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Abstract
The partial information decomposition (PID) is perhaps the leading proposal 
for resolving information shared between a set of sources and a target 
into redundant, synergistic, and unique constituents. Unfortunately, the 
PID framework has been hindered by a lack of a generally agreed-upon, 
multivariate method of quantifying the constituents. Here, we take a step 
toward rectifying this by developing a decomposition based on a new method 
that quantifies unique information. We first develop a broadly applicable 
method—the dependency decomposition—that delineates how statistical 
dependencies influence the structure of a joint distribution. The dependency 
decomposition then allows us to define a measure of the information about a 
target that can be uniquely attributed to a particular source as the least amount 
which the source-target statistical dependency can influence the information 
shared between the sources and the target. The result is the first measure 
that satisfies the core axioms of the PID framework while not satisfying the 
Blackwell relation, which depends on a particular interpretation of how the 
variables are related. This makes a key step forward to a practical PID.

Keywords: partial information decomposition, mutual information, statistical 
dependence, information theory, cybernetics

(Some figures may appear in colour only in the online journal)

1.  Introduction

Understanding how information is stored, modified, and transmitted among the components 
of a complex system is fundamental to the sciences. Application domains where this would 
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be particularly enlightening include gene regulatory networks [1], neural coding [2], highly-
correlated electron systems, spin lattices [3], financial markets [4], network design [5], and 
other complex systems whose large-scale organization is either not known a priori or emerges 
spontaneously. Information theory’s originator Claude Shannon [6] was open to the possi-
ble benefits of such applications; he was also wary [7]. In an early attempt to lay common 
foundations for multicomponent, multivariate information Shannon [8] appealed to Garrett 
Birkhoff’s lattice theory [9]. Many of the questions raised are still open today [10, 11].

Along these lines, but rather more recent, one particularly promising framework for accom-
plishing such a decomposition is the partial information decomposition (PID) [10]. Once a 
practitioner partitions a given set of random variables into sources and a target, the frame-
work decomposes the information shared between the two sets into interpretable, nonnegative 
components—in the case of two sources: redundant, unique, and synergistic informations. 
This task relies on two separate aspects of the framework: first, the overlapping source subsets 
into which the information should be decomposed and, second, the method of quantifying 
those informational components.

Unfortunately, despite a great deal of effort [12–21], the current consensus is (i) that the 
lattice needs to be modified [18–20, 22, 23] and (ii) that extant methods of quantifying infor-
mational components [10, 12–14, 16, 17] are not satisfactory in full multivariate generality 
due to either only quantifying unique informations, being applicable only to two-source dis-
tributions, or lacking nonnegativity. Thus, the promise of a full informational analysis of the 
organization of complex systems remains unrealized after more than a half century.

The following addresses the second aspect—quantifying the components. Inspired by early 
cybernetics—specifically, Krippendorff’s lattice of system models (reviewed in [24])—we 
develop a general technique for decomposing arbitrary multivariate information measures 
according to how they are influenced by statistical dependencies3. We then use this decompo-
sition to quantify the information that one variable uniquely has about another. [14]’s IBROJA 
measure also directly quantifies unique information. However, depending upon one’s intuitions 
[26] it can be seen to inflate redundancy [17]. Both our measure as well as [17]’s Iccs take into 
account the joint statistics of the sources, but Iccs does so at the expense of positivity. This makes 
our proposal the only method of quantifying the partial information decomposition that is non-
negative, respects the source statistics, and satisfies the core axioms of the PID framework.

Our development proceeds as follows. Section 2 reviews the PID and section 3 introduces 
our measure of unique information. Section 4 then compares our measure to others on a vari-
ety of exemplar distributions, exploring and contrasting its behavior. Section 5 discusses sev-
eral open conceptual issues and section 6 concludes. The development requires a working 
knowledge of information theory, such as found in standard texts [27–29].

2.  Background

Consider a set of sources X0, X1, . . . , Xn−1 = X0:n and a target Y4. The amount of information 
the sources carry about the target is quantified by their mutual information:

I[X0:n : Y] = I[X0, X1, . . . , Xn−1 : Y]

=
∑

p(X0:n, Y) log2
p(X0:n, Y)

p(X0:n) p(Y)
.

3 Since the development of this manuscript, it has come to the authors’ attention that this structure had been inde-
pendently developed within the field of system science [25].
4 We subscript the joint variable with a Python-like array-slice notation, which matches Dijkstra’s argument [30].
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The PID then assigns shared information to sets of source groupings such that no (inner) set 
is subsumed by another [10]. In this way, the PID quantifies what information about the target 
each of those groups has in common.

2.1.  Antichain lattices

The sets of groupings we consider are antichains:

A(X0:n) =
{
α ∈ P+(P+(X0:n)) : ∀s1, s2 ∈ α, s1 �⊂ s2

}
,

where P+(S) = P(S) \ {∅} denotes the set of nonempty subsets of set S. Antichains form a 
lattice [9], where one antichain α is less than another β if each element in β subsumes some 
element of α:

α � β ⇐⇒ ∀s1 ∈ β, ∃s2 ∈ α, s2 ⊆ s1.

Figure 1 graphically depicts antichain lattices for two and three variables. There, for brevity’s 
sake, a dot separates the sets within an antichain, and the groups of sources are represented 
by their indices concatenated. For example, 0 · 12 represents the antichain {{X0} {X1, X2}}.

2.2.  Shared informations

Given the antichain lattice, one then assigns a quantity of shared or redundant information to 
each antichain. This should quantify the amount of information shared by each set of sources 
within an antichain α about the target. This shared information will be denoted I∩[α → Y]. 
[10] put forth several axioms that such a measure should follow:

	(S)	�I∩[α → Y] is unchanged under permutations of α.� (symmetry)
	(SR) �I∩[i → Y] = I[Xi : Y].� (self-redundancy)
	(M)	�For all α � β, I∩[α → Y] � I∩[β → Y].� (monotonicity)

With a lattice of shared informations in hand, the partial information I∂ [α → Y] is defined 
as the Möbius inversion [9] of the shared information:

I∩[α → Y] =
∑
β�α

I∂ [β → Y].
� (1)

We further require that the following axiom hold:

	(LP)	� I∂ [α → Y] � 0.� (local positivity)

This ensures that the partial information decomposition forms a partition of the sources-
target mutual information and contributes to the decomposition’s interpretability.

2.3. The bivariate case

In the case of two inputs, the PID takes a particularly intuitive form. First, following the 
self-redundancy axiom (SR), the sources-target mutual information decomposes into four 
components:

I[X0X1 : Y] = I∂ [0 · 1 → Y] + I∂ [0 → Y]

+ I∂ [1 → Y] + I∂ [01 → Y],
� (2)

and, again following (SR), each source-target mutual information consists of two components:

R G James et alJ. Phys. A: Math. Theor. 52 (2019) 014002
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I[X0 : Y] = I∂ [0 · 1 → Y] + I∂ [0 → Y]� (3)

I[X1 : Y] = I∂ [0 · 1 → Y] + I∂ [1 → Y].� (4)

The components have quite natural interpretations. I∂ [0 · 1 → Y] is the amount of infor-
mation that the two sources X0 and X1 redundantly carry about the target Y. I∂ [0 → Y] and 
I∂ [1 → Y] quantify the amount of information that sources X0 and X1, respectively, carry 
uniquely about the target Y. Finally, I∂ [01 → Y] is the amount of information that sources X0 
and X1 synergistically or collectively carry about the target Y.

Combining the above decompositions, we see that the operational result of conditioning 
removes redundancy but expresses synergistic effects:

I[X0 : Y|X1] = I[X0X1 : Y]− I[X1 : Y]

= I∂ [0 → Y] + I∂ [01 → Y].

Furthermore, the co-information [31] can be expressed as:

I[X0 : X1 : Y] = I[X0 : Y]− I[X0 : Y|X1]

= I∂ [0 · 1 → Y]− I∂ [01 → Y].

This illustrates one of the PID’s strengths. It explains, in a natural fashion, why the co-infor-
mation can be negative. It is the difference between a distribution’s redundancy and synergy.

The bivariate decomposition’s four terms are constrained by the three self-redundancy con-
straints equations (2)–(4). This leaves one degree of freedom. Generally, though not always 
[14], this is taken as I∂ [0 · 1 → Y]. Therefore, specifying any component of the partial infor-
mation lattice determines the entire decomposition. In the multivariate case, however, no sin-
gle I∂ [α → Y] (redundancy, unique, synergistic, or otherwise), when combined with relations 
to standard information-theoretic quantities, will determine the remainder of the values. For 
this reason, one generally relies upon quantifying the I∩ values to complete the decomposition 
via the Möbius inversion.

Figure 1.  Lattice of antichains for (a) two (X0 and X1) and (b) three sources (X0, X1, and 
X2): an antichain is represented using a dot to separate sets and sets by concatenated 
indices; e.g. {{X0} {X1, X2}} is represented 0 · 12.

R G James et alJ. Phys. A: Math. Theor. 52 (2019) 014002
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Finally, in the bivariate case one further axiom has been suggested [12], though not put 
forth in original PID:

	(Id)	�I∩[0 · 1 → X0X1] = I[X0 : X1]� (identity)

This axiom ensures that simply concatenating independent inputs does not result in redun-
dant information. The identity axiom, though intuitive in the case of two inputs, suffers from 
several issues. Primarily, with three or more sources it is known to be inconsistent with local 
positivity (LP). Furthermore, it is not clear how to extend this axiom to the multivariate case 
or even if it should be extended. In short, though many proposed methods of quantifying the 
PID satisfy the identity axiom, it is certainly not universally accepted.

2.4.  Extant methods

Several methods can be easily set aside—Immi [18], I∧ [16], and I↓ [13, 18]—as suffering 
from significant drawbacks. Immi necessarily assigns a zero value to at least one of the unique 
informations, doing so by dictating that whichever source shares the least amount of informa-
tion with the target, it does so entirely redundantly with the other sources. I∧ is based on the 
Gács-Körner common information. And, so it is insensitive to any sort of statistical correla-
tion that is not a common random variable. I↓ quantifies unique information from each source 
directly using an upper bound on the secret key agreement rate [32], but in a way that leads to 
inconsistent redundancy and synergy values.

Now, we can turn to describe the four primary existing methods for quantifying the PID. 
Imin, the first measure proposed [10], quantifies the average least information the individual 
sources have about each target value. It has been criticized [12, 13] for its behavior in certain 
situations. For example, when the target simply concatenates two independent bit-sources, 
it decomposes those two bits into one bit of redundancy and one of synergy. This is in stark 
contrast to the more intuitive view that the target contains two bits of unique information—
one from each source.

Iproj quantifies shared information using information geometry [12]. Due to its foundation 
relying on the Kullback–Leibler divergence, however, it does not naturally generalize to meas-
uring the shared information in antichains of size three or greater.

IBROJA attempts to quantify unique information [14], as does our approach. It does this by 
finding the minimum I[Xi : Y|X0:n\i] over all distributions that preserve source-target mar-
ginal distributions. (The random variable set X0:n\i, excludes variable Xi.) Depending on one’s 
perspective on the roles of source and target variables, however, IBROJA can be seen to arti-
ficially correlate the sources and thereby overestimate redundancy [17, 26]. This leads the 
measure to quantify identical, though independent, source-target channels as fully redundant. 
Furthermore, as a measure of unique information, it cannot completely quantify the partial 
information lattice when the number of sources exceeds two.

Finally, Iccs quantifies redundant information by aggregating the pointwise coinformation 
terms whose signs agree with the signs of all the source-target marginal pointwise mutual 
informations [17]. This measure seems to avoid the issue used to criticize Imin, that of captur-
ing the ‘same quantity’ rather than the ‘same information’. Further, it respects the source sta-
tistics unlike IBROJA. Notably, it can be applied to antichains of any size. Unfortunately, it does 
so incurring the expense of negativity, though one can argue that this is an accurate assessment 
of information architecture.

With these measures, their approaches, and their limitations in mind, we now turn to defin-
ing our measure of unique information.

R G James et alJ. Phys. A: Math. Theor. 52 (2019) 014002
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3.  Unique information

We now propose a method to quantify partial information based on terms of the form I∂ [i → Y]
—that is, the unique information. We begin by discussing the notion of dependencies and 
how to quantify their influence on information measures. We then adapt this to quantify how 
source-target dependencies influence the sources-target mutual information. Our measure 
defines unique information I∂ [i → Y] as the least amount that the XiY dependency can influ-
ence the shared information I[X0:n : Y].

3.1.  Constraint lattice

We begin by defining the constraint lattice L(Σ), a lattice of sets of subsets of variables. 
These subsets of variables are antichains, as in the partial information lattice, but are fur-
ther constrained and endowed with a different ordering. Specifically, given a set of variables 
Σ = {X0, X1, . . .}, a constraint γ is a nonempty subset of Σ. And, a constraint set σ is a set 
of constraints that form an antichain on Σ and whose union covers Σ; they are antichain 
covers [9]. Concretely, σ ∈ P+(P+(Σ)) such that, for all γ1, γ2 ∈ σ, γ1 � γ2 and 

⋃
σ = Σ. 

The constraint sets are required to be covers since we are not concerned with each individual 
variable’s distribution, rather we are concerned with how the variables are related. We refer 
to these variable sets as constraints since we work with families of distributions for which 
marginal distributions over the variable sets are held fixed.

There is a natural partial order σ1 � σ2 over constraint sets:

σ1 � σ2 ⇐⇒ ∀γ1 ∈ σ1, ∃γ2 ∈ σ2, γ1 ⊆ γ2.

Note that this relation is somewhat dual to that in the PID and, furthermore, that the set of 
antichain covers is a subset of all antichains. The lattice L(Σ) induced by the partial order on 
Σ = {X, Y , Z} is displayed in figure 2. The intuition going forward is that each node (anti-
chain) in the lattice represents a set of constraints on marginal distributions and the constraints 
at one level imply those lower in the lattice.

3.2.  Quantifying dependencies

To quantify how each constraint set influences a distribution p, we associate a maximum 
entropy distribution with each constraint set σ in the lattice. Specifically, consider the set 
∆p(σ) of distributions that match marginals in σ with p:

∆p(σ) = {q : p(γ) = q(γ), γ ∈ σ} .� (5)

To each constraint set σ we associate the distribution in ∆p(σ) with maximal Shannon entropy:

pσ = arg max {H[q] : q ∈ ∆p(σ)} .� (6)

This distribution includes no additional statistical structure beyond that constrained by σ [33].
When an information measure, such as the mutual information, is computed relative to 

the maximum entropy distribution pσ, we subscript it with the constraint σ. For example, the 
mutual information between the joint variable XY and the variable Z relative the the maximum 
entropy distribution satisfying the constraint XY : YZ  is denoted IXY:YZ[XY : Z].

Given this lattice of maximum entropy distributions, we can then compute any multivariate 
information measure on those distributions and analyze how its value changes moving across 
the lattice. Moves here correspond to adding or subtracting dependencies. We call the lattice 

R G James et alJ. Phys. A: Math. Theor. 52 (2019) 014002
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of information measures applied to the maximum entropy distributions the dependency struc-
ture of distribution p.

The dependency structure of a distribution is a broadly applicable and robust method for 
analyzing how the structure of a distribution affects its information content. It is effectively 
a partial order on a multiverse associated with p: consider every possible alternative universe 
in which select statistical dependencies are removed from p. It allows each dependency to 
be studied in the context of other dependencies, leading to a vastly more nuanced view of 
the interactions among p’s variables. We believe it will form the basis for a wide variety of 
information-theoretic dependency analyses in the future.

We note that this dependency structure was independently announced [34] after a preprint 
(arxiv.org:1609.01233) of the present work appeared. There, dependency structure minimizes 
the Kullback–Leibler divergence, which is known to be equivalent to our maximum entropy 
approach [35]. A decomposition of total correlation 

∑
j H[Xi]− H[X1, . . . , Xn] was studied that, 

in the case of three variables, amounts to decomposing each conditional mutual information into 
two components: e.g. I[X : Y|Z] = DKL[XY : XZ : YZ||XZ : YZ] + DKL[XYZ||XY : XZ : YZ], 
where the latter is the third-order connected information [36] and DKL[P||Q] is the Kullback–
Liebler divergence [27]. In contrast to a lattice decomposition of total correlations, the primary 
contribution here applies any desired information measure to each node in the dependency 
structure. This leads to a vast array of possible analyses.

As an example, consider the problem of determining ‘causal pathways’ in a network [37, 
38]5. Given two paths between two network nodes, say A → B → C  and A → B′ → C, one 
would like to determine through which pathway A’s behavior most strongly influences C. 
This pathway is termed the causal pathway. Naïvely, one might assume that the pathway 
whose links are strongest is the more influential pathway or that it is the pathway maximizing 
a multivariate information measure. Consider, however, the case where A strongly influences 

Figure 2.  Constraint lattice of three random variables X, Y, and Z. Blue edges (a, e, g, 
l) correspond to adding constraint XY, green (b, d, i, k) to adding XZ, and red (c, f, h, 
j) to adding YZ.

5 The term ‘causal’ here is unfortunate, due to the great deal of debate on determining causality without intervention 
[39].

R G James et alJ. Phys. A: Math. Theor. 52 (2019) 014002
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one aspect of B while another, independent aspect of B strongly influences C. Here, A would 
have no influence whatsoever upon C in spite of the strong individual links. Our dependency 
structure, in contrast, would easily detect this via IAB:BC[A : C] = 0, which quantifies exactly 
how much A and C are correlated through the pathway A → B → C . In this fashion, deter-
mining causal pathways in networks becomes straightforward: for each potential pathway, 
consider the constraint consisting of all its links and evaluate the influence measure of choice 
(time-delayed mutual information, transfer entropy, or similar) between the beginning and 
end of the pathway. The value indicates the pathway’s strength as quantified by the chosen 
measure (and whose interpretation is dependent on the chosen measure). While this example 
does not use the full dependency structure, it does demonstrate the usefulness of considering 
information measures in the context of only specific dependencies. Furthermore, there exist 
other information-based methods of determining causal pathways [37], however this provides 
a novel and independent method of doing so.

Another application is the determination of drug interactions. Given a dataset of responses 
to a variety of drugs, one would like to determine which subsets of drugs interact with one 
another. One method of doing so would be to construct the dependency structure, quantify-
ing each node with the entropy. Then, the lowest node in the lattice whose entropy is ‘close 
enough’ (as determined by context) to that of the true distribution contains the minimal set 
of constraints that give rise to the full structure of the true distribution. That minimal set of 
constraints determines the subset of variables that are necessarily interacting. Note that this is 
an application of reconstructability analysis [25] and does not use the flexibility of employing 
a variety of information measures on the lattice.

3.3.  Quantifying unique information

To measure the unique information that a source—say, X0—has about the target Y, we use the 
dependency decomposition constructed from the mutual information between sources and 
the target. Consider further the lattice edges that correspond to the addition of a particular 
constraint:

E(γ) = {(σ1,σ2) ∈ L : γ ∈ σ1, γ /∈ σ2} .

For example, in figure  2’s constraint lattice E(XY) consists of the following edges: 
(XY :Z, X :Y :Z), (XY :XZ, XZ :Y), (XY :YZ, YZ :X), and (XY :XZ :YZ, XZ :YZ). These edges—
labeled a, d, g, and l—are colored blue there. We denote a change in information measure 
along edge (σ1,σ2) by ∆σ1

σ2
. For example, ∆σ1

σ2
I[XY : Z] = Iσ1 [XY : Z]− Iσ2 [XY : Z].

Our measure Idep[i → Y] of unique information from variable Xi to the target Y is then 
defined using the lattice L(Xi, Y , X0:n\i):

Idep[i → Y] = min
(σ1,σ2)∈E(XiY)

{
∆σ1

σ2
I[X0:n : Y]

}

=min

{
IXiY:X0:n\iY [Xi : Y|X0:n\i]

IXiX0:n\i:XiY:X0:n\iY [Xi : Y|X0:n\i]
.

That is, the information learned uniquely from Xi is the least change in sources-target mutual 
information among all the edges that involve the addition of the XiY constraint. Due to informa-
tion-theoretic constraints (see appendix A), the edge difference achieving the minimum must 
be one of either IXiY:X0:n\iY [Xi : Y|X0:n\i] or IXiX0:n\i:XiY:X0:n\iY [Xi : Y|X0:n\i]. This latter quantity 
arises in directed reconstructability analysis [25], where it has an interpretation similar to 
unique information. It would not, however, result in a PID that satisfied (LP); though, when 

R G James et alJ. Phys. A: Math. Theor. 52 (2019) 014002
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combined as above with the first quantity, local positivity is preserved. In the case of bivariate 
inputs, this measure of unique information results in a decomposition that satisfies (S), (SR) 
(by construction), (M), (LP), and (Id), as shown in appendix C. In the case of multivariate 
inputs, satisfying (Id) implies that (LP) is not satisfied. Further, it is not clear whether Idep 
satisfies (M).

With a measure of unique information in hand, we now need only describe how to deter-
mine the partial information lattice. In the bivariate sources case, this is straightforward: 
self-redundancy (SR), the unique partial information values, and the Möbius inversion equa-
tion (1) complete the lattice. In the multivariate case, completion is not generally possible. 
That said, in many relatively simple cases combining monotonicity (M), self-redundancy 
(SR), the unique values, and a few heuristics allow the lattice to be determined. Though, due 
to Idep satisfying the identity axiom such values may violate local positivity. The heuristics 
include using the Möbius inversion on a subset of the lattice as a linear constraint. Several 
techniques such as this are implemented in the Python information theory package dit [40].

4.  Examples and comparisons

We now demonstrate the behavior of our measure Idep on a variety of source-target examples. 
In simple cases—Rdn, Syn, Copy [13]—Idep agrees with Iproj, IBROJA, and Iccs. There are, how-
ever, distributions where Idep differs from the rest. We concentrate on those.

Consider the Reduced Or(0) and Sum distributions [17] in figure 3. For these Imin, Iproj, 
and IBROJA all compute no unique information. [17] provides an argument based on game 
theory that the channels X0 ⇒ Y  and X1 ⇒ Y  being identical (a special case of the Blackwell 
property (BP) [23]) does not imply that unique information must vanish. Specifically, the 
argument goes, the optimization performed in computing IBROJA artificially correlates the 
sources, though this interpretation is dependent upon the perspective one takes when consider-
ing the PID [26]. One can interpret this as a sign that redundancy is being overestimated. In 
these instances, Idep qualitatively agrees with Iccs, though they differ somewhat quantitatively. 
See table 1 for the exact values.

Bertschinger et al [14] proves that Iproj and IBROJA are distinct measures. The only example 
produced, though, is the somewhat opaque Summed Dice distribution. Here, we offer Boom 
found in figure 3 as a more concrete example to draw out such differences6. Table 1 gives the 
measures’ decomposition values. Interestingly, Imin agrees with Iproj, while Iccs agrees with 
IBROJA. Idep, however, is distinct. All measures assign nonzero values to all four partial infor-
mations. Thus, it is not clear if any particular method is superior in this case.

Finally, consider the parametrized Reduced Or( p ) distribution, given in figure 3. Figure 4 
graphs this distribution’s decomposition for all measures. Imin, Iproj, and IBROJA all produce 
the same decomposition as a function of p. Iccs and Idep differ from those three and each other. 
Imin’s, Iproj’s, and IBROJA’s evaluation of redundant and unique information is invariant with p. 
And, in the cases of Iproj and IBROJA this is due to the source-target marginals being invariant 
with respect to p [14]. We next argue that Idep’s decomposition—and specifically the ‘kink’ 
observed—is both intuitive and reasonable.

Generically, the source-target channels ‘overlap’ independent of p, so there 
is some invariant component to the redundancy. Furthermore, consider the form 
of some conditional distributions when the sources are ‘0’: the distribution 
Pr (Y) =

{
0 : 1

2 , 1 : 1
2

}
, while Pr (Y|X0 = 0) = Pr (Y|X1 = 0) =

{
0 : 2

3 , 1 : 1
3

}
. Finally, 

6 Although, it is not hard to find a simpler example. See the dit [40] documentation for another: http://docs.dit.io/
en/latest/measures/pid.html#and-are-distinct.
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Pr (Y|X0X1 = 00) =
{

0 : 2
2+p , 1 : p

2+p

}
. The source-target channels are independent of p, but 

the joint sources-target channel depends upon it.
Consider the case of the two channels, X0 ⇒ Y  and X1 ⇒ Y , operating and independently 

influencing the value of Y. Observation that X0  =  0 takes Pr (Y = 0) = 1
2 to Pr (Y = 0) = 2

3
—a factor of 4

3 larger, and similarly for X1  =  0. Together, one would then observe that 

Figure 3.  Four distributions of interest: Sum is constructed with X0, X1 as independent 
binary variables while Y is their sum. Pnt. Unq. is from [41]. Boom was found through 
a numeric search for distributions satisfying certain properties; namely, that Iproj and 
IBROJA differ. Reduced Or is adapted from [17].

Table 1.  Partial information decomposition of the Sum, Pnt. Unq., and Boom 
distributions.

∂ Imin Iproj IBROJA Iccs Idep

Sum 01 1 1 1 1
2

0.688 72

0 0 0 0 1
2

0.311 28

1 0 0 0 1
2

0.311 28

0 · 1 1
2

1
2

1
2

0 0.188 72

Pnt. Unq. 01 1
2

1
2

1
2

0 1
4

0 0 0 0 1
2

1
4

1 0 0 0 1
2

1
4

0 · 1 1
2

1
2

1
2

0 1
4

Boom 01 0.292 48 0.292 48 0.125 81 0.125 81 0.087 81
0 1

6
1
6

1
3

1
3

0.371 33

1 1
6

1
6

1
3

1
3

0.371 33

0 · 1 1
2

1
2

1
3

1
3

0.295 33

R G James et alJ. Phys. A: Math. Theor. 52 (2019) 014002
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Pr (Y ′|X0X1 = 00) =
{

0 : 4
5 , 1 : 1

5

}
. That is, each channel ‘pushes’ Pr (Y = 0) 4

3 of the way 
from ‘0’ toward ‘1’. This independent ‘pushing’ occurs exactly at p = 1

2. For p � 1
2, this 

independence assumption overestimates the probability of Y  =  0. That is, there is additional 
redundancy between the two channels. For p � 1

2, the ‘pushes’ from the two channels do not 
account for the true probability of Y  =  0. That is, synergistic effects occur. Idep cleanly reveals 
both of these features, while Imin, Iproj, and IBROJA miss them and Iccs’s multiple kinks makes 
it appear oversensitive.

5.  Discussion

We next describe several strengths of our Idep measure when interpreting the behavior of the 
sources-target mapping channel. The PID applied to a joint distribution naturally depends on 
selecting which variables are considered sources and which target. In some cases—the Rdn 
and Syn distributions of [13]—the values of redundancy and synergy are independent of 
these choices and, in a sense, can be seen as a property of the joint distribution itself. In other 
cases—the And distribution of [13]—the values of redundancy and synergy are not readily 
apparent in the joint distribution. The concept of mechanistic redundancy—the existence of 

Figure 4.  Partial information decomposition of Reduced Or( p ) as a function of p: 
the Idep decomposition shows an abrupt change in character at p = 1

2, corresponding 
to independent source-target channels switching from underestimating the target 
distribution to overestimating. Under IBROJA (and Imin and Iproj), the redundant and 
unique components do not vary since the source-target marginals are invariant with p. 
The Iccs decomposition exhibits two p values of nonsmoothness, each corresponds to a 
change in sign of a coinformation component.

R G James et alJ. Phys. A: Math. Theor. 52 (2019) 014002
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redundancy in spite of independent sources—is a manifestation of this. What we term non-
holistic synergy—synergy in the PID that does not arise from necessarily three-way interac-
tions (that is, the third-order connected information [36]) in the distribution—is also due to 
the choice of sources and target. We next discuss how the dependency decomposition and Idep 
shed new insight into mechanistic redundancy and nonholistic synergy.

There are two aspects of the PID that do not directly reflect properties of the joint distribu-
tion, but rather are determined by which variables are selected as sources and which the target. 
The first involves redundancy, where two sources may be independent but redundantly influ-
ence the target. The second involves synergy, where there may be a lack of information at the 
triadic level of three-way interdependency, yet the sources collectively influence the target. 
The dependency decomposition and Idep make these phenomena explicit.

5.1.  Source versus mechanistic redundancy

An interesting concept within the PID domain is that of mechanistic redundancy [12]. In its 
simplest form, this is existence of redundant information when the sources are independent. 
The And distribution given in table 2 is a prototype for this phenomenon. Though the two 
sources X0 and X1 are independent, all methods of quantifying partial information ascribe non-
zero redundancy to this distribution. Through the lens of Idep, this occurs when the edge labeled 
l in figure 5 exceeds edge quantity b  −  i  =  c  −  h. This means that the channels X0 ⇒ Y  and 
X1 ⇒ Y  are similar, so that when constraining just these two marginals the maximum entropy 
distribution artificially correlates the two sources. This artificial correlation must then be bro-
ken when constraining the sources’ marginal X0X1, leading to conditional dependence. (sec-
tion 5.2 below draws out this implication.)

Mechanistic redundancy is closely tied to the concept of target monotonicity [23]:

	(TM)	� I∩[X0 · X1 → Y] � I∩[X0 · X1 → f (Y)] .		�   (target monotonicity)

Said colloquially, taking a function of the target cannot increase redundancy. However, one 
of the following three properties of a partial information measure must be false:

Table 2.  And distribution exemplifies both mechanistic redundancy and nonholistic 
synergy.

And

X0 X1 Y Pr
0 0 0 1

4
0 1 0 1

4
1 0 0 1

4
1 1 1 1

4

And Imin Iproj IBROJA Iccs Idep

01 1
2

1
2

1
2

0.292 48 0.270 43

0 0 0 0 0.207 52 0.229 57
1 0 0 0 0.207 52 0.229 57
0 · 1 0.311 28 0.311 28 0.311 28 0.103 76 0.081 70

R G James et alJ. Phys. A: Math. Theor. 52 (2019) 014002
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	 1.	�I∩[X0 · X1 → (X0X1)] = 0,
	 2.	�The possibility of mechanistic redundancy, or
	 3.	�Target monotonicity.

In effect, any given method of quantifying the PID cannot simultaneously assign zero 
redundancy to the ‘two-bit copy’ distribution, allow mechanistic redundancy, and obey target 
monotonicity. Idep does not satisfy (TM). [23] demonstrated a general construction that maps 
a redundancy measure not satisfying (TM) to one that does, in the process violating property 
Item 1 above.

5.2.  Holistic versus nonholistic synergy

A notion somewhat complementary to mechanistic redundancy is nonholistic syn-
ergy. Holistic synergy, or the third-order connected information [36], is the difference 
H[X0X1Y]− HX0X1:X0Y:X1Y [X0X1Y]. This quantifies the amount of structure in the distribution 
that is only constrained by the full triadic probability distribution, not any subsets of margin-
als. This quantity appears as the edge labeled m in figure 5. Nonholistic synergy, on the other 
hand, is synergy that exists purely from the bivariate relationships within the distribution. This 
appears as k −min{b, i, k} = j −min{c, h, j} in figure 5. This quantity has a natural inter-
pretation: how much does the constraint X0Y influence I[X0X1 : Y] in the context of the other 
dyadic relationships (X0X1, X1Y), minus the unique information Idep[0 → Y]. The total PID 
synergy is then Idep[01 → Y] = m + k −min{b, i, k} = m + j −min{c, h, j}.

Here, again, the And distribution seen in table 2 exemplifies the phenomenon. The And 
distribution is completely defined by the constraint X0X1 : X0Y : X1Y . That is, the And distri-
bution is the only distribution satisfying these pairwise constraints. This implies that the holis-
tic synergy is zero. In spite of this, all methods of quantifying partial information (correctly) 
assign nonzero synergy to this distribution. This is a consequence of coinformation being 
negative. This raises an interesting question: are there triadic (three-way) dependencies in the 

Figure 5.  Dependency structure for two source variables X0 and X1 and one target 
variable Y. Edges colored blue correspond to adding constraint X0X1; edges colored 
green to adding constraint X0Y; and edges colored red to X1Y. The unique information 
Idep[X0 → Y] is calculated by considering the least change in Iσ[X0X1 : Y] along the 
green edges. See appendix B and figure B1 for identities among the edges important 
for Idep.

R G James et alJ. Phys. A: Math. Theor. 52 (2019) 014002
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And distribution? Notably, the distribution can be defined as the maximum entropy distribu-
tion satisfying certain pairwise marginals, yet it has negative co-information and therefore 
nonzero synergy and exhibits conditional dependence.

5.3.  Shortcomings

Idep comes with its own concerns, however. First, it is defined using a minimum. Besides 
being mildly aesthetically displeasing, this can lead to nondifferentiable (though continuous) 
behavior, as seen in figure 4. Nondifferentiability can be seen as natural, as we have argued, if 
it coincides with a switch in qualitative behavior.

Perhaps more interestingly, Idep does not correspond to either the camel or elephant intui-
tions as described in [26] which proposes information-theoretical cryptography as a basis for 
unique information. In the relatively straightforward example of the Pnt. Unq. distribution, 
Idep does not correspond with any other proposed method of quantifying the PID. In this 
instance, it is simple to state why Idep quantifies the unique information as 1/4 bit: after con-
straining either X0Y or X1Y, constraining the other only increases I[X0X1 : Y] by 1/4 bit; that is, 
the unique value of either X0Y or X1Y is only a quarter because there exist contexts where that 
is all it can contribute to I[X0X1 : Y]. However, it is difficult to see the operational meaning of 
this value. All other proposed methods match one or another secret key agreement rate. And 
so, they at least have a concrete operational interpretation.

Finally, Idep is a measure of unique information and so it cannot alone be used to quantify 
the PID with three or more sources. And, in the event where unique informations in concert 
with standard information measures are in fact sufficient for quantifying the entire PID, Idep’s 
adherence to the identity axiom implies that it necessarily does not obey local positivity with 
three or more sources.

6.  Conclusion

We developed a promising new method Idep of quantifying the partial information decomposi-
tion that circumvents many problems plaguing previous attempts. It satisfies axioms (S), (SR), 
(M), (LP), and (Id); see appendix C. It does not, however, satisfy the Blackwell property (BP) 
and so, like Iccs, it agrees with previous game-theoretic arguments raised in [17]. Unlike Iccs, 
though, Idep satisfies (LP). This makes it the only measure satisfying (Id) and (LP) which does 
not require that redundancy is fixed by X0Y : X1Y .

The Idep method does not overcome the negativity arising in the trivariate source explored 
in [18, 19, 22]. We agree with [22] that the likely solution is to employ a different lattice. We 
further believe that the flexibility of our dependency structure could lead to methods of quanti
fying this hypothetical new lattice and to elucidating many other challenges in decomposing 
joint information, especially once the statistical significance of its structure applied to empiri-
cal data is explored.
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Appendix A.  Constrained three-variable maximum entropy distributions

Here, we characterize the maximum entropy distributions defined in equation (6) and used to 
populate the dependency structure. In particular, we give maximum entropy distributions for 
forms of marginal constraints that describe the lowest three levels of the constraint lattice as 
shown in figure 2.

Let us fix notation. Consider a joint distribution p(ABC) and maximum entropy distri-
butions for some constraint set σ: pσ (ABC). We label information measures and other 
quantities that are computed relative to this constrained maximum entropy distribution with 
the subscript σ: for example, HA:B:C[ABC] refers to the entropy of the product distribution 
p(abc) = p(a) p(b) p(c), as this is the distribution consistent with the constraint A : B : C and 
has maximum entropy. Such quantities without a subscript are calculated from the original 
distribution. In our use of the dependency structure to quantify unique information, we are 
interested in Iσ[AB :C] as this will represent the sources-target mutual information.

The lowest node in the dependency lattice constrains all single-variable marginal distribu-
tions, but no pairwise marginal distributions. With only single-variable marginal distributions 
constrained, the maximum entropy distribution is such that the variables are independent, also 
known as the product distribution:

pA:B:C(ABC) = p(A) p(B) p(C).� (A.1)

It can be seen that this must be the maximum entropy distribution, since an increase in any 
mutual information corresponds to an equal decrease in at least two conditional entropies, 
resulting in a lower total entropy. The informational structure of this distribution can be seen 
in figure A1(a).

The first row up in the constraint lattice captures those antichains that contain one pair-
wise constraint and one single-variable constraint. The maximum entropy distribution corre
sponding to this constraint set is given by:

pAC:B(ABC) = p(AC) p(B).� (A.2)

All atoms of the information diagram that capture the overlap of H[AC] and H[B] vanish. 
Again, it can be seen that the maximum entropy distribution must take this form, since any 
deviation from the information partitioning seen in figure A1(b), which satisfies the constraint 
AC : B, must result in an overall decrease to the entropy.

The elements in the second row of the constraint lattice include constraints on two pairwise 
marginal distributions each. These constraints both contain one of the variables, and the maxi-
mum entropy distribution takes on the following Markov form:

pAC:BC(ABC) = p(A|C) p(B|C) p(C).� (A.3)

This distribution forms a Markov chain  and therefore IAC:BC[A :B|C] = 0. To 
see that this must be the form of the maximum entropy distribution, consider the expansion:

H[ABC] = H[C] + H[A|C] + H[B|C]− I[A :B|C].

The first three terms of the righthand side are constrained by p(C), p(AC), and p(BC), respec-
tively. Since the conditional mutual information is necessarily nonnegative, the final term 
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being zero corresponds to the distribution with the maximum entropy. Such a distribution is 
realized by the given Markov chain. The mutual information IAC:BC[AB :C] is equal to:

I[A : C] +
∑
a∈A
b∈B
c∈C

p(a, b, c) log2
p(a) p(b, c)
p(c) p(a, b)

.

The information diagrams for each of these three distributions are given in figure A1.
With the structure of these distributions in hand, we now turn to proving several properties 

of the Idep measure.

Appendix B.  Sources-target dependency structure

Interpreting the set of antichain covers as possible marginal constraints on probability dis-
tributions, we defined a dependency lattice that gradually introduces dependencies into an 
otherwise unstructured distribution. In this method of quantifying the partial information 
decomposition, Idep is defined according to the node-node differences of the sources-target 
mutual information I[X0X1 : Y]. These lattice edges are labeled in figure 5.

The maximum entropy distributions on the lowest three levels of nodes follow the forms 
given in appendix A. By appropriately assigning X0, X1, and Y to A, B, and C, we obtain the 
relationships arising among the edges summarized in figure B1 and the following results for 
the sources-target mutual information:

(a)

(b) (c)

Figure A1.  Information diagrams corresponding to the maximum entropy distributions 
described in equations  (A.1)–(A.3) . The four variables in subfigure (c) satisfy 
a + b + c + d = H[C], b + c = I[A :C], and c + d = I[B :C].

R G James et alJ. Phys. A: Math. Theor. 52 (2019) 014002



17

IX0:X1:Y [X0X1 :Y] = 0� (B.1)

IX0X1:Y [X0X1 :Y] = 0� (B.2)

IX0Y:X1 [X0X1 :Y] = I[X0 :Y]� (B.3)

IX1Y:X0 [X0X1 :Y] = I[X1 :Y]� (B.4)

IX0X1:X0Y [X0X1 :Y] = I[X0 :Y]� (B.5)

IX0Y:X1Y [X0X1 :Y] = I[X1 :Y].� (B.6)

Now, we can simply read off the values of a through g, and derive other simple relationships:

a = e = g = 0
d = b = I[X0 :Y]

f = c = I[X1 :Y]

b + h = c + i

b + j + m = c + k + m = I[X0X1 :Y].

Furthermore:

h = IX0Y:X1Y [X0X1 : Y]− I[X0 : Y]

= IX0Y:X1Y [X1 : Y|X0]

i = IX0Y:X1Y [X0X1 : Y]− I[X1 : Y]

= IX1Y:X1Y [X0 : Y|X1]

j = IX0X1:X0Y:X1Y [X0X1 : Y]− I[X0 : Y]

= IX0X1:X0Y:X1Y [X1 : Y|X0]

k = IX0X1:X0Y:X1Y [X0X1 : Y]− I[X1 : Y]

= IX0X1:X1Y:X1Y [X0 : Y|X1].

Figure B1.  The reduced form of the dependency lattice quantified by sources-target 
mutual information, with b = I[X0 :Y] and c = I[X1 :Y]. All edges are guaranteed to be 
nonnegative except for l.

R G James et alJ. Phys. A: Math. Theor. 52 (2019) 014002
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Our first task is to demonstrate that all edges, save the one labeled l, correspond to non-
negative differences in the sources-target mutual information. The edges b and c are given by 
mutual informations and so must be nonnegative. The edges h, i, j, and k are given by condi-
tional mutual informations computed relative to certain maximum entropy distributions and, 
therefore, must also be nonnegative. The edge labeled m is the third-order connected informa-
tion [36], which can be written as a Kullback–Leibler divergence and so must also be non-
negative. This leaves only the edge l potentially negative. These last two edges, l and m, do not 
involve the addition of a source-target constraint and so are not considered in computing Idep.

Next, we demonstrate that only two edges meaningfully contribute to the determination of 
Idep. Since the coinformation IX0Y:X1Y [X0 : X1 : Y] = IX0Y:X1Y [X0 : X1] is necessarily nonnega-
tive, we find that:

h � I[X1 : Y] = c

i � I[X0 : Y] = b.

And so, in computing Idep one need only consider the edges i and k (for Idep[X0 → Y]) or h and 
j (for Idep[X1 → Y]).

Appendix C.  Bivariate partial information Idep decomposition

This section  establishes the properties of the bivariate partial information decomposition 
induced by Idep.

C.1.  Self-redundancy

Property (SR): I∩[i → Y] = I[Xi :Y].
The shared information for an antichain with a single subset of source variables is precisely 

the mutual information between those source variables and the target.
We take this axiom constructively, defining three of the four shared informations I∩ and 

providing three constraints on partial informations I∂ in equations (2)–(4) .

C.2.  Nonnegativity

Property (LP): For all antichains σ: I∂ [σ → Y] � 0.
Every partial information value resulting from the mobius inversion of the redundancy lat-

tice is nonnegative.
We begin with the unique partial information from X0. Both arguments of the minimum in 

Idep[0 → Y] were shown to be nonnegative in appendix B:

I∂ [0 → Y] = Idep[0 → Y] = min (i, k) � 0.

Using the self-redundancy axiom to define I∩[0 → Y] = I[X0 :Y] and knowing that 
I∂ [0 → Y] = min (i, k) � I[X0 :Y] from appendix B, we have:

I∂ [0 · 1 → Y] = I∩[0 → Y]− I∂ [0 → Y] � 0.

To determine the signs of the remaining two partial information atoms, we must consider 
the ordering of i and k.

Reductions are done by using results of appendix B. We repeatedly use the 
redundancy lattice inversions: I∂ [1 → Y] = I∩[1 → Y]− I∂ [0 · 1 → Y] and 
I∂ [01 → Y] = I∩[01 → Y]− I∂ [0 · 1 → Y]− I∂ [0 → Y]− I∂ [1 → Y].

R G James et alJ. Phys. A: Math. Theor. 52 (2019) 014002
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CASE 1: i � k.

I∂ [1 → Y] = c − (b − i) = h

� 0,
I∂ [01 → Y] = (c + k + m)− (c − h)− i − h

= m + k − i

� m

� 0.

		  CASE 2: k � i.

I∂ [1 → Y] = c − (b − k)

= j

� 0,
I∂ [01 → Y] = (b + j + m)− (b − k)− k − j

= m

� 0.

In each case, the second unique information is found to be equivalent to another nonnegative 
edge in the dependency lattice. Additionally, the synergy is found to be bounded from below 
by the ‘holistic’ synergy m.

C.3.  Monotonicity

Property (M): α � β =⇒ I∩[α → Y] � I∩[β → Y].
For any two antichains α, β, an ordering between them implies the same ordering of their 

shared informations.
This follows immediately from (LP) above.

C.4.  Symmetry

Property (S): Under source reorderings, the following is invariant:

I∂ [0 → Y].

The dependency lattice is symmetric by design. Relabeling the random variables is equivalent 
to an isomorphic relabeling of the lattice. Therefore, we consider the effect of completing the 
partial information decomposition by either Idep[0 → Y] or Idep[1 → Y].

Computing Idep[0 → Y] = min (b, i, k) gives I∂ [1 → Y] = min (c, h, j), although we never 
explicitly do the second minimization. This requires simple algebra from the various multiple-
paths constraints given in appendix B. In each of the appendix C cases, I∂ [1 → Y] was found 
to be one of {c, h, j}. Straightforward algebra shows that it is necessarily the minimum of them 
in each of the particular cases.

C.5.  Identity

Property (Id):

I∂ [0 · 1 → X0X1] = I[X0 :X1].

R G James et alJ. Phys. A: Math. Theor. 52 (2019) 014002
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Consider sources X0 and X1 and output Y = X0X1, the concatenation of inputs. The mutual infor-
mation of either source with the target is simply the entropy of that source. That is, b = H[X0]. 
Using appropriate permutations of equations (A.2) and (A.3) (A = X0, B = Y , C = X1), we 
find that i = H[X0|X1]. Now, starting at the constraint σ = X0X1 : X1Y  as in equation  (9) 
(A = X0, B = X1, C = Y), we see that additionally constraining p(X0Y) fully constrains the 
distribution to its original form, with a sources-target mutual information of H[X0X1]. That 
is, k = H[X0|X1]. The minimum of these three quantities gives Idep[0 → Y] = H[X0|X1] and 
therefore verifies the identity axiom.
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