
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Spatial Distribution of Subcellular Organelles in Hippocampal Dendrites from High-
Resolution EM Images

Permalink
https://escholarship.org/uc/item/17w3f6g7

Author
Bush, Jeffrey Alan

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/17w3f6g7
https://escholarship.org
http://www.cdlib.org/


 

UNIVERSITY OF CALIFORNIA SAN DIEGO 

 

Spatial Distribution of Subcellular Organelles in 

Hippocampal Dendrites from High-Resolution EM Images 

 

A Dissertation submitted in partial satisfaction of the requirements 

for the degree Doctor of Philosophy 

 

in 

 

Doctor of Philosophy in Neurosciences with a specialty in Computational Neuroscience 

 

by 

 

 

Jeffrey Alan Bush 

 

Committee in charge: 

Professor Mark H. Ellisman, Chair 

Professor Brenda L. Bloodgood 

Professor Maryann E. Martone 

Professor Terry J. Sejnowski 

Professor Larry L. Smarr 

 

2018 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 

Jeffrey Alan Bush, 2018 

All rights reserved. 



 

iii 

Signature Page 

  

The Dissertation of Jeffrey Alan Bush is approved, and it is acceptable in quality and form for 
publication on microfilm and electronically: 
 

 

 

 

 

 

 

 

 

 

Chair 

 

University of California San Diego 

2018 

 

 



 

iv 

Dedication 

 

 

 

 

To my partner and my family for their continual, unwavering, support and encouragement. 

 

In memory of my father for the inspiration and always encouraging me to learn and explore. 



 

v 

Epigraph 

 

 

 

 

 

 

All that we are is the result of what we have thought. 

Gautama Buddha 



 

vi 

Table of Contents 

Signature Page ............................................................................................................................................. iii 

Dedication .................................................................................................................................................... iv 

Epigraph ........................................................................................................................................................ v 

Table of Contents ......................................................................................................................................... vi 

List of Abbreviations .................................................................................................................................... ix 

List of Figures ..............................................................................................................................................xiii 

List of Tables ............................................................................................................................................... xiv 

Acknowledgements ..................................................................................................................................... xv 

Vita .............................................................................................................................................................. xvi 

Abstract of the Dissertation ....................................................................................................................... xvii 

Introduction .................................................................................................................................................. 1 

1 Dendritic Signal Integration in Neurons ..................................................................................................... 3 

1.1 Neuron Modeling ............................................................................................................................. 3 

1.1.1 Integrate-and-Fire Models of Neurons ................................................................................... 3 

1.1.2 Electrochemical Models of Neurons ....................................................................................... 5 

1.1.3 Neuronal Complexity Not Captured with Traditional Models .............................................. 13 

1.2 The Endoplasmic Reticulum and Cable-In-Cable Theory ................................................................ 15 

1.2.1 Calcium Waves, Calcium Sparks, and Calcium-Induced Calcium Release ............................. 18 

1.2.2 IP3 and Ryanodine Receptor Channel Distributions and Modulations ................................ 20 

1.2.3 Specialized ER Structures ...................................................................................................... 22 

1.3 Potassium Channels in the Dendrites that Influence Information Integration .............................. 24 

1.3.1 Calcium-Modulated Voltage-Gated Potassium Channel: Kv2.1 ........................................... 25 

1.3.2 Calcium-Modulated Voltage-Gated Potassium Channel: Kv4.2 ........................................... 28 

1.3.3 Calcium-Activated Potassium Channels: SK and BK .............................................................. 30 

1.4 Dendritic Branch Point Morphology ............................................................................................... 32 

1.4.1 Ionic Currents and Morphology at Branch Points Affect Propagation of bAPs .................... 37 



 

vii 

2 Microscopy ............................................................................................................................................... 42 

2.1 Light Microscopy ............................................................................................................................ 42 

2.2 Electron Microscopy ....................................................................................................................... 44 

3 Segmentation ........................................................................................................................................... 49 

3.1 Introduction .................................................................................................................................... 49 

3.1.1 Distributed Manual Segmentation ....................................................................................... 55 

3.1.2 Automatic Segmentation ...................................................................................................... 57 

3.2 Livewire: Assisted Segmentation .................................................................................................... 59 

3.3 CHM-LDNN: Automatic Segmentation of Subcellular Structures................................................... 66 

3.3.1 CHM ...................................................................................................................................... 67 

3.3.2 LDNN ..................................................................................................................................... 71 

3.3.3 Testing Improvements .......................................................................................................... 76 

3.3.4 Training Improvements ......................................................................................................... 82 

3.3.4.1 Normalization of Filters ............................................................................................... 84 

3.3.4.2 Gradient Descent Improvements ................................................................................ 88 

3.3.4.3 Image Masking ............................................................................................................ 88 

3.3.5 Post-Processing: Thresholding .............................................................................................. 89 

3.3.6 Pre-Processing: Histogram Equalization ............................................................................... 92 

3.3.6.1 Local Means Strict Ordering Improvements ............................................................... 96 

3.3.7 Segmentation Pipeline Toolbox ............................................................................................ 98 

3.4 GLIA: Automatic Segmentation of Neuropil ................................................................................. 100 

3.5 Summary ....................................................................................................................................... 105 

4 GeoEM: Geometry Analysis of EM Data ................................................................................................ 108 

4.1 Slicing ............................................................................................................................................ 114 

5 Methods ................................................................................................................................................. 118 

5.1 Datasets ........................................................................................................................................ 118 

5.2 Computational Hardware and Software ...................................................................................... 120 

5.3 CHM .............................................................................................................................................. 121 



 

viii 

5.4 GLIA .............................................................................................................................................. 123 

5.5 Segmentation Algorithm Evaluation ............................................................................................ 124 

5.6 Endoplasmic Reticulum Segmentation ......................................................................................... 127 

5.7 GeoEM .......................................................................................................................................... 127 

6 Results .................................................................................................................................................... 129 

6.1 CHM Accuracy .............................................................................................................................. 129 

6.1.1 Masking ............................................................................................................................... 130 

6.2 CHM CPU and Memory Usage ...................................................................................................... 133 

6.2.1 Training ............................................................................................................................... 133 

6.2.2 Testing ................................................................................................................................. 137 

6.3 GLIA .............................................................................................................................................. 140 

6.4 GeoEM .......................................................................................................................................... 142 

7 Future Directions ................................................................................................................................... 146 

7.1 Neuroscience ................................................................................................................................ 146 

7.2 Dendritic Tree Simulations ........................................................................................................... 147 

7.3 Segmentation Improvements ....................................................................................................... 148 

7.3.1 Pre-Processing ..................................................................................................................... 149 

7.3.2 CHM-LDNN .......................................................................................................................... 151 

7.3.3 Post-Processing ................................................................................................................... 155 

7.3.4 GLIA ..................................................................................................................................... 155 

7.3.5 GeoEM ................................................................................................................................ 156 

7.3.6 Image Processing Pipeline .................................................................................................. 156 

Appendix A : Division of Tiles into Groups by PyCHM .............................................................................. 158 

References ................................................................................................................................................ 162 

 



 

ix 

List of Abbreviations 

AHE adaptive histogram equalization 

AMIGO-1 amphoterin-induced gene and ORF [Open Reading Frame] 1 

AMP adenosine monophosphate 

AP action potential 

ATP adenosine triphosphate 

bAP back-propagating action potential 

BK large-conductance calcium-activated potassium channel 

BLAS basic linear algebra subprograms 

BSE backscattered electrons 

CA1 Cornu Ammonis (hippocampus) region 1 

CaMK calcium/calmodulin-dependent protein kinase 

CCD charge-coupled device 

CGAL Computational Geometry Analysis Library 

CHM cascaded/contextual hierarchical model  

CICR calcium-induced calcium release 

CLAHE contrast limited adaptive histogram equalization 

EC2 Elastic Compute Cloud 

EM  electron microscopy 

ER endoplasmic reticulum 

ET electron tomography 

ESEM environmental scanning electron microscopy 

FFT fast Fourier transform 

FIBSEM focused ion beam scanning electron microscopy 

𝐹𝑁 false negatives 

𝐹𝑃 false positives 



 

x 

GB gigabyte (10003 or 1 billion bytes) 

geoEM Geometry Analysis of EM Data 

GFP  green fluorescent protein 

GHK Goldman-Hodgkin-Katz 

GiB gibibyte (10243 bytes) 

GLIA graph learning library for image analysis 

GP gigapixel (1 billion pixels) 

GPU graphics processing unit 

𝐺𝑅 geometric ratio 

GUI graphical user interface 

HNS  hierarchical neuronal segmentation 

HOG histogram of oriented gradients 

IP3 inositol 1,4,5-trisphosphate 

IP3R IP3 receptor 

ITK Insight Toolkit 

JPEG Joint Photographic Experts Group 

KB kilobyte (1000 bytes) 

KChIP voltage-dependent potassium channel-interacting protein 

KiB kibibyte (1024 bytes) 

Kv2.1 potassium voltage-gated channel, Shab-related subfamily, member 1 (aka KCNB1) 

Kv4.2 potassium voltage-gated channel, subfamily D, member 2 (aka KCND2) 

LDNN logistic disjunctive normal network 

LB  lamellar bodies 

LTD long-term potentiation 

LTP long-term potentiation 

mAChRs  muscarinic acetylcholine receptors 



 

xi 

mGluRs metabotropic glutamate receptors 

MB megabyte (10002 or 1 million bytes) 

MiB mebibyte (10242 bytes) 

MP megapixel (1 million pixels) 

MRC Medical Research Council 

MRI magnetic resonance imaging 

NBCR National Biomedical Computation Resource 

NCS neuronal calcium sensor 

NCX sodium/calcium exchanger 

NCMIR National Center for Microscopy and Imaging Research 

NIH National Institutes of Health 

NMDA N-methyl-D-aspartate 

NSF National Science Foundation 

PKA protein kinase A 

PNG portable network graphics 

px pixel 

PyCHM Python version of CHM 

RAM random access memory 

RSS resident set size 

RyR ryanodine receptor 

S3 Simple Storage Service 

SA spine apparatus 

SBFSEM  serial blockface scanning electron microscopy 

SCI Scientific Computing and Imaging Institute 

SEM  scanning electron microscopy 

SERCA sarcoendoplasmic reticulum calcium ATPase 



 

xii 

SIFT  scale-invariant feature transform 

SK small-conductance calcium-activated potassium channel 

SLASH Scalable system for Large data Analysis and Segmentation utilizing a Hybrid approach 

SP synaptopodin 

SS subsampling 

SSC subsurface cisternae 

SSD solid state drive 

ssTEM serial section transmission electron microscopy 

STDP spike-timing-dependent plasticity 

SVR surface to volume ratio 

TB terabyte (10004 or 1 trillion bytes) 

TEM  transmission electron microscopy 

TiB tebibyte (10244 bytes) 

TIFF tagged image file format 

𝑇𝑁 true negatives 

𝑇𝑃 true positives 

TP terapixel (1 trillion pixels) 

UCSD University of California San Diego 

VGCC voltage-gated calcium channel 



 

xiii 

List of Figures 

Figure 1.1. Lamellar bodies (LB) and subsurface cisternae (SSC) at a branch point of a Purkinje cell. ...... 23 

Figure 3.1. Livewire algorithm example at 1, 2, 3, 10, 35, and 45 iterations.............................................. 64 

Figure 3.2. Livewire calculation speed. ....................................................................................................... 65 

Figure 3.3. Contextual Hierarchical Model Illustration. .............................................................................. 68 

Figure 3.4. Data scaling issues with LDNN. ................................................................................................. 86 

Figure 3.5. GLIA programs and interdependencies. ................................................................................. 104 

Figure 3.6. Process to automatic segment of organelles using PyCHM. .................................................. 105 

Figure 3.7. Process to automatically segment entire neurons using PyCHM and GLIA. ........................... 106 

Figure 4.1. 2D representation of a mesh with the skeleton. .................................................................... 110 

Figure 4.2. Grouping of skeleton vertices for branch points. ................................................................... 115 

Figure 4.3. Additional planes used around branch points. ....................................................................... 116 

Figure 4.4. Example of necessity to use additional planes around branch points. .................................. 117 

Figure 6.1. PyCHM testing filter and normalization CPU and memory usage. ......................................... 139 

Figure 6.2. Automatically segmented neuropil volume. ........................................................................... 142 

Figure 6.3. Density of mitochondria in a neuron. ..................................................................................... 144 

Figure 6.4. Density of ER across a neuron................................................................................................. 144 

Figure 6.5. Density of mitochondria relative to branch point locations. .................................................. 145 

Figure 6.6. Density of ER relative to branch point locations..................................................................... 145 

 

file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344961
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344962
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344963
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344964
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344965
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344966
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344967
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344968
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344969
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344970
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344971
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344972
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344973
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344974
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344975
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344976
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344977
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344978


 

xiv 

List of Tables 

Table 1.1. Concentrations and reversal potentials for the most prominent ions in a typical mammalian 

neuron at rest. .............................................................................................................................................. 6 

Table 3.1. Bits used by each local sum for strict ordering of pixels for exact histogram equalization. ...... 97 

Table 3.2. Speed and memory usage of strict ordering methods for exact histogram equalization. ........ 97 

Table 3.3. Segmentation programs developed for this project. ............................................................... 107 

Table 5.1. Dataset properties. .................................................................................................................. 118 

Table 5.2. Dataset label counts. ................................................................................................................ 118 

Table 5.3. Cropped/Masked dataset label counts. ................................................................................... 123 

Table 5.4. GLIA parameters explored. ...................................................................................................... 124 

Table 6.1. CHM and PyCHM Accuracy on organelle datasets. .................................................................. 130 

Table 6.2. Masking usage on organelle datasets. ..................................................................................... 131 

Table 6.3. CHM training CPU and memory usage. .................................................................................... 134 

Table 6.4. PyCHM training filter and normalization CPU and memory usage. ......................................... 135 

Table 6.5. CHM training CPU and memory usage trends without subsampling. ...................................... 136 

Table 6.6. CHM training CPU and memory usage trends with subsampling. ........................................... 136 

Table 6.7. PyCHM testing CPU and memory usage. ................................................................................. 137 

Table 6.8. PyCHM testing filter and normalization CPU and memory usage. .......................................... 138 

Table 6.9. CHM testing time usage trends. ............................................................................................... 140 

 

file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344979
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344979
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344980
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344981
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344982
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344983
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344984
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344985
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344986
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344987
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344988
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344989
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344990
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344991
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344992
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344993
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344994
file:///D:/Users/jeff/Google%20Drive/Thesis-JB.docx%23_Toc514344995


 

xv 

Acknowledgements 

This project would not have been possible without the amazing support of the entire NCMIR lab 

and the SLASH group. From the beginning, the entire lab has contributed to my success. Early on many 

members of the NCMIR lab provided training so that I could collect my own samples. Mason Mackey in 

particular helped me learn about the diverse set of EM equipment in the lab. The final datasets for this 

project were prepared and collected by Tom Deernick – an absolute master of the art of EM sample 

preparation and collection. Moving into computational tasks, the NCMIR IT team, including Edmond 

Negado and Vicky Rowley, provided invaluable assistance in getting computational resources and data in 

the right places. Chris Churas introduced me to the near-endless supplies of CPU-years with the numerous 

supercomputers we have access to and was always there to discuss any part of my project. Mojtaba 

Seyedhosseini and Mehran Javanmardi from the SCI group at the University of Utah provided the technical 

support for understanding the mathematics within the CHM segmentation algorithm while Alex Perez at 

NCMIR provided the insight of how to use it for my data. Ting Liu from the SCI group frequently answered 

questions about the HNS/GLIA cell segmentation algorithms built on top of CHM. Many others in the lab 

discussed and analyzed the various computational approaches, including David Lee and Niko Komin. 

Andrew Noske taught me how to create my own manual segmentations and helped with the integration 

of the Livewire assisted segmentation program into IMOD so that everyone in the lab, and electron 

microscopists around the world, could use it to accelerate the process of manually tracing their data. 

This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is 

supported by National Science Foundation grant number ACI-1548562. This project was supported by 

grants from the National Center for Research Resources (5P41RR008605-19) and the National Institute of 

General Medical Sciences (P41 GM103426) from the National Institutes of Health (NIH). Additionally, this 

project utilized an allocation of computational resources from the NIH Commons Credit Pilot Award 

(CCREQ-2017-03-00017). 



 

xvi 

Vita 

2006-2009 Research Assistant, Computational Biology, Rensselaer Polytechnic Institute 

2007-2009 Teaching Assistant, Computer Science, Rensselaer Polytechnic Institute 

2009 Bachelor of Science, Bioinformatics/Molecular Biology, Rensselaer Polytechnic Institute 

2009 Bachelor of Science, Biochemistry/Biophysics, Rensselaer Polytechnic Institute 

2009 Bachelor of Science, Computer Science, Rensselaer Polytechnic Institute 

2010-2011 Teaching Assistant, Neurodynamics, University of California San Diego 

2012 Master of Science, Neurosciences, University of California San Diego 

2012-2015 Graduate Student Researcher, University of California San Diego 

2014 Qualcomm Engineering Intern, San Diego 

2015 iD Tech Academies Instructor, Palo Alto 

2016-2017 Visiting Instructor, Computer Science, Ursinus College 

2017-2018 Instructor, Computer Science, Moravian College 

2018 Doctor of Philosophy, Neurosciences, University of California San Diego 



 

xvii 

ABSTRACT OF THE DISSERTATION 

 

Spatial Distribution of Subcellular Organelles in 

Hippocampal Dendrites from High-Resolution EM Images 

 

by 

 

Jeffrey Alan Bush 

Doctor of Philosophy in Neurosciences with a specialty in Computational Neuroscience 

 

University of California San Diego, 2018 

 

Professor Mark H. Ellisman, Chair 

 

Neurons use several methods to integrate incoming information to make a decision about 

whether to activate an action potential and send information on to other neurons. This process adapts 

over time and provides the neurons with the ability to learn. One of the forms of learning that is not well 

understood is branch point plasticity, the ability for different branches in the dendritic arbor to change 

their ability to conduct information over time. In this project tools are developed to study the structural 

changes of branch points and indirectly the chemical changes at branch points to better understand the 
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underlying mechanisms behind branch point plasticity. To this end large quantities of neuropil data need 

to be analyzed. Modern electron microscopy techniques can provide massive quantities of biological 

image data at extremely high magnification, but the ability to process this data and obtain usable 

information is a major bottleneck. 

Machine learning tools were used to automatically segment cell membranes and mitochondria in 

large volumes of neuropil electron microscopy data. The new implementation of the algorithms improved 

their accuracy and efficiency for the given datasets. The algorithms now provide near-human accuracy for 

organelle and membrane detection at the same speed that data can be acquired from the microscopes 

using off-the-shelf desktop machines making this tool accessible to labs without specialized computing 

resources. Specialized programs were then developed to analyze the geometry of the branch points along 

with the spatial distributions of mitochondria and endoplasmic reticulum relative to the branch points. 

Using these tools on a sample set of data shows that mitochondria and endoplasmic reticulum volume 

percentages fluctuate with the distance from the soma. Moving forward, these tools can be used to 

analyze large datasets to discover the underlying mechanisms of branch point plasticity.
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Introduction 

In 2013 the Human Genome Project declared success after mapping almost the entire human 

genome and made this data available to the entire scientific community (Schmutz, et al., 2004), providing 

numerous medical and scientific benefits along with a much deeper understanding of biology (Hood & 

Rowen, 2013). The success of the project was an inspiration to map all the neural connections in the brain 

to better understand its mechanisms. In 2005 the terms connectome – the comprehensive map of all of 

the neural connections in the brain (Sporns, Tononi, & Kötter) and connectomics – the study and 

production of connectomes (Hagmann) were coined, modeled after the terms genome and genomics. This 

work was born out of hodology – the study of the pathways in the brain and the interconnections of its 

cells – which has been around for centuries (Dejerine & Dejerine-Klumpke, 1895; Van, 1949). In 2009 the 

NIH launched the Human Connectome Project (2009) to push forward the mapping of the neuronal 

connections in the human brain. In 2013 the United States began the BRAIN Initiative (Insel, Landis, & 

Collins) and the European Union began the Human Brain Project (Abbott A. ) both of which are part of a 

world focus on mapping the connectome. For the most part efforts have been focused on completing the 

connectome of various model organisms, including C. elegans (White, Southgate, Thomson, & Brenner, 

1986; Chen, Hall, & Chklovskii, 2006), D. melanogaster (Chklovskii, Vitaladevuni, & Scheffer, 2010), mice 

(Bock, et al., 2011), and humans. However, connectomics is not the end-all solution to understanding the 

brain, just as knowing the sequence of the entire human genome was not the end of the road, it is simply 

a single step of the path. For the human genome, we may know the sequence of the genome, but we do 

not know what it all means, as revealed by the fact that only around 2% of the human genome encodes 

protein sequences and the related C-enigma (Bennett & Leitch, 2005; Gregory, 2005). Similarly, the ability 

to have the map of all connections in the brain will not be the end of the road. We need to also figure out 

how single neurons function and the computations that they can perform. 
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The focus of this research is to create new computational tools to study the subcellular 

organization of neurons. In particular, applying these new tools to the distribution of the endoplasmic 

reticulum (ER) within the dendrites of neurons and how that distribution relates to the branching patterns 

of the dendritic tree. This will provide tools to study the intricacies of individual neurons and offer some 

possible explanations for some of the additional complexities that occur within them. 
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1 Dendritic Signal Integration in Neurons 

To understand how neurons integrate all of the synaptic inputs along their dendrites to make a 

“decision” on whether or not to pass a signal onto other cells the basics need to be established. This 

section covers the basics of neurons and how they are modeled and then goes into several details of 

information integration within the dendrites. Included details are: the role that the endoplasmic reticulum 

(ER) plays, the various plasma membrane potassium channels that have roles in this process, how the 

morphology of the dendrites influences the integration particularly at branch points, and how all of these 

features work together to perform dendritic signal integration. Dendritic integration and 

compartmentalization is believed to play a direct role in spatial information processing (Morita, 2008; 

Nolan, et al., 2004). Additionally, a rich set of biological mechanisms can dynamically change the dendritic 

computation in response to cell activity (Johnston & Narayanan, 2008). 

1.1 Neuron Modeling 

This section covers the basics of electrical properties of neurons and how they are modeled. 

Additionally, some of the complexities of neurons which are not captured in these models are discussed 

along with the underlying biochemical mechanism behind these dynamic behaviors: protein 

phosphorylation. 

1.1.1 Integrate-and-Fire Models of Neurons 

Neurons receive inputs from other neurons through synapses on their dendrites. The activation 

of the synapses causes an electrical current to flow across the cell membrane, the barrier between the 

intracellular and extracellular material, which changes the voltage across the cell membrane. If enough 

synapses are activated at the same time, then the voltage change will surpass a threshold voltage and 
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cause the neuron to send an action potential, a large electrical signal, down its axon which in turn causes 

the activation of all synapses along the axon which are then the inputs to the next set of neurons on their 

dendrites. After an action potential the voltage across the membrane returns to its “resting” state. This 

resetting process takes some time during which another action potential cannot be fired, this period is 

called the refractory period. 

This basic concept of a neuron is the basis for the integrate-and-fire model of a neuron. In 1907 

Louis Lapicque developed one of the first models of a neuron based on this simple electric principle 

(Abbott L. F., 1999). This model simply takes the fact that the charge in a neuron builds up over time 

(integrates) until a threshold is reached and then the neuron creates an action potential (fires), and resets 

to its resting voltage potential. The original model was a simple linear differential equation representing 

the electrical circuit consisting of a parallel resistor and capacitor followed by a non-linear handling of the 

threshold voltage and resetting back to rest. This simple model is very easy to compute and can accurately 

model many prototypical neuron behaviors (Koch & Segev, 1999). Due to its simplicity and easy of 

computation, it is now the basis for the artificial “neurons” used in artificial neural networks (Abbott L. F., 

1999). 

However, this model has many shortcomings. The most immediately observable one is that it does 

not implement the concept of a refractory period. For simplicity this can be implemented as another 

nonlinearity that simply clamps the membrane voltage for a period after an action potential so that the 

voltage across the membrane cannot change until the refractory period is over. Over the years additional 

enhancements have been made to the integrate-and-fire model for specific purposes. Some examples are 

the exponential integrate-and-fire model which incorporates additional information about the sodium 

channels (Fourcaud-Trocmé, Hansel, van Vreeswijk, & Brunel, 2003), the Izhikevich model which aims to 

be more biophysically realistic while maintaining high computational efficiency (Izhikevich, 2003), and 
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fractional-order leaky integrate-and-fire models which incorporate the fact that some neurons perform 

fractional differentiation (Teka, Marinov, & Santamaria, 2014; Lundstrom, Higgs, Spain, & Fairhall, 2008). 

Since the brain consists of around 100 billion neurons (Braitenberg, 2001), the modeling of the 

entire brain would currently necessitate the use of a simple model like integrate-and-fire or one of its 

variations to simulate each neuron at reasonable speeds. Even then, only extremely powerful hardware 

would be able to run the simulation and we ever need to know all the connections between the neurons. 

However, all these models only pick up on specific behaviors of specific neurons. At their core 

they all assume a neuron is a simple linear integration of its inputs followed by a nonlinear thresholding. 

They end up modeling the firing patterns of a neuron instead of the biological events occurring within the 

system and incidentally only model the prototypical patterns seen for neurons and not the actual wide 

range of behaviors that neurons exhibit. 

1.1.2 Electrochemical Models of Neurons 

The electrical currents across the plasma membrane are carried by ions and thus to incorporate 

additional biophysically realistic complexities, information about them must be added into the neuronal 

models. 

The plasma membrane is semipermeable, selectively allowing some ions across, into or out of the 

cell, while blocking others. Additionally, each of the ions that can cross the membrane do so at a specific 

rate. Neurons strictly regulate the ion flow across the plasma membrane by adding ion channels, complex 

membrane-bound proteins that form a hole in the membrane of a specific size to allow only certain ions 

across. Some ion channels are always open, allowing a constant “leak” of ions across the membrane, while 

other ion channels only open when the voltage across the membrane reaches a certain threshold or if 

certain ligands are present. In general, ions prefer to move down their electrochemical gradient, from the 

side of the membrane which has a higher concentration of the ion and charge to the side with lower 
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concentration and charge. If this was allowed to continue for too long then an equilibrium would be 

reached with the charge and concentrations remaining the same on both sides of the membranes, 

resulting in no overall current or voltage potential across the membrane. To overcome this, neurons also 

incorporate ion pumps into the membrane which constantly spend energy to move ions across the 

membrane against the electrochemical gradient. Thus, the “resting state” for a neuron actually requires 

energy to be maintained. This system allows a low current, and thus voltage potential, at rest for the 

neuron to be ready to quickly change voltage potential as necessary. 

Each ion has its own reversal potential, or voltage potential across the membrane. The reversal 

potential is different for every ion and is dependent on the electrical charge of the ion and the 

concentration of the ion on both sides of the membrane. The reversal potential for each ion is critical in 

determining the overall voltage across the membrane. They are calculated using the Nernst equation: 

𝑉𝑖𝑜𝑛 =
𝑉𝑡  

𝑧𝑖𝑜𝑛
ln (

[ion]𝑜𝑢𝑡

[ion]𝑖𝑛
) 

where 𝑉𝑖𝑜𝑛 is the reversal potential for a specific ion, 𝑧𝑖𝑜𝑛 is the charge of the ion, [ion]𝑜𝑢𝑡  and [ion]𝑖𝑛 

are the extracellular and intracellular ion concentrations respectively, and 𝑉𝑡 is the thermal voltage 

constant (𝑉𝑡 = 𝑅𝑇
𝐹⁄ ≅ 26.7 mV for mammals). The voltage potential for each ion can be calculated 

individually using this equation along with the known charge values and the relatively easy measurement 

of the concentrations of the ions. The concentrations for the most prominent ions in a typical mammalian 

neuron at rest are given in Table 1.1 along with the calculation of their reversal potentials. It can be seen 

Table 1.1. Concentrations and reversal potentials for the most prominent ions in a typical 

mammalian neuron at rest. From (Electrical Signals of Nerve Cells, 2001). 

 Ion Concentration (𝐦𝐌) Reversal 
Potential (𝐦𝐕) Ion Ion Charge (𝒛) Intracellular Extracellular 

Potassium (K+) +1 140 5 −89 

Sodium (Na+) +1 5 to 15 145 61 to 90 

Chloride (Cl−) −1 4 to 30 110 −35 to − 89 

Calcium (Ca2+) +2 0.0001 1 to 2 123 to 132 
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that some ions, like potassium and chloride, create a negative voltage potential across the membrane 

while others, such as sodium and calcium, create a positive voltage potential across the membrane. The 

charge of the ion and which side of the membrane has the higher ion concentration determines the sign 

of the reversal potential. 

However, none of these ions act alone and they must be considered collectively to determine the 

total voltage potential across the membrane. David Goldman, Alan Hodgkin, and Barnard Katz developed 

what is now called the Goldman-Hodgkin-Katz (GHK) voltage equation (Hodgkin & Katz, 1949; Goldman, 

1943). The equation that combines potassium, sodium, and chloride ions is as follows: 

𝑉𝑚 = 𝑉𝑡 ln (
𝑃𝐾[K+]𝑜𝑢𝑡 + 𝑃𝑁𝑎[Na+]𝑜𝑢𝑡 + 𝑃𝐶𝑙[Cl−]𝑖𝑛
𝑃𝐾[K+]𝑖𝑛 + 𝑃𝑁𝑎[Na+]𝑖𝑛 + 𝑃𝐶𝑙[Cl−]𝑜𝑢𝑡

) 

where 𝑉𝑚 is the voltage potential across the membrane and 𝑃𝑖𝑜𝑛 is the relative permeability of the 

membrane to that ion. This is essentially a weighted sum of the Nernst equation for each ion with each 

being weighted depending on its relative permeability. An ion with a higher permeability, and thus great 

ease in crossing the plasma membrane, has a greater influence on the resting membrane potential since 

it has more movement into or out of the cell and thus generates a larger proportion of the current across 

the membrane. 

The chloride concentrations appear to be “upside down” from the other ion contractions in the 

equations because it has a charge of −1 while the other ions all have charges of +1. Additionally, calcium 

is not included since it has a charge of +2 and incorporating it makes the equation significantly more 

complex (Spangler, 1972). Since the concentration of calcium is relatively low compared to the other ions 

and has a very low permeability (≪ 0.1% of potassium) in the resting state, it does not play a significant 

role in the resting membrane voltage potential. 

Of the remaining common ions, potassium has the highest permeability at rest. If we define 𝑃𝐾 =

1 and have all the other ion permeabilities relative to it this gives us the approximate permeabilities of 

𝑃𝐶𝑙 = 0.45 and 𝑃𝑁𝑎 = 0.04 at rest. Since potassium dominates in the GHK equation, the resting voltage 
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potential across the membrane will be relatively close to its reversal potential. For the example data given, 

the membrane potential is approximately 𝑉𝑚 = −72 mV which is much closer to 𝑉𝐾 = −89 mV than 

𝑉𝑁𝑎 = 90 mV.  

So far this has all described a neuron “at rest” which means the steady-state the neuron will 

achieve if left without stimulation for a long enough period of time. In response to specific stimuli the 

ionic permeabilities of the membrane undergo dramatic changes. The most common example is the action 

potential which is typically thought of as a massive change in voltage potential from negative to positive 

and back down to negative again. If we consider it in more detail, we can see that what is really changing 

is the membrane permeability to specific ions. When the membrane voltage potential shifts due to a 

stimulus from its resting value around −70 mV to a threshold voltage around −55 mV which triggers a 

massive shift in the permeability of sodium, which in turn causes the membrane voltage potential to 

prefer to be closer to the reversal potential of sodium instead of potassium and it begins to rapidly change 

reaching a peak around +40 mV before the relative permeability of sodium begins decreasing as 

potassium ion’s permeability increases. This causes the membrane voltage potential to then once again 

favor potassium’s reversal potential instead of sodium’s and thus quickly drops down all the way to 

potassium’s reversal potential around −90 mV and then gradually resets moving back towards the resting 

potential. These significant changes in the membrane potential are caused by changes in the permeability 

of the plasma membrane to specific ions, constantly shifting the preferred voltage across the membrane 

towards one of the ion’s reversal potentials. At the physical level, the changes in permeability are carried 

out by various ion channels opening and closing in response to stimuli such as a certain membrane voltage 

or the presence of a specific chemical. 

This dynamic nature was described by Alan Hodgkin and Andrew Huxley (1952) in their seminal 

work for which they earned the Nobel Prize in 1963. They used the action potentials in the squid giant 

axon as a model. Like Lapicque, who created the integrate-and-fire model, they created a model based on 
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an electrical circuit. Once again, the lipid bilayer of the plasma membrane is represented as a capacitor 

and a resistor in parallel is used to represent the leak current. However, that is where the integrate-and-

fire model ends. Hodgkin and Huxley added variable resistors in parallel for each of the different ion 

channels. Each of those resistors is tied to a battery that represents the electrochemical gradient for that 

ion. Using this model a differential equation can by derived the describes the changing nature of the 

membrane: 

𝐼 = 𝐶𝑚

d𝑉𝑚
d𝑡

𝐼 = ∑𝐼𝑖𝑜𝑛 𝐼𝑖𝑜𝑛 = 𝑔𝑖𝑜𝑛(𝑉𝑚 − 𝑉𝑖𝑜𝑛) 

where 𝐶𝑚 is the capacitance per unit area of the membrane (commonly 1μF cm2⁄ ), d𝑉𝑚 d𝑡⁄  represents 

the voltage potential change across the membrane over time, 𝐼 is a sum of all the different ionic currents 

across the membrane per unit area, 𝐼𝑖𝑜𝑛 is a specific ionic current per unit area, and 𝑔𝑖𝑜𝑛 is the 

conductance (inverse of resistance) per unit area of that ion across the membrane. This formula is a linear 

approximation of the GHK current density equation (not shown) which is related to the above GHK voltage 

equation. In this formulation, the amount of current generated by one ion species is based on how far the 

membrane potential is from that ion’s reversal potential and its conductance. At rest, the membrane 

potential is quite far from the reversal potential of sodium, which means that 𝑉𝑚 − 𝑉𝑁𝑎 is a relatively large 

value. However, we know that there is not a large sodium current at rest and thus the conductance for 

sodium at rest must be quite low. The conductance of an ion is correlated with its permeability, which 

goes along with this since we know that the permeability of sodium is very low at rest. 

For the model to be dynamic the permeability of the membrane needs to change over time as 

well, thus the conductances for the ions cannot be constants but instead based on differential equations 
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as well. For example, the potassium and sodium conductances described by Hodgkin and Huxley changed 

based on the membrane voltage and are represented as: 

𝑔𝐾 = 𝑔
𝐾
𝑛4 𝑔𝑁𝑎 = 𝑔

𝑁𝑎
𝑚3ℎ

𝑑𝑛

𝑑𝑡
= 𝛼𝑛(𝑉𝑚)(1 − 𝑛) − 𝛽𝑛(𝑉𝑚)𝑛

𝑑𝑚

𝑑𝑡
= 𝛼𝑚(𝑉𝑚)(1 − 𝑚) − 𝛽𝑚(𝑉𝑚)𝑚

𝑑ℎ

𝑑𝑡
= 𝛼ℎ(𝑉𝑚)(1 − ℎ) − 𝛽ℎ(𝑉𝑚)ℎ

 

where 𝑔
𝐾

 and 𝑔
𝑁𝑎

 are the maximum conductances of the potassium and sodium, 𝑛, 𝑚, and ℎ are 

dimensionless quantities that range from 0 to 1, and 𝛼𝑝(𝑉𝑚) and 𝛽𝑝(𝑉𝑚) are rate constant functions. They 

also described a leak conductance that was constant so 𝑔𝑙𝑒𝑎𝑘 = 𝑔
𝑙𝑒𝑎𝑘

. 

The state variables 𝑛, 𝑚, and ℎ have physiological correlates (which were unknown to Hodgkin 

and Huxley at the time but have been discovered since). The potassium channel has 4 subunits that must 

all be activated simultaneously for it to open and so that potassium ions can pass through. The 𝑛 state 

value represents the activation of a single subunit while 𝑛4 represents all four subunits activated and thus 

the channel opening. The sodium channel has 3 subunits that must be activated (𝑚3) and one subunit 

that must be inactivated (ℎ) simultaneously to open and allow sodium ions to pass through. The fact that 

ℎ is an “inactivation probability” instead of an activated probability is dictated by the choice of the rate 

constant functions 𝛼ℎ and 𝛽ℎ and is otherwise not treated any differently. 

The rate constant functions are usually based on Boltzmann equations which describe how the 

activation of those subunits behave if the membrane was held at a fixed voltage of the current membrane 

voltage potential. The original Hodgkin and Huxley paper gives the functions as follows: 

𝛼𝑛(𝑉𝑚) =
0.01(10 − 𝑉𝑚)

exp (
10 − 𝑉𝑚

10
) − 1

𝛼𝑚(𝑉𝑚) =
0.1(25 − 𝑉𝑚)

exp (
25 − 𝑉𝑚

10
) − 1

𝛼𝑛(𝑉𝑚) = 0.07 exp (−
𝑉𝑚
20

)

𝛽𝑛(𝑉𝑚) = 0.125 exp (−
𝑉𝑚
80

) 𝛽𝑛(𝑉𝑚) = 4 exp (−
𝑉𝑚
18

) 𝛽ℎ(𝑉𝑚) =
1

exp (
30 − 𝑉𝑚

10
) + 1
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Notice how that the 𝛼ℎ and 𝛽ℎ functions appear switched compared to the other rate constant functions 

due to the fact that ℎ represents an inactivation subunit. All the constants in these functions, and the form 

of the functions themselves, were derived experimentally from the giant axon of the squid by Hodgkin 

and Huxley1. 

The final values that are needed to be able to simulate the membrane potential over time are the 

maximum conductance values 𝑔
𝐾

, 𝑔
𝑁𝑎

, and 𝑔
𝑙𝑒𝑎𝑘

. These values are directly related to the maximal 

permeability of the ions, i.e. when all of the ion channels are in the full-open state. The values used by 

Hodgkin and Huxley in units of mS cm2⁄  or equivalently 1 (mΩ ⋅ cm2)⁄  are: 

𝑔
𝐾

= 36 𝑔
𝑁𝑎

= 120 𝑔
𝑙𝑒𝑎𝑘

= 0.3 

Unlike integrate-and-fire model neurons, Hodgkin-Huxley model neurons do not need any special 

rules to simulate an action potential or refractory periods, all of that is encoded in the rate constant 

functions for each of the channels just as it is in real neurons. 

While we can now describe the voltage potential changing at a single point on the plasma 

membrane, frequently this is not sufficient for complete neurons as it takes time for the signal to 

propagate along the membrane. The previous model needs to be combined with the cable theory to 

accomplish this. Cable theory was originally developed to model signal transmission in underwater 

telegraph cables and derived from the ubiquitous 1D heat equation (Thomson, 1855) but in the mid-

twentieth century it was recognized as an important part of the electrical transmission of signals in 

neurons (Hodgkin & Rushton, 1946; de Nó, 1947). It functions by breaking up the entire membrane into 

smaller compartments. Each membrane compartment has its own Hodgkin-Huxley model and each 

compartment lets current flow to neighboring compartments with a longitudinal resistance (𝑅𝐼). If each 

of the compartments is small enough and the Hodgkin-Huxley model for them is detailed enough this can 

                                                            
1 Some minor changes have been made. In the original paper the voltage reference was reversed and thus their 
voltage measurements were negative from the modern-day standard. 
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produce very biophysically realistic models of true neurons, including many intricacies within the 

dendrites. 

The traveling dynamics of action potentials along the membrane can be studied with this model. 

The actual electrical signal does not simply move along the membrane. Instead, an actual potential occurs 

at a single location, causing a change in voltage potential and change in ion concentration. Those ions 

diffuse within the cytosol and extracellular space of the cell. At a neighboring location, if the amount of 

voltage potential caused by the diffusion of the ions causes the membrane to reach the threshold, then 

another spike is created at that location. If the sites are too far apart at the threshold or the original spike 

is not large enough, then the diffusion of the ions may not cause a large enough increase further down 

the membrane and the action potential will not propagate. This is called regenerative propagation 

because at every location the spike must be regenerated. Without this regeneration process, action 

potentials would not travel large distances at all and only nearby locations would sense a slight increase 

in the voltage potential across the membrane. 

While a highly detailed multi-compartment model can provide many qualities of biological 

neurons, it can be very computationally intensive to simulate, needing to potentially evaluate thousands 

of differential equations for each time step for a single neuron. This does not scale well for several neurons 

let alone the approximately 100 billion neurons in the entire human brain. Several variations of the 

Hodgkin-Huxley model have been made in an attempt to make it more computationally feasible while 

keeping some of the biophysical realistic properties, which include the FitzHugh-Nagumo model which 

only requires two derivatives per neuron but no longer has a clear derivation from biology (FitzHugh, 

1961; Nagumo, Arimoto, & Yoshizawa, 1962) and the Morris-Lecar model which combines calcium and 

potassium channels by combining the Hodgkin-Huxley and FitzHugh-Nagumo models (Morris & Lecar, 

1981). 
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Ultimately, multicompartment Hodgkin-Huxley models represent a high level of biological detail 

but can be computationally expensive for highly detailed models involving large number of compartments 

or neurons. On the other hand, integrate-and-fire neurons can represent many of the prototypical 

behaviors of neurons with small amount of computational effort required, allowing them to be scaled to 

numerous interconnected neurons in a single simulation. 

1.1.3 Neuronal Complexity Not Captured with Traditional Models 

Neurons have several additional nonlinear behaviors beyond thresholding and refractory period 

that have been identified including: synaptic plasticity, synaptic noise, differences in somatic and dendritic 

conductances, distribution of synapses, and morphology of the cell (Silver, 2010; Ramaswamy & Markram, 

2015). 

The most commonly studied behavior beyond the simple integrate-and-fire model is spike-timing-

dependent plasticity (STDP) which results from temporal coincidences that occur between synaptic 

activation and action potentials (APs). STDP was first theorized to exist in 1973 (Taylor) and since then it 

has been shown that when an AP is sent down the axon of a neuron an additional signal is sent into the 

dendritic tree called a back-propagating action potential (bAP). If the bAP arrives at the postsynaptic 

structure within a small window of time after the synapse was activated, then the strength of the synapse 

is increased so that the next time the synapse is activated it is more likely to cause the neuron to fire. If 

the bAP arrives outside of the window, then the strength of the synapse is weakened. This mechanism is 

believed to be the one of the main underlying machineries of learning within the brain (Feldman, 2012). 

There are integrate-and-fire (Tavanaei & Maida, 2017) and compartmental models (Wilmes, 

Schleimer, & Schreiber, 2017; Frady, 2009) that include bAPs and STDP. However, STDP has numerous 

intricacies that are usually glossed over when modeled. An example of this is that many neurons have 

highly complex dendritic arborizations and not all branches within the dendrites are equally penetrated 
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by the bAP and thus some synapses can only perform this coincidence detection under special 

circumstances such as when there are several action potentials in succession (Feldman, 2012).  

While synaptic plasticity, and more specifically STDP, has been shown to allow neurons to change 

the weighting of individual inputs (Feldman, 2012), they still fundamentally represent neurons that are 

simple integrate-and-fire models with an additional method to change over time. Neurons have been 

shown to be able to perform addition, multiplication (Silver, 2010), and fractional differentiation 

(Lundstrom, Higgs, Spain, & Fairhall, 2008) of their signals. This wide spread of behaviors cannot be 

explained with this simple model, even a model that can “learn”, and require additional forms of non-

linearities. Even though several of these have been studied, and some in great depth, no complete system 

has been created. The more that is learned about individual neurons, the more it becomes apparent that 

each neuron has significant processing power on its own (Silver, 2010; Ujfalussy, Makara, Branco, & 

Lengyel, 2015). In fact, Almog and Korngreen argue that not only are simple integrate-and-fire neuron 

models insufficient but even more advanced compartmental models are still quite lacking and we must 

continue modeling more complex neurons (2016). There is still much to learn about the coding properties 

of individual neurons and how the behavior of neurons changes over time. 

Most of these neuronal complexities are implemented by changing the behavior of the proteins 

that make up the ion channels that conduct the electrical signals. Many proteins do not have a fixed 

behavior for their lifetime and with minor post-translational modifications2 can exhibit alternate 

behaviors. Without this flexibility the proteins would have to be broken down and replaced with new 

proteins every time a minor change was needed, wasting time and energy. Many of the modulations that 

occur to proteins in neurons must happen at time scales that are not possible with the recycling of entire 

proteins. Instead, proteins can be modulated over time to tweak their behavior. For voltage-gated ion 

channels, a common change is to make the channel more or less sensitive to voltage across the plasma 

                                                            
2 The modifications that occur after the protein structure has been translated from the RNA sequence. 



 

15 

membrane and thus changing things like the threshold voltage or action potential peak or the membrane. 

Another modification that occurs is the distribution of the ion channels with some modifications causing 

the ion channels to cluster into tight groups while others make it more evenly distributed and spread out 

(Levitan, 1994). 

One of the most common post-translational modifications that is both reversible and dynamic is 

phosphorylation and it is estimated that 30% of all cellular proteins are targets of phosphorylation (Cohen, 

2000). Many proteins have several phosphorylation sites, with each one possibly having a different set of 

proteins regulating whether it is phosphorylated and the set of resulting behaviors. Protein kinases are 

enzymes that add a phosphate group to another protein at a specific site, causing it to be phosphorylated. 

Some common protein kinases are CaMKI and CaMKII (Calcium/Calmodulin-dependent protein kinase I 

and II) which activate under increased calcium concentration (Yamauchi, 2005). Phosphatases are 

enzymes that remove a phosphate group from another protein at a specific site, such as the common 

calcineurin which is also calcium/calmodulin-dependent (Klee, H, & Krinks, 1979). 

1.2 The Endoplasmic Reticulum and Cable-In-Cable Theory 

Each independent signal being transmitted through the dendrites will need a different mode of 

transmission. Different signals already discussed are the synapses being activated causing the soma to 

generate an action potential down the axon and a bAP that travels up the dendrites back towards the 

synapses. For high-speed communication some propagating electrochemical gradient will be needed 

across a membrane. Thus, to have different modes of transmission the cell needs to either use a different 

ion across the membrane already being utilized or to use a separate membrane system that is not 

connected to the plasma membrane. Synapse-to-soma and bAP signals utilize the first technique and are 

both carried across the plasma membrane but primarily use sodium and calcium respectively for the 

depolarization. Both use potassium for repolarization, but each uses potassium in unique ways as to 
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reduce interference between the signals. However, other independent signals have been identified in 

dendrites and no other ions seem to play predominant roles. Thus, they must use another membrane to 

carry the signals. 

Another membrane system within the dendrites is the smooth endoplasmic reticulum (SER, 

simply referred to as ER in this paper). It has been shown that calcium signals along the ER within the 

dendrites may play a role in many different behaviors of a neuron, from using synaptic input to regulate 

genomic expression (Hagenston & Bading, Calcium signaling in synapse-to-nucleus communication, 2011) 

to influencing the propagation of calcium waves (Neymotin, et al., 2015) and soliton waves (Poznanski, et 

al., 2017). 

Since ER enables a mostly independent electrochemical signal within the dendrites, the cable-in-

cable hypothesis (Shemer, Brinne, Tegnér, & Grillner, 2008) proposes that neurons do not just operate as 

a single cable with the voltage potential across the plasma membrane of the cell but instead have two 

nested cables, with the inner cable being the ER which uses the calcium as the voltage carrier across its 

membrane and the outer cable being the plasma membrane which primarily uses sodium, calcium, and 

potassium. The smooth ER forms a contiguous mass in the dendritic tree acting as a calcium tunnel 

(Martone, Zhang, Simpliciano, Carragher, & Ellisman, 1993; Terasaki, Slater, Fein, Schmidek, & Reese, 

1994; Petersen, Tepikin, & Park, 2001), protruding even into very thin compartments such as presynaptic 

spine heads (Wu, et al., 2017). This allows for two mostly independent, fast propagating electrochemical 

signals to be conducted throughout the dendrites. They are not completely independent as they share 

the cytosol with each other and thus have the potential to influence the voltage potential or ionic 

concentrations used by each other (Shemer, Brinne, Tegnér, & Grillner, 2008). In some regions, where the 

ER is close to the plasma membrane, or when it takes up a significant portion of the cytosolic volume such 

as in the necks of dendritic spines, this effect becomes very prominent (Kuwajima, Spacek, & Harris, 2012). 

Additionally, the plasma membrane contains calcium ion channels, such as various voltage-gated calcium 
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channels (VGCCs) and NMDA receptors on presynaptic terminals on spine heads which means that 

intracellular calcium can influence and be influenced by both the current across the plasma membrane 

and the ER membrane (Simms & Zamponi, 2014). 

Since the current carrier across the ER membrane is calcium, the concentration of calcium on the 

outside and inside of the cell, along with the availability of calcium within the ER influences its behavior. 

The typical resting state of a neuron has very low free cytosolic calcium, around 100 nM (Simms & 

Zamponi, 2014), while extracellular calcium concentration is around ten thousand times that at about 1 

mM (Lu, et al., 2010). This low cytosolic level is maintained by efficient sarcoendoplasmic reticulum 

calcium ATPase (SERCA) pumps, sodium/calcium exchangers (NCX), and cytosolic buffers such as calbindin 

(Ross, 2012). However, within a cell there are large stores of calcium ions within the ER or bound to 

calcium buffers. It is difficult to quantify exactly how much calcium is stored within the ER, but estimates 

place it around that of the extracellular space or lower, but orders of magnitude higher than the cytosolic 

free calcium concentration in the cytosol (Bygrave & Benedetti, 1996). The more important metric is how 

much calcium can be readily released from the ER into the cytosol. The ER in layer 5 rat neocortical 

pyramidal neurons can cause local calcium concentrations to reach 5 μm (Larkum, Watanabe, Nakamura, 

Lasser-Ross, & Ross, 2003) which is significantly higher than the calcium concentration increases along the 

plasma membrane from VGCCs during bAPs (Maravall, Mainen, Sabatini, & Svoboda, 2000). 

Simulations of the cable-in-cable model has proved challenging to create in realistic ways since 

direct measurements of activity along the ER are difficult and simulating them may require spatially 

realistic simulation systems, such M-Cell or STEPS, which require significantly more computational 

resources then the traditional multi-compartmental single-cable simulation environments such as 

NEURON and GENESIS (Anwar, et al., 2014). Even with these issues, attempts have been made using 

simplified models and estimations of parameters (Shemer, Brinne, Tegnér, & Grillner, 2008; Neymotin, et 
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al., 2015). These models were able to produce many of the studied phenomenon and make predictions 

about which underlying reactions must be taking place. 

1.2.1 Calcium Waves, Calcium Sparks, and Calcium-Induced Calcium Release 

Collectively these observations of the dendritic ER indicate that one of its major roles is to store 

calcium internally and release it to perform intracellular signaling. In addition to bAPs, which travel along 

the plasma membrane and use calcium, there are two other major calcium events in neurons, both of 

which utilize the ER: calcium waves and calcium sparks (Ross, 2012). A calcium wave is a widespread event 

that starts in a particular location and spreads through the dendrites at a speed of approximately 100 

μm/s (Nakamura, Lasser-Ross, Nakamura, & Ross, 2002). The plasma membrane based bAPs which also 

use calcium propagate significantly faster, on the order of 1000x faster (Stuart & Sakmann, 1994). Calcium 

sparks are much more localized events with very minimal spread, fast to reach their peak, and stochastic. 

They were first observed in cardiac myocytes (Cheng, Lederer, & Cannell, 1993) and X. laevis oocytes 

(Parker & Ivorra, 1990) where they were named calcium sparks and calcium puffs respectively (Cheng & 

Lederer, 2008). It was several years before similar events were observed in neurons that have features of 

both the calcium sparks and puffs identified earlier. These are typically called sparks in neurons (Koizumi, 

et al., 1999). 

The cytosolic calcium level in both calcium waves and calcium sparks raises slightly causing the ER 

to release additional calcium. In response to the now higher levels of cytosolic calcium even more calcium 

is released from the internal ER stores. This repeats until either the calcium stored in the ER is deleted or 

some other molecular signal prevents the release of calcium. This phenomenon is termed calcium-induced 

calcium release (CICR). Both of the primary ion channels used by the ER, inositol 1,4,5-trisphosphate 

receptors (IP3Rs) and ryanodine receptors (RyRs) channels, release calcium in response to raised cytosolic 

calcium (Ross, 2012). 
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Calcium waves are primarily generated by IP3Rs. IP3Rs also require IP3 to be activated which 

means that they only open in the presence of both IP3 and calcium ions (Iino & Endo, 1992). At resting 

levels of cytosolic free calcium, high levels of cytosolic IP3 are required to activate the channel (Foskett, 

White, Cheung, & Mak, 2007). At elevated levels of cytosolic free calcium less IP3 is required for activation. 

However, at resting levels of cytosolic IP3, no amount of free calcium can activate the receptors. This 

means that the first set of IP3Rs can be activated just with high levels of IP3. This causes the channel to 

release free calcium into the cytosol giving neighboring IP3Rs the ability to open with lower amounts of 

IP3. This regenerative and propagating calcium release continues until the wave reaches a region where 

the cytosolic level of IP3 is lower than necessary to activate the receptors (Ross, 2012). One of the main 

ways that IP3 levels in the cytosol are raised is by activation of metabotropic glutamate receptors 

(mGluRs) on the plasma membrane which are activated with synapses, forming a coincidence detector 

between calcium signals and synaptic activation (Nakamura, Barbara, Nakamura, & Ross, 1999; 

Nakamura, et al., 2000; Wang, Denk, & Häusser, 2000; Manita & Ross, 2010). Additionally, calcium waves 

are easier to initiate if there are higher cytosolic free calcium levels. For example, if calcium crossed the 

plasma membrane via VGCC activation during a bAP or via NMDA receptors activation from synaptic 

messaging. The role of RyR in calcium waves is much less clear and has only been observed in myocytes 

and not neurons (Luo, et al., 2008). 

Calcium sparks are localized (about 2 μm), fast (about 45 ms), and stochastic events (Ouyang, et 

al., 2005; Berrout & Isokawa, 2009; Miyazaki, Manita, & Ross, 2012). The traditional form of the event is 

generated by RyRs. Their frequency is correlated with the subthreshold voltage across the plasma 

membrane and free calcium concentration in the cytosol. When a single RyR is activated, the nearby RyR 

are also activated due to CICR resulting in a strong local signal. But, the result is not a calcium wave and 

the signal does not propagate (Ross, 2012). 
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Calcium puffs are a form of calcium spark that is generated by IP3Rs. The main distinction between 

the two is that calcium puffs require raised cytosolic levels of IP3 to occur while sparks do not (Cheng & 

Lederer, 2008). Their frequency is modulated by the level of free calcium in the cytoplasm and not the 

subthreshold voltage as with standard calcium sparks. With a sufficient level of IP3 in the cytoplasm and 

high enough density of IP3R on neighboring ER segments then the calcium puff can activate regenerative 

and propagating CICR (Ross, 2012). Calcium sparks and puffs can interact with each other, causing changes 

in spread if both activate simultaneously (Miyazaki & Ross, 2013). 

Calcium waves and calcium sparks are calcium events that originate from the ER calcium stores. 

IP3R channels initiated CICR is responsible for calcium waves which propagate across the dendritic tree. 

These events require high IP3 in the cytosol and will terminate in parts of the dendrites without sufficient 

IP3. On the other hand, calcium sparks are very fast and highly localized stochastic events that may be 

generated by either RyR or IP3R channels and involve only a minimal amount of CICR before stopping and 

thus do not typically spread. It is predicted that calcium waves and sparks, among other calcium events, 

combine with or complement the voltage- and ligand-gated transient currents along the plasma 

membrane, and are often referred to as the ‘calcium toolkit’ (Bootman, Lipp, & Berridge, 2001; Ross, 

2012). 

1.2.2 IP3 and Ryanodine Receptor Channel Distributions and Modulations 

Calcium waves and calcium sparks are implemented by IP3R and RyR channels along the ER. The 

ability to generate either calcium event will depend greatly on the density and modulation of the channels. 

Their distribution is not uniform throughout the dendrites causing preferences for locations of the events. 

Additionally, through modulation their open probability is changed, effecting how likely they are to be 

open at a certain level of cytosolic calcium. 
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RyR and IP3R channels are both more abundant at branch points within the dendritic arbor, 

although they are present throughout the dendritic smooth ER (Walton, et al., 1991). This is witnessed in 

the fact that calcium waves preferentially initiate at branch points (Larkum, Watanabe, Nakamura, Lasser-

Ross, & Ross, 2003; Fitzpatrick, et al., 2009) whether they are activated by synaptic input or metabotropic 

agonists (Nakamura, Lasser-Ross, Nakamura, & Ross, 2002). In fact, the region between branch points 

form “cold spots” where synaptically activated calcium wave propagation weakens (Fitzpatrick, et al., 

2009) which further indicates a distribution where IP3Rs are denser at branch points. There must be 

significant quantities of IP3Rs along the ER between branch points as the calcium waves are able to travel 

along these regions even if they have trouble being initially generated there (Ross, 2012). Calcium sparks 

are much more predominant at branch points, indicating that RyRs are very tightly clustered at branch 

points with little or no density along the branches themselves (Ross, 2012). 

RyRs have a large and complex modulation system that influence their open probability. While 

most of the studies utilize cardiac and skeletal muscle cells where RyRs play a critical role in the 

contraction of muscles (Ozawa, 2010), at least some of the regulation likely plays a role in neurons as well 

(Zalk, Lehnart, & Marks, 2007). RyRs have several sites which can be phosphorylated, including some by 

protein kinase A (PKA) and CaMKII, which increase the open probability, and thus the amount of calcium 

released in the presence of some calcium, as the amount of phosphorylation is increased. The channel is 

leaky when hyperphosphorylated even at resting levels of cytosolic calcium, and continuously releases 

small amounts of calcium from the ER into the cytosol. In addition to phosphorylation RyRs also associate 

with several proteins and enzymes. Calstablin1 (FKBP12), calstablin2 (FKBP12.6), and FK506-binding 

protein 1b/12.6 (FKBP1b) bind to RyRs and stabilize the close state of the channel and when not bound 

may cause RyR to become leaky. Calmodulin also binds directly to RyRs and acts to inhibit the opening of 

the channel, although this behavior is modified as calmodulin binds to calcium ions. Several other cytosolic 

calcium buffering proteins, such as calsequestrin (CSQ) and the histidine-rich calcium-binding protein 
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(HRC) also interact directly with the channels, likely to change its efficacy based on the cytosolic 

concentration of calcium (Zalk, Lehnart, & Marks, 2007; Ozawa, 2010; Gant, et al., 2011). 

Both channels are located primarly at the branch points in the dendritic tree. However, IP3Rs are 

still found along the ER along the branches themselves. Correspondingly, calcium sparks are more likely 

at branch points and calcium waves preferentially initiate from branch points. Additionally, RyR channels 

have extensive modulation capabilities which change their open probability. Historic and recent calcium 

levels influence the probability of the RyR channels to open at different levels of the current calcium in 

the cytosol. 

1.2.3 Specialized ER Structures 

The ER contains specific channels so that it can carry calcium signals throughout the dendrites. 

Additionally, it also forms specialized structures so that its signals are amplified and/or interact with 

signals along the plasma membrane including: the spine apparatus (SA), lamellar bodies (LB), and 

subsurface cisternae (SSC). Examples of the last two are shown in Figure 1.1. 

Within the head of some dendritic spines, a specialized form of ER is found called the spine 

apparatus (SA) (Gray, 1959). It consists of a series of stacked discs filled with calcium (Fifková, Markham, 

& Delay, 1983) that are connected to each other and to the remainder of the dendritic ER system (Spacek 

& Harris, 1997). It is thought that this structure plays a role in the long-term potentiation (LTP) and long-

term depression (LTD) of the synapse (Jedlicka & Vlachos, 2008; Segal & Vlachos, The Spine Apparatus, 

Synaptopodin, and Dendritic Plasticity, 2010) along with calcium signaling within the spine head (Sabatini, 

Oertner, & Svoboda, 2002; Holbro, Grunditz, & Oertner, 2009). But the actual purpose is still under debate 

(Segal & Korkotian, 2014) although many studies have shown that it plays at least some role in learning 

since disrupting its formation causes mice to exhibit decreased spatial learning in the radial arm maze 
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(Jedlicka & Vlachos, 2008) and there is an increase in the number of spines with SAs after fear conditioning 

(Jasinska, et al., 2016). 

The SA structure has a high density of RyR channels which serve to dump calcium from the internal 

SA/ER stores into the cytoplasm spine head when the synapse is activated, frequently with NMDA or 

AMPA receptors (Segal & Korkotian, 2014). This calcium release then plays a role in LTP/LTD of the 

synapse. The RyR channels in the spine head are colocalized with synaptopodin (SP) and it is likely that SP 

plays a strong role in forming the lamellar structure of the SA (Kremerskothen, Plaas, Kindler, Frotscher, 

& Barnekow, 2005; Segal & Vlachos, 2010). 

Figure 1.1. Lamellar bodies (LB) and subsurface cisternae (SSC) at a branch point of a Purkinje cell. Representative 

samples of each structure are indicated. Additionally, some mitochondria are labeled as well as “Mito”. The plasma 

membrane is the dark line surrounding the non-lightened region. The surrounding neuropil was manually 

segmented and lightened for clarity. Purkinje cell dendrite from the molecular layer of rat  cerebellum acquired 

with SBFSEM on the Merlin 3View microscope at NCMIR, UCSD by Tom Deerinck.  
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Similar stacked disc formations, called lamellar bodies (LB), appear in other locations besides 

spine heads although they are significantly less studied (Le Beux, 1972; Broadwell & Cataldo, 1983; De 

Zeeuw, Hertzberg, & Mugnaini, 1995). LBs can be formed by local depletion of calcium (Garthwaite, Hajo, 

& Garthwaite, 1992) and activation of mGluRs (Banno & Kohno, 1998). These structures are also rich in 

RyR and IP3R channels. One of the predominant locations is at branch points in the dendritic arbor, as 

seen in Figure 1.1. In the figure, a related dendritic ER structure can be seen as well: the subsurface 

cisternae (SSC). The SSC is where the ER follows the plasma at a fixed distance. The name comes from the 

fact that they are a cistern of calcium (a.k.a. ER) that lies immediately beneath the surface of the cell (a.k.a. 

the plasma membrane) (Berridge, 1998). 

1.3 Potassium Channels in the Dendrites that Influence Information Integration 

While the calcium dynamics along the ER give rise to the inside cable of the cable-in-cable model, 

the outer cable, or plasma membrane, is also critical to information integration within the dendrites. 

Additionally, an important piece is intentional cross-talk between the two cables at specific locations 

under specific circumstances so that information can be passed between the two in a controlled manner. 

There are several plasma membrane based potassium channels that influence the integration of signals 

within the dendrites. Some of these are important for the passing of information between the two cable 

systems while others are important for the information integration performed by the plasma itself. Kv2.1 

and Kv4.2 are two important potassium channels that open based on the voltage potential across the 

plasma membrane and are modulated based on historic and recent calcium activity. Both are modulated 

based on calcium activity and thus calcium events carried by the ER can influence their future behavior. 

Moreover, both channels appear to have special roles at branch points, where much of the integration of 

information in the dendrites is likely to occur, and Kv2.1 is tightly coupled with RyR channels on the ER. 

Additionally, the BK and SK potassium channels that are directly activated by calcium, and thus can be 
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opened by signals carried by the ER. They also play roles in information integration within individual 

dendritic branches. 

1.3.1 Calcium-Modulated Voltage-Gated Potassium Channel: Kv2.1 

The Kv2.1 voltage-gated potassium channel (also known as KCNB1) is widely expressed 

throughout the brain (Misonou, Mohapatra, & Trimmer, 2005) and distributed over much of the dendritic 

arbor within individual neurons (Kirizs, Kerti-Szigeti, Lorincz, & Nusser, 2014; Bishop, et al., 2015). The 

following is a discussion of its role in the dendrites, its localization near LB and SSC, its interaction with 

RyR channels, and finally its modulation. 

Kv2.1 is the primary delayed rectifier channel3 in many neuron types which includes the pyramidal 

neurons in the cortex and hippocampus. Since the concentration of potassium ions is much higher within 

the cell (140-150 mM) than in the extracellular space (3-5 mM), the opening of potassium channels causes 

the positive potassium ions to flow out of the cell and create a net negative polarization effect on the 

voltage potential across the plasma membrane. Overall this means that activation of potassium channels 

causes an inhibitory effect on voltage signals being carried by the plasma membrane. Since they are 

voltage-gated, an increase of the voltage potential across the plasma membrane causes them to activate 

and subsequently dampen the effect, returning the cell to its negatively polarized state. This is one of the 

major differences between the excitability of axons and dendrites. They both contain similar amounts of 

voltage-gated sodium and calcium channels, however, there is a large difference in the number and type 

of potassium channels (Hoffman, Magee, Colbert, & Johnston, 1997). In particular, Kv2.1 channels have 

been shown to regulate the excitability of the dendrites during periods of high-frequency firing, ensuring 

                                                            
3 A delayed rectifier channel does not activate until the membrane is positively polarized and then acts to reverse 
that by negatively polarizing the membrane. This behavior plays a major role in the shape of action potentials. 
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that the fidelity of the high-frequency signal is preserved and shapes the underlying cytosolic calcium 

density (Du, Haak, Phillips-Tansey, Russell, & McBain, 2000). 

Kv2.1 channels are likely to be directly responsible for the formation of LB and SSC structures at 

branch points. The SP protein within spine heads is thought to be responsible for the formation of the 

lamellar SA structures but SP is not found outside of the spine necks in neurons (Wang, Dumoulin, Renner, 

Triller, & Specht, 2016). Elsewhere in the dendrites, the RyRs on the ER are tethered to Kv2.1 on the 

plasma membrane (Mandikian, et al., 2014). The stacked membrane discs of the LB contain clusters of 

RyRs on the ER which lie directly beneath large clusters of Kv2.1 channels on the plasma membrane 

(Rosenbluth, 1962; Du, Tao-Cheng, Zerfas, & McBain, 1998; Berridge, 1998; Mandikian, Cerda, Evans, 

Schneider, & Trimmer, 2012; Mandikian, et al., 2014). The tethering of the channels is done by the AMIGO-

1 protein (amphoterin-induced gene and ORF [Open Reading Frame]) which is a plasma membrane that 

can associate with RyR or Kv2.1 independently. This means that if only RyR and AMIGO-1 proteins are 

expressed in a cell, RyR channels form SSC clusters (Mandikian, Cerda, Evans, Schneider, & Trimmer, 2012) 

and if only Kv2.1 and AMIGO-1 are expressed in a cell then Kv2.1 clusters form on the plasma membrane 

(Peltola, Kuja-Panula, Lauri, Taira, & Rauvala, 2011). When all three are expressed in a cell the colocalized 

clusters form spontaneously (Mandikian, et al., 2014; Fox, et al., 2015). This association is so important 

that when AMIGO-1 is artificially prevented from being created, or “knocked out”, the number of Kv2.1 

channels synthesized is greatly reduced and a schizophrenia phenotype is displayed (Peltola, et al., 2016). 

Additionally, the Kv2.1 channels primarily show up in clusters within the dendrites and rarely as individual 

or small amounts by themselves. Furthermore, they are not found in spines or oblique dendrites (Kirizs, 

Kerti-Szigeti, Lorincz, & Nusser, 2014). 

The Kv2.1 channel is found extensively phosphorylated (Misonou, et al., 2004; Murakoshi, Shi, 

Scannevin, & Trimmer, 1997; Shi, Kleinklaus, Marrion, & Trimmer, 1994). Dynamic changes in its 

phosphorylation state have been shown to fundamentally alter its overall expression amount, whether it 
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is localized to the plasma membrane or sequestered, clustering within the plasma membrane, and its 

sensitivity to voltage across the plasma membrane of the channel (Cerda & Trimmer, 2010). The channel 

is rapidly dephosphorylated when there are large quantities of intracellular calcium; this has been seen in 

vivo in response to seizures (Misonou, et al., 2004) and hypoxia (Ito, Nuriya, & Yasui, 2010; Misonou, 

Mohapatra, & Trimmer, 2005) along with in vitro through various means that cause increased cytosolic 

calcium including IP3-mediated calcium release (Mohapatra & Trimmer, 2006). The primary effect of the 

mass dephosphorylation is the dispersal of the normal clustering of the channels which results in a much 

more uniform distribution of the channels across the plasma membrane (Misonou, et al., 2006; 2005; 

2004). At least part of the dispersal of the channels is due to calcium release from ryanodine receptors 

reacting to zinc release which occurs during injuries (Schulien, et al., 2016). 

The phosphorylation of Kv2.1 also affects its voltage dependence. It has several phosphorylation 

sites across the entire protein that are regulated by the protein calcineurin, whose activity is calcium-

dependent. It has been observed that when more of these sites are phosphorylated a larger the voltage 

potential across the membrane is needed before the channel is opened, allowing for a graded response 

system (Mohapatra & Trimmer, 2006; Murakoshi, Shi, Scannevin, & Trimmer, 1997; Park, Mohapatra, 

Misonou, & Trimmer, 2006). Each phosphorylation site appears to have independent regulation, with 

some being regulated based on recent neuronal activity (Misonou, et al., 2006; Mohapatra, et al., 2009). 

The phosphorylation sites have complex interactions with each other (Tian, et al., 2004) suggesting that 

the Kv2.1 channel has an extremely intricate regulatory system. In addition, other phosphorylation sites 

on Kv2.1 have been identified that are not calcium-dependent including two sites that are regulated by 

AMP-activated protein kinase which acts to shut off energy-intensive processes when the amount of 

available energy in the form of ATP is low in the cell (Ikematsu, et al., 2011). The association of AMIGO-1 

with Kv2.1 also acts to regulate the voltage sensitivity of Kv2.1 channels (Zhao, et al., 2014; Peltola, Kuja-

Panula, Lauri, Taira, & Rauvala, 2011).  
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Ultimately Kv2.1 is a highly dynamic potassium channel with a large influence on its behavior 

coming from historic intracellular calcium levels. It is the largest contributor to keeping the voltage 

potential across the plasma membrane controlled. It is also tethered to ER-based CICR ryanodine 

channels. The Kv2.1 and RyR channels form clusters and colocalize with each other, particularly at 

dendritic branch points, creating LB and SSC structures within the ER. However, the Kv2.1 channel is 

primarily present near the soma and is rare in the distal dendritic branches (Kirizs, Kerti-Szigeti, Lorincz, & 

Nusser, 2014; Lim, Antonucci, Scannevin, & Trimmer, 2000). This means that while it may play an 

important role in calcium signaling, it only does so in the largest branches and only closest to the soma. 

1.3.2 Calcium-Modulated Voltage-Gated Potassium Channel: Kv4.2 

Another calcium-modulated voltage-gated potassium channel is Kv4.2 (also known as KCND2). It 

is expressed throughout the dendrites and is the dominant A-Type current4 in dendrites (Duménieu, Oulé, 

Kreutz, & Lopez-Rojas, 2017). However, its distribution is not uniform throughout the dendrites in most 

neuron types. It forms clusters or puncta, it is only loosely associated with the location of synapses, and 

it is particularly abundant at the perimeter between the soma and the proximal dendrites (Alonso & 

Widmer, 1997; Jinno, Jeromin, & Kosaka, 2005). The channels can be re-distributed based on the spiking 

activity of the neuron thus changing the dynamics of the cell (Kim, Jung, Clemens, Petralia, & Hoffman, 

2007). While this channel only has a minimal association with the ER and its calcium events, it critically 

regulates currents at branch points and is thus very important to dendritic information integration. 

Kv4.2 has many roles in the dendrites, but they all involve various aspects of learning and 

interaction with calcium events. The primary role of Kv4.2 seems to be the dampening of excitatory 

voltage potential signals to novel stimuli, resulting in more consistent learning in various environments 

                                                            
4 A-Type refers to the fact that the channels are voltage-gated, calcium-independent, potassium currents that have 
a characteristic rapid activation and inactivation. 
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(Kiselycznyk, Hoffman, & Holmes, 2012). This correlates to the fact that Kv4.2 is removed from the plasma 

membrane during LTP of synapses (Kim, Jung, Clemens, Petralia, & Hoffman, 2007; Chen, et al., 2006). 

The Kv4.2 channel also plays an important role at branch points throughout the dendritic tree by isolating 

voltage potential “plateaus” in different branches from each other (Cai, et al., 2004) and selective invasion 

of back-propagating action potentials (bAPs) into dendritic branches based on experience (Makara, 

Losonczy, Wen, & Magee, 2009; Migliore, Hoffman, Magee, & Johnston, 1999). These features at branch 

points show plasticity in that they can change over time with learning (Losonczy, Makara, & Magee, 2008). 

Kv4.2 also interacts with the calcium flux from IP3Rs on the ER, assisting to overcome the suppression 

they experience in thin dendrites due to the initial influx of calcium during calcium waves. This causes 

them to influence the latency and duration of calcium waves (Ashhad & Narayanan, 2013). 

Like Kv2.1, Kv4.2 also has numerous phosphorylation sites and associated proteins which 

modulate its density on the plasma membrane and open probability. The phosphorylation by PKA and PKC 

(protein kinase C) decreases the activity of Kv4.2 and thus increases the amplitude of back-propagating 

action potentials (Schrader, et al., 2006). Phosphorylation by CaMKII, which is calcium dependent, causes 

the channel to become localized to the plasma membrane and thus prior intracellular calcium levels cause 

more Kv4.2 channels to be present in the plasma membrane (Varga, et al., 2004). Additionally, there are 

several voltage-dependent potassium channel-interacting proteins (KChIPs) that bind to the Kv4.2, 

including KChIP1, KChIP2, and KChIP3. These proteins are members of the NCS (neuronal calcium sensor) 

subfamily of calcium-binding proteins and thus are highly sensitive to cytosolic calcium levels (An, et al., 

2000; Beck, Bowlby, An, Rhodes, & Covarrubias, 2002). They may even be responsible for migration of 

Kv4.2 in to and out of the plasma membrane (Duménieu, Oulé, Kreutz, & Lopez-Rojas, 2017). Additionally, 

NCS-1 itself is hypothesized to associate with and effect the open probability of the Kv4.2 channel (Guo, 

Malin, Johns, & Nerbonne, 2002). Finally, the protein neuritin causes upregulation, or increase in protein 

synthesis, of the channel (Yao, Zhao, Liu, & Chow, 2016). 
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Overall, Kv4.2 is a highly expressed and highly modulated potassium channel with critical roles in 

the plasticity of neurons. Its presence in the plasma membrane and its sensitivity to voltage are regulated 

in many ways, including several ways that respond to intracellular calcium levels. It is located in clusters 

and particularly concentrated at the perimeter between the soma and the proximal dendrites. It seems 

to have a pronounced effect at controlling voltage potentials between individual branches in the dendritic 

tree, and is thus likely more abundant at branch points, and with the propagation of back-propagating 

action potentials. While Kv4.2 does seem to have a special role at branch points in the dendritic tree and 

does manage the integration of information between branches, it has a minimal relationship with the ER. 

So, it is likely that its calcium-based modulation comes from other sources of calcium such as VGCCs on 

the plasma membrane which are activated during bAPs. 

1.3.3 Calcium-Activated Potassium Channels: SK and BK 

The final set of potassium channels to be discussed are not strictly voltage-gated like Kv2.1 and 

Kv4.2. They are instead mainly activated by direct association with cytosolic calcium. The two main 

channels are: 1) the small-conductance calcium-activated potassium channels (SK) which are completely 

insensitive to the voltage potential across the membrane and only open in the presence of cytosolic 

calcium, and 2) the large-conductance calcium-activated potassium channels (BK) which are 

independently activated by intracellular calcium and voltage potential (Vergara, Latorre, Marrion, & 

Adelman, 1998; Bond, Maylie, & Adelman, 1999)5.  

SK channels have many interactions with various calcium events and are associated with the SSC. 

They are specifically opened by IP3-mediated calcium waves in many neuron types (Ross, 2012) including 

                                                            
5 Intermediate-conductance calcium-activated potassium channels (IKs) also exist, however there are no reports of 
them occurring in the dendrites of central nervous system but instead limited to axons (King, et al., 2015), enteric 
nervous system (Furness, et al., 2004), or outside neurons entirely. 
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CA1 pyramidal neurons (El-Hassar, Hagenston, D'Angelo, & Yeckel, 2011) and cortical pyramidal neurons 

(Yamada, Takechi, Kanchiku, Kita, & Kato, 2004; Gulledge & Stuart, 2005; Hagenston, Fitzpatrick, & Yeckel, 

2008). They are responsible for hyperpolarizing the membrane after a calcium wave. However, if the 

calcium wave is isolated and does not propagate into the soma, then SK-mediated afterhyperpolarization 

is greatly dampened, indicating that they play a role in modulating communication going outwards from 

the soma. This additional level of information likely comes from R-type, L-type, and N-type VGCCs to which 

the SK channels are tightly coupled in the plasma membrane (and not the calcium channels on the ER) 

(Bloodgood & Sabatini, 2007; Rudolph & Thanawala, 2015; Marrion & Tavalin, 1998; Zhang & Huang, 

2017). SK channels are also influenced by calcium sparks resulting in spontaneous transient outward 

currents (STOCs) across the plasma membrane. This implies that they are loosely coupled with RyRs on 

the ER. This effect is facilitated by, but does not require, the coupled VGCCs (Zhang & Huang, 2017). SK 

channels are also present in postsynaptic terminals and they are associated with calcium events within 

the spine heads, such as the events generated by NMDA receptors (Bloodgood & Sabatini, 2007; Jones, 

To, & Stuart, 2017; Ngo-Anh, et al., 2005; Zhang & Huang, 2017).  

Recent simulations of calcium waves include a BK current to hyperpolarize the membrane after 

calcium influx (Neymotin, et al., 2015) but the effect is not actually seen experimentally in the central 

nervous system. In fact, there is little evidence that BK channels are activated by calcium waves in the 

dendrites of neurons in the central nervous system at all (Ross, 2012). They do play roles with calcium and 

ER within cultured sympathetic neurons (Akita & Kuba, 2000; Stocker, 2004), in parasympathetic cardiac 

neurons (Merriam, Scornik, & Parsons, 1999), and urinary bladder smooth muscle cells (Herrera, Heppner, 

& Nelson, 2000; 2002). However, the density of BK channels is uniform throughout the dendrites and may 

act to decouple the initiation zones for APs and bAPs during high-frequency inputs in cortical pyramidal 

neurons (Ramaswamy & Markram, 2015). Additionally, they are coupled to N-type VGCCs along the 

plasma membrane, less than 30 nm away (Marrion & Tavalin, 1998; Stocker, 2004). 
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Ultimately, SK channels likely play a role in various dendritic and postsynaptic calcium events 

while the role of BK channels is much less clear. These mainly associate with the plasma membrane-bound 

VGCCs and not the ER-bound CICR channels like RyR and IP3R. The behavior of both channels can be 

modulated but neither can be modulated through any pathway that involves calcium (Faber, 2009; Hoshi, 

Tian, Xu, Heinemann, & Hou, 2013). Additionally, they perform a distinct role from the Kv4.2 channels. 

The SK channels act to restore the resting potential within a single dendritic branch segment while the 

Kv4.2 channels act as “gate-keepers” at the branch points between different dendritic branches (Cai, et 

al., 2004). The Kv4.2 channels compartmentalize the dendritic arbor, allow each dendritic branch segment 

to act as a quasi-independent binary signaling unit using the SK channels and that signal is sent out to 

neighboring branches only when the Kv4.2 channels can be overcome. Thus, these collectively form the 

core system for synaptic integration within a single neuron, demonstrating the ability for a single neuron 

to act as a collection of several integrate-and-fire style neurons (Wei, et al., 2001; Cai, et al., 2004), and 

show that a single branch may act as its own computational unit (Losonczy, Makara, & Magee, 2008; 

Poirazi & Mel, 2001) 

1.4 Dendritic Branch Point Morphology 

So far, the discussion on dendritic information integration has been focused on the ion channels 

along the ER and plasma membrane, their interactions through calcium events, and the specialized ER 

structures related to them. However, the morphology of the dendrites, and in particular the branch points 

themselves, is an additional complexity which has a large impact on the transmission of signals through 

them and the overall input/output relationship of a neuron (Mainen & Sejnowski, 1996; Krichmar, Nasuto, 

Scorcioni, Washington, & Ascoli, 2002; Schaefer, Larkum, Sakmann, & Roth, 2003; Komendantov & Ascoli, 

2009). The realization that branching patterns and sizes of the branches could affect the currents traveling 

through goes as far back as 1959 when Wilfrid Rall developed a cable-model of a dendritic tree that was 
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measure experimentally and demonstrated that interrelations between unique morphology and specific 

electric properties of dendrites can be critical to the overall behavior of the neuron, challenging the 

dominant belief at the time that neurons were essentially uniformly implemented cells (1959; 1962). 

When looking at a wave traveling along a conductor, such as a bAP traveling along the plasma 

membrane, the geometry of the branch point has a significant effect on the amplitude of the wave before 

and after reaching the branch. The geometric ratio (𝐺𝑅) of the branch will alter the maximal height of the 

wave at the branch point itself as well as within the branches into which the wave travels into. The 

geometric ratio is defined as: 

𝐺𝑅 =
∑ 𝑑𝑗

3 2⁄
𝑗

𝑑𝑃
3 2⁄

 

where 𝑑𝑗  is the diameter of the 𝑗th daughter dendrite, and 𝑑𝑝 is the diameter of the parent dendrite. In 

this case, the parent dendrite is not inherently the larger dendrite or the one closer to the soma, it is 

simply the dendrite from which the wave originates. Likewise, the daughter dendrites are the dendrites 

into which the wave will propagate into (Goldstein & Rall, 1974). 

When 𝐺𝑅 = 1 then there is no significant difference in the height of the wave within the branch 

point or within the daughter dendrites as compared to the height while approaching6. This was the 

situation that was assumed to be true for each branch point within the dendritic tree prior to the work by 

Goldstein and Rall (1974). Some dendritic trees have a roughly consistent 𝐺𝑅 = 1, such as the 

motoneurons of cat spinal cord. However, most studied neurons do not have this property (Rall, et al., 

1992). 

However, when 𝐺𝑅 < 1, the overall diameter of the system is decreasing and there is a transient 

increase in the wave height within the branch point that persists for a short distance down the daughter 

                                                            
6 If there are two daughter dendrites with equal diameter they must each have a diameter of ~0.63 times the parent 
for the result to be a 𝐺𝑅 = 1 
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dendrites. Eventually, its height returns to the height of the original wave. Additionally, there is a minor 

increase in the velocity of the wave within the branch point (Goldstein & Rall, 1974). 

Conversely, when 𝐺𝑅 > 1 the overall diameter is increasing and there is a transient decrease in 

the wave height within the branch point. However, the wave may never return to the full height again 

within the daughter dendrites because if the decrease is too large then it may not be sufficient to sustain 

the regenerating wave. This means that the wave can fail to propagate into branches depending on the 

𝐺𝑅 and the threshold required by the branch to propagate the regenerating wave. Even when it is a 

success, there is possibly a significant delay in transmission through the branch point (Goldstein & Rall, 

1974). 

The 𝐺𝑅 concept also applies to situations where there is a single daughter dendrite, essentially 

when the diameter of a dendrite significantly changes even when there is no branch point (Goldstein & 

Rall, 1974). These changes have been shown to be important in calcium dynamics of dendrites in 

simulations (Anwar, et al., 2014). In the extreme situation, when a traveling wave reaches a terminus, and 

thus 𝐺𝑅 = 0, there is a significant increase in the wave height due to the buildup of ions which are trapped 

on one side causing a reflection of the signal (Poznanski, 1999). 

In a single detailed CA1 pyramidal cell model reconstructed from light microscopy data by D. A. 

Turner for Migliore et al (1999) the 𝐺𝑅 values range from 0.1 to 2.0. The max value of 2.0 arises from 

situations where a dendrite bifurcates into two equal-sized daughter dendrites. The small 𝐺𝑅 values are 

situations where there are large branches that decrease in size shortly after the branch from the trunk. 

The branch points with 𝐺𝑅 < 1 form two clusters: one near the soma (up to 50 μm away) and in the 

middle of the arbor (375-500 μm away). In the other regions (50-375 μm and more than 500 μm away) 

the 𝐺𝑅 values are all greater than 1. The most distal region (greater than 500 μm away) has the largest 

𝐺𝑅 values, all of which are near 2.0. The large number of high 𝐺𝑅 at the distal ends prevent bAPs from 

getting to the furthest reaches of the tree in simulations (Acker & White, 2007). 
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The diameter of the dendrites varies greatly over the arbor and across different types of neurons. 

In general, going from thicker branches near the soma to thinner branches at the tips. The diameters 

range in size from about 4 μm in the proximal dendrites of Meynert visual cortex cells to 0.2 μm at the 

most distal tips on granule cells. In just CA1 pyramidal cells of rats they range from over 3 μm in proximal 

dendrites to 0.25 μm at the distal tips. (Stuart, Spruston, & Hausser, 2016). The diameter of spine necks, 

where the ER also follows, are even smaller, ranging in size from 0.04 to 0.51 μm with an average of about 

0.2 μm but with no correlation to the distance from the soma (Arellano, Benavides-Piccione, DeFelipe, & 

Yuste, 2007; Harris & Stevens, Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial 

electron microscopy with reference to their biophysical characteristics, 1989). This great difference in 

dendrite diameters has a large effect on the 𝐺𝑅 of the branch points and the disparity between the main 

trunk diameter and the smaller branches has been shown to be a key determinant in dendritic AP initiation 

and propagation (Migliore, Ferrante, & Ascoli, Signal Propagation in Oblique Dendrites of CA1 Pyramidal 

Cells, 2005). 

Another major factor in the geometry of the branches is the surface area to volume ratio (SVR). 

For open cylinders with diameter 𝑑 such as dendrites the SVR is 4 𝑑⁄ . Due to the inverse relationship, as 

the diameter decreases the SVR increases dramatically. The SVR could be 0.5 μm−1 near the soma it is 

much more likely to be around 16 μm−1 in the distal dendrites – a factor of 32 times higher. The reason 

that the SVR is so important is that ion influx into the cell is a function of the surface area since the ion 

channels are embedded within the plasma membrane while the ability for the ions to diffuse or be 

buffered by proteins in the cytoplasm depends on the volume (Anwar, et al., 2014). The SVR is then 

essentially the ratio of the ability for the cell to transport ions across the membrane over the ability for 

the cell to sequester ions away. Additionally, the effects of calcium events on the ER will be much more 

concentrated and have a larger impact on modulation or opening of potassium channels on the plasma 

membrane in regions with higher SVR, which is one of the contributing reason why calcium waves 
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preferentially initiate at branch points leading into smaller dendrites (Ashhad & Narayanan, 2013). This 

increased effect of calcium events is also achieved by the LB and SSC which create constrained spaces for 

the calcium diffusion (Kuwajima, Spacek, & Harris, 2012). 

All of this assumes that the dendrites are well approximated by a series of connected cylinders as 

per the multi-compartment and cable models. However, there is strong evidence that bifurcation is not a 

simple creation of two cylinders from a single cylinder. Instead there is a wide range of branch point 

shapes and the resulting branches do not always have “straight” sides but instead are frequently tapered. 

The taper influences the information passage into the daughter dendrites and the timing of information 

between the different branches. In particular, differences in the taper at a branch point can have as much 

effect as the modulation of Kv4.2 channels do on the propagation of signals outside of the branch and 

compartmentalization of signals within the branch (Ferrante, Migliore, & Ascoli, 2013). 

The shape of a branch point is not necessarily consistent over time. During LTP the branch may 

gain a much wider taper, i.e. its base becomes significantly wider but remains the same overall diameter 

along its length (Park, Mohapatra, Misonou, & Trimmer, 2006; Ferrante, Migliore, & Ascoli, 2013). During 

glutamate reception it may become “lanky” and during spontaneous release become “husky” (Ferrante, 

Migliore, & Ascoli, 2013). This all represents forms of structural plasticity of the branch point (Bourne & 

Harris, 2008) changing the ability for the branch to convey signals to the rest of the neuron (Makara, 

Losonczy, Wen, & Magee, 2009). It is unsure if these structural changes are compensating, cooperating, 

or completely independent of other forms of plasticity such as increased Kv4.2 localization to the plasma 

membrane (Ferrante, Migliore, & Ascoli, 2013). Other structural changes occur in response to activity 

within the cells and overall learning of the animal including the diameter and length of spine necks, spine 

head diameters (Araya, Vogels, & Yuste, 2014), distribution of branch points within the arbor (Maravall, 

Koh, Lindquist, & Svoboda, 2004), and total length of the dendrites (Sorensen & Rubel, 2011). 
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Overall, the physical structure of the dendrites, and especially of the branch points themselves, is 

critical to the information processing performed by the dendrites. Even subtle changes in the taper of a 

branch coming out of a branch point can have dramatic effects on the integration of information within 

the dendrites. The morphology of the arbor is also not constant, and can go under rapid changes during 

learning, similar to the changes happening with the open probability and localization of the various ion 

channels on the plasma membrane and ER. Most of the studied changes have used light microscopy which 

does not necessarily have the resolution necessary to capture all the changes occurring and thus many 

details of the structural nature of the dendrites may still be missing. 

1.4.1 Ionic Currents and Morphology at Branch Points Affect Propagation of bAPs 

Several dendritic events, including calcium waves, are likely to be influenced by ion channel 

distribution and modulation along with dendritic, and possibly ER, morphology. However, difficulties in 

studying calcium waves and the ER directly have limited this research. The major dendritic event that has 

been significantly studied is the backpropagating action potential (bAP) and the complexities here are 

informative on what the cells can do with changes in morphology and ion channels. The ability for action 

potentials to actively propagate back into the dendritic tree, instead of passively diffuse, was first 

discovered by the Sakmann group within neocortical pyramidal cells (Stuart & Sakmann, Active 

propagation of somatic action potentials into neocortical pyramidal cell dendrites, 1994) and hippocampal 

CA1 pyramidal cells (Spruston, Schiller, Stuart, & Sakmann, 1995). Since the discovery of bAPs, they have 

been actively researched, particularly with respect to playing a role in learning, including STDP and 

LTP/LTD or synapses. 

Not only do the bAPs propagate into the dendritic tree, but they have specific, activity-dependent, 

responses. This means that the ability for bAPs to reach the most distal dendrite branches is highly 

dependent on the recent number of APs generated by the cell. Additionally, when bAPs fail to reach some 
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of the distal tips of the dendritic tree, the failure occurs at branch points in the dendritic tree. As bAPs 

travel further into the dendritic tree they attenuate, reducing in overall wave amplitude. When a burst of 

APs is generated within the soma of the neuron, frequently only the initial AP becomes a full bAP and the 

subsequent bAPs are greatly attenuated and more likely to fail at much earlier branch points. Only after 

a few seconds of no spiking activity can another AP invade most of the dendritic tree again. Ultimately, 

there is an activity-dependent system for allowing bAP invasion into the dendritic arbor and branch points 

act as the major gates (Spruston, Schiller, Stuart, & Sakmann, 1995). Additionally, bAP invasion of the 

dendritic tree is also dependent on recent activity of both inhibitory (Tsubokawa & Ross, 1996) and 

excitatory synapses (Stuart & Häusser, 2001; Magee & Johnston, 1997). Recent activation of inhibitory 

synapses decreases the likelihood of bAPs to reach nearby branches and recent activation of excitatory 

synapses increases the likelihood of a bAP to reach the nearby branches. This indicates that activity of 

both the neuron as well as its preceding neurons influence whether a bAP can successfully reach individual 

branches within the tree. 

Besides the recent activity of various neurons, the morphology of the dendritic tree was found to 

play a role in the success or failure of bAPs at the distal tips. Minor variations in dendritic morphology 

alone can reproduce the range of bAP efficacies experimentally. The dendritic geometry of some neuron 

types is so effective that no physiologically-relevant modulation of channel densities could affect the 

propagation of bAPs while in other neuron types the channel densities combined with the morphology 

combine to form a more flexible system for regulating bAP invasion of the dendritic tree (Vetter, Roth, & 

Häusser, 2001). Within the same neuron types, different populations of neurons can develop that are 

either weakly-propagating or strongly-propagating. These populations have different AP shapes within 

the soma, indicating different modulation of sodium and potassium channels is occurring, but the 

populations also have a small but consistent difference in their branching complexity within a specific 

region of the dendrites (Golding, Kath, & Spruston, 2001). 
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Since bAPs are a large component of the STDP and LTP/LTD learning, the failure of the bAPs to 

propagate to some of the far distal branches may mean that synapses on the branches will always 

decrease in sensitivity. This happens because STDP relies on the arrival of the bAP within a certain time 

window of the synapse activation. If the bAP arrives within the window, the synapse strengthens. If not, 

then the synapse weakens. This means that if the bAP never arrives due to a failure to propagate to that 

branch, weakening (and thus LTD) will always occur. However, in some situations the reverse may occur. 

If several nearby excitatory synapses were active simultaneously it might be enough to cause the bAP to 

successfully reach a branch it may not have otherwise reached and possibly arrive earlier, thus changing 

something that may have been a depression of the synapse into a potentiation (Sjöström & Häusser, 

2006). Additionally, bAPs have cross-talk with calcium waves and sparks, which means that a concurrent 

calcium wave may also increase the likelihood of a bAP reaching the far distal dendrites (Ashhad & 

Narayanan, 2013). 

More advanced mathematical models of bAPs have been developed, including the traveling wave 

attractor model. This model simulates the bAP as a traveling wave instead of directly simulating the 

underlying ionic currents across the membrane. If the dendrites were uniform in channel properties and 

morphology, then the traveling wave would reach a steady state, which is called the traveling wave 

attractor. As this wave reaches regions which are not uniform the wave shifts from the steady state either 

in time or position, but eventually these shifts decay and the steady state will be acquired again. When 

using a model such as this the perturbations of various ion channel currents and morphology can be 

examined closely, and it can be easily seen which changes will cause failures of the wave to propagate. 

Using these models, it was determined that the Kv4.2 channel modulation is critical to the success of the 

bAP invasion, especially at branch points where they play a major role. The 𝐺𝑅 affects the success rate, 

even when the channel properties would otherwise support the active propagation. The interplay 

between these two effects is the ultimate determination if a bAP successfully reaches a particular 
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dendritic branch (Acker & White, 2007). The relative roles of Kv4.2 and 𝐺𝑅 on bAP invasion of dendrites 

was confirmed with morphologically simple models. Like many previous studies, the maximal conductance 

of Kv4.2 channels was shown to be the largest determination in terms of successful propagation of bAPs, 

but the 𝐺𝑅 was influential when the Kv4.2 conductance was on the edge of success or failure. The 𝐺𝑅 

significantly affected the timing of the waves, slowing down waves by up to 60% in the extreme cases 

(Bush & Kiggins, 2010). 

The ability for a particular branch to change from weakly to strongly conducting waves occur with 

similar mechanisms to those underlying STDP. This form of plasticity is called branch strength plasticity 

(BSP), is carried out by the downregulation of Kv4.2 channels, and happens with NMDA-dependent 

manner like STDP does. However, its effect is not very strong unless there is also activation of muscarinic 

acetylcholine receptors (mAChRs) which are primarily activated during exploratory behavior of the animal, 

indicating that this form of learning is used during novel situations (Losonczy, Makara, & Magee, 2008). 

This is illustrated with rats that develop in a spatially-rich and socially-rich environment end up with a 

much higher proportion of strongly conducting branches than in control rats (Makara, Losonczy, Wen, & 

Magee, 2009). 

The Kv4.2 channels that are regulated to control the ability for bAPs to invade far distal branches 

also play a role in the regulation of IP3R-mediated generation of calcium waves on the ER. This is especially 

prominent in the distal dendrites where the diameter is smaller, forcing the ER and the plasma membrane 

into greater proximity to each other. Overall there is a bell-shaped curve relationship between the amount 

of Kv4.2 and the ability for calcium waves to form. If there is too much Kv4.2 and the calcium waves are 

suppressed but if there is too little Kv4.2 then historic calcium levels build up to a high enough level to 

discourage further calcium events (Ashhad & Narayanan, 2013). 

While other dendritic signals, such as calcium waves, are possibly more important that bAPs to 

intra-dendritic information passing, they are not as well studied as bAPs. Even though calcium waves have 
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larger maximum calcium levels than bAPs, and thus are easier to detect with calcium indicating dyes, they 

have been studied for several reason. They were discovered in neurons more recently, spread throughout 

the dendrites slower, cause a much lower change in voltage potential across the plasma membrane, and 

require newly developed non-buffering low-affinity calcium indicator dyes to measure accurately (Ross, 

2012). Also they are more difficult to model accurately using common simulation environments (Anwar, 

et al., 2014). There have been some recent successes in modeling them, but these have been made using 

simplified models (e.g. not modeling the ER directly) or estimations of parameters (Shemer, Brinne, 

Tegnér, & Grillner, 2008; Neymotin, et al., 2015). 

Overall, branches and branch points have their own forms of plasticity and selectivity to the 

signals that can be passed into or out of them. The most studied examples of this involve bAPs, but at 

least some of the discoveries likely apply to other events as well. The ability of bAPs to invade the furthest 

distal dendrites is highly dependent on the amount of Kv4.2 current present, current excitatory and 

inhibitory synaptic activation, and to a lesser degree the morphology of the branches. Their plasticity 

mainly involves downregulation of Kv4.2 channels, which also influence calcium wave initiation, and is 

partially dependent on the animal being engaged in exploration of the environment. 
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2 Microscopy 

There are several ways to get information about the structure of biological systems including 

MRIs, X-rays, crystallography, and atomic force microscopes. At the cellular level, light microscopy is a 

very common choice. However, it has its limitations and electron microscopy (EM) is needed to get high 

enough resolution of subcellular structures. In this section, the development and use of light and electron 

microscopy for imaging cells and subcellular structures is discussed. 

2.1 Light Microscopy 

Since the seminal work by Santiago Ramón y Cajal and Camillo Golgi (Golgi, 1906; Ramón y Cajal, 

1906) light microscopy has become an indispensable tool for neuroscientists. In the early studies cells had 

to be darkly stained otherwise they were transparent. This was due to the limited resolution of the devices 

at the time which caused most structures to be unresolvable (Denk & Horstmann, 2004). However, if every 

cell in the sample was stained equally then the image would just be a mass of stain. The method Golgi 

discovered for staining neurons randomly stains only a small handful of neurons. The method for this 

selective staining is still unknown as of today, but is an ideal stain for studying the overall morphology of 

individual neurons. 

These early stains only allowed for the visualization of the gross cellular morphology without any 

ability to study the structures within a single cell. As time progressed additional stains were developed 

that could stain specific subcellular structures, but frequently they stained too generally and subcellular 

components were still out of reach in light microscopy. The development of fluorescence microscopy and 

more sophisticated instruments eventually broke this barrier and allowed subcellular structures to be 

viewed with increasing levels of clarity and specificity (Wilt, et al., 2009). Many fluorescent dyes were 

discovered that can identify lipids (Greenspan, Mayer, & Fowler, 1985), specific ions (Grynkiewicz, Poenie, 
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& Tsien, 1985), DNA (Kapuscinski, 1995), and organelles (Buckman, et al., 2001). Additionally, a large 

breakthrough was made when fluorophores were attached to antibodies, as antibodies can be created 

that targeted most proteins (Coons, Creech, Norman, & Berliner, 1942). This allowed for specific proteins 

and subcellular structures to be labeled. Eventually the introduction of genetically encodable fluorescent 

proteins, such as green fluorescent protein (GFP), allowed proteins to be precisely targeted with a 

covalently linked fluorescent tag without the need for additional staining (Tsien, 1998; Giepmans, Adams, 

Ellisman, & Tsien, 2006). While the labeling techniques were improved, the instruments used to acquire 

the images were also improved. Differential interference contrast (DIC) microscopy was developed 

allowing viewing of unstained samples by integrating two light rays that are slightly offset and have 

different polarizations from each other (US Patent No. 2924142, 1952; Lang, 1968). Confocal scanning 

laser microscopy allowed thicker samples to be used and for only a single plane of that sample to be 

imaged, allowing for the construction of 3D images (Davidovits & Egger, 1969; White & Amos, Confocal 

microscopy comes of age, 1987). Subsequently two-photon excitation microscopy, which uses a method 

much more complex than confocal microscopy, was developed and improved on its results by allowing 

for deeper tissue penetration and reduced phototoxicity (Denk, Strickler, & Webb, 1990). All of these 

improved the clarity of results and depth-of-field but were still limited in field-of-view. Using mosaicking 

a significantly wider field-of-view can be provided by serial acquisition (Chow, et al., 2006). 

Light microscopy methods have several benefits such as the ability to use multiple labels in a single 

sample, the viewing of living samples that can be reused, and the creation of results of sufficient quality 

with relatively non-specialized equipment. However, only structures that have been specifically labeled 

or have unique light diffraction properties can be viewed and the appropriate antibodies or genetic strains 

are required to mark the structures. Additionally, the diffraction limit of light is around 250 nm depending 

on the wavelength and numerical aperture which means that light microscopy cannot resolve objects 

smaller or closer together than that (Abbe, 1873). Moreover, 250 nm is much larger than several 
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subcellular components such as ribosomes (25-30 nm in diameter), synaptic vesicles (about 40 nm in 

diameter), and ER (50-100 nm in diameter). It is even larger than some cellular protrusions such as spine 

necks and the finest dendrites (around 200 nm in diameter). There are new super-resolution light 

microscopy techniques that have broken past the diffraction limit and can theoretically obtain resolutions 

in the tens of nanometers (Gustafsson, 2000; Betzig, et al., 2006; Rust, Bates, & Zhuang, 2006). These 

methods have been used to get detailed localization of synaptic cytoskeletal filaments (Pielage, et al., 

2008) and receptor proteins (Dani, Huang, Bergan, Dulac, & Zhuang, 2011). They are however still in 

development, only work with fluorescently labeled samples or subcellular structures with specific optical 

properties, and frequently have slow acquisition rates. 

2.2 Electron Microscopy 

Electron microscopy is still the most common choice because it can obtain even higher 

resolutions, has established preparation techniques, and does not require specific labeling using a 

fluorophore. However, electron microscopy does have several drawbacks including the destruction of the 

sample being imaged, only acquiring a single channel of information, the complete dehydration of the 

sample, and the necessity of staining. 

In electron microscopy, a stream of electrons is “fired” at the sample, just as in light microscopy 

a stream of photons is “fired” at the sample. Using electromagnetic lenses, the electrons are properly 

focused, similar to the glass lenses and other optics in a light microscope. The electrons being fired at the 

sample are more likely to interact with atoms that have large nuclei, such as heavy metals. Since these 

are rare in organic systems (significantly less than 0.1% of the total atoms in the body), with the largest 

common element being calcium with a mass of 40 amu, the samples are stained with heavy metals such 

as osmium (190 amu), lead (207 amu), and uranium (238 amu). Different chemical substances and cellular 

structures have different affinities for the various metals, and therefore the selection of the heavy metals 
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used will influence which structures will be stained and visible. Additionally, specific labeling of proteins 

can be done using heavy metals attached to antibodies, with the most popular being immuno-gold 

labeling, or using genetically encoded singlet oxygen generators. 

There are two main different types of electron microscopy: transmission electron microscopy 

(TEM) and scanning electron microscopy (SEM). 

In TEM the electrons are fired through the sample and the electrons which are not deflected by 

or otherwise interact with the sample (called the transmitted electrons) are recorded by using a 

fluorescent screen, photographic film, or specialized CCD camera. The entire sample is recorded at once. 

Larger nuclei deflect more electrons and thus let fewer electrons through to be imaged. The process 

results in acquiring the sum of densities along a particular path through the sample, with the brightest 

spots being the location where there are no large nuclei between the electron source and the detector 

and the darkest spots being the greatest number of large nuclei between the electron source and the 

detector. Thicker samples require electrons with higher energies and velocities to be able to penetrate 

the sample and reach the detector. However, higher energy electron beams cause beam-induced mass 

loss, resulting in a destruction of the sample. Additionally, the thicker the sample, the more loss there is 

due to electron scattering and chromatic aberration. Also, since the detector ‘sees a sum’ across the entire 

sample, thicker samples likely result in lower signal variation over the entire sample. Typical sections are 

50-100 nm thick which is thinner than many organelles, but this is useful for imaging small organelles such 

as mitochondria (Palade, The fine structure of mitochondria, 1952), ribosomes (Palay & Palade, 1955), 

and endoplasmic reticulum (Palade & Porter, 1954). 

In SEM, a much lower intensity beam is used that only penetrates the top layer of the sample, 

typically only a few nanometers deep. The interaction of the electron beam with the atoms in the sample 

produces secondary electrons which are detected. These are electrons generated from the ionization of 

the atoms along the surface of the sample; they are not the same electrons shot at the sample, which 
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would be primary electrons. Additionally, some SEMs are designed to detect backscattered electrons 

(BSEs): primary electrons that are reflected back towards the beam source. The beam is highly focused 

onto a single point on the sample, typically only a few nanometers in diameter. The beam is moved in a 

raster scan to cover the entire sample, recording the number of electrons generated or reflected at each 

spot as it moves. The result is an entire 2D image. As a result, the SEM can have an extremely wide field 

of view but larger fields of view take more time. Typically, the spatial resolution is about ten times less 

than TEM. 

Both of these base techniques generate 2D images only, either a projection of the whole thickness 

of the sample or from just the top few nanometers. However, both of these techniques have been utilized 

in various ways to acquire 3D data volumes. 

The most straight-forward way to extend these is by using them multiple times on consecutive 

slices of the sample. This was first done with TEM and called serial section TEM (ssTEM) with multiple 

slices being taken from the sample and placed on a grid, maintaining their order (Gay & Anderson, 1954; 

Sjöstrand, 1958). This technique was used to complete the very first connectome, that of C. elegans 

(White, Southgate, Thomson, & Brenner, 1986). Even though this method is still used today, it is extremely 

labor intensive, requiring significant time by highly trained experts during each step including preparation, 

section cutting and collecting, imaging, and reconstruction. Since each step requires human interaction, 

there is a large risk of human error causing much of the data to be unusable. 

The development of serial block-face SEM (SBFSEM) alleviated some of the problems with ssTEM. 

When moving the concept from TEM to SEM, the slicing procedure was made automatic and built into the 

microscope imaging chamber itself (Leighton, 1981). This is possible since the entire sample block, without 

being cut into slices, could be placed within the SEM where the top is imaged and then sliced off the top 

of the block. The imaging and slicing is then repeated, generating a series of 2D images that can be stacked 

into a 3D volume. With this technique, expert involvement was no longer required for section cutting and 
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collection and greatly reduced during imaging. However, a problem was discovered: since the sample 

block was being constantly bombarded with electrons with some of them becoming trapped within the 

top layer, the block would build up a significant negative charge. This negative charge would slow down 

other electrons being shot at the surface, quickly reducing the ability to accurately image the surface of 

the block. Due to this problem and because computer hardware was not capable of storing the large 

amount of data that was being generated, the idea was mostly abandoned at the time. 

The concept was revitalized in 2004 by utilizing an environmental SEM (ESEM). Unlike traditional 

SEMs, ESEM does not maintain a complete vacuum in the sample chamber. The low concentration of gas 

produces positively charged ions when the electron beam interacts with it and these positively charged 

ions mitigate the negative charge buildup on the surface of the sample block (Denk & Horstmann, 2004). 

This version of SBFSEM also uses BSE detectors, creating excellent contrast when combined with 

traditional TEM stains, allowing a smoother transition from ssTEM to SBFSEM. The downside of this 

method is that the lack of a complete vacuum in the sample chamber causes scattering of electrons within 

the gas chamber, both of the electron beam and those reflected from the sample, causing a significant 

reduction in signal-to-noise ratio. To overcome this, the electron beam can dwell longer on each point on 

the surface of the sample. This means data acquisition is slower and may produce additional damage to 

the sample. Other solutions for reducing the surface charge problem while maintaining a high vacuum 

have been developed since then, including automated coating of the sample block after each cut with a 

thin conductive metal layer (Titze & Denk, 2013) and special staining techniques (Deerinck, et al., 2010).  

One remaining issue with SBFSEM is that the axial resolution (the distance between individual 

slices of the sample block) is 25-100 nm/slice which is almost always an order of magnitude higher than 

the lateral resolution (the recording size of the electron beam within the plane of the surface of the sample 

block) (Peddie & Collinson, 2014). Many automatic segmentation techniques require the data to be 

isotropic meaning the spacing in each direction is equal (Sommer, Straehle, Kothe, & Hamprecht, 2011). 
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Additionally, some structures, such as ER, are difficult to follow with slices thicker than 20 nm. To 

overcome this problem, focused-ion beam SEM (FIBSEM) was developed. In this method, instead of 

cutting the top layer off the sample block as in SBFSEM, the top layer is removed by ablation with a focused 

beam of gallium ions. Using this method, an axial resolution of 3-15 nm is attainable (Peddie & Collinson, 

2014), providing isotropic datasets. The drawback of this method is that acquisition time is greatly 

increased and the field of view is substantially limited compared to SBFSEM (Wei, et al., 2012; Knott & 

Genoud, 2013; Peddie & Collinson, 2014). Thus, for this project, SBFSEM was utilized to ensure that a large 

field of view could be acquired that included several dendritic trees instead of at most a single tree. 

Electron tomography (ET) is another way to expand the capabilities of electron microscopy. In this 

case it is based on TEM. It does improve the resolution of the acquired data, including allowing for 

isotropic image voles, using a completely different technique from the serial methods described above. 

But in doing so it sacrifices the possible field of view afforded by SBFSEM. To increase its field of view, 

serial sectioning concepts can be applied to it, thus serial-section ET (ssET) can be performed as well. 

However, this becomes extremely labor intensive and infeasible to perform on regions larger than a single 

cell body. Thus, while this would increase the resolution of the data and give isotropic volumes, to achieve 

a wide field of view the SBFSEM technique is used for this project. 
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3 Segmentation 

The acquisition of images is only the first step in getting quantitative information from a sample. 

The images must then be segmented. Segmentation is the process of breaking up images into the sets of 

pixels that represent each of the distinct objects within the image. For example, when looking at an image 

of a dense region of neuronal dendrites, unmyelinated axons, and glial cells, called neuropil, we may want 

to segment each of the neurons in the image and the various subcellular organelles. Once the pixels are 

broken into these groups, metrics for each group can be calculated, such as the percent of the neuron 

that is filled with mitochondria, the shape of nuclei, or the position of ER relative to the branches within 

the dendritic tree. 

This chapter begins with a look at the historic evolution of segmentation which progressed from 

creating physical models, to manual tracing on a computer, to the modern-day usage of crowd-sourcing 

to create large-scale models. Then it moves on to the general process of performing automatic 

segmentation on image stacks. Finally, it examines the details of the assisted segmentation algorithm 

Livewire and the automatic segmentation algorithms CHM-LDNN and GLIA used in this project. A custom 

Livewire implementation was created for this project while CHM-LDNN was completely rewritten to 

improve its accuracy and efficiency. Also included in this section are the various tools created for the 

project to create a pipeline so that data can more readily be taken from microscope to practical and 

quantitative models.  

3.1 Introduction 

The technological advances in electron microscopy have led to more automated systems with 

increases in resolution, resulting in very large neuronal tissue image volumes at the level of ultrastructural, 

and sometimes molecular, resolution with decreasing amounts of work by skilled professionals. This has 
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resulted in the exponential growth in the acquisition of image data (Peddie & Collinson, 2014). While this 

has provided the community with vast quantities of raw data this does not necessarily equate to readily 

usable data. As Stephen Senft put it “the bottleneck to reconstruction from each epoch has been 

processing speed, data access and, most importantly, processing intelligence” (Senft, 2011). While 

technological advances in computer hardware have increased at a near-exponential rate, so that 

processing speed and data access have kept up with the acquisition rate of images, the processing 

intelligence, which he mentions as the most important, has not increased at the necessary rate. 

Typically, one prefers quantitative data which gives measurable values, numbers that can be 

gathered in a predictable manner and whose statistical significance can be shown, as opposed to 

qualitative data. Typically, the goal of microscopy is to gain an understanding of the objects within the 

view, the size and shape of each of these objects, and their relative positioning to other objects. A 

straightforward method to accomplish this is stereology (Gundersen, et al., 1988; Vanhecke, Studer, & 

Ochs, 2007; Rigoglio, et al., 2012). For example, when a set of points is chosen from the dataset and each 

point is classified as a particular object. As long as there is not a systematic bias in choosing the points and 

with a large enough sample of points the results can give fairly accurate results for total area or volume 

that each object occupies and potentially some spatial relationship between objects. Other forms of 

stereology involve measuring the area of objects on several individual planes and then computing a 

volume from the combinations of the areas, or similarly measuring the outline of objects on planes and 

getting the overall surface area of the object. 

A bit more advanced method is image segmentation. The entire image is segmented (i.e. divided 

into sets of pixels) and every point is classified as part of an object or not. Many of the stereology 

techniques apply to the analysis of the objects after they are segmented, however in stereology only a 

subset of the points are processed while the goal in segmentation is to classify every point (Zhang Y.-J. , 
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2006). Segmentation is thus even more labor intensive than stereology, which is labor intensive in itself 

to get usable results. 

Historically, the raw image data was manually processed with extremely labor-intensive methods. 

Until the arrival of modern computers physical models would be constructed from the raw images that 

could then be studied by physically manipulating them. Several methods of converting serial micrographs 

into 3D models were used. One of the earliest methods was tracing structures onto transparent 

cellophane sheets and gluing them together (Bang & Bang, 1957; Sjöstrand, Ultrastructure of retinal rod 

synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections, 

1958). Later researchers projected the images, traced the structures, cut them out, and glued them 

together into stacks using polystyrene (Pedlar & Tilly, 1966), white cardboard (Roberto, García, & 

Wettstein, 1973), or graph paper (Hoffmann & Avers, 1973). Some groups even created models out of 

string wrapped around the perimeter of the structures (Braverman & Ken-Yen, 1983). While these models 

were frequently easier to deal with than a series of 2D images, they were also frequently large and 

required additions to prevent collapsing. Additionally, it was difficult to gather quantitative data from 

these models and the time required to create them limited the number of structures that could be 

analyzed. 

As computers became more capable, more ambitious imaging projects began using the emerging 

technologies to create 3D models of structures within EM data (Levinthal & Ware, 1972; Macagno, 

Levinthal, & Sobel, 1979). Since early computer hardware was quite limited the system could not handle 

displaying the raw image data itself. Instead the data had to be traced using special digitizing pads. These 

systems provided the ability to calculate basic morphological parameters (Cowan & Wann, 1973; Fox, 

Rafols, & Cowan, 1975; Moens & Moens, 1981; Prothero & Prothero, 1982) and 3D rendering (Willey, 

Schultz, & Gott, 1973; Stevens & White, 1979; Macagno, Levinthal, & Sobel, 1979; Moens & Moens, 1981; 

Braverman & Braverman, 1986). There were several complications with these systems however, including 
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the fact that some systems required multiple tracings, once to trace the raw images and another to trace 

using the digitizing pad (Braverman & Braverman, 1986) and that in none of the systems was the final 

digitized output ever shown on top of the image data and thus mistakes could easily be missed. Moreover, 

errors could be introduced by not properly aligning images. This was addressed by some groups by either 

allowing a researcher to view multiple images at the same time with special optics (Levinthal & Ware, 

1972) or played as a filmstrip (Harris & Stevens, 1988). While these methods were used to complete 

reconstructions for the first connectome, that of the nematode C. elegans, the process took several years 

and the nervous system contains only 302 neurons which are essentially invariant between individuals 

(White, Southgate, Thomson, & Brenner, 1986). These methods would clearly not scale to the 70 million 

neurons in the mouse brain (Herculano-Houzel, Mota, & Lent, 2006) or the 86 billion in the human brain 

(Azevedo, et al., 2009), both of which vary greatly between individuals. 

As computer hardware progressively improved over time, the software for segmentation of EM 

data also improved, adding new features for reconstruction of objects and their visualization (Young, 

Royer, Groves, & Kinnamon, 1987; Allen & Levinthal, 1990). Two of the early available packages were 

CARTOS II (Allen & Levinthal, 1990) and the SYNU suite (Hessler, et al., 1992). These allowed the creation 

and display of multiple 3D meshes from segmentations and enabled creation of movies allowing for 

improved interpretation of the 3D models by viewing from multiple angles. Shortly afterwards, in 1994, 

the IMOD package was released which contains several programs for working with reconstruction of 3D 

models from many three-dimensional imaging sources including a wide variety of EM sources such as TEM 

and SSSEM (Kremer, Mastronarde, & McIntosh, 1996). Due to its high versatility, numerous powerful 

features, and continual updates it has remained in frequent use to this day (Medeiros, et al., 2018; Pichat, 

Iglesias, Yousry, Ourselin, & Modat, 2018; Kim, et al., 2018). IMOD allows users to “trace” or draw contours 

around regions of interest using various input devices, segmenting the regions. These contours can be 

“meshed” or joined across several images in a stack of related images to form 3D meshes of the 
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segmented objects. Each of these objects can be displayed individually or in a view with other objects, 

allowing them to be visually analyzed individually or in relationship to other objects. Additionally, it 

supports quantification of some morphological properties of the 3D objects. 

Even though IMOD has fairly widespread use, several other software packages have been 

developed to fill various niches or improve specific features for specific purposes or workflows, including 

Xvoxtrace (Perkins, et al., 1997), UCSF Chimera (Pettersen, et al., 2004), XMIPP (Sorzano, et al., 2004), 

Reconstruct (Fiala, 2005), Bsoft (Heymann & Belnap, 2007), EMAN2 (Tang, et al., 2007), Viking (Anderson, 

et al., 2010), KNOSSOS (Briggman, Helmstaedter, & Denk, 2011), TrakEM2 plugin for ImageJ (Cardona A. , 

et al., 2012), NeuroMorph plugin for Blender (Jorstad, et al., 2015), and Microscopy Image Browser using 

MATLAB (Belevich, Joensuu, Kumar, Vihinen, & Jokitalo, 2016). 

All of these options, including IMOD, focus on manual or assisted segmentation. Manual 

segmentation is when a human traces around each region of interest. As time progresses and 

computational power is more readily available, the computer programs themselves have begun providing 

real-time feedback to assist in the segmentation process being performed by the human, reducing the 

amount of human time required to be able to process the same amount of data. Two examples of assisted 

segmentation techniques are Livewire (Mortensen, Morse, & Barrett, 1992) and Interactive Merging 

(Jones, Liu, Ellisman, & Tasdizen, 2013; Liu, Jones, Seyedhosseini, & Tasdizen, 2014). However, even with 

modern programs, the amount of microscopy data being generated has far outpaced the relatively minor 

increase in speed at which humans can process the data, even with the help of computers. This has 

resulted in several possibly important datasets just being abandoned or only a small subset of datasets 

being used in studies. 

During this same time several automated techniques for analyzing images have been developed 

as well. However, they have not been widely adopted for a variety of reasons. First, until recently, they 

have suffered from not being nearly as accurate as humans are. This means that all automatic results need 
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to be fully proofread by humans and corrected for mistakes, reducing the overall amount of trained 

professional time but not eliminating it or even making it constant relative to the amount of data to 

process. Neuropil EM data is especially difficult for automatic segmentation because of the complex 

ultrastructural cellular textures and the considerable texture variations in shape and physical topologies 

within and across image sections (Jain, et al., 2007; Lucchi, Smith, Achanta, Lepetit, & Fua, 2010). The 

second major issue is that the automatic segmentation solutions developed are not readily accessible or 

usable by the standard lab or the non-computer scientist. They usually require specialized hardware with 

large amounts of memory and are not straightforward to setup with little in the way of documentation 

for the common scientist. 

Due to these issues, most neuroscientists utilize the manual/assisted segmentation route when 

processing their data. This works for small studies but prevents any sort of large-scale reconstructions 

without significant investments in manpower and time. Even when using common short-cut techniques 

such as interpolation of contours between images and making assumptions that organelles are spheres 

or cylinders, manual/assisted segmentation remains incredibly laborious (Noske, Costin, Morgan, & 

Marsh, 2008). Even segmentation of the cell membranes in small regions of a the visual system of the 

Drosophila melanogaster fruit fly were reported to take several months to years in terms of continuous 

labor (Chklovskii, Vitaladevuni, & Scheffer, 2010; Plaza, Scheffer, & Saunders, 2012). Briggman and Denk 

estimate that a single mouse cortical column would take 10000 people working for one year to trace all 

of the neural connections (2006). It is estimated that manual/assisted reconstruction of all of the 

mitochondria within a single mouse brain in one year would take every citizen in the city of Chicago 

working nonstop in parallel while the task for a human brain would require every person on the Asia and 

Africa continents (Perez, 2014; Perez, et al., 2014). 



 

55 

3.1.1 Distributed Manual Segmentation 

While these estimates would imply that any effort to perform such a reconstruction without most 

of the work being automated would never succeed, there have been attempts to distribute the manual 

segmentation work among people for smaller regions instead of whole brains. One of the first major 

efforts was by Kevin Briggman and Winfried Denk who employed over 200 trained individuals to trace just 

the skeleton of neural processes to establish a wiring diagram of the entire retina (Briggman, 

Helmstaedter, & Denk, 2011), a much simpler task then segmenting organelles or the cellular membranes. 

Large groups of undergraduate students have also been used to perform segmentations of subcellular 

organelles (Perez, et al., 2014).  

Both of these approaches do not scale well as all of the individuals must be trained before their 

work can be trusted without professional review (Perez, et al., 2014). Additionally, these approaches 

typically have the individuals use the same software that the professional tracers utilize and thus there 

are potential setup costs and difficult learning curves since these software packages are typically designed 

for professionals. 

Other groups take more scalable approaches by either employing micro-laborers or by gamifying 

the process, collectively called crowd-sourcing. To use either of these, the training process for the 

individuals must be greatly reduced as any lay-person will be encouraged to help with the process. To 

accomplish this the tasks asked for the individuals to complete must be changed, making them simpler 

and faster, along with the interface being simplified, with a goal of being usable without any sort of 

installation to reduce the startup cost to nothing. Also, instead of having a professional review all of the 

results, the workers are monitored in an automated fashion, by having them complete tasks already 

completed by other individuals, perhaps even professionally completed tasks periodically. 

The most famous of these approaches for neuroscience is with Sebastian Seugn’s EyeWire 

launched in December 2012 (Kim, et al., 2014). This simplifies the task to deciding if two neighboring 
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regions should actually be merged into a single region or not. The initial regions are generated using 

automatic segmentation that is designed to greatly over-segment the data, i.e. it breaks everything into 

pieces that are too small, attempting to guarantee that no region contains multiple neurons by allowing 

each neuron to be in multiple regions. The entire process is run as a game with rankings, levels, and virtual 

rewards (Tinati, Luczak-Roesch, Simperl, & Hall, 2017). In the first 2 years they claimed that 100 neurons 

had been completed and after 5 years 3,000 neurons had been completed (excluding their axons) 

(Sterling, 2017). This amount of data resulted in several scientific discoveries about the wiring in the retina 

(Kim, et al., 2014; Greene, Kim, & Seung, 2016). Moritz Helmstaedter’s Brainflight is a similar system that 

uses a mobile phone app where users also connect neighboring oversegmented regions in a highly 

graphical game with reward mechanisms to keep users playing (Marx, 2013). 

Besides making a game out of the process, some groups have taken to using the micro-labor 

market. The DP2 platform uses Cytoseg to perform an oversegmenation and then has users, through 

Amazon Turk, decide if two points lie within the same cell or not. Instead of fancy graphics and virtual 

rewards, the workers are instead paid for each task completed (Giuly, Kim, & Ellisman, 2013). Another 

group asked users to pick out the correct spherical objects from an automatic segmentation (Lee, 2013). 

Overall, while there have been advances in using computers to assist and accelerate the process 

of segmentation done still primarily hand-drawn. Even in the most extreme cases, humans are still critical 

to the process, but systems are being developed to reduce the amount of training an individual needs to 

help segment the data so that lay people can contribute to the process. However, this is ultimately not 

scalable to entire brains of even mice, and especially not for humans, as it would require so much 

manpower and better, more automated, solutions are required. 
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3.1.2 Automatic Segmentation 

Better algorithms need to be implemented in order to do truly automatic segmentation. Current 

solutions are beginning to reach the accuracy level of humans, i.e. if multiple humans segment the same 

data, the error between them is about the same amount of error generated by the cutting-edge automatic 

segmentation algorithms. Most of these algorithms utilize supervised machine learning. Supervised 

machine learning means that the algorithm “learns” based on a small training dataset that has been 

manually segmented by a human and then applies that knowledge to the rest of the dataset. The 

algorithm goes through two phases: training which is when the algorithm is learning what to segment and 

testing which is when the algorithm is applying what it has learned to novel data. 

Machine learning systems utilize sets of feature vectors and labels. During the training phase, 

both a set of feature vectors and labels are provided to the algorithm and it learns to associate each of 

the feature vectors with the corresponding label. During the testing phase, only feature vectors are 

provided to the algorithm which then produces the predicted set of labels based on what it had learned. 

This phase is also called classification as it aims to classify each of these new feature vectors based on its 

previous experience. When performing image segmentation, each feature vector represents one pixel in 

the image and is composed of many values that represent the basic “features” of that pixel. A feature is a 

numerical value that represents some statistic or information about the pixel; for example, how edge-like 

the pixel is or the size of the largest similar-intensity region containing the pixel. The features must be 

chosen carefully so that they are informative about whether a pixel is part of a particular type of object. 

The labels are then the type of object being segmented or possibly a binary answer of whether the pixel 

is part of the learned object or not. 

One limitation of such an algorithm is that it will only be able to recognize what it has been taught 

and will not be able to easily extrapolate this knowledge to other situations. This means that fluctuations 

in the data caused by variations in the staining procedure or image acquisition properties cause enough 
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differences so that the algorithm can no longer accurately apply what it learned to the new dataset. Every 

organelle and every dataset will need its own manually segmented training dataset and run through the 

training process before it can be used to test the remainder of the dataset. This means that it cannot be 

used on images that are coming directly from a microscope since the manual segmentation of the training 

dataset is required. 

However, it is feasible that as more and more training sets are created a specific training set will 

not need to be manually created for every new image set. Instead the algorithm would re-use the training 

data, possibly combined from multiple previous datasets, to form a new training set automatically. This 

transfer of knowledge would begin to make the algorithm an unsupervised machine learning algorithm, 

which works without any manual direction from a human supervisor. 

The primary drawback to the modern algorithms, besides the need to manually create training 

datasets, is the computational resources that they require in terms of both memory and time. Most 

currently require so much memory that they cannot be run on high-end computer hardware available to 

general labs but instead require supercomputers. The amount of time required would make it impossible 

to perform in real-time at the speed microscopes are able to generate data. Finally, most of these 

algorithms are developed in academic settings and are not created for use by the average researcher in 

the average lab. 

There have been concerted efforts to improve the accuracy and usability of automatic 

segmentation techniques for neuroscience. This includes the IEEE International Symposium on Biomedical 

Imaging (ISBI) 2012 and 2013 competitions to automatically segment 2D and 3D EM neuropil data 

(Arganda-Carreras, Seung, Cardona, & Schindelin, 2012; Arganda-Carreras, Seung, Vishwanathan, & 

Berger, 2013; Arganda-Carreras, et al., 2015) and the SLASH (Scalable system for Large data Analysis and 

Segmentation utilizing a Hybrid approach) group. The SLASH group is a collaboration between the National 

Center for Microscopy and Imaging Research (NCMIR) at UCSD and the Scientific Computing and Imaging 
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Institute (SCI) at the University of Utah to develop automatic segmentation methods that are scalable to 

modern datasets. 

This project used Livewire assisted segmentation in IMOD to manually create the small training 

datasets and CHM-LDNN and GLIA for large-scale automatic segmentation of the larger datasets. These 

programs were either created specifically or modified for the project along with several additional utilities 

to expediate the automatic processing. 

3.2 Livewire: Assisted Segmentation 

Livewire is an assisted segmentation method that lessens the time required to manually segment 

objects. It does this by predicting portions of the outlines and gives the user real-time feedback of the 

predictions so the user can immediately adjust for mistakes that it would make. There are several 

implementations of this in various image processing tools, however they all have serious drawbacks when 

segmenting EM images. Three open source versions are the “Intelligent Scissors” tool in GIMP (The GIMP 

Help Team, 2015), the “Ivussnakes” plugin for ImageJ (Baggio, 2006), and the “Live-Wire” function in the 

Insight Toolkit (ITK) (Tustison, Yushkevich, & Gee, 2008). The GIMP tool does not give real-time feedback 

but does allow adjustment of the results afterwards. The ImageJ plugin does provide real-time feedback 

but limits the user to short distances so this negates its benefits. The ITK function was never finished and 

no GUI for it exists publicly. 

The Livewire algorithm is part of a class of algorithms called “Active Contours” and was originally 

developed in 1987 under various names including Intelligent Scissors (Mortensen & Barrett, 1995), 

Interactive Outlining (Daneels, et al., 1993), Live-Wire (Mortensen, Morse, & Barrett, 1992), and Snakes 

(Kass, Witkin, & Terzopoulos, 1987) each with various changes and adaptations to the concept. Prior to 

that time similar algorithms existed, however due to hardware limitations they were not ‘live’ and could 

not provide real-time feedback. The implementation of real-time feedback caused computational issues 
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even into 2005 (Salah, Orman, & Bartz), but increases in hardware speed and advancements in the 

implementation make real-time feedback more achievable. The Livewire algorithm is composed of two 

major steps: filtering the image and then using a single-source shortest-path algorithm to connect two 

points. The filtering of the image reduces noise along with determining the weights that will be used to 

find the shortest path. Low values or black pixels representing the easiest pixels to “traverse” and high 

values or white representing the pixels that are hardest to “traverse”. Choosing the appropriate set of 

filters is crucial to getting usable results. 

For this project, the Livewire method was adapted to work on very large, very noisy, grayscale EM 

images. It was implemented as a plugin to the IMOD segmentation software. The remainder of this section 

describes this specific implementation of Livewire as created for this project. All parts of it were chosen 

to meet the demanding conditions of working with EM images. As exposed in IMOD, this new Livewire 

tool has three tracing modes: center of a light region, center of a dark region, and boundaries between 

light and dark regions. The difference between these modes is simply in the filtering performed on the 

image. For tracing the center of a light or dark region, the image is first binned, reducing square sets of 

pixels to a single pixel, using median, mean, or Gaussian blurring. The default is to bin every 2x2 set of 

pixels with a median filter, but larger or noisier images may require larger bin sizes or other filters. The 

next step is to “accentuate” the image by applying a sigmoid logistic function with a half-maximum of 

middle gray (halfway between black and white), a steepness of 0.5, a minimum of black, and a maximum 

of white to each pixel. For an unsigned 8-bit grayscale image this equation becomes: 

𝐹(𝑥, 𝑦) = ⌊
255

1 + exp(32/5 − 𝐼𝑚(𝑥, 𝑦) 20⁄ )
⌋ 

where 𝐼𝑚(𝑥, 𝑦) is the value of the pixel at position 𝑥, 𝑦 in the binned input image. This function causes 

any pixel that is closer to white than black to become whiter and any pixel that is closer to black than 

white to become blacker with values closer to middle gray being changed the most. The only difference 
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between the modes for tracing in the middle of light and dark regions is whether the filtered image data 

is inverted or not (converting white to black and black to white linearly). 

When the mode is set to the boundary between light and dark regions an edge-detection filter is 

applied instead of the accentuation filter. The IMOD version uses a modified Sobel-5 filter (Sobel & 

Feldman, 1968; Kekre & Gharge, 2010); for an unsigned 8-bit grayscale image it is defined as: 

𝑆5 =

[
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𝑇 = 170885700 

𝐺𝑥 = 𝐼𝑚 ∗ 𝑆5 𝐺𝑦 = 𝐼𝑚 ∗ 𝑆5
𝑇 

𝐺𝑚(𝑥, 𝑦) = 𝐺𝑥(𝑥, 𝑦)2 + 𝐺𝑦(𝑥, 𝑦)2 

𝐹(𝑥, 𝑦) = 255 − ⌊
255

1 + exp(25 4⁄ − 50 𝐺𝑚(𝑥, 𝑦) 𝑇⁄ )
⌋ 

where 𝐼𝑚 is the binned input image, 𝑆5 is the Sobel-5 kernel, 𝑇 is the maximum value that 𝐺𝑚(𝑥, 𝑦) can 

have, 𝐺𝑥  and 𝐺𝑦 are the horizontal and vertical gradients, 𝐺𝑚 is the unscaled, squared, magnitude of the 

gradient (squared L2-norm), and 𝐹 is the final filtered image, which contains the inverted, sigmoid-

accentuated, magnitude of the gradient. The ∗ symbol is the convolution operator. The gradients are 

inverted since normally an edge filter sets the most edge-like pixels to white and the least edge-like pixels 

to black. However, we want the most edge-like pixels to be black so they are easier to “traverse” with the 

shortest-path algorithm.  

Internally the program supports Sobel-3, Sobel-5, Scharr-3 (Scharr, 2000), and Canny edge-

detection filters (Canny, 1986), however Sobel-5 empirically gives the best results, so it is the only option 

presented to the user in IMOD to simplify the user interface. 
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Additionally, the program supports color images and other types of grayscale images. These are 

converted to unsigned 8-bit grayscale images internally by using the luminosity or other property of the 

of color pixels or shrinking the range of other grayscale image types. 

Once the filtering is complete the next step is to find the shortest-path between two points, in 

terms of weights, within the image. Dijkstra’s algorithm (Dijkstra, 1959) is the best option for this since, 

when implemented with a min-priority queue, it is the fastest known single-source shortest-path 

algorithm for arbitrary directed graphs with unbounded non-negative weights (Knuth, 1977). The filtered 

image can be thought of as a directed graph with each pixel in the image representing a vertex in the 

graph and each of those vertices having a directed edge to each of the neighboring pixels. The weights of 

the edges are simply given as the value of the pixel at the head of the edge, or √2 times the pixel value 

for diagonal edges. Since every pixel is the source and destination of 8 edges (except pixels along the edge 

of the image) and the weights can be easily obtained from the destination pixel value, the edges 

themselves do not need to be explicitly created. 

Dijkstra’s algorithm is a greedy algorithm that works iteratively, where every iteration determines 

the shortest path to another vertex (pixel) in the graph. The algorithm keeps 3 sets of vertices: processed, 

boundary, and unvisited. Initially the starting vertex is placed in the boundary set and all other vertices 

placed in the unvisited set. The processed set is initially empty. Also, every vertex is given a distance value 

which is initially infinite for all vertices except the starting vertex which is given a distance of 0. Finally, 

every vertex is also given a path direction that ‘points’ to the next vertex that is along the shortest-path 

to the starting vertex. For vertices in the processed set this value is valid. For vertices in the boundary set 

this value is may still be improved in further iterations. For vertices in the unvisited set this value is 

undefined. For the initial starting vertex, the value is special and there is no directional pointer as there 
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are no previous points to traverse for the shortest path. During each iteration the following steps are 

taken: 

1. Remove the vertex with the lowest distance value from the boundary set and add it to the 

processed set. 

2. For each vertex connected to the vertex selected in #1: 

a) If the neighboring vertex is already processed, skip it. 

b) Otherwise calculate the distance 𝑑 of going to the neighboring vertex through the 

selected vertex as the distance value of the selected vertex plus the weight of the edge 

to the neighboring vertex. 

i. If the neighboring vertex is part of the boundary set and 𝑑 is less than the 

neighboring vertex’s current distance value than the neighboring vertex’s 

distance is set to 𝑑 and the direction is updated to point to the selected vertex. 

ii. Otherwise, the neighboring vertex is part of the unvisited set and its distance 

value is set to 𝑑 and its direction is set to point to the selected vertex along with 

being moved from the unvisited set to the boundary set. 

3. If the boundary set is not empty, repeat from step #1. 

Several iterations of this algorithm are diagrammed in Figure 3.1. 

As long as the boundary set is implemented as a min-priority heap queue this is highly efficient, 

where priority is given as the distance value of a vertex. A simple binary min-priority queue allows for the 

minimum value to be removed and new values to be added to it in 𝑂(log(𝑛)) time where 𝑛 is the current 

size of the boundary set. Taking advantage of the regular grid of vertices, specialized operations can be 

added to allow updating the distance values of vertices already in the boundary set in 𝑂(log(𝑛)) time as 

well instead of the typical 𝑂(𝑛 log(𝑛)) for binary heaps, thus greatly improving the time for step 2.b.i. in 

the algorithm above. Other forms of min-priority queues can be used, such as a Fibonacci queue (Fredman 
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& Tarjan, 1987) and may provide slightly better speed at the expense of more a complex algorithm and 

the possibility of not being able to take advantage of the regular grid of vertices which greatly increases 

the overall speed of the algorithm. 

Various improvements were made to the Livewire program as part of this project to adapt it for 

typical EM datasets. One of the primary improvements is in the filters used, which are designed to deal 

with EM data. Additionally, several improvements were made so that very large datasets can be handled 

efficiently and in near real-time processing. For example, even while the algorithm is still running, the live 

wire is shown for any processed or boundary pixel back to the selected starting vertex as shown in the 

35 iterations 45 iterations with backtracking wire 

Figure 3.1. Livewire algorithm example at 1, 2, 3, 10, 35, and 45 iterations. Grayscale background is image data, 

with black having a value of 0 and whiter pixels have increasingly positive values. Red squares are part of the 

processed set, blue squares are part of the boundary set, and uncolored squares are part of the unvisited set. The 

numbers within each square indicate its distance to the starting vertex. The little white arrows on the edges of each 

box indicate the direction to travel back to get to the starting vertex. In the last image, the green squares indicate 

the backtracking wire from one of the computed pixels to the starting vertex following the arrows. 

1 iteration 

10 iterations 

2 iterations 3 iterations 
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last panel of Figure 3.1. Since the algorithm generally works in expanding circles from the starting vertex, 

this means that pixels near the originally selected pixel in the image will be ready immediately and since 

the algorithm is quite efficient, even pixels further away are ready by the time the user can move the 

mouse further out, as shown in Figure 3.2. The initial filtering of the image and thus calculating the weights 

for each vertex takes the majority of the processing time. To improve responsiveness the weights are 

cached and reused between different selected pixels since they do not depend on which pixel is selected 

but only on the image data itself. However, with large images this could potentially be a prohibitively large 

Initial point 

1 frame 

2 frames 

3 frames 

4 frames 

5 frames 

6 frames 

7 frames 

Figure 3.2. Livewire calculation speed. The red circle is the initial point clicked by the user. Each colored overlay 

region represents an additional video frame occurring where each frame is 1/60 of a second. Background is the 

image being processed and is 1001x1199 pixels. At this rate, in about 0.15 seconds all pixels on a standard monitor 

could be calculated and in less than half of a second an entire high-end 4K monitor could be calculated. This timing 

was performed on an Intel i7-4790 3.6 GHz processor (medium-high end processor). 
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amount of memory to store. Thus, to save on memory and processing time, for this implementation of 

Livewire the image is blocked into chunks and only chunks within a certain distance of the starting pixel is 

calculated. 

One additional improvement implemented for this project within the IMOD version is that upon 

completion of a complete contour it is smoothed applying a few iterations of removing points from the 

contour where three consecutive points form a triangle below an area of 1 px2 and moving points 25% 

closer to the halfway point between the point before and after it but only if the point is more than 0.2 

pixels away from the halfway point. The contours are re-scaled so that the covered area is kept the same. 

Overall, even on underpowered machines, the algorithm delivers nearly real-time processing over 

regions as large as 4096x4096 within images that are massive (tested with images up to 600 MP). The 

results of Livewire are not perfect, but since there is real-time feedback to the user, any mistakes it makes 

can be corrected before they are committed. This method has anecdotally been shown to improve manual 

segmentation speeds by 5-10x by various tracers from novices to experts for the segmentation of a wide 

range of objects including mitochondria, cell membranes, lysosomes, nuclei, and nucleoli. While this does 

still require user interaction, the time savings are quite sizable. 

3.3 CHM-LDNN: Automatic Segmentation of Subcellular Structures 

The Cascaded Hierarchical Model (CHM) was an algorithm originally developed at the Scientific 

Computing and Imaging Institute at the University of Utah by Seyedhosseini et al (2013; 2015) which uses 

information from a set of image processing filters to label the pixels within an image. It is an automatic 

image segmentation algorithm that uses supervised machine learning. Since it is supervised it requires a 

small subset of the dataset to be manually segmented to learn how the rest of the dataset should be 

automatically segmented and has two primary phases: training and testing. In some situations, the 

algorithm has been shown to be as accurate as humans in segmenting EM data. It performs best on the 



 

67 

subcellular organelles such as mitochondria, lysosomes, nuclei, and nucleoli (Perez, et al., 2014). It is 

however very memory and computationally intensive and, as this project showed, it does not perform 

well on segmenting subcellular components such as endoplasmic reticulum (ER) and the cellular 

membrane itself. 

3.3.1 CHM 

CHM is hierarchical since it runs the classification process on several resolutions of the same 

image (termed the bottom-up step) and then a classification pass that incorporates the information from 

all resolutions (termed the top-down step). This allows the segmentation algorithm to detect large and 

small features alike that together indicate that a region should be classified as a particular subcellular 

component or not. The model is cascaded since this process can be repeated for greater refinement. 

However, empirically it has been shown that only a single bottom-up and top-down step is needed. In 

fact, the most recent publications refer to CHM as Contextual Hierarchical Model. The contextual part is 

that every pixel is classified by using a large, multi-resolution, contextual area. 

The hierarchy is divided into levels with level 0 being the original image, level 1 being the image 

downsampled by half in each dimension (so a quarter of the size), and so forth. When the model is 

described as having 4 levels this indicates that there are actually levels 0 through 4 for a total of 5 different 

resolutions used in the bottom-up step. The cascaded nature of the models is described in terms of stages. 

A stage includes a top-down step and bottom-up step, except for the first stage which cannot include a 

top-down step and the last stage which does not have a bottom-up step. Thus, in the common case with 

2 stages there is a single bottom-up step and top-down step. 

There are 5 major components of CHM: downsampling, max pooling, upsampling, feature 

extraction, and classification. The first three components are needed to deal with the hierarchical and 
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contextual nature of CHM while the final two are necessary components of any machine learning systems. 

The organization of these components for an example of 2 stages and 2 levels is shown in Figure 3.3. 

The downsampling component is for shrinking the raw image data by half in each dimension when 

transitioning to a higher level. It uses bicubic interpolation (Keys, 1981) with anti-aliasing7 after 

symmetrically padding the image to a multiple of 2 in each dimension. Each output pixel is the weighted 

average of pixels in a 4 × 4 neighborhood8. The max pooling component shrinks an image by half in each 

dimension by taking the max value of each 2 × 2 region of the image. Max pooling is used for 

                                                            
7 Anti-aliasing is a technique used to reduce the distortion artifacts when reducing the resolution of an image. 
8 The 2013 CHM paper says a mean 2 × 2 filter is used to downsample but that is not correct according to the actual 
code released. 

Input Images 

Downsampling 

Downsampling 

Probability Outputs 

Classification 

Classification 

Classification 

Feature 
Extraction 

Max Pooling 

Feature 
Extraction 

Classification 

Feature 
Extraction 

Max Pooling 

Upsampling 
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Figure 3.3. Contextual Hierarchical Model Illustration. Shows 2 stages (𝑆 = 2, 

width) and 2 levels (𝐿 = 2, height) but could be extended arbitrarily in either 

direction. The black circles indicate the combining of all the feature sources into 

a single set of features to feed into the classifiers. 

Max Pooling 
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downsampling the labels, which are binary images, and thus causes every output pixel to be true if any of 

the input pixels in the 2 × 2 region were true. Upsampling is the opposite of downsampling and increases 

the size of an image by two in each dimension using nearest neighbor interpolation, essentially replicating 

each pixel 4 times in a 2 × 2 pattern. This is used when transitioning to a new stage, and going back to 

level 0, since the higher level contextual information is smaller than the full-sized image. 

Feature extraction uses a series of filters to generate the feature vector for each pixel based on 

the value of the pixel and its neighborhood. The classifier takes the feature vectors and classifies the pixels 

as being the object of interest or not. Before discussing these two parts in detail, we will look at how they 

fit into the overall CHM process. 

In a very basic setup, if there was only a single stage, then the original image (or level 0 image) 

would be run through feature extraction and then the classifier, resulting in every pixel being classified. 

However, this would not utilize multiple resolutions of data and additional work is required to take this 

hierarchal information into account. We need at least 1 level and 2 stages to incorporate that information. 

In that scenario, after we have done feature extraction and classification on the level 0 image we 

downsample the image to create the level 1 image along with downsampling the results of the 

classification process on the level 0 image. Feature extraction is run on the new level 1 image. The 

downsampled classification results are used as features as well. All of these features (the features from 

using feature extraction on the level 1 image and the downsampled level 0 classification results) are used 

by the classifier to generate the level 1 classification results. This concludes the bottom-up step. The top-

down step then uses the original resolution data again. It gathers features from feature extraction on the 

level 0 image, the level 0 classification results, and the up-sampled level 1 classification results and uses 

them all for classification. For a 2 level and 2 stage model see the diagram in Figure 3.3. 

The model can use any set of filters for feature extraction and any classifier that is high-accuracy, 

fast, and robust against overfitting since it is used numerous times and on large datasets. The group at 
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the University of Utah considered many pre-existing classifiers such as artificial neural networks, support 

vector machines, and random forests however they decided to introduce a new classifier that worked 

better with CHM which they called Logistic Disjunctive Normal Network (LDNN). The filters used for 

feature extraction in the original implementation were: 

• Haar-like features implemented using Viola and Jones' (2001) 2-rectangle features (x and y 

directional features) of size 16. This detects horizontal or vertical bar-like features in the image, 

resulting in 2 features being extracted per pixel. 

• Histogram of oriented gradients (HOG) from Dalal and Triggs (2005) with 9 unsigned orientation 

histogram bins per cell, a cell size of 8 × 8 pixels, and 2 × 2 cells per block. This detects edges in 

multiple directions normalized to their local areas resulting in 36 features being extracted. 

• Edge features from the magnitude of the gradient using the first derivative of the Gaussian (Jain, 

Kasturi, & Schunck, 1995, pp. 168-169), grouping all edge directions into a single feature by using 

only the magnitude of the edge. The result is shifted to all possible places in a 7 × 7 square 

producing a total of 49 features9.  

• Gabor features using the work by Fogel and Sagi (1989) detect textures of varying orientation, 

frequency, and scale which mimic how some parts of the visual system work. The following 

parameters are used: 

o 𝜎 of 2, 3, 4, 5, and 6 which determines the spread of the filter 

o 𝜃 of 
𝜋

6
, 
𝜋
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, 
𝜋
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, 
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, 
5𝜋

6
, 𝜋, 

7𝜋

6
, 
4𝜋

3
, 
3𝜋

2
, 
5𝜋

3
, 
11𝜋

6
, and 2𝜋 which dictates the orientation of the filter 

o 𝜆 =
2𝜋

𝑊
 of 2𝜎, 2.25𝜎, and 2.5𝜎 which is the underlying sinusoidal carrier’s wavelength 

o 𝜓 of 0 and 𝛾 of 1 which creates a filter with the base phase and a square aspect ratio 

                                                            
9 The 2013 CHM paper states that a Canny edge detector is used but that is not correct according to the actual code 
released. 
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resulting in 180 extracted features. The magnitude of the complex function is used, or this can be 

calculated as the L2-norm of the real functions with 𝜓 = 0 and 𝜋 2⁄ . While this was the intent of 

the paper and code, due to a bug in the code the result of each of the fundamental filters are 

clipped to 0 and 1 in only 256 steps, meaning that the result of the feature is almost always 0, 1, 

or √2 after the L2-norm is performed. 

• Scale-Invariant Feature Transform (SIFT) Flow features using the work by Liu et al (2011). These 

are based on densely sampled SIFT features by Lowe (1999; 2004). They are designed to support 

robust matching of objects while preserving spatial discontinuities. The parameters used are a cell 

size of 16 × 16 pixels, 4 × 4 cells per block, and 8 orientation bins resulting in a total of 128 

features. 

Additionally, the input image is sampled with a 21 × 21 sparse stencil for 81 features. This means that 

the raw image data of the pixel itself and all of the pixels up to 10 px away in each of the 8 directions: left, 

top-left, top, top-right, right, bottom-right, bottom, and bottom -left are included as separate features, 

Additionally, the max-pooled classification results are sampled with a 15 × 15 sparse stencil (up to 7 px 

away in each of the directions) for 57 features for every set of classification results used. Overall, this 

means that at least 476 features are extracted from the image along with 57 features for every set of 

prior classification results and fed to the classifier. 

3.3.2 LDNN 

LDNN is the classifier of choice for CHM and was designed explicitly for it. The goal of any classifier 

is to take a feature vector for a pixel and decide how likely it is that the pixel is part of a particular object 

or not. LDNN approaches this problem by treating the feature vectors as a point in a high-dimensional 

space (with 476 features extracted it is a point in 476-dimensional space). With the appropriate set of 

features, these points form clusters, forming one or more clusters that represent pixels which are not the 
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object of interest and one or more clusters representing the object of interest. LDNN divides up the high-

dimensional space to differentiate points that represent the object of interest from those that do not. 

The LDNN classifier is similar to a previous classifier called a fuzzy min-max neural network 

(Simpson, 1992). Fuzzy min-max nets construct fuzzy (approximate) hypercubes around groups of points 

in the feature space. Each hypercube boxes up a set of points that either represents the object of interest 

or not. The quality of the classifier depends on the number of hypercubes constructed. The hypercubes 

must be axis-aligned however so in general a very large number of hypercubes are needed to isolate the 

points from each other. Additionally, fuzzy min-max nets are based on prototypes and an ad hoc training 

procedure is required. Instead, LDNN uses convex sets defined as the intersection of arbitrary half-spaces. 

This creates a difference: using arbitrary convex polygons to group items together in 2D space rather than 

axis-aligned rectangles. Polygons isolate the items much more cleanly than rectangles. 

In a perfect system, the classifier would be a Boolean function, i.e. one that only ever produces 

true are false values, which answer the question: “Does the feature vector represent the object?” 

However, we will eventually never be completely sure and will instead produce a value that ranges from 

0.0 if the pixel is definitely not the object and 1.0 is the pixel definitely is the object. 

To create the definition for the LDNN, start with the definition of fuzzy min-max nets: 

𝑓(𝑋) = ⋁(⋀ℎ𝐿𝑖𝑗𝑈𝑖𝑗
(𝑥𝑗)

𝑛

𝑗=1

)

𝑖

 

where 𝑓: 𝐑𝑛 → 𝐁 is the approximate classifier, 𝑋 ∈ 𝐑𝑛 is a feature vector with 𝑛 as the number of features 

and 𝑥𝑗  is the 𝑗th element, and ℎ𝐿𝑈 is the hypercube function defined as: 

ℎ𝐿𝑈(𝑥) = {
1 𝐿 ≤ 𝑥 ≤ 𝑈

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Overall this uses a disjunction of conjunctions which is also known as the disjunctive normal form, 

for which any Boolean function can be written. However, since there is a finite number of hypercubes the 
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classification is still approximate. As a first improvement, we can replace the hypercube function with a 

union of convex sets of half-spaces in 𝐑𝑛: 

ℎ𝑖𝑗(𝑋) = {
1 (∑ 𝑤𝑖𝑗𝑘𝑥𝑘

𝑛

𝑘=1
) + 𝑏𝑖𝑗 ≥ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝑤𝑖𝑗𝑘  are the classifier weights and 𝑏𝑖𝑗 are the classifier biases, collectively forming the only 

parameters of the network. The next step is to make the classifier function 𝑓 differentiable. The 

conjunction ⋀ ℎ𝑖𝑗(𝑋)𝑗  can be replaced by ∏ ℎ𝑖𝑗(𝑋)𝑗  and using De Morgan’s laws the disjunction ⋁ 𝑞𝑖(𝑋)𝑖  

can be replaced by 1 − ∏ (1 − 𝑞𝑖(𝑋))𝑖 . Finally, the half-space function ℎ𝑖𝑗(𝑋) can be replaced with the 

logistic sigmoid function: 

𝜎𝑖𝑗(𝑋) =
1

1 + 𝑒−(∑ 𝑤𝑖𝑗𝑘𝑥𝑘
𝑛
𝑘=1 )−𝑏𝑖𝑗

 

along with the differentiable disjunctive normal form approximation of the classifier as: 

𝑓(𝑋) = 1 − ∏(1 − ∏𝜎𝑖𝑗(𝑋)

𝑗

)

𝑖

 

Overall this model is described as an 𝑁 × 𝑀 LDNN model where 𝑁 is the number of disjunctions 

and 𝑀 is the number of conjunctions. The system finds 𝑁 clusters of points in the feature space that 

represent the object and 𝑀 clusters of points that do not. 

To train the model the quadratic error of the classifier is reduced using a set of training examples 

𝐓 of pairs (𝑋, 𝑦) where 𝑋 is a feature vector and 𝑦 is a binary label. The quadratic error is given as: 

𝐸(𝑓, 𝐓) = ∑ (𝑦 − 𝑓(𝑋))
2

(𝑋,𝑦)∈𝐓
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The error is reduced using the gradient descent method. This requires the derivative of the error, 

hence why there was a focus on creating a differentiable model. The only parameters are the weights 𝑤𝑖𝑗𝑘  

and biases 𝑏𝑖𝑗 so the derivative of the error is taken with respect to these values: 

𝜕𝐸

𝜕𝑤𝑖𝑗𝑘
= −2(𝑦 − 𝑓(𝑋))∏(1 − 𝑔𝑟(𝑋))

𝑟≠𝑖

𝑔𝑖(𝑋) (1 − 𝜎𝑖𝑗(𝑋)) 𝑥𝑘

= −2(𝑦 − 𝑓(𝑋))
1 − 𝑓(𝑋)

1 − 𝑔𝑖(𝑋)
𝑔𝑖(𝑋) (1 − 𝜎𝑖𝑗(𝑋)) 𝑥𝑘  

𝜕𝐸

𝜕𝑏𝑖𝑗
= −2(𝑦 − 𝑓(𝑋) ∏(1 − 𝑔𝑟(𝑋))

𝑟≠𝑖

𝑔𝑖(𝑋) (1 − 𝜎𝑖𝑗(𝑋))

= −2(𝑦 − 𝑓(𝑋))
1 − 𝑓(𝑋)

1 − 𝑔𝑖(𝑋)
𝑔𝑖(𝑋) (1 − 𝜎𝑖𝑗(𝑋)) 

where 𝑔𝑖(𝑋) = ∏ 𝜎𝑖𝑗(𝑋)𝑗  which are the conjunctions within the classifier. The gradient descent method 

can be used to minimize this equation. However, since there are 𝑁 × 𝑀 × (𝑛 + 1) parameters, where 𝑛 

is the number of features which is at least 476 and there are typically going to be millions of training pairs 

the gradient descent method is very slow and will have issues with convergence. There are two 

approaches we can take to overcome this issue: stochastic gradient descent with mini-batches and 

gradient descent with dropout. 

Stochastic gradient descent with mini-batches randomly groups the training samples into small 

subsets of training samples, updating the weight values after each mini-batch. The entire set of training 

samples is gone through several times, each time using different random groups of training samples 

(LeCun, Bottou, Orr, & Müller, 1998). 

Gradient descent with dropout (Hinton, Srivastava, Krizhevsky, Sutskever, & Salakhutdinov, 2012, 

pp. 5-8) uses a single training sample at a time but only works with half of the conjunctions and 

disjunctions at a time (one quarter of the total weights for a single sample). The samples are trained on in 

a random order and which weights are being updated are chosen randomly for each sample. The selective 

use of weights reduces overfitting and can increase the speed. Many iterations through all samples are 
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performed. This method requires taking the square root of each of the products in the classifier function 

𝑓 during the testing phase as follows to accommodate for the missing weights during training: 

𝑓(𝑋) = 1 − √∏(1 − √∏𝜎𝑖𝑗(𝑋)

𝑗

)

𝑖

  

In both situations the concept of momentum is used which means that the previous gradient 

information is used along with the current gradient information while performing the descent. This greatly 

increases the rate of convergence. CHM uses a stochastic variant of gradient descent, changing which 

samples are taken and in what order, to avoid local minima in the search for the global minimum. 

However, the sigmoid function 𝜎𝑖𝑗  has horizontal asymptotes at 0 and 1 and thus if we targeted values of 

0 and 1 for learning like one might expect for a binary classification problem the gradient descent would 

easily get stuck in local minima. Instead, targeting the values 0.1 and 0.9 are targeted which prevents 

saturation of the sigmoid function 𝜎𝑖𝑗  (LeCun, Bottou, Orr, & Müller, 1998, pp. 10-12). 

While this process refines the values of 𝑤𝑖𝑗𝑘  reducing the error, an initial set of weights needs to 

be chosen to reduce the number of iterations the gradient descent method needs to achieve reasonable 

results. The initial values for the weights and biases can be logically setup using clustering of the data. For 

an 𝑁 × 𝑀 LDNN classifier we need 𝑁 + 𝑀 clusters. The feature vectors of the training data 𝐓 are 

partitioned into two sets corresponding to the binary value of 𝑦, all of the feature vectors 𝑋 paired with 

a 𝑦 of 1 are placed into 𝐗+ and all of the feature vectors 𝑋 paired with a 𝑦 of 0 are placed into 𝐗−. The 

𝐗+ set is partitioned into 𝑁 clusters with centroids 𝐂+ and the 𝐗− set is partitioned into 𝑀 clusters with 

centroids 𝐂−. This clustering is performed using the 𝑘-means algorithm. To be reasonably fast for large 

datasets only a subset (~1/10) of the training samples are used along with a multilevel variant of the 

𝑘-means algorithm (Martin, Fowlkes, & Malik, 2002). The weight vectors 𝑊𝑖𝑗 = [𝑤𝑖𝑗1 … 𝑤𝑖𝑗𝑛] are 

initialized as the unit vector from each 𝐶−𝑗 to each 𝐶+𝑖  which are the individual centroids from the 

negative and positive centroid sets 𝐂− and 𝐂+ respectively. The bias terms are initialized such that 
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𝜎𝑖𝑗(𝑋) = 0.5 at the midpoints of the line connecting 𝐶−𝑗  and 𝐶+𝑖. This is essentially defining a plane to 

separate each pairing of a negative and positive cluster from each other resulting in the positive clusters 

being isolated on all sides. The equations for calculating the initial weights and biases from the centroids 

are: 

𝑊𝑖𝑗 =
𝐶+𝑖 − 𝐶−𝑗

‖𝐶+𝑖 − 𝐶−𝑗‖
𝑏𝑖𝑗 = −𝑊𝑖𝑗 ⋅

𝐶+𝑖 + 𝐶−𝑗

2
 

CHM uses different settings for the LDNN classifier based on the level and stage. At level 0, a 

10 × 20 LDNN classifier using stochastic gradient descent with mini-batches of size 10 and a learning rate 

of 0.005 per sample is used. The number of iterations through the entire training set is either 15 for stage 

1 or 6 for all other stages. For all other levels (levels 1 and higher) a 24 × 24 LDNN classifier using dropout 

gradient descent, 15 iterations through the entire training set, and a learning rate of 0.025 per sample is 

used. For all levels a momentum of 0.5 is used. A shortcut used throughout is that the biases 𝑏𝑖𝑗 are 

integrated into the weights 𝑊𝑖𝑗 as an extra ‘feature’. This requires an extra feature to be added to each 

feature vector 𝑋 that is always one. Thus 𝑥𝑛+1 = 1, 𝑤𝑖𝑗(𝑛+1) = 𝑏𝑖𝑗, and 𝑊𝑖𝑗 = [𝑤𝑖𝑗0 … 𝑤𝑖𝑗(𝑛+1)]. This 

allows the sigmoid equation to be simplified to the following: 

𝜎𝑖𝑗(𝑋) =
1

1 + 𝑒−(∑ 𝑤𝑖𝑗𝑘𝑥𝑘
𝑛
𝑘=1 )−𝑏𝑖𝑗

=
1

1 + 𝑒−𝑊𝑖𝑗⋅𝑋
 

which can be efficiently calculated using a single dot product using the BLAS library. Additionally, 

𝜕𝐸 𝜕𝑤𝑖𝑗𝑘⁄  now works for biases as well which eliminates a separate equation for them. The initial weights 

and biases are still calculated separately as above. 

3.3.3 Testing Improvements 

CHM-LDNN is a very computationally and memory intensive process, especially when working 

with the massive images that are typical of EM datasets. The first improvement during the project was 
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made to the original MATLAB implementation to parallelize the processing across multiple CPUs. This was 

implemented in order to greatly reduce the memory and time requirements for large images as is common 

with EM datasets. To accomplish this the program splits the images into several blocks while testing and 

processes each block separately in parallel using the blockproc method from the MATLAB Image 

Processing Toolbox. This made it possible to process large images. However, since several of the features 

are calculated using large neighborhoods around a pixel, processing in this manner creates boundary 

effects at the seams between every pair of blocks. To reduce this effect, each block was processed with a 

border coming from the neighboring blocks. Optimally the border size would be equal to 𝑝̂ ∗ 2𝐿 where 𝑝̂ 

is the maximum padding required for any filter and 𝐿 is the highest-level number. The Gabor filter has the 

largest padding requirement of 18 pixels thus 𝑝̂ = 18. A typical value for 𝐿 is 4. Thus, the optimal border 

size is 288 pixels. However, the typical block size is around 500 × 500 thus a border of that size is 

impossible in typical situations. Even for a much larger block size such as 1000 × 1000 this means that 

the majority of the data must be processed multiple times defeating most of the gains from block 

processing in the first place. Empirically, a border size of only 50 pixels is necessary in most cases and 

larger than that it does not reduce the edge effects much. However, for some situations a border size of 

75 or 100 pixels improves the quality significantly, such as with segmentation of larger structures. Overall 

the block processing provides a significant reduction in memory usage and a modest increase in speed for 

a small drop in quality. The decrease in memory usage makes the testing process possible on very large 

images as only individual blocks are processed instead of the entire image at once like the original program 

attempted. However, the MATLAB blockproc method is designed for when each block can be 

processed rapidly which is not true for CHM and thus it is not optimized for this situation. The first few 

blocks are processed in serial instead of parallel to determine some of the properties of the output 

classification data meaning that if there are only a few blocks to be processed there is essentially no time 

gain and possibly some loss in speed. Overall, for large images this block processing is critical but does 



 

78 

cause some reduction in quality. However, for smaller images this block processing hurts time and quality 

performance. 

The MATLAB implementation had some serious bugs along with inefficiencies that made it difficult 

to use on large datasets and it had room for improvement in the accuracy. The entire algorithm was re-

built using the Python programming language to create PyCHM. It uses the numerical and scientific 

libraries NumPy and SciPy (Walt, Colbert, Chris, & Varoquaux, 2011) and the optimizing static compiler 

Cython (Behnel, et al., 2011). NumPy and SciPy can use either the OpenBLAS (Qian, Yunquan, & Yi, 2013) 

or Intel MKL library (Intel Corporation, 2018) for their internal linear algebra computations with the Intel 

MKL being significantly faster although not open-source but still free to install and use. Other optional 

libraries are used if installed on the machine running PyCHM: 

• pyfftw and the underlying FFTW C library is used to increase the efficiency of filters that depend 

on Fourier transforms, mainly the Gabor filter (Frigo & Johnson, 2005) 

• Python Imaging Library (PIL or Pillow) to reading common image file formats such as PNG, JPEG, 

and TIFF (Clark & et al, 2017) 

• h5py for reading HDF5-formatted MATLAB files for compatibility with the MATLAB version of CHM 

(Collette, 2013) 

• psutil for determining the optimal number of threads to use. 

All of these libraries are open-source and freely available to be run on nearly all systems which makes it 

significantly easier to run on any hardware that is available without needing an expensive license to run 

it on just a single machine. When running on a cluster this becomes even more important as every single 

node in the cluster needs a MATLAB license. Even though there is the ability to compile the MATLAB code 

so each machine does not need a separate license, the compilation license is incredibly expensive and 

compiled MATLAB programs are difficult to use with parallel processing. Additionally, moving it into the 
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realm of Python allows other packages to utilize the functionality directly, such as embedding it into a 

server system for rapid visualization of results in a tile-based web display (Churas, et al., 2017). 

For the testing phase of CHM the primary focus was improving the speed and memory usage of 

the filters since the bulk of the time was spent executing the filters. Minor improvements were also made 

to the evaluation of the classifier function itself including the use of a BLAS library for the main matrix 

multiplication so that it is highly efficient and multithreaded. Also, the HOG filter and the classifier for 

non-dropout models originally used 32-bit floating-point numbers but are now using 64-bit floating-point 

numbers in the Python version for increased accuracy and possibly speed on modern systems. Overall, 

when running the process on full-sized images the Python code runs approximately 6 times faster and 

utilizes almost half as much memory as the MATLAB code meaning that a testing run that once took a 

month to execute, now only take two and a half days with PyCHM using the same amount of resources. 

In addition, some of the fixes alleviated the minimum image size problem with the original MATLAB 

version, which required that all images used are least 15 ∗ 2𝐿 pixels in height and width, meaning that for 

a typical value of 𝐿 = 4 the images had to be at least 240 × 240. 

In the new Python version the memory usage is nearly optimal. The theoretical minimum amount 

of memory required to evaluate the classifier function is: 

(𝑁 ∗ 𝑀 + 𝑀 + 𝑛) ∗ 𝑃 ∗ 𝑏𝑦𝑡𝑒𝑠_𝑝𝑒𝑟_𝑝𝑖𝑥𝑒𝑙 

where 𝑃 is the number of pixels in the block being evaluated and 𝑏𝑦𝑡𝑒𝑠_𝑝𝑒𝑟_𝑝𝑖𝑥𝑒𝑙 = 8 for a 64-bit 

floating-point number. At level 0 the number of pixels 𝑃 is maximized since at all other levels the image is 

downsampled. The maximal number of features 𝑛 is at level 0 and stage ≥ 1 where there are 476 + 57 ∗

(𝐿 + 1) features. Using a typical value of 𝐿 = 4 for the highest-level number, the maximal number of 

features is 𝑛 = 761. At this point CHM uses a 10 × 20 LDNN classifier and thus 𝑁 = 10 and 𝑀 = 20. With 

these values the minimum amount of memory is 7848 bytes per pixel. For a block with 𝑃 = 1,000,000 

pixels this means that the evaluation requires 7.31 GiB (7.85 GB) of memory. The Python code only uses 
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an additional 60 MiB over this theoretical limit for various temporary values and status variables which is 

only an additional 0.8% memory usage. The MATLAB code in the same situation uses 14.4 GiB which is 

97% more memory than is theoretically needed, nearly doubling all of the memory being used at the 

highest point. 

The block processing system was also completely revamped when the program was rewritten in 

Python to improve quality, speed, and memory usage. First, each of the filters were adapted so that when 

given a block of image data they are able to read the contextual image data surrounding the block as far 

away as necessary for the filter without actually computing anything extra. In the original MATLAB 

implementation the filters assumed the blocks were surrounded by either all 0s or by a mirror of the data 

in the block itself. With this improvement, the full image can now be broken into blocks without requiring 

a border or overlap to overcome edge effects. This means that the image data is not completely filtered 

multiple times in the border regions. Previously with 500 × 500 blocks and 50-pixel borders 36% of the 

work was being wasted (1 −
400∗400

500∗500
), with loss of accuracy at the edges of each of block. Breaking the 

image into blocks still does some additional work compared to working on the image all at once since 

many of the filters are able to conserve some of the computations as the work across an image, however 

if the image were not broken into blocks significantly more memory would be required greatly limiting 

the hardware the algorithm can be run on. 

One downside to this method is that each level needs to be completely filtered and evaluated 

before proceeding to the next level. With MATLAB’s blockproc method each block was completely 

processed through all stages and levels before starting the next block. The revamped version processes a 

single stage/level across all blocks before moving onto the next stage/level. The drawback here is that the 

program must store the complete results of each level within a single stage overall requiring at most 26.66̅ 
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bytes per pixel10 in the entire image not including the per-block evaluation memory. However, this 

memory is memory-mapped and can be quickly swapped into and out of main memory to secondary 

storage by the system since only small amounts of the memory are used at any given time. 

One of the primary ways that CHM testing is used is for it to only process a subset of the blocks in 

a single run. This allows a single very large image to be processed by several different machines in parallel 

with the results merged together in the end. In the MATLAB block processing system it was trivial to only 

process some of the blocks since each block was performed separately. The Python version uses 

approximately 12 times less resources so this feature is not as necessary as it was for the MATLAB CHM, 

it is still desirable for extremely large images or integration with other tiling systems. Its implementation 

becomes much more of a challenge in Python however, since blocks depend on the computation of 

neighboring blocks for contextual information since bordering regions are no longer used. The use of only 

a subset of blocks is supported in Python and does save considerable memory and computational time 

compared to working with the entire image, but unlike with the MATLAB CHM, the savings are not as 

noticeable and do not scale linearly with the number of blocks being tested. The Python CHM attempts to 

work on groups of blocks to reduce the border of those blocks thus reducing the additional number of 

blocks that need to be processed. Thus, instead of specifying individual blocks for processing, the user 

specifies the total number of groups of blocks the image will be processed within and which group it is. 

For example, if you were spreading out the work for a single image across 10 nodes in a cluster, each 

process would be instructed that it is part of a group of 10 and what number within the group it is. Then 

the set of tiles is determined in order to reduce the amount of extra work needed by any node and to 

                                                            
10 This value comes from the extra room needed to store the entire original image, the classifier results for each level 

(∑ 1 2𝑖⁄𝐿
𝑖=0  values per pixel which is 4 3⁄ = 1.33 as 𝐿 → ∞ or ~10.656 for 𝐿 = 4), and room to store temporary data 

including downsampled images and classifier results. Summing those we get 1 + 1.33 + 1 = 3.33 values per pixel. 

Each value is stored as a 64-bit floating-point number resulting in 8 ∗ 3.33 = 26.66̅ bytes per pixel. This does not 
include the rounded-up dimensions during downsampling however that adds a very small amount as long as the 
image is large and roughly square. 
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make sure each node has roughly the same amount of work to perform. The aim is to have all the tasks 

finish near the same time (for the algorithm used see Appendix A). However, since the process now 

requires approximately one twelfth of the overall resources, dividing a single image across multiple nodes 

is less necessary. 

The Python version of CHM-testing produces classification results that are extremely close to 

those that are produced by the MATLAB-CHM testing code when running on the models created by the 

MATLAB training code. The main differences are near the boundaries of the images and seams between 

blocks. The seams are due to insufficient overlap being used in the MATLAB version while there is 

essentially unlimited overlap in the Python version. The differences along the boundaries of the entire 

image are primarily due to differences in how the Python and MATLAB codes handle padding of the entire 

image to provide data to filters that need points outside of the image – in several cases the MATLAB code 

assumes the image is surrounded by 0s (pure black) instead of something more accurate such as mirroring 

the image data itself. When the images are surrounded by 0s, filters like edge detection always see a very 

large edge at the boundary of the image. The Python code attempts to reproduce this poor behavior when 

using MATLAB-created models but it prioritizes increased efficiency and code abstraction over perfect 

reproduction. 

3.3.4 Training Improvements 

While the Python implementation of the testing phase of CHM showed a great improvement for 

speed and memory usage there was no significant improvement in accuracy except along the edges of the 

image and at the seams between blocks. Training also needed to be re-created in Python to improve 

accuracy as changes in the filters also change the necessary weights for the LDNN model. The 
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implementation of the filters in PyCHM fixed several mistakes made in the original implementation of 

CHM. The filters were modified as follows: 

• HOG: the original implementation had an implicit padding of 0 around each 16 × 16 block causing 

highly inaccurate output. Additionally, the blocks were misaligned and values were assigned to 

histogram bins in a non-standard way. The re-implemented method made it more accurate to the 

original description of the algorithm by Dalal and Triggs (2005). Additionally, it is significantly 

faster (30-35x faster) at the expense of using significantly more memory, but the additional 

memory is less than the extra memory required by other filters so does not increase the overall 

memory usage of the program at all. 

• Edge: the original implementation padded the image with 0s creating large edge signals at the 

boundary of the image; this was replaced with symmetric padding which greatly reduces this 

source of error along the boundary. 

• Gabor: the original implementation clipped the result of the convolutions with the Gabor kernels 

to be from 0 to 1 with 8 bits of resolution even though these intermediate results have a mean 

of 0 and the larger kernels produced data mainly outside of the −1 to 1 range. In the end, the 

Gabor filter was typically only generating the values 0, 1, and √2 due to this bug and never 

generating values outside of the range [0, √2]. However, modifying the implementation to not 

perform clipping resulted in several issues as well. One issue was the squaring of the negative 

values which caused all values to become positive and thus there was no distinction between the 

filter and its 180° analog, losing a lot of information that the Gabor filters are designed to supply. 

Several solutions to this problem were attempted: 

• No clipping at all, ignoring the loss of information caused by the duplicated orientations 

• Set all negative values to 0 and saving the magnitude, which is the original CHM method 

except without clipping the upper bound to 1 and keeping the full resolution of the values 
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• Correcting for the non-zero DC offset of Gabor filters but otherwise the same as the first 

attempted solution (Movellan, 2008) 

• Keep the real part of the filter instead of calculating the magnitude of the complex value. 

Ultimately none of these solutions changed the results significantly as compared to not using the 

Gabor filter at all and the results were dependent on what structure was being classified. This, 

combined with the fact that the Gabor filter is by far the most expensive filter to calculate of all 

of the filters used, in terms of both memory and time, in most cases it was simply not used. When 

used, for example with mitochondria, it was used as the original CHM had created it. 

• Haar: minor changes were made for efficiency that ended up producing slightly different outputs 

(on the order of 10−8) due to a different set of floating-point rounding errors occurring. 

Additionally, the Frangi filter (1998) was added becauseit robustly detects tube-like structures such as cell 

membranes and endoplasmic reticulum. The parameter 𝛽 is set to 0.5 and 𝑐 dynamically set to half of the 

maximum Frobenius norm of the Hessian matrices calculated during the process as per the 

recommendations in the paper. The 𝜎 parameter runs over the values 2, 3, 4, 5, 7, 9, and 11 for both the 

original and inverted image so that both black and white tube-like structures of different sizes can be 

detected. This results in a total of 14 extracted features which increases the total number of features to 

490 features plus contextual features. 

3.3.4.1 Normalization of Filters 

Prior to fixing these filters most of their outputs were at least close to the range 0.0 to 1.0. This is 

important since the LDNN algorithm greatly favors features with larger values than features with smaller 

values. This means that features with a very small range compared to the other features will essentially 

be ignored while ones with a large range will dominate the learning process. The most prominent example 

of this was seen when the Gabor filter was corrected. Previously it only generated values from 0 to √2 
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(~1.414). Once it was corrected the narrower Gabor filters generated values from 0 to 2 while wider 

Gabor filters can generate values from 0 to 45. Even same-size Gabor kernels that just have a different 

orientation generate a different range of values. Due to this the Python version of CHM initially failed at 

being able to classify just about anything correctly since it was only paying attention to the largest Gabor 

filters and essentially ignoring all other filters (even non-Gabor filters). The later discovery that the Gabor 

filters were not beneficial in most cases made it even more obvious that just focusing on the largest Gabor 

filters would always lead to poor results. 

Ideally, of course, a wider filter or a filter with a different orientation should not be considered 

more important than another filter before the learning process begins. Rather, within LDNN it should start 

off by being able to consider all the features equally and then work on changing their relative weights. 

When LDNN starts with unequally scaled data it can never find the appropriate weights to “un-scale” the 

data. The change in influence is due to issues in the definitions of the half-spaces and calculating the initial 

weights and biases. The initial weights and biases are calculated by placing the planes defining the half-

spaces half-way between a cluster of negative and a cluster positive features vectors. If one feature axis 

is scaled disproportionately relative to the other features, then the plane will be closer to perpendicular 

to that axis. It becomes closer to perpendicular as the scale becomes larger, and as it becomes more 

perpendicular there is less variability in the other features represented by the plane. 

An example can be worked out in 2D with just a single negative and positive cluster to illustrate 

the scaling issues with LDNN, as shown in Figure 3.4. The negative cluster is at (0,0) and the positive 

cluster is at (1,1). The line separating the two clusters is 𝑥1 + 𝑥2 = 1 resulting in 𝑤1 = 𝑤2 = 1 and 𝑏 =

−1. If the 𝑥1 feature is now scaled by 2 then the positive cluster moves to (2,1) with the separating line 

now at 2𝑥1 + 𝑥2 = 5 2⁄  with the values 𝑤1 = 2, 𝑤2 = 1, and 𝑏 = −5 2⁄ . Some points will have changed 

which side of the line they are on; for example (0,1.5) will have been on the positive side and now it is on 

the negative side after scaling. The scaling of 𝑥1 has reduced the influence of 𝑥2 on the outcome of the 
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result. This effect does not only effect calculation of initial weights but is present throughout the learning 

process. 

The solution is to normalize the features before learning so that they have similar distributions to 

each other. There are several possible ways to normalize the data and the following methods are 

implemented in the Python CHM training program: 

• minimum/maximum (min-max): linearly scale and shift each feature so that its minimum value is 

0.0 and the maximum value is 1.0. All training data will be between 0.0 and 1.0 however outliers 

in a feature will skew the data significantly. 

• mean/standard deviation (mean-std): shift the data so that the mean is at 0.5 and scale the data 

so that ±2.5 standard deviations lie at 0.0 and 1.0. Even though ~5% of the training data will end 

up outside of the 0.0 to 1.0 range the effect of outliers will be greatly reduced. 

• median/median absolute deviation (median-mad): shift the data so that the median is at 0.5 and 

scale the data so that ±2.5 standardized median absolute deviations (MADs) lie at 0.0 and 1.0. 

The median absolute deviation is the median correlate of standard deviation. The “standardized” 

MAD is the MAD divided by ~0.6745 (Φ−1(3 4⁄ ) where Φ−1 is the inverse cumulative distribution 

Figure 3.4. Data scaling issues with LDNN. The green dots (upper-right) represent the positive clusters and the red 

dots (lower-left) represent the negative clusters. When the axes are equally scaled (left plot) the line that divides 

them is 𝑥1 + 𝑥2 = 1. As the 𝑥1 axis (horizontal axis) is scaled by 2x (middle plot) and 10x (right plot) the dividing 

line becomes 2𝑥1 + 𝑥2 = 5 2⁄  and 10𝑥1 + 𝑥2 = 101 2⁄  respectively. The dividing line becomes significantly 

perpendicular to the 𝑥1 axis and parallel to the 𝑥2 axis, thus reducing the ability for 𝑥2 to influence the outcome. 
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function or percent-point function of the normal distribution) so that it becomes a consistent 

estimator with standard deviation. Like with mean-std some of the training data will end up 

outside of the 0.0 to 1.0 range but this has even better tolerance to outliers since median and 

MAD are both more robust in the face of outliers than mean and standard deviation are. This is 

the default setting in the program and is commonly used in similar statistical analyses. 

• interquartile range (iqr): linearly scale and shift each feature so that the value 𝑄1 − 1.5𝐼𝑄𝑅 

becomes 0.0 and the value 𝑄3 + 1.5𝐼𝑄𝑅 becomes 1.0 where 𝑄1 is the first quartile of the data 

(the value which has 25% of the data below it), 𝑄3 is the third quartile (the value which has 75% 

of the data below it), and 𝐼𝑄𝑅 = 𝑄3 − 𝑄1 is the interquartile range. This means the range from 

0.0 to 1.0 contains a 4𝐼𝑄𝑅 range from the original data. This is the most robust against outliers 

but the amount of data outside of the 0.0 to 0.1 is much less predictable than the other methods. 

The information on how to scale and shift the data is calculated per-feature and saved so that the same 

transformations can be applied during testing so that their values are consistent. The mean-std and 

median-mad normalization methods expect the data to be roughly normally distributed and do not work 

for some features such as Frangi which has a highly bimodal distribution. These filters use a feature-

defined normalization method instead. 

The normalization methods described above are only applied to the data while it is being used 

during the gradient descent process. Additional changes were made to CHM to include a separate 

normalization process during 𝑘-means clustering as well which is used to calculate the initial weights. 𝑘-

means clustering works best with “whitened” or “sphered” data (Coates & Ng, 2012) however this was 

not done in the original CHM implementation leading towards bias in the larger features when calculating 

the initial weights. Whitened data is when the variance of each feature is equal to 1 but the mean can be 

anything. This is accomplished by dividing each feature’s data by its standard deviation. This is a different 

requirement than for normalizing the data going into the gradient descent portion of LDNN which works 
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best when all the data is in the range 0.0 to 1.0 instead of just having a fixed variance for each feature. 

Thus, there are multiple normalization steps when training a LDNN classifier. 

3.3.4.2 Gradient Descent Improvements 

Besides improvements with the quality, speed, and memory usage of the filters, the training 

process itself was improved. The speed of the stochastic gradient descent method has been greatly 

increased by vectorizing and parallelizing the calculation of the gradient and error across an entire mini-

batch along with using 64-bit floats instead of 32-bit floats. In both gradient descent methods in the 

original implementation some of the temporary memory that is allocated is never freed up, leaking 

memory which contributed to its overall high memory usage during the training process. The method used 

to shuffle the data randomly for sample and feature selection was biased due to using a non-robust 

random-number-generator. On some systems using more than 32,767 samples (a single 180x180 image 

exceeds this) results in completely undefined results. Both of these issues have been addressed with the 

elimination of memory leaks and replacing the random number generator with RandomKit (Roy, 2005) 

which implements the robust Mersenne Twister PRNG (Nishimura & Matsumoto, 1998). RandomKit is 

included with the NumPy library and does not add an additional dependency. 

3.3.4.3 Image Masking 

An additional feature added to the training process is the support for masking of the training data. 

The MATLAB version of CHM requires that the training data has every single pixel classified as either not 

part of the object or part of the object. This means that only rectangular regions are permitted and there 

will inevitably be edge effects as no outside image data can be given. With masking, an additional set of 

binary images is provided that describe which pixels have a valid classification, every white (1-value) pixel 
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in the mask is a pixel with a valid classification in the training data. This allows for non-rectangular regions 

to be used along with making sure that a wider context is provided to reduce edge effects. Masking also 

allows for a “progressive” segmentation. This progression is done by first segmenting an object and then 

masking that object out when training another object. This is repeated for each object. This can increase 

quality in situations where some objects are easily mistaken by the classifier as another object which is 

more reliably segmented. Internally, the features are still generated for the entire input data but only 

pixels which are not masked out are considered during the learning process of LDNN. 

3.3.5 Post-Processing: Thresholding 

The output of testing with CHM is an image with values that range from black to white (either 0 

to 255 for 8-bit grayscale images or 0.0 to 1.0 for floating-point grayscale images). These values indicate 

if a pixel is either not the object (closer to 0.1 or mostly black), is the object (closer to 0.9 or mostly white), 

or somewhere in between (e.g. 0.5 or gray) if it is unsure how to classify the object. The output of CHM is 

typically values close to 0.1 or close to 0.9 with very few gray values. The reason 0.1 and 0.9 are the most 

common values is that the LDNN algorithm targets the values 0.1 and 0.9 instead of 0 and 1 to prevent 

oversaturation of the sigmoid function. 

However, what we really want is a purely binary classification of whether the pixel is the object 

we trained against or not. The data must be thresholded to convert from the grayscale image to a binary 

(black and white) image. In quick tests, a value of 0.5 (50% gray) is frequently chosen as the threshold, 

with all values whiter than this being set to pure-white and all values blacker than this being set to pure-

black. However, this method is a bit arbitrary and may introduce a small amount of noise. 

Instead, our pipeline uses Otsu’s method to automatically determine a suitable gray value at 

which to threshold the image (Otsu, 1979). Otsu’s method is a clustering-based method that calculates 
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the optimum threshold value that separates all pixel values into two classes which minimizes the intra-

class variance. In other terms, this searches through all threshold values to minimize the value of: 

𝜎𝜔
2 = 𝜔0(𝑡)𝜎0

2(𝑡) + 𝜔1(𝑡)𝜎1
2(𝑡) 

where 𝜔0 and 𝜔1 are the probabilities of the two classes separated by a threshold 𝑡 and 𝜎0
2 and 𝜎1

2 are 

the variances of these two classes. The class weights/probabilities can be computed from a histogram 

with 𝐿 bins (typically 256) and a 𝑝𝑖 proportion of all pixels lie within the 𝑖-th bin as follows: 

𝜔0(𝑡) = ∑ 𝑝𝑖

𝑡−1

𝑖=0
𝜔1(𝑡) = ∑ 𝑝𝑖

𝐿−1

𝑖=𝑡
 

which means that 𝜔0 + 𝜔1 = ∑ 𝑝𝑖
𝐿−1
𝑖=0 = 1. The threshold 𝑡 must be 0 < 𝑡 < 𝐿. Otsu showed that 

minimizing the intra-class variances is equivalent to maximizing the inter-class variances which then 

avoids calculating the variance of each class: 

𝜎𝑏
2(𝑡) = 𝜎2 − 𝜎𝜔

2(𝑡) = 𝜔0(𝜇0 − 𝜇𝑇)2 + 𝜔1(𝜇1 − 𝜇𝑇)2 = 𝜔0(𝑡)𝜔1(𝑡)[𝜇0(𝑡) − 𝜇1(𝑡)]
2 

where 𝜇0 and 𝜇1 are the class means and 𝜇𝑇 is the total mean level of the original image. They are defined 

as: 

𝜇0(𝑡) = ∑ 𝑖
𝑝𝑖

𝜔0(𝑡)

𝑡−1

𝑖=0
𝜇1(𝑡) = ∑ 𝑖

𝑝𝑖

𝜔1(𝑡)

𝐿−1

𝑖=𝑡
𝜇𝑇 = ∑ 𝑖𝑝𝑖

𝐿−1

𝑖=0
 

which means that 𝜔0𝜇0 + 𝜔1𝜇1 = 𝜇𝑇. This formulation can lead to very fast computations on modern 

machines for the entire dataset at once by first calculating the cumulative moments of the histogram: 

𝜔(𝑡) = ∑ 𝑝𝑖

𝑡−1

𝑖=0
𝜇(𝑡) = ∑ 𝑖𝑝𝑖

𝑡−1

𝑖=0
 

The other values can now be derived in terms of these cumulative functions: 

𝜔0(𝑡) = 𝜔(𝑡) 𝜔1(𝑡) = 1 − 𝜔(𝑡)

𝜇𝑇 = 𝜇(𝐿) 𝜔(𝐿)⁄ 𝜇0(𝑡) = 𝜇(𝑡) 𝜔(𝑡)⁄ 𝜇1(𝑡) =
𝜇𝑇 − 𝜇(𝑡)

1 − 𝜔(𝑡)

 

Resulting in a final equation of: 

𝜎𝑏
2(𝑡)  =

(𝜇(𝑡) − 𝜇𝑇𝜔(𝑡))
2

𝜔(𝑡)(1 − 𝜔(𝑡))
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Finding the max of this function is a simple linear search. Once the optimal threshold value is 

found the image can be converted into a binary image. Otsu’s method works best for bimodal distributions 

with a deep and sharp valley separating the two peaks. This is mostly true for the probability map images 

generated by CHM and PyCHM, however the separation between the two peaks is not sharp and thus the 

gray values in the middle may still be misclassified. 

One way to improve upon this is to take into account the context of each pixel. If a gray pixel is 

surrounded by all white pixels it should likely be classified as white. Likewise, if a gray pixel is surrounded 

by all black pixels it should likely be classified as black. This can be accomplished with hysteresis 

thresholding in addition to multi-level Otsu’s method.  

Multi-level Otsu’s method is an extension of Otsu’s method in which two or more threshold levels 

are determined instead of a single level (Liao, Chen, & Chung, 2001). This means that instead of just 

creating a binary image (black and white), a ternary image (black, gray, and white) or an image with even 

more levels can be created. 

The inter-class variance function 𝜎𝑏
2(𝑡) can be generalized to 𝑀 levels as follows: 

𝜎𝑏
2(𝑡1, 𝑡2, … , 𝑡𝑀−1) = ∑ 𝜔𝑘(𝜇𝑘 − 𝜇𝑇)2

𝑀

𝑘=1
where 0 < 𝑡1 < ⋯ < 𝑡𝑀−1 < 𝐿 

with: 

𝜔𝑘 = 𝜔(𝑘) = ∑ 𝑝𝑖
𝑖∈𝐶𝑘

𝜇𝑘 =
𝜇(𝑘)

𝜔(𝑘)
= ∑

𝑖𝑝𝑖

𝜔(𝑘)𝑖∈𝐶𝑘

 

𝐶𝑘 = [𝑡𝑘−1 + 1,… , 𝑡𝑘] with 𝑡0 = 0 and 𝑡𝑀 = 𝐿 

By noting that ∑ 𝜔(𝑘)𝑀
𝑘=1 = 1 and ∑ 𝜇(𝑘) =𝑀

𝑘=1 𝜇𝑇 the inter-class variance equation can be 

rewritten as: 

𝜎𝑏
2(𝑡1, 𝑡2, … , 𝑡𝑀−1) = ∑ 𝜔(𝑘)𝜇2(𝑘)

𝑀

𝑘=1
− 𝜇𝑇

2  
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The final term −𝜇𝑇
2  is constant across any choice of threshold values so it does not influence the 

calculation of the maximum and thus the equation that actually needs to be computed is only: 

𝜎𝑏
′ 2(𝑡1, 𝑡2, … , 𝑡𝑀−1) = ∑ 𝜔(𝑘)𝜇2(𝑘)

𝑀

𝑘=1
 

For 2 thresholds (3 levels or 𝑀 = 3) this can be very efficiently calculated using an 𝐿 × 𝐿 matrix 

as long as 𝐿 is relatively small (a typical value is 256 which means less than a megabyte is needed for such 

a matrix). In fact, only the upper-right triangular region needs to be calculated since 0 < 𝑡1 < 𝑡2 < 𝐿 

cutting the computation and memory down by more than half. Once every value has been calculated 

finding the maximum is trivial. 

Once the ternary image is created using the thresholds calculated using a 3-level Otsu’s method, 

hysteresis thresholding can be used to convert it into a binary image. In hysteresis thresholding any black 

pixel will remain black and any white pixel will remain white. This leaves the gray pixels to be separated 

into the black and white classifications. This is done by taking the neighbor of every white pixel that is gray 

and classifying it as white. Any pixels newly classified as white repeat this process as well. In terms of 

mathematical morphological operations this is a binary dilation operation. The structuring element used 

has connectivity 1 meaning that the neighbors of a pixel include the pixels directly above, below, left, and 

right of the pixel but not the diagonals. In other situations, a connectivity of 2 can be used which includes 

the diagonals as well which more aggressively assigns gray pixels into the white classification. 

3.3.6 Pre-Processing: Histogram Equalization 

Raw images produced by SEM frequently have low contrast meaning that the difference between 

a light pixel and a dark pixel is not very high compared to the range of available values. Histogram 

equalization can be used to increase the contrast of the image without changing the relative ordering of 

the pixel values by applying a linear transformation to each pixel. The linear transform is derived from 



 

93 

converting the histogram of the image to a desired histogram, typically a histogram with all equal-

probability bins. 

Standard histogram equalization is typically used for visualization by humans on monitors. 

However, it is not appropriate for images that will be processed by machines, even though most image 

processing toolkits only include the standard histogram equalization. It is inappropriate because it is 

unable to get the image histogram to completely match the target histogram except with very contrived 

examples and causes a loss of information in the image since some bins in the original histogram will be 

combined but no histogram bins will be split in the attempt to match the target histogram. Previously, 

Perez et al started using a newer method called exact histogram equalization (2014). 

Several exact histogram equalization methods have been developed. These assign a strict 

ordering to all pixel values and then are able to match the target histogram nearly identically. This does 

preserve overall ordering of pixels (lighter pixels will remain lighter than darker pixels) however pixels that 

had the same value initially may end up with two different values based on their strict ordering. 

 The strict ordering of the pixels can be assigned in various ways. The method proposed by Coltuc 

et al (1999; 2006) uses the mean of the local neighborhood of each pixel at expanding distances to 

determine the order. If two pixels have the same value, then the means of the four neighboring pixels are 

used to distinguish them. If that value is the same then the means of the eight neighboring pixels are used. 

This process is continued up to an order of 6 which includes all pixels in a 5 × 5 area around each pixel. 

This method for calculating the strict ordering of the pixels is extremely time and memory consuming. 

An alternative method for determining a strict ordering was developed by Nikolova et al (2013; 

2014) which is faster than the local-means method and believed to have superior performance. Their 

approach, which is a variational approach, attempts to reconstruct the original real-valued image from 

the discretized image. The concept is that the image was acquired from a continuous source and then 
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discretized when it was digitized. However, we can estimate what the original, physical, image was and 

thus assign a unique value to each pixel, allowing us to find a strict ordering of all of the pixels. 

Their method minimizes the ℓ1-norm of the total variation of the image. However, this would 

normally be incredibly computationally expensive, but with an appropriate selection of a smooth-

approximation of the ℓ1-norm this becomes significantly easier to compute. They required that the 

approximation had an explicit derivative and inverse of the derivative and that those forms were easily 

computable (most important they lacked a square root which is a very expensive operation). Their search 

resulted in the following ℓ1-norm approximation: 

𝜃(𝑡, 𝛼) = |𝑡| + 𝛼 log (1 +
|𝑡|

𝛼
) 

where 𝑡 is the difference between two values and 𝛼 is the factor of the approximation, with 𝛼 = 0 being 

exactly the ℓ1-norm. This function has the following derivative and inverse of the derivative: 

𝜃′(𝑡, 𝛼) =
𝑑

𝑑𝑡
𝜃(𝑡, 𝛼) =

𝑡

𝛼 + |𝑡|
𝜉(𝑡, 𝛼) = 𝜃′−1(𝑡, 𝛼) =

𝛼𝑡

1 − |𝑡|
 

which each only have a single division in them and thus are fairly easy to compute. 

Given an image, called 𝑓, the real-valued version of the image, called 𝑢, is initially set equal to the 

original image, thus 𝑢 = 𝑓. The minimization process then updates 𝑢 during every iteration until every 

value in 𝑢 is unique. This minimization is performed by first calculating the sum of the slopes (derivative) 

of the ℓ1-norm of every pixel relative to each of its four neighbors, generating an image-sized matrix 𝐷 

where every (𝑥, 𝑦) element in the matrix is calculated as follows:  

𝐷(𝑥, 𝑦) = 𝜃′(𝑢(𝑥, 𝑦) − 𝑢(𝑥, 𝑦 − 1), 𝛼2) + 𝜃′(𝑢(𝑥, 𝑦) − 𝑢(𝑥, 𝑦 + 1), 𝛼2)

+ 𝜃′(𝑢(𝑥, 𝑦) + 𝑢(𝑥 − 1, 𝑦), 𝛼2) + 𝜃′(𝑢(𝑥, 𝑦) − 𝑢(𝑥 + 1, 𝑦), 𝛼2) 

where 𝑢(𝑥, 𝑦) is a pixel in the current approximation of the real-valued image. Any term of this formula 

that requires data outside of the image (i.e. 𝑢(0,−1)) is simply dropped. Once the slopes are calculated, 
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then the current approximation of the real-valued image is update as follows: 

𝑢 = 𝑓 − 𝜉(𝛽𝐷, 𝛼1) 

where 𝛽 is a constant describing the speed of convergence. This process is then repeated with the new 

values in 𝑢. Originally, they determined that at most 35 iterations of this process were required to achieve 

uniqueness (Nikolova, Wen, & Raymond, 2013), however upon further examination realized that only 3 

to 5 iterations were required in all situations to acquire good-enough results (Nikolova & Steidl, 2014). 

The reduction in the number of iterations combined with a more efficiently computed ℓ1-norm resulted 

in a 30 to 50 times acceleration of the computation making this the fastest method for exact histogram 

equalization when published (Nikolova & Steidl, 2014). It was also determined that, while the process 

could be cut short as soon as the uniqueness property held, calculating uniqueness of values was 

significantly more expensive than simply performing additional iterations (each iteration is an 𝑂(𝑛) 

operation while uniqueness-checking is an 𝑂(𝑛 log 𝑛) operation). When implementing this, the number 

of iterations was user-selectable but defaulted to 5 and the constants were fixed as suggested in (Nikolova 

& Steidl, 2014): 

𝛼1 = 𝛼2 = 0.05 𝛽 = 0.1 

Although the variational method is significantly more complicated conceptually and 

mathematically then the local means method, it was shown to be significantly faster than the local means 

method (Nikolova & Steidl, 2014). Both methods preserve the ordering of the pixels, but have differences 

in how they order pixels with the same value. 

In either case the strict ordering of all pixels is used to map each pixel to a bin in the target 

histogram. If the first bin in the target histogram has a value of 0.01 (1%) then the first 1% of pixels in 

the strict ordering are given the value of the first histogram bin and this is repeated for all histogram bins. 

One downside of the exact histogram equalization method is that it requires all of data to be 

processed at once. This contrasts with the traditional histogram equalization which only requires the 
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source histogram (which can be acquired with a linear pass through all pixels and does not even need all 

image data in memory at once since multiple histograms can be averaged together) and the target 

histogram to calculate the necessary linear transformation. Once the transform is calculated it can be 

applied to any image without needing the original source images, their histograms, or the target 

histogram. However, the exact histogram equalization methods need to establish a strict ordering for all 

pixels simultaneously which means that all data needs to be in memory at once causing bottlenecks for 

larger images. It also makes it impossible to apply the same transformation to a whole series of images, 

instead the series of images must all be considering simultaneously, greatly increasing the time and 

memory requirements. 

3.3.6.1 Local Means Strict Ordering Improvements 

The local means method for creating a strict ordering of pixels is very time and memory intensive, 

requiring 6 different convolutions that either involve a division or working with floating-point numbers 

followed by a lexicographical sort of that data. However, a novel method created for this project greatly 

reduces the resource cost by taking advantage of the increasingly fast 64-bit integer operations built into 

modern CPUs and the fact that most images use unsigned 8-bit pixel values. All six orders are calculated 

at once using a single convolution of the image with the following kernel written with hexadecimal values 

followed by a standard quicksort of the values: 

[
 
 
 
 

0𝑥1 0𝑥400 0𝑥200000 0𝑥400 0𝑥1
0𝑥400 0𝑥80000000 0𝑥20000000000 0𝑥80000000 0𝑥400

0𝑥200000 0𝑥20000000000 0𝑥8000000000000 0𝑥20000000000 0𝑥200000
0𝑥400 0𝑥80000000 0𝑥20000000000 0𝑥80000000 0𝑥400
0𝑥1 0𝑥400 0𝑥200000 0𝑥400 0𝑥1 ]
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 This ultimately places each of the order sums is in a consecutive set of bits in the resulting 

unsigned 64-bit integer output with the higher bits containing the sums closest to the central pixel. Table 

3.1 describes which bits are used for each order and the number of bits required for each order. Since the 

ordering of sums is equivalent to the ordering of means, the integers can be sorted directly with no 

division or floating-point numbers required. 

Even though the variational method was originally shown to be significantly faster than the local 

means method (Nikolova & Steidl, 2014), this improved algorithm for calculating local means strict 

ordering is more efficient, as shown in Table 3.2. It is now over 20% faster and uses over 25% less memory 

Table 3.1. Bits used by each local sum for strict ordering of pixels for exact 

histogram equalization. The number of values is the number of pixel values that 

are summed for a particular order and the number of bits required is the bits 

required to store the largest value produced by the sum. The bit used are 

selected to put the lower orders in the mote significant positions. The five most 

significant bits are left as 0. 
 

Order Number of Values Number of Bits Required Bits Used 

1 1 8 5-12 

2 4 10 13-22 

3 4 10 23-32 

4 4 10 33-42 

5 8 11 43-53 

6 4 10 54-63 

 

Table 3.2. Speed and memory usage of strict ordering methods for exact histogram 

equalization. Using an unsigned 8-bit integer 22000x16000 pixel grayscale image (352 MP). The 

time to calculate the strict ordering is only the time required to calculate and sort the pixel 

values. The total time is the amount of time to read, perform the exact histogram equalization 

including calculation of the strict ordering, and save the new image. The max RSS is the largest 

amount of memory used during this process. With no histogram equalization the time and 

memory is that required for reading and saving the image only. Results were calculated as the 

average of 10 runs using the imstack tool on the hardware described for timing in 5.2. 
 

Strict Ordering Method 
Time to Calculate 

Strict Ordering (mins) 
Total Time 

(mins) 
Max RSS 

(GiB) 

None N/A 0.64 1.05 

Local Means (Original) 9.63 10.97 24.32 

Variational 3.13 3.64 13.83 

Local Means (Improved) 2.56 3.04 11.21 
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than the published variational method for the same amount of separation of pixels using their strict 

ordering. 

3.3.7 Segmentation Pipeline Toolbox 

The ultimate goal for our use of automated segmentation is to not need user intervention to go 

from microscope to segmented results ready to be quantified. Besides automatic segmentation program 

there is pre-processing, post-processing, and image format conversions. To do this, we need a set of tools 

that can be built into a complete pipeline. However, most image processing tools available only work with 

single images while we care about volumes of images assembled from individual slices of image data. This 

dichotomy resulted in issues when trying to automate an entire pipeline to go from the microscope to 

quantified data. Additionally, several of the image formats used by microscopes and segmentation tools 

are not formats commonly supported by general image processing programs, such as MRC, MATLAB, 

DICOM, and MetaImage. For this reason, the pysegtools library was developed for this project. This library 

is written in Python and is designed to deal with stacks and volumes of images and incorporates many 

pre- and post-processing tools along with the ability to handle several formats of images, from the 

common formats like PNG, TIFF, and JPEG, to the more specialized formats like MRC and MetaImage. 

Nearly all of the functionality provided by pysegtools is exposed through a flexible command line 

tool called imstack. This allows a pipeline to be built by simply executing this program. The arguments 

to the imstack command build off of each other. Each set of arguments represents a single operation 

to perform and consumes and/or produces one or more image stacks. If an operation consumes an image 

stack, it takes the most recently produced image stack. Some operations may even consume and/or 

produce multiple image stacks. For example, the ‘histeq’ operation performs histogram equalization. It 

consumes one image stack for the images that will be histogram equalized and may take an additional 
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image stack that it uses as a mask which restricts the regions of the image where the equalization will take 

place. It produces a single image stack which has the images histogram-equalized. 

The system is highly flexible, and each image stack can be used for as many operations as needed 

without having to reload the data. Internally, each operation is only performed on slices or stacks as 

needed to conserve memory usage, making an overall highly efficient system even when working with 

large image volumes as are common with SBFSEM datasets. All of the operations and file formats are 

handled with a plugin system and thus the library is highly extensible. 

Since pysegtools is mainly targeted at working with image stacks, it has custom file format 

handlers for working with image formats that inherently store image stacks, including reading and writing 

to/from MRC, MATLAB (MAT), and MetaImage (MHA/MHD). Additionally, it is able to read (but not write) 

from any image stack formats supported by Pillow, including SPIDER, IM, TIFF, and GIF (each frame of 

animation is considered a separate image in the stack). Image stacks and volumes can be stored as a 

collection of separate 2D image slices as well, so it supports this as well, with each slice in the stack being 

either a 2D MetaImage or MATLAB image, or one of the standard image formats supported by the Pillow 

library, including TIFF, PNG, and JPEG (Clark & et al, 2017). 

While some of the operations in the library have yet to be added to work with the 3D data, most 

of them do use 3D data when appropriate. Additionally, the operations have been written as generally as 

possible and are designed to work regardless if the pixels are stored as bytes or floating-point values, 

represent complex data, color, or grayscale information. Obviously, some operations do not make sense 

for certain types, but where possible all types are supported. When types are not supported, there are 

several operations for coercing data types as needed. 

Some of the more complex operations supported by pysegtools are histogram equalization 

(approximate, exact using local means, and exact using the variational approach), automatic binary or 
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multi-level thresholding using Otsu’s method, connected-components labeling and re-labeling, Canny 

edge detection, and anisotropic diffusion filtering. 

While image processing pipelines will mainly use the command line tool imstack, pysegtools 

also has a rich application program interface (API), allowing other programs to directly hook into the file 

reading or image processing components used by the command line tool. In fact, the PyCHM command 

line tools rely on the pysegtools reading and writing of image stacks to be able to open and save a wide 

variety of image formats to be able to fit into any pipeline itself. This means that if a plugin is written to 

allow imstack to read a proprietary file format for a particular microscope, PyCHM will also be able to 

read those files as well. 

3.4 GLIA: Automatic Segmentation of Neuropil 

While CHM-LDNN can classify each pixel as a particular type of object such as a lysosome or nuclei 

it cannot inherently identify the different objects within a particular class, for example it does not say that 

this set of pixels is a different lysosome than another set of pixels. For some objects and with high enough 

resolution a simple connected-components labeling evaluation can be performed which identifies 

separate objects by separation with pixels that are labeled as not part of the classification (Berengolts & 

Lindenbaum, 2000). However, this is not always a viable solution for objects that may be touching, 

separated by less than the resolution of the pixels, or may be surrounded by ambiguous pixels. For these 

more advanced methods are required. Of particular interest is segmenting the cells in a dataset so that 

we know which are separate cells. For this purpose, the Hierarchical Neuronal Segmentation (HNS) or 

Graph Learning Library for Image Analysis (GLIA) created by Liu et al (2012; 2014; 2016) at the University 

of Utah’s Scientific Computing and Imaging Institute (SCI). HNS and GLIA are two names for the same 

concept, with GLIA being the more modern name. 
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GLIA is designed to operate either as automatic segmentation or as semi-automatic segmentation 

with input from a user as in the Interactive Merging program (Jones, Liu, Ellisman, & Tasdizen, 2013; Liu, 

Jones, Seyedhosseini, & Tasdizen, 2014; Liu, Zhang, Javanmardi, Ramesh, & Tasdizen, 2016). Both of these 

start with the same several steps, but differ in the last few steps. When performing automatic 

segmentation, as it was used in this project, GLIA is composed of seven major steps: 

1. Pixel-wise membrane detection: the first step is using another machine-learning system that 

calculates the probability of each pixel being a cellular membrane. In this project, PyCHM was 

used to generate these probability maps. 

2. Initial segmentation: once a probability map of the membranes is obtained an initial 

segmentation is performed. The goal is to oversegment the data, resulting in every neuron 

containing several regions but no region that contains more than one neuron. While many are 

available, the morphological watershed algorithm (Beucher & Lantuéjoul, 1979; Beare & 

Lehmann, 2006) was chosen in the original paper and due to high computational efficiency and 

good adherence to image boundaries. The initial segmentation is not generated directly from the 

probability maps but instead from the Gaussian-blurred probability maps to reduce the number 

of regions found. Besides the amount of blurring performed, a threshold, called the water-level, 

is chosen to determine how much of an oversegmenation is performed, causing all boundaries 

discovered below that level to be ignored. 

3. Pre-merge regions: the initial segmentation may produce regions which are too small for the 

extraction of meaningful region-based features in step 5 below. To address this, small regions are 

merged with one of their neighbors before any further analysis is done. Two criteria are used to 

decide if a region should be merged with a neighbor at this point: if a region’s area is below some 

threshold or if a region’s area is below a higher threshold but its average membrane probability 

is above another threshold. In either case the region is merged with the neighbor that yields the 
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largest “merging saliency”. The merging saliency is calculated as one minus the median value of 

the membrane probabilities of pixels along the border between the two regions, producing a 

higher value when the boundary is mostly unlikely to be membrane pixels and lower when they 

are mostly likely to be membrane pixels. 

4. Merge tree construction: a binary tree is created that describes the order in which to merge all 

of the initial regions with one of their neighbors until there is only one region that describes the 

entire image. This does not actually commit to merging regions as is done in step 3 but instead 

creates a hierarchical structure describing how they should be merged, which is used with 

additional information calculated in later steps to generate the final set of actual merges. The 

initial regions, generated by steps 2 and 3 above, are the leaf nodes in the tree and the root of 

the tree is the region describing the entire image. When two nodes should be merged, they are 

made to be siblings in the tree and connected through an internal node that represent the merged 

region. The tree is built from the leaves upward by taking the two neighboring regions that have 

the largest merging saliency among all pairs of neighboring regions. 

5. Feature extraction: several features are extracted for each region, including all of the initial and 

potentially merged regions. These features include information about the region geometry such 

as area, perimeter, and compactness, information about the boundaries that will be eliminated 

in a merge including the length and curvature, along with summary pixel information along the 

boundary and within the region from both the original EM images and the probability maps such 

as mean value. Many possible parameters are available in GLIA to determine which features are 

utilized and how they are normalized, but only the default set of features and normalizations were 

used in the project. These features are in general more informative than those used by CHM and 

other pixel-based classifiers since they are extracted over regions instead of individual pixels. 
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6. Classification of boundaries: a machine learning algorithm is fed the features extracted about the 

boundaries and regions to predict if two regions meeting at a boundary should be merged or not. 

The researchers used artificial neural networks (Liu, Jurrus, Seyedhosseini, & Tasdizen, 2012) and 

random forests (Liu, Jones, Seyedhosseini, & Tasdizen, 2014) when HNS was first published, but 

in the latest iterations, now called GLIA, they use the same LDNN classifier used by CHM. For this 

project, LDNN was used as well. These are supervised algorithms and thus must be trained with a 

set of known samples. Ultimately these only give the probability that any two regions should be 

merged. 

7. Greedy segmentation: the final step is to produce the final segmentation from the merge 

probabilities using a greedy algorithm by assigning “potentials” to each node based on its 

probability of merging with its sibling and the probability of its children merging with each other. 

GLIA is set up as several smaller programs, at least one for each of the steps listed above, that each must 

be run in a specific order and usually once for each slice of data in the image stack. The overall set of 

programs is shown in Figure 3.5. This ends up requiring the coordination of thousands of program 

executions, some of which can be run in parallel and others which have dependencies. Additionally, since 

the algorithm was being developed and modified by Ting Liu concurrently with this project, as 

advancements were made the set of programs would change. For example, originally when HNS was 

released it only worked with individual image slices and required additional steps to link the generated 

labels across the individual slices (Liu, Jones, Seyedhosseini, & Tasdizen, 2014). Later, when it became 

GLIA, all of the programs directly supported working on stacks of images, and thus generated consistent 

labeling across slices inherently. 

All of this made it impossible to coordinate manually so a generalized coordination system was 

created. This library that coordinates tasks was written in Python and included in the pysegtools library. 

It organizes a list of programs that need to be executed given what data each one requires and generates, 
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automatically discovering which programs must run before other programs and which ones can be run 

simultaneously. It then is able to execute these tasks efficiently knowing what resources are available. 

One change made to the published GLIA was the update of the training process to use the LDNN 

written for PyCHM instead of the one written in MATLAB for CHM. This increases the efficiency of the 

program without any significant change in the results. Additional utility programs were created for the 

pre-processing and post-processing of the data, allowing CHM results to be fed directly into the GLIA 

process and allowing the generated label images of GLIA to be converted into contours around cells that 

are usable as IMOD models and can be meshed into 3D models. 

 watershed 

pre_merge 

merge_order_pb 

bc_feat 

ldnn_test 

bc_label_ri 

ldnn_train segment_greedy 

Training Labels 

Predicted Labels 

Membrane Probabilities 

EM Data 

blurring 

Figure 3.5. GLIA programs and interdependencies. Rectangles are input or output images for the entire GLIA 

process. Solid green outlines are steps used for both training and testing phases. Red dotted outlines are steps 

used for training phase only. Blue dashed outlines are steps used for testing phase only. When running in 2D 

mode, all programs except ldnn_train and ldnn_test need to be run on each slice individually. 

training-only 

testing-only 

testing & training 

Images 
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3.5 Summary 

Several different segmentation algorithms are used in concert to be able to take the raw data 

from an electron microscope and get segmented cells and organelles. The process to segment organelles 

is diagrammed in Figure 3.6. From the microscope, a subset of the data must be selected as the training 

data. This volume is manually segmented in a tool such as IMOD with the assistance of the Livewire tool 

to accelerate the process. The manually segmented data must be converted from contours around objects 

to a label image where pixels that are within objects of interest are white. This can be done with the 

imodmop command line program. 

The training label images along with the preprocessed training image volume are then given to 

PyCHM which generates its conceptual model of what it learns distinguishes the objects from the 

background. Once the model is created, PyCHM can be used to test other volumes of preprocessed data 

from the same source. The testing process outputs a probability map image which assigns every pixel the 

probability it is the object that it learned. The probabilities are then thresholded to provide a binary yes 

or no answer. 

Figure 3.6. Process to automatic segment of organelles using PyCHM. For segmenting a single organelle 

from a single dataset. The preprocessing and postprocessing steps are completed using imstack. 

Conversion of IMOD model to labels is completed with imodmop. Manual segmentation is done within 

the graphical user interface of IMOD. 

Data Acquisition 
Manual 

Segmentation 
using Livewire 

PyCHM Training PyCHM Testing 

Testing Images 
Labels 

Model 

Training Images 

Predicted Labels 

Preprocessing: 
Histogram Equalization 
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To segment entire cells, first cell membranes must be segmented with PyCHM as described above 

except that the final step to threshold the probabilities to obtain binary results is not performed. Instead, 

the probabilities and labels are inputted into GLIA for segmentation of cells. This process is diagrammed 

in Figure 3.7. 

The algorithms described in this section have all been explicitly modified or created for the 

project. Table 3.3 provides a summary of the algorithms and programs along with the developments 

introduced for this project and where the code for each can be obtained. 

 

 

 

 

Figure 3.7. Process to automatically segment entire neurons using PyCHM and GLIA. PyCHM is used to segment 

the cell membranes and GLIA uses that information to segment the individual cells from a single dataset. The 

preprocessing step is completed using imstack. Conversion of IMOD models to labels is completed with 

imodmop. Conversion of labelled pixels from GLIA back to an IMOD model is completed with a custom Python 

tool created for GLIA and the IMOD program point2model. Manual segmentation is done within the graphical 

user interface of IMOD. 

Data Acquisition 
Manual 

Segmentation 
using Livewire 

PyCHM Training PyCHM Testing 

Testing Images 
Membrane 

Labels 

Membrane Model 

Training Images 

Membrane 
Predicted 

Labels 

Preprocessing: 
Histogram Equalization 

Conversion of labelled 
pixels to IMOD model 

 
Conversion of IMOD 
model to labelled pixels 

GLIA Training GLIA Testing 
Cell Model 

Membrane 
Predicted 

Labels 

Cell 
Labels 

Cell 
Predicted 

Labels 



 

107 

 

 

 

 

 

 

 

 

Table 3.3. Segmentation programs developed for this project. The developments made to each of the 

segmentation programs and the basic image processing toolkit for this project along with where the source code 

can be obtained. 
 

Program Developments Availability 

Livewire 

Completely new implementation written in 
C++ from scratch with several innovations to 
be able to handle massive EM images 
efficiently and accurately; integrated it into 
IMOD for general usability 

IMOD version: 
bio3d.colorado.edu/imod/source.html 
Standalone version: 
github.com/slash-segmentation/livewire 

PyCHM 

Completely new implementation of CHM and 
LDNN written in Python from scratch that 
improves accuracy, speed, and memory 
usage from the original CHM and LDNN; 
added additional features including 
normalization of features, the Frangi filter, 
and masking 

github.com/slash-segmentation/PyCHM 

GLIA 

Updated to use re-written LDNN, added tools 
written in Python to organize the execution 
of the myriad of tasks, convert label images 
to models, and calculate paired-pixel 
statistics 

github.com/coderforlife/glia 

pysegtools 
and 

imstack 

Written in Python from scratch to handle 
large image volumes, read and write 
specialized image formats, and perform 
necessary preprocessing and postprocessing 
including automatic thresholding using 
Otsu’s method and exact histogram 
equalization; created a new exact histogram 
equalization approach that is more efficient 
than previous approaches 

github.com/slash-segmentation/segtools 
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4 GeoEM: Geometry Analysis of EM Data 

GeoEM is a program developed for this project for analyzing the geometry of EM data. The goal 

of the program is to robustly measure various metrics about cells and organelles in the segmented EM 

data. For example, previous studies looking at the taper of branches leaving a branch point used hand-

drawn estimations from a single 2D image (Ferrante, Migliore, & Ascoli, 2013). This method has issues 

with reproducibility when different people select different starting points to measure the taper for each 

branch. Instead, if we can analyze the 3D mesh of the cell itself then a robust and reproducible metric for 

taper can be calculated. 

Besides the measurement of properties of the branching structure of the dendrites, the mesh can 

be lined up with segmentation data of organelles such as mitochondria and ER. Then the density of these 

organelles can be analyzed based on their location within the mesh – are the organelles near a branch 

point or are they clustered in the middle of a branch? Are they near the axis of the dendrite or are the 

near the surface? 

GeoEM makes extensive use of the Computational Geometry Analysis Library (CGAL) which is an 

open source C++ project that provides access to efficient and reliable geometric algorithms (The CGAL 

Project, 2018). The library is divided into various parts. Besides the core functionality the main parts used 

for this project are: the 3D Polyhedral Surface and Halfedge Data Structures (Kettner, 2018; Kettner, 

2018), Surface Mesh Generation (Rineau & Yvinec, 2018), Volume Mesh Generation (Alliez, et al., 2018), 

Polygon Mesh Processing (Loriot, Tournois, & Yaz, 2018), Surface Subdivision Methods (Shiue, 2018), and 

Surface Mesh Simplification (Cacciola F. , 2018), Surface Mesh Skeletonization (Gao, Loriot, & Tagliasacchi, 

2018). CGAL heavily utilizes the open source Boost Graph Library (BGL) (Siek, Lee, & Lumsdaine, 2001; 

Cacciola, Moeller, & Wein, 2018) along with other portions of the Boost C++ Libraries. It also uses 

QGLViewer (Debunne, 2017) with OpenGL (Khronos Group, 2017) and Qt (The Qt Company, 2017) to 
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display 3D models and libpng to read image data from PNG files (Schalnat, Dilger, Bowler, & Randers-

Pehrson, 2017). 

The geoEM program reads a 3D mesh of segmented cells from EM data along with probability 

maps for an organelle such as mitochondria or endoplasmic reticulum that overlap with the segmented 

cell. The cell is assumed to be a branching structure like a neuron. Each branch is divided into smaller 

“slices” with each slice being an approximate cylinder along the branch, with either one or two open ends. 

The branch points themselves are also extracted as slices, however they are not limited to being cylindrical 

and can have multiple open ends (typically 3, one towards the soma and two towards the distal ends of 

the dendrites). The slices also store information about their connectivity with the other slices. This 

connectivity information is used to calculate the direction to travel towards the soma, the distance to the 

soma, and the next branch point that will be reached traveling towards the soma. Distances are measured 

along the “skeleton” of the mesh and start from the middle of the slice. 

Additional metrics can be calculated at this point, including surface area, volume, and surface area 

to volume ratio of the slices. For surface area and volume, these metrics are not useful as-is since each 

slice may be approximated by a cylinder with a different height (although it tries to keep them similar, it 

cannot do so perfectly). Instead, a normalized volume and surface area is more useful, where each of the 

metrics is divided by the height of the cylinder (i.e. the distance along the skeleton from the top to bottom 

of the slice). 

These metrics calculated from the mesh provide insight into several pieces of important 

information about branches within a neuron which includes the calculation of the geometric ratio of a 

branch point. Moreover, with the level of detail provided in EM data, the location of organelles relative 

to the branch points can be calculated. This is accomplished by determining which pixels in the image data 

are within each slice and summing the thresholded probability values for those pixels. 
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Many of these steps unitize functions included in CGAL but other functions are specific solutions 

for this project. The detailed steps of this process are: 

1. Read 3D mesh from Wavefront OBJ or OFF (Object File Format) file. Both of these formats are 

commonly used for 3D models. The program command-line imod2obj included with IMOD 

converts an IMOD 3D model to OBJ. 

2. The skeleton of the 3D mesh is constructed using the mean curvature algorithm (Tagliasacchi, 

Alhashim, Olson, & Zhang, 2012) which works by iteratively contracting the mesh to a series of 

line segments that lie in the middle of the mesh that are connected at vertices to other segments 

resulting in an undirected acyclic graph. Vertices along the skeleton of the branch will be of degree 

2 while skeletal vertices at branch points will be of degree 3 or higher. Vertices at the ends will 

have a degree of 1. This uses the CGAL::Mean_curvature_flow_skeletonization 

class. The only value not set to the default is the quality/speed tradeoff (𝑤𝐻 in the paper), 

increasing it from the default of 0.1 to 0.5. A representation of a skeleton is shown in Figure 4.1. 

3. The mesh is then sliced. The only parameter for this step is the number of skeleton vertices to 

group together for each slice, either increasing the resolution of the slices if a small value is chosen 

Figure 4.1. 2D representation of a mesh with the skeleton. The mesh is the outer red line. skeleton is the 

black line segments through the middle. The skeleton vertices are the blue circles. This example has a 

single branch point in the middle. 
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or increasing the consistency of the slices if a larger value is chosen. Since this step is the most 

involved in terms of implementation for the project, it is detailed below. 

4. The “soma” is then found and distances to each slice are calculated. The soma is defined as the 

slice with the largest normalized volume that is at the end of a branch and only has one neighbor 

(i.e. a terminal of the skeleton). This is performed with a simple search over all slices. The distance 

to each slice, traveling along the skeleton, from the soma is then calculated. This is performed 

using a depth-first-search starting from the soma. Once the distances are calculated another pass 

is performed to identify the proximal branch point (or soma if along the trunk before any 

branching occurs). This is done with a recursive function that continually travels from each slice 

towards the soma until a branch point or the soma is found, or a slice for which the nearest branch 

point was already calculated. 

5. The probability map image volume for the organelles is loaded. Besides the image types 

supported by CGAL, all of which are either esoteric or limited in functionality, support for MRC 

files and stacks of PNG files is added. These are the common formats used in the rest of the 

segmentation pipeline. MRC files are IMOD’s native format and PNG files providing a wide range 

of features, including compression, but not able to store more than one slice. 

6. Finally, the percent of volume of each slice is calculated. This is done by counting all voxels 

(volume-pixels) whose center location spatially lies within the slice and whose probability map 

value is greater than a given threshold. Since the dataset is not isometric (i.e. has unequal lateral 

and axial resolutions) careful work must be done to align the voxels with the slices, considering 

the spacing of the voxels in each direction. The number of found voxels is then multiplied by the 

volume of a single voxel (based on the spacing between voxels) and divided by the volume of the 

mesh of the slice. 
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The last step could be done by taking the volume of the intersection of two meshes: the slice and a mesh 

of the organelles. However, that mesh itself would be an approximation itself and could never be more 

accurate than the voxel-wise data. Additionally, creating meshes from intricate regions, such as ER, is 

extremely difficult, especially since the meshes need to be a not self-intersecting manifold. Specifically, 

most of the mathematical analysis tools in CGAL require the mesh to have consistent orientation of the 

faces in the mesh, every face must be a non-degenerate triangle, no face can intersect another face except 

along an edge, no edge can be shared between more than two faces, and every vertex must have a single 

sequence of connected faces going around it. Some other requirements for the complete analysis are that 

the mesh must be closed (i.e. contain no holes) and there must only be one connected component. The 

analysis of more than one neuron the program must be run on each independent neuron. 

Even when generating meshes on larger structures such as whole neurons, the meshes still may 

not meet all of these requirements. IMOD frequently generates meshes with small defects in them, likely 

due to floating-point rounding errors, that cause some faces to intersect other faces. Also, it makes no 

attempt to orient all faces consistently. To address this an additional program was created using CGAL to 

repair meshes and create models that are usable for analysis. The repair process is as follows, using several 

functions from CGAL and CGAL::Polygon_mesh_processing: 

1. Load all the faces from a mesh, stored either as an OBJ or OFF file, while ignoring any connections 

between them. This is called a “polygon soup” instead of a polyhedron. 

2. If any of the faces are degenerate, then they are completely removed. Any of the faces that are 

non-triangular are triangulated with the function triangulate_hole_polyline. 

3. The polygon soup is consistently oriented and converted into a polyhedral mesh with the 

functions orient_polygon_soup and is_polygon_soup_a_polygon_mesh. 

4. All faces that participate in self-intersections are completely removed from the mesh. They are 

found with the function self_intersections and then erased from the polyhedron. This 
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operation may change the shape of the mesh. However, as long as the mesh was already fairly 

reasonable the number of self-intersecting faces has always been seen to be quite low and 

composed of relatively small faces. 

5. If the polyhedron now has holes in it, either from the start or because faces were removed in the 

prior step, they are filled in using the triangulate_hole function if possible. 

6. All but the largest connected component of the mesh is removed. 

7. At this point the mesh should be a single closed connected component with valid and outwardly 

oriented faces. However, if the mesh has more major issues it may not be valid. If the faces are 

not outwardly oriented (checked with is_outward_oriented) then they are reversed with 

reverse_face_orientations. Then self-intersections are removed more aggressively by 

not only removing the intersecting faces but also their direct neighbors. Since new holes may have 

been created, the holes are filled again. 

8. Finally, the mesh is saved to a new file, either as an OBJ or OFF file. 

This process is sufficient to fix meshes of cells created by IMOD but is unable to fix highly convoluted 

models like those of ER. 

To improve the results, one additional step is required so that the facets are all of similar shaped 

and sized. IMOD creates meshes from contours that lie on separate slices and therefore the meshes have 

highly skewed distributions of triangular size and shape of the faces. An additional program was created 

to refine the meshes after they were repaired. The program can refine the mesh in three different ways: 

1. Isotropic remeshing to make each of the faces more regular using the function 

CGAL::Polygon_mesh_processing::isotropic_remeshing which implements the 

algorithm described by Botsch et al (2004; 2010). This maintains a good approximation of the 

original mesh while adjusting the edges in the polyhedron so each edge ends up with 

approximately the same length. This makes every face approximately an equilateral triangle. If 
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the target edge length is longer than the current average edge length this will cause a 

simplification of the mesh to occur, reducing the number of faces significantly to achieve the 

target edge length. 

2. Performing Loop subdivisions to increase the number of faces in the mesh while keeping the 

shape. This uses the function CGAL::Subdivision_method_3::Loop_subdivision 

function implementing the subdivision method by Charles Loop (1987). 

3. Edge collapsing to simplify the mesh and reduce the number of faces while keeping the shape. 

This uses the function CGAL::Surface_mesh_simplification::edge_collapse 

with a policy to stop either when the number of edges reaches a certain amount or when the 

proportion of current edges to original number of edges reaches some threshold. 

Typically, isotropic remeshing is the most important refinement process as it adjusts the faces to become 

equilateral triangles while also being able to either simplify or increase the detail of the mesh. However, 

the other methods tend to retain the shape more consistently, so isotropic remeshing can be used to 

equalize the shape and size of the worst faces and then use the other methods to adjust the quality of the 

mesh. 

The code for geoEM, including the utilities for repairing and refining polyhedral meshes, is 

available at github.com/slash-segmentation/geoEM. 

4.1 Slicing 

Calculation of any of these metrics, the mesh must be sliced into pieces. Many methods of slicing 

the mesh were explored before settling on the one to be used. The other methods had significant issues 

with closing each of the slices (necessary to calculate volume and determine if a point lies within the slice), 

not representing the original mesh accurately, or creation of slices that were not approximate cylinders. 
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The initial step is grouping the skeleton vertices. The branch points in the skeleton are placed into 

groups based on how large the mesh is within their region. The branch point skeleton vertex and its 

immediate neighbors are always included in the group. Additionally, all skeleton vertices connected to the 

group that are less than the distance of the first neighbor to the mesh away from that neighbor are 

included as shown in Figure 4.2. This makes sure that branch point slice will include most of the region 

that is not part of any of the branches going out from the branch point. It will automatically scale to the 

size of the branch point – small branch points will only include the core group of skeleton vertices while 

larger branch points can include several additional skeleton vertices. Within a single branch point the 

number of skeleton vertices added in each direction may be different since each of the neighbors is 

considered independently. This means that if a small branch is coming off of a smaller trunk, it will 

automatically adjust for it as well. 

After the branch point groups are created, the other skeletal vertices are grouped together with 

their neighbors. The maximum size of a group is a parameter that controls the number of consecutive 

Figure 4.2. Grouping of skeleton vertices for branch points. The core group of skeleton vertices for a 

branch point that is always included (the branch point skeleton vertex and its immediate neighbors) are 

shown in green. Their minimum distance to the mesh (red) is shown with gray arrows. All neighboring 

vertices of the core group that lie within this distance (purple) are included in the group of skeleton 

vertices for the branch point. Each direction away from the branch point is considered independently of 

the other directions. The branch going upwards does not include any additional vertices while the other 

two branches each include an additional skeleton vertex. 
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skeletal vertices placed in a group, and thus the amount of detail that is preserved. Making the groups too 

small leads to issues in creating reasonable cylinders for each slice while making groups too large would 

not preserve the detail that is given by using EM data in the first place. When a branch between two 

branch points cannot be broken into slices that are each the maximal size then some of the groups will 

have one less vertex to make the division work. The groups that are made to have one less vertex are the 

groups that would end up being the largest in terms of number of mesh vertices that are associated with 

the skeletal vertices. In some edge cases when a branch is very short then none of the groups may have 

the maximal number of skeletal vertices. 

The groups created so far are groups of skeletal vertices. These groups are then made into slices 

which are defined by a set of planes intersecting the mesh. A plane is defined by each of the terminals of 

the group as the plane that is orthogonal to the skeleton through the midpoint of the skeleton edge 

between a skeleton vertex in this slice and the neighboring slice. Only parts of the mesh loosely associated 

with the skeleton vertices in the group are considered to avoid taking portions of the mesh that are part 

of other branches. 

Figure 4.3. Additional planes used around branch points. The planes that define the branch point slice 

are shown with dashed blue lines. Using these planes, the slices to the right of the branch point slice will 

“leak” into the slice at the top of the branch point and end up including the entire upper branch since it 

only uses the left-most plane to separate it from the branch point slice. In this situation, an additional 

plane is added, shown here as the dotted blue line. This new plane bisects two of the other planes, 

separating the top and left slices from each other. 
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One additional consideration must be taken into account. Near branch points, two planes may 

not be sufficient to isolate the relevant parts of the mesh from the neighboring slices. This occurs if the 

branch point group is not quite large enough to encompass the entire branch point region. Additional 

planes are also given by nearby branch points to accommodate this. These planes bisect any two of the 

planes that define the branch point slice. This is shown in Figure 4.3. While this example is a bit contrived 

to work in 2D, in 3D these situations are fairly common. An example of these in a real mesh is shown in 

Figure 4.4. 

 

 
 

Figure 4.4. Example of necessity to use additional planes around branch 

points. The green slice (above the branch point) and the red slice (to the left of 

the branch point) meet at a plane that bisects two of the planes that define the 

branch point.  
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5 Methods 

In this section we will discuss the datasets and methods used to verify the quality of results from 

the new PyCHM and with GLIA along with the use of these tools on larger datasets to automatically 

segment novel regions within the datasets. 

5.1 Datasets 

The datasets used for verifying the quality of results are listed in Table 5.1 and Table 5.2 along 

with their resolution, number and size of images, and number of samples of each label. Additionally, the 

neuropil dataset is used to automatically segment large cells for use with geoEM.  

Table 5.1. Dataset properties. The training images are those used for training the CHM 

model (or GLIA model for the neuropil dataset). The testing images are used to verify the 

quality of the model. The neuropil training and testing images are combined to form a larger 

training dataset when attempting to automatically segment unknown regions of data. 
 

 

Dataset 

Resolution (nm/px) Training Images Testing Images 

Lateral Axial Count Size Count Size 

Lysosomes 7.8 30 50 500x500 40 1000x1000 

Mitochondria 7.8 30 50 500x500 40 1000x1000 

Nuclei 7.8 30 50 500x500 40 1000x1000 

Nucleoli 7.8 30 50 500x500 40 1000x1000 

Neuropil 5.2 35 35 601x601 21 601x601 

 
Table 5.2. Dataset label counts. For each label of each dataset the number and percent of 

labeled pixels is given for both the training and ground truth (testing) image sets. These 

labeled pixels were generated using manual/assisted segmentation and were used in 

training the models or verifying their accuracy with testing. 

Dataset Label 

Training Labels Ground Truth Labels 

Pixels Percent Pixels Percent 

Lysosomes lysosomes 116282 1% 96533 0.2% 

Mitochondria mitochondria 701232 6% 635199 2% 

Nuclei nuclei 5226805 42% 12663477 32% 

Nucleoli nucleoli 1363553 11% 1107531 3% 

Neuropil cell membranes 2934958 23% 1609461 21% 

mitochondria 755504 6% 435452 6% 
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The first four datasets (lysosomes, mitochondria, nuclei, and nucleoli) were from (Perez, et al., 

2014) and included manually traced labels for each of the organelles. They were already divided into a 

training set and a testing/ground-truth set, used to verify the accuracy of the model learned by CHM. 

These datasets do not include entire cells, and therefore they were only used for verification of the 

features of the new PyCHM compared to the original CHM. 

The final dataset, neuropil, was specifically acquired for this project for the segmentation of whole 

cells within a 3D volume of neuropil. This allows for testing the entire process of PyCHM, GLIA, and geoEM. 

The data was collected on a Zeiss Merlin SBFSEM microscope using a block of neuropil from the CA1 region 

of a rat hippocampus. It was positioned so that the somas are at one end of the field of view so the volume 

can be oriented. It was stained using the same procedure used for the other datasets (Perez, et al., 2014). 

It was acquired using a 1.5 KeV acceleration voltage. The resolution is 5.2 nm/px laterally and 35 nm/px 

axially with dimensions 22000 × 16000 × 871 px giving a total tissue volume of 2.9 × 105 μm³ 

(114.4 × 83.2 × 30.5 μm). 

 A 601 × 601 × 56 px sub-region of this dataset was selected and all mitochondria and cells were 

traced using manual and assisted segmentation tools within IMOD. To check the accuracy of PyCHM and 

GLIA, the first 35 slices were used for training and the last 21 slices for verifying the accuracy. However, 

when automatically segmenting larger regions of the volume, the entire set of 56 slices was used for 

training so that CHM and GLIA had a larger volume of information for learning. Other, larger, subsets of 

the data were used to run tested models and to obtain automatically segmented cells. 

All datasets were preprocessed using exact histogram equalization using the variational method 

with five iterations utilizing the imstack program. All image stacks were stored either as single MRC files 

or as folders of PNG files. In both cases, unsigned 8-bit integers were used to store the pixel values. 
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5.2 Computational Hardware and Software 

The programs were run on a dedicated custom workstation to measure the timing and speed 

improvements of CHM and histogram equalization. This workstation ran Fedora 27 Workstation with two 

Intel Xeon Gold 5122, each with 4 cores (8 threads) at 3.6 GHz, and a total of 256 GiB DDR4-2666 RAM. 

All file I/O was performed on an NVMe SSD. The memory was setup so that the memory bus of the first 

CPU had 64 GiB of RAM while the other memory bus had 192 GiB. The processes were pinned to the cores 

of the CPU with more RAM to minimize the effects of non-uniform memory access (NUMA). They were 

only allowed to use hyperthreads when running with more than 4 computational threads. PyCHM and 

imstack used the following software: Python v2.7.14, NumPy v1.14.0, SciPy v1.0.0, Cython v0.27.3, gcc 

v7.2.1, MKL 2018 update 1, pyFFTW v0.10.4 with FFTW v3.3.7, Pillow v5.0.0, h5py vv2.7.1, and psutil 

v5.4.3. The original CHM used the following software: MATLAB R2017b (v9.3), Image Processing Toolbox 

v10.1, Parallel Computing Toolbox v6.11, Java SE 8 update 121, and gcc v4.9.2. Whenever possible, code 

was compiled with the highest level of optimization (e.g. using the -O3 argument for gcc).  

The Gabor filter in PyCHM uses the FFTW library which requires significant computational time 

and memory to develop its “wisdom” for any particular image size, type, and number of computational 

threads and then caches these results for future use. This will greatly increase the time required for the 

first training run on a machine relative to the future runs. A script was developed to equalize this that ran 

FFTW prior to the running of PyCHM given a particular set of image sizes, contextual levels, and number 

of threads so the wisdom calculation could occur outside of any of the timed runs. This script is built into 

the Python code for the Gabor filter. 

The CPU user time and system time (times the CPU spent processing), the wall time (actual time 

elapsed), and maximum resident set size (RSS, physical memory usage) for most runs was acquired with 

the /usr/bin/time -v command or equivalently the wait4() POSIX system call. However, for 

PyCHM testing, each task (including the first or only task) is run in a separate process and the program 
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and system call above only acquire the memory usage for the parent process. In these situations, a custom 

Python script was used that polled the system periodically for the sum of memory usage across the parent 

and all child processes. The average of the times and the maximum of the memory usage was recorded 

for each run. 

When not measuring time and memory usage accurately, a variety of different hardware was used 

with potentially different versions of the software listed above. The four computational resources used 

beyond the custom workstation were: 

• The shared, large-shared, and compute nodes of the Extreme Science and Engineering Discovery 

Environment (XSEDE) Comet cluster at the San Diego Supercomputer Center (SDSC) through 

allocation ddp140 (Towns, et al., 2014). This is supported by National Science Foundation grant 

number ACI-1548562. 

• The National Biomedical Computation Resource (NBCR) Rocce cluster at the University of 

California San Diego (UCSD). This is supported by grants from the National Center for Research 

Resources (5P41RR008605-19) and the National Institute of General Medical Sciences (P41 

GM103426) from the National Institutes of Health (NIH). 

• National Center for Microscopy and Imaging Research (NCMIR) compute environment at UCSD. 

• Amazon Elastic Compute Cloud (EC2) r4.8xlarge nodes. This allocation was supported through NIH 

Commons Credit Pilot Award (CCREQ-2017-03-00017). 

5.3 CHM 

Only the lysosomes dataset was used to test the memory and speed improvements of CHM. Both 

versions (MATLAB and Python) were run on the dedicated hardware. The average time and maximum 

resident set size (RSS) across three runs were recorded. CHM testing operates on single slices and 

therefore each run consists of 21 time and RSS values. 
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All other runs were computed with whatever computational resources were available at the time. 

These were usually shared hardware and therefore even though their run times were recorded, there is 

likely to be large variations which may not be directly comparable with the other timing values. 

CHM training was run with the following settings except where otherwise noted: use 2 stages and 

4 levels for the contextual information processing, do not include the Frangi filter or Gabor filters, do not 

use subsampling, and utilize median-mad feature normalization (only available in PyCHM, original CHM 

never performs normalization of the features). Testing with the original CHM used a border size of 50 

pixels around each tile and the tile size was set to be 100 pixels larger than the image itself so that only 

one tile was computed which included the entire image to avoid any seam effects in the middle of the 

images except when specifically testing the memory and speed. 

Various features that were added to PyCHM were examined. These included the use of the Frangi 

filter, use of the Gabor filter, the different feature normalization methods, and whether to use 

subsampling. If subsampling was used, at most 6,000,000 samples were allowed. These settings only apply 

to PyCHM and not the original CHM except for changing subsampling. The datasets were put through 

several (3 to 10) runs of each combination of options to find the highest average G-mean value. All future 

runs for that dataset used the best found set of options. 

Testing of the masking feature was performed by training and testing on cropped versions of the 

organelle datasets and comparing the results against the full datasets but masking out the cropped 

regions. The training images were cropped/masked down to the central 360x360 and 400x400 regions. 

The number of labeled pixels in each set is given in Table 5.3. The testing images were used unmodified. 

Masking was also explored with the neuropil dataset by training and testing first with mitochondria labels 

and then training and testing with cell membrane labels with the mitochondria masked out. 



 

123 

Unless otherwise specified, results were postprocessed using Otsu’s single-threshold as 

implemented in imstack, giving binary labels. 

5.4 GLIA 

GLIA is needed to automatically segment the cell membrane probability maps into compete cells. 

Then the geoEM tool can be used to analyze the geometry of the generated models. GLIA uses probability 

maps with values from 0.0 to 1.0 where a value of 1.0 indicates a high certainty of being a membrane. 

While CHM supposedly creates probability maps, since it is targeting the values 0.1 and 0.9 as false and 

true instead of 0.0 and 1.0, they are not really probabilities. The accuracy of GLIA is increased by stretching 

the output of CHM so that 0.1 is moved to 0.0 and 0.9 is moved to 1.0. All values that are decreased below 

0.0 are set to 0.0 and all values increased above 1.0 to 1.0. This transformation can be defined as applying 

the following function 𝑓 to every pixel in the image: 

𝑓(𝑥) = 𝑐𝑙𝑖𝑝 (
5

4
𝑥 −

1

8
, 0,1) 

𝑐𝑙𝑖𝑝(𝑥, 𝑎, 𝑏) = {
𝑎 𝑥 < 𝑎
𝑏 𝑥 > 𝑏
𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Additionally, since GLIA expects a probability map and not a binary image, these maps are not thresholded 

using Otsu’s method. 

Table 5.3. Cropped/Masked dataset label counts. These central regions of the 

training datasets are used to test the masking feature of PyCHM, allowing for the 

training process to utilize the surrounding pixels for feature extraction. 

Dataset Label 

Central 360x360 Central 400x400 

Labeled 
Pixels 

Labeled 
Percent 

Labeled 
Pixels 

Labeled 
Percent 

Lysosomes lysosomes 108296 2% 111962 1% 

Mitochondria mitochondria 451959 7% 523799 7% 

Nuclei nuclei 2966191 46% 3572335 45% 

Nucleoli nucleoli 1311281 20% 1345788 17% 
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GLIA has numerous parameters that can be modified, many of which greatly affect its results. 

Some of these parameters were explored to find the set for which the best results were produced. The 

values that were explored are shown in Table 5.4. 

The output from GLIA is an image stack where each pixel is given a value indicating the cell it 

belongs to. In this form it is not particularly useful. Instead, the boundaries around each numbered region 

is converted into a set of points representing a contour around the object in each plane. A program to 

accomplish this efficiently was specifically written for this project. These contours can then be converted 

into an IMOD model using the command line program point2model. Then IMOD can be used to mesh 

each of the objects using the command line program imodmesh with the extra argument -T which 

increases the accuracy of the model but also increases computation time. 

5.5 Segmentation Algorithm Evaluation 

The quality of results of the segmentation algorithms was determined using three different 

metrics: pixel accuracy, F-value, and G-mean. All of these are defined using the number of true positives 

(𝑇𝑃), true negatives (𝑇𝑁), false positives (𝐹𝑃), and false negatives (𝐹𝑁) which are computed as follows: 

Table 5.4. GLIA parameters explored. The parameters, as per (Liu, Jones, Seyedhosseini, & Tasdizen, 2014) that 

were explored in finding automatically segmented cells in the neuropil dataset. The value N/A for 𝑡𝛼2 indicates 

that that no regions were pre-merged based on their average probability. 

 

GLIA Parameter Values Explored 

𝜎 Std. dev. of Gaussian blurring 0.0 (no blurring), 0.5, 0.75, 1.0, 1.25, 1.5 

𝑡𝑤 Watershed initial local minimum dynamic threshold 
0.01, 0.02, 0.03, 0.05, 0.07, 0.075, 0.08, 

0.09, 0.1, 0.11, 0.125 

𝑡𝛼1 Minimum region area threshold for pre-merging 50, 100, 150 

𝑡𝛼2 Maximum region area threshold for pre-merging N/A, 150, 200, 250, 350 
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𝑇𝑃 = ∑[𝐿𝑖 ∧ 𝐺𝑖]

𝑖

𝐹𝑃 = ∑[𝐿𝑖 ∧ ¬𝐺𝑖]

𝑖

𝐹𝑁 = ∑[¬𝐿𝑖 ∧ 𝐺𝑖]

𝑖

𝑇𝑁 = ∑[¬𝐿𝑖 ∧ ¬𝐺𝑖]

𝑖

 

where 𝐿𝑖 is the label of the 𝑖th pixel, 𝐺𝑖 is the ground truth of the 𝑖th pixel, the brackets are the Iverson 

brackets such that [𝑃] = 1 if 𝑃 is true and [𝑃] = 0 if 𝑃 is false. These are the measures of the number of 

pixels that are labeled as part of the object and for which the ground truth has them marked as part of 

the object (𝑇𝑃), labeled as background and ground truth labels them as background (𝑇𝑁), labeled as 

object but ground truth labels them as background (𝐹𝑃), and labeled as background but ground truth 

marks them as part of the object (𝐹𝑁). The sum of these values is the total number of pixels in the image. 

Since CHM actually produces values that range from 0.0 to 1.0, the data is thresholded using an 

automatically calculated threshold from Ostu’s method. 

These four values compose the confusion matrix and can be used to define several other 

properties: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

The accuracy, F-value, and G-mean metrics can be calculated using all these values: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝐹𝑣𝑎𝑙𝑢𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

𝐺𝑚𝑒𝑎𝑛 = √𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

All of these metrics range from 0.0 to 1.0 with 1.0 representing a perfect segmentation relative 

to the ground truth data. These metrics each tell different information. While accuracy is the simplest and 
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most straight-forward, many organelles only represent a small number of the total pixels and therefore 

very high accuracy values are expected when most of the background is labeled correctly. However, this 

does not give a good indication of over-segmentation versus under-segmentation. The F-value provides a 

significantly more robust measure, and because of the underlying precision and recall values it uses it can 

give an indication of over- or under-segmentation. If the precision is high and recall is low, overall the 

image is over-segmented; while if the precision is low with high recall then under-segmentation is 

indicated. Small shifts in the boundaries of an object result in a balance of precision and recall. However, 

F-value is not symmetric to the positive and negative samples. The G-mean is used to address that issue 

and it is symmetric with respect to positive and negative classes. 

These metrics work well for the results of CHM which outputs a binary classification. However, 

these do not work well with the results of GLIA since each region is given a label and it does not matter if 

the value of the label is different than the ground truth label value but only that the entire region is given 

a consistent label as in the ground truth. A pairwise pixel metric is defined to correct for this for each of 

the confusion matrix entries as defined by W.M. Rand (Rand, 1971): 

𝑇𝑃𝑝𝑝 = ∑∑[𝐿𝑖 = 𝐿𝑗 ∧ 𝐺𝑖 = 𝐺𝑗]

𝑗>𝑖𝑖

𝐹𝑃𝑝𝑝 = ∑∑[𝐿𝑖 = 𝐿𝑗 ∧ 𝐺𝑖 ≠ 𝐺𝑗]

𝑗>𝑖𝑖

𝐹𝑁𝑝𝑝 = ∑∑[𝐿𝑖 ≠ 𝐿𝑗 ∧ 𝐺𝑖 = 𝐺𝑗]

𝑗>𝑖𝑖

𝑇𝑁𝑝𝑝 = ∑∑[𝐿𝑖 ≠ 𝐿𝑗 ∧ 𝐺𝑖 ≠ 𝐺𝑗]

𝑗>𝑖𝑖

 

This compares the labels of every pair of pixels to see if they match in the labeled image and the ground 

truth image. The 𝑇𝑃 and 𝑇𝑁 values count the number of accurately segmented pixel pairs. The 𝐹𝑃 counts 

the number of under-segmented pixel pairs and 𝐹𝑁 counts the number of over-segmented pixel pairs. 

The original Rand metric was calculated as the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 equation above but using the pairwise pixel 

values. The adapted Rand metric is 1.0 − 𝐹𝑣𝑎𝑙𝑢𝑒 using the pairwise pixel values (Arganda-Carreras, 

Seung, Vishwanathan, & Berger, 2013). The G-mean value can also be used for the same reasons above 
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but using the pairwise pixel values. For the project the G-mean value is used as it is symmetric with respect 

to positive and negative samples. 

When comparing G-mean values, 1-tailed Student’s T-test was used to determine significance. 

Depending on the variances of the values being compared, either a homoscedastic or heteroscedastic 

type is used. 

5.6 Endoplasmic Reticulum Segmentation 

ER are segmented using a basic threshold of the image, after removing segmented mitochondria 

and cell membranes. ER are dark in the EM images and the other structures that share the same gray 

levels are the cell membranes and mitochondria. Thus, dark pixels in the image after subtracting any pixel 

that is either a mitochondria or cell membrane are extremely likely to be ER. Thus, all gray values less than 

65 (out of the range 0 to 255 for unsigned 8-bit images) are labeled as ER. 

5.7 GeoEM 

GLIA generates a cell label for each pixel in the image. These label images are converted to 

contours which circumscribe each unique label, an IMOD model, and then an IMOD polyhedral mesh as 

described in section 5.4. The volume of each segmented object is found using the command imodinfo 

-c and this information is used to select possible candidates for analysis with geoEM. The largest objects 

(but not the object representing the background) were extracted to new models with imodextract. 

The meshes from these models were then converted to the more portable format OBJ using the 

imod2obj program. Care must be taken as IMOD uses an unusual standard with the middle of the first 

voxel is located at (0.5, 0.5, 0) instead of (0.5, 0.5, 0.5). Additionally, this process has not yet accounted 

for the fact that the axial resolution is much larger than the lateral resolution. Fixing these problems can 
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be done at once by transforming every vertex in the OBJ file by first translating it by (0, 0, 0.5) and then 

scaling it by (5.2, 5.2, 35) for the neuropil dataset. This was completed using a simple Python script. 

At this point the mesh of an individual cell has been extracted into an OBJ file and properly 

translated and scaled. However, before it can be analyzed it must be repaired and refined. The refinement 

uses isotropic remeshing with a target edge length of 200 nm. 

After the mesh is prepared then it is analyzed in 3D, along with the label images for the 

mitochondria or ER, using the geoEM program and the calculated values are saved along with a copy of 

the mesh that has each of the slices of the mesh colored according to its value. GeoEM uses 3 skeleton 

vertices per slice, giving a good balance between quality and consistency in the values. 
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6 Results 

In the first few sections the results of PyCHM will be discussed. First the improvements to accuracy 

and the use of new features such as the Frangi filter and masking are examined. Then the improvements 

to the speed and memory usage of both training and testing of PyCHM are discussed. These sections are 

followed by the results of GLIA in automatic segmentation of neurons from dense neuropil and geoEM on 

manually and automatically segmented neurons with both mitochondria and ER organelle information. 

6.1 CHM Accuracy 

The data suggest that the new implementation of the CHM-LDNN algorithm in Python, PyCHM, 

increases the accuracy of the results over the previous MATLAB implementation. Even when using PyCHM 

with the MATLAB compatible set of options (i.e. no normalization and with the Gabor filter but without 

the Frangi filter), the G-mean values typically improved slightly (lysosomes without subsampling and 

mitochondria with or without subsampling significant at 𝑝 < 0.01). This is can be attributed to the 

corrections in the various filters and the reduction of edge and seam effects. However, the new set of 

normalization and filter options can be used to improve the results even more for some datasets as shown 

in Table 6.1. When only looking at the MATLAB results, all datasets significantly benefitted from using 

subsampling (SS) as 𝑝 < 0.001 except the nuclei dataset (average G-mean 0.9864 vs 0.9863 without and 

with subsampling respectively, 𝑝 = 0.46). In fact, the other datasets averaged a 0.015 increase in average 

G-mean with subsampling. The atypical results for nuclei could perhaps be explained by the fact that 

nearly half of the pixels in the nuclei training dataset are labeled and thus close to balanced between 

labeled and unlabeled pixels. 

PyCHM has several additional options to explore and the optimal set was found using the best 

average G-mean value after 3 runs then 7 additional runs were performed with the optimal set of options. 
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All datasets except lysosomes performed best with no normalization, although these same datasets also 

gave the best results without the Gabor filter, which was the driving force behind adding normalization to 

the filters. The lysosome dataset instead did best with the min-max normalization along with using the 

Gabor filter. The same set of filters that did not use Gabor or normalization also preferred subsampling 

while lysosomes did not use subsampling. Like with the MATLAB version, use of subsampling with the 

nuclei dataset was not significantly significant (average G-mean 0.9879 vs 0.9880 without and with 

subsampling respectively, 𝑝 = 0.24). The nuclei dataset was the only dataset that did not get the best 

results while using the Frangi filter, but the difference was not significant (average G-mean 0.9880 vs 

0.9877 without and with the Frangi filter, 𝑝 = 0.089). 

6.1.1 Masking 

The new masking feature of PyCHM was explored by using a mask to only train on the central 

360 × 360 and 400 × 400 regions of the organelle datasets but still provide the entire training dataset 

so that the border pixels can be used to calculate the features for each pixel. The accuracy of these models 

Table 6.1. CHM and PyCHM Accuracy on organelle datasets. Results are averaged from 10 training/testing runs. 

The optimal options were determined by using 3-10 runs with every combination of settings and selecting the 

set of options with the highest average G-mean value. The MATLAB version can optionally use subsampling (SS) 

but always uses no normalization and the Gabor filter. PyCHM has various normalization methods (none, min-

max, mean-std, median-mad, or iqr), can optionally use subsampling (SS), and additional filters (Gabor and 

Frangi). Bold values indicate the larger G-mean value between MATLAB and Python versions, significant at 𝑝 <

0.005. 
 

Organelle CHM Version Optimal Options Accuracy F-value G-mean 

Lysosomes 
MATLAB none, SS, Gabor 0.996 0.554 0.948 

Python min-max, Gabor, Frangi 0.958 0.162 0.970 

Mitochondria 
MATLAB none, SS, Gabor 0.969 0.487 0.952 

Python none, SS, Frangi 0.968 0.481 0.955 

Nuclei 
MATLAB none, Gabor 0.984 0.975 0.986 

Python none, SS 0.986 0.978 0.988 

Nucleoli 
MATLAB none, SS, Gabor 0.992 0.868 0.968 

Python none, SS, Frangi 0.989 0.835 0.980 
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was compared against cropped versions of the training data which prevents the use of this border region 

from being used for feature extraction which than uses a reflection of the image data along the borders. 

The data in Table 6.2 indicates that masking has no effect in this situation for any of the datasets. 

Sometimes it produced worse results but always remained quite close to the cropping results. It is within 

the range of values seen by changing the size of the training dataset. The surprising result here is that with 

MATLAB the much smaller training sets can produce better results overall. For example, the average G-

mean value continually improved for lysosomes and mitochondria as the dataset size was decreased. 

These datasets have the fewest labeled pixels in the training datasets, so the increase in labeling 

percentage provided by shrinking the dataset, bring the count of labelled and unlabeled pixels closer to 

balanced, is likely the reason they benefited from the smaller datasets. However, this effect does not 

occur with PyCHM in any of the explored cases. 

Table 6.2. Masking usage on organelle datasets. The results of using the central 360 × 360 and 400 × 400 

regions of the organelle datasets, either by cropping them before running training or using masking during 

training (which then includes the border data during feature extraction but not during the actual training). Values 

are averaged from 10 runs using the optimal settings per Table 6.1. Bold values indicate the larger G-mean value 

for an organelle and image size. 
 

 

Central 
𝟑𝟔𝟎 × 𝟑𝟔𝟎 𝟒𝟎𝟎 × 𝟒𝟎𝟎 

Organelle CHM Acc. F-value G-mean Acc. F-value G-mean 

Lysosomes 

MATLAB Crop 0.995 0.481 0.962 0.996 0.530 0.953 

Python 
Crop 0.981 0.208 0.979 0.972 0.165 0.976 

Mask 0.996 0.523 0.949 0.996 0.542 0.948 

Mitochondria 

MATLAB Crop 0.969 0.488 0.943 0.971 0.499 0.940 

Python 
Crop 0.969 0.488 0.942 0.971 0.502 0.943 

Mask 0.968 0.476 0.940 0.968 0.479 0.944 

Nuclei 

MATLAB Crop 0.981 0.971 0.983 0.983 0.974 0.985 

Python 
Crop 0.983 0.974 0.985 0.984 0.976 0.986 

Mask 0.980 0.970 0.983 0.981 0.971 0.984 

Nucleoli 

MATLAB Crop 0.982 0.750 0.982 0.990 0.836 0.972 

Python 
Crop 0.984 0.770 0.966 0.987 0.805 0.969 

Mask 0.982 0.741 0.966 0.984 0.773 0.969 
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Masking also greatly increases memory usage, thus creating a border using masking is not always 

optimal as it does not improve results and uses more memory. However, in other situations it may still be 

useful to mask out a border when the training set is not rectangular. This means that not every pixel within 

a sub-volume needs to be labelled, only the ones under the mask. This could be used to create a system 

where users only need to indicate small seed areas to get a training set started. 

Masking was also attempted with the neuropil dataset by first segmenting the mitochondria and 

then masking them out before segmenting the cell membranes. During training masking was also used to 

ignore the mitochondria. When restricting the options to always use median-mad normalization, the best 

cell membrane detection was found using subsampling, the Frangi filter, and without the Gabor filter 

resulting in an average G-mean of 0.892 across 10 runs using the split training/testing neuropil dataset. 

When using masking, the best accuracy was also found when using subsampling, the Frangi filter, and 

without the Gabor filter. The mitochondria data used no subsampling or Gabor filter but did include the 

Frangi filter. The data strongly suggests that the masking process improved the G-mean (𝑝 < 10−8); in 

fact the average G-mean was 0.916 across 10 runs – an increase of 0.026 over unmasked runs. This great 

improvement in accuracy comes at a cost however since two separate structures need to have training 

sets manually segmented and the training process needs to be run twice, once for each dataset. The 

testing phase is also twice as long since it will need to first be tested for one of the labels and followed by 

the second label. 

The best mitochondria settings for masking actually segmented the mitochondria the worst 

according to the G-mean values. This may mean that it does best when the previous mask is a bit under-

segmented but it also may be unique to this combination of labels. Until more evidence is found, if the 

first label is used for anything besides masking than additional training and testing may be required for 

the different purposes. Again, this increases the time and memory needed to perform the segmentation. 
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Due to the sheer number of settings possible, there are a number of combinations of settings which were 

not explored during this project. 

6.2 CHM CPU and Memory Usage 

The conversion of CHM from MATLAB to Python also brought significant changes in CPU and 

memory usage, typically showing major improvements for both. The training phase saw mild 

improvements (16% to 33% faster and up to 40% less memory usage, detailed in Table 6.3) but the 

testing phase saw major improvements (10𝑥 to 52𝑥 faster and up to 46% less memory usage, detailed in 

Table 6.7). Most importantly, the testing improvements have brought the speed of CHM up to the speed 

of acquisition of images from SBFSEM when using common desktop hardware. The filters chosen during 

the training process effect both the training and testing speed and memory usage, with the Gabor filter 

having a very large negative impact on both. 

6.2.1 Training 

Even though the Python version of CHM does improve the speed of training and reduces the 

memory required for the training of a CHM model in most cases, it is still very expensive and requires 

specialized hardware such as having 90+ GiB of memory which is not common. Training of machine 

learning systems is notoriously expensive in terms of memory and time, so this is not an unexpected result. 

Overall, PyCHM requires one fifth to one third less time than the original when only using one 

thread as shown in Table 6.3. The original MATLAB CHM benefitted more from additional threads, 

however even when it was given 4 threads it was still significantly slower than PyCHM with a single thread 

(10% to 22% faster). Additionally, both versions do not utilize symmetric multithreading well (e.g. Intel’s 

Hyperthreading, shown when using 8 threads in Table 6.3). 
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Memory utilization results, also in Table 6.3, are a bit more mixed. When not utilizing 

subsampling, PyCHM needs only 60% of the memory required for the original CHM (although that is still 

109 GiB). When using subsampling, the original CHM actually used less memory than PyCHM, by 8%. For 

both, the number of threads did not significantly influence the amount of memory used. 

PyCHM also introduced several options including different filters and normalization of feature 

vectors whose efficiencies are compared in Table 6.4. The default normalization option, median-mad, is 

slightly more expensive in computation (1%) than the other methods. It is also 4% more memory intensive 

than no normalization (min-max normalization takes no significant extra memory or time over no 

normalization). Using iqr normalization requires nearly 10% more memory than when median-mad 

normalization is used. The new Frangi filter only adds a small amount of time and memory usage (3% and 

2% respectively). On the other hand, removing the Gabor filter reduces the computational time by more 

than one third and the memory usage by one quarter. This means that unless the Gabor filter actually 

helps improve the accuracy of a particular model, which it rarely does in the tests performed, it should be 

removed as this reduces the time by hours and makes the training process usable on more machines. 

Table 6.3. CHM training CPU and memory usage. Run with and without subsampling (SS). 

MATLAB CHM uses Gabor filter. PyCHM uses median-mad normalization and Gabor filter. 

Wall time is the real-world time that elapsed during the program run. 
 

 

Threads 

Wall Time (hh::mm:ss) Max Memory Usage (GiB) 

MATLAB Python Change MATLAB Python Change 

w
/o

 S
S 

1 20:16:37 16:06:00 -21% 179.55 108.47 -40% 

2 18:35:47 15:25:04 -17% 180.00 108.48 -40% 

4 17:46:17 14:54:43 -16% 180.02 108.52 -40% 

8 18:15:39 14:44:05 -19% 180.05 108.63 -40% 

w
/ 

SS
 1 9:09:39 6:07:50 -33% 90.82 98.56 +9% 

2 8:09:16 5:56:40 -27% 91.32 98.57 +8% 

4 7:29:42 5:46:31 -23% 91.31 98.62 +8% 

8 7:23:00 5:41:50 -23% 91.25 98.72 +8% 
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In addition to dedicated training runs to measure the time and memory usage in a controlled 

environment, the timing of other training runs was performed but on shared and variable resources with 

training sizes that ranged from 368,640 pixels to over 20 GP with 1% to 46% of the pixels labeled. 

Nonetheless, the results are informative about the trends of the usage across varying training dataset 

sizes. Without subsampling, the memory usage is extremely linear with the number of pixels in the dataset 

and independent of the hardware being used as shown in Table 6.5. The Python version, PyCHM, is saving 

at least 39% in memory usage compared to the MATLAB version. It also shows that overall removal of 

the Gabor filter saves even more memory when not subsampling (about 30%) and that the Frangi filter 

only requires an additional 1% to 2% of memory. 

The timing of the runs without subsampling is also quite linear (but with some small fluctuations 

depending on the percent of the pixels labeled) and shows that PyCHM is three to four times faster than 

the MATLAB version depending on the settings. Additionally, the trends confirm that the Gabor filter takes 

a large portion of the time (around 40%) and that the addition of the Frangi filter adds only a small amount 

of time (2% to 4%). 

Table 6.4. PyCHM training filter and normalization CPU and memory usage. 

These use 4 threads, subsampling, and the default normalization (median-mad) 

and filters plus Gabor unless otherwise noted. Baseline is the default settings for 

comparison. Wall time is the real-world time that elapsed during the program run. 
 

Parameters 
Wall Time 

(hh::mm:ss) Change 
Memory 

(GiB) Change 

Baseline 5:46:31  98.62  

Filter: +frangi 5:56:35 +3% 100.25 +2% 

Filter: -gabor 3:49:07 -34% 73.47 -25% 

Normalization: none 5:41:39 -1% 94.34 -4% 

Normalization: min-max 5:42:44 -1% 94.34 -4% 

Normalization: mean-std 5:41:47 -1% 98.62 0% 

Normalization: iqr 5:43:37 -1% 107.79 +9% 
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When subsampling is used the memory usage and times are not nearly as predictable and the 

percent of the pixels that are labeled has a much greater impact on the resource usage as shown in Table 

6.6. The results indicate that when there are more pixels that are labeled in the dataset, more memory 

and time it required to train. Many of the observed trends of the non-subsampled training runs can also 

be seen here, albeit much less pronounced. One important observation is that even though PyCHM took 

more memory for the lysosome data studied in detail when subsampling, that is not always the case since 

the MATLAB CHM has a much steeper memory slope than Python. The approximate crossover point is 

around 8.3 MP, but this does not take into account percent of pixels labeled so individual datasets around 

there may be on either side. 

Table 6.6. CHM training CPU and memory usage trends with subsampling. These use the default normalization 

(median-mad) for Python and the default filters plus the extra filters as noted. 
 

Memory Linear Regression Time Linear Regression 

CHM 
Version Extra Filters 

Slope 
(KiB/px) 

Intercept 
(GiB) 𝑹𝟐 

Slope 
(ms/px) 

Intercept 
(hours) 𝑹𝟐 

MATLAB Gabor 11.12 -2.17 0.845 2.1 10.6 0.840 

Python 

Gabor, Frangi 6.26 36.42 0.858 1.5 3.1 0.797 

Gabor 6.15 35.98 0.857 1.4 3.1 0.743 

Frangi 5.10 22.94 0.918 1.1 1.9 0.801 

 4.98 22.55 0.917 1.1 1.7 0.857 

 

Table 6.5. CHM training CPU and memory usage trends without subsampling. These use the default normalization 

(median-mad) for Python and the default filters plus the extra filters as noted. 
 

Memory Linear Regression Time Linear Regression 

CHM 
Version Extra Filters 

Slope 
(KiB/px) 

Intercept 
(GiB) 𝑹𝟐 

Slope 
(ms/px) 

Intercept 
(hours) 𝑹𝟐 

MATLAB Gabor 15.13 -506 0.99991 11.4 2.0 0.933 

Python 

Gabor, Frangi 9.23 -235 0.99999 4.1 13.4 0.989 

Gabor 9.12 -233 0.99999 4.0 14.1 0.990 

Frangi 6.41 -242 0.99998 2.9 9.0 0.986 

 6.30 -244 0.99998 2.8 6.3 0.986 
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6.2.2 Testing 

While training had modest improvements in both computational time and memory usage, testing 

is significantly more efficient using PyCHM as shown in Table 6.7. When using a single task, PyCHM can 

operate at 22 pixels per millisecond, which is 21x faster than the original CHM for 1 MP images and 15x 

faster for larger images. In these situations, PyCHM only requires 2.2 GiB and 3.3 GiB, which is 46% and 

20% less than the MATLAB CHM. This is a massive reduction in resources required for testing. 

The original CHM did not increase memory usage significantly when increasing the number of 

tasks due to the way the blocks were divided up and processed in parallel. However, the redesigned block 

processing in PyCHM requires significantly more memory as the number of tasks is increased, but this is 

required to eliminate edge effects along the seams between the blocks while maintaining high 

throughput. However, even for large images with large numbers of tasks, the amount of memory required 

is quite reasonable even for off-the-shelf computer hardware. 

On the small 1 MP image, MATLAB barely improved with increased parallelism while PyCHM’s 

performance scaled well with the increase in tasks. On the large 40 MP image, the MATLAB CHM did 

benefit significantly from the increased parallelism, however PyCHM had a corresponding increase in 

performance (until Hyperthreading was used at 8 tasks). With four tasks, PyCHM was able to process 74.2 

Table 6.7. PyCHM testing CPU and memory usage. These use a model created with 

subsampling and the Gabor filter but all other settings as default. The 1 MP image is 

1000x1000 pixels. The 40 MP image is 8000x5000 pixels. 
 

 

Tasks 

Speed (px/ms) Max Memory Usage (GiB) 

MATLAB Python Speedup MATLAB Python Change 

1
 M

P
 1 1.03 21.7 21x 4.11 2.21 -46% 

2 1.13 40.0 35x 4.51 4.15 -8% 

4 1.29 66.7 52x 4.49 7.93 77% 

8 1.28 66.7 52x 4.46 7.93 78% 

4
0

 M
P

 1 1.44 21.4 15x 4.20 3.34 -20% 

2 2.78 39.9 14x 4.53 5.48 21% 

4 5.19 74.2 14x 4.55 9.75 114% 

8 8.01 88.3 11x 4.54 18.26 302% 
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px/ms using less than 10 GiB (many common desktop computers have 16 GiB of RAM). SBFSEM machines 

have dwell times around 10-30 μs/px which is right around this speed of 13 μs/px. Thus, at this point it is 

possible to run PyCHM testing in real-time with the acquisition of images from a typical SBFSEM. 

PyCHM supports multiple threads in addition to multiple tasks. When doubling the number of 

threads but keeping the number of tasks the same, the speed is increased by approximately 3% (ranging 

from 2.4% to 4.5%). This 3% increase in speed is accompanied by a 50-60% increase in CPU utilization. 

Thus, it is only slightly faster while utilizing significantly more CPU time. When utilizing simultaneous 

multithreading (e.g. hyperthreading), the extra threads decrease the performance. However, unlike with 

tasks, memory usage does not significantly change with the increase in the number of threads. So, if there 

are physical cores available, they should be used, even if the machine does not have extra memory. 

The filters and normalization chosen during training effect the speed and memory usage for 

testing as well with results shown in Table 6.8. In general, the speed change is greater than with training 

while the memory change is smaller. 

As was done with training, the testing runs were also performed over a wide range of dataset 

sizes, from 6144 pixels per image to 6.3 MP per image as shown in Figure 6.1. These results strongly 

suggest that PyCHM testing scales extremely well with the size of the data and that the number of tasks 

chosen is what primarily dictates the amount of memory required. When using 2 tasks, there is a linear 

Table 6.8. PyCHM testing filter and normalization CPU and memory usage. These 

use models created using 4 threads, subsampling, and the default normalization 

(median-mad) and filters plus Gabor unless otherwise noted. Testing values 

averaged over 1, 2, and 4 tasks each with 1 thread. 
 

Parameters 
Wall Time 

Change 
Memory 
Change 

Filter: +frangi +9% +1% 

Filter: -gabor -40% -18% 

Normalization: none -4% 0% 

Normalization: min-max -1% 0% 

Normalization: mean-std 0% 0% 

Normalization: iqr -1% 0% 
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portion as the one and only task uses increasing resources until the block size is reached (512 × 512) at 

which point the growth slows down. However, since the second task is still working on increasingly more 

pixels as the image size increases there is still significant growth in GiB per px. Finally, once the second 

task is fully utilized as well, then the growth slows down considerably. This slow growth only adds 53 bytes 

per pixel which means that on an off-the-shelf machine with 16 GiB of RAM, a 225 MP image could easily 

be processed with 2 tasks. 

Even though memory usage has a multi-linear relationship, timing is still a simple linear 

relationship when testing as shown in Table 6.9. These show that PyCHM is 12𝑥 to 24𝑥 faster than 

MATLAB’s CHM even when using the more expensive median-mad normalization. Additionally, these 

trends show that PyCHM also have 1/10th the startup time then the MATLAB version has. 

 
Figure 6.1. PyCHM testing filter and normalization CPU and memory usage. These use models created using 4 

threads, subsampling, and the default normalization (median-mad) and filters unless otherwise noted. Testing values 

averaged over 1, 2, and 4 tasks each with 1 thread. 
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6.3 GLIA 

Several different combinations of settings for GLIA and for the generation of cell membrane 

probability maps by CHM for use with GLIA were explored. The CHM trained models using cell membranes 

(without masking) that were created with median-mad normalization, subsampling, and the Frangi filter 

(but without the Gabor filter) were used. GLIA used the parameters 𝜎 = 1.25, 𝑡𝑤 = 0.05, 𝑡𝛼1 = 50, and 

𝑡𝛼2 = 250. These settings were chosen using finding settings that produced high G-mean values on the 

split neuropil training/testing dataset and through manual examination of the results when trained on the 

full combined neuropil dataset to confirm the presence of accurately segmented entire cells. When run 

on the split training/testing dataset, the G-mean of this combination of settings is 0.947 using the pairwise 

accuracy measurement. It is possible that changing the normalization setting, which was not 

experimented with for this part, could improve these results. 

The trained CHM and GLIA models from the combined dataset were used to segment cells in other 

sub-regions of the neuropil dataset. These include a 750 × 750 × 110 px region (61.9 MP, 

3.9 × 3.9 × 3.85 μm, 58.6 μm3) and a 1615 × 1615 × 240 px region (626 MP, 8.398 × 8.398 × 8.4 μm, 

592 μm3). A 1.5 GP region was attempted as well but was unable to be completed with the resources 

available. The pre-merge step was unable to be completed within 48 hours on this dataset. The pre-merge 

step took 23.7 minutes on average to complete for the 626 MP dataset so it was surprising to find that it 

Table 6.9. CHM testing time usage trends. Testing used models trained with 

the default normalization (median-mad) for Python and the default filters plus 

the extra filters as noted. The runs were performed with 2 tasks. 
 

Time Linear Regression 

CHM 
Version Extra Filters 

Slope 
(μs/px) 

Intercept 
(secs) 𝑹𝟐 

MATLAB Gabor 614 47.9 0.9996 

Python 

Gabor, Frangi 50 4.4 0.9978 

Gabor 47 5.3 0.9962 

Frangi 31 2.8 0.9983 

 26 3.0 0.9972 
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took longer than 48 hours with a dataset only 2.4𝑥 as large. Upon further examination, the average time 

was misleading as the time ranged from 1.5 minutes to 2.8 hours. Other steps had much more consistent 

time usage, such as watershed requiring between 22.1 and 32.9 min with an average of 28.8 min for the 

626 MP dataset. When performed on the 1.5 GP volume this step ended up taking about 1.25 hours which 

is about 2.4𝑥 the amount of time. 

Additionally, the merge-order tree construction and boundary classifier feature extraction steps 

took a long and highly variable amount of time (both taking several hours) for the 626 MP dataset and 

likely would have followed the pre-merge pattern of dramatically increasing their time requirements 

when moving to the 1.5 GP volume which made that dataset completely out of reach with the available 

computational resources. 

Due to GLIA learning the size of cells from the training set it is given, it is unable to segment cells 

outside of the trained range in any meaningful way. While the training set used was specifically designed 

to have both small and large cells in it so that GLIA would have a diverse set of inputs to learn from, the 

size of the training set itself limited how large and how many different examples could be present. Due to 

this, GLIA was unable to automatically segment any of the larger cells, including any of the major dendritic 

trunks within the dataset. It primarily segmented small processes through the datasets while classifying 

the large cells as part of the background. This problem is understandable because the original publication 

of the program only used datasets that had roughly equal sized training and testing sets were used. 

The automatically segmented 626 MP volume in shown in Figure 6.2. The hole where a large 

dendrite goes through the volume is very obvious. However, the small dendrites are quite clear and well 

segmented with a few mistakes where one cell is split in two or two are combined into one. 
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6.4 GeoEM 

Once a 3D neuron model is created with branches its geometrical properties can be analyzed with 

geoEM. Since no branching dendrites could be automatically segmented due to the limitations of GLIA, a 

 
 

Figure 6.2. Automatically segmented neuropil volume. 592 μm3 (626 MP) volume of rat neuropil automatically 

segmented using PyCHM and GLIA using a manually segmented 19.1 μm3 (20.2 MP) training dataset. Scale bar is 

1 μm. The hole is because GLIA is unable to segment cells larger than any of the cells within the training set and it 

was marked as background. All objects smaller than 0.024 μm3 have been removed from the display. 
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major trunk of a dendrite and along with all its branches within the entire dataset were manually 

segmented for use with geoEM. This neuron model, including the partial soma, has a volume of 3537 μm3 

and a surface area of 2241 μm2 after repairing and refining. The surface-area-to-volume ratio (SVR) is 

0.63 μm−1 which is less than 1 and being dominated by the large volume and low surface area of the 

soma. Since the soma is not needed for the analysis of the dendritic branching and can cause issues with 

the analysis, most of the soma was removed from the model. With most of the soma removed, the model 

has a volume of 1024 μm3 and a surface area of 1299 μm2 which gives an SVR of 1.27 μm−1. Overall, the 

isotropic remeshing with a target edge length of 0.2 μm resulted in an average length of 0.18 μm and the 

final model had 94,262 faces, 282,786 edges, and 47,133 vertices. The neuron has 3 branches coming 

off of the main trunk and two of those branches form additional branches. Sometimes geoEM mistakes 

the more pronounced dendritic spines as branches as well. 

The mitochondria were automatically segmented with PyCHM using median-mad normalization, 

subsampling, and both the Gabor and Frangi filters. When run on the split training/testing dataset these 

settings achieved an average G-mean of 0.962. The ER were segmented by masking out the mitochondria 

and selecting everything with a gray value less than 65 out of 255. Since there was no cell membrane 

segmentation of this data, some of those may be misclassified as ER. However, they should all be outside 

of the model given and thus should have little influence on the results. 

The density of both mitochondria and ER is relatively high near the soma and tapers off slightly 

towards the distal tips as shown in Figure 6.3 and Figure 6.4. There are local regions that have increased 

or decreased densities but no obvious correlation with distance as shown in Figure 6.5 and Figure 6.6. 
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Figure 6.3. Density of mitochondria in a neuron. Shown as a percent of the local volume. The soma of the neuron 

is to the left in the image. The main trunk continues out of the dataset to the right and below. The skeleton is 

shown inside the mesh as a black line. 
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Figure 6.4. Density of ER across a neuron. Shown as a percent of the local volume. The soma of the neuron is to 

the left in the image. The main trunk continues out of the dataset to the right and below. The skeleton is shown 

inside the mesh as a black line. 
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Figure 6.5. Density of mitochondria relative to branch point locations. The local volume of mitochondria changes 

with the distance to the soma. Data from 156 slices in one partially segmented dendritic tree. Red circles indicate 

branch points. 
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Figure 6.6. Density of ER relative to branch point locations. The local volume of mitochondria changes with the 

distance to the soma. Data from 156 slices in one partially segmented dendritic tree. Red circles indicate branch 

points. 
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7 Future Directions 

Based on the outcome of this project, several suggestions for future research, both in technique 

and application, can be made. This chapter begins with how the tools developed here can be used for 

several different neuroscience applications. This is followed by a look at the many possible avenues for 

improvement in the automatic segmentation pipeline which would likely improve the efficiency, accuracy, 

and usability for the average neuroscientist.  

7.1 Neuroscience 

The primary goal of this project was to assess and develop viable ways to automatically segment 

and quantitatively analyze high-resolution EM images of neuropil. Towards that goal, a few basic metrics 

of neuron geometry and organelle localization were assessed in a 1024 μm3 neuronal dendrite volume 

from the hippocampus CA1 region of a rat brain. Now that the tools exist they need to be more rigorously 

verified and eventually they can be used to gather more detailed information about many other 

neurological systems. 

One immediate application is to use these tools to study the morphology around branch points 

within the hippocampus and the distribution of mitochondria and ER. A larger sample size than the one 

single neuron used in this project needs to be investigated to determine the trends. Additionally, animals 

that developed in different environments, such as enriched and impoverished environment, can be 

studied to look for differences in the morphology and organelle distribution. It is already known that there 

are electrochemical differences within the neurons in the animals from different developmental 

backgrounds (Losonczy, Makara, & Magee, 2008), the next step is to discover what is causing the 

differences. 



 

147 

More detailed examination of the effect of taper on the propagation of signals through dendritic 

trees needs to be done. This has been accomplished at the light microscopy level, but with using non-

automated techniques dependent on human interpretation of the data (Ferrante, Migliore, & Ascoli, 

2013). However, the methods developed here could be used to make a more robust analysis of the taper 

property of the branches. 

Both of the studies described above were originally done with light microscopy where the samples 

remained alive and exhibited behaviors. That is not possible with samples prepared for EM. However, a 

correlated light and electron microscopy (CLEM) study could be performed that identifies branch points 

with unique electrophysiological property using light microscopy and then utilizes EM to study the 

underlying structure of these branch points. 

While the metrics that geoEM currently provides are useful, several additional metrics would be 

required to study the above. The two metrics required for the above studies would be: 1) calculating the 

taper of each slice (Ferrante, Migliore, & Ascoli, 2013) and 2) the location of the organelles relative to the 

cell membrane which would indicate subsurface cisternae and other tethered structures participating in 

signal propagation along the cell membrane or organelles near the medial axis of the dendrites which are 

more likely for transport of enzymes throughout the dendrites. 

7.2 Dendritic Tree Simulations 

One longer term goal is to modify geoEM to for the creation of simulation models that can be 

high-resolution and high-accuracy in regions of interest around the branch point while also providing 

extremely efficient calculations for long-range single down branches. This could be done utilizing a 

combination of the simulation environments MCell and NEURON. MCell is a Monte Carlo simulation 

environment for cellular environments, simulating individual ion channels, buffer proteins, and even the 

ions themselves (Kerr, et al., 2008). While MCell has an impressive ability to create highly realistic 
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simulations, this comes at the cost of long computational times and entire dendritic trees are too large 

for simulation currently. On the other hand, NEURON simulates at the level of compartmental Hodgkin-

Huxley-style neurons and can efficiently simulate the electrophysiology of entire complex dendritic 

branching structures (Carnevale & Hines, 2006). However, it lacks the ability to efficiently or accurately 

simulate detailed interactions of buffers, kinases, and ion channels. Since we are interested in the branch 

points, the MCell environment could be used to simulate the dynamics occurring within the immediate 

vicinity of a branch point while the NEURON environment could be used to simulate the electrical 

properties along the branches, connecting the branch points together. 

One challenge in bridging these two environments is how they treat the space that they are 

simulating. MCell, being high detailed, uses arbitrary 3D polyhedral meshes like those generated by 

segmenting EM data. NEURON operates at a lower level of detail and thus cannot handle meshes but 

instead works with a connected series of truncated cones (which are just cylinders but can have a taper 

with them, i.e. different size ends). This is where the geoEM tool comes into play since it converts a 3D 

mesh into a series of slices which are close approximations of truncated cones. The same 3D mesh could 

be divided up with the branch point slices being simulated with MCell and the other slices being 

approximated with truncated cones and simulated using NEURON. 

7.3 Segmentation Improvements 

Each step in the process of converting the raw data from the microscope to getting quantitative 

data about the geometry of dendrites and location of organelles has room for further exploration. Here 

we will go through each of those steps describing future directions and improvements for each of them. 



 

149 

7.3.1 Pre-Processing 

All of the microscopy data is pre-processed by using exact histogram equalization to increase the 

contrast in the images. However, exact histogram equalization methods suffer from the inability to use 

the same transform across multiple images. Thus separate slices from a single image volume will undergo 

slightly different transformations meaning that that the automatic segmentation algorithms may see 

them differently. It may be possible to lift this limitation of exact histogram equalization with an offline 

algorithm to establish the strict ordering of all pixels across large amounts of data and separate images.  

Although it would be preferred to have all images in a 3D image stack undergo the same exact 

transformation this is not optimal because of technical issues with acquiring SBFSEM. In SEM the sample 

builds up a negative charge over time due to the continual bombardment by electrons. This charge causes 

future electrons to behave not as consistently, called electron beam drift. This effect is most pronounced 

in SBFSEM since the sample undergoes much more prolonged exposure to the electron beam resulting in 

noticeable differences in contrast between the first and last slices of an image stack. This charge build-up 

does affect individual SEM acquisitions as well as individual slices from a 3D stack of images acquired in 

SBFSEM, just to a much lesser extent resulting in a slightly different contrast level in each corner of the 

image. 

There are several physical methods being actively used and some being developed to mitigate 

electron beam drift so that that the raw images themselves do not have as pronounced of a contrast 

difference, however they are not perfect (Bouwer, et al., 2016). The problem could be partially overcome 

computationally by using a technique called adaptive histogram equalization (AHE) (Hummel, 1977) or 

the extension of it: contrast limited adaptive histogram equalization (CLAHE) (Zuiderveld, 1994). In AHE 

the source histogram is calculated per-pixel based on its neighborhood. The size of the neighborhood 

determines at what scale contrast is enhanced and at what scales contrast is reduced. At scales smaller 

than the neighborhood size contrast is enhanced while at larger scales it is reduced. If too small of a scale 
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is chosen AHE has the tendency to greatly amplify noise, the ultimate in increasing contrast at a small 

scale. At large enough scales it becomes nearly equivalent to traditional histogram equalization. The 

CLAHE extension also reduces the amplification of noise by limiting the amount of contrast enhancement 

that is possible in any neighborhood. 

To make AHE more computationally feasible for large images the image is separated into tiles the 

size of the neighborhoods and the histogram for each tile is calculated. Then a linear interpolation of 

neighboring histograms is performed so that a source histogram can be approximated for every pixel in 

the image. This source histogram is then used to calculate the linear transform for each pixel. 

For a SBFSEM image data stack where we are concerned about the overall drift of the contrast 

and not correcting for local changes in the contrast the neighborhoods, a natural choice would be each 

1/8 of the overall image cube, each neighborhood being one of the corners of the dataset. The histogram 

for each would be calculated and then interpolated for interior points in the cube. This would then be 

accounting for a bilinear drift in the plane of each of the image slices and bilinear drift across slices. With 

neighborhoods this large there is essentially no risk of amplifying noise in the image or being biased 

significantly by local features. Additionally, the memory requirements for storing the complete 

transformation would only be 8 times that of traditional histogram equalization. 

One drawback of AHE and CLAHE is that it can only be used with traditional histogram equalization 

at the moment. However, adapting exact histogram equalization to support offline calculation of the 

transformation as discussed previously could possibly be used with exact histogram equalization as well. 

The linear interpolations would be of the cutoffs used between histogram bins instead of the coefficients 

of the linear transformation. 

All-in-all the ability to use a single exact histogram equalization transformation across many slices 

in a stack of images would increase the reliability of the data by homogenizing local regions. Additionally, 
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being able to use the AHE or CLAHE technique in combination with exact histogram equalization will allow 

increasing the contrast in the image without reducing the amount of information. 

7.3.2 CHM-LDNN 

The core of this entire automatic segmentation is the CHM-LDNN algorithm which performs the 

classification of pixels based on their features. One major improvement to increase the speed of CHM 

would be to make several of the filters and the final evaluation of the model utilize GPU processing 

through CUDA or OpenCL. Many of the filters have had their memory requirements reduced which makes 

them more suitable for calculation on GPUs which frequently have less direct access to memory than the 

CPU. Additionally, since PyCHM has no tiling effects when breaking a larger image into smaller pieces the 

tiles could be automatically sized to work with the memory available on the GPU. 

The filters that currently take the longest to run are Gabor, SIFT Flow, HOG, and Frangi so they 

would be the first targets for porting to the GPU. Gabor is primarily based on Fourier transformations 

which have dedicated libraries for both CUDA (cuFFT) and OpenCL (clFFT) so conversion to GPU would be 

a relatively straight forward. SIFT Flow, HOG, and Frangi filters operate on the image in small local 

neighborhoods and thus could be made to work efficiently on a GPU as well. The other filters could be 

kept on the CPU and run in parallel with the computations on the GPU. 

The final evaluation of the model primarily involves a matrix multiplication, element-wise 

operations, and sum-reduction which are all very well suited to being calculated on a GPU and are well-

studied. The problem with this however is that CHM-testing requires the most memory during the model 

evaluation and thus may not be suitable for running on the GPU due to memory bandwidth speed and 

limited available GPU memory. The training process is very memory intensive and is not easily parallelized 

and thus would not be a good target for porting to the GPU at the moment. 
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Additional improvements would be in adding additional filters to produce features that give the 

learning process more information about different types of textures and objects thus improving the 

results for a wide variety of structures to be segmented. For example, Radon-like features have been 

shown to be able to highlight membranes in EM images (Ritwik, Vázquez-Reina, & Pfister, 2010; 

Seyedhosseini, et al., 2011). The Gabor filter could be replaced by the log-Gabor filter which has been 

shown to perform better in several situations and does not suffer from the same DC problem that the 

standard Gabor filter does (Field, 1987). If it is not replaced then the Gabor filter can be likely improved 

by saving additional information about the complex-space function and removal of the larger kernels as 

those will be automatically captured in higher levels of CHM. Likewise, the Frangi filter may also benefit 

from limiting the number of scales it works at during each level. The SIFT Flow filter was never optimized 

or updated in PyCHM and could use an overhaul. Finally, adding features that used color information, or 

any multi-channel data such as multicolor EM (Adams, et al., 2016), if available, instead of single-channel 

grayscale images would improve the ability to work on color images and having filters that used 3D 

information would allow for improvements in 3D volume datasets. 

The filter normalization process could benefit from additional improvements as well. Several 

more advanced normalization methods may be used that could improve the data being given to LDNN, 

such as using Hampel tanh-estimators (Hampel, 1986) or double sigmoid functions (Cappelli, Maio, & 

Maltoni, 2000) which have been shown to improve results in machine learning systems. Another change 

might be to increase the amount of information about the expected distribution of each feature so that 

the normalization procedure can use this to better perform the normalizations. For the moment, the only 

information given to LDNN about the expected distributions of an individual filter is whether it follows a 

roughly normal distribution, but additional information would make it possible to better adjust it better 

to give LDNN the best opportunity to separate positive from negative samples. 
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In the original CHM paper, the authors showed a proof-of-concept of a multi-labeling system that 

essentially ran CHM in parallel for each label but shared information between the separate labels between 

each level as extra contextual features when working with the Stanford Background dataset 

(Seyedhosseini & Tasdizen, 2015). While this only provided a small increase in quality (less than one 

percentage point increase of G-mean) for that model, other datasets may benefit from it even more (such 

as the Corel subset and Sowerby subset datasets (He, Zemel, & Carreira-Perpinan, 2004)). It could be 

implemented for training by significantly increasing memory usage (for 𝑛 labels using 𝑛-times as much 

memory) but run in parallel (which would be great since the main part of training only runs single-

threaded) or to use just a small amount of additional memory but take significantly more time (for 𝑛 labels 

using 𝑛-times as much time). Additionally, it could be done in such a way to balance the two (memory and 

time) for the current system. Testing time and memory would likely only slightly increase regardless of 

the number of labels. 

The current target values of the training process of 0.1 and 0.9 were arbitrarily chosen in the 

original design of CHM. Preliminary results show that the target values should be pushed closer to 0 and 

1 respectively, possibly even to 0.01 and 0.99 since after testing there are peaks at the target values with 

a steep drop-off towards 0 and 1 with only 0.0005% of values between 0 and 0.01 and 0.99 and 1. This 

means that the possible range of outputs is not being saturated and never reached and thus the targets 

could be pushed further towards the extremes (LeCun, Bottou, Orr, & Müller, 1998). This may improve 

the results as more of the output range would be utilized and, since the 𝑘-means clustering is unaware of 

these target values, the initial weights calculated will be closer to the actual final weights resulting in 

starting closer to the minimum. 

Another area for optimization is in the gradient descent procedure of the LDNN training process. 

The current parameters were chosen since they work but are not necessarily optimal. Further testing 

should be able to determine if the learning rate can be increased (which would reduce the error of the 
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model in fewer iterations). One possibility is an annealed learning rate which is when the rate is initially 

very high and after each iteration the learning rate is decreased. This allows faster convergence combined 

with more refined iterations at the end to find a local optimum (Bach & Moulines, 2011). Likewise 

tweaking of the momentum may prove to be beneficial, such as using the current momentum of 0.5 at 

the start and increasing it to above 0.9 after the initial learning has stabilized (Sutskever, Martens, Dahl, 

& Hinton, 2013). 

Both of those will likely allow faster convergence to a local optimum but may increase the 

susceptibility to overfitting. However, these could be combined with the dropout method to decrease 

overfitting issues, although using dropout for the entire training of a single phase results in a very low 

reduction in error regardless of the number of iterations performed (Hinton, Srivastava, Krizhevsky, 

Sutskever, & Salakhutdinov, 2012). An optimal situation may be to start out using the batched stochastic 

gradient for several iterations with a decreasing learning rate and increasing momentum followed by a 

non-batched (or very small batches such as 10-25 samples per patch) iterations using dropout while still 

modifying the learning rate and momentum. 

Other gradient descent methods that use more advanced learning rate and momentum schedules 

can be tried as well, such as AdaGrad (Duchi, Hazan, & Singer, 2011), ADADELTA (Zeiler, 2012), or RMSProp 

(Tieleman & Hinton, 2012). 

Another aspect that could be further explored is the use of subsampling. For some organelles, it 

was observed that subsampling greatly improves results and in other cases greatly hampers the results. 

In some cases subsampling increases the variability of the results and sometimes it reduces the variability 

of the results. It is possible that these changes are dependent on the ratio of positive samples to negative 

samples, or relative rarity of one of the sets of samples to the other leading to algorithmic bias for one of 

the sets over the other. The subsampling is correcting this in some cases by bringing the number of 

samples of each closer together or even equal at the expense of losing information. Instead of 
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subsampling another approach might improve results even more, such as balancing by over-sampling the 

minority set or under-sampling the majority set (Kubat & Matwin, 1997; Japkowicz, 2000; Lewis & Catlett, 

1994; Ling & Li, 1998) or blending the two as is done with SMOTE (Synthetic Minority Oversampling 

Technique) by Chawla et al (2002). 

7.3.3 Post-Processing 

Currently the post-processing of data from CHM is either a binary thresholding using Otsu’s 

method to automatically determine the threshold or a ternary thresholding using a 3-level Otsu’s method 

followed by hysteresis thresholding to get the binary classification. If the histogram of the data is bimodal 

then binary thresholding should be used and if the data has more than 2 modes then the ternary plus 

hysteresis thresholding should be used. At this point the user responsible for the data must look at it 

themselves and make this determination. A major improvement would be to develop a tool to perform 

the determination automatically. This could possibly be performed using a variation of Otsu’s method as 

well to find out if a 2-level or 3-level division fits better with the data. 

The post-processing performed after CHM to prepare the data for use by GLIA by stretching it so 

that the peaks were not near 0.1 and 0.9 but instead closer to 0.0 and 1.0. Alternative approaches to the 

manipulation could be explored, such as reflecting values outside the range. However, the real goal would 

be to have CHM produce data that was already scaled appropriately as the data from 0.0 to 0.1 and from 

0.9 to 1.0 is ambiguous. 

7.3.4 GLIA 

Since GLIA currently uses LDNN as the machine-learning algorithm, thus suggested directions 

above are all relevant here. Some changes already explored in LDNN for this project such as feature 
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normalization, could be explored for GLIA, while conversely some improvements to GLIA (balancing of 

samples) could be implemented directly in LDNN. 

While this project explored some of the parameters of GLIA, there are significantly more 

parameters that can be adjusted with possibly large changes in the results. Like CHM, additional region 

filters could be added to help the algorithm better identify when to merge regions. One important piece 

of information that is generated by geoEM which could help GLIA form continuous dendritic trees is to 

use the surface area to volume ratio over slices to decide if something is actually neuron-like. 

Finally, with improvements in efficiency implemented elsewhere in this project, the highest 

remaining barrier to segmenting large datasets (besides initial human segmentation for training) is GLIA’s 

inability to efficiently segment large 3D volumes. In particular, the pre-merging and boundary 

classification feature extraction steps do not scale well with the size of the volume. When run on a volume 

that is 2417 × 2595 × 240 (1.5 GP) the pre-merge step alone took longer than 48 hours when run on the 

XSEDE Comet cluster which is the time limit for processes on that cluster. 

7.3.5 GeoEM 

GeoEM needs several more refinements so that it can be used by the general scientist. Foremost 

among these are the need to be more robust in the face of difficult-to-use meshes. As discussed earlier in 

section 7.1, additional metrics can be added to the program. The program can be adapted to generate 

models that bridge the MCell and NEURON simulation environments as discussed in section 7.2. 

7.3.6 Image Processing Pipeline 

The current set of tools available with pysegtools are only accessible via Python scripts or the 

imstack command line program. CHM, GLIA, and geoEM are also only accessible via the command line. 
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Even though all of these programs have been simplified and made more usable, the general researcher 

will not want to go into the command line to use these tools. Giving these tools a graphical user interface 

or a website portal where jobs can be submitted would be a major benefit to the general scientific 

community, making these tools available to all researchers. 

Additionally, any reduction in the amount of training data that needs to be manually segmented 

by an export required would greatly expedite the process. The ultimate goal of the automatic 

segmentation would be to have all data coming from a microscope automatically segmented with minimal 

user intervention, something as simple as indicating a single instance of an organelle on the first slice of 

data. This would require being able to transfer knowledge from previously trained models to a new 

dataset that may have slightly different image properties. 
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Appendix A: Division of Tiles into Groups by PyCHM 

This appendix describes how tiles are divided into groups by PyCHM when requested for parallel 

execution so that each group performs roughly equal amounts of work. 

The algorithm for dividing up the groups always makes each group rectangular as any other shape 

increases the number of neighboring blocks needed for a particular arrangement. The groups are arranged 

in rows with each group in the same row having the same height. The extra blocks that are required for 

most rows are the blocks above and below the row (so 2𝑊 where 𝑊 is the image width in blocks), the 

regions in between groups within a single row but not at the start or end of the row (so 2(𝑔𝑖 − 1)ℎ𝑖 where 

𝑔𝑖 is the number of groups in the 𝑖th row and ℎ𝑖 is the height of the 𝑖th row), and the kitty-corner corners 

for all corners not touching the edge of the image (so 4(𝑔𝑖 − 1)). The first and last row are only different 

in that they have do not have a top or bottom set of blocks so their extra work is less by 𝑊 + 2(𝑔𝑖 − 1) 

each. The overall extra computational work for an arrangement with 𝑅 rows is: 

𝐶𝐸𝑥𝑡𝑟𝑎 = ∑(2𝑊 + 2(𝑔𝑖 − 1)ℎ𝑖 + 4(𝑔𝑖 − 1))

𝑅

𝑖=1

− (2𝑊 + 𝑔1 + 𝑔𝑅 − 4) 

= 2((𝑊 − 2)(𝑅 − 1) − 𝐻 + 2𝐺 − 𝑔1 − 𝑔𝑅 + ∑𝑔𝑖ℎ𝑖

𝑅

𝑖=1

) 

Besides minimizing the amount of extra work being performed all groups should be performing 

roughly the same amount of work so that the distribution is meaningful. The amount of work any 

individual group has to do is its area plus any extra work it must perform. The amount of computational 

work that the group in the 𝑖th row and 𝑗th with width 𝑤𝑖𝑗  column requires is: 

𝐶𝑖𝑗 = ℎ𝑖𝑤𝑖𝑗 + ℎ𝑖([𝑗 ≠ 1] + [𝑗 ≠ 𝑔𝑖]) + 𝑤𝑖𝑗([𝑖 ≠ 1] + [𝑖 ≠ 𝑅])

+ ([𝑖 ≠ 1] + [𝑖 ≠ 𝑅])([𝑗 ≠ 1] + [𝑗 ≠ 𝑔𝑖]) 

= (ℎ𝑖 + [𝑖 ≠ 1] + [𝑖 ≠ 𝑅])(𝑤𝑖𝑗 + [𝑗 ≠ 1] + [𝑗 ≠ 𝑔𝑖]) 
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where [𝑆] is the Iverson bracket evaluating to 1 if 𝑆 is true and 0 otherwise. A single row then requires 

the following amount of computational work: 

𝐶𝑖 = ∑𝐶𝑖𝑗 =

𝑔𝑖

𝑗=1

(ℎ𝑖 + [𝑖 ≠ 1] + [𝑖 ≠ 𝑅])(𝑊 + 2(𝑔𝑖 − 1)) 

This can then be used to calculate the computational work needed for the entire arrangement: 

𝐶𝑇𝑜𝑡𝑎𝑙 = ∑𝐶𝑖 =

𝑅

𝑖=1

𝐻𝑊 + 2((𝑊 − 2)(𝑅 − 1) − 𝐻 + 2𝐺 − 𝑔1 − 𝑔𝑅 + ∑𝑔𝑖ℎ𝑖

𝑅

𝑖=1

) = 𝐻𝑊 + 𝐶𝐸𝑥𝑡𝑟𝑎  

and thus the average computational work for any group is 𝐶𝐴𝑣𝑔 =
𝐶𝑇𝑜𝑡𝑎𝑙

𝐺⁄ . We want to minimize both 

the total amount of extra computational work along with the sum of the absolute differences of each 

group’s computational work from the average to encourage an equal workload. We can minimize the sum 

of these two factors and get the desired results. Overall, we want to minimize: 

𝑀 = 𝐶𝐸𝑥𝑡𝑟𝑎 + ∑∑|𝐶𝑖𝑗 − 𝐶𝐴𝑣𝑔|

𝑔𝑖

𝑗=1

𝑅

𝑖=1

 

When setting up the groups in a row we make it so all groups in the same row have approximately 

the same width since this leads to approximately the same amount of work for each group in that row. 

Some groups may be an extra block wide in cases where the image width in blocks is not evenly divisible 

by the number of groups in the row. It is optimal to place wider groups at the ends if possible as those 

groups already have lower workloads due to being on the edges of the image. We can combine this 

information with the extra of blocks needed at boundaries between groups in the horizontal direction 

within a row to get the total extra blocks in horizontal direction that must be computed for any group: 

𝑛𝑖𝑗 = [𝑗 ≠ 1] + [𝑗 ≠ 𝑔𝑖] + [𝑗 = 1][𝑊 mod 𝑔𝑖 ≥ 1] + [𝑗 ≠ 1][𝑗 = 𝑔𝑖][𝑊 mod 𝑔𝑖 ≥ 2]

+ [𝑗 ≠ 1][𝑗 ≠ 𝑔𝑖][𝑊 mod 𝑔𝑖 ≥ 𝑗 + 1] 
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This allows us to redefine 𝐶𝑖𝑗  as follows: 

𝐶𝑖𝑗 = (ℎ𝑖 + [𝑖 ≠ 1] + [𝑖 ≠ 𝑅]) (⌊
𝑊

𝑔𝑖
⌋ + 𝑛𝑖𝑗) 

We can then use this to remove the summation over 𝑗 from the formula for 𝑀: 

𝑀𝑖 = ∑|𝐶𝑖𝑗 − 𝐶𝐴𝑣𝑔|

𝑔𝑖

𝑗=1

= ∑|(ℎ𝑖 + [𝑖 ≠ 1] + [𝑖 ≠ 𝑅]) (⌊
𝑊

𝑔𝑖
⌋ + 𝑛𝑖𝑗) − 𝐶𝐴𝑣𝑔|

𝑔𝑖

𝑗=1

 

The special case when 𝑔𝑖 = 1 should be separated out as it simplifies the math significantly, 

resulting in: 

𝑀𝑖 = {
|𝑒𝑖| if 𝑔𝑖 = 1

max(2 − 𝑟𝑖 , 0) |𝑒𝑖 + ℎ𝑖̂| + (𝑔𝑖 − |𝑟𝑖 − 2|)|𝑒𝑖 + 2ℎ𝑖̂| + max(𝑟𝑖 − 2,0) |𝑒𝑖 + 3ℎ𝑖̂| 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

where ℎ𝑖̂ = ℎ𝑖 + [𝑖 ≠ 1] + [𝑖 ≠ 𝑅], 𝑒𝑖 = ℎ𝑖̂ ⌊
𝑊

𝑔𝑖
⌋ − 𝐶𝐴𝑣𝑔, and 𝑟𝑖 = 𝑊 mod 𝑔𝑖. The overall metric we are 

now wanting to minimize is: 

𝑀 = 𝐶𝐸𝑥𝑡𝑟𝑎 + ∑𝑀𝑖

𝑅

𝑖=1

 

This equation is not too intensive, with the calculation for 𝐶𝐸𝑥𝑡𝑟𝑎 being conserved between each 

of the 𝑀𝑖 calculations (as the major component of the 𝐶𝐴𝑣𝑔 calculation), many of the calculations for 𝑀𝑖  

being reusable for a single 𝑖, and does not have any nested summations. 

Now we must generate arrangements to evaluate the metric and minimize it. The metric requires 

the set of 𝑔𝑖 values and the set of ℎ𝑖 values. The algorithm used here is a simple brute-force approach 

which generates each possible arrangement to get the 𝑔𝑖  values but then calculates the ℎ𝑖 values so they 

are as close to optimal as possible for that set of 𝑔𝑖 values. 

The 𝑔𝑖 values could be generated using the stars-and-bars theorem (Feller, 1950) but this would 

result in 𝑂(2𝐺) different arrangements. Many of those arrangements are duplicates (e.g. {1,3} and {3,1} 

are equivalent). Restricting arrangements to only those for which the first row has at most the same 
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groups as the last row and that all middle rows are weakly increasing in their number of groups reduces 

this to being a polynomial-order number of arrangements. This is described by the following rules: 

𝑔𝑖 ≤ 𝑔𝑖+1∀𝑖 ∈ [2, 𝑅 − 2] 

𝑔1 ≤ 𝑔𝑅  

The reason the first and last row must be handled separately from the middle rows is that those 

groups have a different number of neighboring blocks that need to be dealt with. The generation of the 

groups from these rules can be done with a simple recursive algorithm. 

Once the groups are obtained the heights are needed. This can be done in a similar manner to the 

widths of the groups by first determining a height for each row that is possibly one less than it should be 

and then adding on one to a subset of the rows until the sum of the heights equals the actual height. The 

approximate height of each row is as: 

ℎ𝑖̃ = ⌊
𝐻𝑔𝑖

𝐺
⌋ 

Then 𝐻 − ∑ℎ𝑖̃ of those heights need to have an additional 1 added to them to be the true heights. 

We select the rows for which 𝐻𝑔𝑖  mod 𝐺 is maximal. If there are two rows with the same remainder we 

prefer the first and last rows. Finally, if there is still a tie we work from the top row down. 
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