy tamoxifen scored higher than all of the decoys. 
In both cases, the predicted poses were reasonable in terms 
of overall correspondence with the target ligand.

Figure 6 shows an additional four specific target examples 
from the DUD-E set. In the first three cases (carbonic anhy-
drase 2, thymidine kinase (KITH), and poly-ADP-ribose 
polymerase 1), eSim showed significant advantages over the 
other approaches, with ROCS (color) showing either the best 
performance among alternative methods or very close to 
the best. The remaining target (focal adhesion kinase 1) was 
atypical (see Table 2), where eSim performed significantly 
worse than the best alternate method (ROCS).

Carbonic anhydrase presented a difficult challenge for 
methods that were overly dependent on congruent volumes 

because the query ligand was small relative to the typical 
active to be retrieved (roughly a third of the size based on 
Van der Waals volume). However, the electronic “signa-
ture” of the particular query molecule was sufficient for 
eSim to obtain excellent retrieval. Note that the predicted 
alignment of the large active to the small query aligned the 
common “warhead” well (the sulfonamide interacts with a 
catalytic zinc cation in the protein active site).

Volumetric discrepancy, while probably contribut-
ing to the large performance differences observed, did 
not explain performance differences overall. Numerous 
cases existed where query volume and average active 
volume were close to identical (e.g., ESR1), but where 
eSim showed similar performance advantages. Thymidine 
kinase was a case where relatively consistent performance 
was obtained from the non-eSim approaches (roughly 0.70 
AUC). In that case, the query ligand was slightly smaller, 
on average, than the actives (about two-thirds the size). In 
the case of PARP1, the query ligand was, on average, 6% 
smaller by volume than the actives, but eSim still main-
tained a substantial advantage. The target FAK1 was one 
of just two targets where ROCS performed slightly better 
than eSim (AUC better by 0.10 or more), and the volumet-
ric difference between query and actives was similar to 
that of PARP1 (the query was, on average, just 6% larger 
than the actives).

Fig. 5  Virtual screening performance for eSim in three screening modes (-pfastf, -pfast, and -pscreen, upper left plot), along with two examples 
of positive ligands, their top-scoring poses (cyan), scores, strain values, and the percentage of decoy molecules whose scores were exceeded
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Size disparities in similarity calculations

The issue of size disparity between query and actives is an 
important one. The bias of many approaches is to attempt to 
make similarity values symmetric, such that in order to reach 
maximal values, the subject ligand must cover the query 
and vice-versa. However, within the DUD-E set alone, the 
average relative volume of the query ligand compared with 
the curated actives ranged from 0.3 (carbonic anhydrase) 
to 1.7 (CYP3a4). In many cases, the standard deviation of 
the volumes of the actives approached the magnitude of the 
mean, exhibiting a large variety of sizes.

Further, as a purely physical matter, in all cases of ligand 
binding, there must be some pathway from solvent to bind-
ing site, and in many cases, this pathway can remain at least 
partially open during the binding event. For cases such 
as carbonic anhydrase, the ligand size variation is in the 
direction of solvent exposure, which is typical. The eSim 
approach of scoping the similarity calculation based on the 

query molecule and measuring the extent that a new ligand 
can “cover” the query appears to be well justified.

Note that similarity methods including ROCS allow for 
the use of either Tanimoto (the default) or Tversky weighting 
in similarity calculations. The former approach is symmetric 
in the treatment of query and subject ligand, and the latter 
is weighted in favor of the query in the typical application. 
While there is no general agreement on the superiority of 
one over the other, the Tversky approach has been shown 
to produce some improvements in screening performance 
[34, 35]. However, to our knowledge, this issue has not been 
explored on the full DUD-E benchmark, though marginal 
improvements have been shown on a subset [35].

It seems clear, though, that symmetrical treatment 
of query and subject molecules is not supported by the 
observed size diversity among actives, the physical process 
of ligand binding, nor the performance data presented here.

Summary of full DUD‑E performance

Table 2 shows the performance of eSim (-pscreen) compared 
with the maximum AUC (for each target) over all seven alter-
nate methods discussed above. In addition, one molecular 
indexing approach is included as a baseline reference [32]. 
Overall, the mean of the per-target maximum AUC for the 
alternate methods was 0.692, compared with 0.755 for eSim 
(p < 10−7 ). There were 33 cases where eSim performed bet-
ter by at least 0.10 AUC units, compared with just 7 for the 
converse. There were 12 cases where eSim’s advantage was 
0.20 or greater, with none in the converse direction. This 
comparison represents the best possible case for the set of 
alternate methods: cherry-picking from among them. In this 
best-case scenario, one must be able to, a priori, perfectly 
guess which method will perform best for each of the 102 
DUD-E targets. Even in that case, eSim performed consist-
ently better.

There were three cases (pur2, sahh, and wee1) where 
eSim (-pscreen) produced perfect separation between actives 
and decoys. All three of these cases exhibited very high 
or perfect performance for at least one of the alternative 
methods. Each contained active ligands with an extremely 
distinctive motif. These motifs were apparently eliminated 
from the DUD-E decoy sets, both in 2D and 3D form, by the 
procedures designed to reduce the presence of true ligands 
among the computationally generated decoys.

In terms of speed, there are three levels of accuracy/speed 
parameterizations for eSim virtual screening: -pscreen, 
-pfast, and -pfastf. All three modes performed statistically 
significantly better than all alternative methods. The -pfast 
mode performed nearly as well as the -pscreen mode (mean 
AUC values of 0.74 and 0.76, respectively). On a single 
computing core, eSim -pfast processes over 60 molecules 
per second, which amounts to over 5,000,000 molecules per 

Fig. 6  Examples typical of eSim performance compared with alterna-
tive approaches
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day. For most applications, especially using either multi-
core workstations or multi-node cloud-based computing 
instances, this speed is sufficient. It is also faster than ROCS, 
WEGA, and OptiPharm (though the latter two methods pro-
duced near-random performance on a majority of DUD-E 
targets).

The VAMS and USR methods were nominally very fast, 
but they showed the weakest performance on the DUD-E set. 
They do not outperform 3D molecular indexing, a general 
method which has been known for over twenty years [15, 31, 
32, 36], in terms of either quality or speed. The eSim -pfastf 
mode is substantially faster than the other eSim modes, 
while maintaining statistically significant performance 

advantages (mean AUC of 0.71 at 275 molecules per sec-
ond). On a modest 100-core computing cluster, throughput 
of over 2 billion molecules per day is possible, which is 
roughly half the size of currently-available make-on-demand 
molecular libraries [37].

Of note, the ROCS approach has a GPU-based approxi-
mate implementation that is faster than the VAMS and USR 
approaches [38], though we are not aware of direct perfor-
mance assessment of FastROCS on the DUD-E benchmark. 
In principle, the eSim approach is amenable to a GPU-based 
implementation, though it is not clear what the trade-off 
would be between speed and the necessary approxima-
tions for effective speed optimization. Using eSim (-pfastf), 

Table 2  Performance of eSim 
(-pscreen) compared with 
the maximum AUC over the 
alternate methods for the 102 
DUD-E targets

Differences of 0.10 or greater are bolded

Target eSim Max (other) Target eSim Max (other) Target eSim Max 
(other)

aa2ar 0.76 0.71 fabp4 0.83 0.80 mmp13 0.72 0.69
abl1 0.73 0.61 fak1 0.84 0.95 mp2k1 0.63 0.53
ace 0.75 0.75 fgfr1 0.71 0.56 nos1 0.53 0.44
aces 0.49 0.52 fkb1a 0.60 0.72 nram 0.90 0.87
ada 0.91 0.89 fnta 0.68 0.78 pa2ga 0.74 0.71
ada17 0.80 0.64 fpps 0.95 0.99 parp1 0.90 0.72
adrb1 0.70 0.47 gcr 0.64 0.63 pde5a 0.73 0.62
adrb2 0.65 0.48 glcm 0.78 0.52 pgh1 0.57 0.73
akt1 0.58 0.41 gria2 0.60 0.68 pgh2 0.84 0.81
akt2 0.66 0.41 grik1 0.70 0.73 plk1 0.82 0.56
aldr 0.71 0.69 hdac2 0.53 0.45 pnph 0.88 0.92
ampc 0.62 0.76 hdac8 0.85 0.77 ppara 0.90 0.86
andr 0.71 0.69 hivint 0.49 0.47 ppard 0.81 0.69
aofb 0.46 0.44 hivpr 0.84 0.78 pparg 0.79 0.73
bace1 0.53 0.54 hivrt 0.71 0.69 prgr 0.81 0.72
braf 0.77 0.64 hmdh 0.82 0.91 ptn1 0.57 0.33
cah2 0.92 0.51 hs90a 0.80 0.73 pur2 1.00 0.90
casp3 0.55 0.58 hxk4 0.90 0.81 pygm 0.46 0.58
cdk2 0.80 0.72 igf1r 0.61 0.55 pyrd 0.83 0.90
comt 0.99 0.90 inha 0.68 0.72 reni 0.79 0.73
cp2c9 0.52 0.46 ital 0.77 0.58 rock1 0.79 0.61
cp3a4 0.58 0.55 jak2 0.74 0.81 rxra 0.93 0.90
csf1r 0.80 0.66 kif11 0.73 0.83 sahh 1.00 1.00
cxcr4 0.79 0.78 kit 0.69 0.48 src 0.67 0.67
def 0.85 0.86 kith 0.91 0.75 tgfr1 0.84 0.72
dhi1 0.59 0.68 kpcb 0.85 0.80 thb 0.87 0.89
dpp4 0.73 0.68 lck 0.55 0.46 thrb 0.83 0.64
drd3 0.46 0.33 lkha4 0.84 0.79 try1 0.87 0.73
dyr 0.95 0.74 mapk 2 0.86 0.86 tryb1 0.83 0.48
egfr 0.75 0.77 mcr 0.72 0.79 tysy 0.92 0.79
esr1 0.96 0.73 met 0.87 0.81 urok 0.81 0.50
esr2 0.97 0.82 mk01 0.79 0.73 vgfr2 0.75 0.72
fa10 0.73 0.71 mk10 0.56 0.56 wee1 1.00 0.98
fa7 0.96 0.86 mk14 0.58 0.61 xiap 0.94 0.92
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screening several billion molecules in less than a day would 
represent a modest cost on spot-priced cloud computing 
instances. This would not require special-purpose hardware, 
and the trade-off in terms of accuracy is relatively modest.

The eSim method produced, by a meaningful margin, the 
strongest performance on the DUD-E set and was also the 
fastest among the remotely competitive alternatives where 
performance data were available. It is difficult to pinpoint 
reasons for the performance advantages observed. The eSim 
method shares very little in common with any of the other 
approaches, using surface-shape instead of volume, com-
paring full electrostatic fields, and considering the details 
of hydrogen-bonding preferences including directionality.

eSim: contributions of terms

To help understand what drove eSim virtual screening per-
formance, the method was run using different weightings on 
its core components. Recall that the eSim function has three 
primary contributions: pure surface shape information, elec-
trostatic field comparison, and measurement of differences 
in donor/acceptor functionality. Equal weighting of these 
three contributions produced the results in Table 1.

Table 3 shows the effects of different combinations of 
weightings using the -pscreen mode, compared with Surflex-
Sim, ROCS (color), and ROCS (shape only). Single-compo-
nent similarity performed significantly worse in each case 
than the full eSim calculation. The eSim shape-only results 
were slightly better than the ROCS shape-only results, and 
they were also significantly better than all of the other alter-
native methods (see Table 1), whether they considered pure 
shape or aspects of ligand polarity. There is intuitive appeal 
to the idea that characterizing the congruence of molecular 

surface shapes would be more effective than reliance on 
atom-center congruence, which drives similarity in Gauss-
ian-overlap methods [21, 39]. However, the modest advan-
tage observed here should not be considered to be definitive.

What was more surprising was that the Coulombic-only 
results were slightly better than all of the alternative meth-
ods and that the hydrogen-bonding-only results were sub-
stantially better. Recall, however, from Eqs. 1 and 13 that 
the overall similarity contribution at each observer point is 
multiplicatively weighted by the extent to which the subject 
molecule in its particular pose is at the preferred distance 
from the observer to the query. This weighting has the effect 
that, for either the Coulombic or hydrogen-bonding compari-
sons to contribute meaningfully to similarity, there must be 
some degree of local shape congruence. The combination 
of shape and hydrogen-bonding similarity was nonetheless 
synergistic, but the combination of shape and Coulombic 
similarity was marginally worse than Coulombic similarity 
alone.

Most surprisingly, the combination of Coulombic and 
hydrogen-bonding similarity produced a mean AUC of 
0.765, slightly better than the combination of all three com-
ponents (p = 0.001 by paired t-test). Performance was very 
strongly correlated, with AUC values between the two vari-
ants having Pearson’s correlation of 0.98. At a finer level 
of detail, in looking at the alignments produced, the full 
equal-weighted eSim approach yielded “tighter” alignments 
that were more concordant with intuition. In a later section, 
pose prediction and this aspect of better alignment accuracy 
will be explored.

Also, recall that the individual parameters that control 
eSim’s Gaussian and sigmoidal response functions were not 
optimized with respect to DUD-E performance. It is likely 
that systematic exploration of these parameters will lead to 
improvements in both screening effectiveness and pose pre-
diction accuracy.

The eSim method is closely related to the Surflex-Sim 
morphological similarity approach. The latter lacks a Cou-
lombic field comparison component, and it has some differ-
ences in the calculation of directionality of hydrogen bonds 
as well as in the details of observer point weighting. The 
eSim approach, limited to the shape and hydrogen-bonding 
terms, is the most direct analog. Performance of the morpho-
logical similarity approach on its fastest setting (-pscreen) 
produced an average AUC of 0.721, which was, as expected, 
close to that observed with eSim (-pscreen) performance 
when limited to shape and hydrogen-bonding features (AUC 
of 0.749). It appears that the reformulated directionality and 
weighting schemes yielded some improvement. In addition, 
the Surflex-Sim approach in its fastest screening mode is 
somewhat slower than eSim in its slowest screening mode. 
The eSim approach is much faster for comparable overall 
performance (using the -pfastf setting, eSim is roughly 

Table 3  Performance of eSim (-pscreen) under different combi-
nations of weighting for the primary similarity terms for the full 
102-target DUD-E set, compared with Surflex-Sim (-pscreen), ROCS 
(with color), and ROCS (shape only)

AUC Shape Coulombic Don/Acc 
or Color

eSim
 All 0.755 1 1 1
 Shape 0.620 1 0 0
 Coul. 0.687 0 1 0
 Don/Acc 0.736 0 0 1
 S + C 0.672 1 1 0
 S + DA 0.749 1 0 1
 C + DA 0.765 0 1 1

SF-Sim 0.721 1 – 1
ROCS
 Color 0.663 1 – 1
 Shape 0.596 1 – 0
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30–50 times faster), and it produces significantly better per-
formance in its more thorough modes (which are still faster 
than Surflex-Sim).

Shape-only eSim showed similar performance to the best 
of the other shape-only method variants. The full calcula-
tion that included Coulombic and hydrogen-bonding com-
ponents, however, was clearly better than other approaches. 
So, it appears that overall performance gain derives primar-
ily from the new approach to comparing electrostatic fields 
coupled with the directional treatment of hydrogen bond 
comparisons.

Effects of query ligand

It is worth remembering that the DUD-E benchmark was 
developed for assessing the performance of docking meth-
ods [18]. Over 3500 protein structural variants were tested 
in structure-based screening workflows using DOCK 3.6 in 
order to identify the variant most suitable for docking assess-
ment. So, from the perspective of ligand-based modeling, 
the particular ligands used as virtual screening queries are 
essentially arbitrary. There is no reason to believe that they 
are ideal for ligand-based screening, just that their cognate 
binding pockets are good choices for docking.

To assess the effects of query ligand, we curated over 
9000 PDB structures, by searching using UniProt identifiers 
for the DUD-E targets. An automated procedure yielded, for 
92 targets, between 5 and 359 variant ligands and associated 
aligned protein binding sites (see Methods for details). Five 
variants for each target were chosen using a k-means clus-
tering algorithm based on local protein binding site similar-
ity [28, 29]. The cognate ligands for these selected variants 
were used as alternative queries for eSim.

This was done in two ways. First, each of the five indi-
vidual ligands was used singly as a query (as in the experi-
ments above), exactly as the original DUD-E ligand was 
used. Second, the set of mutually aligned ligands was used 
as a single combined multi-molecule query. Table 4 sum-
marizes the results. As expected, the best performing from 
among five arbitrarily chosen query ligands (second row), 
produced significantly better results than the single arbitrary 
original DUD-E ligand.

Rather than using each alternative query ligand sepa-
rately, it is possible to use them simultaneously, without 
requiring any experimentation to determine which individual 
ligand might be best. Within the eSim formulation, this is 
done by taking the maximum similarity over the multiply-
aligned ligands at each observer point (in Eq. 1, the maxi-
mum operation would be inside the operand of the summa-
tion). In this manner, a subject ligand “tries” to look like the 
best-matching parts of the amalgamated query ligand set.

Using the combination of five ligands, eSim achieved 
performance equivalent to (or marginally better than) that 
seen with the single best ligand in all three screening modes 
(bottom row of Table 4), but this procedure requires no a 
priori knowledge of additional ligand binding behavior. Fig-
ure 7 shows the LCK example, which obtained an improve-
ment from 0.55 AUC (eSim -pscreen) to 0.86. The original 
DUD-E ligand was a uniformly poor representative regard-
less of similarity method (the maximum AUC for the non-
eSim methods was 0.46).

Table 4  Performance of eSim on 92 targets for which alternate query 
ligands were automatically curated

Query AUC AUC AUC 
Ligand(s) -pscreen -pfast -pfastf

DUD-E Original 0.763 0.743 0.711
Best single alternate 0.818 0.799 0.758
Joint 5 alternates 0.818 0.802 0.770 Fig. 7  Alternate ligands for LCK, automatically curated, also 

included the original DUD-E ligand
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All five ligands fill different parts of the active site, each 
sharing a hinge-region hydrogen bond (the corresponding 
nitrogen atoms are indicated with colored circles for each 2D 
depiction). Not surprisingly, the single best query ligand was 
3BYS-AM5, which spanned the full width of the site. Using 
3BYS-AM5 by itself, the eSim AUC was 0.81, slightly 
lower than what was seen with the mutual overlay of the 
five ligands shown. That single ligand does not fill the bot-
tom of the pocket, and the joint overlay appears to provide 
additional information.

Making use of five alternates as a joint query requires 
roughly three- to four-fold the amount of computational time 
than using a single query ligand. Some efficiency beyond a 
linear cost is gained by sharing the burden of certain search 
operations instead of bearing them independently.

It is fairly common for structure-enabled discovery pro-
jects to have multiple crystal structures of diverse chemical 
scaffolds. As an adjunct to virtual screening with docking 
approaches, using the joint overlay of ligands that span an 
active site in a ligand-based screen should provide valuable 
orthogonal results, without requiring especially careful 
choice of the particular ligands.

Ligand‑based pose prediction

Of course, it is also quite common for projects to lack protein 
structure information, in which case, use of multiple-ligand 
queries depends on generating a joint alignment, a process 
that relies on the extent to which the poses that maximize a 
similarity function reflect what is observed experimentally.

There are three basic forms of the ligand-based pose pre-
diction problem. The hardest form takes N ligands, each 
with partial overlap to at least one other ligand in the bound 
state, and builds a full alignment clique beginning from an 
agnostic starting point. There may be pairs of ligands within 
a clique that do not overlap at all. This version of the prob-
lem is seen in 3D QSAR, and it is, in general, extremely 
challenging. An easier form of the problem, which must be 
reasonably well-solved in order to tackle the hardest form, 
takes a pair of ligands, again with some degree of partial 
overlap, and produces a set of mutual alignments from an 
agnostic starting point. The easiest form of the problem sim-
plifies the task by making use of the crystallographic pose of 
one ligand of a pair, here called the target ligand.

The extensive curation of liganded binding site variants 
for the DUD-E set forms a very large and pharmaceutically 
relevant benchmark for assessing performance for all three 
versions of the ligand alignment problem. Here, we will 
address the simplest of the three forms. As described in the 
Introduction, we have identified 381,467 ligand alignment 
pairs that have the following properties: (1) they bind the 
same active site in known configurations; (2) the subject 
molecule and target molecule are non-identical; and (3) 

either the subject molecule has at least 80% molecular over-
lap (MO) to the target or it has at least 50% direct atomic 
overlap. Note that this allows for the case where a small 
subject ligand is to be aligned to a much larger target ligand, 
creating significant uncertainty about even the gross location 
of its bound pose. Note that any non-overlapping portions of 
a subject molecule have no constraint to guide pose choice 
except for molecular energetics.

Fig. 8  Plots of best predicted pose (top) and top scoring pose (bot-
tom) for eSim (-pgeom), showing the cumulative histograms for all 
381,467 cases (purple), and the roughly equal-sized subsets with low 
DAO (green) and high DAO (cyan)
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For testing eSim pose prediction accuracy, the subject 
ligands were fully randomized to eliminate memory of their 
bound configurations, then conformationally sampled using 
the ForceGen -pgeom level of search. The eSim alignments 
were carried out using the -pgeom eSim mode as well.

Figure 8 shows the cumulative histograms of RMS devia-
tion for best pose among the top 20 returned (top) and for 
the top scoring pose (bottom) for all cases and broken into 
the two largest subsets from the pie-chart shown in Fig. 4. 
Overall, 80% of the cases produced a pose within the top 20 
returned with RMSD ≤ 2.0 Å. The subset with high direct 
atomic overlap was clearly easier for pose prediction, with 
93% meeting the 2.0 Å threshold. The subset with low direct 
atomic overlap, which includes many pairs of molecules 
with dissimilar scaffolds, yielded just 70% success at 2.0 
Å RMSD. The same pattern was observed with respect to 
top-scoring pose, but with a nearly 40 percentage point gap 
between the high and low DAO subsets at the 2.0 Å thresh-
old rather than just 23 points.

Recall the earlier discussion regarding alternative weight-
ings of the eSim components. There was a slight perfor-
mance advantage for the combination of Coulombic and 
hydrogen-bonding components over the full eSim calcu-
lation that also includes the surface-shape component. In 
terms of pose prediction, the full eSim approach had a four 
percentage point advantage at the 2.0 Å threshold for both 
best pose and top-scoring pose.

The ESR1 target had a wide diversity of aligned 
ligands, allowing for tens of thousands of alignments of a 
randomized subject ligand to the bound pose of a different 
ligand. Figure 9 shows the best prediction for the bound 

pose of a macrocyclic ligand (cyan), using the bound pose 
of a non-macrocycle as an alignment target (magenta). 
Apart from the conformational challenges endemic to mac-
rocycles, it is also often the case that there is relatively 
little atomic center overlap between a macrocycle and a 
non-macrocycle that bind the same part of the same site. 
Here, while the macrocycle has 90% molecular overlap 
with the target ligand, it only has about 40% direct atomic 
overlap. The best pose from eSim was just 0.9 Å RMSD 
from the experimental coordinates (the top-scoring pose 
had RMSD of 1.3 Å).

At right in Fig. 9, similarity sticks are displayed that 
quantify the contributions of different parts of the align-
ment to the overall eSim score. The numbered positions cor-
respond to the following observations:

1. The key donor shared by the two molecules is aligned 
well both in terms of position and directionality, result-
ing in maximal local donor similarity.

2. The beginning of divergence in surface shape similarity 
also coincides with a relatively dissimilar Coulombic 
field (the orange stick is very small).

3. Here, there is an area of high shape and reasonable Cou-
lombic similarity, but where no donor or acceptor match 
exists between the subject and target molecule.

4. As with the matching proton on this same corresponding 
hydroxyl pair, the oxygen acceptors also align well and 
produce maximal similarity.

5. The macrocyclic ring closure maintains high surface 
shape similarity despite lacking precise atomic overlaps.

HO

HO

OH

OH

O

O

H

H

N

N

O

Fig. 9  Macrocyclic ligand of estrogen receptor alpha shown in its best 
predicted pose (cyan), beginning from a memory-free starting point, 
using eSim. pgeom with the ligand of 2IOK as the alignment target 
(magenta); the RMS deviation from the bound pose (green) was 0.9 

Å; at right, similarity “sticks” are shown for front and back views of 
the alignment, indicating shape similarity (green), compatible donors 
(blue), compatible acceptors (red), and portions of the molecules 
where the electrostatic fields are similar (orange)
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6. There are no similarity sticks where the phenyl of the 
target is not covered by the subject ligand, and this pro-
trusion does not cause a shift in alignment away from 
allowing congruent surfaces to match.

Importantly, this type of calculation can be done in inter-
active time-scales, using modest multi-core workstations 
(see Methods). Using the ForceGen (-pgeom) conformer 
search method [25, 26], generating the conformer pool for 

the macrocycle shown in Fig. 9 took just 11 s of real time, 
and the eSim alignment took less than 0.5 s.

We are not aware of any comparable pose prediction 
benchmarks where it would have been possible to make 
a direct comparison to other methods. Because ROCS-
color was, by a significant margin, the best of the alterna-
tive methods, it was tested on the DUD-E+ benchmark 
in order to provide context for the eSim pose prediction 
performance. Testing was done exactly as with eSim, using 

Fig. 10  Comparison of pose prediction performance of eSim and 
ROCS-Color: cumulative histograms of RMSD for best pose of top 
20 (top left: eSim in violet, ROCS-Color in gold); cumulative his-
tograms of RMSD for top-ranked (top right: eSim in violet, ROCS-

Color in gold); per-target average performance for best pose of top 20 
(bottom left); and a contoured plot of the best-pose performance for 
the two method on the full data set (bottom right)
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250 conformers per subject ligand, beginning from the 
same agnostic starting point in each case (see Methods 
for details). Figure 10 shows four plots that summarize 
the overall comparative performance of the two methods.

The plot at top left is analogous to that seen at the top 
of Fig. 8, with cumulative histograms of results for the 
best pose of the top 20 returned for eSim (violet curve) 
and ROCS-color (gold curve). At the 2.0 Å RMSD thresh-
old, there was a roughly 20% point higher success rate for 
the eSim approach. The performance differential for the 
top-ranked pose was smaller, with a roughly 10 percent-
age point advantage for eSim.

For mutual alignment of ligand sets, differences in the 
best of top N RMSD performance are critical because 
they are multiplicative in effect. The probability of 
observing a close-to-correct alignment clique among N 
ligands falls off in proportion to the probability of the 
constituent pairwise comparisons containing correct rela-
tive alignments.

Note that the overall cumulative histograms reflect a 
greater contribution from targets with very large sets of 
pairwise comparisons (11 targets had over 10,000 com-
parisons each) than those with small sets (62 targets had 
1000 or fewer comparisons). The lower left plot shows the 
per-target average best-pose performance for the DUD-
E+ 85 targets having from 20 to 60,000 ligand pose pair 
comparisons. In all 54 cases where the mean performance 
values differed by at least 0.4 Å, eSim produced the better 
RMSD performance value.

The lower right plot is the analogous one, but using 
each data point individually, rather than grouping by tar-
get. The plot was done using contoured density due to the 
nearly 400,000 points in the plot. Where both methods 
produced reasonable performance (lower left of the plot), 
eSim yielded quantitatively better RMSD values, with the 
yellow “ridge” being above the dashed line of equivalent 
performance. Note also that in a non-trivial fraction of 
cases where eSim produced results of 2.0 Å or better, the 
corresponding ROCS-color values were from 3.0 to 8.0 
Å RMSD.

In all of the comparisons, whether assessed per-target 
or over all of the pose predictions made, the eSim perfor-
mance advantage was highly statistically significant (p 
≪ 10−10 , by paired t-test).

To explore whether the performance gap between 
ROCS-color and eSim was mainly a property of the 
respective similarity functions or pose optimization pro-
cedures, a more thorough ROCS procedure was tested 
on a limited number of pairwise alignments (about one 
quarter of the full set). With the “-subrocs true” 
flag set, ROCS alignment sampling and optimization is 
vastly increased (consequently increasing computational 
time). Overall, the additional sampling made only a small 

improvement to the default ROCS procedure’s results, 
much smaller than the roughly 20% point gap at the 2.0 
Å RMSD threshold for best of top 20 performance.

Conclusions

We have introduced a new 3D molecular similarity 
method, called eSim. It was developed by analogy to the 
newly introduced QuanSA 3D QSAR method [17]. It com-
pares molecular surfaces to characterize shape similarity 
rather than the much more widely used approach of volu-
metric comparison. In addition, it makes use of a physi-
cally realistic means to compare ligands’ ability to make 
electrostatic interactions and specific hydrogen bonds. The 
former is handled by direct calculation and comparison of 
electrostatic fields, and the latter is handled by consider-
ing the presence, precise surface position, and directional 
preference for each hydrogen bond donor and acceptor. 
The eSim calculation is asymmetric, measuring the extent 
to which a subject molecule is able to mimic a target.

Through extensive benchmarking using the full, unmod-
ified DUD-E data set, we compared eSim with seven alter-
native methods for which performance data were available. 
Performance of eSim in all three screening modes was 
significantly better than the best-performing alternative 
(p < 10−3 , 10−9 , and 10−12 , respectively, from fastest to 
most thorough mode). In its most accurate mode, eSim had 
AUC values of at least 0.80 for 43% of the DUD-E targets 
(more than twice as many as the best-performing alterna-
tive). In its fastest mode, eSim processed roughly 275 mol-
ecules per second using a single-core/single-thread CPU 
calculation, roughly 5–20 times faster than the remotely 
competitive alternative approaches.

We have augmented the DUD-E set by comprehen-
sively accumulating data from additional PDB structures. 
This allowed for experiments involving alternative query 
choices and a very extensive data set for assessing ligand-
based pose prediction. Using multiply-aligned ligands as 
joint targets for similarity-based screening, eSim obtained 
a mean AUC of 0.82 across the 92 DUD-E+ targets, which 
was equal to the performance obtained using the optimal 
single ligand as a query. Pose prediction results were 
encouraging for the prospects of accurate multiple-ligand 
alignment. In 80% of the nearly 400,000 pairwise ligand 
alignment cases where some reasonable degree of shared 
bound volume existed, a predicted pose was returned 
within 2.0 Å RMSD of experimental coordinates.

The nominal performance advantage of eSim compared 
with the best alternative method (ROCS-color) in terms 
of screening enrichment was roughly a 14% increase in 
ROC AUC using comparable parameterizations. For pose 
prediction, the improvement in success rate at the 2.0 
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Å RMSD threshold was more than 30% for best returned 
pose and over 20% for top-ranked pose. The success rates 
observed suggest that purely ligand-based methods may be 
effective for predictive analysis of ligand binding modes, 
which remains a critical problem in molecular design and 
is a key challenge for 3D-QSAR approaches.

Future work will involve systematic exploration of the 
multiple alignment problem, further parametric and speed 
optimizations within the eSim calculation, and a GPU-based 
implementation.
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