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Development of a scalable in-vivo drug discovery platform allows for deep interrogation 

of mechanisms of KRAS.G12C inhibitors.  

Johnny Yu 

Abstract 

 Drug discovery in small molecule oncology has traditionally been conducted using high-

throughput, single-target screening approaches against a panel of arrayed test compounds. Since 

the inception of small-molecule screening around thirty years ago, the field has primarily 

progressed by automating this process using robotics or by moving to cell-based reporter assays. 

However, fundamental limitations exist namely: lack of in-vivo context of biochemical or reporter 

assays, lack of generalizability of screening discoveries across many different types of genetic 

backgrounds, and coarse data readouts that prevent simultaneous inference of deep biological 

interactions and mechanisms of compounds. The work herein describes in detail 1) the challenges 

and advances made in advancement of novel technologies aimed at addressing these problems 

as well as 2) the development of the GENEVA method as a method for simultaneously addressing 

these challenges in a multiplexed assay format scalable for in-vitro, organoid, and in-vivo model 

system 3) the discoveries enabled by GENEVA within the context of understanding KRAS.G12C 

inhibitor mechanisms.  

 In addition to a discussion of both methods and discoveries from GENEVA, I will also 

present a focused chapter on the dissection of RBMS1, an RNA binding protein that we go on to 

show rewires transcriptome networks to produce a pro-metastatic phenotype. I will describe the 

identification of this protein as a metastasis-relevant master regulator, validation of using in-vivo 

metastasis assays, and the downstream effects of shutting down RBMS1 on both specific 

transcripts and on gene networks broadly.  
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Chapter 1: Advances in phenotype-based drug interrogation methods in the era of high-

throughput genetic perturbation and sequencing methods  

Drug discovery over the last few decades has been a challenging field with diminished 

clinical success rate, particularly in small molecule discovery. In oncology, only an estimated 

~5% of compounds entering clinical trials ultimately reach approval (Wong et al. 2019). Failures 

can occur due to lack of understanding of mechanism of action (MOA) of the molecule, poor 

predictive power of preclinical models, or the lack of generalizability in broader patient 

populations (Fogel 2018, Nat Med 2010, Davis 2020, Pan et al. 2020, He et al. 2020). 

Furthermore, a persistent problem in oncology is the ability of cancers to evade the best 

targeted therapies over time by mechanisms involving adaptation, tumor heterogeneity, and 

novel mutations in escape genes (Vasan 2019). However, in recent years much progress has 

been made in development of more human-predictive model systems, targeting of drug-

resistance tumor pathways, and biological dissection of molecular MOA. 

  Patient-derived Xenografts (PDXs) have seen an explosion of interest in recent years 

leading to now hundreds of available and established models in mice (Hidalgo et al 2014). PDX 

models offer the same histopathology in engrafted mice as in the original patient cancer 

representing a significant advantage over cell-line xenograft models (Dong et al 2016). In 

oncology, PDX models are viewed as an even higher level of ‘gold-standard’ validation 

compared to cell-line xenograft models. Furthermore, with increased availability PDX models 

have now been incorporated into large-scale screening panels to assess for generalizability of 

drug effect on a population-level scale (Ireson, 2019). Critically, PDX models remain inefficient 

to scale because of their more variable growth rates, requirements for in-vivo only propagation, 

and limited information content; predominantly the readout from PDX models is tumor size over 

time (Yoshida 2020, Letai 2021). Despite the promise of PDXs, ultimately cost and scalability 

hinder true discovery efforts using PDXs as the starting point.  
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Oncology also has the unique problem of drug resistance: despite the success of 

targeted therapies against mutational targets such as BRAF.V600E inhibitors, most targeted 

therapies inevitably develop resistance. Even among patients that respond to BRAF inhibitors 

~50% of patients develop resistance within 6-8 months (Tanda et al 2020). As a response, 

combination therapies have been an active area of research but challenges remain; there are 

ultimately many routes to escape that exist and the large number of possible inhibitor 

combinations make testing these resource-intensive (Leary 2018). 

 The advent of high-throughput reverse genetics approaches and short-read sequencing 

methods have allowed for improved interrogation of mechanism of action (MOA). CRISPRi 

screens have shown that identification of key genetic dependencies to a molecule allow for the 

identification of pathways that inform MOA (Goncalves et al 2020). An illustration of this comes 

from a recent functional genomics study of Rigosertib (a molecule in Phase III trials) revealed 

the molecule had a vastly different MOA than previously known and, in fact, acted by targeting 

microtubule formation (Jost et al 2020). While it may seem surprising that a Phase III compound 

still had outstanding MOA questions, mechanism of action is often dirty and challenging to 

establish when the range of all possible biological perturbations are possible for any single 

moleculea and when polypharmacology comes into play. It may surprise the reader to learn that 

the commonly used home pain reliever Tylenol, or Paracetomol, has unclear and speculative 

MOA. For this reason, much of drug discovery is focused on interrogating MOAs and many 

compounds that proceed through phenotypic screening without a clear MOA can be 

discontinued as viable drug discovery programs. An alternative to perturbation-based 

interrogation, PRISM, which relies instead on the natural variation inherent in different cell lines 

has also been developed and been shown to inform genetic dependencies of small molecules 

as a way of understanding more deeply MOA (Yu 2016, Corsello 2020, McFarland 2020). The 

key difference here to genetic screens is that instead of perturbing genes and using these as 
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the source of experimental variation, endogenous variation assays rely on the inherent 

differences between many different cell lines as the source of controlled experimental variance. 

And while this method has been adapted to single-cell technologies as well (McFarland 2020), it 

is not clear just how powerful this type of assay informs MOA understanding beyond current 

methods and is also limited in its scope to short-term drug perturbations and strictly in-vitro 

based context. 

 In a landmark review from Stuart Shreiber, one of the pioneers of high-throughput 

screening and modern drug discovery, the authors illustrate different approaches including 

affinity-based, gene-expression, knockdown/overexpression screening, resistance screening, 

and molecule similarity clustering as novel methods that incorporate both phenotype and target 

identification in small molecule MOA discovery (Wagner & Shreiber 2016). Pros and cons exist 

for each type of method - for example, affinity-based capture is challenging and hard to scale for 

multiple molecules since direct capture assays require clever chemistry for target protein 

capture. Gene-expression based assays are often challenging to interpret because of the wide 

space of biological perturbations possible in a bulk cell population. Knockdown and 

overexpression genetic screens while valuable are labor intensive and suffer from scalability 

across many molecules. And finally, resistance screening is simply not scalable because of the 

length of time and many kinds of cell lines that can be profiled in a resistance assay.  

 Chapter I illustrates the advances that have been by incorporating novel methods 

developed in other spheres of biology and adapting them to phenotypic screening and MOA 

identification. However, even the most advanced methods illustrated here – genetic screens and  

natural variation cell pools – are limited in their scope. Genetic methods while useful, often 

provide an overabundance of information because of their ‘biological saturation’ approach to 

find all the perturbations that could go wrong. Scalability when it comes to compound libraries 

becomes a further challenge since screening is both time and scale intensive at a genome-wide 

level. Natural variation cell pools are a novel modality that allow for simultaneous profiling of 
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multiple genetic and phenotypic backgrounds. However, these methods have yet to 

demonstrate the power those genetic methods have in understanding first-order events in drug 

perturbations and lack the power of scaling to a different information space such as PDX, 

organoids, or in-vivo. Ultimately the information space targeted by these assays determine 

much of what can be discovered and it is possible that the intense focus of the last thirty years 

of drug discovery using in-vitro based systems may have led to the consistent reduction in 

success of clinical compounds which are ultimately tested in an in-vivo human context. Chapter 

II will discuss our approach to solving this problem and address specifically both model system 

limitations, scalability, and deep understanding of MOA and resistance mechanisms.  
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Chapter 2: Chapter 2: Development of GENEVA as a scalable in-vivo drug interrogation 

method and application in KRAS.G12C inhibitors  

 

INTRODUCTION 

 Herein, we present a scalable method – GENEVA (Genetic and Natural Endogenous 

Variation Assay) – which allows for determination of MOA, resistance pathways, generalizability 

of drug effects across multiple genetic backgrounds, and the ability to gather this information 

from in-vivo and PDX cancer models in a single experiment. It builds upon the concept of using 

naturally occurring variation in pools of multiplexed cell lines with single-cell sequencing 

readouts, while significantly expanding the repertoire of available model systems (in-vivo and 

PDX) and utility (combination therapy and in-vivo specific insights). Using the KRAS.G12C 

covalent inhibitor ARS-1620 we show that GENEVA not only can discover genetic dependency 

of ARS-1620 on the KRAS.G12C mutation, but that the molecule acts to kill cells by inducing 

hyperactive mitochondria paired with increased oxygen consumption and increased 

mitochondrial reactive oxygen species production. We show that it combines the best features 

of both i) deep genetic perturbation approaches by discovery of highly complex mechanisms of 

action that are also orthogonally discovered in genetic systems and ii) natural variation assays 

using cell pools and elevate these mosaic technologies to highly challenging model systems 

such as PDX, PDO, and in-vivo. We further go to show that rapid combination therapy targets 

can be predicted, and that a specific in-vivo resistance mechanism of G12C inhibitor evasion 

can be enhanced by synergistic targeting in combination with TGF-beta inhibitor Galunisertib.  

RESULTS 

GENEVA as a platform for interrogation of genetic drivers of drug sensitivity  

GENEVA aims to understand mechanism of action and tolerance of a drug compound in 

a single experiment. It relies on naturally existing genetic, transcriptomic, and phenotypic 

variation by pooling cell lines from different genetic backgrounds and then treating the pool with 
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the drug compound for an extended period of time. These pools of heterogeneous cell lines 

become the unit of experimentation and are implantable in different model systems: in vitro 

culture, 3D culture, and in vivo xenografts. Dissociation of cell pools post drug treatment is 

followed by single-cell RNA sequencing (scRNAseq), cell hashing and genetic demultiplexing. 

Using a multi-level computational demultiplexing pipeline, we categorize single cells by drug 

treatment, genetic background, and model system (Fig. 1a). Multiple lines of analysis can be 

performed from these single-experiment datasets to reveal how a compound behaves across 

multiple genetic backgrounds including reconstruction of relative sensitivities, determination of 

genetic drivers of sensitivity, and response mechanisms indicative of on-target mechanism of 

action and drug resistance mechanisms. By studying shared response across multiple genetic 

backgrounds cell-line specific artifacts are less likely to appear and generalizability of 

conclusions is increased. 

We demonstrate that GENEVA can recapitulate discovery of genetic targets of targeted 

therapies. In a pool of cell lines containing both BRAF.V600E mutant and wild-type and 

KRAS.G12* mutant cell lines, we drugged cell pools with three compound conditions: DMSO 

(vehicle), Vemurafinib (BRAF.V600E targeting), and ARS-1620 (KRAS.G12C targeting) (Fig 

1b). We calculated relative levels of sensitivity for different cell lines by counting cells assigned 

to each line in the vehicle and in the drug conditions. The most sensitive lines in Vemurafinib 

treated cells were BRAF.V600E mutant lines and most sensitive lines in ARS-1620 treated cells 

were KRAS.G12C mutant lines. Using a lasso variable selection regression model combining 

sensitivity output from GENEVA and whole exome derived mutation genotyping data, the model 

correctly predicted BRAF.V600E and KRAS.G12C as drivers of drug sensitivity to BRAF.V600E 

and ARS-1620 (Fig 1c). We further expanded GENEVA to conduct simultaneous IC50 

estimation across multiple cell lines. Using ARS-1620 against a pool of G12C, G12D, and G12V 

lines we dosed pools at different concentrations and estimated relative survival using cell counts 

of each line at dose concentrations (Fig 1d). Reconstructed IC50 curves showed increased 
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sensitivity of G12C lines to ARS-1620, consistent with known mechanism of action of ARS-1620 

targeting the KRAS.G12C mutation site (Fig 1e).  

GENEVA allows for assessment in vivo cellular responses to drug and is applicable to PDX 

models 

We developed GENEVA to also be a broadly flexible platform that allows for assaying 

chemical perturbations in vivo with the goal of understanding both in-vivo specific effects and 

patient-specific effects (Fig 2a). To demonstrate this, we multiplexed multiple KRAS G12* cell 

lines in a pooled flank xenograft to reconstruct drug response in an in vivo setting (Fig 2b). We 

proceeded to expand beyond cancer cell lines into patient-derived xenograft models (PDX) 

which are often considered high-fidelity models in oncology for their high-fidelity representation 

of patient tumors. We demonstrate that GENEVA can be conducted with pooled PDXs in flank 

xenograft in vivo systems (Fig 2d). Furthermore, PDX models grown as organoids in 3D culture 

can be pooled and deconvoluted (Fig 2e). Using cell cycle inference from the PDO GENEVA 

data, we estimated cell cycle suppression (G2+M/G1) for each genetic background and 

reconstructed a dose-response curve of cell cycle inhibition that implicates KRAS.G12C mutant 

PDX models as stronger responders to ARS-1620 than non-KRAS.G12C mutant models (Fig 

2c). Importantly, GENEVA allows for reduction of the number of mice used per experiment to 

one or two per drug condition compared with hundreds in traditional mouse studies while also 

providing high-density phenotypic and transcriptomic readouts. Furthermore, GENEVA allows 

for the first time the ability to conduct these high-throughput natural variation experiments in an 

in vivo setting and with patient-relevant PDX models allowing for data collection that more 

accurately reflects the biology of tumors within the milieu of the human body.  

ARS-1620 induces hyperactivity of mitochondrial electron transport chain flux and mitochondrial 

ROS production as a mechanism of cell death 

 GENEVA provides deep insights into mechanism of action of a drug by allowing for 

selection pressure on heterogeneous populations in response to long duration drug treatment. 
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GENEVA data from pools of KRAS.G12* mutant lines treated at multiple doses with ARS1620 

in-vitro for a long duration (144h) (Fig 1d) revealed subpopulation structure across multiple cell 

lines indicating reduced mitochondrial-origin reads in cells surviving ARS-1620 treatment (Fig 

3a). Deeper stratification of gene expression aggregated across all G12C lines indicated that 

specifically mitochondrial-origin, but not genomic-encoded mitochondrial targeted transcripts, 

were significantly downregulated after ARS-1620 treatment (Fig 3b). While genomic encoded 

mitochondrial transcripts were consistently unchanged across different lines, mitochondrial-

encoded transcripts were specifically downregulated across G12C lines indicating a broadly 

generalizable mechanism of action (Fig 3c). We generated an ARS-1620 tolerant cell line 

derivative by treating KRAS.G12C mutant line H2030 with ARS-1620 (10 uM) for 30 days. 

Measurement of mitochondrial content using the mitochondrial dye Mitotracker Deep Red 

showed a decrease of mitochondrial content in H2030 Tolerant line compared to the drug-naïve 

cell line (Fig 3d). Taken together, GENEVA reveals mitochondrial-targeting action of ARS-1620 

and experimental validation using a long-term drug tolerant line confirms that ARS1620 drug 

tolerant cells have reduced mitochondrial content.  

 We next investigated the mechanistic effects of KRAS.G12C inhibitors on mitochondrial 

dynamics. For these studies we turned to the more specific recently approved drug AMG510 

because of its sub-micromolar IC50 and relevance to clinical outcomes. Using a Seahorse 

Respirometer, we measured oxygen consumption dynamics with and without AMG510 

treatment at an acute two-hour timepoint. Strikingly, AMG510 induces a rapid and significant 

increase in basal respiration (Fig 4a). This effect is attributable to the increase in spare 

respiratory capacity at the site of the electron transport chain, with no significant change in 

glycolytic respiration or ATP production (Fig 4b,d). Interestingly, the increase in spare 

respiratory capacity attributable to AMG510 was absent in H2030 Persistor cells, possibly due 

to a compensation mechanism as part of a drug tolerance program (Fig 4c). We further 

characterized this mitochondrial hyperactivity phenotype by conducting a time-course study 
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measuring mitochondrial membrane potential, mitochondrial reactive oxygen species, and 

caspase cleavage using TMRE, mitoROS, Caspase 3/7 Detection Reagent respectively (Fig 

4e). Initial response of cells to KRAS.G12C inhibition is an increase in membrane potential 

which is consistent with the observed acute upregulation in mitochondrial oxygen consumption. 

Following this at ~6 hours post-treatment mitochondrial reactive oxygen species increase 

followed by caspase 3/7 cleavage at ~24 hours post treatment. Membrane potential is tied 

directly to activity at the ETC and mitoROS is the direct output of ETC activity; caspase 3/7 

cleavage is one of the last and irreversible steps in the apoptotic cascade. Therefore, our data 

suggests that AMG510 acts to kill cells via a cascade of hyperactive mitochondria triggering 

reactive oxygen species accumulation at the mitochondrial sites, followed by traditional 

executioner events such as caspase 3/7 cleavage.  

To further validate that KRAS.G12C inhibitors act via creating hyperactive mitochondria, 

we used mitochondrial ETC inhibitor Antimycin to inhibit ECT activity in a co-dosing study with 

multiple KRAS.G12C inhibitors including ARS1620, AMG510, and MRTX849 (Fig 4g). The data 

shows a significant IC50 curve shift demonstrating that Antimycin rescues the lethality of 

KRAS.G12C inhibitors but only in KRAS.G12C lines (H1373, H2030) and not in non-

KRAS.G12C lines (H441). This data confirms a novel mechanism of KRAS.G12C lethality via 

mitochondrial ETC that is specific to a KRAS.G12C context. We further analyzed a genome-

wide CRISPRi screen designed to find synthetic lethal targets in a KRAS.G12C – ARS1620 

context. We found that mitochondrial genes and specifically mitochondrial biogenesis genes 

(mitoribosomes) had a significant rescue effect on survival with mitochondrial biogenesis genes 

having the most pronounced rescue effect. This data confirms from an orthogonal reverse-

genetics approach the mechanistic role that mitochondria play in ARS1620 lethality. Although 

ARS1620 is a highly specific covalent binder of the KRAS.G12C pocket, GENEVA reveals that 

its lethality mechanism relies on inducing hyper-respiratory mitochondria and that cells can 

evade lethality by downregulating their mitochondrial content.  
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ARS-1620 induces ferroptosis as a secondary mechanism of cell death  

  To determine mechanisms upregulated in response to KRAS.G12C inhibition we looked 

at upregulated genes across KRAS.G12C lines in the cell pool in cells surviving ARS1620 

treatment. Strikingly, the most consistently upregulated genes across cell lines were involved in 

an anti-ferroptotic response mechanism (Fig 5a,b). Among this group of genes were FTH1 and 

FTL, the two components of the Ferritin Complex, which is responsible for sequestration of 

labile free iron. We hypothesized that because cells were upregulating an anti-ferroptotic 

response, ARS-1620 could be inducing ferroptosis as a secondary mechanism of cell death. 

Using a lipid peroxidation live cell probe we measured lipid peroxidation – one of the hallmark 

phenotypes of ferroptosis – in response to ARS-1620 treatment. A dose curve demonstrated 

that ARS-1620 induced lipid peroxidation in a dose dependent fashion, suggesting that 

ferroptosis was indeed an outcome of ARS-1620 treatment (Fig 5c). Furthermore, comparison 

of cell survival and lipid peroxidation dynamics with known inducers of ferroptosis (Erastin and 

Altretamine) showed that ARS-1620 behaves similarly in its ferroptotic/survival kinetics to these 

ferroptosis inducers (Fig 5d). Survival and normalized lipid peroxidation curves tended to 

crossover around the IC50 survival value in all three compounds demonstrating similar 

pharmacodynamics.  

We then tested the effect of different KRAS.G12C inhibitors on ferroptosis in a 

KRAS.G12C (H2030) and non-KRAS.G12C (H441) cell line (Fig 5e). All G12C inhibitors 

significantly induced lipid peroxidation in G12C cell lines more than non-G12C cell lines 

indicating a specific and broadly consistent effect that is KRAS.G12C specific. We then 

attempted to determine if ferroptosis was a causal effect of cell lethality or a secondary 

mechanisms using the traditional ferroptosis rescue agent, ferrostatin-1 in co-dosing studies 

with multiple G12C inhibitors. We found that in ferrostatin-1 was unable to rescue cellular 

lethality with any of the G12C inhibitors, indicating that the ferroptosis phenotype is a secondary 

mechanism of action of the molecules. Lipid peroxidation has been known to lie downstream of 
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many cellular processes that produce reactive oxygen species and it appears that KRAS.G12C 

inhibitors by inducing the release of mitochondrial ROS, are able to trigger lipid peroxidation 

downstream as a secondary phenotype. GENEVA – in a single experiment – paints a complex 

mechanistic picture of the biological effects of a molecule and represents a focused and 

powerful method for rapidly assessing MOA.   

GENEVA uncovers drug tolerance mechanisms to guide combination therapy targeting 

 We hypothesized that GENEVA could be further useful for understanding drug tolerance 

mechanisms as a way of identifying novel pathways to target for combination therapies and 

drug discovery because of its capacity for long drug exposure testing. From GENEVA data 

generated on ARS-1620, we aggregated gene expression changes in response to drug and 

compared differences between G12C and non-G12C cell lines. We identified several druggable 

targets that were upregulated in response to KRAS.G12C inhibition specifically in G12C lines 

but not in G12* lines representing specific on-target resistance mechanisms (Fig 6a,b). Notably, 

VEGF, JAK and mTOR pathways were implicated as conferring resistance to KRAS.G12C 

inhibition as previously reported. To test if these druggable resistance pathways would be 

effective combination therapy targets we co-dosed these molecules in survival assays with the 

KRAS.G12C inhibitors ARS-1620, AMG510, and MRTX849. Notably, several of these 

compounds showed strong Bliss drug synergy scores with INK128 – an mTOR inhibitor – as the 

strongest candidate which showed strong synergy with all three KRAS.G12C inhibitors (Fig 6c). 

A deeper analysis of the mTOR regulated geneset of ribosomal proteins showed that in fact it 

was strongly upregulated even in non-KRAS.G12C lines (Fig 6d). Therefore, we opted to 

conduct an in vivo combination therapy study with ARS1620 and INK128 to assay for in-vivo 

drug synergy using the KRAS.G12C cell line xenograft H1373. We found that INK128 was able 

to significantly reduce tumor growth in vivo (Fig 6f). Furthermore, calculation of the expected 

additive effect of the two compounds using a Bliss Independence model showed that the 

combination was able to reduce growth ten-fold compared to the expected growth rate if the 
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drugs were independent (Fig 6e). GENEVA was able to rapidly identify several targetable 

growth pathways expressed in drug-tolerant cells and treatment of these pathways 

demonstrated suppression of tumor growth both in vivo and in vitro models.  

GENEVA in vivo reveals EMT as a potent adaptive mechanism targetable by combination 

therapy 

 We compared the ARS1620 datasets conducted in vitro against the data 

generated in vivo to look for differences and similarities attributable to the context of the model 

systems used (datasets from Fig 1d, 2b). We found that there were significant similarities across 

geneset responses to drug in both contexts including a downregulation of mitochondrially 

localized genes post-treatment (Fig 7b). However, one of the most upregulated genesets in 

response to drug was specific to the in vivo context and showed no difference in vitro (Fig 7a). 

This endothelial-mesenchymal transition hallmark gene expression signature was increased in 

vivo and represented a possible drug-adaptive mechanism to ARS1620 KRAS.G12C inhibition. 

Therefore, we designed a multi-arm combination therapy in vivo study to test the efficacy of an 

EMT/TGF-B inhibitor, Galunisertib, in combination with ARS1620. We found that the 

combination therapy was extremely effective in suppressing tumor growth (Fig 7c) and acted 

with ARS1620 to reduce growth synergistically according to a Bliss synergy model (Fig 7d). 

Further comparison of the effect size of in vivo synergy of Galunerstib+ARS1620 with 

INK128+ARS1620 showed similar growth rate reductions of ten-fold compared to the expected 

no additive model for each combination therapy (Fig 7e). Thus, this in vivo dataset was able to 

provide an insight into a resistance mechanism preferentially occurring in vivo and led to 

identification of a targetable pathway for combination therapy.   

Analysis of the PDX GENEVA data showed that after drug treatment, cell populations 

changed to reflect an increase in EMT-high expressing cells in JAX877 (KRAS.G12C) and 

Ribosomal-high expressing cells in JAX233 (KRAS.G12C) (Fig 7f). This data suggests that one 

PDX is undergoing selective drug pressure to adapt by upregulating a specific EMT mechanism 
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of drug tolerance while the other PDX is adapting by upregulating ribosomal production as part 

of an mTOR signaling response, illustrating how GENEVA can be used to find patient-specific 

responses in a rapid fashion. In a different line of analysis, CLX data in vivo was compared to 

CLX data in vitro by calculating spearman correlation using drug-induced transcriptome 

responses. The data revealed that the in vivo dose (150 mg/kg ARS1620, daily gavage) was 

most correlated to a high in vitro dosage of 25 uM (Fig 7G). By comparing both model systems 

we were able to estimate relative pharmacodynamics of the drug compound across both 

systems, leading to faster estimation of bioavailability. 

GENEVA as a method for combination therapy dissection in vivo  

 In addition to providing insights into resistance mechanisms to anti-cancer agents, we 

showed that GENEVA can also be used to conduct pooled in vivo combination therapy studies. 

We utilized a panel of G12C and non G12C lines pooled in vivo as xenografts to conduct 

combination therapy studies comparing ARS1620 with and without Galunisertib, INK128, and 

Antimycin for a total of eight different treatment conditions; these compounds were taken from 

our prior combination therapy discoveries and mechanistic understanding of mitochondrial 

action of ARS1620 (Fig 8a,b). Using cell cycle active/inactive proportions in each drug condition 

we calculated drug synergy across several cell lines for each drug. Ink128 and Galunisertib 

showed relative in vivo synergy consistent with the prior (Fig 8c) validation experiments 

demonstrating in vivo synergy (Fig 6e, Fig 7e), while antimycin showed an antagonistic effect 

demonstrating a relative rescue of ARS1620 consistent with prior rescue data (Fig 4e). A linear 

model built around gene expression and drug treatment + cell line of origin to discover genes 

that drove synergistic drug phenotype revealed that together Galunisertib and INK128 was able 

to further increase the synergistic decrease in mitochondrial reads consistent with ARS1620 

general effect on mitochondria observed alone (Fig 8d). Subpopulation structure showed that 

indeed the drugs together were able to enhance the effect on reduction of mitochondrial gene 

expression, while antimycin was able to reverse the decrease of mitochondrial expression 
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attributable to ARS1620 (8e). Taken together, GENEVA is also useful as a scalable combination 

therapy tool that allows for assaying multiple cell lines together, conducting multiple drug 

treatment conditions quickly, deriving phenotypic synergy information from cell cycle state, while 

also allowing for gene-level inference of pathways that drive synergy or antagonism.  
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FIGURES 

 

 

 
Figure 2.1. (A) Conceptual overview of GENEVA as a high-throughput method for 
understanding mechanisms of drug efficacy and escape using a mosaic tumor approach in 
diverse model systems with (B) an accurate pipeline for pooling and computational 
reassignment across drug and cell origin conditions in a 2D in vitro context with ARS1620 and 
Vemurafinib. (C) Analysis of drug sensitivity estimation using cell counts allows for identification 
of mutational targets of compounds using a feature selection regression model. (D) Multiple 
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dosing regimens of ARS1620 in a KRAS.G12C vs KRAS.G12* pool allows for (E) reconstruction 
of IC50 and relative drug sensitivity measure- ments recapitulating discovery of KRAS.G12C as 
the sensitizing mutational target for ARS1620. 
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Fig 2.2 GENEVA can be conducted in-vivo and in organoids across PDX and CLX models to 
discover in-vivo specific drug response differences as well as expanding experimental drug 
testing in pools across multiple PDX/PDO models. (A) Applying GENEVA to In Vivo systems to 
investigate KRAS.G12C Inhibitor ARS1620 using both Cell line and Patient-Derived Xenograft 
Models (B) UMAP demonstrating successful treatment, implantation, harvest, and pooling of in 
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vivo mosaic tumors and computational deconvolution assignment for cell line in vivo xenografts 
in NSG mice (C) Cell cycle inhibition rate calculated from cell cycle active/inactive states in PDX 
organoid models showed specificity of KRAS.G12C inhibitor ARS1620 against G12C driven 
tumors (D) Mosaic organoids were treated across multiple doses of ARS1620 (E) Patient 
Derived Xenografts were successfully applied in an in vivo mosaic GENEVA experiment. 
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Fig 2.3. (A) Single cells from GENEVA pools in-vitro treated with ARS1620 binned by percent 
mitochondrial reads demonstrate subpopulation structure associated with drug-tolerant cells. (B) 
Aggregated gene expression across KRAS.G12C lines in GENEVA pools of mitochondrially 
encoded and genomically encoded mitochondrially-targeted transcripts compared to gene 
expression of non-mitochondrial gene transcripts after ARS1620 treatment. (C) Gene 
expression of mito-encoded transcripts after ARS1620 treatment for each KRAS.G12C cell line. 
(D) Generation of a long term ARS1620 tolerant cell line (30 day treatment, 10uM) from H2030 
(KRAS.G12C) profiled for mitochondrial content using fluorescent mitochondrial stain 
(Mitotracker Deep Red FM). 
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Fig 2.4. AMG510 increases mitochondrial respiration and electron transport chain activity as 
lethality mechanims of KRAS.G12C inhibition (A) seahorse assay measuring oxygen 
consumption of H2030 (KRAS.G12C) cells at (2h) after AMG510 treatment (B) broken into 
components basal respiration, spare respiratory capacity, and glycolytic respiratory fractions. 
(C) Oxygen consumption measurements in H2030 ARS1620-persistor line after drug stimulation 
and comparison between untreated H2030 and H2030 ARS1620-persistor line. (D) Total cellular 
ATP measurements at timepoint concurrent with searhose assay dosing (500nM AMG510, 2h). 
(E) Investigation of AMG510 drug-induced mitochondrial dynamics in a time course assay with 
multiple measure- ments of mitochondrial phenotypes including mitochondrial membrane 
potential, mitochondrially localized reactive oxygen species generation, and caspase 3/7 
cleavage. (F) Genome-wide synthetic lethal screen data analyzed for mito-resident genes and 
mito-ribosome genes compared to all-gene data in the context of effect on rescue of 
KRAS.G12C lethality. (G) Rescue of KRAS.G12C inhibitor lethality by Antimycin measured 
across inhibitors and cell lines with different KRAS.G12 mutational status. 
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Figure 2.5. GENEVA uncovers secondary mechanism of cell death by lipid peroxidation specific 
to KRAS.G12C on-target engagement. (A) Z-score differences aggregated across multiple 
G12C lines from GENEVA pools drugged with ARS1620 in-vitro demonstrate a shared 
upregulation of the anti-ferroptotic genes and (B) gene expression of the anti-ferroptotic genes 
for each cell line respond to increasing ARS1620 dosage. (C) Experimental investigation of 
ferroptosis using a fluorescent lipid peroxidation sensor demonstrate dose-response of cells of 
lipid peroxidation to ARS1620 dosage (48h). (D) Survival and lipid peroxidation kinetics across 
known ferroptotic agents (Erastin, Altretamine) as compared to ARS1620 and (E) lipid 
peroxidation measurements in response to KRAS.G12C inhibitors in a KRAS.G12C cell line 
H2030 and KRAS.G12V cell line H441. (F) Rescue experiment of lethality of KRAS.G12C 
inhibitors with ferrostatin-1. (G) Mechanistic picture of KRAS.G12C inhibitors appears to be one 
of inducing hyperactive mitochondria causing increased oxygen consumption and ETC flux 
leading to elevated levels of mitochondrial ROS production which causes lipid peroxidation 
broadly in the cell and cell death. 
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Figure 2.6. GENEVA predicts effective combination therapies by identification of upregulated 
pathways in treatment-tolerant cells. (A) Comparison of G12* against G12C KRAS mutant lines 
in GENEVA pools at moderate dosage (1.6 uM ARS1620) reveals expression upregulation of 
several druggable targets indicating possible survival mechanisms to G12C inhibition by 



 30 

ARS1620. (B) Individual cell line expression of druggable targets across G12C and G12* lines 
across increasing doses of ARS1620. (C) Compounds inhbiting predicted combination therapy 
targets dosed in combination with three ARS1620 inhibitors assayed by cell survival for drug 
synergy. Highlighted columns indicate significant synergy and black boxes indicate missing 
data. (D) Further dissection of GENEVA data examining ribosomal proteins as a class are 
upregulated as a class non-G12C cell lines as part of survival response to ARS1620 treatment. 
(E) INK128 empirical in-vivo combination therapy Bliss drug synergy with ARS1620 compared 
to the expected no synergy expected growth rate. (F) Relative tumor volume of ARS1620 and 
INK128 in multi-arm combination therapy in-vivo study in H1373 KRAS.G12C mutant line (n=4-5 
per condition) 
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Figure 2.7. GENEVA reveals in-vivo specific upregulation of EMT as a response to KRAS.G12C 
inhibition tolerance as a targetable resistance mechanism (A) In vivo GENEVA vs in vitro 
GENEVA comparison of EMT geneset upregulation post-drug treatment with ARS1620 and (B) 
mitochondrial resident genes reveal in-vitro and in-vivo concordant and discordant effects. (C) 
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In-vivo multi-arm combination therapy (n=4-5) growth curves with ARS1620 and EMT inhibitor, 
Galunisertib; vehicle and ARS1620 single-dose curves reported from Fig 6F. (D) Expected 
growth rate assuming no synergistic effect by Bliss synergy model compared to measured 
growth rates of ARS1620+Galunisertib (E) Compari- son of G12C combination therapies 
predicted from GENEVA in vitro (Ink128) and GENEVA in vivo (Galunisertib) by fold reduction in 
growth rate compared to the respective expected null Bliss synergy models. (F) KRAS.G12C 
PDX models post-drug treatment with ARS1620 categorized for upregulation in EMT or 
Ribosomal transcript expression levels. (G) In vivo vs In vitro spearman correlation of GENEVA 
pools for estimation of relative cross-model system effective dose using full-transcriptome drug-
specific expression response.  
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Fig 2.8. Scaling GENEVA in-vivo for combination therapy studies in KRAS.G12 mutant lines 
colored by (A)cell line of origin and (B) treatment condition. (C) Bliss synergy calculations 
performed on cell cycle states in each drug condition singly and in combination estimated for 
G12C lines across drug conditions. (D) Assessment of genes driving synergistic drug effect of 
Galunisertib and INK128 in combination with ARS1620 using a multifactorial linear model 
estimating gene-level synergy with mitochondrial transcripts highlighted. (E) Breakdown of 
mitochondrial transcript expression across G12C and G12D lines reveal significantly significant 
downregulation in G12C and G12D lines in a synergistic fashion when modeled against the 
expected Bliss null synergy effect. 
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Chapter 3: Conclusions, relevance and challenges for the GENEVA platform 

 My work has focused on bringing interdisciplinary experimental and computational 

research methods together to solve outstanding biological questions in the cancer space. It has 

lent insight into the highly studied field of KRAS.G12C – a field created by Kevan Shokat’s group 

at UCSF by the development of the first KRAS.G12C inhibitor. It has also built methods for scaling 

in vivo drug MOA discovery methods for the first time, allowing for rapid in vivo assay of both 

phenotype and perturbation effects. I will discuss these and focus on summarizing the 

conclusions, discussing their relevance to the subfields they influence and then discussing the 

outstanding questions that remain in those spheres and how they may be solved.  

 Before the seminal 2012 paper indicating that KRAS could be drugged as a classic cancer 

target, the field of both academic and pharmaceutical science considered KRAS an important but 

untouchable drug target. KRAS is mutated as a driver mutation in over 46% of all cancer types, 

across almost all cancer indications. It is a powerful oncogene that when mutated also falls to 

specific sites: AA 12,13,61,121. Furthermore, the simple combination of KRAS with PTEN, or 

TP53 are the foundation for some of the most used syngeneic mouse tumor models reflecting the 

power of KRAS in rewiring cells to become tumorigenic. Despite this structural biologists and 

medicinal chemists have long been loath to chase KRAS as a tractable drug target. The reason 

lies in the protein surface and binding groove of KRAS. The surface of the protein is fairly smooth 

comparatively, without distinctive binding sites that would allow for small molecule specificity or 

optimization. Furthermore, the unique binding site takes a classic metabolite, GTP/GDP – hardly 

a site that allows for specificity to KRAS alone out of the many G-proteins that exist. For this 

reason, despite the fact that from an early stage RAS proteins and KRAS were clear candidates 

for small molecule inhibitor development, pharmaceutical companies have not funded 

development of internal RAS programs. 

 The advent of the 2012 paper from the Shokat lab showed how this classic boogeyman 

was tamed – by using both structure guided rational small molecule design and clever chemistry 
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inherent in covalent inhibitors. The authors used the insight that many of the oncogenic mutations 

in KRAS frequently mutated to cysteines, which allowed for a free reactive group that when bound 

formed irreversible covalent bonds. They developed a covalent small molecule inhibitor containing 

both i) structure optimized for the binding pocket as well as ii) a reactive group built into a site that 

would face the cysteine directly once bound in the groove. In this way they were able to 

significantly increase specificity to an otherwise hard to target protein. Since that time, 

pharmaceutical companies have rapidly taken notice and in only 8 years time Amgen has 

successfully produced and shepherded the first KRAS.G12C covalent small molecule inhibitor 

into approval for use in patients - a record-breaking time for any drug discovery program. Hot on 

their heels are companies focused on the RAS space broadly as the interest in G-proteins 

explodes due to both academic and pharmaceutical research successes.  

 It is within this context that GENEVA was developed to understand these inhibitors. Upon 

first inspection, this highly trafficked field with significant pharmaceutical potential would be quickly 

understood because of its enormous value. However GENEVA in a few experiments was able to 

uncover what was already well established in G12C space – namely that these were inhibitors 

designed to target and prove lethal to cells containing specific G12C mutations in KRAS. 

GENEVA however went significantly further and was able to show mitochondrial hyperoxidation, 

drug resistance pathways, and in vivo specific pathways that implicated EMT as an adaptive 

survival response.  

Mitochondrial hyperoxidation 

 Mitochondrial hyperoxidation was shown in chapter two to be a clear GENEVA signal. 

After drug treatment rare subclones of cells were enriched and because of scRNAseq’s ability to 

dissect cellular populations, these subclones were able to be detected. Furthermore, the 

consistency of the effect across different genetic backgrounds was able to boost the signal that 

remained consistent across many different cell types, and removed artifacts that would be specific 

to one or a few cell lines. KRAS.G12C inhibitors have not been shown to our knowledge to have 
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any effect on mitochondria and for us this signal was a mysterious clue. However in early 

literature, KRAS.G12 mutations have been shown to have an effect on mitochondria. In fact – one 

prominent publication even showed that in an inducible activation model of cancer genesis using 

a KRAS.G12 mutation, this protein even localized to the mitochondria and that this localization 

was critical to the oncogenic potential of KRAS! For this reason because of both present and past 

clues to a mitochondrial phenotype we decided to investigate this signal further. We showed there 

were hyperoxidation phenotypes associated with KRAS.G12C inhibitor dosing. While many 

compounds can inhibit respiration at the mitochondria (all ETC inhibitors), very few compounds 

are known to cause increased respiration. Furthermore, when we used an ETC inhibitor well 

known for its ability to inhibit mitochondrial respiration, it was able to prevent KRAS.G12C 

inhibitors’ lethal effect. What this shows is that despite intense interest from the field, well-

established MOA, and even the approval of a clinical compound for use in patients – something 

is missing in the way we as a field conduct biology. The mechanism of lethality at the site of the 

mitochondria remained unreported and undiscovered and only with a technology like GENEVA 

that could combine the ability to simultaneously interrogate multiple drugs, multiple genetic 

backgrounds, at an extended time point allowing for rare subclones to emerge and takeover, could 

a discovery that is both biologically deep and broadly generalizable appear.  

 Challenges remain however namely what is the signal cascade of events that take us from 

the molecule binding to the cysteine mutation, to the endpoint of cell death via hyper-respiration. 

A focused screen in which synthetic lethal perturbations using a readout that is not cell death but 

rather hyperoxidation, in a KRAS.G12C inhibitor context, could prove useful in defining the 

members of this pathway. Because of the classic deep nexus of cell death events at the site of 

the mitochondria (apoptosis is defined by activation of caspases on the outer mitochondrial 

membrane)  it is possible there is more to previously understood death pathways that may in fact 

involve an alteration in respiration preceeding death. This future investigation would be critical to 

understanding G12C – but perhaps even more critical to understanding and reevaluating what we 
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know classically about how cells die. And of course, understanding these mechanisms will 

inevitably lead to methods of drug development that may take advantage of the renewed 

understanding of lethality.  

Drug Resistance Evasion Mechanisms 

 The nature of GENEVA also allows for rapid identification of drug resistance mechanisms. 

Because the assay allows for long-term treatment of cell pools, achieved by apriori measurement 

and balancing of cellular growth rates, we are able to effectively extend the window of treatment 

duration to timepoints which allow sensitive cells to die, and tolerant cells with novel rewiring to 

survive. This analysis revealed VEGF, JAK, mTOR, and other programs as potential candidates 

for evasion pathways. All of these genes and some associated sets of genes such as ribosomal 

proteins, were upregulated post KRAS.G12C inhibitor treatment. While this does not establish 

causality, several of these prioritized candidates were tested in traditional drug synergy models 

and shown to be efficacious, where synergy is defined as the sum being greater than the parts. 

Combination therapy discovery in pharmaceutical research has been a notoriously tricky problem. 

It is akin to starting a new drug discovery target search: in a specific target-molecule pair, given 

enough time, what are the evasion pathways out of all possible targets that could appear? In 

some ways because of the adaptive nature of cancer cells, it is like beginning research into a 

space anew because ultimately there are many roads to the same resistance phenotype a tumor 

can travel. GENEVA allows for determination of this in a rapid assay format by finding both 

mechanisms that generalize across different genetic and phenotypic backgrounds by using many 

cell lines together, as well as by allowing for true drug resistance studies by extending the window 

on drug treatment assays past normal IC50 intervals (48-72h). Our data successfully predicted 

that mTOR inhibitors were the most likely candidate for advancement into in-vivo studies, and this 

corroborates well with both literature reporting the relevance of mTOR to G12C inhibitor survival, 

and to pharmaceutical research as several pharmaceutical companies have already advanced 

combination therapies of mTOR with G12C inhibitors. In summary, GENEVA allows for rapid 
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identification of pathways in a drug resistance setting recapitulating significant research 

investments.  

 Challenges remain however, specifically in constructing pools of mosaic cells for new 

target sets. Experimentally, banking and growing new pools of 20-30 cell lines for a GENEVA 

experiment and balancing the inputs ratiometrically to allow for even harvest of cells after a long 

timecourse can be time-intensive for different drug targets. Furthermore, in some cases of rare 

cancers it may be challenging to find enough cell lines to comprise a mosaic. However, we would 

emphasize that although the development of GENEVA here represents an important step it should 

be viewed as the beginning of a new way of conducting focused oncology research at scale in a 

different manner and that new improvements adding genetic manipulations or other 

measurements such as proteomics could prove useful. Technology development could 

significantly enhance the scale of these and require fewer cell lines to obtain similar information 

density.  

In vivo specific insights 

 Lastly, I would like to address the important and novel advancement of a high-throughput 

MOA dissection method like GENEVA into in vivo space. In vivo is the classic gold-standard of 

validation in both the academic realm and the pharmaceutical realm. Hardly an oncology paper 

would be relevant without at least some in vivo validation of their most important claims. After all 

cancer is a disease that happens in the body, where cells grow unconstrained – and growth rate 

differences in vitro simply would not suffice as a model. However in vivo work has been 

constrained by the methods that exist. N=10 mice is common for a single arm in one study. Most 

studies require 2 arms at least, and in several cell lines. With experimental testing and mistakes, 

it is common to use several hundred mice for a single or few drug targets. Furthermore, with 

adding on different compound treatments and daily feeding of animals or injections with drug 

compound, the exercise of in vivo experimentation quickly becomes a massive operation for a 

very small drugsXcell types question.  
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 GENEVA fundamentally scales this down to one mouse; one mouse contains all the 

patient cells from diverse populations and one mouse receives one drug. Because at the end of 

drug treatment the tumor is dissociated and scRNAseq is applied, the unit of information is in fact 

a single cell. Both miniaturization and clever experimental methods using cell hashing allow for 

reduction of information in both genetic and chemical/drug space to the single cell. GENEVA 

furthermore reads out different information than traditional in vivo studies. Most in vivo studies are 

focused on coarse readouts such as tumor volume reduction over time as a proxy for phenotype 

with and without drug. However, while daily tumor measurements may tell us something about if 

a drug is achieving its action, it does not tell us about the ‘how’ in which it acts. GENEVA captures 

phenotypes by relying on a combination of both cell counts pre/post drug and cell cycle state 

pre/post drug; GENEVA also simultaneously captures deep transcriptome shift information 

pre/post drug and is therefore able to go beyond and answer the ‘how’ question in the same 

experiment. GENEVA is not simply an experimental scaling method, rather it is a method that 

also delivers an enormous quantity of drug-informative data much greater than the coarse 

phenotype measurements commonplace in today’s in vivo space.  

 An example of the relevance of GENEVA is the discovery and prioritization of KRAS.G12C 

resistance target EMT. Current interest in resistance targets in G12C space focus around 

SHP2/SOS which is a coactivator of KRAS, EGFR activation as a classic GPCR in a parallel 

pathway, or internal rewiring by mTOR upregulation. However, to date no significant clinical 

programs have been advanced looking at EMT or cell state shift in this space. Our in vitro data 

furthermore did not show EMT activation as a drug resistance mechanism, leading to speculation 

that perhaps the reason the field is not focusing on EMT is because of a model system limitation 

to in vitro discovery models. Our in vivo data was able to show us that EMT is a strong and multi-

cell line generalizable phenomenon in G12C inhibitor evasion. An interesting data point 

supporting this also comes from early clinical trial histopathology data collected from cells that 

have become resistant inside patients to the G12C inhibitor AMG510. In a NEJM paper detailing 
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these patients, the pathologists noted a ‘non-squamous to squamous cell state change’ 

accompanying patient tumor resistance to drug. Upon inspection of the tumor images, it is clear 

that after tumor resistance the cells lose clearly defined cell boundaries, resulting in a highly dense 

and undefined packing of cells reminiscent of the classic endothelial to mesenchymal transition. 

For these reasons, we believe that GENEVA offers substantive information that could not be 

obtained at scale in traditional in vitro models and allows us to quickly dissect information that is 

more patient relevant.  

 Challenges and questions of course remain – are there effects in vivo that are cell-cell 

interaction specific? Are there immune modulatory effects in vivo that are confounding to patient 

results? And are there microenvironment effects that may skew results comparatively to patient 

data? Our response to these questions are two-fold: i) while these may and probably do occur to 

some extent, the fact that tumors grow overwhelmingly in vivo indicate clearly that the main driver 

of tumor growth are the cells themselves, and not the environmental interaction ii) the FDA 

consistently defines in vivo experiments in oncology to be the gold standard for a good reason, 

namely that out of all the experimental systems we have they are the best ones. Further research 

is of course expected as well and we hope to use the burden of validation to prove the validity of 

the hypothesis generation that comes from GENEVA. 

 GENEVA combines many different elements that are highly relevant to drug discovery in 

oncology in a single assay: MOA understanding, tumor resistance predictions, unprecedented 

access to in vivo information, and phenotype + transcriptome capture in a highly miniaturized 

assay. The power of the assay lies not necessarily in its relative strength in one direction or the 

other but rather in the ability to capture in multiple important information spaces simultaneously – 

work which would have taken many teams of scientists many years. The fact that this assay can 

then be scaled to do many compounds quickly promises to advance research and hopefully 

treatment timelines dramatically.  
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ABSTRACT 
Identifying master regulators that drive pathological gene expression is a key challenge 

in precision oncology. Here, we have developed an analytical framework, named PRADA, that 

identifies oncogenic RNA-binding proteins through the systematic detection of coordinated 

changes in their target regulons. Application of this approach to data collected from clinical 

samples, patient-derived xenografts, and cell line models of colon cancer metastasis revealed 

the RNA-binding protein RBMS1 as a suppressor of colon cancer progression. We observed 

that silencing RBMS1 results in increased metastatic capacity in xenograft mouse models, and 

that restoring its expression blunts metastatic liver colonization. We have found that RBMS1 

functions as a post-transcriptional regulator of RNA stability by directly binding its target 

mRNAs. Together, our findings establish a role for RBMS1 as a previously unknown regulator of 

RNA stability and as a suppressor of colon cancer metastasis with clinical utility for risk 

stratification of patients. 

INTRODUCTION 

Metastatic progression in colorectal cancer (CRC) is accompanied by widespread gene 

expression reprogramming. Cancer cells often co-opt post-transcriptional regulatory 

mechanisms to achieve pathological expression of gene networks that drive metastasis 

(Goodarzi 2014, Goodarzi 2015, Goodarzi 2016). Colorectal cancer is the third most commonly 

diagnosed cancer (Siegel, 2018), therefore understanding the underlying regulatory programs 

that drive metastatic progression in this disease is a crucial step towards improving patient 

outcomes. Notably, there are not many predictive computational methods aimed at the 

discovery of unknown regulatory networks. By relying on annotated post-transcriptional 

regulatory pathways, e.g. those mediated by microRNAs, existing methods fail to capture 

previously unknown regulatory interactions. To tackle this problem, we have developed a 

computational approach called PRADA that identifies post-transcriptional master regulators 

responsible for aberrant mRNA stability and gene expression in cancer cells. By applying this 
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tool to a large compendium of gene expression profiling data from patient samples, patient-

derived xenograft models, and established colon cancer cell lines, we identified a novel 

regulatory program involved in CRC metastasis. We find that this previously unknown regulatory 

pathway, which controls mRNA stability and is mediated by the RNA-binding protein RBMS1, is 

often silenced in highly metastatic CRC tumors. We demonstrate that RBMS1 stabilizes 

transcripts by binding to the last exons of target mRNAs in concert with the RNA-binding protein 

ELAVL1, and that in highly metastatic CRC cells and patient tumors, RBMS1 downregulation is 

associated with poor clinical outcome. We identify mRNA targets of RBMS1 that are functionally 

relevant to metastasis and reveal that RBMS1 silencing can be accomplished through 

epigenetic dysregulation. This study not only describes a disease-relevant post-transcriptional 

regulatory mechanism that governs the stability of a sizeable regulon, but also demonstrates the 

value of bottom-up discovery strategies like PRADA that do not solely rely on prior knowledge of 

annotated regulatory programs.  

RESULTS 

PRADA identifies RBMS1 as a novel regulator of CRC progression 

Metastasis is a complex multistep process and requires modulation of many cellular 

pathways and functions. As such, increased metastatic capacity often involves broad 

reprogramming of the gene expression landscape in cancer cells. Thus, a mechanistic 

dissection of cancer progression relies on the systematic identification of the underlying 

regulatory programs that drive pathologic cellular states. To accomplish this, we developed 

PRADA (Prioritization of Regulatory Pathways based on Analysis of RNA Dynamic Alterations) 

that uses regulatory network predictions to identify the key RNA-binding proteins (RBPs) that 

may act as master regulators of mRNA stability and gene expression. Conceptually, PRADA 

solves a regression problem to predict changes in gene expression as a function of the 

expression of RBPs and their known or predicted targets across the transcriptome. In this 

customized regression analysis, the coefficient assigned to each RBP reflects its strength as a 
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regulator of gene expression and the direction of its effect (i.e. activator or repressor). Given our 

limited knowledge of post-transcriptional regulatory pathways and their role in human disease, 

PRADA provides an opportunity for the discovery of previously unknown disease pathways. To 

assess the contribution of post-transcriptional regulatory programs to colon cancer metastasis, 

we took advantage of a publicly available set of gene expression profiles from established colon 

cancer cell lines (GSE59857). We first categorized these cell lines as poorly metastatic or highly 

metastatic based on their liver colonization capacity in xenograft mouse models (Supplementary 

Fig. 1A; (Hamada, 2008)). We then performed differential gene expression analysis to compare 

gene expression changes across the transcriptomes of the two groups. Finally, we applied 

PRADA to this dataset to find RNA-binding proteins whose differential activity is most 

informative of metastasis-associated gene expression changes. PRADA identified the protein 

RBMS1 as the RNA-binding protein with the strongest regulatory potential in this dataset (Fig. 

1A). The size and the direction of the regulatory coefficient assigned to RBMS1 implies that 

RBMS1 levels are strongly informative of changes in the expression of transcripts with 

sequence matches to RBMS1 binding sites. To confirm this, we performed motif enrichment 

analysis using FIRE, which uses mutual information to capture the association between the 

presence and absence of a given binding site and genome-wide transcriptomic measurements 

(Elemento, 2007). As shown in Fig. 1B, the RBMS1 consensus binding site is strongly 

informative of gene expression differences between poorly and highly metastatic cells, showing 

a highly significant enrichment among the transcripts that have decreased expression in highly 

metastatic cells. To ensure that this result is not sensitive to the choice of a specific RBMS1 

binding motif, we tested two additional sequence models: (i) an independently derived 

representation of RBMS1 binding preferences (Ray, 2013), and (ii) predictions based on 

DeepBind models (Alipanahi, 2015) (Supplementary Table 1). Each of these three predicted 

RBMS1 binding motifs gave largely identical results, and we observed a similar decrease in the 

expression of the putative RBMS1 regulon derived from each motif (Supplementary Fig. 1B). 
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For consistency, we have used the DeepBind-derived RBMS1 regulon (referred to as the 

RBMS1 regulon hereafter) in our subsequent analyses as DeepBind is the state-of-the-art 

approach for predicting protein-nucleic acid interactions. Importantly, concordant with the results 

reported by PRADA and the lower expression of its regulon, the expression of RBMS1 was also 

significantly lower in highly metastatic cells (Fig. 1C). Moreover, consistent with RBMS1 acting 

as a post-transcriptional regulator of these genes, we observed a significant correlation between 

the expression of RBMS1 and the average expression of its regulon in multiple independent 

datasets (Fig. 1D, Supplementary Fig. 1C-D). 

In order to further assess the association between RBMS1 and CRC metastasis in more 

directly disease-relevant models, we took advantage of patient-derived xenograft (PDX) models 

of colon cancer metastasis to liver. We used RNA-seq data from three parental CRC PDX 

models (CLR4, CLR27, and CLR32) and their highly liver metastatic derivatives (CLR-LvMs). 

The highly metastatic CLR-LvM models were derived from the parental PDXs by repeated 

splenic delivery and growth of cells in the liver of immunocompromised mice (NOD scid 

gamma), recapitulating the major site of CRC metastasis in humans (Yamaguchi, 2019). We 

observed that the increase in the metastatic capacity of the CLR-LvM PDX models compared to 

their parental PDXs was accompanied by a significant reduction in the expression of the 

RBMS1 regulon in the highly metastatic CLR-LvM models (Fig. 1E). More importantly, all three 

models also showed a significant and concomitant decrease in the expression of RBMS1 (Fig. 

1F).  

In addition to these cell line and PDX models of CRC liver metastasis, we also 

performed RNA-seq on matched primary tumors and liver metastases biopsied and frozen from 

two patients. As shown in Fig. 1G, in both cases, the RBMS1 regulon was enriched among 

transcripts that were downregulated in the metastases relative to their primary tumors. 

Interestingly, while the gene expression changes between the primary tumors and metastases 

were not generally correlated (R = 0.02, P = 0.1), the RBMS1 regulon was independently 
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downregulated in both metastatic tumors (Supplementary Fig. 1E). Consistently, RBMS1 was 

also strongly silenced in both metastases (Fig. 1H). Collectively, these findings in cell lines, 

PDXs, and clinical samples implicate RBMS1 silencing in both the downregulation of its putative 

regulon and in CRC metastatic progression. 

RBMS1 acts as a post-transcriptional regulator of RNA stability 

The correlated expression of RBMS1 and its putative regulon defined from its binding 

site preferences implies that RBMS1 modulates gene expression. To further assess the 

potential role of RBMS1 as a post-transcriptional regulator, we performed RNA sequencing of 

RBMS1 knockdown and control SW480 colon cancer cells. We chose the SW480 cell line for 

this experiment because: (i) RBMS1 expression in SW480 is among the highest in colon cancer 

lines tested by us and others, and (ii) it is an established xenograft model of liver metastasis and 

is considered to be poorly metastatic (relative to other CRC lines listed in Supplementary Fig. 

1A). We used two independent shRNAs to silence RBMS1 in SW480 cells and confirmed its 

knockdown with both qPCR and Western blotting (Supplementary Fig. 2A). A 2.5-fold reduction 

in RBMS1 protein expression induced major changes in gene expression (Supplementary Fig. 

2B) and resulted in a significant decrease in the expression of RBMS1 regulon (Fig. 2A). Since 

we are focused on the role of RBMS1 as an RNA-binding protein, we reasoned that its effect on 

gene expression is likely through regulation of the stability of its target RNAs. To test this 

hypothesis, we took advantage of REMBRANDTS, a computational framework we have 

developed to estimate RNA stability from RNA-seq data (Alkallas, 2017). We have previously 

established that REMBRANDTS accurately recapitulates experimental RNA stability 

measurements (Alkallas, 2017). Application of this method to RNA-seq data from RBMS1 

knockdown and control cells found a significant enrichment of RBMS1 targets among transcripts 

destabilized upon RBMS1 silencing (Fig. 2B). REMBRANDTS relies on the comparison of 

exonic and intronic reads to measure changes in RNA stability. As shown in Supplementary Fig. 

2C, RBMS1 silencing results in lower expression of its putative regulon as measured by exonic 



 48 

reads; however, intronic reads, which reflect changes in pre-mRNA levels (and transcription 

rates) do not significantly change in response to RBMS1 depletion. To further strengthen our 

claim that RBMS1 functions as a post-transcriptional regulator of RNA stability rather than as a 

transcriptional activator, we also performed whole-genome RNA stability measurements in 

control and RBMS1 knockdown cells. For this, we used α-amanitin-mediated inhibition of RNA-

polymerase II followed by RNA sequencing at two time points (0-hr and 9-hr). Consistent with 

our analyses with REMBRANDTS, we observed a similar reduction in the stability of the putative 

RBMS1 regulon upon RBMS1 silencing (Fig. 2C). We used RNA-seq data from the three 

matched PDX models (CLR panel) to compare RNA stability in highly liver metastatic models to 

that of their parental PDXs (using REMBRANDTS). As shown in Fig. 2D, lower RBMS1 

expression in the LvM models (Fig. 1F) accompanies a reduction in the stability of its target 

regulon in all three independently derived models. Together, these findings establish RBMS1 as 

a post-transcriptional regulator of RNA stability with broad functional consequences for the 

transcriptome and clear implications for CRC progression. 

RBMS1 CLIP-seq reveals 3’ UTR binding of target mRNAs 

To this point, our analyses were performed using in silico predicted binding targets of 

RBMS1. In order to create a transcriptome-wide snapshot of RBMS1 binding sites in colon 

cancer cells at nucleotide resolution, we performed UV crosslinking immunoprecipitation 

followed by sequencing (CLIP-seq). We carried out irCLIP (Zarnegar, 2016) for endogenous 

RBMS1 in SW480 cells, and identified hundreds of high-confidence RBMS1 binding sites across 

the transcriptome (Fig. 3A). Importantly, we observed that 90% of the CLIP-identified RBMS1 

targets overlapped with our computationally-derived putative RBMS1 regulon (Supplementary 

Table 1). Consistently, these RBMS1-bound transcripts in our irCLIP data (RBMS1 targets 

hereafter) follow the same expression patterns as the computationally-derived RBMS1 regulon 

described above, exhibiting both decreased stability and expression upon RBMS1 silencing 

(Fig. 3B; Supplementary Fig. 3A). 
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In our analysis of RBMS1 binding sites, we noted a strong enrichment of RBMS1 binding 

to the last exon (on or close to 3’ UTRs; Fig. 3A) of mRNAs. This is consistent with RBMS1 

acting as a post-transcriptional regulator of RNA stability, and suggested that RBMS1 3’ UTR 

binding could result in increased RNA stability. To assess this possibility, we built a bi-

directional CMV promoter that drives the expression of both GFP and mCherry. We then cloned 

nine CLIP-seq-derived RBMS1 binding sites, plus ~150 nucleotides flanking the binding sites, 

downstream of GFP, and asked whether there was a reduction in GFP mRNA relative to 

mCherry mRNA upon RBMS1 depletion. As shown in Fig. 3C, there was a decrease in GFP 

reporter transcript levels in almost all instances. To further ensure that this effect was RBMS1-

dependent, we also tested the two reporters with the strongest reduction in transcript levels 

(DAG1 and CD9) in LS174T cells, where RBMS1 is endogenously silenced. In this instance, as 

expected, there was no response in reporter mRNA levels upon transfection of RBMS1-

targeting siRNAs (Supplementary Fig. 3B). 

In order to gain insight into how RBMS1 regulates the stability of its targets, we carried 

out an unbiased search for its interacting protein partners. We performed immunoprecipitation of 

RBMS1, along with an IgG control, from SW480 cells and analyzed the resulting protein 

complexes by mass spectrometry (Fig. 3D). From this data, we found that the Gene Ontology 

terms RNA binding, RNA processing and negative regulation of mRNA metabolism were 

overrepresented among the RBMS1-interacting proteins (Supplementary Table 2). Of these 

proteins, we have confirmed an RNA-dependent interaction between RBMS1 and two well-

characterized RBPs that predominantly bind 3’ UTRs, PABPC1 and ELAVL1 (Fig. 3E). These 

findings suggest that RBMS1 stabilizes its targets at least partially in concert with ELAVL1 

which preferentially binds A/U-rich elements (AREs) (Hinman, 2008). In line with this 

hypothesis, we found a significant enrichment of poly(U) motifs in the 3’ UTRs of RBMS1 targets 

(Fig. 3F). As shown in Fig. 3G, 72% of RBMS1-bound 3’ UTRs are also bound by ELAVL1 in 

vivo (as determined by PAR-CLIP (Lebedeva, 2016)). Furthermore, knockdown of ELAVL1 in 
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SW620 colon cancer cells (of the same genetic background as SW480 cells) resulted in a 

significant downregulation of RBMS1 targets, as determined by RNA-seq (Fischl, 2019) (Fig. 

3H). Together, these results indicate that direct binding of RBMS1 to mRNA 3’ UTRs, together 

with other stabilizing factors such as ELAVL1, results in increased mRNA stability. 

RBMS1 is a suppressor of EMT and metastatic liver colonization in colon cancer cells 

In order to carry out a functional study of RBMS1 and its downstream regulon in CRC 

metastasis, we picked an additional cell line model to complement the SW480 line. We chose 

the LS174T line because RBMS1 is almost completely silenced in this line as measured by 

qPCR and Western blotting (Supplementary Fig. 4A-B). LS174T is also an established 

xenograft model and is considered a highly liver metastatic cell line, ~100x more metastatic than 

the SW480 line as measured by liver colonization assays (Loo, 2015). We first performed RNA 

sequencing of both SW480 and LS174T lines and consistent with RBMS1 silencing in the 

LS174T cells, we observed a significant reduction in the expression of the RBMS1 regulon in 

this line (Supplementary Fig. 4C).  

To establish a causal link between RBMS1 silencing and higher metastatic capacity, we 

performed liver colonization assays by splenically injecting RBMS1 knockdown and control 

SW480 cells and measuring metastatic burden in the livers of mice over time. While RBMS1 

silencing did not have a strong effect on in vitro cell proliferation (Supplementary Fig. 4D), we 

observed a significant increase in liver colonization upon silencing RBMS1, based on in vivo 

bioluminescence measurements and gross liver mass at the experimental endpoint (Fig. 4A; 

Supplementary Fig. 4E). To control for possible off-target effects of the shRNAs, we repeated 

the experiment with an additional RBMS1-targeting hairpin and observed a similarly significant 

increase in metastatic liver colonization (Supplementary Fig. 4F). We also performed a gain-of-

function experiment by expressing RBMS1 in the LS174T line, where RBMS1 is endogenously 

silenced. Consistent with our earlier findings, we observed that expressing RBMS1 in LS174T 

cells results in a marked reduction in their liver colonization capacity (Fig. 4B; Supplementary 
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Fig. 4G). It should be noted that as expected, expressing shRNAs targeting RBMS1 in highly 

metastatic cells in which RBMS1 is already silenced, namely LS174T, HCT116, and Colo320, 

did not have an impact on their liver colonization capacity in xenograft mouse assays, further 

supporting the on-target effect of the shRNAs used in these experiments (Supplementary Fig. 

4H). In contrast, knockdown of RBMS1 in WiDr cells, in which RBMS1 is endogenously 

expressed, resulted in a significant increase in liver colonization in xenograft mouse models 

without an overt effect on in vitro cell proliferation (Supplementary Fig. 4I-J). 

The metastatic cascade is a complex multistep process, involving cellular processes that 

not only impact cancer cell growth and survival, but also cell migration and invasion. As 

mentioned earlier, we did not observe a significant change in in vitro cell proliferation rates upon 

RBMS1 knockdown. Additionally, trans-well invasion assays of RBMS1 knockdown and control 

cells did not detect a significant role for RBMS1 in cancer cell invasion (Supplementary Fig. 4K). 

Therefore, to gain a better understanding of the key step(s) in the metastatic cascade that are 

regulated by RBMS1, we performed a systematic analysis of known and predicted gene-sets to 

identify those that may be modulated upon RBMS1 silencing. We performed this analysis using 

iPAGE, an information-theoretic framework we have developed for this type of analysis 

(Goodarzi, 2009) (Supplementary Fig. 4L). Downregulation of genes associated with negative 

regulation of epithelial-mesenchymal transition (EMT(-) signature gene set defined by various 

studies (Taube , 2010, Onder, 2008, Jechlinger, 2003) was the most significant pathway 

identified in RBMS1 knockdown cells (Fig. 4C; Supplementary Fig. 4L-M). For example, the 

canonical EMT marker E-Cadherin (CDH1) is significantly downregulated by ~2-fold in RBMS1 

knockdown cells based on RNA-seq data (Supplementary Fig. 2B). We confirmed this by 

performing immunofluorescence staining for E-Cadherin in RBMS1 knockdown and control 

cells. We observed both a reduction in E-cadherin expression in RBMS1 knockdown cells, and 

also noted the appearance of spindle-like cell morphology that is associated with EMT (Fig. 4D). 

Moreover, the EMT(-) signature genes were also expressed at relatively lower levels in the 
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LS174T cell line, where RBMS1 is endogenously silenced (Supplementary Fig. 4M). Finally, 

analysis of the TCGA-COAD dataset revealed significantly lower E-cadherin expression in 

tumor samples with low RBMS1 expression (~20% reduction, P=0.006) and a significant 

general correlation between RBMS1 and E-Cadherin expression (Rho=0.1, P=0.03), which is 

indicative of the clinical relevance of this regulatory axis in CRC. 

AKAP12 and SDCBP are functional downstream targets of RBMS1 

In order to identify genes that are regulated by RBMS1 and act as suppressors of 

metastasis in CRC, we used an integrated analytical approach, which relies on mining relevant 

datasets to prioritize target genes based on their direct interaction with RBMS1 (3’ UTR 

binding), their RBMS1-dependent magnitude of change in expression, the robustness of their 

response to RBMS1 silencing, as well as their lower expression in metastatic clinical samples. 

Using this approach, we prioritized two target genes, AKAP12 and SDCBP, that satisfy these 

criteria: (i) destabilized and downregulated in highly metastatic CRC cells and PDXs, (ii) 

destabilized and downregulated in RBMS1 knockdown cell lines, (iii) directly bound by RBMS1 

based on our irCLIP data (Fig. 3A), and (iv) downregulated in liver metastases relative to 

primary colon cancers in a publicly available dataset (Sheffer, 2009). Consistently, silencing 

RBMS1 in SW480 cells resulted in the downregulation and destabilization of AKAP12 and 

SDCBP mRNAs (Fig. 5A-B). Conversely, overexpression of RBMS1 in LS174T cells resulted in 

upregulation and stabilization of these targets (Fig. 5A-B). Additionally, in line with the concerted 

action of RBMS1 and ELAVL1, both AKAP12 and SDCBP 3’ UTRs are bound by ELAVL1 in 

vivo (Lebedeva, 2016). These observations establish AKAP12 and SDCBP as direct targets of 

RBMS1 that are post-transcriptionally regulated by this RBP. 

To test the possible role of AKAP12 and SDCBP in driving CRC metastatic progression, 

we silenced them individually in SW480 cells using CRISPR interference (CRISPRi) (Horlbeck, 

2016) and performed liver colonization assays. As shown in Supplementary Fig. 5A, silencing 

these genes did not have a significant impact on in vitro proliferation of SW480 cells. However, 
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reduced expression of these genes resulted in increased metastatic liver colonization in mice 

(Fig. 5C). To confirm that AKAP12, which, of the two targets tested, elicited a stronger 

phenotype when silenced, indeed functions downstream of RBMS1, we performed an in vivo 

epistasis experiment by generating cells with knockdown of both AKAP12 and RBMS1 in 

SW480 cells. As shown in Supplementary Fig. 5B, unlike in Fig. 5C, further silencing of AKAP12 

failed to increase metastatic liver colonization in RBMS1 knockdown cells, in which AKAP12 is 

already downregulated. To evaluate the contribution of AKAP12 to the phenotype of RBMS1 

silencing, we compared AKAP12 knockdown and the double knockdown cells. As shown in 

Supplementary Fig. 5C, we observed a slight additional increase (albeit not statistically 

significant) in metastatic liver colonization upon RBMS1 silencing in AKAP12 knockdown cells. 

This suggests that AKAP12 is a major effector downstream of RBMS1, and that other 

downstream targets, such as SDCBP, may also play minor roles in this process. Importantly, 

and consistent with AKAP12 acting downstream of RBMS1, gene expression profiling of 

AKAP12 knockdown and control cells revealed a significant induction of an EMT signature (Fig. 

5D). Notably, this included the upregulation of canonical EMT transcriptional repressors, SNAI1 

and SNAI2 (Supplementary Fig. 5D). 

As an orthogonal approach, to assess if the effects of RBMS1 silencing on the 

transcriptome are reflected in the proteome, we used TMT labelling and tandem mass 

spectrometry to compare the global proteomes of SW480 cells with shRNA-mediated RBMS1 

knockdown and control cells (Supplementary Fig. 5E, Supplementary Table 2). As shown in 

Supplementary Fig. 5F, we observed a positive and significant correlation between changes in 

mRNA abundance (as determined by RNA-seq) and changes in protein abundance. We found 

that RBMS1 targets, as determined by irCLIP, were enriched among the downregulated proteins 

in the RBMS1 knockdown cells (Supplementary Fig. 5G). Most notably, AKAP12, which we 

have identified as the downstream effector of RBMS1 in EMT regulation, was significantly 

downregulated at the protein level as well, mirroring our transcriptomic results (Supplementary 
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Fig. 5H). Taken together, our findings demonstrate that the RBMS1-AKAP12 regulatory axis 

acts as a suppressor of EMT and liver metastasis in models of CRC progression. 

RBMS1 silencing and the downregulation of its targets is associated with CRC progression:  

To further assess the clinical relevance of this previously unknown regulatory pathway, 

we performed a variety of measurements in clinical samples as well as analysis of clinical data 

to evaluate RBMS1 activity in CRC metastasis. First, we performed qRT-PCR for RBMS1 in two 

independent clinical cohorts, one cohort stratifying patients based on their tumor stage (n=96), 

and another comparing samples from normal mucosa, primary CRC tumors, and liver 

metastases (n=91). As shown in Fig. 6A and 6B, we observed a significant reduction in RBMS1 

expression as the disease progresses, with stage IV clinical samples showing the lowest 

RBMS1 expression levels. We also carried out survival analysis in a large clinical cohort with 

publicly available expression data and clinical outcomes (Marisa, 2013). We observed a 

significant association between RBMS1 silencing and reduced relapse-free survival as well as 

overall survival in colon cancer patients (Fig. 6C). A multivariate Cox proportional-hazards 

model revealed that this association with RBMS1 silencing remains statistically significant even 

when controlled for other known clinical factors that may contribute to patient survival 

(Supplementary Fig. 6A). This observation emphasizes the relevance of RBMS1 silencing as an 

effective read-out for risk stratification of patients based on samples collected from their primary 

tumors. 

Our results indicate that AKAP12 acts as a suppressor of metastasis downstream of 

RBMS1, and therefore is expected to show a similar association with metastatic disease. To test 

this hypothesis, we performed qRT-PCR measurements in the clinical cohorts mentioned 

above, and we observed a significant reduction in AKAP12 expression as a function of disease 

progression (Fig. 6D-E). Consistent with RBMS1 acting as a regulator of AKAP12, we observed 

a highly positive and significant correlation between the expression of these two genes 

(Supplementary Fig. 6B). Interestingly, our analyses indicate that the identified RBMS1 targets 
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provide a robust gene signature that, similar to RBMS1, is highly informative of clinical 

outcomes. For this analysis, we defined an RBMS1 target score as an aggregate measure of 

expression for the RBMS1 80-gene signature set (average normalized expression of target 

mRNAs that (i) interact in vivo with RBMS1 on or within 200 nucleotides of their 3’ UTRs, and (ii) 

are downregulated upon RBMS1 knockdown; this is referred to as the RBMS1 80-gene 

signature hereafter (Supplementary Table 1)). We then stratified patients based on this score 

and we observed that lower expression of the RBMS1 80-gene signature is associated with 

lower relapse-free and overall survival in colon cancer patients (Fig. 6F). Consistently, the 

RBMS1 signature score remained a significant covariate in a multivariate Cox proportional-

hazards model of relapse-free survival (Supplementary Fig. 6C). Moreover, we have not 

observed significant association between the RBMS1 signature score and validated clinico-

pathological features or other molecular markers (such as microsatellite instability (MSI) status, 

left- or right-sidedness, or CRC consensus molecular subtypes (CMS)). Importantly, similar to 

our initial observation with the RBMS1 regulon (Fig. 1D), the RBMS1 signature score was 

significantly correlated with RBMS1 expression in a large TCGA pan-cancer dataset (Fig. 6G). 

We also observed a high correlation between the RBMS1 signature score and ELAVL1 

expression (Fig. 6H), consistent with RBMS1 and ELAVL1 acting in concert to promote mRNA 

stabilization. The association between the RBMS1 regulon and CRC metastasis is not limited to 

a single dataset. Consistent with our initial observations in matched samples (Fig. 1G), 

comparison of gene expression changes in liver metastases relative to CRC primary tumors in a 

publicly available dataset (Del Rio, 2007), revealed a significant reduction in the expression of 

the RBMS1 regulon (Supplementary Fig. 6D-E). Furthermore, analysis of publicly available 

RNA-seq data using REMBRANDTS to infer changes in mRNA stability from a set of matched 

primary and metastatic samples (Kim, 2014), also confirmed (i) RBMS1 silencing in multiple 

liver metastases and (ii) a concordant reduction in the stability of the RBMS1 regulon 

(Supplementary Fig. 6F). Together, these results establish the clinical relevance of our findings 
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and the importance of RBMS1 silencing both as a prognostic factor and as a suppressor of liver 

metastasis in patients. 

HDAC1-mediated promoter deacetylation leads to RBMS1 silencing in LS174T cells 

Our findings described above establish a previously unknown regulatory pathway driven 

by the RNA-binding protein RBMS1 that plays a functional role in CRC metastasis to liver. 

Regulatory pathways can be expanded by uncovering the upstream pathways that influence 

their activity. We have developed computational and data analytical tools designed to integrate 

publicly available datasets from a variety of biological sources to identify such upstream 

regulatory mechanisms (Goodarzi, 2009). Using these tools, we sought to extend the RBMS1 

regulatory pathway by exploring the mechanisms for RBMS1 silencing observed in the highly 

metastatic LS174T colon cancer cells. First, we found RBMS1 expression to be strongly 

associated with promoter acetylation, but did not identify any specific transcription factors 

associated with RBMS1 expression (Fig. 7A). Consistent with this observation, analysis of the 

connectivity map dataset (Lamb, 2006), which reports the impact of hundreds of small molecule 

treatments on gene expression, identified the histone deacetylase inhibitor Trichostatin A (TSA) 

as an activator of RBMS1 expression and of the RBMS1 regulon (Supplementary Fig. 7A-B). As 

RBMS1 is endogenously silenced in LS174T cells and expressed in the SW480 line, we tested 

the relative acetylation levels of the RBMS1 promoter in these two lines by performing H3K27Ac 

ChIP-qPCR. This data showed relatively low levels of H3K27 acetylation at the RBMS1 

promoter in the LS174T line compared to the SW480 line, consistent with the differences in the 

level of RBMS1 in the two lines (Fig. 7B). TSA simultaneously inhibits multiple HDACs, 

however, we noted that among this group, HDAC1 is the most significantly upregulated in highly 

metastatic cells generally, and in LS174T cells compared to SW480 cells in particular (Fig. 7C-

D; Supplementary Fig. 7C). Moreover, we observed that RBMS1 and HDAC1 expression are 

negatively correlated in colon cancer clinical samples (Supplementary Fig. 7D). Furthermore, 

we observed that silencing HDAC1 increases RBMS1 expression (Fig. 7E; Supplementary Fig. 
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7E-F). Increased expression of HDAC1, and other class I HDACs, has been reported as a 

strong predictor of survival in colon cancer patients (Weichert, 2008) and modulations in HDAC 

activity result in widespread gene expression reprogramming, including repression of tumor 

suppressor genes (Li, 2016). Our observations here indicate that HDAC1-mediated 

transcriptional repression may be one possible mechanism for RBMS1 silencing in colon cancer 

cells. 

Discussion 

Complex human diseases, including cancer, often accompany broad reprogramming of 

gene expression. In these cases, a comprehensive understanding of the disease state requires 

not only the identification of the differentially expressed genes, but also understanding the 

underlying regulatory pathways that explain the dysregulated expression patterns. A number of 

approaches have been developed by us (Goodarzi, 2009, Goodarzi, 2012) and others 

(Elemento, 2007, Lefebvre, 2010) to tackle this problem. These methods formalize the 

association between expression and/or activity of master regulators with those of their regulons. 

Since direct and indirect associations are challenging to disentangle, knowledge of binding 

preference (in vitro or in vivo) is also used to better define putative RNA-RBP interactions. Here, 

we have introduced PRADA to facilitate and formalize the discovery of post-transcriptional 

regulators that are involved in normal cell physiology and disease. RNA-binding proteins fall into 

families with highly similar binding preferences (Ray, 2013) and therefore have similar putative 

regulons. As a result, direct modeling of RBP-target interactions results in unstable predictions 

(i.e. the model fails to converge on similar outcomes for repeated runs) where the link between 

a given RBP and its putative regulon is not clear. PRADA solves this problem by integrating the 

knowledge of changes in the expression of RBPs (used as a proxy for their activities) directly 

into the analysis. This approach provides a one-step and often stable solution that effectively 

reveals the RNA-binding proteins whose differential expression is highly informative of changes 

in gene expression. As RBPs continue to emerge as key regulators of RNA dynamics with 
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crucial roles in human disease, systematic methods like PRADA provide a suitable approach for 

studying this class of regulators. In this study, we used this approach to discover a previously 

unknown regulatory network that counteracts colon cancer progression through RBMS1-

mediated RNA stabilization. 

We demonstrate that RBMS1 silencing accompanies CRC progression in cell line and 

PDX models as well as clinical samples, resulting in destabilization of RBMS1-bound transcripts 

(Fig. 7F). In line with this, we found several well-known RNA-stabilizing factors interacting with 

RBMS1. Importantly, we found that RBMS1-bound transcripts contain ELAVL1 motifs and 

binding sites in their 3’ UTRs, and that ELAVL1 downregulation resulted in the decrease of 

RBMS1 target abundance, consistent with a model where RBMS1 and ELAVL1 have an RNA-

dependent functional interaction that promotes mRNA stability. Furthermore, we observed that 

ELAVL1 expression is highly corelated with the expression of the RBMS1 80-gene signature set 

in the TCGA pan-cancer dataset. ELAVL1 has a well-documented role in stabilizing mRNA by a 

mechanism that is incompletely characterized. It is suggested that ELAVL1 competes for 3’ UTR 

ARE binding with RNA destabilizing factors, such as TTP or BFR1. It is also proposed that 

ELAVL1 acts in counteracting microRNA-mediated decay and translational shutdown, thereby 

indirectly stabilizing mRNAs (Hinman, 2008). ELAVL1 upregulation has been broadly associated 

with oncogenesis and cancer progression (Schultz, 2020), suggesting a functional interplay 

between RBMS1 and ELAVL1. 

Metastasis often hijacks developmental pathways to reprogram gene expression. EMT is 

such a pathway with a central role in cancer progression, including CRC (Vu, 2017). Our results 

show that RBMS1 downregulation results in the suppression of negative EMT regulators, 

thereby promoting the mesenchymal features of the tumor cells. One of the direct targets of 

RBMS1, AKAP12, participates in the protein kinase A and C signaling cascades. The 

association between AKAP12 silencing and colon cancer recurrence and prognosis has been 

previously described (Xu, 2017). Interestingly, AKAP12 has been described as a negative 



 59 

regulator of SNAI1 (Cha, 2014), a transcription factor that represses epithelial markers during 

EMT. In line with this, we found that AKAP12 knockdown caused a global shift towards an EMT 

transcriptional program, including the upregulation of SNAI1/2. One of the main targets of 

SNAI1 is the epithelial marker E-cadherin, which is in agreement with our observation that E-

cadherin is downregulated in RBMS1-deficient cells and clinical samples. This suggests that the 

RBMS1-AKAP12-SNAI1/2-E-cadherin axis is a potential route to EMT onset during CRC 

metastasis. 

The Wnt/β-catenin signaling pathway has also been implicated in both EMT and CRC 

metastasis. β-catenin, a central factor in the canonical Wnt signaling cascade, has a dynamic 

role: it is known to interact with E-cadherin at the cell membrane, with TCF/LEF transcription 

factors in the nucleus to activate the downstream transcriptional program, and with APC, a 

member of the destruction complex, that targets β-catenin for proteasomal degradation in the 

absence of pathway activation (Schatoff, 2017). APC is a known mutational hotspot in CRC, 

and the SW480 cells used in this study harbor an inactivating APC mutation, indicating that the 

Wnt pathway is misregulated in this cell line (El-Bahrawy, 2004). We have shown that RBMS1 

silencing results in the downregulation of E-cadherin and have detected upregulated β-catenin 

levels in RBMS1 knockdown cells (Supplementary Fig. 7G). Interestingly, one of the direct 

RBMS1 targets validated in this study is syndecan binding protein (SDCBP), which interacts 

both with Frizzled family proteins (canonical Wnt receptors) and syndecans (Wnt Co-receptors) 

(Wawrzak, 2009). As our results suggest multiple crossover points, future studies will be 

required to elucidate the role of RBMS1 in Wnt signaling cascades and their promotion of EMT. 

Mirroring our observations from the CRC TCGA dataset, we found the expression of 

RBMS1 and its signature gene set were highly corelated in the TCGA pan-cancer dataset. 

However, when examined individually, RBMS1 and its signature gene set expression was 

informative for specific tumor types. RBMS1 silencing was associated with poor outcome in the 

CRC cohort, as discussed above (Fig. 6F); in contrast, different outcomes were observed in 
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other cancer types, ex. in the thyroid cancer cohort, patients with tumors with relatively low 

expression of RBMS1 had better outcomes (Supplementary Fig. 7H-I). We observed a similar 

trend in other pan-cancer cohorts, notably in a dataset of metastatic tumors (MET500) 

(Robinson, 2017). While RBMS1 and its signature expression remained highly corelated, we 

found reduced RBMS1 levels specifically in colorectal, prostate and gall bladder cancer 

metastases. Interestingly, when stratified by the metastasis site, RBMS1 expression was 

significantly downregulated in liver and bone marrow (independently of the primary tumor type), 

reflecting the principal organotropisms of metastatic CRC (Supplementary Fig. 7J-K). It is thus 

highly plausible that RBMS1 represents a regulatory node particularly suited for disease 

progression in the liver, potentially via activation of downstream signaling pathways as 

discussed above. This finding has implications for other cancer types that can metastasize to 

the liver. 

Our work in the LS174T cell line model indicated that increased activity of histone 

deacetylase(s), such as HDAC1, could be responsible for RBMS1 silencing¬¬. HDAC inhibitors 

have been used in the clinic to treat metastatic CRC. A number of studies have previously noted 

increased expression of HDAC1/2 in colon cancer (Li, 2016) and in cases where RBMS1 

silencing also occurs, HDAC inhibitors could be useful as they may also restore RBMS1 

expression. While HDAC inhibitors are not specific in their effects, and their effects are not 

solely mediated through RBMS1, we speculate that in some cases their impact on RBMS1 may 

lead to better clinical outcomes. Identifying such cases, however, will require a deeper 

understanding of the mechanisms through which RBMS1 is silenced and the degree to which its 

expression can be effectively controlled.  

Given our limited knowledge of the pathways and processes that regulate the RNA life-

cycle in the cell, analytical tools that mine quantitative measurements of mRNA dynamics to 

identify key regulatory interactions can provide an effective avenue for identifying previously 

unknown molecular mechanisms with critical functions in health and disease. However, these 
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computational strategies must be paired with rigorous experimentation to functionally validate 

and characterize the putative regulons and their regulators. Using one such framework, we have 

established a novel functional association between RBMS1 silencing and increased liver 

metastatic capacity in colon cancer. 
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METHODS 

Prioritization of Regulatory Pathways based on Analysis of RNA Dynamics Alterations (PRADA) 

PRADA is a customized variation on lasso regression (least absolute shrinkage and 

selection operator). Therefore, PRADA can simultaneously perform feature selection and apply 

a custom penalty function as part of its regularization step. The goal of PRADA is to identify 

RNA-binding proteins whose differential expression explains changes in the expression of their 

targets that is observed in the data. We first generated an RBP-RNA interaction matrix based on 

binding preferences of RNA-binding proteins, as previously reported (Ray, 2013, Oikonomou,  

2014). For this, we scanned mRNA sequences for matches to RBP-derived regular expression 

(as previously described (Elemento, 2007)). Given this interaction matrix, our goal is to identify 

RBPs whose change in expression is predictive of global changes in gene expression of their 

targets. In other words, we aim to solve the following: ∆Exp(g)=∑_i▒〖α_i∙t_(i,g)∙∆Exp(〖RBP〗

_i ) 〗+c_g, where ∆Exp(g) stands for changes in the expression of gene g based on dataset of 

interest, t_(i,g) is a binary variable, 1 if RBPi is predicted to bind g and 0 otherwise, ∆Exp(〖

RBP〗_i ) marks changes in the expression of RBPs themselves as a proxy for their differential 

activity. The resulting α_i represents the strength of regulatory interactions. To ensure that the 

most informative RBPs are selected, we introduced a customized penalty term that extends the 

lasso regression framework: min⁡〖1/2n [ǁαX-Expǁ+λ∑_i▒|α_i |/|∆Exp(〖RBP〗_i )| ]〗. Here, 

the coefficients are penalized by |∆Exp(〖RBP〗_i )|^(-1), which is 1⁄|β ̂ |  estimate of the linear 

model used to compare gene expression between the two groups. Other variations of this 

penalty can also be used, for example standard effect size can account for confidence in β ̂ as 

well (SE⁄|β ̂ | ). This custom penalty term ensures that RBPs whose activity does not change are 

not selected by the model. This also stabilizes the resulting model, which would otherwise be a 

major issue as RBPs that belong to the same family often have very similar binding preferences 

resulting in correlated features in the interaction matrix. After running this regression analysis, 
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the RBPs with the largest assigned coefficients are prioritized for further study. In this study, we 

used PRADA to compare poorly and highly metastatic colon cancer lines, which revealed 

RBMS1 as the strongest candidate. The computational and experimental data flow used in this 

study is summarized in Supplementary Material 1. The PRADA benchmarking summary is 

available in Supplementary Material 2. All code and notebooks are available on Github at 

www.github.com/goodarzilab/PRADA. 

Tissue Culture 

SW480, LS174T, WiDr, HCT116, and COLO320 cell lines were obtained from ATCC. 

293LTV cells were from Cell Biolabs. All cell lines were routinely screened for Mycoplasma 

infection by PCR (once a month in general and before every animal experiment in particular). 

SW480 and HCT116 cells were cultured in McCoy’s 5A supplemented with 10% FBS, sodium 

pyruvate, and L-glutamine. LS174T and 293LTV cells were cultured in DMEM supplemented 

with 10% FBS, COLO320 cells were cultured in RPMI-1640 supplemented with 10% FBS, and 

WiDr cells were grown in EMEM supplemented with 10% FBS. All commonly used cell lines 

were routinely authenticated using STR profiling at UC Berkeley Sequencing Facility. 

Animal studies 

All animal studies were performed according to a protocol approved by UCSF 

Institutional Animal Care and Use Committee (AN179718). NOD/SCID gamma male mice (The 

Jackson Laboratory), aged 8 to 10 weeks, were used in all experiments. For splenic (portal 

circulation) injections, cells were injected directly into the spleen followed by splenectomy (250k 

for SW480 and LS174T lines and 100k for WiDr cells). In vivo bioluminescence was measured 

by retro-orbital injection of luciferin (Perkin Elmer) followed by imaging with an IVIS instrument 

(Perkin Elmer). For ex vivo liver imaging, mice were injected with luciferin prior to liver 

extraction, and the liver was then imaged and weighed after rinsing with PBS. 

RBMS1 irCLIP 

RBMS1 irCLIP was performed as described (Zarnegar, 2016). 
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RNA-seq library preparation 

Unless otherwise specified below, RNA sequencing libraries were prepared using RNA 

that had been rRNA depleted using Ribo-Zero Gold (Illumina) followed by ScriptSeq-v2 

(Illumina), and sequenced on an Illumina HiSeq4000 at UCSF Center for Advance 

Technologies. Matched primary and liver metastases were sequenced using SENSE RNA-seq 

library preparation kit (Lexogen). AKAP12 knockdown cells were profiled using QuantSeq 3’ 

mRNA-Seq library prep kit fwd (Lexogen). 

To measure RNA stability, SW480 RBMS1 knockdown and control cells were treated 

with 10 mg/mL α-amanitin (final concentration in the medium). After 9 hours, total RNA was 

harvested from the cells using the Norgen Cytoplasmic and Nuclear RNA Purification Kit per the 

manufacturer’s protocol. RNA-seq libraries were then prepared and log-fold changes in RNA 

stability were measured by comparing log(t9/t0) in control and RBMS1 knockdown cells. 

Measurements in clinical samples.  

For clinical samples, 96 samples across all stages of the disease were acquired from 

Origene (HCRT104 and HCRT105), 14 normal, 8 stage I, 25 stage II, 32 stage III, and 17 stage 

IV. HPRT was used as endogenous control, and relative RBMS1 and AKAP12 expression levels 

were respectively measured across the samples (using the primers listed above). We also 

extracted RNA from another 100 normal mucosa, primary tumors, and liver metastases. 

Roughly 90 of these samples yielded sufficient RNA for qPCR, which was carried out as 

previously described. 

Clinical association studies 

Patients profiled and documented in GSE39582 were first stratified into two groups 

based on their RBMS1 expression: silenced (bottom 5%) and expressed (otherwise). 5% was 

selected as the cut-off because it is close to two standard deviations away from the average 

RBMS1 expression across all samples. A multivariate Cox Proportional Hazard model (R 

package survival) was then used to evaluate 5-year disease-free survival. Univariate survival 
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analyses, both disease-free and overall, were also carried out with this stratification. For the 

target regulon, the RBMS1 signature score was calculated as the median expression of target 

genes in each sample (normalized gene expression data). Disease-free survival was defined as 

the time from diagnosis to relapse or death due to any cause. We performed Cox Proportional 

Hazards multivariable modeling using the RBMS1 score as a continuous variable. Variables 

added to the model included stage, microsatellite status, KRAS and BRAF mutation status, and 

Consensus Molecular Subtypes. 
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FIGURES 

 

Figure 4.1.  RBMS1 silencing in metastatic cells is associated with lower expression of RBMS1 
targets. A, Regression coefficients set by PRADA as a function of the l1-norm of the coefficient 
vector. Each line is associated with an RNA-binding protein and the magnitude of its coefficient 
is a measure of its strength as a putative regulator of gene expression. Here, the first ten 
nonzero coefficients are shown as a function of l1-norm (i.e., sum of the magnitude of all 
coefficients). B, Analysis of RBMS1 recognition sites across gene expression changes between 
poorly and highly metastatic colon cancer lines. In this analysis, transcripts are first ordered on 
the basis of their log-fold changes from left (lower expression in metastatic cells) to right (higher 
expression) and then partitioned into equally populated bins (∼1,000 transcripts per expression 
bin). The red bars on the black background show the range of values in each bin (with the 
minimum and maximum values, i.e., −1.5 and 2.1, presented on the left). As shown here, genes 
that are expressed at a lower level in highly metastatic cells were significantly enriched for the 
RBMS1 binding motif (KAUAUAS; Oikonomou, 2014). In this heat map, gold represents 
overrepresentation of putative RBMS1 targets whereas blue indicates underrepresentation. 
Enrichment and depletions that are statistically significant (based on hypergeometric 
distribution) are marked with red and dark blue borders, respectively. Also included are the logo 
representation of the RBMS1-binding motif, its mutual information (MI) value, the associated z-
score, and the Bayes factor (BF; for details of this analysis, see Goodarzi, 2012). C, RBMS1 
expression in colon cancer lines grouped on the basis of their metastatic capacity 
(Supplementary Fig. S1A). P value calculated using a two-tailed Mann–Whitney U test. D, 
Linear regression analysis of RBMS1 expression versus average normalized expression of its 
putative regulon in The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) dataset 
(cBioPortal; N = 382). Shown are the Spearman correlation coefficient and the associated P 
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value. E, Enrichment and depletion patterns of the RBMS1 regulon in PDX models of colorectal 
cancer liver metastasis. For this analysis, log-fold changes between parental (CLR-Par) and 
liver metastatic (CLR-LvM) were averaged across three independent PDX models, CLR4, 
CLR27, and CLR32. D00198.001 is the unique identifier containing the binding site information 
of human RBMS1 obtained from DeepBind (8) analysis. The distribution of RBMS1 targets was 
then assessed using mutual information, its associated z-score and Bayes factor. The 
enrichment and depletion patterns were visualized as described in B. F, Relative RBMS1 levels 
in matched poorly metastatic (Par) and highly liver metastatic (LvM) derivatives for three PDX 
models (CLR4, CLR32, and CLR27). P value was calculated using DESeq2 (Love, 2014). G 
and H, Expression of RBMS1 and RBMS1 targets in matched primary tumor and liver 
metastases from two patients (S1029 and S567). The results are presented as described in B. 
The P value for RBMS1 silencing was calculated using DESeq2 (controlled for genetic 
background). 
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Figure 4.2. RBMS1 post-transcriptionally regulates the stability and expression of its targets. (A) 
Enrichment and depletion patterns of the RBMS1 regulon in RBMS1 knockdown cells relative to 
control (~2.5-fold knockdown). (B) We used our computational tool, called REMBRANDTS, to 
estimate changes in RNA stability upon RBMS1 silencing. These differential stability estimates 
were then used to assess the enrichment patterns of the RBMS1 targets across the changes in 
RNA decay. (C) Experimental RNA stability changes were measured using α-amanitin treatment 
as previously described (1). The enrichment and depletion patterns of the RBMS1 regulon was 
then assessed among the transcripts destabilized or stabilized upon RBMS1 knockdown. (D) 
We used REMBRANDTS to measure changes in RNA stability between poorly and highly 
metastatic PDX models from three independent PDX models (CLR27, CLR32, and CLR4). As 
shown here, consistent with the silencing of RBMS1 in LvM PDX models (Fig. 1F) and the 
down-regulation of its regulon (Fig. 1E), the RBMS1 regulon is destabilized in these three 
independent models of CRC metastasis. 
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Figure 4.3. RBMS1 irCLIP identifies direct RBMS1 targets in colon cancer cells. (A) 509 RBMS1 
binding sites were found using irCLIP, with a significant enrichment of binding to the last exon/3’ 
UTR (relative to the total length of genomic features). Last exons from LATS2, AKAP12, and 
SDCBP are shown as examples of RBMS1 binding patterns. (B) Enrichment of the RBMS1-
bound mRNAs among those that are downregulated in highly metastatic cells (top) and those 
destabilized upon RBMS1 silencing (bottom). (C) qRT-PCR was used to measure changes in 
GFP mRNA levels upon cloning RBMS1 binding sites of the listed genes downstream of the 
GFP ORF. mCherry was expressed from the same bidirectional promoter as GFP, and mCherry 
levels were used to normalize GFP measurements. A one-sample Wilcoxon signed rank test 
was used to assess whether the ratios in siRBMS1 samples were significantly below 1.0. (D) 
Scatter plot of mass spectrometry data showing proteins that co-immunoprecipitate with RBMS1 
versus control IgG in SW480 cells. Shown are the average of three replicates across all 
detected proteins. Proteins enriched in the RBMS1 co-IP samples are shown in pink. RBMS1, 
PABPC1 and ELAVL1 are highlighted in red, green and violet, respectively. (E) RBMS1, 
PABPC1 and ELAVL1 were detected by western blot in input and eluate samples from RBMS1 
and IgG immunoprecipitations (SW480 cell lysates). For RBMS1 immunoprecipitation, the 
lysates were additionally treated by RNaseA. (F) Heatmap showing the enrichment of poly(U) 
sites in the 3’ UTRs of RBMS1-bound mRNAs. (G) Venn diagram showing the overlap between 
RBMS1- and ELAVL1-bound mRNA 3’ UTRs. ELAVL1 targets were determined by PAR-CLIP 
(Lebedeva, 2016). P-value calculated using hypergeometric test. (H) Density plot showing the 
log fold-change in RBMS1 target expression (determined by RNA-seq (Fischl, 2019)) upon 
ELAVL1 knockdown in SW620 cells. Median value (mu) is indicated. P-value calculated using 
one-tailed Wilcoxon signed rank test. 
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Figure 4.4. RBMS1 is a suppressor of epithelial-mesenchymal transition (EMT) and metastatic 
liver colonization. (A) Bioluminescence imaging plot of liver colonization by RBMS1 knockdown 
or control cells; N = 5 in each cohort. Two-way ANOVA was used for statistical testing. Ex vivo 
liver signal was also measured and compared using a one-tailed Mann-Whitney U-test. Also 
shown are representative (median signal) mice and livers. (B) Splenic injection of LS174T highly 
metastatic colon cancer cells overexpressing RBMS1 and those expressing mCherry as a 
control. Day 21 signal (normalized to day 0) was plotted and compared for both in vivo and ex 
vivo signal (N = 4-5; Mann-Whitney U-test). (C) Downregulation of EMT(-) signature genes upon 
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RBMS1 knockdown in SW480 cells. 160-gene EMT(-) signature set (Taube, 2010) was 
compared to the rest of the transcriptome using a Mann-Whitney U-test. (D) 
Immunofluorescence staining for E-Cadherin (red) in RBMS1 knockdown and control cells 
(SW480 background). Note the lower expression of E-Cadherin and the more spindle-like 
cellular morphology in RBMS1 knockdown (top panels show DAPI signal). ECAD intensity and 
maximum Feret Diameter (a measure of length of the cell) for cells in control and knockdown 
samples (N = 64 and 37, respectively). Two-tailed Mann-Whitney U-test was used to compare 
measurements. 
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Figure 4.5. AKAP12 and SDCBP act downstream of RBMS1 to suppress CRC metastasis. (A) 
Changes in the expression of AKAP12 and SDCBP mRNAs upon RBMS1 knockdown in SW480 
cells and RBMS1 over-expression in LS174T cells. The expression of target genes was 
determined by qRT-PCR, normalized to HPRT internal control and shown as relative fold 
change over shControl or OE-Control. P-value was calculated using one-tailed Mann-Whitney 
U-test. (B) Changes in the stability of AKAP12 and SDCBP mRNAs upon RBMS1 knockdown in 
SW480 cells and RBMS1 over-expression in LS174T cells. RNA stability was calculated by 
comparing mRNA levels with and without treatment with α-amanitin, and shown as relative fold 
change over shControl or OE-Control. The relative abundance of target genes was determined 
by qRT-PCR, normalized to 18S RNA (RNA Pol-I transcript insensitive to α-amanitin). P-value 
was calculated using one-tailed Mann-Whitney U-test. (C) In vivo liver colonization assays were 
used to measure the impact of CRISPRi-mediated silencing of the RBMS1 targets AKAP12 and 
SDCBP on liver metastasis (N = 6). Also shown are representative mice from each cohort. Two-
way ANOVA was used to compare cohorts to control (P = 0.01 and 0.02 for sgAKAP12 and 
sgSDCBP respectively). Livers were also extracted and their tumor burden was measured ex 
vivo. Mann-Whitney U-test was used to compare measurements. (D) The expression of EMT(-) 
and EMT(+) signature genes relative to background (BG) in AKAP12 knockdown (CRISPRi) and 
control cells (measurements using 3’-end RNA-seq). Shown are the ANOVA p-value and a 
Mann-Whitney comparison between EMT(-) and background genes. 
  



 74 

 

Figure 4.6. RBMS1 and its target gene signature score are associated with colon cancer 
metastasis and reduced survival in CRC patients. (A) RBMS1 qPCR (relative to HPRT) in 96 
colon cancer samples stratified based on tumor stage. (B) RBMS1 qPCR (relative to HPRT) in 
29 normal mucosa, 25 primary colon cancer, and 37 liver metastases. (C) RBMS1 silencing was 
observed in ~5% of primary CRC tumors (see methods), and these patients showed 
substantially lower relapse-free and overall survival. Reported are Mantel-Haenszel hazard 
ratios (HR) and p-values from Gehan-Breslow-Wilcoxon tests. (D-E) AKAP12 expression in 
clinical samples (similar to (A) and (B)). (F) Patient primary tumors were scored based on 
aggregate expression of RBMS1 signature genes and the resulting values were used to perform 
survival analyses similar to those in (C). As shown here, lower RBMS1 signature score was 
significantly associated with lower relapse-free and overall survival. Also reported are Mantel-
Haenszel hazard ratios (HR) and p-values from Gehan-Breslow-Wilcoxon tests. (G-H) 
Regression analysis comparing the expression of RBMS1 (G) or ELAVL1 (H) and RBMS1 80-
gene signature set in TCGA pan-cancer dataset. Shown are the Spearman correlation 
coefficient and the associated p-value. 
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Figure 4.7. HDAC-mediated promoter deacetylation results in RBMS1 silencing. (A) RBMS1 
shows dynamic expression and acetylation changes across different cell types. Also shown here 
is the association between RBMS1 expression and its promoter acetylation (source from 
ENCODE). (B) RBMS1 promoter acetylation levels were measured in SW480 and LS174T cells 
using H3K27Ac ChIP-qPCR. An unacetylated region ~40kb away from the promoter was used 
as control (N = 3). (C) HDAC1 expression in colon cancer lines stratified based on their 
metastatic capacity. One-tailed U¬-test was used to compare the two groups. Cell line names 
are listed in Supplementary Fig. 1A. (D) Quantitative PCR to compare HDAC1 levels in the 
highly metastatic LS174T cells (with silenced RBMS1) relative to poorly metastatic SW480 cells. 
(E) RT-qPCR was used to measure RBMS1 mRNA levels in LA174T cells with RNAi-mediated 
HDAC1 silencing. (F) A schematic model of RBMS1 silencing and its role in suppressing colon 
cancer metastasis. One-tailed Mann-Whitney U tests were used to assess statistical 
significance for all panels. 
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