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Abstract

We demonstrate a block-tensor based implementation of coupled-cluster valence-

bond singles and doubles (CCVB-SD) [J. Chem. Phys. 2012, 137, 114103] which is a

simple modification to restricted CCSD (RCCSD) that provides a qualitatively correct

description of valence correlations even in strongly correlated systems. We derive the

Λ-equation of CCVB-SD and the corresponding unrelaxed density matrices. The

resulting production-level implementation is applied to oligoacenes, correlating up to

318 electrons in 318 orbitals. CCVB-SD shows a qualitative agreement with exact

methods for short acenes and reaches the bulk limit of oligoacenes in terms of natural

orbital occupation numbers whereas RCCSD shows non-variational behaviour even for

relatively short acenes. A significant reduction in polyradicaloid character is found

when correlating all valence electrons instead of only the π-electrons.
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Introduction

Strong correlations are an important subject of active research in the field of electronic

structure theory. Systems with d or f orbitals such as metalloenzymes1 like photosystem II2,3

are well known strongly correlated systems. Polyradicaloid systems such as molecules near

bond-breaking4 and polyaromatic hydrocarbons,5–9 also belong to this category. Phenomena

driven by correlations between electrons that lie outside perturbative regimes such as high-TC

superconductivity10 and Kondo problems11 are also inherently strong correlation problems.

Describing these systems and phenomena requires proper treatment of strong correlations

to obtain at least a qualitatively correct description.

One of the most popular approaches in quantum chemistry to address these problems is

the use of brute-force algorithms such as complete active space self-consistent field (CASSCF).12

The applicability of CASSCF is limited by the need to solve the full configuration interac-

tion (FCI) problem within an active space, which has a computational cost that scales

exponentially with the number of electrons in the active space. To extend the applicability

of CASSCF, enormous efforts have been made on developing more efficient approximate FCI

solvers such as Alavi and co-worker’s FCI quantum monte carlo (FCIQMC)13,14 and White’s

density matrix renormalisation group (DMRG).15–19 FCIQMC uses importance sampling

techniques of QMC to solve the FCI problem and shows a weaker exponential scaling com-

pared to the traditional determinant based exact FCI solver.20,21 DMRG was originally

designed for solving one-dimensional (1D) lattice systems and encodes the most important

degrees of freedom between neighbouring sites using singular value decompositions of density

matrices. DMRG is a polynomial-scaling method for 1D systems with short-range interac-

tions, but is still an exponential-scaling method for general systems of higher dimensions

or with long-range interactions. These two independent approaches have been applied to

non-trivial chemical systems small enough to afford these brute force approaches.22–29 It

is, however, highly desirable to develop polynomial-scaling methods that can qualitatively

capture strong correlations in systems where FCIQMC and DMRG become intractable.
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Another common approach to strong correlations is multi-reference coupled-cluster (MRCC)

theory.30–32 The basic idea is to include physically relevant higher cluster excitations by

employing multiple determinants in the reference state that are difficult to access in the

usual single reference approaches. MRCC approaches can be categorised into (1) state-

universal33–38 and (2) valence-universal39–47 that are often referred to as genuine MRCC

approaches and (3) state-specific approaches.48–71 The first two suffer from the appearance

of intruder states72–75 and require solving for several eigenstates simultaneously, many of

which can be irrelevant to the problem. The third approach can avoid these problems but

usually at the expense of the explicit inclusion of higher excitations. These are still active

areas of research in the pursuit of strong correlations, and interested readers are referred to

ref. 31 and references therein.

Another interesting, formally simpler, and often computationally more tractable ap-

proach than those mentioned above, is single-reference coupled-cluster (SRCC) theory. SRCC

singles and doubles with non-iterative triples (CCSD(T)) is a de facto standard approach for

non-strongly correlated systems.76 Its non-variational failure for strongly correlated systems

when used with restricted Hartree-Fock (RHF) references has inspired development of new

methods.

The simplest possible (and thus the most widely used) fix to this problem is to use

an unrestricted HF (UHF) reference at the expense of spin symmetry. However, many

studies have indicated that UCCSD or UCCSD(T) misses a fair amount of correlations

in the so-called spin-recoupling regime, an intermediate regime between equilibrium and

bond-dissociation.77 More crucially, these methods fail to provide quantitatively accurate

singlet-triplet gaps due to severe spin contaminations. Using UHF references is thus not

satisfying for general applications.

An alternative approach without increasing the substitution level (i.e. with only singles

and doubles substitutions), is to correct for higher excitations in a non-iterative fashion.

This is done in the methods of moments coupled cluster approximations including renor-
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malised and completely renormalised variants.78–86 Instead of evaluating the energy using

projection equations, more stable approaches include evaluating it variationally with either

an expectation value ansatz87–89 or a unitary ansatz90–93 and approximations to the varia-

tional evaluation such as extended CC (ECC)94–99 and quadratic CC (QCC).100–102 These

have shown improved energetics in strongly correlated systems, but none of them are an

ultimate solution to the problem. Increasing the substitution levels systematically, such as

up to triples (RCCSDT)103 and up to quadruples (RCCSDTQ),104 is another approach at

the expense of steep scaling costs (n3
occn

5
vir and n4

occn
6
vir, respectively).

Recently, our group has developed a local correlation model for strong correlations, the

hierarchical perfect n-tuples model (e.g. perfect quadruples (PQ), perfect hextuples (PH),

etc.).105–108 It explicitly incorporates higher cluster operators up to n-tuples in a very re-

stricted form to better preserve computational feasibility. The use of localised orbitals is

essential in this approach as the limited number of higher excitations will be most effective

among orbitals that are spatially close. The price we pay for this is that the energy is no

longer invariant with respect to occupied-occupied and virtual-virtual rotations. Moreover,

simultaneous multiple bond-breaking will require a higher n-tuples model, which becomes

intractable quickly.

Another simple and yet very effective approach are the spin-flip methods pioneered by

Krylov and co-workers.109–112 Equation-of-motion spin-flip coupled cluster (EOM-SF-CC)

theory is based on the observation that restricted open-shell HF (ROHF) can qualitatively

describe strongly correlated systems in a high-spin state such as triplet stretched H2. At

the level of singles and doubles, EOM-SF-CCSD describes the singlet ground state as an

excitation or a deexcitation from a high-spin CCSD wavefunction. It has been widely used

for diradical systems.110 The major drawback of this approach is that systems with many

strongly correlated electrons would require the use of extremely high-spin reference whose

orbitals are far from being suitable to describe singlet ground states.

There have been proposals that remove certain quadratic terms in doubles (D) amplitudes

5

Page 5 of 48

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



equations in RCCSD to mimic the effects of triples and quadruples (TQ) and greatly improve

the accuracy for strongly correlated systems. Many of them were originally motivated by the

cost reduction when ignoring some non-linear terms, but later it was realised that discarding

such terms can vastly improve the accuracy in molecules near quasi-degeneracy. The main

goal in this research direction is to account approximately for higher excitations (T, Q, ...)

whilst retaining formal properties of RCCSD such as size-extensivity, energy-invariance with

respect to occupied-occupied and virtual-virtual rotations, and exactness for non-interacting

two electron systems.

This approach was pioneered by Paldus and co-workers who developed approximate

coupled-pairs with quadruples (ACPQ)113,114 which has inspired many subsequent devel-

opments. ACPQ was motivated by the structure of Q extracted from a cluster analysis of a

broken-symmetry wavefunction such as UHF and projected HF (PHF), which cancels certain

quadratic terms when studying strongly correlated limits of the Pariser-Parr-Pople model.114

This provided justification for related approaches such as ACP-D45115,116 and approximate

CCD (ACCD)117,118 . Linearised CC,119 2CC,120 and coupled electron pair approximation

(CEPA) and its variants121,122 also belong to this category.

A more recent approach in this category is the distinguishable cluster approximation

(DCA) 123 where a diagram corresponding to direct exchange of two doubles amplitudes is

discarded. It was suggested as an ad hoc modification to RCCD (called DCD) and later

derived from a screened Coulomb formalism.124 DCD and its variants (Brueckner DCD,

orbital-optimised DCD and DCSD)123–126 all do not “turn over” when breaking N2 . Despite

its promising earlier results its non-interative triples version (DCSD(T)) shows a similar

non-variational failure to that of CCSD(T) for bond-breaking124 when applied to N2 . This

suggests that an alternative way to include T perhaps in an iterative fashion should be

explored.

Another recent approach in this category is singlet-paired CCSD (CCSD0) proposed by

Bulik et al.127 The singlet doubles operator in RCCSD can be divided into symmetric singlet

6
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doubles (or singlet-pairing doubles) and antisymmetric singlet doubles (or triplet-pairing

doubles). This splitting of the doubles operator was extensively exploited in orthogonally

spin adapted formula,128–131 and it will be reviewed later in this paper as well. In CCSD0,

the antisymmetric singlet doubles operator is completely removed by ansatz. Removing

those terms improves the performance of the theory for bond dissociations, although when

applied to N2 in a minimal basis it does not reach the correct asymptote.132 Moreover, the

contribution from the removed antisymmetric singlet doubles is not negligible in general. For

instance, N2 at equilibrium in a double-zeta basis has non-negligible dynamic correlations

coming from the antisymmetric doubles. Neglecting these correlations results in the CCSD0

energy being too high not only at the dissociation limit but also at the equilibrium geome-

try.127 Furthermore, Their recent efforts of incorporating antisymmetric singlet doubles with

the frozen symmetric singlet doubles amplitudes suggest that an alternative route should be

investigated.133

We would also like to mention externally corrected CCSD134 which employs TQ obtained

from external wavefunctions such as CASSCF,135,136 valence-bond (VB),137–139 broken-symmetry

HF.113,140,141 In particular CCSDQ’, pioneered by Paldus, Piecuch and co-workers,113,141

has similarities to the method to be discussed in this paper. In CCSDQ’, one augments

CCSD amplitudes equations with Q obtained from a cluster analysis of projection-after-

variation PHF wavefunctions.142 The resulting wavefunction is rigorously spin-pure, and it

showed promising results on simple MR systems such as H4 and H8. In passing, we note

that CCSDQ’ (or CCDQ’) is closely related to aforementioned ACPQ, the major difference

being that CCSDQ’ is not a self-contained method.

Two of us (D.W.S and M.H.G.) introduced coupled-cluster valence-bond theory singles

and doubles (CCVB-SD) as a simple modification to RCCSD to describe strongly correlated

closed-shell systems.143 As opposed to completely removing certain quadratic terms from

RCCSD or using external sources for higher excitations, CCVB-SD directly models Q with

its D. The way it models Q originated from a simpler model, CCVB, which yields a spin-pure

7
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wavefunction and can describe simultaneous multiple bond breaking at a cost dominated by

integral transformations.144–146 CCVB was formulated based on the recognition of a modified

cluster expansion hidden in PHF. In this regard CCVB-SD is similar in spirit to ACPQ and

CCSDQ’. The similarity between CCVB-SD and ACPQ was noticed in ref. 143. The key

distinction is CCVB-SD is self-contained, unlike CCSDQ’, and removes certain quadratic

terms in RCCSD by solving modified amplitudes equations as opposed to discarding such

terms a priori, as in ACPQ.

In CCVB-SD, a singlet doubly-excited configuration is constructed by pairing an occupied

orbital with a virtual orbital and coupling two triplets out of such two pairs to form an overall

singlet state. This is how CCVB encodes interpair correlations, and the remaining higher-

order correlations enter through the aforementioned modified cluster expansion. CCVB-

SD successfully combines advantages of RCCSD and CCVB: it preserves all the formal

properties of RCCSD mentioned above and describes valence correlations correctly even

near multiple bond dissociations. Another viewpoint is obtained by noting that CCVB

generalizes PHF, removing the latter’s size inconsistency, and CCVB-SD generalizes CCVB.

Therefore, CCVB-SD is an effective combination of PHF and coupled cluster. The value of

finding such a combination was emphasized in a recent paper.147 We also note that CCVB-SD

naturally contains the antisymmetric doubles that are discarded in CCSD0. When properly

implemented, CCVB-SD should scale the same as does RCCSD, which is n2
occn

4
vir. Its result

for the triple-bond dissociation of N2 in a minimal basis shows its ability to capture strong

correlations in the valence space as it reaches the correct asymptote.143

The main objective of this paper is to provide detailed information about a new production-

level implementation of CCVB-SD and discuss its applicability to systems of hundreds of

strongly correlated electrons with an application to emergent many-electron correlations in

oligoacenes,22,23,148–157 which have been the focus of much recent attention. This paper is

organised as follows: (1) we review and discuss the CCVB-SD wavefunction ansatz from a

different angle than what is discussed in ref. 143, (2) we discuss the derivation of CCVB-

8
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SD Λ-equation, (3) we illustrate how we implement the CCVB-SD T -amplitudes equation

and Λ-equation solvers into a block-tensor based coupled-cluster code, and (4) we apply

CCVB-SD to oligoacenes and discuss strong correlations in their ground state.

The Model

In CCVB-SD, the wavefunction ansatz is given through quadruples level as143

|Ψ〉 =

(
Î + T̂ 1 +

1

2
T̂ 2

1 + Ŝ +
1

6
T̂ 3

1 +
1

2
ŜT̂ 2

1 + ŜT̂ 1 +
1

24
T̂ 4

1 +
1

2
Ŝ2 − 1

2
ÎSQ̂

2
)
|Φ0〉 , (1)

where |Φ0〉 denotes a singlet reference, T̂ 1 represents the singles operator, the doubles oper-

ator Ŝ creates singlet doubly-excited configurations, the doubles operator Q̂ creates quintet

doubly-excited configurations, and ÎS is a general singlet-subspace projection operator which

can be written as a sum of outer products of orthonormal singlet states {|Φµ〉},

ÎS = |Φ0〉 〈Φ0|+
∑
ia

|Φa
i 〉 〈Φa

i |+
∑
ijab

∣∣Φab
ij

〉 〈
Φab
ij

∣∣+ · · ·. (2)

This ansatz includes full singles and doubles operators, and thus it is exact for isolated

two-electron systems. The ÎSQ̂
2

term represents an approximate connected quadruples con-

tribution that plays a key role in capturing strong correlations in CCVB-SD.

Based on this wavefunction ansatz, the CCVB-SD energy and amplitudes equations follow

E = 〈Φ0| e−ĜHeĜ |Φ0〉 = 〈Φ0|
(
e−ĜĤeĜ − Ĥ ÎS

1

2
Q̂2

)
|Φ0〉 , (3)

0 = 〈∆µ|
(
e−ĜĤeĜ − Ĥ ÎS

1

2
Q̂2

)
|Φ0〉 , (4)

where the primary cluster operator Ĝ is defined as

Ĝ = T̂1 + Ŝ, (5)

9
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and |∆µ〉 represents an excited determinant in the spin-orbital basis including singly-excited

ones
∣∣∣∆aσ1

iσ1

〉
and doubly-excited ones

∣∣∣∆aσ1bσ2
iσ1jσ2

〉
. We note that in the second equality in Eq.

(3) we used

〈Φ0|
(
Ĥ ÎS

1

2
Q̂2

)
|Φ0〉 = 0, (6)

which is a consequence of the Slater rules. CCVB-SD formally includes other higher discon-

nected excitations beyond quadruples, but we only need up to quadruples for the purpose of

solving the amplitude equations.

It is important to note that the amplitudes of Ŝ parametrise the amplitudes of Q̂. This

connection is most succinct if we use the following configurations for the singlet doubles sub-

space, indexed by spatial orbitals and grouped into 2 categories: |SΦab
ij 〉 and |AΦab

ij 〉 where the

superscripts S and A denote symmetry and antisymmetry under the permutation of spatial

orbital indices (i.e. i↔j, a↔b), respectively. This construction is based on the orthogonal

spin-adapted 4-electron singlet configurations discussed extensively elsewhere.128–131 As il-

lustrated in Fig. 1, the symmetric state is constructed by taking two singlets from (ij) (a

2-particle geminal made from occupied levels i and j) and (ab) (a 2-particle geminal made

from virtual levels a and b) to form a 4-electron singlet. The antisymmetric state, on the

other hand, is built coupling two triplets from (ij) and (ab) to form an overall singlet.

i

a

j

b

Triplet Triplet

Singlet

i

a

j

bSinglet

Singlet

i

a

j

bTriplet

Triplet

Symmetric
Singlet

Antisymmetric
Singlet

Ŝ SŜ

AŜ

Figure 1: An illustration of the decomposition of singlet doubles space into antisymmetric
and symmetric singlet parts.
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In terms of excitations from a singlet reference |Φ0〉, the construction of |SΦab
ij 〉 and |AΦab

ij 〉

can be carried out using spin-adapted geminal (or pair) operators. The singlet annihilation

operator σ̂pq and the three triplet annihilation operators (−1τ̂pq,
0τ̂pq,

1τ̂pq) for each MS are

defined as follows:

σ̂pq =
1√
2

(
âqβ âpα + âpβ âqα

)
, (7)

−1τ̂pq = âqβ âpβ , (8)

0τ̂pq =
1√
2

(
âqβ âpα − âpβ âqα

)
, (9)

and

1τ̂pq = âqα âpα . (10)

Applying these operators to |Φ0〉, |SΦab
ij 〉 and |AΦab

ij 〉 follow

|SΦab
ij 〉 = ssΣ̂ab

ij |Φ0〉

=
1

2

(
|∆bβaα

iβjα
〉+ |∆bαaβ

iαjβ
〉+ |∆aβbα

iβjα
〉+ |∆aαbβ

iαjβ
〉
)
, (11)

and

|AΦab
ij 〉 = ttΣ̂ab

ij |Φ0〉

=
1√
12

(
|∆bβaα

iβjα
〉+ |∆bαaβ

iαjβ
〉 − |∆aβbα

iβjα
〉 − |∆aαbβ

iαjβ
〉 − 2 |∆aβbβ

iβjβ
〉 − 2 |∆aαbα

iαjα
〉
)
, (12)

where

ssΣ̂ab
ij = σ̂†abσ̂ij, (13)

and

ttΣ̂ab
ij =

1√
3

(
−0τ̂ †ab

0τ̂ij − −1τ̂ †ab−1τ̂ij − 1τ̂ †ab
1τ̂ij

)
. (14)

In the case of |SΦab
ij 〉, σ̂ij removes a singlet from |Φ0〉 and in its place creates another singlet

with σ̂†ab. Unsurprisingly, the result is a doubly-substituted singlet configuration. Construct-

11
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ing |AΦab
ij 〉 is similar except that we must ensure that the resulting configuration is singlet.

For example, 0τ̂ij removes a triplet from the reference and replaces it with another triplet via

0τ̂ †ab, but if we had stopped there, the configuration would still have a quintet component.

In any case, the underlying concept in this viewpoint of the singlet doubles space is that

we are removing two electrons of a given spin from the reference and replacing them with

two electrons of the same spin. In passing, we note that this construction verifies the earlier

assertion about the permutation symmetry of the two states as

|SΦab
ij 〉 = |SΦba

ij 〉 = |SΦab
ji 〉 = |SΦba

ji 〉 , (15)

and

|AΦab
ij 〉 = − |AΦba

ij 〉 = − |AΦab
ji 〉 = |AΦba

ji 〉 . (16)

We also note that Eq. (11) is not normalised for cases with repeated indices, but it is

consistent with our definition of SŜ shown below. With these, the singlet doubles operator

Ŝ thus separates into two orbital-invariant pieces

Ŝ = SŜ + AŜ, (17)

where the symmetric part of Ŝ is

SŜ =
1

4

∑
ijab

SSabij
ssΣ̂ab

ij , (18)

and the antisymmetric part of Ŝ is

AŜ =
1

4

∑
ijab

ASabij
ttΣ̂ab

ij . (19)

SSabij and ASabij have the same index symmetry as the corresponding substitution operators

(i.e. they follow the same symmetry as Eq. (15) and Eq. (16), respectively). These two
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sets of amplitudes constitute two tensors SS and AS, each of size n2
occn

2
vir. Because the

amplitude indices are for spatial orbitals, the tensors will be referred to as being “spinless”.

In contrast to this, tensors indexed with spin orbitals will be referred to as “spinful” tensors.

For completeness, we write Ŝ in terms of spin blocks of its spinful counterpart ŝ as in

Ŝ =
1

4

∑
ijab

saαbαiαjα

(
â†aα â

†
bα
âjα âiα + â†aβ â

†
bβ
âjβ âiβ

)
+
∑
ijab

s
aαbβ
iαjβ

â†aα â
†
bβ
âjβ âiα , (20)

where the summations run over spatial orbitals, the first term denotes the same spin block

of ŝ and the second term is the opposite spin block of ŝ.

When acting on |Φ0〉, Q̂ creates a linear combination of quintet configurations. Because

the maximum spin for four electrons is quintet, it is clear that each quintet double should

be obtained by removing a triplet from the reference and replacing it with another triplet.

We have

Q̂ =
1

4

∑
ijab

Qab
ij
ttκ̂abij , (21)

where

ttκ̂abij =
1√
6

(
−2 0τ̂ †ab

0τ̂ij + −1τ̂ †ab
−1τ̂ij + 1τ̂ †ab

1τ̂ij

)
, (22)

and Q is another spinless antisymmetric tensor of size n2
occn

2
vir. The action of ttκ̂abij creates a

quintet configuration as in

|QΦab
ij 〉 = ttκ̂abij |Φ0〉 (23)

=
1√
6

(
|∆bβaα

iβjα
〉+ |∆bαaβ

iαjβ
〉 − |∆aβbα

iβjα
〉 − |∆aαbβ

iαjβ
〉+ |∆aβbβ

iβjβ
〉+ |∆aαbα

iαjα
〉
)
. (24)

We can now describe the correspondence between S and Q, which is given by

Qab
ij = −2 AS

ab

ij . (25)

This indicates that Q is independent of SS and parametrised by AS. This is intuitive given
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that AS and Q have the same permutational symmetry in the spatial orbitals, or alternatively

they are both obtained by substituting triplets within the reference. The detailed proof of

Eq. (25) is available in Appendix of this article.

The physical meaning of SŜ and AŜ may be better understood in the language of valence

bond theory.158 SŜ contains perfect-pairing (PP)159 terms which are important pieces of

strong correlations that describe intrapair correlations. In addition to PP terms, it also

has important interpair correlations such as ionic excitations between two pairs. On the

other hand, AŜ corresponds to interpair correlations which are not captured by SŜ but are

important to describe polyradical character of systems. AS parametrises quadruples in a

different way than they are parametrised in RCCSD. If AS is small, then Q is small and so is

the difference between the CCVB-SD and RCCSD results. In this sense, CCVB-SD theory

asserts that AS is the operative element (at least for the doubles) in RCCSD’s failure to

correctly describe strong correlations. This also stands in contrast to the CCSD0 method127

which removes AS or AŜ entirely.

CCVB-SD Lagrangian and Λ–equation

Following Eq. (3) and (4), we establish the CCVB-SD Lagrangian defined as

L(T̂1, Ŝ, Λ̂) = 〈Φ0|
(

Î + Λ̂
)(

e−ĜĤeĜ − Ĥ ÎS
1

2
Q̂2

)
|Φ0〉 , (26)

where Λ̂, a deexcitation operator multiplied by Lagrange’s multipliers, is defined as

Λ̂ = Λ̂1 + Λ̂2

=
∑
ia

Λa
i Ê

i
a +

1

2

∑
ijab

Λab
ij Ê

i
aÊ

j
b , (27)
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with the unitary-group generator

Êa
i = â†aα âiα + â†aβ âiβ . (28)

If we did not have the quintet contribution, we would have exactly the same Lagrangian

as RCCSD. Finding a stationary point of L with respect to the variations of tai ,
SSabij , and

ASabij yields the CCVB-SD Λ-equation. For the singles equations, it can be easily shown

that the resulting equation is essentially identical to the one for RCCSD with the cluster

operator Ĝ.160 Below we shall discuss how the doubles equations differ from the usual RCCSD

Λ-equation.

From Eq. (25),

∂Q̂
∂ ASabij

= −2 ttκ̂abij , (29)

and the quintet contribution for the Λ-equation follows

2 〈Φ0|
(

Î + Λ̂
)(
Ĥ ÎS

ttκ̂abij Q̂
)
|Φ0〉 = 2 〈Φ0| Λ̂2Ĥ ÎS

ttκ̂abij Q̂ |Φ0〉 . (30)

Using

〈Φ0|
(

Î + Λ̂2

)
e−Q̂[Ĥ, ttκ̂abij ]eQ̂ |Φ0〉 = 〈Φ0| Λ̂2Ĥ ÎS

ttκ̂abij Q̂ |Φ0〉 , (31)

the quintet contribution can be reshaped similarly to the RCCD Λ-equation expression with

the doubles operator being Q̂.

Using this, the CCVB-SD Λ-equation in a spatial-orbital form for each variation with
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respect to SSabij and ASabij is written as

∂L
∂ SSabij

= 0→ 〈Φ0|
(

Î + Λ̂
)
e−Ĝ

[
Ĥ, ssΣ̂ab

ij

]
eĜ |Φ0〉 = 0, (32)

∂L
∂ ASabij

= 0→ 〈Φ0|
(

Î + Λ̂
)
e−Ĝ

[
Ĥ, ttΣ̂ab

ij

]
eĜ |Φ0〉 (33)

+ 2 〈Φ0|
(

Î + Λ̂2

)
e−Q̂[Ĥ, ttκ̂abij ]eQ̂ |Φ0〉 = 0.

This can be further simplified to more familiar forms160,

〈Φ0|
(
H̄Ĝ +

[
Λ̂, H̄Ĝ

]
+
∑
kc

H̄Ĝ |Φc
k〉 〈Φc

k| Λ̂1

)∣∣SΦab
ij

〉
= 0, (34)

〈Φ0|
(
H̄Ĝ +

[
Λ̂, H̄Ĝ

]
+
∑
kc

H̄Ĝ |Φc
k〉 〈Φc

k| Λ̂1

)∣∣AΦab
ij

〉
+ 2 〈Φ0|

(
H̄Q̂ +

[
Λ̂2, H̄Q̂

]) ∣∣QΦab
ij

〉
= 0, (35)

where we define

H̄Ô = e−ÔĤeÔ. (36)

Eq. (34) can be used to update the symmetric part of Λab
ij (i.e. SΛab

ij ) whilst Eq. (35) can be

used to update the antisymmetric part of Λab
ij (i.e. AΛab

ij ) .

Unrelaxed PDMs

It can be verified that the expression of the CCVB-SD one-particle density matrix (1PDM)

is identical to that of RCCSD.160 On the other hand, the expression for the two-particle

density matrix (2PDM) has an extra term associated with Q̂. To see this, we define a spin-

orbital tensor of size 2(nocc + nvir)
4 (having both same-spin and opposite-spin blocks) that
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represents the CCVB-SD unrelaxed 2PDM:

ξ
pσ1qσ2
rσ1sσ2

= 〈Φ0| (̂I + Λ̂)

(
e−Ĝ(â†pσ1 â

†
qσ2
âsσ2 ârσ1 )eĜ − 1

2
(â†pσ1 â

†
qσ2
âsσ2 ârσ1 )̂ISQ̂

2
)
|Φ0〉 (37)

= Ĝξ
pσ1qσ2
rσ1sσ2

+ Q̂ξ
pσ1qσ2
rσ1sσ2

, (38)

where

Ĝξ
pσ1qσ2
rσ1sσ2

= 〈Φ0| (̂I + Λ̂)e−Ĝ(â†pσ1 â
†
qσ2
âsσ2 ârσ1 )eĜ |Φ0〉 , (39)

and

Q̂ξ
pσ1qσ2
rσ1sσ2

= −1

2
〈Φ0| (̂I + Λ̂)(â†pσ1 â

†
qσ2
âsσ2 ârσ1 )̂ISQ̂2 |Φ0〉 . (40)

Ĝξ is the RCCSD contribution with the cluster operator Ĝ, and Q̂ξ is an extra term coming

from Q̂. It is clear that the second term contributes to only OOVV blocks (i.e. ξ
iσ1jσ2
aσ1bσ2

)

because Q̂2 produces quadruply excited configurations. We then use a similar trick used in

Eq. (31) to write the extra term in the following form:

Q̂ξ
pσ1qσ2
rσ1sσ2

= −〈Φ0| (̂I + Λ̂2)e
−Q̂(â†iσ1 â

†
jσ2
âbσ2 âaσ1 )̂ISe

Q̂ |Φ0〉 . (41)

Having these unrelaxed PDMs allows for computing unrelaxed one-electron and two-electron

properties.

As the formation of relaxed PDMs (i.e. response equations) for CCVB-SD remains

unchanged from RCCSD,160 all the relaxed properties of CCVB-SD are computed by usual

ways as is done for RCCSD. The analytical gradients can be readily implemented in general

coupled-cluster codes.

Block-Tensor Implementation of CCVB-SD

In this section, we use uppercase letters such as S, SS, AS, Q, Λ, SΛ, and AΛ to indicate

spinless tensors or operators as before, and lowercase letters such as s, q, µ, ν , λ, ρ, ζ, and
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ξ are used for spinful tensors, i.e. ones with spin-orbital indices.

Tensorial Properties of Doubles Operators

In a spin-orbital based implementation, Ŝ is represented by a set of amplitudes s
aσ1bσ2
iσ1jσ2

as

shown in Eq. (20). With this, we can extract AS:

ASabij =
1√
12

(
s
bβaα
iβjα

+ s
bαaβ
iαjβ
− saβbαiβjα

− saαbβiαjβ
− 2s

aβbβ
iβjβ
− 2saαbαiαjα

)
. (42)

This form, however, poses a little challenge when embedded into block-tensor based codes

as accessing individual elements of tensors will be highly inefficient. Manipulating such

equations in terms of block tensors instead of individual elements is thus valuable.

Q-Chem’s161 coupled-cluster code, ccman2, extensively employs the block tensors im-

plemented in a general tensor library called libtensor.162 In libtensor, any doubles

amplitudes of the form o
aσ1bσ2
iσ1jσ2

are stored only with non-zero, symmetry-unique blocks, called

canonical blocks. For instance, when unrestricted orbitals are used there are three canonical

blocks (i.e. (αααα), (ββββ), (αβαβ)) out of the total six blocks illustrated in Figure 2. In

the case of restricted orbitals and closed-shell molecules (or more generally singlet opera-

tors), one needs only opposite-spin blocks (i.e. (αβαβ)) to form the entire tensor. This is

because restricted orbitals imply the α ↔ β symmetry and for singlet operators same-spin

blocks can be obtained by antisymmetrising opposite-spin blocks.

This can be seen from the form of a singlet configuration |Φ〉 = Ŝ |Φ0〉. The projection

of this state onto the same-spin space is simply obtained as

saαbαiαjα
= 〈∆aαbα

iαjα
|Ŝ|Φ0〉 = − 1√

3
ASabij . (43)
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Figure 2: The data structure of block tensors of order 4. Colored blocks are only canonical
blocks for tensors with restricted orbitals, and (αααα) block can be obtained from (αβαβ)
block in the case of singlet operators.

Similarly, the opposite-spin projection is

s
aαbβ
iαjβ

= 〈∆aαbβ
iαjβ
|Ŝ|Φ0〉 =

1

2
SSabij −

1√
12

ASabij , (44)

s
bαaβ
iαjβ

= 〈∆bαaβ
iαjβ
|Ŝ|Φ0〉 =

1

2
SSabij +

1√
12

ASabij . (45)

This shows that for any combination of (i, j) and (a, b) including i = j or a = b

saαbαiαjα
= s

aαbβ
iαjβ
− sbαaβiαjβ

. (46)

Similarly, one can show

saαbαiαjα
=

1

2

(
s
aαbβ
iαjβ
− sbαaβiαjβ

+ s
bαaβ
jαiβ
− saαbβjαiβ

)
. (47)

As long as restricted orbitals are employed, both Eq. (46) and Eq. (47) are identical.

The latter is preferred for the purpose of demonstration because it is easier to see the full

antisymmetrisation with respect to permuting either occupied orbitals or virtual orbitals.
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Symbolically, we write Eq. (47) as

SS(s) =
1

2
asymmO[asymmV[OS(s)]], (48)

where SS(·) denotes the same-spin block of a given tensor as in

SS(s)abij = saαbαiαjα
, (49)

OS(·) denotes the opposite-spin block of a given tensor as in

OS(s)abij = s
aαbβ
iαjβ

, (50)

and asymmO[·] and asymmV[·] perform antisymmetrisation of a given tensor over occupied and

virtual spatial indices, respectively. Similarly, we define symmetrisation of a given tensor as

symmO[·] and symmV[·] over occupied and virtual spatial indices, respectively. In passing, we

note that Eq. (43) implies that the spinless antisymmetric part of a singlet tensor is obtained

simply scaling the same-spin component of the corresponding singlet spinful tensor. This is

again in the symbolic form:

AS = −
√
3 SS(s). (51)

We then illustrate the tensorial properties of Q which will be useful to derive block-tensor

equations. It can be read from Eq. (24) that (similarly to Eq. (43))

SS(q)=
1√
6
Q. (52)

and (αααα) and (ββββ) blocks of q are identical. Combining this with Eq. (25) and Eq.

(51), we arrive at

SS(q)=
-2√
6

AS =
√
2 SS(s). (53)

This shows how the same-spin block of the spinful tensor q is related to the same-spin block
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of a singlet tensor s. Also, the opposite spin-block of q is

OS(q)=− SS(q), (54)

and this contrasts with Eq. (48), which manifests a different tensorial property of singlet

and quintet tensors.

T -Amplitude Solver

The singles equation is identical to RCCSD with the doubles operator Ĝ, so we will focus on

solving the doubles equation. Based on the properties of the doubles operators appearing

in CCVB-SD discussed above, CCVB-SD can be efficiently implemented in a block-tensor

based coupled cluster codes. The CCVB-SD amplitude equation reads

ρ
aσ1bσ2
iσ1jσ2

(Ĝ) = µ
aσ1bσ2
iσ1jσ2

(Ĝ)−
(
ν
aσ1bσ2
iσ1jσ2

(Q̂)− 〈aσ1bσ2 ‖ iσ1jσ2〉
)

= 0, (55)

where we define

µ
aσ1bσ2
iσ1jσ2

(Ô) =

〈
∆
aσ1bσ2
iσ1jσ2

∣∣∣∣H̄Ô∣∣∣∣Φ0

〉
, (56)

and

ν
aσ1bσ2
iσ1jσ2

(Ô) =

〈
∆
aσ1bσ2
iσ1jσ2

∣∣∣∣ÎSH̄Ô∣∣∣∣Φ0

〉
. (57)

µ(Ô) can be obtained easily with any existing coupled-cluster codes whereas computing ν(Ô)

is not as straightforward. Below we illustrate how to solve this amplitudes equation with

details on computing ν(Q̂) from µ(Q̂):

1. Perform the block-tensor operation demonstrated in Eq. (53) based on s either from

the previous iteration or an initial guess. This gives SS(q) and then performing the

operation in Eq. (54) yields the full q tensor.

2. Form µ(Q̂) defined in Eq. (56). This can be achieved with any standard coupled-
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cluster codes.

3. ν(Q̂) is obtained through a spin-projection of µ(Q̂) onto a 4-electron singlet subspace.

Since ν(Q̂) is strictly a singlet, we can utilize the tensorial properties of general singlet

tensors discussed above. The upshot is that we only need to obtain OS(ν(Q̂)) and

SS(ν(Q̂)) will be obtained using Eq. (48). For the sake of simplicity, we write µ and

ν to indicate µ(Q̂) and ν(Q̂), respectively.

The element-wise definition of ν is well described in the appendix of ref. 143, which

can be further simplified to

ν
aαbβ
iαjβ

=
1

6

(
µ
bβaα
iβjα

+ µ
bαaβ
iαjβ

+ 2µ
aβbα
iβjα

+ 2µ
aαbβ
iαjβ

+ µ
aβbβ
iβjβ

+ µaαbαiαjα

)
=

1

3

(
µ
bαaβ
iαjβ

+ 2µ
aαbβ
iαjβ

+ µaαbαiαjα

)
, (58)

where we used µ
aαbβ
iαjβ

= µ
aβbα
iβjα

. We then write this in a block-tensor form:

OS(ν) =
1

3
(OS(µ) + symmV[OS(µ)] + SS(µ)) . (59)

The same-spin blocks are obtained using Eq. (48). In passing, we note that Eq. (58)

gives a correct singlet tensor even when there are repeated indices. One can verify that

this single operation yields all the spin-projected opposite-spin blocks of the tensor

described in the appendix of ref. 143.

After evaluating ρ(Ĝ), a standard Jacobi iteration along with Pulay’s direct inversion of the

iterative subspace (DIIS)163 can be used to solve for the amplitudes. This completes the

implementation of the CCVB-SD T -amplitude solver. The computational cost of CCVB-SD

has a larger prefactor (roughly twice larger) than RCCSD due to the need for constructing

ν(Q̂). As its asymptotic scaling is the same as RCCSD (n2
occn

4
vir), this is considered a minor

drawback. More detailed information on the performance of this implementation is available

in the applications discussed later.
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Λ-Equation Solver

We define a general spin-orbital tensor γ that can be readily computed in usual coupled

cluster programs as follows,

γ
aσ1bσ2
iσ1jσ2

(Ô) = 〈Φ0|
(
H̄Ô +

[
Λ̂, H̄Ô

]
+
∑
kc

H̄Ô |Φc
k〉 〈Φc

k| Λ̂1

)∣∣∣∆aσ1bσ2
iσ1jσ2

〉
. (60)

Using this tensor and Eq. (11), Eq. (34) can be achieved by

1

2
symmV[symmO[OS(γ(Ĝ))]], (61)

whereas with Eq. (12) and Eq. (24), Eq. (35) can be written as

1√
3

(
−1
2
asymmV[asymmO[OS(γ(Ĝ))]− 2SS(γ(Ĝ))

)
+

4√
6

(
−1
2
asymmV[asymmO[OS(γ(Q̂))] + SS(γ(Q̂))

)
. (62)

Combining these with Eq. (44), a full update of OS(λ) is obtained. As λ is a singlet

spin-orbital tensor, we can simply obtain the same-spin block using Eq. (48).

Unrelaxed PDMs

The form presented in Eq. (41) is not convenient to use because of the singlet projection

operator appearing in the middle of two non-singlet operators. Thus, it is natural to form

separate expressions for the symmetric part and the antisymmetric part of the 2PDM tensor

similarly to what is proposed in the Λ-equation solver. We define a spin-orbital tensor

ζ
iσ1jσ2
aσ1bσ2

= −〈Φ0| (̂I + Λ̂2)e
−Q̂(â†iσ1 â

†
jσ2
âbσ2 âaσ1 )eQ̂ |Φ0〉 , (63)
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and this can be easily computed in the same way as RCCD. Using Eq. (44), OS(Q̂ξ) is

obtained as

OS(Q̂ξ)=
1

4
symmV[symmO[OS(ζ)]]

+
1

3

(
1

4
asymmV[asymmO[OS(ζ)]+SS(ζ)

)
. (64)

As Q̂ξ is a singlet tensor, we can use Eq. (48) to form SS(Q̂ξ) based on OS(Q̂ξ) obtained

above.

Applications to oligoacenes

Figure 3: The chemical structure of n-acene (C2H4C4nH2n).

The acenes, illustrated in Fig. 3, are known to exhibit emergent strong correlations as

their length grows and thus they provide a well-defined platform for testing novel approaches

for strong correlations. There have been numerous studies on oligoacenes using various meth-

ods such as CASSCF,148,149 DMRG-CASCI,22,23 variational 2-RDM methods,150–152 adap-

tive CI (ACI),153 multi-reference averaged quadratic coupled cluster (MR-AQCC),164,165 and

density functional theory (DFT) based methods such as DFT/MRCI,154 thermally-assisted-

occupation DFT (TAO-DFT),155 fractional-spin DFT (FS-DFT),156 and particle-particle

random-phase approximation (pp-RPA).157 Although RCCSD has been applied to short

acenes (n≤7)149,166,167, there is no study on longer acenes using RCCSD mainly because of
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their known failures for strongly correlated systems.

We compare absolute energies and natural orbital occupation numbers of different SRCC

methods against the exact answers taken from ref. 22 up to 12-acene with all π-electrons cor-

related. The natural orbital occupation numbers for SRCC are computed with symmetrised

1PDMs. Symmetrised 1PDMs yield very similar results to unsymmetrised ones. We further

study and discuss higher acenes (n>12) using CCVB-SD with a well-defined model geometry

(RC−C = 1.3964 Å, RC−H = 1.0755 Å) not only correlating π-electrons but correlating all the

valence electrons. All the calculations presented below employ a minimal basis (STO-3G)

and are performed with the development version of Q-Chem.161 All the plots were generated

with matplotlib.168

Comparison against DMRG with all π-electrons correlated

Table 1: Reference absolute energies (in Hartrees) from the π-space DMRG calculations of
ref. 22 and deviations (in mH) of several methods from the DMRG values. Geometries are
also taken from ref. 22 which were optimised at the level of UB3LYP/6-31G* with S = 0. The
number of renormalised states, M , of DMRG calculations is 1000. The DMRG calculation for
n=12 was not fully converged with respect to M . Calculations with convergence problems are
indicated by DNC. RHF orbitals are used for CCVB-SD, RCCSD, and RCCSD(T) whereas
OD, QCCD, and QCCD(2) are computed with optimised orbitals.

n DMRG CCVB-SD RCCSD RCCSD(T) OD QCCD QCCD(2)
2 -378.862173 9.472 2.509 -0.499 2.550 5.102 2.915
3 -529.721682 14.671 4.472 -0.784 4.538 8.766 5.071
4 -680.578678 20.481 6.103 -1.888 6.203 13.000 7.653
5 -831.434630 26.941 7.142 -4.185 7.254 17.846 10.706
6 -982.290070 34.822 6.432 -9.609 6.114 23.989 14.750
8 -1284.000964 54.051 DNC DNC DNC DNC DNC

10 -1585.713311 71.973 DNC DNC DNC DNC DNC
12 -1887.425575 89.154 DNC DNC DNC DNC DNC

We first examine whether using RHF orbitals is valid for these systems because the

quality of RHF orbitals often degrades for strongly correlated systems. Optimised doubles

(OD)169,170 or orbital-optimised CCD yields nearly identical energies to those of RCCSD,

implying that RHF orbitals are qualitatively correct. Due to convergence issues, OD was
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performed only up to 6-acene, so, to further examine the efficacy of using RHF orbitals,

we also carried out test CCVB-SD calculations with RBLYP orbitals. The use of RBLYP

orbitals does not yield qualitatively different results. Therefore, the numbers reported in

Table 1 are all obtained using stable RHF orbitals that are spatially symmetric.

2 4 6 8 10 12
n-acene

2

0

2

4

6

8
E

rr
or

 / 
n 

(m
H

)

CCVB-SD
RCCSD
RCCSD(T)
OD
QCCD
QCCD(2)

Figure 4: The correlation energy error with respect to DMRG per acene unit of different
coupled-cluster methods. We note that the OD curve is right on top of the RCCSD one.

For weakly correlated systems, RCCSD and CCVB-SD yield almost identical results and

the deviation between the two becomes more significant for the systems with strong corre-

lations. For the acenes shown in Table 1, the RCCSD energies are significantly lower than

those of CCVB-SD, which hints at a non-variational failure of RCCSD. More specifically, as

illustrated in Table 1, RCCSD and OD may be starting to “turn over” at 6-acene because the

error in correlation energies is smaller in 6-acene than in 5-acene. Moreover, the RCCSD(T)

energies are lower than those of DMRG. Fig. 4 demonstrates that the correlation energy

error per acene unit in CCVB-SD reaches a plateau value as the system size increases. It con-

firms that the correlation energy error in CCVB-SD is size-extensive. Furthermore, RCCSD,

RCCSD(T), and OD turn over at 5-acene. In the end, they must plateau since they are all

size-extensive.

We confirm whether RCCSD behaves non-variationally by performing orbital-optimised

QCCD100 where the left eigenfunction is improved by including a de-excitation operator up
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to quadratic terms and the right eigenfunction remains the same as that of RCCD. This

more balanced treatment of the left eigenfunction allows for an energy evaluation closer to

that of variational CC.

Table 1 shows that the QCCD energies are above the RCCSD energies for every acene

considered here. As QCCD energies are closer to the true variational CCSD energies,88,100

we conclude that RCCSD may be behaving non-variationally even for short acenes. It is

interesting that even a seemingly innocent molecule like naphthalene apparently shows non-

variationality of RCCSD given that this behaviour has been mostly observed for molecules

near bond dissociations. In passing, we note that CCVB-SD does not show any convergence

issues unlike the others presented here and this is likely due to the approximate inclusion of

connected quadruples that stabilises singles and doubles amplitudes.

(a)

(c) (d)

(a) (b)

Figure 5: Natural orbital occupation numbers from (a) DMRG, (b) RCCSD, (c) QCCD,
and (d) CCVB-SD.
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Neither QCCD nor CCVB-SD is variational, so either could in principle exhibit non-

variationality. In other words, both CCVB-SD and QCCD88 can legitimately be below

variational CCSD. QCCD cannot reach the correct limit for bond-breaking while CCVB-SD

can.100 Yet CCVB-SD yields higher energies for the acenes. This suggests that QCCD may

be also exhibiting non-variationality. It will be interesting to see other approaches such as

unitary CCSD90–93 and extended CCSD94–99 to further investigate this. In passing we note

that, unlike RCCSD(T), the energies of QCCD(2),102 which is a perturbative correction of

a similar level of theory to RCCSD(T), are above the DMRG energies for acenes up to n

= 6. It will be interesting to see whether QCCD(2) will become lower than DMRG for

longer acenes. Given that the NOONs of QCCD and CCVB-SD are very similar and their

energies are yet very different, it will be interesting to compare a perturbative correction to

CCVB-SD and QCCD(2) in the future.

We then discuss the natural orbital occupation numbers (NOONs) of each method. The

NOONs of RCCSD show larger polyradical character than that of DMRG, which indicates

RCCSD’s tendency to overcorrelate these systems. The NOONs of QCCD are less polarised

than those of RCCSD and they are very similar to those of CCVB-SD. The NOONs of

CCVB-SD show similar trends to DMRG’s, but with smaller radical character. This may,

in part, be due to missing connected higher-than-double excitations in CCVB-SD that may

be necessary to better describe correlations of acenes. We discuss more in depth the nature

of correlations in oligoacenes in a separate study.

Application of CCVB-SD to longer acene oligomers

We apply CCVB-SD to a model geometry up to 23-acene with all π-electrons correlated and

up to 17-acene with all valence electrons correlated. As mentioned earlier, the lengths of all

C-C and C-H bonds are fixed at 1.3964 Å and 1.0755 Å, respectively. The angle between

three neighboring carbons and the angle between H−C−C are fixed at 120◦ to ensure D2h

symmetry.
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(a) (b)

Figure 6: Natural orbital occupation numbers of model geometries (RC−C = 1.3964 Å,
RC−H = 1.0755 Å) from CCVB-SD with (a) all π-electrons correlated and (b) all valence
electrons correlated. The largest calculation in (b) correlates 318 electrons in 318 orbitals.

The NOONs for these series are shown in Fig. 6. Compared to the results from the

UB3LYP geometries used above, there is virtually no difference in the NOONs. It has been

pointed out that small changes in geometries of oligoacenes do not alter their NOONs.23

Regardless of whether all π-electrons are correlated or all valence electrons are correlated,

both cases exhibit a plateau region as the acene chain length increases.

Mizukami et al. applied DMRG with M = 256 to a model geometry (RC−C (shorter) =

1.402 Å, RC−C (longer) = 1.435 Å, RC−H = 1.010 Å) up to 25-acene with all π-electrons

correlated, which is slightly different than the one used in this study.23 Fitting the NOONs

of HONO (highest occupied natural orbital with occupation greater than 1) and LUNO

(lowest unoccupied natural orbital with occupation less than 1) to analytical functions in

Fig 6 (a), the asymptotes for (HONO, LUNO) were found to be (1.36, 0.64) for CCVB-

SD, whilst the ref. 23 authors obtained (1.30, 0.70) for DMRG.171 Those M = 256 DMRG

calculations were far from being converged with respect to the number of renormalised states

and thus we expect the exact asymptotes to be closer to 1.0 for both HONO and LUNO. The

π-space CCVB-SD asymptote is less radicaloid, but it qualitatively captures the emergent

strong correlations present in oligoacenes.

The progression of emergent strong correlations as a function of the length of acenes
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when correlating all valence electrons has not yet been well-characterised mainly because of

the absence of suitable quantum chemistry models. The significant progress that has been

made in developing FCIQMC13,14 and DMRG15–19 allows treatment of systems with approx-

imately 100 electrons in 100 orbitals at near benchmark accuracy. However, correlating all

valence electrons of the oligoacenes requires an active space much larger than this limit (e.g.

even 5-acene (pentacene) has 102 electrons in 102 orbitals for the full-valence space). On

the other hand, more economical wavefunction based methods such as RCCSD cannot prop-

erly describe systems with emergent strong correlations of many electrons as shown in the

previous section.

Here, we apply CCVB-SD to oligoacenes up to 17-acene correlating all valence electrons,

which yields a maximum active space of 318 electrons and 318 orbitals. The largest CCVB-

SD calculation took little less than two hours per iteration using 32 cores in AMD Opteron

Processor 6376. Under the same condition, RCCSD took roughly an hour per iteration,

which confirms that the computational cost of CCVB-SD is twice larger than RCCSD.

Comparing NOONs of π-space and full-valence space calculations as illustrated in Fig.

6, it is interesting to note that the radical character in terms of NOONs is considerably

less prominent for the full-valence calculations. This may be understood similarly to the

way we understand two-configuration SCF (TCSCF) wavefunctions that tend to yield larger

amplitudes on the excited determinants compared to the exact answers. Therefore, one

would expect more radicaloid (closer to 1) NOONs for truncated active space calculations,

which in our case are π-space calculations. The NOONs from the full-valence calculations

also reach a plateau region as the system grows and the asymptote is (1.63, 0.37) for (HONO,

LUNO).

We further compute the radical index (RI) of oligoacenes. The RI, proposed by Head-

Gordon172, is a measure of the number of radical electrons in a system. Although in terms

of NOONs of HONO and LUNO the valence calculations seem to exhibit smaller radical

characters than the π-space calculations, the net RI is larger in the valence calculations as
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(a) (b)

Figure 7: (a) Radical index as a function of the number of carbon atoms, and (b) normalised
radical index as a function of the number of carbon atoms.

illustrated in Fig. 7 (a). This is because there are 4–5 times more correlated electrons in

the valence calculations than in the π-space calculations. Therefore, we separate σ-NOs

and π-NOs in the valence calculations and divide the RI by the number of σ or π-electrons,

respectively. This normalised RI (NRI) directly indicates the average radical character per

electron in a system and the NRI closer to 1.0 indicates more of radical character. For

example, an ideal diradical would yield NRI of 1.0 within (2,2) active space. The π-NOs and

σ-NOs are classfied by their irreducible representations as the NOs from CCVB-SD are all

spatially symmetric in the systems considered in this work.

With this classification, the resulting NRI is depicted in Fig. 7 (b). Unsurprisingly, the

σ-NOs in the valence calculations do not show any noticeable changes in the NRI and their

NRIs are much smaller than those of π-NOs. The NRI of valence-π is smaller than that of

π-space calculations, which is consistent with what is observed in the NOONs. The NRIs

of π-NOs increase as system grows and they reach bulk values in both valence and π-space

calculations. This clearly shows the progressive emergent radical character in the π-space

of oligoacenes. In passing, we note that increasing the basis beyond STO-3G is expected to

show a further reduction in the largest NOONs for virtuals and this is an interesting subject

of future study.
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Conclusions and Outlook

In this paper, we summarized the CCVB-SD electron correlation method in terms of or-

thogonally spin-adapted doubles operators and derived its Λ-equation and unrelaxed density

matrices. We also described a block-tensor based implementation of CCVB-SD and showed

a large-scale application to acene oligomers correlating up to 318 electrons in 318 orbitals.

Studying oligoacenes with CCVB-SD and other single reference CC methods, several

interesting results were found: (1) Even for naphthalene, a significant difference in energy

between RCCSD and QCCD was found, which suggests non-variational behaviour of RCCSD.

This non-variational behaviour becomes more pronounced for larger acenes. (2) CCVB-SD

qualitatively captures strong correlations of acenes based on the comparison between NOONs

from CCVB-SD and DMRG22,23 and (3) correlating all valence electrons shows a significantly

smaller radical character in the π-space than when correlating only the π-electrons, but it

still shows progressive emergent strong correlations as system grows.

Lack of connected excitation beyond double in CCVB-SD is possibly the largest missing

contribution, with triples (T) being the leading correction. In the future, modifications of

CCVB-SD to include T (and beyond) are desirable. There are many ways to pursue this

direction including non-iterative approaches as is done in similarity-transformed perturbation

theory,173 CCSD(T),76 and optimised-inner-projection method that has been applied to

incorporate T into ACPQ.174–176 Approximating T in a self-contained iterative fashion using

singles and doubles similarly to the way CCVB-SD approximates connected quadruples (Q)

would be formally and computationally more satisfying but is still an open question.

There are other future extensions of CCVB-SD to consider such as linear-response CC

(LR-CC)177 or equation-of-motion CC (EOM-CC)178 for excited states and open-shell CCVB-

SD similar to open-shell CCVB.179 As CCVB-SD handles valence correlations well, for basis

sets larger than minimal basis, it would be beneficial to develop valence optimised CCVB-D

similarly to valence optimised doubles (VOD).180 It will be interesting to study mechanisms

of reactions involving strongly correlated transition states such as pericyclic reactions us-
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ing algorithms such as nudged elastic band181,182 and growing string methods.183–186 The

production-level implementation of CCVB-SD energy and gradients described in this paper

will facilitate these exciting developments and applications.

Acknowledgements

J.L. thanks Martin Head-Gordon group for stimulating discussions and Soojin Lee for enor-

mous support. This work was supported by a subcontract from ARO MURI Grant W911NF-

14-1-0359 with additional support from the Scientific Discovery through Advanced Comput-

ing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced

Scientific Computing Research and Basic Energy Sciences.

Appendix

Proof of Eq. (25)

We begin with Eq. (63) and Eq. (64) of ref. 143 in our present notation,

Ŝ =
1

2

∑
ijab

Sabij Σ̂ab
ij , (A1)

Q̂ =
1

2

∑
ijab

Sabij
ttκ̂abij (A2)

=
∑
i<j
a<b

(
Sabij − Sabji

)
ttκ̂abij , (A3)

where tabij , Sabij , and Qabij in ref. 143 correspond to Sabij , Σ̂ab
ij , and ttκ̂abij , respectively.

Therefore, we write

Qab
ij = Sabij − Sabji . (A4)
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In terms of ssΣ̂ab
ij and ttΣ̂ab

ij , Σ̂ab
ij is written as

Σ̂ab
ij = −

√
3

2
ssΣ̂ab

ij −
1

2
ttΣ̂ab

ij . (A5)

For any i 6= j and a 6= b, using Eq. (A5) one can show that the terms in Eq. (17) and Eq.

(A1) pertinent to these indices are

Sabij Σ̂ab
ij + Sabji Σ̂ab

ji = −
√

3

2

(
Sabij + Sabji

)
ssΣ̂ab

ij −
1

2

(
Sabij − Sabji

)
ttΣ̂ab

ij (A6)

= SSabij
ssΣ̂ab

ij + ASabij
ttΣ̂ab

ij , (A7)

which gives

SSabij = −
√

3

2

(
Sabij + Sabji

)
, (A8)

ASabij = −1

2

(
Sabij − Sabji

)
. (A9)

Comparing Eq. (A9) and Eq. (A4) proves Eq. (25).
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(175) Piecuch, P.; Zarrabian, S.; Paldus, J.; Č́ıžek, J. Phys. Rev. B 1990, 42, 3351–3379.
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