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Abstract

In this paper, we describe a model that learns seman-
tic representations from the distributional statistics of
language. This model, however, goes beyond the com-
mon bag-of-words paradigm, and infers semantic repre-
sentations by taking into account the inherent sequential
nature of linguistic data. The model we describe, and
which we refer to as a Hidden Markov Topics model is
a natural extension of the current state of the art in
Bayesian bag-of-words models, i.e. the Topics model of
Griffiths, Steyvers, and Tenenbaum (2007), preserving
its strengths while extending its scope to incorporate
more fine-grained linguistic information.

Introduction

How word meanings are learned is a foundational prob-
lem in the study of human language use. Within cogni-
tive science, a promising recent approach to this problem
has been the study of how the meanings of words can
be learned from their statistical distribution across the
language. This approach is motivated by the so-called
distributional hypothesis, originally due to Harris (1954)
and Firth (1957), which proposes that the meaning of
a word is given by the linguistic contexts in which it
occurs. Numerous large-scale computational implemen-
tations of this approach — including, for example, the
work of Schiitze (1992), the HAL model (Lund, Burgess,
& Atchley, 1995), the LSA model (Landauer & Dumais,
1997) and, most recently, the Topics model (Griffiths
et al., 2007) — have succesfully demonstrated that the
meanings of words can, at least in part, be derived from
their statistical distribution in language.

Important as these computational models have been,
one of their widely shared practices has been to treat the
linguistic contexts in which a word occurs as unordered
sets of words. In other words, the linguistic context of
any given word is defined by which words co-occur with
it and with what frequency, but it disregards all fine-
grained sequential and syntactic information. By disre-
garding these types of data, these so-called bag-of-words
models drastically restrict the information from which
word meanings can be learned. All languages have strong
syntactic-semantic correlations. The sequential order in
which words occur, the argument structure and general
syntactic relationships within sentences, all provide vital
information about the possible meaning of words. This
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information is unavailable in bag-of-words models and
consequently the extent to which they can extract se-
mantic information from text, or adequately model hu-
man semantic learning, is limited.

In this paper, we describe a distributional model that
goes beyond the bag-of-words paradigm. This model
is a natural extension to the current state of the art
in probabilistic bag-of-words models, namely the Topics
model described in Griffiths et al. (2007) and elsewhere.
The model we propose is a seamless continuation of the
Topics model, preserving its strengths — its thoroughly
unsupervised learning, its hierarchical Bayesian nature
— while extending its scope to incorporate more fine-
grained sequential and syntactic data.

The Topics Model

The standard Topics model as described in Griffiths and
Steyvers (2002, 2003); Griffiths et al. (2007) is a prob-
abilistic generative model for texts, and is based on the
Latent Dirichlet Allocation (LDA) model of Blei, Ng,
and Jordan (2003). It stipulates that each word in a cor-
pus of texts is drawn from one of K latent distributions
P1.. .Gk ... 0 = @, with each ¢y being a probability
distribution over the V word-types in a fixed vocabu-
lary. These distributions are the so-called topics that
give the model its name. Some examples, learned by a
Topics model described in Andrews, Vigliocco, and Vin-
son (In Press), are given in the table below (each column
gives the 7 most probable word types in each topic).

theatre music league prison air
stage band cup years aircraft
arts rock season  sentence flying
play song team jail flight
dance record  game home plane
opera pop match  prisoner airport
cast dance division serving pilot

As is evident from this table, each topic is a cluster of
related terms that corresponds to a coherent semantic
theme, or subject-matter. As such, the topic distribu-
tions correspond to the semantic knowledge learned by
the model, and the semantic representation of each word
in the vocabulary is given by a distribution over them.



Figure 1: A Bayesian network diagram of the standard
Topics model described in Griffiths et al. (2007) and else-
where. Details are provided in the main text. Note that
3 denotes the parameters of a V-dimensional Dirichlet
distribution, from which each of K topic distributions
are sampled.

To describe the Topics model more precisely, let us
assume we have a corpus of J texts wi...w;...wy,
where the jth text w; is a sequence of n; words, i.e.
W1 - - Wji - - - Wjp,; . EBach word, in each text, is assumed
to be sampled from one of the model’s K topics. Which
one of these topics is chosen is determined by the value
of a latent variable z;; that corresponds to each word
wj;. This variable takes on one of K discrete values,
and is determined by sampling from a probability distri-
bution ;, which is specific to text j. As such, we can
see that each text w; is assumed to be a set of n; in-
dependent samples from a mixture model. This mixture
model is specific to text j, as the mixing distribution
is determined by ;. However, across texts, all mixing
distributions are drawn from a common Dirichlet distri-
bution, with parameters a. Given known values for ¢
and a, the likelihood of the entire corpus is given by

_le [dn; Piala)

P(WI:J|¢7 a)

11 D_ Plwjilzji, )P (jilm;) |

=1 {x;;}

In this, we see that the Dirichlet distribution P(7;|cx)
introduces a hierarchical coupling of all the mixing dis-
tributions. As such, the standard Topics model is a hier-
archical coupling of mixture models, effectively defining
a continuum of mixture models, all sharing the same K
component, topics.

The standard Topics model is thus an example of a
hierarchical language model. It assumes that each text is
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generated according to an elementary language model
— specifically a mixture of unigram distributions —
which are then hierarchically coupled with one another.
From this, it is evident that the standard model can be
extended by simply changing the elementary language
model on which it is based. There are multiple possi-
ble language models that could be used in this respect.
One possibility is to use a bigram language model as
described in Wallach (2006). Another possibility is to
use a language model based on a full phrase-structure
grammar as described in Boyd-Graber and Blei (2009).
However, in that work, the syntactic structure underly-
ing the sentences in the texts is assumed to be known
in advance, and is provided by syntactically tagged cor-
pus. In what follows, we describe a Topics models whose
elementary language model is a Hidden Markov model
(HMM). We refer to this as the Hidden Markov Topics
model (HMTM)?!.

Hidden Markov Topics model

In the HMTM, just as in the standard Topics model, each
wj; is drawn from one of K topics, the identity of which
is determined by the latent variable x;;. However, rather
than sampling each x;; independently from a probability
distribution 7;, as in the standard model, these latent
variabls are generated by a Markov chain that is specific
to text j. By direct analogy with the standard model,
across the texts, the parameters of these Markov chains
are drawn from a common set of Dirichlet distributions.
As such, the HMTM is a hierarchical coupling of HMMs,
defining a continuum of Hidden Markov models, all shar-
ing the same state to output mapping.
In the HMTM, the likelihood of the corpus is

J
Plwnslé,a,y) = [] [dndd; Prs 0510 )
j=1

n;

[[P@jilzjiz1, 0,)P(ajlm))
1=2

(2)

Here, 6; and 7; are the parameters of the Markov
chain of latent-states in text j. The 0; is the K x K
state transition matrix (i.e. the kth row of 8; gives the
probability of transitioning to each of the K states, given
that the current state is k), and 7; is the initial distribu-
tion for the K states. The distribution over the m; and

Z HP(wji|xjiv¢)

{5} i=1

'The HMTM bears some resemblance to a model de-
scribed in Griffiths et al. (2007) that couples a Hidden
Markov model with a standard Topics model. There are,
however, substantial differences between these models. In
particular, the HMTM is designed to learn semantic repre-
sentations by directly availing of the sequential information
in text. By contrast, the HMM based model described in
Griffiths et al. (2007) learns semantic representations using
a standard topics model, while the HMM is used to learn
syntactic categories.



0;, i.e. P(m;,0j]a,7), is a set of independent Dirich-
let distributions, where « are the parameters for the
Dirichlet distibution over m;, and =, ...~ = v are the
parameters for the distribution over each of the K rows
of 0j .

Figure 2: A Bayesian network diagram for the Hidden
Markov Topic model. Details are provided in the main
text.

Learning and Inference

From this description of the HMTM, as well as from
its Bayesian network diagram given in Figure 2, we can
see that the HMTM has four sets of parameters whose
values must be inferred from a training corpus of texts.
These are the K topic distributions, i.e. ¢, the Dirichlet
parameters for the latent-variable Markov chains, i.e. «
and «, and the Dirichlet parameters from which the topic
distributions are drawn, i.e. B2. The posterior over ¢,
a, (B and « given a set of J texts wi.; is

P(d)v &, /63 ’Y|W1:J) X P(W1CJ|¢7 «, W)P(¢|B)P(a7 67 F)E)V)

3
where the likelihood term P(wy.5|¢, ar,y) is given by
Equation 2. This distribution is intractable (as is even
the likelihood term itself), and as such it is necessary
to use Markov Chain Monte Carlo (MCMC) methods to
sample from it.

There are different options available for MCMC sam-
pling. The method we employ is a Gibbs sampler that
draws samples from the posterior over o, 3, v and x3.;.
Here, x1.; are the sequences of latent-variables for each
of the J texts, i.e. X1,X2...X7, with x; = z;1... 2.
This Gibbs sampler has the useful property of integrating
over ¢, m1.y and 601.;, which entails both computational
efficiency and faster convergence.

2The B parameters can be seen as a prior over ¢, but a

prior that will be inferred from the data rather than simply
assumed.
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On convergence of the Gibbs sampler, we will
obtain samples from the joint posterior distribution
P(x1.5,,3,7v|w1.s). From this, other variables of in-
terest can be obtained. For example, it is desirable
to know the likely values of the topic distributions
¢1...0k... 0. Given known values for xy.; and 3,
the posterior distribution over ¢ is simply a product
of Dirichlet distribution, from which samples are eas-
ily drawn and averaged. Further details of this Gibbs
sampler are provided in the Appendix.

Demonstration

Here, we demonstrate the operation of the HMTM on
a toy problem. In this problem, we generate a data-set
from a HMTM with known values for ¢, a and . We
can then train another HMTM, whose parameters are
unknown, with this training data-set. Using the Gibbs
sampler, we can draw samples from the posterior over
¢, a, B and ~, and then compare these samples to the
true parameter values that generated the training data.

In the example we present here, we use a “vocabulary”
of V' = 25 symbols, and a set of K = 10 “topics”. As
is common practice in demonstrations of related models,
the “topics” we use in this example can be visualized
using the grids shown below.

Each grid, although shown as a 5 x 5 square, is just a
25 dimensional array, with 5 high values (darker) and 20
low values (lighter). Each of these arrays corresponds to
one of the topics distributions in our toy problem, i.e.
each one places the majority of its probability mass on
a different set of 5 symbols.

The 7, ...7x = = parameters in the HMTM are a
set of K K-dimensional Dirichlet parameters. Each v,
is an array of K non-negative real numbers. A common
reparameterization of Dirichlet parameters, such as v,
is as smy, where s is the sum of «, and my, is the v,
divided by s. For each set of K Dirichlet parameters, we
used an s = 3.0. The K arrays m; ... mg are depicted

below on the left.
2, i

N =

From these Dirichlet parameters, we may generate arbi-
trarily many sets of state-transition parameters for a 10




Figure 3: Averages of samples from the posterior distribution over the topic distributions (left) and locations of the
~ parameters (right). Shown on the top row are averages, over 10 draws, drawn after 20 iterations. Shown on the
lower row are averages, again over 10 draws, taken after 100 iterations. Compare with the true parameters shown

on the previous page.

state HMM. As an example, we show two such sets on
the right. As is evident, these parameters retain char-
acteristics of the patterns found in the orginal Dirichlet
parameters. We can see that, on average, the state tran-
sition dynamics leads a given state to map to either the
state before it, or the state after it. For example, we can
see that, on average, state 2 maps to state 1 or state 3,
state 3 maps to state 2 or state 4, and so on. While this
average dynamical behavior is simple, it is not trivial,
and does not lead to fixed point or periodic trajectories.
Note also that the small differences in the transition dy-
namics can lead to quite distinct dynamical behaviors in
their respective HMMs.

On the basis of these ¢ and 0, and using an array
of K ones as the parameters a, we generated J = 50
training “texts” as follows. For each text j, we drew a
set of initial conditions and transition parameters for a
HMM from « and «, respectively. We then iterated the
HMM for n; = 100 steps, to obtain a state trajectory
Tjl - Tjn,- On the basis of the value of each zj;, we
chose the appropriate topic (i.e. if z;; = k we chose ¢},)
and drew an observation wj; from it. The training thus
comprised a set of J symbol sequences, with each symbol
taken a value from the set {1...25}.

Using this as training data, we trained another HMTM
whose parameters were unknown. As described earlier,
the Gibbs sampler draws samples from the posterior dis-
tributon over xy.5, «, B and . From these samples,
we may also draw samples from the posterior over the
topics. In Figure 3, we graphically present some results
of these simulations. Show in this figure are averages of
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samples drawn from the posterior over ¢ and my ... my,
i.e the location parameters of v, ...~;. On the top row
of Figure 3, we show averages of samples drawn after 20
iterations of the sampler. On the lower row, we show av-
erages of drawn after 100 iterations. In both cases, these
averages are over 10 samples taken two iterations apart
in time. To the left in each case, are the inferred topics.
To the right are the inferred locations of the Dirichlet pa-
rameters. These inferred parameters can be compared to
the true parameters on the previous page. By doing so,
it is clear that even after 20 iterations of the sampler,
patterns in the topic distributions have been discovered.
After 100 iterations, the inferred parameters are almost
identical to the originals.

Although not shown, the Gibbs sampler also succes-
fully draws samples from the posterior over o, 8> and
the scale parameter s for . In addition, we may use
draws from the posterior to estimate, using the harmonic
mean method, the marginal likelihood of the model un-
der a range of different numbers of topic distributions.
Although, the harmonic mean method is not highly rec-
ommended, we have found that in practice it consistently
leads to an estimate of the correct number of topics.

Learning Topics from Text

In this final section, we present some topics learned by
a HMTM trained on a corpus of natural language. The
corpus used was a sub-sample from the British National

3For the case of 3, we used a symmetric Dirichlet distri-
bution.



beer sheep sugar aircraft film say ship
guinness cattle fruit plane movie know boat
3] alcohol meat butter jet series talk ferry
.g ale livestock bread airline tv think vessel
&= whisky dairy chocolate  squadron story feel ships
E spirits beef milk helicopter  television  understand navy
= wine pigs cream fighter soap believe shipping
e cider animal water hercules movies speak lifeboat
pint COW lemon airbus drama ask fleet
lager pig egg falcon episode explain coastguard
pub farm fruit air film want boat
drink agriculture add aircraft star think island
g guinness food fresh flight hollywood like sea
S beer farming butter plane movie people ship
o drinking sheep cooking airport screen moment crew
g wine agricultural  minutes flying stars happen ferry
g bar cattle hot pilot director wanted sailing
A alcohol ministry food fly actress worried yacht
brewery crop bread jet actor believe shipping
whisky pigs chicken airline role exactly board

Table 1: Examples of topics learned by a HMTM (top row) that was trained on a set of documents taken from the
BNC. On the lower row, we show topics from a standard topics model also trained on a set of documents from the

BNC.

Corpus (BNC)%. The BNC is annotated with the struc-
tural properties of a text such as sectioning and sub-
sectioning information. The latter type of annotation
facilitates the processing of the corpus. To extract texts
from the BNC we extracted contiguous blocks that were
labeled as high-level sections, roughly corresponding to
individual articles, letters or chapters. These sections
varied in size from tens to thousands of words, and from
these we chose only those texts that were approximately
150-250 words in length. This length is typical of, for
example, a short newspaper article. Following these cri-
teria, we then sampled 2500 individual texts to be used
for training. Of all the word types that occurred within
this subset of texts, we excluded words that occurred
less 5 times overall, and replaced their occurrence with
a marker symbol. This restriction resulted in a total of
5182 unique words.

We trained a HMTM with K = 120 topics using this
corpus. After a burn-in period of 1000 iterations, we
drew 50 samples from the posterior over the latent tra-
jectories and B, with each sample being 10 iterations
apart. We used these to draw samples from the pos-

4The BNC is a 100 million word corpus of contemporary
written and spoken English in the British Isles. According
to its publishers, the texts that make up the written com-
ponent include “extracts from regional and national news-
papers, specialist periodicals and journals for all ages and
interests, academic books and popular fiction, published and
unpublished letters and memoranda, school and university
essays”.
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terior over the topics, which are then averaged, as de-
scribed earlier. In the upper part of Table 1, we present
seven averaged topics from the HMTM simulation. For
the purposes of comparison, in the lower part Table 1
we present seven averaged topics taken from a standard
topics model. This standard topics model was trained
on a larger corpus, and is described in detail in Andrews
et al. (In Press). The topics in the standard model were
chosen by finding the topics that are the closest matching
to the HMTM topics we chose.

The side-by-side comparison provides an appreciation
for how the topics in a HMTM differ from the standard
model. In the HMTM, the topics are more refined in the
semantics, referring to more specific categories of things
or events. For example, we see that the first topic to the
left in the HMTM refers to alcholic beverages, specifi-
cally those associated with a (British) pub. By contrast,
the corresponding topic from the standard model is less
specifically about beverages and refers more generally
to things of, or relating to, pubs. In the next example,
we see that the topic from the HMTM refers to farm
animals. By contrast, the corresponding topic from the
standard model is less specifically about farm animals
and more related to agriculture in general. In all of the
examples shown, a similar pattern of results holds.

Conclusion

The aim of this paper is to demonstrate how to extend
the standard Topics model so as to learn more fine-



grained semantic representations from the statistics of
langauge. This is done by using the sequential statisti-
cal information of language. As mentioned, the sequen-
tial order in which words occur provide vital informa-
tion about the possible meaning of words. This infor-
mation is not available in the standard Topics model,
nor in most of its counterparts. In the examples shown,
we have seen that more refined semantic representations
can be learned when sequential information is taken into
account.

This general usefulness of sequential information can
be understood by way of a, albeit contrived, simple ex-
ample. Words like horse, cow, mule are likely to occur
as subjects of verbs like eat, chew, while words like grass,
hay, grain are likely to occur as their objects. A model
that learns topics by taking into account this sequential
information may learn that words like horse, cow, and
mule etc., form a coherent topic. Likewise, such a model
may infer other topics based on words like eat, chew,
etc., or words like grass, hay, grain, etc. By contrast,
the standard Topics model, based on the assumptions
that the sequential information in a text is irrelevant,
is likely to conflate these separate topics into one single
topic referring to, for example, farms or farming.

Appendix

The Gibbs sampler for the HMTM model draws samples
from P(x1.j,a,8,v|wi.5). It does so iteratively sam-
pling from a given latent variable x;;, assuming values
from all other latent variables, and for «, 3, v. The
conditional distribution over x;; is given by

P(I]'L|X—[jz] yW1.J, &, ﬁv 7)

oc P(wji|wji, X, W), B)P(w5ix_[j07, @, ),

(A1)

where we denote the set of latent variables excluding xj;
by x_[j;], and denote the set of observables excluding
wj; by w_p;. Superficially, this conditional distribu-
tion appears identical to the conditional distributions in
the Gibbs sampler for the standard Topics model, as de-
scibed in Griffiths and Steyvers (2002, 2003); Griffiths
et al. (2007). However, due to the non-independence in
the latent trajectory that results from the Markov dy-
namics, the term P(x;;|x_j;;], ,y) must be calculated
as a ratio of Polya distributions, i.e.

P(XI:J|a7 ’7)

. A2
P(X—[jz']»a,’)’) ( )

P(xji\x—[jipaK)’) =

The Dirichlet parameters «, 3, v may also be sampled
by Gibbs sampling. For example, each =, is reparame-
terized as smy (as described in the main text). Assuming
known values for all variables, the conditional posterior
distribution of s is log-concave and can be sampled using
Adaptive Rejection sampling (ARS), see Gilks and Wild
(1992). Likewise, assuming known values for all other
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variables, the conditional posterior over the share of the
probability mass between any two elements of my, is also
log-concave and can be sampled by ARS. As such, the
Gibbs sequentially samples from each latent variable x;,
each scale parameter of the Dirichlet parameters given
by a, 3, 7, and also from the share of probability mass
between every pair of elements of each location parame-
ters of the Dirichlet parameters.
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