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Abstract

Precision cancer medicine promises to tailor clinical decisions to patients using genomic 

information. Indeed, successes of drugs targeting genetic alterations in tumors, such as imatinib 

that targets BCR-ABL in chronic myelogenous leukemia, have demonstrated the power of this 

approach. However biological systems are complex, and patients may differ not only by the 

specific genetic alterations in their tumor, but by more subtle interactions among such alterations. 

Systems biology and more specifically, network analysis, provides a framework for advancing 

precision medicine beyond clinical actionability of individual mutations. Here we discuss 

applications of network analysis to study tumor biology, early methods for N-of-1 tumor genome 

analysis and the path for such tools to the clinic.
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Introduction

Efforts to catalog the somatic mutations in thousands of tumor genomes have uncovered 

substantial genetic heterogeneity in cancer. Despite their phenotypic similarities (cancer 

cells display certain hallmark behaviors [1]), individual tumors rarely share the same 

mutations. This heterogeneity presents a significant challenge for finding any one treatment 

that will benefit all patients, necessitating precision approaches that tailor clinical 

management toward individual patients, or small groups with similar disease.

Studies of tumor genomes have determined that the majority of detected mutations are 

passengers that do not contribute to the oncogenic process [2–4]. The small number of 

causal driver mutations in a tumor present the optimal targets for therapy, as they are specific 

to tumor cells and interfering with their activity should impair tumor growth. Among some 

of the most successful targeted therapies to date are imatinib, that targets the BCR-ABL 

fusion, gefitinib, that binds and inhibits EGFR, and trastuzumab that inhibits HER2.

Although targeted therapies have the potential to generate large responses, response rates are 

often modest. For example, complete responses have been observed in advanced melanomas 

treated with immune checkpoint inhibitors, however across tumor types, response rates have 

yet to exceed ~40% of patients [5–7]. Various factors may contribute to which patients are 

sensitive to a therapy, including secondary mutations or subclonal heterogeneity. For some 

therapies, tumor-type specific differences in the underlying molecular networks appear to 

account for differences in response rate. Targeted inhibition of BRAF V600E is highly 

effective in melanoma but not in colorectal cancer where it was found that inhibition caused 

feedback activation of EGFR which maintained cell proliferation in the presence of the 

inhibitor [8]. Thus, the state of individual cancer genes alone may not be enough to inform 

response. Interactions between multiple alterations in the tumor may need to be taken into 

consideration.

Furthermore, many tumors do not have a driver mutation that clearly indicates a specific 

targeted therapy [2,9,10]. Because genes affected by driver mutations (cancer genes) tend to 

participate in common biological activities such as genome maintenance, cell differentiation 

or growth signaling [2,11–13], targeting the biological pathways rather than specific cancer 

genes or driver mutations may provide a strategy that will be effective for a larger number of 

patients [14,15]. Thus, improvement of precision therapy is likely to require approaches 

capable of modeling interactions between somatic alterations in tumors and capturing 

information about the underlying molecular state of the pathways driving tumorigenesis.

Systems biology provides a toolkit for modeling complex biological systems and their 

constituent interactions. Increasingly, techniques from systems biology such as network 

analysis are being applied to analyze genomic data in order to better understand disease [16]. 

Several tasks in precision cancer medicine stand to benefit from network-based approaches 
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including identification of driver mutations, genes and pathways, patient stratification into 

groups with similar characteristics, identifying therapeutic opportunities and assessment of 

cancer risk. Here we review the applications of networks toward these tasks at the cohort and 

individual patient scale and consider future work needed to bring network analysis of tumor 

genomes to the clinic.

Network analysis across tumor cohorts

Networks have been employed in the study of tumor cohorts in order to gain insights into 

tumor biology, to identify putative biomarkers and relevant disease subtypes, and to find 

possible targets for therapy. In these scenarios, networks are often used to control 

heterogeneity and to increase statistical power through aggregation (Figure 1). The 

structures of the networks can be defined from known molecular interactions (e.g. protein-

protein interactions), such that the network itself is a model of the biological system. This 

confers meaning to interactions within the network such that connected nodes are expected 

to be more functionally related than distant nodes and traversal of adjacent edges in the 

network can be loosely interpreted as biological information flow. Networks can also be 

used to integrate different data types, for example by defining the state of a node by 

combining different measurements (mutation, expression, copy number, methylation, etc.), 

or by mapping events in one data layer to another.

The predominant application of networks to tumor genomic data has been with the intent to 

define tumor biology by uncovering the driver pathways, genes and mutations that contribute 

to tumorigenesis (Figure 2, Table 1). This task is confounded by mutational heterogeneity; 

somatic alterations broadly affect a variety of genes, and driver mutations are difficult to 

distinguish from the more prevalent passengers. Alteration frequency alone is of limited 

value, leading to a number of methods that attempt to model positive selection of mutations 

across tumors at the single gene scale [3,17–20]. It is now well established that somatic 

alterations in tumors aggregate not at the gene level, but at the pathway level [1,2], 

supporting the use of networks to better identify patterns of selection indicating driver 

events.

Driver pathways

The term pathway is often used to describe a set of molecular interactions that collectively 

mediate a specific biological activity within a cell [21]. In the context of a molecular 

network, various biological pathways will be embedded as smaller highly connected 

subnetworks. Since cancer driving mutations are thought to target genes in a relatively small 

number of signaling and regulatory pathways [1,2,22,23], biological networks can provide a 

framework to study the convergence of mutations within connected subnetworks, such that 

identification of driver pathways can be formulated as a module detection problem (Figure 

2). This is equivalent to a search for positive selection of mutations across groups of 

functionally related genes. Consequently, module detection approaches are able to implicate 

infrequently mutated driver genes that would be overlooked based on frequency-based 

approaches, but fall into frequently altered network neighborhoods [24–27].
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Diffusion algorithms have become a popular strategy for identifying cancer network 

modules (Figure 3). The first application of network diffusion to identify disease-associated 

genes was described by Köhler et al. [28]. HotNet [24] adapted this method for driver 

pathways by developing a robust statistical framework for network propagation. HotNet uses 

mutations as a ‘heat source’ on the network, where heat is allowed to diffuse across network 

edges, spreading the influence of mutations across the network dependent on the topology. 

After diffusion, the network can be partitioned to identify ‘hot’ regions that are likely driver 

pathways enriched for the influence of mutations. The advantage of the diffusion approach is 

that it naturally penalizes highly connected regions of the network (heat has to be divided 

across large numbers of edges) where mutation influence will appear more concentrated at 

random. HotNet2 [25] proposed “insulated” heat diffusion (mathematically equivalent to 

PageRank [29]) to incorporate edge direction which allows the algorithm to capture a sense 

of effects being upstream or downstream of causal mutations, and a damping factor that can 

be tuned to emphasize local topology over distant network regions.

Babaei et al. [26] argued that different cancer relevant-pathways may have different sizes, 

and thus it may be necessary to diffuse at different scales to detect different pathways. They 

developed ReMIC [26], which diffuses mutation scores on a hybrid interaction network 

across a range of parameters, and implicates genes that are significantly mutated at any 

network scale relative to a permuted gene-mutation pairs. Many of the genes identified by 

this approach were part of the same connected components within the network, and thus 

considered to participate in the same pathways. VarWalker [27] additionally prioritizes edges 

where both nodes are recurrently implicated across patients by collapsing patient-specific 

networks into a single consensus mutation subnetwork that can then be divided into 

subgraphs to identify pathways. Patient-specific significantly mutated genes are determined 

using generalized additive models and used as starting nodes for a patient-specific Random 

Walk with Restart (RWR) on a PPI network. Patient specific subnetworks are constructed 

from significant nodes and edges after comparing against a random model. This approach 

was able to detect both frequently and infrequently mutated cancer genes [27].

NetBox [30] also seeks to identify network modules enriched for altered genes in tumors, 

but rather than using diffusion, altered network modules are identified based on a higher 

density of interactions within groups than between groups via the edge betweenness 

algorithm [31]. NetBox was applied to analyze glioblastoma tumors using a custom 

interaction network that combines PPIs and signaling pathways (e.g. kinases and 

phosphorylation targets), using mutation and copy number data to implicate driver modules. 

In nCOP [32], the problem is framed as identifying small subnetworks in the larger PPI 

network that cover (e.g. have one or more mutations) in the largest number of patients.

Another class of methods use variants on the prize collecting Steiner tree algorithm to 

identify cancer-relevant subnetworks (Figure 3). This algorithm attempts to find connected 

components of a network that contain the most “prize” nodes with the minimal number of 

edges. The prizes in the case of cancer are genes with some evidence for association with the 

disease. For instance Sun et al. [33] used protein-protein interaction data and known MAPK 

and PI3K/Akt signaling members to reconstruct their network neighborhoods. In work by 

Tuncbag et al. [34], the prizes are taken to be genes that had phosphorylation changes in 
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cancer cell lines with the goal of reconstructing glioblastoma signaling pathways. Steiner 

tree algorithms tend to return more parsimonious solutions as compared to diffusion 

algorithms, and are more sensitive to the underlying network topology, since they rely on 

shorter paths through a network, rather than all possible paths.

Several approaches seek to identify driver networks by combining information from 

genomic and transcriptomic perturbations. TieDIE [35] infers the structure of cancer 

associated gene networks by using mutated genes as source nodes on a custom directed PPI 

network and activated transcription factors as source nodes on a transcription factor-target 

network. Nodes implicated by these independent diffusion processes are integrated into a 

cancer subnetwork connecting the two node sets. TieDIE was applied to patients with 

luminal versus basal subtypes of breast cancer in order to identify subnetworks 

distinguishing these subtypes [35]. DNA damage repair alterations and downstream 

activated MYC were characteristic of basal tumors, whereas estrogen receptor and PIK3CA 

pathway signaling dominated the luminal tumors. iMCMC [36] is also designed based on 

the idea that variation in gene sequence and expression together might contribute to cancer. 

It constructs two weighted networks, one from mutations and CNV data, and the other from 

gene expression, where nodes represent a measure of the importance or effect size of a node, 

and edges represent a measure of similarity or functional relatedness. Then these two 

networks are combined and mutated core modules are detected via an optimization model 

followed by statistical tests.

Mutual exclusivity is a pathway level signature of selection, in that once a driver mutation 

has activated or inactivated a pathway, it is rare to observe additional driver mutations in that 

pathway in the same tumor. Finding cancer pathways can then be formulated as a problem of 

identifying sets of functionally related genes that demonstrate mutual exclusivity of somatic 

alteration, where biological networks can be used to approximate functionally related genes 

(Figure 3). In addition, driver pathways should ideally explain the maximum number of 

tumors. Several methods seek sets of genes with high exclusivity that cover a high 

proportion of tumor samples, de novo from somatic mutation data, without prior interaction 

or pathway information, including Miller et al. [37], Dendrix [38] and Multi-Dendrix [39]. 

While Miller et al. [37] identifies driver modules from gene networks constructed based on 

pairwise exclusivity scores, Dendrix [38] assigns a single weight score to a group of genes 

based on mutual exclusivity of the group and searches for the highest scoring group with a 

stochastic search method. MDPFinder [40] and Multi-Dendrix [39] use the same weight 

score. While MDPFinder evaluates the performance of different search techniques (an exact 

method and a stochastic method that allows for integration of expression data), Multi-

Dendrix [39] focuses on identifying multiple mutated pathways based on the observation 

that simultaneous perturbation of several pathways can be required for cancer [1]. Szczurek 

et al. [41] developed a probabilistic, generative model to detect cancer pathways while 

accounting for error rates. In contrast to these approaches, MEMo [42] relies on prior 

interaction information to identify driver oncogenic network modules by analyzing maximal 

cliques that belong to the same pathway for patterns of mutual exclusivity across multiple 

patients. Other methods integrate mutual exclusivity with other information. iMCMC [36] 

uses mutual exclusivity to assign edge weights when building its somatic mutation/CNV 

network, thereby using it as a measure of functional similarity. In addition to being useful 
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for driver pathway identification, mutual exclusivity can provide independent evidence to 

validate pathways predicted by alternative approaches [26].

Driver genes

While detection of driver network modules naturally implicates the constituent genes as 

cancer associated, several methods have been developed to implicate genes directly (Figure 

2). Direct implication of genes may reduce false positive driver gene prediction in cases 

where not all genes in a network module have equal oncogenic potential. Although many 

gene level methods rely on patterns of mutation, networks have also been applied to 

implicate driver genes.

Many network-based disease gene prediction algorithms rely on the guilt-by-association 

concept, which is based on the observation that phenotypically similar genes tend to be co-

located in biological networks [43,44]. There are different ways of measuring topological 

proximity of genes in a network [45]. Local approaches focus on genes that are either in 

direct physical interaction, or are located close to known disease genes. For example, Wu et 
al. [46] used the shortest path algorithm to predict gastric cancer related genes based on 

gene-gene interaction networks. However, the noisiness and incompleteness of the 

background network can limit the accuracy of predictions made based on local approaches. 

Global approaches define proximity based on the overall network topology, e.g. using 

algorithms such as random walk with restart (RWR) [28], kernel diffusion [28] or network 

propagation [47] or by transforming the network into a probabilistic graphical model [48]. 

These approaches may help overcome local incompleteness of the network as they use 

information beyond the local subnetwork in which a gene is located. On the other hand, 

MUFFINN [49], a pathway-centric method which identifies cancer genes based on 

mutational information of both individual genes and their neighbors in functional networks, 

reported that analysis of mutations in indirect neighbors via diffusion algorithms did not 

improve predictive performance compared to analysis of only direct neighbors. NetSig [50] 

also implicates novel cancer genes based on mutations affecting a gene’s direct network 

neighbors. These methods that combine mutational data with molecular network information 

can complement gene-based statistical tests [17,19,20,51] by uncovering drivers from the 

long-tail of infrequently mutated genes that have significantly mutated neighbors.

Employing only topological information while overlooking other functional information 

might limit driver gene detection methods. The integration of phenotype similarity 

information into biological networks has been shown to improve cancer driver gene 

prediction [45,52,53]. Incorporation of phenotype information can also help avoid 

implicating genes based on false positive interactions present in networks [52] or missing 

network edges [53]. As cancer is a heterogeneous disease and different classes of somatic 

perturbation (mutation, expression, methylation) can result in similar consequences for 

biological function, incorporation of multi-omics data into molecular networks can further 

improve cancer driver gene predictions [54,55].

Identifying genes functionally targeted by CNVs can be particularly difficult, since CNVs 

usually overlap many genes. Indeed, large CNVs may promote tumorigenesis through 

simultaneous effects on multiple genes that are positive or negative regulators of cell 
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proliferation [56]. CONEXIC approaches this problem using the assumption that the 

expression of a driver gene should correlate with the expression of genes in its downstream 

module. CONEXIC [57] learns a network of modulator genes and associated gene 

expression modules from matched tumor CNV and expression data, then uses the model to 

identify small numbers of modulator genes within CNV regions that best explain variation in 

module gene expression. Matched CNV and gene expression data is not always available, 

and several methods have been developed to implicate driver genes within CNVs in the 

absence of transcriptional measurements. MAXDRIVER [58] relies on a hybrid network, 

combining a custom gene functional similarity network, gene-disease associations and a 

disease phenotype similarity network and then identifies driver genes within CNV regions 

based on maximal information flow between phenotype and genotype nodes in the hybrid 

network, where phenotypes are specific cancers.

Just as not all genes in a pathway have equal oncogenic potential, not all driver mutations 

within a cancer gene will alter function in the same way. Proteins often have multiple 

functions, and mutations can perturb specific functions while preserving others. Approaches 

have been developed to identify unexpected clustering of mutations in protein domains [59], 

in 3D structure [60,61], or in general [62,63]. Driver genes can then be implicated on the 

basis of mutation clustering that suggests a particular function is statistically perturbed in 

cancer.

Protein interactions with distinct partners can serve as a proxy for the different functional 

activities of a protein [64,65]. Integrating protein structure with protein interaction networks 

can allow reassignment of amino acids to specific interactions as interface residues, thereby 

mapping mutations to specific protein activities [66–68]. Several groups have developed 

scoring strategies that prioritize network edges enriched for somatic mutations in cancer 

under the assumption that recurrently perturbed interactions (edges) in tumors implicates the 

associated genes (nodes) as potential cancer drivers (Figure 4). Some methods evaluate the 

ratio of observed to expected mutations in interface regions, controlling for the size of the 

region relative to the size of the protein [69] or the size and the amino acid composition [70]. 

An alternative approach uses the non-synonymous to synonymous (dN/dS) ratio at 

interfaces, a signature of selective pressure that has been used to identify cancer genes [71], 

to evaluate whether interfaces are unexpectedly biased toward functional mutations [72]. 

Mechismo quantifies the consequences of amino acid substitutions at interfaces based on the 

expected pairing of specific residues across interfaces [73], enabling an assessment of the 

likely effect of the mutation based on the shift towards a more or less frequently observed 

amino acid pair. Some analyses additionally estimate the impact of the amino acid 

substitution on the stability of the protein complex [68,72,74] with methods that use force 

fields to evaluate binding affinity changes (e.g. FoldX [75]).

Alternative splicing can also play an important role in cancer by perturbing molecular 

interaction networks [76]. Differential inclusion of exons that form interaction interfaces in 

cancer can point to potential mechanisms of tumorigenesis. Climente-González et al. [76] 

demonstrated that protein domain families that are frequently mutated in tumors are also 

significantly perturbed by alternative splicing. Interestingly, the set of tissue-specific exons 

that form binding motifs was found to alter interactions in signaling networks known to be 
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enriched in cancer genes, suggesting the potential for dysregulation of normal splicing 

differences to promote cancer [77]. Moreover, cancer mutations can also more broadly 

perturb splicing. DrAS-Net [78] uses a network-based strategy to study how somatic 

mutations impact the alternative splicing of neighboring genes in a functional interaction 

network. This study uncovered extensive effects of somatic mutations on alternative splicing 

in multiple tumor types.

Networks can be adapted to identify various types of cancer-associated elements. 

Hypothesizing that cancer-associated miRNAs would consistently dysregulate their target 

genes, Xu et al. [79] prioritized novel prostate cancer miRNAs from known miRNA-targets 

using a network of dysregulated miRNA target-pairs, based on joint analysis of miRNA and 

mRNA expression profiles. Li et al. [80] uncovered prognostic miRNA signatures in glioma 

malignant progression by de novo inferring the functional targets of miRNAs from an 

miRNA-mRNA regulatory network constructed from paired miRNA-mRNA expression 

profiles. Le [81] applied a variety of module finding approaches to a miRNA similarity 

network based on miRNA-target similarity, finding that these approaches worked well to 

identify known disease modules and implicating six new miRNAs in breast cancer 

pathogenesis. Novel miRNAs were also implicated in breast cancer by Hamed et al. who 

analyzed the proximity of somatic mutations to regulatory interactions between miRNAs and 

mRNAs as well as transcription factors and their target genes [82]. Creixell et al. analyzed 

mutations in the context of kinase signaling to identify altered patterns of post-translational 

modification that likely contribute to cancer [83]. In general, non-coding RNAs and post-

translational modifications have received less attention than somatic alterations and DNA 

methylation changes affecting protein-coding genes, however there is ample evidence that 

they play an important role in tumorigenesis [84,85].

Driver mutations

While identifying driver pathways and genes can provide insight into tumor biology and 

identify new candidate therapeutic targets, the challenge of discriminating driver mutations 

from passengers persists. In a clinical setting, it is important to identify actionable mutations 

in cancer that indicate a particular treatment course. Even well-established cancer genes can 

carry passenger mutations (Figure 2), and the driver or passenger status of a mutation may 

determine whether response to a gene-targeted therapy is possible. While many methods 

exist to predict whether a mutation is a driver [86,87], networks provide a means by which 

multiple ‘omic’ data layers can be used as evidence of functional effect.

Transcriptional data can be used to discriminate drivers under the assumption that driver 

mutations impact the gene expression levels of the proteins they target, and hence their 

interacting partners and/or the proteins within the same pathway while passenger mutations 

should not display a strong effect [8,88]. DriverNet [88] uses this concept to prioritize 

mutations by their effect on transcriptional networks by relating the mutations to disrupted 

transcriptional patterns via a bipartite graph and assigns statistical significance to candidate 

predictions. With this approach, DriverNet identified multiple rare drivers in breast and 

ovarian cancer. ParadigmShift [89] predicts the functional effect of a mutation on the 

pathway neighborhood of the targeted gene by employing a belief-propagation algorithm to 
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deduce mutation activity based on gene expression and copy number data upstream and 

downstream of particular mutations. It has been shown to be effective in predicting novel 

mutations in glioblastoma, ovarian and lung squamous cancers. These methods are 

complementary to frequency-based methods as they have been shown to be successful in 

detecting rare drivers.

Clinically-relevant patient stratification with networks

Understanding tumor biology is central to identifying novel drug targets and building a body 

of knowledge that can help with the interpretation of tumor genomes (Table 2). A directly 

relevant aspect of this is defining clinically informative cancer subtypes that can indicate 

relevant characteristics of a tumor, including long-term prognosis or likely drug sensitivities. 

Subtypes are well established in some tumors (e.g. molecular subtypes in breast cancer), but 

less obvious in others, and are often defined based on the presence or absence of specific 

molecular markers, or based on similar patterns of gene expression. Different approaches 

seem to work for different cancer types; gene expression can be used to stratify breast and 

ovarian cancer [90–94], however could not stratify tumors into clinically informative 

subtypes in some cancers [93,95].

Because tumor genomes are so heterogeneous, it’s rare that a single molecular event (e.g. 

HER2 upregulation in breast cancer) defines an entire subtype. Networks can be used to 

manage this heterogeneity to group samples with similar molecular profiles that might 

indicate tumor similarity even though different genes play synonymous roles [96]. Indeed, in 

some tumor types, molecular subtypes are naturally defined by the activity of a particular 

biological pathway (e.g. Wnt and SHH subtypes of medulloblastoma), but the pathway is 

activated by different mutations across patients.

Using mutation profiles to infer similar patient clusters requires that the data be processed to 

make it more amenable to statistical learning. Tumor mutation profiles are sparse and binary, 

with little overlap. Network-based stratification (NBS) [97] integrates molecular networks 

with mutation profiles to stratify tumors into clinically meaningful subtypes by clustering 

patients with mutations in similar network regions. This is done by first projecting the binary 

mutation profiles of each patient onto a gene interaction network, followed by the 

application of network propagation to spread the influence of mutations over the network. 

Then the ‘network-smoothed’ patient profiles, which are neither binary nor sparse, are 

clustered into subtypes using network regularized non-negative matrix factorization (NMF) 

combined with consensus clustering to ensure stability of the final clustering [97]. NetNorM 

normalizes patient mutation profiles based on gene network topology, adding or removing 

mutations for particular patients conditional on the distribution of mutations on the network 

[98] instead of network smoothing to overcome the sparse and binary nature of mutation 

data. NBS or similar approaches have successfully stratified cancer cohorts into subtypes 

that are related to clinical outcomes such as patient survival, response to therapy or tumor 

histology in ovarian, lung [97], colorectal, head and neck, kidney [99], endometrial 

[97,99,100] and prostate cancers [101].

In its original application, NBS used a fixed gene network for all cancer types. It has 

recently been suggested that interpatient heterogeneity could be better overcome by using 
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cancer-type-specific networks. To this end, He et al. [100] employed expression data to 

create cancer-type-specific significant co-expression networks (SCNs) that were then used 

with somatic mutation data in an NBS approach. By focusing on the disease-specific 

network, it was possible to identify survival-associated subtypes in uterine corpus 

endometrial carcinoma (UCEC) cancer that were not detected by the original NBS method. 

There are also similar approaches [102,103] that integrate network architecture information 

with gene expression profiles (as opposed to somatic mutation data like in NBS) to assign 

weights to genes in a gene by patient matrix which is then clustered to stratify patients into 

groups and discover cancer subtypes. Smoothing expression across the network emphasizes 

groups of related genes with similar expression patterns across samples, thereby identifying 

more stable signals within the expression data.

Tumor stratification may be further improved by integrating multiple omic data layers. 

PARADIGM [104] integrates copy number variation, expression, and pathway-level data to 

infer patient-specific genetic activities. PARADIGM demonstrates that clustering patients 

based on their significant pathway perturbations divides them into clinically-relevant 

subgroups in glioblastoma multiforme (GBM) more successfully than using gene-level data 

(gene expression or copy number variation) in isolation. A method called SNF [105] 

constructs separate patient-by-patient similarity networks from DNA methylation, mRNA 

expression and miRNA expression, then fuses them into one network that represents the full 

spectrum of underlying data and can be used for cancer subtype discovery via spectral 

clustering. This approach not only avoids noise and bias from different data types but also 

takes advantage of the intersecting information of the overall molecular characteristics of the 

cohort. ndmaSNF [106] also takes advantage of the SNF framework, extending it by adding 

somatic mutation data to find cancer subtypes and demonstrating that these subtypes are 

characterized by distinct survival profiles. Overall, incorporating multi-omic data to a fused 

network is reported to enhance the power for discovering subtypes that correlate with 

survival or other clinical features in cancer.

Establishing the effectiveness of stratification using cost-effective gene panels is key to bring 

tumor stratification approaches into the clinic. In a recent study, Zhong et al. [99] 

demonstrated that small panels are effective in clustering tumors across 13 major cancer 

subtypes and even outperform full exome data for most cancer types. This is likely due to 

the enrichment of clinically important genes and cancer drivers in such panels compared to 

the full exome data which is dominated by passenger mutations [2]. Interestingly, the 

original NBS reported performance loss when silent or non-functional mutations were 

filtered [97], but the decrease in performance was not attributable to an effect on overall 

mutation burden.

Network analysis to identify therapeutic opportunities

Networks can be a useful tool in providing insights and guidance for designing cancer 

therapies, or even identifying possible synergistic drug combinations. Synergistic drug 

combinations are particularly attractive because they tend to be effective at lower doses, 

which can reduce toxicity and make it more difficult for tumors to develop resistance [107]. 

Li et al. [108] provided a report of recent tools and databases available for predicting 
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synergistic drug combinations with ‘omics’ data. To predict drug responses or design drug 

combination, models have integrated disease signaling network data and transcriptomic 

expression data [109,110], protein interactions, protein-DNA interactions [111,112], and 

pathway-pathway interactions [113]. Using network modeling, researchers can view the 

interactions between drugs, cancer-related genes, therapeutic targets, and signaling pathways 

as a system, and thereby enhance the ability to suggest clinically applicable novel 

therapeutic approaches.

As an example, Lu et al. performed Boolean network analysis of epithelial cell 

transformation under normal and inflammatory conditions, implicating key regulatory 

modules in malignant transformation [114]. By perturbing specific nodes and running 

simulations on the network, they were able to predict effective drug combinations, validating 

that ceramide and PIK3CA/AKT/MTOR pathway inhibitors had synergistic anti-cancer 

effects in vitro. A similar analysis of TP53 signaling mapped perturbations of the TP53 

pathway to a state space of proliferation, senescence or cell death, and predicted that 

nutlin-3, an MDM2 inhibitor, would have limited effectiveness in isolation, but would 

synergize with WIP1 inhibition to increase cell death [115].

Proteins involved in the same biological pathway or protein complex should also be 

transcriptionally co-regulated in order to maintain the necessary stoichiometry of constituent 

molecules. Deviations in co-regulation of proteins from a normal setting, evaluated using 

networks of gene or protein co-expression, has been shown to create exploitable drug 

sensitivities [116,117]. Somatic mutations were found to generate effects that were 

transmitted from the affected proteins to distant tightly co-regulated gene products via the 

PPI network [117], suggesting the necessity to look beyond the mutated genes themselves to 

understand oncogenic mechanism. Diffusion-based approaches have been adapted to 

evaluate possible downstream consequences of individual mutations [118], and could 

potentially be helpful for defining a search space for mutation-associated differential protein 

co-regulation.

Of note, Lee et al. reported that while simultaneous application of EGFR inhibitors and 

DNA-damaging chemotherapy did not result in synergy, time-staggered application 

significantly sensitized triple negative breast cancer cells to chemotherapy [119]. The 

authors chose EGFR signaling because of its known cross-talk with the DNA damage repair 

pathway. This suggests that dynamic network models could provide a strategy for 

systematically evaluating opportunities for drugs targeting one pathway to expose 

therapeutic vulnerabilities in another. This avenue remains largely unexplored however, 

because high-density time course measurements are required, and are difficult to obtain in an 

in vivo setting.

Networks as prognostic biomarkers

Another important aspect of clinical decision making is understanding prognosis. Some 

tumors may be slow to progress to malignancy and patients may be over-treated (as is 

common for ductal carcinoma in situ and prostate tumors), whereas others may be very 

aggressive and merit aggressive clinical intervention. Another important aspect of prognosis 

is monitoring for tumor progression post-treatment. Due to inter-tumor and inter-patient 
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heterogeneity, individual somatic alterations or overexpressed proteins have limited value as 

biomarkers. One alternative is to use a panel of biomarkers; however, this comes with a risk 

of potential overfitting as there is a large number of possible combinations to explore [120]. 

Networks have been applied to optimize selection of relevant biomarkers [121], and have 

even been used directly as biomarkers themselves [122].

When clinically relevant tumor subtypes have been established, biomarkers are needed to 

confidently place patients within those subtypes. mCGfinder [123] uses a matrix 

decomposition framework over a gene interaction network to find genes where alterations 

are more concentrated in subsets of patients. This approach prioritizes recurrently altered 

genes that are biased toward subtypes and can thus be used to assign new patients, provided 

that a new patient has mutations in the relevant genes. Weighted gene co-expression network 

analysis (WGCNA) [124] provides a strategy to identify modules of co-expressed genes that 

distinguish groups of patients, and was able to implicate modules associated with tumor 

stage or grade in serous ovarian cancer. Stage and grade are markers of disease 

aggressiveness that are typically determined from histological analysis of tumor biopsies. 

CAERUS [125] was able to predict cancer-free versus recurrent disease status in both breast 

and ovarian cancers by analyzing the correlation of expression levels of selected marker 

genes and their network neighbors.

Survival time or time to recurrence post-treatment can serve as a proxy for aggressiveness of 

tumor subtype. Biomarkers associated with short versus long survival can be helpful in 

determining whether a patient’s disease should be monitored or treated aggressively. 

Mutations and gene expression levels can be assessed as prognostic biomarkers by analyzing 

their correlation with time to recurrence or death. Cox proportional hazards model [126] is a 

popular method performed for this task, but due to high dimensionality of mutation and 

expression data, it can suffer from overfitting. Use of networks has been suggested to 

overcome this issue by reducing dimensionality in a way that accounts for the relationship 

between genes. Network-based Cox regression models have been reported to improve 

accuracy of survival prediction in ovarian cancer (Net-Cox [127] and DegreeCox [128]). 

These methods incorporate a matrix representation of network information into the model 

such that the model is constrained to focus on genes that are particularly relevant. Net-Cox 

focuses on genes that are functionally related and co-expressed, whereas DegreeCox focuses 

on genes that are central in the network. Both methods have been shown to outperform 

Lasso and Ridge regression, approaches to dimensionality reduction that ignore the 

relationship between genes.

As it has been shown that non-redundant features are more effective in a machine learning 

setting, several approaches use networks to reduce redundancy in the space of features that 

are used for survival analysis. For example, under the assumption that miRNA-mRNA target 

pairs will have correlated expression, Gade et al. built a bipartite network of mRNA and 

miRNA target information in order to fuse miRNA and mRNA expression profiles and guide 

selection of non-redundant mRNA and miRNA features [121]. A method called GIREN uses 

an interaction network to group features, assuming that proximity in the network indicates 

functional redundancy [129].

Ozturk et al. Page 12

J Mol Biol. Author manuscript; available in PMC 2019 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Other methods have used measures of pathway activity as features for Cox regression 

instead of individual genes. For example, Huang et al. used pathway deregulation scores 

[130]; Eng et al. created a pathway-specific score by first using Lasso to select genes within 

pathways, and then combining the direction of gene activity into a patient-specific pathway 

index score [131]; and Zhang et al. first used Cox modeling to determine a prognostic score 

for each pathway based on the predictive value of their constituent genes, and then used the 

pathway prognostic scores as features for survival analysis [132].

Biomarkers of metastasis provide an alternative measure of progression that can be assessed 

from biopsy of the primary tumor and can be useful for identifying patients that may benefit 

from more aggressive therapeutic approaches. Chuang et al. analyzed gene expression on a 

PPI network to identify subnetworks differentially expressed between metastatic and non-

metastatic breast tumors [122], enabling classification of tumors as metastatic based on gene 

expression profiles. These subnetwork biomarkers were more reproducible across cohorts 

than biomarkers based on individual genes. Because transitions in biological systems are 

often abrupt, time series analysis has been used to search for tipping-points or dynamic 

network biomarkers that indicate an imminent state change. Yang et al. applied this approach 

in the setting of hepatocellular carcinoma and implicated a subnetwork centered around 

CALM3 as a biomarker of pulmonary metastasis [133].

Because different mutated and differentially expressed genes characterize different tumor 

types and subtypes, different biomarkers of prognosis and progression are likely to be 

necessary for each disease. Wu et al. identified new prognostic genes for gastric cancer using 

proximity to known gastric cancer genes in a protein interaction network [46]. Tissue-

specific networks may provide a strategy to better identify disease-specific biomarkers 

[134]. Yuan et al. [135] constructed a leukemia-specific protein-protein interaction network 

by filtering a global network against curated annotations in order to search for biomarkers 

for leukemia. Tissue-specific interaction networks for RNAs are less well-established. Zhou 

et al. [136] constructed a network from mRNA, miRNA and long non-coding RNA 

interactions from measurements derived from ovarian cancers and uncovered ten potential 

prognostic lncRNA biomarkers that classified patients into high- and low-risk subgroups 

with significantly different survival outcomes.

Patient-specific methods

In the clinical setting, decisions must be made about the treatment of individual patients. 

Even clinical trials are increasingly incorporating individual genomic information by placing 

patients into ‘baskets’ according to the genes in their tumor that harbor mutations [137]. 

However, a growing body of evidence suggests that patients with different mutations 

affecting the same gene can have very different responses to the same treatment [138]. For 

instance, different responses to HER2/HER3 inhibition by neratinib were recently reported 

for different mutations and tumor types [139]. Response to cetuximab, a drug used for 

treatment of colorectal cancer, also differs for specific mutations in the KRAS protein [140]. 

There are also examples of warfarin, carbamazepine and clopidogrel being shown to be 

ineffective in the presence of certain genetic perturbations [141,142]. This underscores the 
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need for tools to accurately interpret patient-specific ‘omics data to advance precision cancer 

medicine (Table 3).

Although affordable omics-based technologies have enabled great leaps in understanding of 

the mechanisms underlying the biology and clinical characteristics of cancer, few of these 

techniques work at the single-sample level. There is increasing interest in the development 

of bioinformatics tools that are able to interpret ‘omics data for individual subjects in disease 

related studies (e.g. personalome) [143]. In the setting of cancer, early methods have taken 

advantage of the availability of tumor ‘omics data to develop computational tools for single-

patient tasks including identifying activated pathways, implicating personal driver mutations 

and predicting prognosis or drug sensitivities. Such N-of-1 methodologies could eventually 

inform patient assignments in clinical trials or support decision making in the clinic.

N-of-1 pathway identification

Studies that identify activated pathways from transcriptome profiles have thus far relied on 

the following three principles: (i) the statistical universe is a single patient; (ii) significance 

is derived from aggregating data on gene sets or biological modules from single or paired 

samples from the same patient; and (iii) pathway-level information is able to answer 

questions of clinical importance [143–147]. Transcriptome-based analyses can be 

formulated to allow interpretation [148,149] in terms of detection of deregulated gene sets 

related to mechanisms at various scales of biological organization (e.g. DNA repair, 

signaling, immune response). Using expression and pathway information, several N-of-1 

studies have developed unidirectional pathway scores relying on a single [144,147] or paired 

samples from the same individual [145]. These scores are designed to find enrichment for 

extreme values within a pathway, for example by comparing the normalized sum of rank-

weighted gene expression for genes in the pathway to all genes not in that pathway, after 

which pathways can be ranked by their scores [144]. Paired sample analysis takes advantage 

of having two or more samples from the same patient, either as a time-series, or as samples 

from a diseased versus non-diseased site, and then by using a statistical test (e.g. the 

Wilcoxon signed-rank test) to identify pathways that are overall up- or down-regulated 

between samples [145]. Variants have also been developed to detect pathway enrichment 

from bi-directional dysregulation which is ubiquitous in biological systems. N-of-1-

pathways MixEnrich uses mixture modeling to cluster genes with normal versus aberrant 

(up- or down-regulated) expression, enabling detection of enrichment based on bi-directional 

effects [147]. kMEn also groups genes based on normal versus aberrant expression by 

clustering transcripts based on the absolute value of the log2 fold change between paired 

samples [146]. N-of-1 transcriptome-based methods have been applied to multiple cancer 

types, including head and neck cancer [144,147], lung adenocarcinoma [145], ovarian and 

breast cancer [146,149,150], and have been shown to distinguish tumor samples from 

matched normal and healthy control samples, and to correlate with survival.

For methods aimed at informing clinical decisions, an additional requirement is effective 

extraction and reporting of clinically relevant and actionable targets from complex data for 

single samples [151]. Schissler et al. refined the N-of-1-pathway framework wherein the 

Wilcoxon signed-rank test and Mahalanobis distance are combined to create a ‘clinical 
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relevance metric’ (CRM) which provides information about the magnitude of deregulation 

of pathways with biological or clinical significance [143]. The clinical utility of the score 

was evaluated using bootstrapping, simulation and evaluation in biological replicates as well 

as by evaluating the ability of pathway scores to predict long term survival in breast cancer. 

OncoRep derives multiple layers of information from single sample RNA-seq data in the 

setting of breast cancer, including molecular subtype classification, altered genes and 

pathways, gene fusions and clinically actionable mutations [151]. The tool provides an 

HTML report of findings, as well as drug recommendations based on DrugBank [152] and 

PharmGkb [153].

N-of-1 driver prediction

Robust personalized driver prediction is required for discovering rare causal events in cancer 

that are often obscured by tumor heterogeneity and may provide important information for 

selecting effective therapies. Whereas Merid et al. developed a strategy to identify drivers 

based on co-occurrence of mutations and CNVs from individual tumors in a functional 

network in the absence of expression data [154], most driver prediction methods integrate 

mutation and expression. In general, most mutations in tumors are expected to be passengers 

with little impact on gene expression, therefore this problem can be framed as identifying 

the minimum set of mutations that explain the maximum variation in gene expression 

conditioned on connectivity in a network. DawnRank [155] and OncoIMPACT [156] predict 

personalized drivers based on the impact of mutated genes on the overall differential 

expression of downstream genes in the molecular interaction network. While DawnRank 

uses network propagation to rank genes that broadly influence gene expression while 

controlling for the effects of network topology, OncoIMPACT finds paths between mutated 

and differentially expressed, defining parameters related to the path length and degree of 

nodes along the path to constrain predictions. OncoIMPACT uses the resulting paths to 

construct a bipartite network connecting mutated genes with differentially expressed genes 

and applies the minimum set cover criteria to select drivers.

The previously described methods rely on a single global network for prioritizing driver 

genes; however, it is also possible to create patient-specific networks from transcriptional 

measurements. This is the approach taken by sample-specific networks (SSN) [157], which 

constructs networks that emphasize expression differences relative to a panel of reference 

samples. This approach was applied to the TCGA to characterize cancer at a network level 

and to identify individual-specific disease modules and driver genes without using mutation 

information. The Single-sample Controller Strategy (SCS) creates patient-specific networks 

by focusing on the regions of a molecular network most relevant to mutations and 

differentially expressed genes [158], where differential expression is determined from paired 

tumor-normal samples. Personalized drivers are again identified through mapping to a 

bipartite network, in this case by relying on control theory, and then by applying the 

minimum set cover. Early results from these analyses suggest that patient-specific networks 

may be more effective for identifying the drivers in individual tumors [158], and aggregating 

single-sample drivers across tumors could lead to new insights for some cancer types [157].

Ozturk et al. Page 15

J Mol Biol. Author manuscript; available in PMC 2019 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While some N-of-1 methods truly require only data from a single sample, others may rely on 

cohort analysis for parameter fitting [156], or require comparison against a control or 

reference population [149,157]. Although N-of-1 network analyses show promise for 

enabling single-patient inference, it is rare for tumors to undergo whole transcriptome and 

exome sequencing and even less frequent that matched tumor-normal transcriptomic and 

genomic data are available. Thus, there are currently practical limitations for the broad 

adoption of such approaches.

Road to the clinic

Mutations and copy number changes of individual genes have long been used as clinical 

biomarkers for the selection of therapies in patients with various forms of cancer. In most 

cases these genetic abnormalities are directly related to the targeted therapy in question, like 

BCR-ABL and imatinib, activating EGFR mutations and erlotinib, and HER2 amplification 

and trastuzumab. These relationships are not cryptic and are easy to demonstrate in pre-

clinical studies, making it easier to develop them in clinical trials. Historically, genetic 

associations with response to these types of targeted agents have been robust, dramatic, and 

extremely meaningful clinically. This has made the adoption of molecularly targeted 

therapies and their associated genetic biomarkers routine in the area of oncology.

There have also been examples of more complex genomic information used to tailor therapy 

in cancer patients, although the road to clinical implementation of these approaches has been 

more challenging. For example, patterns of gene expression in patients with early stage, 

estrogen-receptor positive breast cancer can predict the likelihood of disease recurrence and 

the expected risk reduction from adjuvant chemotherapy. The prototypic clinical 

implementation of this approach was with the Oncotype DX test that examines the 

expression of 21 genes in a breast tumor sample [159]. This panel was reduced from a larger 

analysis of 250 candidate genes validated in three independent cohorts and can be performed 

on fresh-frozen paraffin embedded (FFPE) tissue [160]. The results of the test are given as a 

single score that estimates the risk of recurrence and can be roughly divided into a binary 

decision with only a small range of indeterminate values. Subsequent studies and years of 

clinical use have repeatedly supported the analytic validity and predictive value of this test 

which is now considered a standard of care [161–164]. Several similar approaches have 

since been implemented in breast and other cancers including colorectal and prostate.

There are three principle lessons that can be learned from the Oncotype DX example that 

apply to newer, and more complex, network-derived biomarkers. First, the experimentally 

generated model must be reduced to practice in a way that is economically feasible, 

reproducible, and analytically valid across a range of conditions (e.g., sample quantity, age, 

quality, fixation, etc.). Second, the result of the assay must be unambiguous and easy to 

interpret. A propensity score associated with a clinical outcome like the Oncotype DX RS 

score or a binary result like ‘positive’ or ‘negative’ are more interpretable than a list of likely 

cancer driver pathways untethered to a specific drug or therapy. Finally, the assay will 

require extensive validation in multiple cohorts and must outperform the existing standard of 

care. Even then, clinical adoption and inclusion in consensus treatment guidelines (often 

required for insurance reimbursement) can take time. Partnering with cooperative groups, 
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study sponsors, and clinical tissue banks to examine already collected samples would greatly 

accelerate the validation process.

In some cases, genomic analysis could lead to a discovery which then enables the 

identification of a non-genetic biomarker that is easier to detect. Unsupervised gene 

expression analysis of diffuse large B-cell lymphomas (DLBCL), for example, found two 

highly reproducible gene profiles dubbed germinal B-cell like (GCB) and activated B-cell 

like (ABC) for their resemblance to normal germinal and activated B-cell signatures [165]. 

The distinction between ABC and GCB subtypes of DLBCL was clinically significant as 

these groups had very different outcomes after standard treatment. While the expression 

signature could be predicted by analyzing a small number of genes, it was noted that cell 

surface markers identifiable with immunohistochemistry could also distinguish these groups 

[166–168]. At the time, this assay was much more accessible and familiar to pathologists, 

enabling its rapid adoption in practice. This example reinforces the point that network 

analyses that identify vulnerabilities in cancer patients must be reduced to practice in a way 

that is accessible to both those doing the testing and those receiving the results. Being able 

to generate the requisite data with established methods will lower the barrier to clinical 

implementation.

The types of network and machine learning algorithms described here will enable more 

precise and individualized classification of many cancer types. For rarer tumor types, large 

scale validation studies of recommended therapies may not be possible. Instead, we will 

need to use approaches like CancerLinQ, developed by the American Society of Clinical 

Oncology, to register and follow outcomes of every patient evaluated with these tools and 

treated based on the predictions they make. This will enable the evaluation of competing 

approaches in a variety of clinical contexts, ultimately providing confidence about the value 

of these techniques.

Discussion & Conclusion

Networks have proved repeatedly to be a powerful tool for studying biological systems in 

health and disease. In this review, we examined algorithmic and analytic innovations in the 

application of network analysis to cancer, a setting uniquely characterized by an abundance 

of molecular data including multiple ‘omic data layers and paired disease-normal samples. 

In this setting, networks have been used to overcome inter-tumoral heterogeneity, facilitate 

data integration and capture interactions among genomic, epigenetic and transcriptomic 

alterations. Across samples, networks have helped implicate driver pathways, genes and 

mutations, identify cancer subtypes, stratify patients with similar disease and uncover novel 

biomarkers of prognosis and therapeutic response (Figure 5). Networks can also support 

single sample inference, helping to identify activated pathways and personal driver 

mutations. Across all of these settings, networks are an important departure point for 

systems biology; they provide a fundamental structure for moving beyond single gene 

explanations for disease phenomena. However, there are many practical considerations to be 

addressed before network methods can be translated for applications in precision medicine.
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Highlights

• Networks provide a platform for inference from ‘omic data

• Many network-based methods have been developed around cancer ‘omic data 

analysis

• Most tumor network analyses rely on cohorts, but some N-of-1 methods exist

• Many challenges remain for applying network-based analysis in clinical 

settings
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Figure 1. 
Overview of network applications in cancer.

Ozturk et al. Page 30

J Mol Biol. Author manuscript; available in PMC 2019 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Schematic diagram of three concepts used for identification of cancer drivers. Nodes 

represent proteins while edges represent interactions between proteins. A) Identification of 

driver pathways, where the nodes within the shaded region belongs to the pathway. B) 
Identification of driver genes, where red nodes correspond to the proteins encoded by driver 

genes within the pathway (outlined). C) Identification of driver mutations targeting the 

driver genes. Sizes of the nodes represent mutation frequency. Pie charts on the nodes 

display the percentage of driver (red) and passenger (pink) mutations.
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Figure 3. 
Summary of several widely-used algorithmic approaches in the identification of driver 

pathways/subnetworks. A) An example network with nodes representing proteins and edges 

representing interactions between proteins. Nodes marked with an asterisk are mutated 

proteins. B) A heat diffusion process where each node is initially assigned a color based on 

the mutation score of the corresponding gene. Heat diffuses across the edges of the network 

where intensity of the node colors denotes the mutational influence on the protein. In the 

end, significantly mutated subnetworks (outlined) are reported. C) A prize-collecting Steiner 

tree approach where node size represents mutation score and edge width represents the 

confidence in the interaction (other concepts can be used for determining the node size and 

edge width). Algorithm reports the connected components with the most “prize” nodes and 

the least number of edges. D) A mutual exclusivity approach that identifies sets of genes that 

simultaneously maximize mutual exclusivity and coverage of patient samples.

Ozturk et al. Page 32

J Mol Biol. Author manuscript; available in PMC 2019 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
A network-based approach for integration of protein-protein interaction networks with 

protein 3D structures and mutation data to identify cancer driver genes. Nodes represent 

proteins and edges represent interactions between proteins in the network. Unexpected 

mutational enrichment (red lollipops) on the interaction interface region of a protein (blue) 

implicates the encoding gene as potential cancer driver.
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Figure 5. 
Network of network-based methods used in cancer. Nodes represent the name of the 

methods and edges represent similarity in the utilized algorithmic approaches. The colors of 

nodes represent the application of the method. Similar applications are grouped together 

(dashed line) under four main categories: driver identification for pathways, genes (or 

miRNAs or alternative splicing) or mutations, patient stratification, network biomarkers 

(therapeutic biomarkers, variant interpretation, subtype biomarkers, survival analysis, 

prognostic biomarkers) and N-of-1 analysis including transcriptomic analysis and driver 

prediction.
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Table 3

Network-based methods for N-of-1 tumor analyses to identify altered pathways or driver mutations.

Method Application Approach URL Reference

Ingenuity Pathway Analysis N-of-1 pathway analysis

Regulatory 
network 
inference and 
scoring from 
expression 
data using a 
curated causal 
network from 
the Ingenuity 
Knowledge 
Base http://www.ingenuity.com [148]

Pathifier N-of-1 pathway analysis

Inferring 
pathway 
dysregulation 
scores for 
each tumor 
sample on the 
basis of 
expression 
data www.weizmann.ac.il/pathifier/ [149]

FAIME N-of-1 transcriptomic analysis

Pathway and 
molecular 
functional 
profiles from 
gene 
expression http://www.lussiergroup.org/publications/FAIME/ [144]

N-of-1-pathway N-of-1 transcriptomic analysis

Pathway and 
molecular 
functional 
profiles from 
gene 
expression 
(paired 
samples) http://lussierlab.org/publications/N-of-1-pathways [145]

MixEnrich N-of-1 transcriptomic analysis

Detects 
bidirectionally 
responsive 
pathways 
using mixture 
models to 
group genes http://lussiergroup.org/publications/MixEnrich [147]

kMEn N-of-1 transcriptomic analysis

Detects 
bidirectionally 
responsive 
pathways 
using K-
means to 
group genes 
(paired 
samples) http://www.lussierlab.org/publications/kMEn/ [146]

N-OF-1-PATHWAYS-MD N-of-1 transcriptomic analysis

Approximates 
the magnitude 
of 
dysregulation 
of pathways 
with 
biological or 
clinical 
significance 
(paired 
samples) http://www.lussierlab.net/publications/N-of-1-pathways [143]

J Mol Biol. Author manuscript; available in PMC 2019 September 14.

http://www.ingenuity.com
http://www.lussiergroup.org/publications/FAIME/
http://lussierlab.org/publications/N-of-1-pathways
http://lussiergroup.org/publications/MixEnrich
http://www.lussierlab.org/publications/kMEn/
http://www.lussierlab.net/publications/N-of-1-pathways


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ozturk et al. Page 40

Method Application Approach URL Reference

OncoRep N-of-1 transcriptomic analysis

Derives 
multiple 
layers of 
clinically 
relevant 
information 
from single 
sample RNA-
Seq data https://bitbucket.org/sulab/oncorep/ [151]

Merid et al. N-of-1 driver prediction

Co-
occurrence of 
mutations and 
CNVs in a 
functional 
network http://research.scilifelab.se/andrej_alexeyenko/downloads.html [154]

DawnRank N-of-1 driver prediction

Ranks 
mutated genes 
for overall 
impact on 
differential 
expression of 
downstream 
genes in the 
molecular 
interaction 
network http://bioen-compbio.bioen.illinois.edu/DawnRank/* [155]

OncoIMP ACT N-of-1 driver prediction

Formulates 
the minimum 
set cover 
problem on a 
bipartite 
network 
linking 
mutated genes 
to 
downstream 
targets 
identified 
from network 
path analysis https://sourceforge.net/projects/oncoimpact/ [156]

SSN N-of-1 driver prediction

Sample-
specific 
networks 
based on 
expression 
differences 
relative to a 
panel of 
reference 
samples http://sysbio.sibcb.ac.cn/cb/chenlab/software.htm [157]

SCS N-of-1 driver prediction

Formulates 
the minimum 
set cover 
problem on a 
bipartite 
patient-
specific 
network 
linking 
mutated genes 
to 
downstream 
targets 
identified 
using control 
theory http://sysbio.sibcb.ac.cn/cb/chenlab/software.htm [158]

*
Link listed in the original publication of the method is not valid.
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