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Integrative, segregative, and degenerate
harmonics of the structural connectome

Check for updates

Benjamin S. Sipes , Srikantan S. Nagarajan & Ashish Raj

Unifying integration and segregation in the brain has been a fundamental puzzle in neuroscience ever
since the conception of the “binding problem.”Here, we introduce a framework that places integration
and segregation within a continuum based on a fundamental property of the brain–its structural
connectivity graph Laplacian harmonics and a new featurewe term thegap-spectrum. This framework
organizes harmonics into three regimes–integrative, segregative, and degenerate–that together
account for various group-level properties. Integrative and segregative harmonics occupy the ends of
the continuum, and they share properties such as reproducibility across individuals, stability to
perturbation, and involve “bottom-up” sensory networks. Degenerate harmonics are in the middle of
the continuum, and they are subject-specific, flexible, and involve “top-down” networks. The
proposed framework accommodates inter-subject variation, sensitivity to changes, and structure-
function coupling in ways that offer promising avenues for studying cognition and consciousness in
the brain.

A central goal of systems neuroscience is to explain fundamental brain
processes shared across individuals. Perhaps the most important funda-
mental process involves the identifyingmechanisms to address the so-called
“binding problem,” which asks how an integrated experience arises
from segregated sensory information1. This philosophical question has been
investigated in terms of brain function, where integration and segregation
are ends of a continuum from synchrony to asynchrony, respectively2–4. Yet,
purely functional accounts cannot explain how this integration-segregation
balance emerges from the underlying biological structure. It has been pro-
posed that white matter “structural connectivity” (SC) network topology
subserves the integration-segregation balance, with integration originating
from signal convergence (e.g., the “rich-club”) and segregation originating
from modularity5–7. However, graph metrics to measure these network
properties in SC are incommensurable to a single integration-segregation
continuum. Furthermore, characterizing what occurs between integration
and segregation–the missing-middle–has not received sufficient attention.
An integration-segregation continuum based on a fundamental network
property is yet to be conceived for structural brain networks.

Understanding how integrative and segregative functional activity arises
from SC depends on the “structure-function” relationship of brain
networks–often described using graph theoretic and statistical measures8–11.
Graph Signal Processing (GSP) extends graph theoretical approaches, pro-
viding an elegant and concrete mathematical framework to describe brain
function as signal diffusion through the SC12,13. At GSP’s heart lies the graph
Laplacian matrix and its decomposition into graph harmonics (eigenvectors
or “gradients”14), reflecting orthogonal spatial patterns (wave functions) of a

signal in the network, with each harmonic associated with an eigenvalue
reflecting its graph frequency15,16. The harmonic decomposition of the graph
Laplacian is tantamount to a Fourier Transform; Laplacian harmonics form
the Fourier basis that describes how hypothetical brain signals would “reso-
nate” in the structural network, thereby linking structural graph topology to
functional synchrony12,17. Each harmonic is associated with an eigenvalue, and
conventionally harmonics are sorted by their ascending eigenvalues.

It is therefore natural to employ the harmonic “eigenspectrum” as the
organizing principle for integration and segregation, which may form the
continuum we seek. This concept has recently gained currency: lower
harmonics have been interpreted as integrative since they capture patterns
of global synchrony, and higher harmonics have been interpreted as seg-
regative since they capture local synchrony18. Just as low spatial frequencies
in Fourier space represent broad and smooth gradients while high fre-
quencies represent detailed, possibly localized, and noisy patterns, it has
been observed that low harmonics reflect the global network structure and
hence represent integrative activity while higher harmonics represent seg-
regated network clusters12,19–21. The lowest harmonics appear to correlate
with canonical functional resting-state Networks (RSNs)22–24 and were the
most effective at predicting functional connectivity (FC)24,25. Accordingly,
Preti et al.21 suggested dividing harmonics into two classes based on their
participation in fMRI: the lowest harmonics were “coupled” to fMRI signal
while all higher harmonics were “decoupled.” Sometimes these two regimes
are also called “illiberal” and “liberal,” respectively12. Therefore an ascending
harmonic eigenvalue ordering is a plausible means of describing the
integration-segregation continuum.

Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA. e-mail: benjamin.sipes@ucsf.edu

Communications Biology |           (2024) 7:986 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-06669-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-06669-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-06669-6&domain=pdf
http://orcid.org/0000-0002-8266-2213
http://orcid.org/0000-0002-8266-2213
http://orcid.org/0000-0002-8266-2213
http://orcid.org/0000-0002-8266-2213
http://orcid.org/0000-0002-8266-2213
mailto:benjamin.sipes@ucsf.edu


However, as we show here, many aspects of the structural harmonics’
eigenspectrum make the desired integration-segregation (or “coupled-
decoupled”) binary problematic and incomplete. The relationship between
Laplacian eigenvalues and spatial frequency has only partial mathematical26

and empirical19 support.Higher harmonics inparticularhave beenshown to
break from strict frequency expectations19. Mathematically, graph spectra
may be reasonable analogs of spatial frequencies for simpler graphs (e.g.,
rings and infinite or closed lattices) but not necessarily for complex
networks19,26, such as the brain4,8. The notion of low harmonics being
exclusively coupled to function is also imperfect: higher harmonics also
significantly contribute to functional activity, such as in MEG spectra18,27

and in alignment with RSNs such as the visual network22. Thus, both the-
oretical and empirical evidence suggests that the coupling-decoupling
dichotomy does not neatly align with the integration-segregation
continuum.

Can the Laplacian harmonic spectrum serve as an integration-
segregation continuum? Do the harmonics follow expectations for the
integration-segregation continuum, such as reproducibility across indivi-
duals? What fundamental network property could distinguish integrative-
versus-segregative harmonics?What represents the “missing-middle”of the
continuum, and what is its relevance to the underlying biology and brain
function?

In this study, we address these questions using a deep investigation of
the structural harmonics’ eigenspectrum. Firstwedevelop a consensus SC to
facilitate an ordering of harmonics across subjects. We seek the most
informative ordering of the harmonics that simultaneously addresses the
following criteria:
1. The ordering must place integration-like harmonics at one end and

segregation-like harmonics at the other.
2. The ordering must reproduce as much as possible notions of spatial

smoothness and sparsity.
3. The ordering should be reproducible across individuals in a predictable

manner.
4. Harmonics placed similarly along the spectrum must share more

properties with each other than those far apart.

We first show that the canonical ordering of harmonics by ascending
eigenvalues only partially succeeds in fulfilling the above criteria, but that
SC harmonics which deviate from classical Fourier expectations are
not reproducible across subjects with this ordering. Then, we show that
the above criteria can be met by aligning subject-specific harmonics to
the group-level harmonics from the consensus SC (the mean SC across
individuals). This new ordering reveals an underlying harmonic reprodu-
cibility related to the consensus “gap-spectrum,” a fundamental property
of the eigenspectrum derived from spectral graph theory. Further, the gap-
spectrum naturally partitions the harmonics into three distinct regimes:
integrative harmonics have low eigenvalues but high spectral gaps;
segregative harmonics have high eigenvalues and high spectral gaps;
the “degenerate” harmonics have intermediate eigenvalues but low
spectral gaps. The latter regime is so-named in analogy to degenerate
modes observed in many physical systems, both classical28–31 and
quantum32,33. This degenerate regime fills the “missing-middle,” it has not
previously been defined in brain science, and it is endowed with distinct
functional relevance.

Together, the three regimes faithfully account for key group-
level harmonic properties including spatial smoothness, sparsity, sensitiv-
ity to changes, similarity between individuals, and alignment to functional
networks. Hence, a more complete stratification of harmonics requires
a trichotomy–integrative, degenerate, segregative–instead of the
popular integration/segregation or coupled/decoupled dichotomies. The
proposed harmonic trichotomy aligns with prior graph theory
accounts of integration-segregation while also revealing previously
unreported structure-function relationships by explaining resting and
task functional networks in a manner that is not possible within prior
paradigms.

Methods
Datasets
Data in this study come from the publicly available MICA-MICs dataset of
50 healthy young adults (23 women; mean age 29.54 years)34. This dataset
was generatedwith themicapipe connectivity pipeline, and a full description
of the image processing steps canbe found in their articles34,35. This dataset is
not only of high quality, but it features cortical connectivity parcelled in the
Schaefer atlas36 at 10 different spatial resolutions (from 100 to 1000 cortical
nodes), with each parcellation including an additional 6 bilateral subcortical
regions and the bilateral hippocampus (14 additional nodes total).We used
networks weighted by classical streamline count connectivity (hereafter
“SC”) as well as the time series from resting-state functional magnetic
resonance imaging (fMRI) scans (TR = 600 ms, 695 time points). Most
analyses were performed in MATLAB while the Neurosynth analysis was
performed in Python.

To ensure that our main findings were replicable, we used another
dataset of SC collected with 220 healthy subjects (ages 18-75; mean(std) =
39.1 ± 16.8; 119women). This replicationdatasetwas previously used as the
healthy control sample for a recent study analyzing differences in tinnitus37.
Subjects in this replicationdataset hadmorediverse age demographics, were
imaged with different scanning parameters, were processed with a different
connectivitypipeline, andwereparceled in adifferent atlas, theBrainnetome
atlas38 (Supplement Section 1).

Connectome harmonics
For each subject’s SC,wefirst normalized their SCmatrix to aunit Frobenius
norm, then we computed the degree-normalized Laplacian:

L ¼ I � D�1=2CD�1=2 ð1Þ

where I is the identitymatrix,D is a diagonal degreematrix of the SCmatrix
(C).We then computed the eigen-decomposition of the resulting Laplacian
matrix.

L ¼ UΛUT ð2Þ

In (2), U is the orthonormal matrix of harmonics in each column and Λ is
the diagonal matrix of eigenvalues associated with each harmonic. Addi-
tionally, wewill henceforth useN to denote the number of regions for the SC
parcellation.

Harmonic frequency analysis
Determining the precise spatial frequency of each harmonic is not
straightforward since the brain’s harmonics live in the brain’s 3-dimensional
space, and a 3D-FFT does not have an obvious single feature representative
of the full volume’s frequency content. We instead used four measures that
relate to spatial frequency andanalyzed their relationship to eigenvalues. For
the below measures we first apply a modest threshold (T = ± 0.001) to
eliminate spurious low-amplitude fluctuations around zero.

Harmonic sparsity is measured as the fraction of regions where the
harmonic’s amplitude is zero. In classical Fourier analysis, the sparsity of all
harmonics in a Fourier transform is zero (i.e., all frequencies have infinite
support). Therefore, SC harmonics with high sparsity defy Fourier-based
intuitions for harmonics.

We usedMATLAB’s zerocrossrate function tomeasure the rate
at which the SC harmonic changes polarity (crosses zero), with high fre-
quencies defined by a high rate of polarity switching. This measure assumes
an ordering of regions such that adjacent regions are also adjacent across the
harmonic’s indices. This assumption is generally appropriate, as is clear in
the Regional Adjacency matrix that regions close in space are generally
adjacent in the regional ordering (Supplementary Fig. 3).

Harmonic Network Zero Crossings as a measure of harmonic fre-
quency was proposed by Huang et al.19, which accounts for Laplacian
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harmonics being graph cuts on the network:

Net ZeroXðukÞ ¼
1
2

X
i≠j

ci;jfukðiÞukðjÞ < 0 j ukðiÞ2; ukðjÞ2>Tg ð3Þ

Descriptively, the network edges between regions with opposite signs in the
harmonic are summed together, which is the graph cut weight described by
the harmonic. This measure can be considered a proxy for the “frequency”
of the harmonic with respect to the underlying network since higher fre-
quencies will have less optimal (highly weighted) graph cuts. However, one
known difficulty to this approach is that the areas of low harmonic ampli-
tudefluctuate spuriously around zero, and therefore the above threshold (T)
is useful to showgraph cuts between regions thatmeaningfully participate in
the harmonic. We also provide results across thresholds (Supplemen-
tary Fig. 4).

We propose a spatial “Roughness” measure for a given harmonic’s
frequency that uses a regional adjacencymatrix (A), where the entry ai,j is a
reciprocal function of the distance between adjacent voxels in MNI space
between regions i and j. Specifically,

ai;j ¼
XK
k

1
dðik; jkÞ

ð4Þ

In this equation, the summation is over all K voxels on the boundary
between regions i and j, and d(ik, jk) is the Euclidean distance between the
adjacent voxels ik and jk.

Our formulation for Roughness then becomes:

RoughnessðuiÞ ¼ k LAui k2 ¼ k ui � �Aui k2 ð5Þ

where LA is the degree-normalized Laplacian of the regional adjacency
matrix (A), ui is the i

th eigenvector of the SC Laplacian, �A is the degree-

normalized adjacency matrix �A ¼ D�1=2
A AD�1=2

A , and (∥ ⋅ ∥2) is the
euclidean (L2) norm of the result. The term k ui � �Aui k2 captures
roughness by measuring howmuch the harmonic signal ui deviates from its
weighted average based on the regional adjacency, effectively quantifying
local signal variability. Since A is defined only within each hemisphere, we
compute theRoughness separately foreachhemisphere thenaveragebetween
them. Spatial roughness is high when adjacent regions in the brain are
dissimilar in both their harmonic’s signal amplitude and polarity (i.e., sign).

Harmonic matching
We computed eigenvectors for each subject’s SC individually as well as for a
consensus SC, which was formed by taking the average across all subject’s
networks, computing thenormalizedLaplacian (1), thenobtaining its eigen-
decomposition (2).We thenmatched each subject’s eigenvectors to those of
the consensus network with a bipartite matching max-flow algorithm39

implemented in MATLAB (the matchpairs function). Mathematically,
this functionfinds a permutation thatmaximizes the trace of ∣UTV∣, whereU
is the subject’s eigenvectors, and V are the consensus eigenvectors. Let us
define a permutation vector p such that it maximizes:

max
p

XN
i¼1

∣hupðiÞ; vii∣ ð6Þ

Where ∣ ⋅ ∣ denotes an absolute value, and up(i) is the column in U corre-
sponding to the ith index in the permutation p. By matching individual
subjects to the consensus SC,we retain an ordering of ascending eigenvalues
with respect to the consensus SC.

Note that others have recently performed eigenvector alignment using
Procrustes40; however, we refrained from this approach to preserve asmuch
of the subject-specific features in the harmonics as possible, since

understanding the subtle harmonic variation across subjects is a key ques-
tion evaluated in this work.

Inter-subject agreement
To evaluate inter-subject agreement between both unmatched andmatched
harmonics, we computed all possible combinations of subject-specific
consensus-matched harmonic dyads (subjecti, subjectj) and took the abso-
lute value of each diagonal:

Agreementðsubjecti; subjectjÞ ¼ jdiagðUT
subjecti

U subjectj
Þj ð7Þ

Agreement between subjects i and j is a vector in RN , and we computed
agreement for all pairs of subjects in our dataset. Note that since these
harmonics are orthonormal, subjects that share identical harmonics will
have an Agreement equal to 1 for those harmonics, and fully orthogonal
harmonics will have an Agreement equal to 0.

Separately from inter-subject agreement, we analyzed inter-subject
variation within each region across harmonics. After matching to the
consensus SC harmonics, we re-scaled subject-specific absolute-valued
harmonics so that each was on the closed interval [0, 1], then we took the
variance across all subjects followed by the mean across all harmonics.

We replicate our primary inter-subject agreement analysis in two
complementaryways. First, we replicate across parcellation resolutionswith
the Schaefer atlas (114-1014 parcels) in the same MICA-MICs dataset
(Supplementary Fig. 5). Second, we replicate in an entirely separate dataset
with 220 subjects processed with different MRI acquisition parameters, a
different SC pipeline, and parcelled in the Brainnetome atlas with 246
regions (210 cortex plus 36 subcortex)38 (Supplement Section 1). This held-
out dataset has been previously published here37.

Eigenvalue gap-spectrum
In spectral graph theory, harmonic eigenvalues index different network
topologies41, and the difference (or “gap”) between ascending eigenvalues
can have specific meanings–for example, the gap between the smallest and
second smallest eigenvalues quantifies the network’s overall
connectivity15,42,43. In general, each harmonic captures dimensions of the
networks structure, and the closer two eigenvalues are to each other (i.e., the
smaller their gap, the more they are degenerate), the closer the associated
harmonics are to describing the same type of network configuration, i.e.
network motifs41 and symmetries44. More generally, the “gap” between any
two eigenvalues is:

GapðλiÞ ¼ minj≠ijλi � λjj ð8Þ

Spectral gaps indicate the “degeneracy” between two harmonics, where
harmonicswith the same eigenvalue (i.e., a gap equal to zero) are considered
fully degenerate. Degenerate eigenvectors have a sense of “flexibility” since
they represent underlying interchangeable motif structures, e.g., node
symmetry44, in thenetwork. Linear combinationsofdegenerate eigenvectors
can combine to form new degenerate eigenvectors in the same eigen-sub-
space, and they are related to network synchonizability45. Here, we analyzed
the SC harmonic eigenspectrum through what we’ve termed its “gap-
spectrum,”which is analogous to the derivative of the ascending eigenvalues
with respect to their index, and which represents a measure of harmonic
degeneracy. However, because derivatives are known to amplify noise, to
obtain a smooth gap-spectrum for all harmonics, we first fit an order
10 spline with 3 knots to the SC eigenvalues and then computed the first
analytical spline derivative as the gap-spectrum. We hypothesized that the
first-order gap-spectrum (measuring harmonic degeneracy) would be
related to various properties of harmonics.

Defining harmonic regimes
We sought to define regimes of harmonics to encompass empirical group-
level features across subsets of harmonics. Ideal regimes should group
together integrative, degenerate, and segregative harmonics in a way that
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retains relationships with harmonic spatial frequency and inter-subject
agreement. Importantly, while past work has classified harmonics based on
their participation in empirical functional activity21, we sought a classifica-
tion feature agnostic to brain function and instead based on a natural
property of structural connectivity: the normalized Laplacian
eigenspectrum.

Since the gap-spectrum accounts for harmonic degeneracy, it becomes
a natural way to classify harmonics into three regimes: those with low
eigenvalues and high gap-spectrum, those with medium eigenvalues and
low gap-spectrum, and those with high eigenvalues and high gap-spectrum.
The simplest approach is to set a threshold on the gap-spectrum, however
this choicewouldbe somewhat arbitrary. In an attempt to impart some rigor
and reproducibility, we instead sought the natural points of inflection in the
gap spectrum. Specifically, we set the lower and higher bounds of the
degenerate regime as the first localmaximumand last localminimum in the
gap-spectrum’s derivative (Supplementary Fig. 5).

While it may be sufficient to classify harmonics based solely on the
consensus SC eigenspectrum, we sought to ensure the classification was
appropriate for all subjects by first classifying each harmonic based on the
subject’s individual gap-spectrum, then we matched those subject-specific
harmonics to those from the consensus SC (Equation (6)). Therefore, for
each harmonic, there was a “vote” from each subject for that harmonic’s
regime classification.Wedefined thefinal “consensus regimes”based on the
majority vote.Weused this regime assignment for all subjects in subsequent
analyses.

Stability of harmonics
Wehypothesized that the stability of a harmonic to network changes would
be related to the gap-spectrum. We perturbed each subject’s natural SC
matrix by adding amatrix of Rician noiseR(σ, ν)46 with ν= 0, which reduces
to a Rayleigh distribution47, and with a scale parameter σ, which is related to
the distribution’s standard deviation. We chose this distribution given its
relevance to MRI imaging46,47. We then define our perturbed connectivity
matrix as:

Cσ ¼ C þ RðσÞ ð9Þ

We then computed the Laplacian harmonics for each Cσ (i.e.,Uσ), matched
Uσ to the same subject’s unperturbedharmonics (U) usingEquation (6), and
then computed their perturbation as:

PðσÞ ¼ jdiagðUT
σUÞj ð10Þ

Thus, for each σ we obtained a measure of similarity for every harmonic
across subjects. Drawing inspiration from perturbation theory and sensi-
tivity analysis48,49, we can find the stability of harmonics as:

StabilityðσÞ ¼ 1
PðσÞ

dPðσÞ
dσ

¼ d
dσ

lnðPðσÞÞ ð11Þ

We evaluated this stability numerically in the range σ = [0, 0.002] and step
size dσ = 2.5 × 10−4 and finding the slope between dσ and lnðPðσÞÞ. We
computed stability separately for each harmonic and then compared across
subjects to the gap-spectrum.

Harmonic regime SC
Given our interest in how different SC features are reflected across har-
monics, we sought to analyze the graph-theoretical properties of a low-rank
network reconstruction of SC from a limited subset of harmonics. We
hypothesized that different subsets of harmonics would embody different
graph theoretical properties conventionally related to integration and
segregation.

To accomplish this, consider the spectral decomposition of the graph
Laplacian (2). To reconstitute a low-rank structural connectivity matrix, we

first compute the following truncated spectral decomposition:

~L ¼
Xk
i¼j

λiuiu
T
i ð12Þ

Where the interval [j, k] is a subset of harmonics. Then reconstituting the
underlying low-rank SC becomes:

~C ¼ D1=2ð~D� ~LÞD1=2 ð13Þ

Where hereD is the original diagonal degreematrix ofC, and ~D ¼ diagð~LÞ.
However, since the spectral summation is truncated, there will be negative
weights in ~C reflecting the connections that were excluded from the trun-
cation; therefore, we threshold all ~C<0 to be zero. We also provide a more
detailed derivation of ~C in the Supplement Section 5.

To analyze the integrative and segregative properties of ~C for different
subsets of harmonics, we used functions implemented in the Brain Con-
nectivity Toolbox50 to compute the following graph theoretic measures for
weighted undirected networks: efficiency, small worldness, modularity, and
coreness. We use the small worldness measure51, which is defined as:

SmallWorldness ¼ χ

χr

� �
=

L
Lr

� �
ð14Þ

In this equation, χ is the network’s clustering coefficient, L is the network’s
characteristic path length, and χr and Lr are the clustering coefficient and
characteristic path length for a randomized network, respectively. To pro-
duce randomized networks, we used the Brain Connectivity Toolbox
(null_model_und_sign). Efficiency and small worldness capture
more integrative network topologies whilemodularity and coreness capture
segregative network topologies7. To analyze these network properties across
regimes, we normalize each ~C to give it a unit Frobenius norm, jj~CjjF ¼ 1.

SC harmonics’ participation in function
To investigate how harmonics are related to the brain’s function, we define
harmonic participation by how known functional resting-state networks,
meta-analytic task networks, and empirical resting-state time series align
with each harmonic’s power, defined as:

�ui ¼
u2i

k u2i k2
ð15Þ

Here, the ∥ ⋅ ∥2 denotes the L2-norm. We then concatenate these vectors
into the columns of a matrix �U .

We use �U to analyze the spatial power distributions of harmonics (in
analogy to the “Born rule”52), and we analyze this “harmonic power” rela-
tionship tobrain function. In otherwords, we ignore harmonic polarity (i.e.,
sign) and instead analyze how the harmonic’s power relates to (1) resting-
state networks, (2) meta-analytic task networks, and (3) empirical resting-
state time series. We describe each of these three functional analyses below.

Alignment with Resting-StateNetworks: Using the Schaefer atlas, each
node in the network was labeled according to the 7 canonical resting-state
networks23, with an additional label for the 14 subcortical regions (which
we’ll consider analogously to the other RSNs for this analysis). To evaluate
harmonic participation with RSNs, we first created a binary matrix Q with
rows equal to the number of network nodes and eight columns (one row for
each RSN). For each entry inQ, qi,j = 1 if node i belongs to RSN j, and qi,j= 0
otherwise. We then computed RSN participation matrix for each subject’s
matched harmonics (�U) as

RSNParticipation ¼ �UTQ: ð16Þ

We are most interested in the relative participation between various RSNs,
so we row-normalize the RSN Participation matrix by the maximum value
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in each RSN. For the participation without row-normalization, see
Supplementary Fig. 6.

Alignment with Meta-analytic Task Networks: To evaluate the corre-
lation between SC harmonics with meta-analysis task activation maps, we
exported the power harmonics (�U) from the 214 node network for each
subject intoNIFTIfiles inMNI space.We then used theNiMARE toolbox in
Python to compute the correlation between the eigenvectors and Neuro-
synth task activationmaps for 146 Latent Dirichlet Allocation (LDA) topics
drawn from the LDA-400 set (Neurosynth version-7). We included topics
related to cognitive processes while we excluded topics related to metho-
dology or clinical conditions. We then averaged subsets of the 146 topic
terms to obtain 24 separate cognitive domains similar to those applied in
previous meta-analysis studies using Neurosynth14,21. For a full list of LDA
terms and their cognitive domain assignments, see Supplementary Data 1.

Empirical Resting-State fMRI: Finally, we analyzed the properties of
harmonic power vectors in empirical resting-state fMRI time series. This
projection follows a similar procedure as previous works21,24,53,54, but we
instead use the power harmonics (�U , Equation (15)). Given a time series
(sðtÞ 2 RN ), we define the projection:

ŝðtÞ ¼ �UTsðtÞ: ð17Þ

We refer to this as a projection “onto the harmonic power vectors.” Note
that if we used U instead of �U this equation would be a graph Fourier
transform. To study the functional properties of the projected signals, we
analyzed the signal’s energy, temporal diversity (sample entropy), spatial
entropy (harmonic diversity), and temporal dynamics.

The energy of a signal (ŝiðtÞ) is defined as the L2-norm squared across
time, which by Parseval’s theorem is equivalent to the integral of the signal’s
spectral density55. We computed the energy for each time series projection
signal (̂si) to compare across harmonic regimes. We further assessed the
regional distribution of harmonic energy by projecting the energy back into
the region space.

We used a measure of temporal entropy, known as Sample Entropy
(SampEn,56,57), which measures the self-similarity of signal sub-sequences
across time. Intuitively, this measures the signal’s temporal diversity. We
used the MATLAB function sampen to compute the signal’s sample
entropy58. Sample entropy requires defining a scale parameter m and a
similarity tolerance parameter r. For biological signals, it has been suggested
that r = 0.257, which we have followed here. There is no standard for
choosingm, but largerm accounts for more dynamics in the data, and it is
recommended to be chosen to match the dynamic timescale of interest in
the signal. Accordingly, we chosem = 5which corresponds to 5 TRs (i.e., 3-
seconds) in the signal. Each harmonic time series ŝi has one value of sample
entropy, and we averaged sample entropy across regimes to evaluate whe-
ther regimes differ in their temporal diversity.

Following the measure of repertoire diversity introduced in54, we
defineda similarmeasurewecall “harmonicdiversity” for theprojected time
series:

HðtÞ ¼ �
Xn
i

ŝiðtÞP
i ŝiðtÞ

log
ŝiðtÞP
i ŝiðtÞ

� �
ð18Þ

Since this measure is influenced by the number of harmonics in a given
regime, we normalized by the maximum possible diversity for each regime
log(n), where n is the number of harmonics in the regime.We compute this
measure of harmonic diversity within each regime, then average across time
to compare across regimes.

Finally, we analyzed the dynamics of harmonics by analyzing the
relative signal strength of each harmonic regime, which can be visualized in
a ternary plot. We analyzed these dynamics by the mean relative con-
tribution of each regime as well as by analyzing the first principle compo-
nent to show the main axis of dynamic fluctuation.

TernaryPlotAnalysis: Sinceweused thegap-spectrumto identify three
regimes of harmonics, we interpreted some of the above analyses using

ternaryplots. Ternary plots are a visualization technique to show the relative
contributions of three different phenomena in a mixture59. We generate
ternary plots in MATLAB using the code provided here60. As such, the
values displayed in a ternary plot are relative “quantities,” and therefore each
point represents a coordinate along three dimensions that sum to 1. In our
work, the quantity is the amount of participation in each of our three
harmonic regimes. Importantly, the ticks on the axes of a ternary plot show
the direction of the axes through the plot. We have included labels for each
axis in our plots to indicate which axis corresponds to which harmonic
regime, andwecolordata inside the ternaryplot according tohowclose each
datum is to a mono-regime vertex. To limit the influence of spurious cor-
relations in this analysis, we applied an80th percentile thresholded (across all
subjects) to both the RSN participation strength and Neurosynth correla-
tions, we then averaged across subjects to obtain group-level harmonic
participation maps for the RSNs and Neurosynth.

Statistics and reproducibility
In this study, we used three types of statistical tests: Pearson’s correlation,
Analysis of Variance (ANOVA), and two-sided t-tests. For comparing
harmonic propertieswith the gap-spectrum,weused aPearson’s correlation
and show the distribution in scatter plots with trend lines. When we com-
pared the gap-spectrum with harmonic properties, we correlated the
median value fromacross 50-subjects to the gap-spectrum,with the number
of data-points in the correlation equal to the number of harmonics in the
regime. All R-values for correlations are shown as a figure inset. When we
compared the stability of harmonics to the gap spectrum, we computed
Pearson’s correlation for each subject’s individual stability values compared
to the gap-spectrum, which has a sample equal to the number of harmonics
(N=214). In the analyses where we compared across regimes, we first
conducted a 1-wayANOVA to ensure group-level differences, thenwe used
two-sided t-tests to determine the between-group significance. These ana-
lyses compared the full sample of 50 subjects represented by the indicated
measures from different regimes. Exact values for reported statistics is
contained in the Supplementary Data 2. In Supplementary Section 7, we
show some additional statistical tests that verify the significance of the
matching, in which we show the significance level as − log(p) as well as the
Bonferroni-corrected significance level as a red line in the Manhattan plot.
The original data and MATLAB code is provided for all primary analyses
(https://github.com/Raj-Lab-UCSF/IntDegSeg), ensuring the complete
reproducibility of our results.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Here, we present results that investigate whether SC harmonics may con-
stitute an integration-segregation continuum in the brain. We begin by
showing that harmonics deviate from strictly ascending frequencies and
have an integration-to-segregation like structure. We then show that inte-
grative and segregative harmonics are shared across individuals, which
would indeed be expected for any candidate brainmechanism to resolve the
binding problem. Then, using the gap-spectrum, we define integrative,
segregative, and degenerate regimes precisely, and we further assess regime
relationships to graph frequency and graph theoretical metrics. We con-
clude by investigating the functional relevance of the three regimes in
multiple ways, including stability to changes, alignment with resting-state
networks, task networks, and empirical resting-state time series.

SC harmonics’ spatial frequencies deviate from Graph Fourier
intuitions
SC normalized Laplacian eigenvalues are similar across subjects and are
close to those from the consensus SC (Fig. 1A).We also show that the lowest
harmonics in the consensus SCqualitativelymatchedwith those reported in
prior works40,54,61 and that higher harmonics are increasingly localized
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(Fig. 1B).Quantitatively, we investigated properties of SCharmonics related
to classical Fourier intuitions, including sparsity and three spatial frequency
measures: zero-cross rate, networkzero-crossings19, and roughness. First,we
show that the harmonics with the highest eigenvalues are sparse (Fig. 1C).
Next, based on Fourier intuitions, we may expect a monotonic relationship
between harmonics’ eigenvalues and spatial frequency metrics, yet all three
measures shownon-monotonic relationships,with the greatest deviation for
the highest eigenvalue harmonics (approximately when λ≥1; Fig. 1C).

These results also replicated in our independent dataset with different
MRI acquisition parameters anduseda different SCgenerationpipeline (see
Supplement Section 1, Supplementary Fig. 1). For completeness, we also
analyzed the temporal frequency characteristics of a resting-state time series
projections (Supplementary Fig. 8), finding that higher harmonics are not
necessarily related to higher temporal frequency in fMRI.

Taken together, we find only partial support that SC Laplacian
eigenvalues correspond to spatial frequency. While there is undoubtedly a
relationship, it is not monotonic. Instead, these results suggest the presence

of global “integrative” harmonics with low eigenvalues and sparse “segre-
gative” harmonics with high eigenvalues. Additionally, this non-monotonic
relationship implies that sorting all subjects harmonics by their ascending
eigenvalues could result in misalignment between subjects.

Integrative and segregative harmonics are similar across
subjects
Next, we used a measure of inter-subject agreement (7) to test whether
subjects had similar harmonics for both whole-brain (integrative) and
sparse (segregative) ends of the eigenspectrum. When all subjects’ harmo-
nics are sorted by their ascending eigenvalues, we only observe high
agreement for the first few harmonics (Fig. 2A, B). However, matching
harmonics to the consensus SC revealed that many subjects indeed shared
harmonics at both ends of the consensus eigenspectrum (Fig. 2 C, D).

We found this result to be consistent across all Schaefer parcellation
scales (Supplementary Fig. 9). This result also replicated in an independent
datasetwith differentMRI acquisition parameters, a different SC generation
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pipeline, andadifferent brain atlas (see SupplementaryFig. 2). Furthermore,
we evaluated the Bonferroni corrected significance between the two
agreement distributions and found that nearly all harmonics showed highly
significant agreement improvement after matching (Supplementary Fig. 6).
We then generated null-model networks with randomized edge weights
from empirical SC networks and found that these randomized networks
were unable to match. Empirical matching showed highly significant
agreement compared to randomized SC harmonics (Supplementary Fig. 7).

We also sought to evaluate which regions had the most inter-subject
variability across harmonics, finding that sensory cortices and the orbito-
frontal cortex had the least inter-subject variationwhile trans-modal regions
had the most inter-subject variation (Supplementary Fig. 10). See the
Supplementary Sections 11 and 12 for other analyses on permutation length
and distance (Supplementary Fig. 11) and quality of consensus matching
(Supplementary Fig. 12).

Eigenvalue gap-spectrum as a theoretical explanation for har-
monic properties
The harmonic inter-subject similarity analysis suggests there are at least
three kinds of harmonics: those with low eigenvalues and high inter-subject
agreement, those with high eigenvalues and high inter-subject agreement,
and those with eigenvalues near λ = 1 and low inter-subject agreement.

We hypothesized that change-points in the “gap-spectrum” curvature
(seeMethods) would naturally partition harmonics into regimes that follow
the empirical relationship with inter-subject agreement while preserving
relationships with harmonic frequency. We first found regime transition
points for each subject individually, then we matched subject-level har-
monics to the consensus SC, and finally we determined a consensus regime
assignment (Fig. 3Amiddle).We found the lowest regime to span harmonic
1 to 26, the central regime to span harmonic 27 to 187, and the highest
regime to span 188 to 214.

Our results support the hypothesis that the gap-spectrum across sub-
jects can indeed partition harmonic inter-subject agreement in an intuitive
fashion while preserving relationships to group-level harmonic frequency
(Fig. 3B; allp<0.05). Basedonourharmonic frequencyanalysis,we term the

lowest regime as “integrative” since these harmonics show low-frequency
whole-brain spatial configurations, and we term the highest regime “seg-
regative” since these harmonics form segregated clusters. Now, based on the
gap-spectrum analysis, we term the central regime “degenerate” to reflect
that these harmonics have small spectral gaps characteristic to degenerate
modes of a system.

Stability of harmonics relates to the gap-spectrum
We next sought to evaluate how SC harmonics change in response to small
network changes, expecting that different regimes would show different
responses to perturbation. Degenerate harmonics with eigenvalues close to
λ = 1 represent recurring network configurations (or “motifs”)41, and they
have mathematical “flexibility” since linear combinations of degenerate
harmonics can produce another degenerate harmonic in the same eigen-
subspace. Based on this theory, we hypothesized that the stability of har-
monics would be related to the gap-spectrum and that degenerate harmo-
nics would be the least stable since small perturbations could easily change
the network’s motif structure.

We indeed found that degenerate harmonicswere themost sensitive to
perturbation while integrative and segregative harmonics were more stable
(Fig. 4A). As perturbation σ increased far beyond themean networkweight,
we found that all regimes approximated an exponential decay
(Fig. 4A inset).

We then quantified the stability of harmonics (see Methods), and we
found that stability indeed followed the same shape as the gap-spectrum
(Fig. 4B). The stability of harmonics across subjects was significantly cor-
related with the consensus gap-spectrum (mean r = 0.66; all
p < < 0.001; Fig. 4C).

Regime-specific SC accounts for integrative and segregative
graph theory metrics
We assessed whether regime-specific SC had graph theory metrics com-
monly related to integration and segregation. Qualitatively, the integrative
SC showsbroad connectivity across regions, thedegenerate SCretainsmuch
of the connectivity structure from the native SC, and the segregative SC is
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sparse but dense in small clusters (Fig. 5A). Quantitatively, each regime SC
embodies different graph metrics: 1-way ANOVAs showed significant
regime-wise differences for all graph metrics (all p < < 0.01, Bonferroni
corrected), and post-hoc two-tailed t-tests showed that most pair-wise
differences were highly significant (p < < 0.01, Bonferroni corrected)
(Fig. 5B). Modularity was greatest for the full network and equally large for
degenerate and segregative regime SC, suggesting that modularity emerges
from both degenerate and segregative harmonics. Global efficiency was
greatest for the integrative SC, indicating that integrative harmonics facil-
itate efficient information transfer through the network. Small worldness
was largest for the full SC, and second largest for the degenerate SC (the
difference was small but still significant p = 7.3 × 10−17), suggesting that
degenerate harmonics account formuchof the small-worldness observed in
the full network. Finally, coreness was greatest for the segregative SC,
revealing that segregative SC is characterized by highly clustered modules.

Harmonics have diverse participation with RSNs and
functional tasks
We next assessed how SC harmonics related to functional resting-state
networks (RSNs) and meta-analysis task activation maps. We found that
RSNs show regime specificity across subjects (Fig. 6A, C). The ternary plot
showed that the Control Network and the Salience Ventral Attention
Network participatedmost in the degenerate regime; the Subcortex, Visual,
and Limbic Networks participated most in the segregative regime; the
Somatomotor and Dorsal Attention Networks participated in a balance of
the degenerate and segregative regimes; and theDefaultModeNetworkwas
balanced between all three regimes (Fig. 6C). RSN participation followed a
similar relationship across Schaefer parcellation scales (Supplementary
Figure9).We further found thatwhole brain task activationmaps correlated
with SC harmonics (Fig. 6B). The ternary plot showed that tasks also had
differential participation in all three harmonic regimes (Fig. 6D). For
example, Prediction and Learning was mostly integrative, while Inhibition

was mostly degenerate, and Emotion was mostly segregative. However,
most cognitive tasks involved a balance of the three regimes, such as Lan-
guage and Decision Making, having approximately 50% integrative, and
between 20-30% degenerate and segregative.

Harmonic projection resting-state activity is different across
regimes
Having found a relationship between harmonic regimes and known func-
tional organizations, we hypothesized that empirical resting-state activity
would also show similar regime-specific differences and relative regime
contributions. We evaluated the functional characteristics of the three
regimes in resting-state fMRI data projected onto the harmonic power
vectors (Fig. 7A).

We quantified three key properties of the functional projection: pro-
jection energy, temporal diversity, and spatial diversity. The regime pro-
jection energy (L2-norm squared across time) gradually decreases from low
to high harmonics with no clear demarcation between regimes (Fig. 7B).
The blue triangle indicates the previously reported divide between coupled/
decoupled harmonics based on the reported eigenvalue21; this showed that
the previously identified “decoupled” regime is partially within our inte-
grative regime and entirely within the degenerate and segregative regimes.
Quantifying the spatial energy distribution across brain regions showed that
integrative harmonics had a broad energy distribution across the cortex,
with energy peaks located in sensory cortices; degenerate harmonics had
energy weighted highest in frontopariteal and inferior temporal lobes; and
segregative harmonics had sparse energy, with clusters of high energy in
sensory regions, temporal poles, and ventromedial/orbitofrontal cortices
(Fig. 7C). Overall, each regime had significantly different energies, with
integrative having themost, segregative having the least, and degenerate in-
between (all p < < 0.001; Fig. 7D).

We next analyzed temporal diversity (sample entropy) and spatial
diversity (harmonic entropy) across regimes. The average temporal

Fig. 3 | Defining Three Harmonic Regimes. A We show the consensus SC
Laplacian eigenspectrum in rose and the analytical gap-spectrum in violet. Below
this plot, we show the fraction of subjects who agree on each harmonic regime
assignment. We define the final regime boundaries based on the majority crossing
point. The lowest panel shows inter-subject agreement (same as shown in Fig. 2D)

colored by the three regimes. BWe show the population median values for the four
harmonic frequency measures compared to the gap-spectrum. All measures show
strong and significant correlations within the identified regimes and the gap-
spectrum.

https://doi.org/10.1038/s42003-024-06669-6 Article

Communications Biology |           (2024) 7:986 8



diversity contained in each harmonic regime projection showed that the
segregative harmonics contained the most temporal diversity compared to
either integrative or degenerate regimes (p < 0.004; Fig. 7E). Degenerate
harmonics also had significantly more temporal diversity compared to
integrative harmonics (p=0.04).Regimes also showed significantlydifferent
harmonic (spatial) diversity, with the degenerate regime having the most
diversity, followed by the integrative regime, and least in the segregative
regime (all p < < 0.001; Fig. 7F).

Finally, we analyzed dynamics in the relative participation between
regimes. We found that resting-state function across subjects had a strong
tendency to be around approximately 46.5% integrative, 33.6% degenerate,
and 19.9% segregative (Fig. 7G). With principal component analysis, we
found that the degenerate regime formed the principle axis of temporal
variation (Fig. 7G inset).

Discussion
In this work, we have shown that an integration-segregation continuum in
SC can be identified through its graphLaplacianharmonics and a featurewe
call the “gap-spectrum.” The gap-spectrum represents a fundamental fea-
ture of SC that naturally divides harmonics into three regimes: integrative,
degenerate and segregative. This harmonic trichotomy reveals distinct
regime-specific roles for inter-subject agreement, stability of harmonics, and
functional relevance. As we discuss below, this proposed integration-
segregation continuum subsumes, refines, and expands upon prior work on
SC harmonics and integration/segregation in brain networks, therefore
unifying these previously disparate areas of network neuroscience research.

Research on the brain’s graph Laplacian harmonics is a recent but
actively growing area of computational network neuroscience12. Brain
harmonics research encourages a conceptual transformation from thinking

Fig. 4 | Stability of harmonics.Weperturbed the natural SCnetwork across subjects
with Rician noise over a wide range of σ (i.e., standard deviation). A We plot each
regime-averaged intra-subject similarity between the authentic harmonics and the
perturbed harmonics. The black line represents the median, while the darker and
lighter shaded regions represent the IQR and 5-95 percentile range, respectively.
Integrative harmonics show the most stability, segregative harmonics show inter-
mediate stability, and degenerate harmonics show the least stability. The inset shows

the same perturbation effect but over a wider range of σ. BWe quantify the stability
of each harmonic and show that the stability follows the same general shape as the
consensus gap-spectrum. C A scatter plot with data from all subjects and all har-
monics, shows the overall relationship between the stability of harmonics and the
gap-spectrum. The inset shows the distribution of subject-specific correlations
between the stability of harmonics and gap-spectrum.
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of the brain in terms of individual regions to spatially distributed patterns of
structural connectivity. Indeed, this transformation has fundamental
mathematical relationships to the Fourier transform15, and this motivates
further borrowing intuitions from Fourier theory, such considering SC
Laplacian eigenvalues as “spatial frequencies”12,24,54. These high eigenvalue
harmonics represent bipartite-like subnetworks41,62,63, which could be
interpreted as a form of “high frequency” network oscillation. While these
intuitions are well-motivated, our results suggest that not all Fourier
intuitions perfectly apply to brain networks. Notably, we show that higher
“frequency” eigenvalues don’t necessarily correspond to higher spatial fre-
quencies, but are instead smooth across large parts of the brain except for in
small, localized clusters, suggesting they are “segregative” in nature. Fourier
intuitions may also suppose that these higher harmonics are noisy, yet we
have found that segregative harmonics are both preserved across subjects
and stable to perturbation, with both of these properties showing a rela-
tionship with the gap-spectrum. Critically, we replicated our spatial fre-
quency and inter-subject agreement results in a separate independent
dataset of 220 subjects with more diverse age demographics, imaged with
different scanning parameters, processed with a different connectivity
pipeline, and parceled in a different atlas, all of which strongly suggests that
ourfindings have stronggeneralizability.Together, this emphasizes theneed

for future work to carefully evaluate the extent to which intuitions from
Fourier theory apply to brain harmonics.

Despite some departures from conventional Fourier wisdom, this
“graph Fourier transform” still mathematically represents how signals
would propagate through a network, therefore offering a promising way to
bridge our understanding of the brain’s structure and function. In general,
past work has implemented two different approaches with Laplacian har-
monics to understand the brain’s function. One approach emphasizes only
the lowest eigenvalue harmonics14,24,25,64. This can be motivated for a variety
of reasons such as parsimony65, the amount of explained variance14,24, or as
the outcome of a model25. However, our present work suggests that much
canbe gained fromanalyzing all harmonics, since thebrain’s functionacross
many representations–RSNs, tasks, and empirical resting-state activity–can
be understood as a balance of integrative, degenerate, and segregative
regimes. Interestingly, no functional networks were exclusively integrative,
and the only functional network to show a near-perfect balance of the three
regimeswas theDMN.We speculate that this could be related to theDMN’s
position at the top of the functional hierarchy14, thereby allowing the DMN
to facilitate state transitions between regimes. RSNs and tasks generally
emphasize certain harmonic regimesmore than others–functions related to
sensation, sociality, and memory were balanced between integrative and
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segregative harmonics, while degenerate harmonicswere related to complex
“top-down” cognition, such as attention, inhibition, and working memory.

A second approach divides all SC harmonics into two categories based
on their participation in resting-state fMRI time series (i.e., the equal energy
split criterion)21. This framework identifies the lowest frequency harmonics
as “coupled” and all higher harmonics as “decoupled” from function12,21,66.
The coupled and decoupled components of the functional signal are com-
monly synthesized into a singlemetric known as the Structural-Decoupling
Index (SDI)21, which divides a given region’s decoupled participation by its
coupled participation. SDI has proven useful, demonstrating relationships
with themechanics of cognition andbehavior21,67–69 and could serve as a bio-
marker of development70,71 and disease72,73. Our results affirm the success of
the coupling versus decouplingworkwhile additionally suggesting a further
refinement into the integrative, degenerate, and segregative trichotomy.
From this new perspective, the SDI would be a measure of how much of
function across the brain is weighted into degenerate and segregative har-
monics versus integrative harmonics, with the effects likely driven by the
degenerate harmonics since they occupy a significant majority of the
decoupledmodes. Since the degenerate harmonics are also themost subject
specific, SDI could be considered ametric of subject-uniqueness in function,
since it is effectively normalizing by the integrative harmonics, which are
most preserved across subjects. However, we emphasize that in our pro-
posed framework all harmonics “couple” with function in diverse ways
related to the harmonic regime. A limitation of the coupling/decoupling
approach is that harmonic classification depends on their interaction with
brain function rather than on an inherent feature of SC, meaning that their
functional relevance is partially entangled with their classification. By
definingharmonicsbasedon the gap-spectrum inherent to SC,we can study
properties of harmonics and their functional relevance independent of their
classification.

Other research on the brain’s structure-function relationship seeks to
explain how the structural network facilitates integration and segregation

through the lens of graph metrics. The brain’s integration is interpreted as
efficient signal transmission combined with signal convergence to highly
connected regions, while segregation is interpreted in terms of the brain
network dividing into tight-knit communities or modules with specific
functions6,7. However, there are two limitations with this view of integration
and segregation. First, graph metrics often have an embedded (though
subtle) notion of time; network efficiency, for example,measures how easily
a signal can move between nodes to traverse the network (i.e., greater effi-
ciency implies less transmission time). Therefore, graph metrics measuring
signal transmission and convergence can only account for integration in
time, not in space, yet spatial integration is thought to benecessary to resolve
the binding problem74. Second, graph metrics for integration and segrega-
tion are defined separately, and therefore, they are incommensurable to a
single integration-segregation spectrum–this incommensurability is pre-
cisely the crux of the binding problem. The present work suggests an
alternative viewof integrationand segregation as represented throughgraph
Laplacian harmonic spectrum. These harmonics describe signal distribu-
tions in space,which resolves thefirst limitation, and their continuumon the
eigenspectrum resolves the second limitation. Our proposed framework
reveals that integration and segregation in the human brain is similar across
subjects, stable to network changes, and is related to unimodal sensory
networks. Moreover, we show that harmonic regime SC recapitulates
intuitions from graph metrics measuring integration and segregation.
Therefore, SC harmonics appear to subsume insights from the past fra-
meworks while overcoming their limitations.

Using SC harmonics to define an integration-segregation spectrum
also provides a natural definition for what lies between integration and
segregation: the degenerate harmonics. Degenerate harmonics deviate from
integration and segregation in many important ways: they are subject-
specific, they are sensitive to network changes, they embody the network’s
small-worldness, and they relate to top-down functional networks.
Degenerate harmonics have a sense of “flexibility” since they represent
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symmetries in the network44, they are related to network synchonizability45,
and they can form linear combinations to produce new degenerate har-
monics. This ties nicely into our finding that resting-state time series shows
the greatest harmonic diversity and temporal variability in the degenerate
regime, meaning that multiple degenerate harmonics are “co-active” and
rapidly fluctuate on and off. This finding also aligns with recent work
suggesting that FC constructed from “decoupled” harmonics are highly
variable in time andmay encode information in transient brain states75.We
speculate that these functional characteristics may correspond to creating
flexible linear combinations that combinatorially encoded contextual and
“top-down” information. Degenerate harmonics being related to subject-
specificity and frontoparietal networks also aligns with recent research on
“brain fingerprinting,” which has highlighted the frontal and parietal cor-
tices as those most related to subject uniqueness76–86 and neural plasticity83.
Most promisingly, Griffa et al.87 have shown that decoupled FC (repre-
senting mostly degenerate harmonics) also contains highly unique features
within frontoparietal networks useful for brain fingerprinting. Degenerate
harmonics being flexible in this way also makes them an ideal substrate for
neural plasticity when considering the brain’s frugal metabolic88 and wiring
cost89 economy. These results together raise exciting possibilities for future
work to use degenerate harmonics to investigate individual uniqueness and
neuroplasticity.

Putting everything together, we propose that SC harmonics provide a
framework to study, and perhaps help resolve, the long-standing
binding problem in the philosophy of mind. In essence, the binding pro-
blem seeks to explain how the brain can bind segregated sensory channels
into an integrated whole90. It has been shown that sensory cortices are
more segregated from the rest of the brain compared to other regions91,92,
and yet some unification of integration and segregation must be necessary
to bring all senses into a single coherent precept93. The fundamental puzzle
in the binding-problem is to find a brain mechanism that can coordinate
signalflowand represent information at the global levelwhile still leveraging
regional/neuronal specializations. Such a brain mechanism should be fun-
damental to the brain’s structure, shared across individuals, and directly
implicate sensory processing–our present work provides strong
evidence that integrative and segregative SC harmonics accommodate all of
these properties. It is also expected that candidate binding mechanisms
should be related to states of consciousness90. SC harmonics again
fulfill this expectation, with recent work showing that SC harmonic reper-
toire diversity in brain function increases while on psychedelics and
decreases while sedated with propofol54. However, this raises a question:
how do integrative and segregative harmonics interact to share information
and produce this binding effect? While this question deserves
careful attention in future research, we speculate that segregative harmonics
may “activate” to incoming sensory stimuli, and segregative harmonics’
spatial overlap with integrative harmonics allows the signal information
to spread between regimes and broadcast the newly “bound”
information globally. We believe future work studying harmonics through
this framework could illuminate many mechanisms of macroscopic brain
function.

Of course, this work must be viewed in light of known limitations for
SC harmonics. Noise, low resolution, and artifacts are common in diffusion
MRI. Tractography algorithms and their associated parameters can greatly
affect quality of tracts, including turning angle, stopping criteria, etc. These
can have significant effects on connectome quality. Additionally, our choice
of edge weights and the associated impact on the networks degree dis-
tribution may contribute to our reported results. While many prior studies
have generally identified similar harmonics as shown here12,40,61, the
degenerate regime may be particularly affected by these choices. Another
limitation is our use of the consensus SC, which was constructed from a
cohort of 50 healthy young adult subjects. Future work will benefit from
constructing a consensus SC with larger healthy samples, and it is presently
unclear whether our findings would extend to clinical or developmental
populations. With respect to our Neurosynth meta-analysis, the Neuro-
synth topic terms presented here were averaged across the LDA-400 list

where we selected the 146 terms related to cognitive (but not illness or
methodological) terms.We chose these tomaximize similarity to previously
published work related to SC and functional network harmonics14,21. We
believed that averaging correlations across many LDA terms and subjects
would be more likely to eliminate findings rather than cause spurious
results. Finally, we want to acknowledge an inherent tension between pre-
senting SC harmonics as an integration-segregation continuum while also
defining three discrete regimes of that continuum. The three regimes
depends entirely on defining the criteria for the regimes’ cut-off. We show
that defining regimes based on the gap-spectrum curvature provides one
way to distinguish different properties of SCharmonics, but this neednot be
the only effective method. Future work using Laplacian harmonics to study
integrationand segregation in the brain shoulddefine these regimes tofit the
context of the particular scientific question being asked.

Ultimately, unifying integration and segregation into a single con-
tinuumis crucial tounderstanding systems-levelprocessing in thebrain.We
propose a framework for this unification based on the graph Laplacian
harmonics, which we show can account for an integration-segregation
continuum along with a previously undefined center we term the “degen-
erate” harmonics. The proposed trichotomy of graph harmonics reveals
previously unreported structure-function relationships in a manner that is
not possible within the previous integration/segregation nor coupled/
decoupled paradigms. This finding provides key biological and functional
interpretations for structural brain harmonics, bringing network neu-
roscience closer to understanding subject-specific differences and a frame-
work to resolve the long-standing binding problem.

Data availability
The dataset for this work comes from a publicly available resource provided
in Royer et al34–see their article for details. For ease of use and reproduci-
bility, we have provided a limited subset of these data in the code repository.

Code availability
The code for all presented results is made publicly available on GitHub:
(https://github.com/Raj-Lab-UCSF/IntDegSeg).
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